UHF Narrow band radio transceiver **STD-302N-R** 419MHz

Operation Guide

Version 1.0 (Aug. 2008)

CIRCUIT DESIGN, INC.,

7557-1 Hotaka, Azumino-city, Nagano 399-8303 JAPAN Tel: + +81-(0)263-82-1024 Fax: + +81-(0)263-82-1016

e-mail: info@circuitdesign.jp http://www.cdt21.com

CONTENTS

GENERAL DESCRIPTION & FEATURES	3
SPECIFICATIONS STD-302N-R 419 MHz	4
PIN DESCRIPTION	6
BLOCK DIAGRAM	8
DIMENSIONS	9
PLL IC CONTROL	10
PLL IC control	10
How to calculate the setting values for the PLL register	11
Method of serial data input to the PLL	12
TIMING CHART	13
PLL FREQUENCY SETTING REFERENCE	15
REGULATORY COMPLIANCE INFORMATION	16
CAUTIONS & WARNINGS	17
REVISION HISTORY	18

GENERAL DESCRIPTION & FEATURES

General Description

The UHF FM narrow band semi-duplex radio data module STD-302N-R is a high performance transceiver designed for use in industrial applications requiring long range, high performance and reliability.

All high frequency circuits are enclosed inside a robust housing to provide superior resistance against shock and vibration. A narrow band technique enables high interference rejection and concurrent operation with multiple modules.

STD-302N-R, a narrowband module with 25 kHz channel steps, achieves high TX/RX switching speed, making it an ideal RF unit for inclusion in feedback systems.

Features

- 10 mW RF power, 3.0 V operation
- Programmable RF channel
- > Fast TX/RX switching time
- ➤ High sensitivity -118 dBm
- > Excellent mechanical durability, high vibration & shock resistance

Applications

Telemetry

Water level monitor for rivers, dams, etc.

Monitoring systems for environmental data such as temperature, humidity, etc.

Transmission of measurement data (pressure, revolution, current, etc) to PC Security alarm monitoring

Telecontrol

Industrial remote control systems

Remote control systems for factory automation machines

Control of various driving motors

Data transmission

RS232/RS485 serial data transmission

SPECIFICATIONS

STD-302N-R 419 MHz

* The MIN/TYP/MAX values for the RF output power and BER are specified in the range of operation environment temperature.

General characteristics

Item	Units	MIN	TYP	MAX	Remarks
Communication method		One v	way, Half-d	uplex	
Emission class			F1D		
Operating frequency range	MHz	418.725		419.425	
Operation temperature range	°C	-20	-20 60 N		No dew condensation
Storage temperature range	°C	-30 75 1		75	No dew condensation
Aging rate (/ year)	ppm	-1 1 1 ⁻		1	TX freq., RX Lo freq.
Initial frequency tolerance *	ppm	-1.5		1.5	TX freq., RX Lo freq. At delivery
Dimensions	mm	30 x 50 x 9 mm		nm	Not including protrusion
Weight	g	25 g		·	

^{*} Initial frequency tolerance: At delivery

Initial frequency tolerance is defined as frequency drift at delivery within 1 year after the final adjustment

Electrical specification < Common>

Item		MIN	TYP	MAX	Remarks
Oscillation type		PLL	controlled	VCO	
Frequency stability (-20 to 60°C)	ppm	-4		4	Reference frequency at 25 °C
TX/RX switching time	ms		15	20	DI/DO
Channel step	kHz		25		
Data rate	bps	2400		9600	DO/DI
Max. pulse width	ms			15	DO/DI
Min. pulse width	us	100			DO/DI
Data polarity		Positive			DO/DI
PLL reference frequency	MHz		21.25		TCXO
PLL response	ms		30	60	from PLL setting to LD out
Antenna impedance	Ω		50		Nominal
Operating voltage	V	3.0		5.5	
TX consumption current	mΑ		46	50	Vcc = 3.0 V
RX consumption current	mA		26	30	Vcc = 3.0 V

For the PLL interface, refer to the documents of MB15E03SLP (FUJITSU) and use it within the specifications

Transmitter part

Item		MIN	TYP	MAX	Remarks
RF output power	mW		10		Conducted 50 Ω
Deviation	kHz	+/- 2.35	+/- 2.75	+/- 3.15	PN9 9600 bps
DI input level	V	0		5.5	L= GND, H = 3 V- Vcc
Residual FM noise	kHz		0.17		DI=L, LPF=20 kHz
Spurious emission	dBm			- 40	2f / 3f conducted 50Ω
Adjacent CH power	dBm	-37			PN9 9600 bps CH25kHz/BW16kHz

^{*} All values in the Specification column are specified at 25 °C+/-10 °C unless otherwise noted.

Receiver part

Item		MIN	TYP	MAX	Remarks
Receiver type		Double	superhete	rodyne	
1st IF frequency	MHz		21.7		
2nd IF frequency	kHz		450		
Maximum input level	dBm			10	
BER (0 error/2556 bits) *1	dBm	-106	-109		PN 9 9600bps
BER (1 % error) *2	dBm		-115		PN 9 9600bps
Sensitivity 12dB/ SINAD	dBm		-118		fm1 k/ dev 2 kHz CCITT
Spurious response rejections*3	dB		50		1 st Mix, 2 signal method, 1 % error
Spurious response rejections	uБ		50		2 nd Mix, 2 signal method, 1 % error
Adjacent CH selectivity *3	dB		50		+/- 25 kHz, 2 signal method, 1 % error
Blocking	dB		50		Jamming signal +/- 1MHz 2 signal method, 1% error
Intermodulation *4	dB		50		2 signal method, 1 % error
DO output level	V	0		2.8	L = GND H = 2.8 V
RSSI rising time	ms		30	50	CH shift of 25 kHz (from PLL setup)
Roof fishing time	1115		50	70	When power ON (from PLL setup)
Time until valid Data-out *5			50	100	CH shift of 25 kHz (from PLL setup)
Time until valid Data-out	ms		70	120	When power ON (from PLL setup)
Spurious radiation (1 st Lo)	dBm		-60	-57	Conducted 50 Ω (x 1, x2)
Spurious radiation	dBm		-60	-54	(x3, x4, x5)
RSSI	mV	190	240	290	With -113 dBm at 419.05 MHz

Specifications are subject to change without prior notice

Notice

- Communication range depends on the operation environment and ambient surrounding
- Specifications are subject to change to improve the characteristics and for other reasons.
- The time required until a stable DO is established may get longer due to the possible frequency drift caused by operation environment changes, especially when switching from TX to RX, from RX to TX and changing channels. Please make sure to optimize the timing. The recommended preamble is more than 20 ms.
- Antenna connection is designed as pin connection. RF output power, sensitivity, spurious emission and spurious radiation levels may vary with the pattern used between the RF pin and the coaxial connection. Please make sure to verify those parameters before use.
- The feet of the shield case should be soldered to the wide GND pattern to avoid any change in characteristics.

Notes about the specification values

- *1 BER: RF level where no error per 2556 bits is confirmed with the signal of PN9 and 9600 bps.
- *2 BER (1 % error): RF level where 1% error per 2556 bits is confirmed with the signal of PN9 and 9600 bps.
- *3 Spurious response, CH selectivity, Blocking: Jamming signal used in the measurement is unmodulated.
- *4 Intermodulation: Ratio between the receiver input level with BER 1% and the signal level (PN9 9600 bps) added at the points of 'Receiving frequency 200 kHz ' + ' Receiving frequency -100kHz' with which BER 1% is achieved.
- *5 Time until valid Data-out: Valid DO is determined at the point where Bit Error Rate meter starts detecting the signal of 9600bps, 1010 repeated signal.

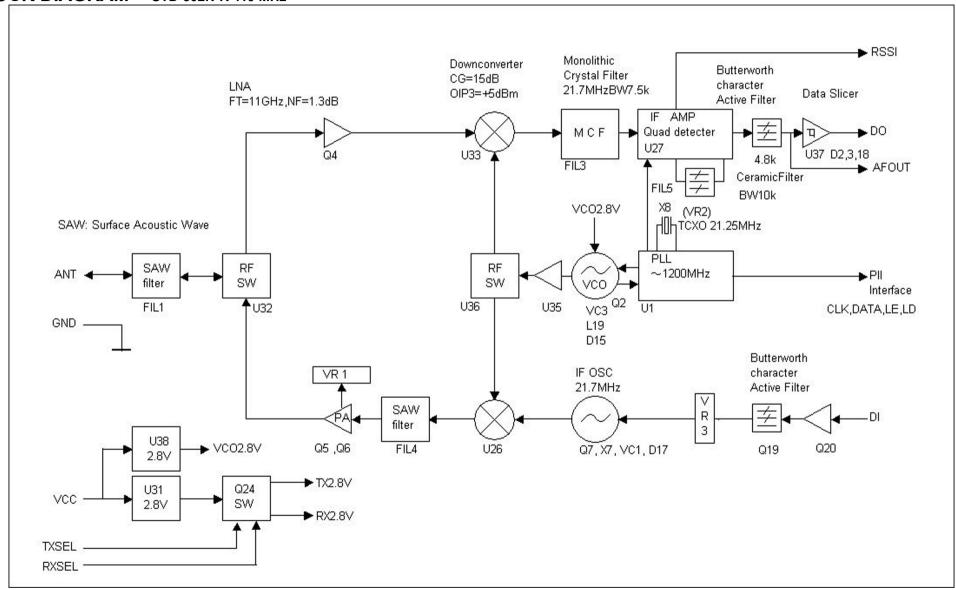
All specifications are specified based on the data measured in a shield room using the PLL setting controller board prepared by Circuit Design.

Measuring equipment:

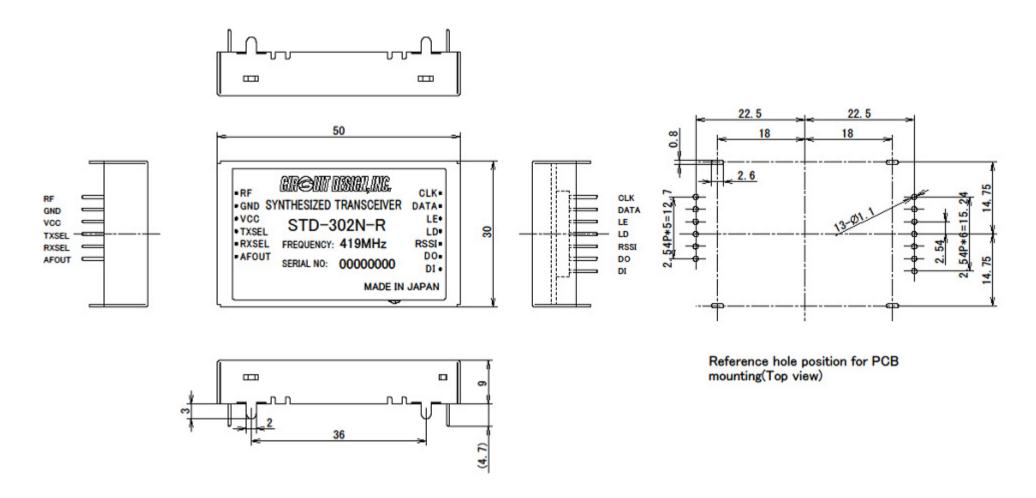
SG=ANRITSU communication analyzer MT2605

Spectrum analyzer = ANRITSU MS2663G / BER measure = ANRITSU MP1201G

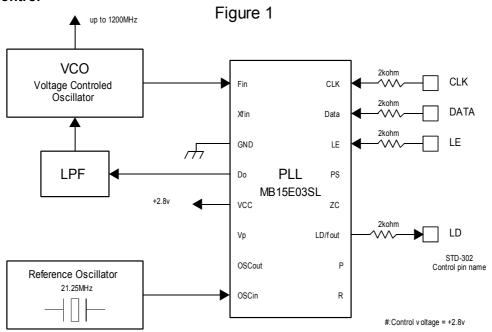
PIN DESCRIPTION


Pin name	I/O	Description	Equivalent circuit
RF	I/O	RF input terminal Antenna impedance nominal 50 Ω	SAW FILTER 47P RF
GND	I	GROUND terminal The GND pins and the feet of the shield case shoud be connected to the wide GND pattern.	
VCC	I	Power supply terminal DC 3.0 to 5.5 V	2.8V < REG VCC REG 10µ 47P 7777
TXSEL	I	TX select terminal GND = TXSEL active To enable the transmitter circuits, connect TXSEL to GND and RXSEL to OPEN or 2.8 V.	2.8V 2.8V 2.8V 2.8V TXSEL
RXSEL	I	RX select terminal GND= RXSEL active To enable the receiver circuits, connect RXSEL to GND and TXSEL to OPEN or 2.8 V.	2.8V 2.8V 20K RXSEL
AF	I	Analogue output terminal There is DC offset of approx. 1 V. Refer to the specification table for amplitude level.	LM324 470Ω AF
CLK	I	PLL data setting input terminal Interface voltage H = 2.8 V, L = 0 V	2K CLK
DATA	I	PLL data setting input terminal Interface voltage H = 2.8 V, L = 0 V	MB15E03 2K DATA
LE	I	PLL data setting input terminal Interface voltage H = 2.8 V, L = 0 V	2K LE

LD	0	PLL lock/unlock monitor terminal Lock = H (2.8 V), Unlock = L (0 V)	2.8V 2K LD WB15E03 102
RSSI	0	Received Signal Strength Indicator terminal	ZK RSSI TA31136 2K RSSI 103
DO	0	Data output terminal Interface voltage: H=2.8V, L=0V	2.8V 10K 2K DO 102
DI	I	Data input terminal Interface voltage: H=2.8V to Vcc, L=0V Input data pulse width Min. 100 µs Max. 15 ms	2K D1



BLOCK DIAGRAM <STD-302N-R 419 MHz>


DIMENSIONS

PLL IC CONTROL

PLL IC control

STD-302N-R is equipped with an internal PLL frequency synthesizer as shown in Figure 1. The operation of the PLL circuit enables the VCO to oscillate at a stable frequency. Transmission frequency is set externally by the controlling IC. STD-302N-R has control terminals (CLK, LE, DATA) for the PLL IC and the setting data is sent to the internal register serially via the data line. Also STD-302N-R has a Lock Detect (LD) terminal that shows the lock status of the frequency. These signal lines are connected directly to the PLL IC through a 2 k Ω resistor.

The interface voltage of STD-302N-R is 2.8 V, so the control voltage must be the same. STD-302N-R comes equipped with a Fujitsu MB15E03SL PLL IC. Please refer to the manual of the PLL IC.

The following is a supplementary description related to operation with STD-302N-R. In this description, the same names and terminology as in the PLL IC manual are used, so please read the manual beforehand.

How to calculate the setting values for the PLL register

The PLL IC manual shows that the PLL frequency setting value is obtained with the following equation.

 $f_{vco} = [(M \times N) + A] \times f_{osc} / R$ -- Equation 1

f_{vco}: Output frequency of external VCO

M: Preset divide ratio of the prescaler (64 or 128)

N: Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)

A: Preset divide ratio of binary 7-bit swallow counter $(0 \le A \le 127 \text{ A} < N))$

 f_{osc} : Output frequency of the reference frequency oscillator

R: Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)

With STD-302N-R, there is an offset frequency (f_{offset}) 21.7 MHz for the transmission RF channel frequency f_{ch} . Therefore the expected value of the frequency generated at VCO (f_{expect}) is as below.

```
f_{vco} = f_{expect} = f_{ch} - f_{offset} ---- Equation 2
```

The PLL internal circuit compares the phase to the oscillation frequency $f_{vco.}$ This phase comparison frequency (f_{comp}) must be decided. f_{comp} is made by dividing the frequency input to the PLL from the reference frequency oscillator by reference counter R. STD-302N-R uses 21.25 MHz for the reference clock $f_{osc.}$ f_{comp} is one of 6.25 kHz, 12.5 kHz or 25 kHz.

```
The above equation 1 results in the following with n = M \times N + A, where "n" is the number for division. f_{vco} = n^* f_{comp} ---- Equation 3 n = f_{vco} / f_{comp} ---- Equation 4 note: f_{comp} = f_{osc} / R
```

Also, this PLL IC operates with the following R, N, A and M relational expressions.

```
R=f_{osc}/f_{comp} ---- Equation 5 N=INT (n / M) ---- Equation 6 A=n-(M \times N) ---- Equation 7 INT: integer portion of a division.
```

As an example, the setting value of RF channel frequency f_{ch} 869.725 MHz can be calculated as below. The constant values depend on the electronic circuits of STD-302N-R.

Conditions: Channel center frequency: $f_{ch} = 869.725 \text{ MHz}$ Constant: Offset frequency: $f_{offset} = 21.7 \text{ MHz}$

Constant: Reference frequency: f_{osc}=21.25 MHz

Set 25 kHz for Phase comparison frequency and 64 for Prescaler value M

The frequency of VCO will be

 $f_{vco} = f_{expect} = f_{ch} - f_{offset} = 869.725 - 21.7 = 848.025MHz$

Dividing value "n" is derived from Equation 4

 $n = f_{vco} / f_{comp} = 848.025MHz/25kHz = 33921$

Value "R" of the reference counter is derived from Equation 5.

 $R = f_{osc}/f_{comp} = 21.25MHz/25kHz = 850$

Value "N" of the programmable counter is derived from Equation 6.

N = INT (n/M) = INT(33921/64) = 530

Value "A" of the swallow counter is derived from Equation 7.

 $A = n - (M \times N) = 33921 - 64 \times 530 = 1$

The frequency of STD-302N-R is locked at a center frequency f_{ch} by inputting the PLL setting values N, A and R obtained with the above equations as serial data. The above calculations are the same for the other frequencies.

Excel sheets that contain automatic calculations for the above equations can be found on our web site (www.circuitdesign.jp/eng/).

The result of the calculations is arranged as a table in the CPU ROM. The table is read by the channel change routine each time the channel is changed, and the data is sent to the PLL.

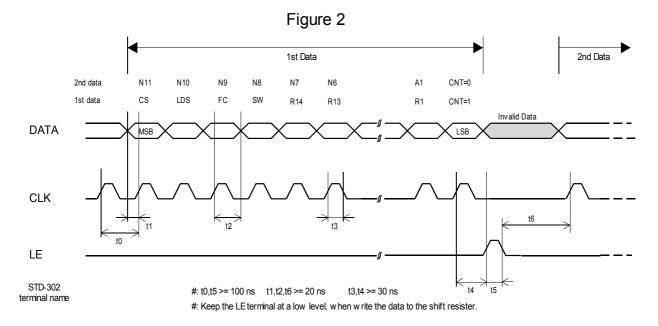
Method of serial data input to the PLL

After the RF channel table plan is decided, the data needs to be allocated to the ROM table and read from there or calculated with the software.

Together with this setting data, operation bits that decide operation of the PLL must be sent to the PLL.

The operation bits for setting the PLL are as follows. These values are placed at the head of the reference counter value and are sent to the PLL.

- 1. CS: Charge pump current select bit
 - CS = 0 +/-1.5 mA select


VCO is optimized to +/-1.5 mA

- 2. LDS: LD/fout output setting bit
 - LDS = 0 LD select

Hardware is set to LD output

- 3. FC: Phase control bit for the phase comparator
 - FC = 1

Hardware operates at this phase

The PLL IC, which operates as shown in the block diagram in the manual, shifts the data to the 19-bit shift register and then transfers it to the respective latch (counter, register) by judging the CNT control bit value input at the end.

- 1. CLK [Clock]: Data is shifted into the shift register on the rising edge of this clock.
- 2. LE [Load Enable]: Data in the 19-bit shift register is transferred to respective latches on the rising edge of the clock. The data is transferred to a latch according to the control bit CNT value.
- 3. Data [Serial Data]: You can perform either reference counter setup or programmable counter setup first.

TIMING CHART

Control timing in a typical application is shown in Figure 3.

Initial setting of the port connected to the radio module is performed when power is supplied by the CPU and reset is completed. MOS-FET for supply voltage control of the radio module, RXSEL and TXSEL are set to inactive to avoid unwanted emissions. The power supply of the radio module is then turned on. When the radio module is turned on, the PLL internal resistor is not yet set and the peripheral VCO circuit is unstable. Therefore data transmission and reception is possible 40 ms after the setting data is sent to the PLL at the first change of channel, however from the second change of channel, the circuit stabilizes within 20 ms and is able to handle the data.

Changing channels must be carried out in the receive mode. If switching is performed in transmission mode, unwanted emission occurs.

If the module is switched to the receive mode when operating in the same channel, (a new PLL setting is not necessary) it can receive data within 5 ms of switching*1. For data transmission, if the RF channel to be used for transmission is set while still in receiving mode, data can be sent at 5 ms after the radio module is switched from reception to transmission*2.

Check that the Lock Detect signal is "high" 20 ms after the channel is changed. In some cases the Lock Detect signal becomes unstable before the lock is correctly detected, so it is necessary to note if processing of the signal is interrupted. It is recommended to observe the actual waveform before writing the process program.

For 9600 bps, a preamble of '11001100' is effective.

Recommended preamble length:

- 20 °C - + 60 °C : 20 ms

Remark

For details about PLL control and the sample programs, see our technical document 'STD-302 interface method'

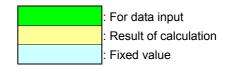
^{*1} DC offset may occur due to frequency drift caused by ambient temperature change. Under conditions below -10 °C, 10 to 20 ms delay of DO output is estimated. The customer is urged to verify operation at low temperature and optimize the timing.

^{*2} Sending '10101.....' preamble just after switching to transmission mode enables smoother operation of the binarization circuit of the receiver.

Figure 3: Timing diagram for STD-302

- #:1 Reset control CPU
- #:2 Initialize the port connected to the module.
- #:3 Supply power to the module after initializing CPU.
- #:4 RFchannel change must be performed in receiving mode.

- #.5 40 ms later, the receiver can receive the data after changing the channel...
- #:6 10 to 20 ms later, the receiver can receive the data after changing the channel.
- #:7 5 ms later, the data can be received if the RF channel is not changed.



PLL FREQUENCY SETTING DATA REFERENCE

419 MHz band (418.725 - 419.425 MHz)

Parameter name	Value
Phase Comparing Frequency F _{comp} [kHz]	25
Start Channel Frequency F _{ch} [MHz]	418.7250
Channel Step Frequency [kHz]	25
Number of Channel	29
Prescaler M	64

Parameter name	Value
Reference Frequency Fosc [MHz]	21.25
Offset Frequency Foffset [MHz]	21.7

Parameter name	Value
Reference Counter R	850
Programmable Counter N Min. Value	248
Programmable Counter N Max. Value	248
Swallow Counter A Min. Value	9
Swallow Counter A Max. Value	37

(MHz) (MHz) (MHz) (MHz) 0 418.7250 397.0250 397.0250 15881 248 9 1 418.7500 397.0500 397.0500 15882 248 10 2 418.7750 397.0750 397.0750 15883 248 11 3 418.8000 397.1000 397.1000 15884 248 12 4 418.8250 397.1250 397.1500 15885 248 13 5 418.8500 397.1500 397.1500 15886 248 14 6 418.8750 397.1750 397.1750 15887 248 15 7 418.9000 397.2000 397.2000 15888 248 16 8 418.9500 397.2500 397.250 15889 248 17 9 418.9500 397.2750 397.2750 15891 248 19 10 418.9750 397.3750 397.3750 15891	No.	Channel Frequency FCH	Expect Frequency FEXPECT	Lock Frequency FVCO	Number of Division n	Programmable Counter N	Swallow Counter A
1 418.7500 397.0500 397.0500 15882 248 10 2 418.7750 397.0750 397.0750 15883 248 11 3 418.8000 397.1000 397.1000 15884 248 12 4 418.8250 397.1250 397.1250 15885 248 13 5 418.8500 397.1500 397.1500 15886 248 14 6 418.8750 397.1750 397.1750 15887 248 15 7 418.9000 397.2000 397.2000 15888 248 16 8 418.9250 397.2500 397.250 15889 248 17 9 418.9500 397.2750 397.250 15889 248 18 10 418.9500 397.2750 397.2750 15891 248 20 11 419.0050 397.350 397.350 15892 248 20 12 419.0250 <td< td=""><td></td><td>(MHz)</td><td>(MHz)</td><td>(MHz)</td><td></td><td></td><td></td></td<>		(MHz)	(MHz)	(MHz)			
2 418.7750 397.0750 397.0750 15883 248 11 3 418.8000 397.1000 397.1000 15884 248 12 4 418.8250 397.1250 397.1250 15885 248 13 5 418.8500 397.1500 397.1500 15886 248 14 6 418.8750 397.1750 397.1750 15887 248 15 7 418.9000 397.2000 397.2000 15888 248 16 8 418.9250 397.2500 397.2500 15889 248 17 9 418.9500 397.2500 397.2500 15889 248 18 10 418.9750 397.2750 397.2750 15891 248 19 11 419.0000 397.3000 397.3500 15892 248 20 12 419.0250 397.3500 397.3500 15894 248 21 13 419.0550 397.3750 397.3750 15895 248 23 15 4	0	418.7250			15881		
3 418.8000 397.1000 397.1000 15884 248 12 4 418.8250 397.1250 397.1250 15885 248 13 5 418.8500 397.1500 397.1500 15886 248 14 6 418.8750 397.1750 397.1750 15887 248 15 7 418.9000 397.2000 397.2000 15888 248 16 8 418.9250 397.2250 397.2250 15889 248 17 9 418.9500 397.2500 397.2500 15890 248 18 10 418.9750 397.2750 397.2750 15891 248 19 11 419.0000 397.3000 397.3000 15892 248 20 12 419.0250 397.3500 397.3500 15893 248 21 13 419.0500 397.3750 397.3750 15894 248 22 14 419.0500							10
4 418.8250 397.1250 397.1250 15885 248 13 5 418.8500 397.1500 397.1500 15886 248 14 6 418.8750 397.1750 397.1750 15887 248 15 7 418.9000 397.2000 397.2000 15888 248 16 8 418.9250 397.2500 397.2550 15889 248 17 9 418.9500 397.2500 397.2500 15890 248 18 10 418.9750 397.2750 397.2750 15891 248 19 11 419.0000 397.3000 397.3000 15892 248 20 12 419.0250 397.3250 397.3250 15893 248 21 13 449.0550 397.3500 397.3500 15894 248 22 14 419.0750 397.3750 397.3750 15894 248 22 14 419.1000 397.4000 397.4000 15896 248 24 16 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
5 418.8500 397.1500 397.1500 15886 248 14 6 418.8750 397.1750 397.1750 15887 248 15 7 418.9000 397.2000 397.2000 15888 248 16 8 418.9250 397.2250 397.2500 15889 248 17 9 418.9500 397.2500 397.2500 15890 248 18 10 418.9750 397.2750 397.2750 15891 248 19 11 419.0000 397.3000 397.3000 15892 248 20 12 419.0250 397.3250 397.3500 15893 248 21 13 419.0500 397.3500 397.3500 15894 248 22 14 419.0500 397.3750 397.3750 15895 248 23 15 419.1000 397.4000 397.4000 15896 248 24 16 419.1500	3	418.8000		397.1000	15884		
6 418.8750 397.1750 397.1750 15887 248 15 7 418.9000 397.2000 397.2000 15888 248 16 8 418.9250 397.2250 397.2250 15889 248 17 9 418.9500 397.2500 397.2500 15890 248 18 10 418.9750 397.2750 397.2750 15891 248 19 11 419.0000 397.3000 397.3000 15892 248 20 12 419.0250 397.3250 397.3250 15893 248 21 13 419.0500 397.3500 397.3500 15894 248 22 14 419.0750 397.3750 397.3750 15895 248 23 15 419.1000 397.4000 397.4000 15896 248 24 16 419.1500 397.4500 397.4500 15897 248 25 17 419.1500	4	418.8250	397.1250	397.1250	15885	248	13
7 418.9000 397.2000 397.2000 15888 248 16 8 418.9250 397.2250 397.2250 15889 248 17 9 418.9500 397.2500 397.2500 15890 248 18 10 418.9750 397.2750 397.2750 15891 248 19 11 419.0000 397.3000 397.3000 15892 248 20 12 419.0250 397.3250 397.3250 15893 248 21 13 419.0500 397.3500 397.3500 15894 248 22 14 419.0500 397.3750 397.3750 15895 248 23 15 419.1000 397.4000 397.4000 15896 248 24 16 419.1250 397.4500 397.4500 15897 248 25 17 419.1500 397.4750 397.4500 15898 248 26 18 419.2500	5	418.8500	397.1500	397.1500	15886	248	14
8 418.9250 397.2250 397.2250 15889 248 17 9 418.9500 397.2500 397.2500 15890 248 18 10 418.9750 397.2750 397.2750 15891 248 19 11 419.0000 397.3000 397.3000 15892 248 20 12 419.0250 397.3250 397.3250 15893 248 21 13 419.0500 397.3500 397.3500 15894 248 22 14 419.0750 397.3750 397.3750 15895 248 23 15 419.1000 397.4000 397.4000 15896 248 24 16 419.1250 397.4250 397.4250 15897 248 25 17 419.1500 397.4500 397.4500 15898 248 26 18 419.1750 397.4750 397.5000 15899 248 27 19 419.2000 397.5000 397.5000 15900 248 28 20	6	418.8750	397.1750	397.1750	15887	248	15
9 418.9500 397.2500 397.2500 15890 248 18 10 418.9750 397.2750 397.2750 15891 248 19 11 419.0000 397.3000 397.3000 15892 248 20 12 419.0250 397.3250 397.3250 15893 248 21 13 419.0500 397.3500 397.3500 15894 248 22 14 419.0750 397.3750 397.3750 15895 248 23 15 419.1000 397.4000 397.4000 15896 248 24 16 419.1250 397.4250 397.4250 15897 248 25 17 419.1500 397.4500 397.4500 15898 248 26 18 419.1750 397.4750 397.4750 15899 248 27 19 419.2000 397.5000 397.5000 15900 248 28 20 419.2500 397.5500 397.5500 15901 248 30 21	7	418.9000	397.2000	397.2000	15888	248	16
10 418.9750 397.2750 397.2750 15891 248 19 11 419.0000 397.3000 397.3000 15892 248 20 12 419.0250 397.3250 397.3250 15893 248 21 13 419.0500 397.3500 397.3500 15894 248 22 14 419.0750 397.3750 397.3750 15895 248 23 15 419.1000 397.4000 397.4000 15896 248 24 16 419.1250 397.4250 397.4250 15897 248 25 17 419.1500 397.4500 397.4500 15898 248 26 18 419.1750 397.4750 397.4750 15899 248 27 19 419.2000 397.5000 397.5000 15900 248 28 20 419.250 397.5500 397.5500 15901 248 29 21 419.2500 397.5750 397.5750 15903 248 31 23	8	418.9250	397.2250	397.2250	15889	248	17
11 419.0000 397.3000 397.3000 15892 248 20 12 419.0250 397.3250 397.3250 15893 248 21 13 419.0500 397.3500 397.3500 15894 248 22 14 419.0750 397.3750 397.3750 15895 248 23 15 419.1000 397.4000 397.4000 15896 248 24 16 419.1250 397.4250 397.4250 15897 248 25 17 419.1500 397.4500 397.4500 15898 248 26 18 419.1750 397.4750 397.4750 15899 248 27 19 419.2000 397.5000 397.5000 15900 248 28 20 419.2500 397.5250 397.5250 15901 248 29 21 419.2500 397.5750 397.5750 15902 248 31 23 419.3000 397.6000 397.6000 15904 248 32 24	9	418.9500	397.2500	397.2500	15890	248	18
12 419.0250 397.3250 397.3250 15893 248 21 13 419.0500 397.3500 397.3500 15894 248 22 14 419.0750 397.3750 397.3750 15895 248 23 15 419.1000 397.4000 397.4000 15896 248 24 16 419.1250 397.4250 397.4250 15897 248 25 17 419.1500 397.4500 397.4500 15898 248 26 18 419.1750 397.4750 397.4750 15899 248 27 19 419.2000 397.5000 397.5000 15900 248 28 20 419.2500 397.5250 397.5250 15901 248 29 21 419.2500 397.5750 397.5500 15902 248 30 22 419.2750 397.6000 397.6000 15904 248 32 24 419.3000 397.6000 397.6000 15905 248 33 25	10	418.9750	397.2750	397.2750	15891	248	19
13 419.0500 397.3500 397.3500 15894 248 22 14 419.0750 397.3750 397.3750 15895 248 23 15 419.1000 397.4000 397.4000 15896 248 24 16 419.1250 397.4250 397.4250 15897 248 25 17 419.1500 397.4500 397.4500 15898 248 26 18 419.1750 397.4750 397.4750 15899 248 27 19 419.2000 397.5000 397.5000 15900 248 28 20 419.2500 397.5250 397.5250 15901 248 29 21 419.2500 397.5500 397.5500 15902 248 30 22 419.2750 397.5750 397.5750 15903 248 31 23 419.3000 397.6000 397.6000 15904 248 32 24 419.3250 397.6500 397.6500 15905 248 33 25	11	419.0000	397.3000	397.3000	15892	248	20
14 419.0750 397.3750 397.3750 15895 248 23 15 419.1000 397.4000 397.4000 15896 248 24 16 419.1250 397.4250 397.4250 15897 248 25 17 419.1500 397.4500 397.4500 15898 248 26 18 419.1750 397.4750 397.4750 15899 248 27 19 419.2000 397.5000 397.5000 15900 248 28 20 419.2500 397.5250 397.5250 15901 248 29 21 419.2500 397.5500 397.5500 15902 248 30 22 419.2750 397.5750 397.5750 15903 248 31 23 419.3000 397.6000 397.6000 15904 248 32 24 419.3250 397.6250 397.6250 15905 248 33 25 419.3750 397.6750 397.6750 15907 248 35 26	12	419.0250	397.3250	397.3250	15893	248	21
15 419.1000 397.4000 397.4000 15896 248 24 16 419.1250 397.4250 397.4250 15897 248 25 17 419.1500 397.4500 397.4500 15898 248 26 18 419.1750 397.4750 397.4750 15899 248 27 19 419.2000 397.5000 397.5000 15900 248 28 20 419.2250 397.5250 397.5250 15901 248 29 21 419.2500 397.5500 397.5500 15902 248 30 22 419.2750 397.5750 397.5750 15903 248 31 23 419.3000 397.6000 397.6000 15904 248 32 24 419.3250 397.6250 397.6250 15905 248 33 25 419.3750 397.6750 397.6750 15907 248 35 26 419.3700 397.6750 397.6750 15907 248 36 27	13	419.0500	397.3500	397.3500	15894	248	22
16 419.1250 397.4250 397.4250 15897 248 25 17 419.1500 397.4500 397.4500 15898 248 26 18 419.1750 397.4750 397.4750 15899 248 27 19 419.2000 397.5000 397.5000 15900 248 28 20 419.2250 397.5250 397.5250 15901 248 29 21 419.2500 397.5500 397.5500 15902 248 30 22 419.2750 397.5750 397.5750 15903 248 31 23 419.3000 397.6000 397.6000 15904 248 32 24 419.3250 397.6250 397.6250 15905 248 33 25 419.3500 397.6750 397.6750 15907 248 34 26 419.3750 397.6750 397.6750 15907 248 36 27 419.4000 397.7000 397.7000 15908 248 36	14	419.0750	397.3750	397.3750	15895	248	23
17 419.1500 397.4500 397.4500 15898 248 26 18 419.1750 397.4750 397.4750 15899 248 27 19 419.2000 397.5000 397.5000 15900 248 28 20 419.2250 397.5250 397.5250 15901 248 29 21 419.2500 397.5500 397.5500 15902 248 30 22 419.2750 397.5750 397.5750 15903 248 31 23 419.3000 397.6000 397.6000 15904 248 32 24 419.3250 397.6250 397.6250 15905 248 33 25 419.3500 397.6500 397.6500 15906 248 34 26 419.3750 397.6750 397.6750 15907 248 35 27 419.4000 397.7000 397.7000 15908 248 36	15	419.1000	397.4000	397.4000	15896	248	24
18 419.1750 397.4750 397.4750 15899 248 27 19 419.2000 397.5000 397.5000 15900 248 28 20 419.2250 397.5250 397.5250 15901 248 29 21 419.2500 397.5500 397.5500 15902 248 30 22 419.2750 397.5750 397.5750 15903 248 31 23 419.3000 397.6000 397.6000 15904 248 32 24 419.3250 397.6250 397.6250 15905 248 33 25 419.3500 397.6500 397.6500 15906 248 34 26 419.3750 397.6750 397.6750 15907 248 35 27 419.4000 397.7000 397.7000 15908 248 36	16	419.1250	397.4250	397.4250	15897	248	25
19 419.2000 397.5000 397.5000 15900 248 28 20 419.2250 397.5250 397.5250 15901 248 29 21 419.2500 397.5500 397.5500 15902 248 30 22 419.2750 397.5750 397.5750 15903 248 31 23 419.3000 397.6000 397.6000 15904 248 32 24 419.3250 397.6250 397.6250 15905 248 33 25 419.3500 397.6500 397.6500 15906 248 34 26 419.3750 397.6750 397.6750 15907 248 35 27 419.4000 397.7000 397.7000 15908 248 36	17	419.1500	397.4500	397.4500	15898	248	26
20 419.2250 397.5250 397.5250 15901 248 29 21 419.2500 397.5500 397.5500 15902 248 30 22 419.2750 397.5750 397.5750 15903 248 31 23 419.3000 397.6000 397.6000 15904 248 32 24 419.3250 397.6250 397.6250 15905 248 33 25 419.3500 397.6500 397.6500 15906 248 34 26 419.3750 397.6750 397.6750 15907 248 35 27 419.4000 397.7000 397.7000 15908 248 36	18	419.1750	397.4750	397.4750	15899	248	27
21 419.2500 397.5500 397.5500 15902 248 30 22 419.2750 397.5750 397.5750 15903 248 31 23 419.3000 397.6000 397.6000 15904 248 32 24 419.3250 397.6250 397.6250 15905 248 33 25 419.3500 397.6500 397.6500 15906 248 34 26 419.3750 397.6750 397.6750 15907 248 35 27 419.4000 397.7000 397.7000 15908 248 36	19	419.2000	397.5000	397.5000	15900	248	28
22 419.2750 397.5750 397.5750 15903 248 31 23 419.3000 397.6000 397.6000 15904 248 32 24 419.3250 397.6250 397.6250 15905 248 33 25 419.3500 397.6500 397.6500 15906 248 34 26 419.3750 397.6750 397.6750 15907 248 35 27 419.4000 397.7000 397.7000 15908 248 36	20	419.2250	397.5250	397.5250	15901	248	29
23 419.3000 397.6000 397.6000 15904 248 32 24 419.3250 397.6250 397.6250 15905 248 33 25 419.3500 397.6500 397.6500 15906 248 34 26 419.3750 397.6750 397.6750 15907 248 35 27 419.4000 397.7000 397.7000 15908 248 36	21	419.2500	397.5500	397.5500	15902	248	30
24 419.3250 397.6250 397.6250 15905 248 33 25 419.3500 397.6500 397.6500 15906 248 34 26 419.3750 397.6750 397.6750 15907 248 35 27 419.4000 397.7000 397.7000 15908 248 36	22	419.2750	397.5750	397.5750	15903	248	31
25 419.3500 397.6500 397.6500 15906 248 34 26 419.3750 397.6750 397.6750 15907 248 35 27 419.4000 397.7000 397.7000 15908 248 36	23	419.3000	397.6000	397.6000	15904	248	32
26 419.3750 397.6750 397.6750 15907 248 35 27 419.4000 397.7000 397.7000 15908 248 36	24	419.3250	397.6250	397.6250	15905	248	33
27 419.4000 397.7000 397.7000 15908 248 36	25	419.3500	397.6500	397.6500	15906	248	34
	26	419.3750	397.6750	397.6750	15907	248	35
28 419.4250 397.7250 397.7250 15909 248 37	27	419.4000	397.7000	397.7000	15908	248	36
	28	419.4250	397.7250	397.7250	15909	248	37

Regulatory compliance information

Compliance

STD-302N-R 419 MHz was designed to be installed in radio equipment for use in China. The technical specifications referred to in the design phase are shown below:

Frequency	418.950 MHz, 418.975 MHz, 419.000 MHz, 419.025 MHz, 419.050 MHz, 419.075 MHz, 419.100 MHz, 419.125 MHz, 419.150 MHz, 419.175 MHz, 419.200 MHz, 419.250 MHz,
	419.275MHz
Output power	≤ 10 mW
Band width	≤ 16 kHz
Spurious emission	<u><</u> 2.5 μW
Frequency tolerance	$< 4 \times 10^{-6}$

The relevant laws and regulations are subject to change.

Compliance assessment

This product was designed to meet the specification above, however it has not been assessed for conformity with the appropriate regulations. Users are required to verify that their final product meets the appropriate specifications and to perform the procedures for regulatory compliance.

Guarantee of regulatory compliance

We only guarantee that this product meets the specification in this document. We are exempt from any other responsibilities relating to regulatory compliance.

We also recommend that the user consults the authorities in the relevant country for detailed regulatory information such as valid regulations, test specifications, assessment procedures, marking methods etc, before starting any project with this product.

If technical documentation is required for compliance assessments, we will provide any documents, which may be considered necessary for assessment, under NDA. The documentation is only available in English.

Cautions

- As the radio module communicates using electronic radio waves, there are cases where transmission will be
 temporarily cut off due to the surrounding environment and method of usage. The manufacturer is exempt from
 all responsibility relating to resulting harm to personnel or equipment and other secondary damage.
- Do not use the equipment within the vicinity of devices that may malfunction as a result of electronic radio waves from the radio module.
- The manufacturer is exempt from all responsibility relating to secondary damage resulting from the operation, performance and reliability of equipment connected to the radio module.
- Communication performance will be affected by the surrounding environment, so communication tests should be carried out before actual use.
- Ensure that the power supply for the radio module is within the specified rating. Short circuits and reverse connections may result in overheating and damage and must be avoided at all costs.
- Ensure that the power supply has been switched off before attempting any wiring work.
- The case is connected to the GND terminal of the internal circuit, so do not make contact between the '+' side of the power supply terminal and the case.
- When batteries are used as the power source, avoid short circuits, recharging, dismantling, and pressure.
 Failure to observe this caution may result in the outbreak of fire, overheating and damage to the equipment.
 Remove the batteries when the equipment is not to be used for a long period of time. Failure to observe this caution may result in battery leaks and damage to the equipment.
- Do not use this equipment in vehicles with the windows closed, in locations where it is subject to direct sunlight, or in locations with extremely high humidity.
- The radio module is neither waterproof nor splash proof. Ensure that it is not splashed with soot or water. Do not use the equipment if water or other foreign matter has entered the case.
- Do not drop the radio module or otherwise subject it to strong shocks.
- Do not subject the equipment to condensation (including moving it from cold locations to locations with a significant increase in temperature.)
- Do not use the equipment in locations where it is likely to be affected by acid, alkalis, organic agents or corrosive gas.
- Do not bend or break the antenna. Metallic objects placed in the vicinity of the antenna will have a great effect
 on communication performance. As far as possible, ensure that the equipment is placed well away from metallic
 objects.
- The GND for the radio module will also affect communication performance. If possible, ensure that the case GND and the circuit GND are connected to a large GND pattern.

Warnings

- Do not take a part or modify the equipment.
- Do not remove the product label (the label attached to the upper surface of the module.) Using a module from which the label has been removed is prohibited.

Circuit Design, Inc. All right reserved

No part of this document may be copied or distributed in part or in whole without the prior written consent of Circuit Design, Inc.

Customers are advised to consult with Circuit Design sales representatives before ordering.

Circuit Design, Inc. believes the furnished information is accurate and reliable. However, Circuit Design, Inc. reserves the right to make changes to this product without notice.

REVISION HISTORY

Version	Date	Description	Remark
1.0	Aug. 2008	STD-302N-R 419MHz The first issue	