\

—
——— F) F | pee—
—

Majenko Technologies

Working with ChipKITTMInterrupts
AN1132 Revision 3

How to write software to interact with the PIC32™interrupt

system using the chipKIT™core

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MAJENKO TECHNOLO-
GIES MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR
ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDI-
TION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Majenko Technologies disclaims all liability
arising from this information and its use. Use of Majenko Technologies devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Majenko Technologies from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Majenko Technologies intellectual
property rights.

Majenko Technologies

Working with chipKITT™Interrupts

1.1 Priorities
1.2 Vectorsand IRQs

Contents
1 Introduction
2

Controlling Interrupts: Enabling and Disabling

Configuring An Interrupt

Writing an ISR

4.1 Global Variables

Bringing It All Together

Common Vector Names

A1l PIC32MXo e
A2 PIC32MZ e

Interrupt Request Names

B.1 PIC32MX e
B.2 PIC32MZ e

Document Revisions

AN1132.pdf

Revision 3

Majenko Technologies Working with chipKITT™Interrupts

1 Introduction

The chipKIT™programming environment API provides a complete abstraction layer around the internal
PIC32™Minterrupt subsystem. The functions provided allow the complete manipulation of the interrupts at runtime
without burdening the user with the requirement of low-level knowledge of the inner workings of the interrupts.

The interrupt vector table is relocated into RAM instead of being in Flash. This allows the entries to be manipulated
at runtime instead of being set at compile time.

When working with interrupts it is important to remember some key facts about how they work.

1.1 Priorities

Interrupts have different priorities. They are numbered from 0 through 7 and higher numbered priority interrupts
take precedence over lower numbered interrupts. The priority used for any one interrupt is entirely the user’s choice
and there are no hard and fast rules defining what priorities should be assigned to which interrupts. The only caveat
is that interrupt priority 0 means the interrupt is disabled.

If two interrupts share the same priority there is the option of a sub-priority. These sub-priorities are numbered 0
through 3 with again the higher sub-priority taking precedence over a lower sub-priority.

1.2 Vectors and TRQs

On the PIC32MX series of chips there are both interrupt vectors and interrupt request (IRQ) numbers. There isn’t
a direct 1:1 mapping between them, and it is important to remember when a vector is needed and when an IRQ is
needed. The vector is the location in the vector table, and the IRQ is the logical number of the interrupt. Some
different IRQ numbers point to the same vector, so it is important to ensure that your interrupt handlers are able to
cope with that.

AN1132.pdf 2 Revision 3

Majenko Technologies Working with chipKITT™Interrupts

2 Controlling Interrupts: Enabling and Disabling

The initial configuration of the interrupt system is a fairly complex process, but the good news is that all of the
configuration is done for you in the chipKIT™core. In fact, on the chipKIT™platform, interrupts are enabled by
default when a board is powered on. Not only that, but the system is flexible enough that you can also enable and
disable the whole interrupt system manually for those times when timing is absolutely critical or interrupting an
operation is not feasible. We will explain how you can do this below.

To disable all interrupts, call the disableInterrupts() function. To enable all interrupts, call the
enableInterrupts() function. Note that enabling and disabling happens immediately after the function call.

Note also that these two functions return a single uint32_t value that can be used with the restoreInterrupts()
function. This returned value is called the status register and it is useful because it stores what the state of the interrupt
system was - whether it was enabled or disabled - just prior to the disableInterrupts() or enableInterrupts()
call. This is valuable information when you want to return to the state you were in prior to the function call.
By simply calling the restoreInterrupts(value) function with the uint32_t value that was returned from your
disableInterrupts() or enableInterrupts() call, you can return to the previous state, regardless of what it was.
In this manner, different nested routines can handle enabling and disabling of interrupts without interfering with each
other.

With all that said, using restoreInterrupts() as opposed to enableInterrupts() makes for more robust code.

uint32_t status = disableInterruptsQ);
// Run some sensitive code
restorelnterrupts(status);

Example 1: Disabling then re-enabling interrupts

AN1132.pdf 3 Revision 3

Majenko Technologies Working with chipKITT™Interrupts

3 Configuring An Interrupt

There are four basic steps to configuring an individual interrupt:

1. Connect the vector to the interrupt routine
2. Set the interrupt priorities
3. Clear any pending interrupt flag

4. Enable the interrupt

The first step, connecting the vector to the interrupt routine, is done using the setIntVector(vector, function)
function. This function takes two parameters. The first is the vector number, the second is the name of the function
to call for any interrupts associated with that vector. All the interrupt vectors have names defined for them, so you
don’t need to remember all the numbers. Refer to Appendix A on page 7 for a list of common vector names or how
to find the right names for your target chip.

setIntVector (_TIMER_3_VECTOR, myISR);

Example 2: Connecting a vector to an ISR

Setting the priority and sub-priority of an interrupt vector are both done using the setIntPriority(vector,
priority, sub) function. Note that this is performed on the vector, not the interrupt number.

setIntPriority (_TIMER_3_VECTOR, 4, 0);

Example 3: Setting the priority of an interrupt vector to 4, sub-priority 0

The clearing of any pending interrupt flag should always be done just before an interrupt is enabled. This is because
interrupt flags can still be set even when interrupts are disabled and as soon as the interrupt is enabled any pending
interrupt flags will be processed. So you should always use clearIntFlag(irq) and setIntEnable(irq) together.

clearIntFlag(_TIMER_3_IRQ);
setIntEnable (_TIMER_3_IRQ);

Example 4: Clearing the interrupt flag and enabling the interrupt

The clearIntFlag() function must also be called from within your ISR to inform the CPU that the interrupt has
been handled; otherwise, the ISR will immediately be called again until the flag has been cleared.

AN1132.pdf 4 Revision 3

Majenko Technologies Working with chipKITT™Interrupts

4 Writing an ISR

The compiler utilizes a system of attributes to adjust how a function is called or compiled. Because the MX and MZ
family of chips differ in how they handle the interrupts and attributes, a handy macro has been provided to craft the
correct attributes for you: __USER_ISR

The basic form of an interrupt handler’s definition is:

void __USER_ISR myISRQ)

It is important to remember to call clearIntFlag() in your interrupt routine. For example:

void __USER_ISR myISR() {
// Perform your interrupt operations
clearIntFlag(_TIMER_3_IRQ);

Example 5: Simple interrupt routine

4.1 Global Variables

Any variables used within your ISR but defined outside your ISR are considered global variables, and they require
special consideration.

Interrupts, by nature, are unpredictable - triggering ISRs to run at any time. Since your global variable is used within
the ISR, its value can also change at any time. However, your compiler will not know that your variable can change
within the ISR unless you distinguish it in some way. The compiler has optimization routines that determine whether
your variable is likely to change. If these routines don’t "see" anything nearby that could modify your variable, they
won’t make the necessary space for your variable. In essence, they "optimize" it out.

To avoid this mishap, use the volatile keyword to tag your global variable. This keyword "tells" the compiler not to
perform any optimization on the variable, as the variable can change at any time. In addition, the variable will always
be referenced directly from RAM and never from a CPU register. As such, access to this variable will be somewhat
slower, so use the volatile keyword only when absolutely necessary.

volatile uint32_t counter = 0;

void __USER_ISR myISR() {
counter++;
clearIntFlag(_TIMER_3_IRQ) ;

Example 6: Use of a volatile variable

AN1132.pdf 5 Revision 3

Majenko Technologies Working with chipKITT™Interrupts

5 Bringing It All Together

volatile uint32_t counter = 0;

void __USER_ISR myISR() {
counter++;
clearIntFlag(_TIMER_3_IRQ);
}

void setup() {
// You would need to add code here to configure the timer 3

setIntVector (_TIMER_3_VECTOR, myISR);
setIntPriority(_TIMER_3_VECTOR, 4, 0);
clearIntFlag(_TIMER_3_IRQ) ;
setIntEnable (_TIMER_3_IRQ) ;

Serial.begin(9600) ;
}

void loop() {
delay(1000);
Serial.print("Count is now: ");
Serial.println(counter);

Example 7: Complete interrupt example

AN1132.pdf 6 Revision 3

Majenko Technologies

Working with chipKITT™Interrupts

A Common Vector Names

A.1 PIC32MX

This list of vectors is taken from the header file for the
PIC32MX795F512L chip. The chip you are using may
not have the same list. To find the list of vector names
for your specific chip you should refer to the header file
for your chip. The header file is located within the
pic32mx/include/proc folder within the pic32-tools com-
piler.

_CORE_TIMER_VECTOR
_CORE_SOFTWARE_0_VECTOR
_CORE_SOFTWARE_1_VECTOR
_EXTERNAL_0_VECTOR
_TIMER_1_VECTOR
_INPUT_CAPTURE_1_VECTOR
_OUTPUT_COMPARE_1_VECTOR
_EXTERNAL_1_VECTOR
_TIMER_2_ VECTOR
_INPUT_CAPTURE_2 VECTOR
_OUTPUT_COMPARE_2_ VECTOR
EXTERNAL 2 VECTOR
_TIMER_3_VECTOR
_INPUT_CAPTURE_3_VECTOR
_OUTPUT_COMPARE_3_VECTOR
_EXTERNAL_3_ VECTOR
_TIMER_4_ VECTOR
_INPUT_CAPTURE_4 VECTOR
_OUTPUT_COMPARE_4 VECTOR
EXTERNAL 4 VECTOR
_TIMER_5_ VECTOR
_INPUT_CAPTURE_ 5 VECTOR
_OUTPUT_COMPARE_ 5 VECTOR
_SPI_1_VECTOR
_12C_3_VECTOR
_12C_1A_VECTOR
_SPI_3_VECTOR
_SPI_1A_VECTOR
_UART 1 _VECTOR
_UART_1A_VECTOR
_12C_1_VECTOR
_CHANGE_NOTICE_VECTOR
_ADC_VECTOR

_PMP_VECTOR
_COMPARATOR 1 VECTOR
_COMPARATOR_2 VECTOR
_12C_4_VECTOR
_12C_2A_VECTOR

_SPI_2 VECTOR
_SPI_2A_VECTOR
_UART_3_VECTOR
_UART_2A_VECTOR
_12C_5_VECTOR
_12C_3A_VECTOR

_SPI_4 VECTOR
_SPI_3A_VECTOR

_UART_2_ VECTOR

_UART_3A_VECTOR
_12C_2 VECTOR
_FAIL_SAFE_MONITOR_VECTOR
_RTCC_VECTOR
_DMA_0_VECTOR
"DMA_1_VECTOR
_DMA_2_ VECTOR
_DMA_3_VECTOR
_DMA_4_VECTOR
_DMA_5_VECTOR
_DMA_6_VECTOR
_DMA_7_VECTOR
_USB_1_VECTOR
_CAN_1_VECTOR
_CAN_2 VECTOR
_ETH_VECTOR
_UART _4_VECTOR
_UART_1B_VECTOR
_UART_6_VECTOR
_UART 2B_VECTOR
_UART_5_VECTOR
_UART 3B_VECTOR
_FCE_VECTOR

A.2 PIC32MZ

This list of vectors is taken from the header file for the
PIC32MZ2048ECG100 chip. The chip you are using may
not have the same list. To find the list of vector names
for your specific chip you should refer to the header file
for your chip. The header file is located within the
pic32mx/include/proc folder within the pic32-tools com-
piler.

_CORE_TIMER VECTOR
_CORE_SOFTWARE 0 VECTOR
_CORE_SOFTWARE 1 _VECTOR
_EXTERNAL_0_VECTOR
_TIMER_1_VECTOR
_INPUT_CAPTURE 1 ERROR_VECTOR
_INPUT_CAPTURE_1_VECTOR
_OUTPUT_COMPARE_1_VECTOR
_EXTERNAL_1_VECTOR

_TIMER_2 VECTOR
_INPUT_CAPTURE 2 ERROR_VECTOR
_INPUT_CAPTURE_ 2 VECTOR
_OUTPUT_COMPARE_2_ VECTOR
EXTERNAL 2 VECTOR
_TIMER_3_VECTOR
_INPUT_CAPTURE 3 ERROR_VECTOR
_INPUT_CAPTURE_3_VECTOR
_OUTPUT_COMPARE 3 VECTOR
_EXTERNAL_3_ VECTOR
_TIMER_4_VECTOR
_INPUT_CAPTURE_ 4 ERROR_VECTOR
_INPUT_CAPTURE_4 VECTOR
_OUTPUT_COMPARE_4 VECTOR
_EXTERNAL 4 VECTOR

AN1132.pdf

Revision 3

Majenko Technologies Working with chipKITT™Interrupts

_TIMER_5_ VECTOR _ADC1_DATA28 VECTOR
_INPUT_CAPTURE_5 ERROR_VECTOR _ADC1_DATA29 VECTOR
_INPUT_CAPTURE_5_ VECTOR _ADC1_DATA30_ VECTOR
_OUTPUT_COMPARE_5_ VECTOR _ADC1_DATA31_VECTOR
_TIMER_6_VECTOR _ADC1_DATA32 VECTOR
_INPUT_CAPTURE_6_ERROR_VECTOR _ADC1_DATA33_VECTOR
_INPUT_CAPTURE_6_VECTOR _ADC1_DATA34_VECTOR
_OUTPUT_COMPARE_6_VECTOR _ADC1_DATA43_VECTOR
_TIMER_7_ VECTOR _ADC1_DATA44_VECTOR
_INPUT_CAPTURE_7 ERROR_VECTOR _CORE_PERF_COUNT_VECTOR
_INPUT_CAPTURE_7 VECTOR _CORE_FAST DEBUG_CHAN_ VECTOR
_OUTPUT_COMPARE_7_VECTOR _SYSTEM_BUS_PROTECTION VECTOR
_TIMER_8_VECTOR _SPI1_FAULT_VECTOR
_INPUT_CAPTURE_8 ERROR_VECTOR _SPIl_RX_VECTOR
_INPUT_CAPTURE_8_ VECTOR _SPIl_TX_VECTOR
_OUTPUT_COMPARE_8 VECTOR _UART1_FAULT VECTOR
_TIMER_9 VECTOR _UART1_RX_VECTOR
_INPUT_CAPTURE_9 ERROR_VECTOR _UART1_TX_VECTOR
_INPUT_CAPTURE_9_ VECTOR _12C1_BUS_VECTOR
_OUTPUT_COMPARE_9 VECTOR _12C1_SLAVE VECTOR
_ADC1_VECTOR _12C1_MASTER_VECTOR
~ADC1_DC1_VECTOR _CHANGE_NOTICE_A_VECTOR
_ADC1_DC2_ VECTOR _CHANGE_NOTICE_B_VECTOR
_ADC1_DC3_VECTOR _CHANGE_NOTICE_C_VECTOR
_ADC1_DC4_VECTOR _CHANGE_NOTICE_D_VECTOR
_ADC1_DC5_VECTOR _CHANGE_NOTICE_E_VECTOR
_ADC1_DC6_VECTOR _CHANGE_NOTICE _F_VECTOR
_ADC1_DF1_VECTOR _CHANGE_NOTICE_G_VECTOR
_ADC1_DF2_VECTOR _PMP_VECTOR
_ADC1_DF3_VECTOR _PMP_ERROR_VECTOR
_ADC1_DF4_VECTOR _COMPARATOR_1_VECTOR
_ADC1_DF5_VECTOR _COMPARATOR_2 VECTOR
_ADC1_DF6_VECTOR _USB_VECTOR
_ADC1_DATAO0_VECTOR _USB_DMA_VECTOR
_ADC1_DATA1_VECTOR _DMAO_VECTOR

_ADC1_DATA2 VECTOR _DMA1_VECTOR
_ADC1_DATA3_VECTOR _DMA2_VECTOR
_ADC1_DATA4_VECTOR _DMA3_VECTOR

_ADC1_DATA5 VECTOR _DMA4_VECTOR
_ADC1_DATA6_VECTOR _DMA5_VECTOR
_ADC1_DATA7 VECTOR _DMA6_VECTOR
_ADC1_DATA8_VECTOR _DMA7_VECTOR

_ADC1_DATA9 VECTOR _SPI2_FAULT VECTOR
_ADC1_DATA10_ VECTOR _SPI2_RX_VECTOR
_ADC1_DATA11_VECTOR _SPI2_TX_VECTOR
_ADC1_DATA12_VECTOR _UART2_FAULT VECTOR
_ADC1_DATA13_VECTOR _UART2_RX_VECTOR
_ADC1_DATA14_VECTOR _UART2_TX_VECTOR
_ADC1_DATA15_ VECTOR 1202 _BUS_VECTOR
_ADC1_DATA16_VECTOR 1202 SLAVE_VECTOR
_ADC1_DATA17_VECTOR 1202 MASTER_VECTOR
_ADC1_DATA18 VECTOR _ETHERNET VECTOR
_ADC1_DATA19 VECTOR _SPI3_FAULT VECTOR
_ADC1_DATA20 VECTOR _SPI3_RX_VECTOR
_ADC1_DATA21 VECTOR _SPI3_TX_VECTOR
_ADC1_DATA22 VECTOR _UART3_FAULT VECTOR
_ADC1_DATA23_VECTOR _UART3_RX_VECTOR
_ADC1_DATA24 VECTOR _UART3_TX_VECTOR
_ADC1_DATA25_ VECTOR _12C3_BUS_VECTOR
_ADC1_DATA26_VECTOR _12C3_SLAVE_VECTOR
_ADC1_DATA27 VECTOR _1203_MASTER_VECTOR

AN1132.pdf 8 Revision 3

Majenko Technologies Working with chipKITT™Interrupts

_SPI4_FAULT VECTOR B Interrupt Request Names
_SPI4_RX_ VECTOR

_SPI4_TX_ VECTOR

_RTCC_VECTOR B.1 PIC32MX

FLASH CONTROL VECTOR

_PREFETCH_VECTOR

~SQI1_VECTOR This list of interrupts is taken from the header file for
~UART4 FAULT VECTOR the PIC32MX795F512L chip. The chip you are using
_UART4 RX VECTOR may not have the same list. To find the list of interrupt
_UART4 TX VECTOR names for your specific chip you should refer to the header
_12C4_BUS_VECTOR file for your chip. The header file is located within the
_I2C4 SLAVE VECTOR pic32mx/include/proc folder within the pic32-tools com-
_12C4 MASTER_VECTOR piler.

_SPI5_FAULT VECTOR

_SPI5_RX VECTOR _CORE_TIMER IRQ

_SPI5_TX VECTOR _CORE_SOFTWARE 0 IRQ

_UART5 FAULT VECTOR _CORE_SOFTWARE 1 IRQ

UART5 RX VECTOR _EXTERNAL 0 TRQ

_UART5_TX_VECTOR _TIMER 1 _IRQ

_12C5_BUS_VECTOR _INPUT CAPTURE 1 IRQ

1205 _SLAVE VECTOR _OUTPUT_COMPARE 1 IRQ

I12C5 MASTER VECTOR _EXTERNAL 1 IRQ

_SPI6_FAULT VECTOR " TIMER 2 IRQ

SPI6 RX VECTOR _INPUT_ CAPTURE 2 IRQ

_SPI6_TX VECTOR _OUTPUT_COMPARE 2 IRQ

UART6 FAULT VECTOR _EXTERNAL 2 TRQ

_UART6_RX VECTOR _TIMER_3 IRQ

_UART6_TX VECTOR _INPUT_CAPTURE_3 IRQ

_OUTPUT_COMPARE_3_IRQ
_EXTERNAL_3_IRQ
_TIMER_4_IRQ
_INPUT_CAPTURE 4 _IRQ
_OUTPUT_COMPARE 4 IRQ
_EXTERNAL 4 _IRQ
_TIMER_5_IRQ
_INPUT_CAPTURE_5_IRQ
_OUTPUT_COMPARE 5 IRQ
_SPIl_ERR_IRQ
_SPIl_RX_IRQ
_SPI1_TX_IRQ
_12C1A_ERR_IRQ
_12C3_BUS_IRQ
_SPIIA_ERR_IRQ
_SPI3_ERR_IRQ
_UARTIA_ERR_IRQ
_UART!_ERR_IRQ
_12C1A_RX_IRQ
_12C3_SLAVE_IRQ
_SPIIA_RX_IRQ
_SPI3_RX_IRQ
_UARTIA_RX_IRQ
_UART1_RX_IRQ
_12C1A_TX_IRQ
_12C3_MASTER_IRQ
_SPIIA_TX_IRQ
_SPI3_TX_IRQ
_UARTIA_TX_IRQ
_UART1_TX_IRQ
_12C1_BUS_IRQ
_12C1_SLAVE_IRQ
_12C1_MASTER_IRQ

AN1132.pdf 9 Revision 3

Majenko Technologies

Working with chipKITT™Interrupts

_CHANGE_NOTICE_IRQ
_ADC_IRQ

_PMP_IRQ
_COMPARATOR 1 _IRQ
_COMPARATOR_2_ IRQ
_1202A_ERR_IRQ
_12C4_BUS_IRQ
_SPI2_ERR_IRQ
_SPI2A_ERR_IRQ
_UART2A_ERR_IRQ
_UART3_ERR_IRQ
_1202A_RX_IRQ
_12C4_SLAVE_IRQ
_SPI2_RX_IRQ
_SPI2A_RX_IRQ
_UART2A_RX_IRQ
_UART3_RX_IRQ
_12C2A_TX_IRQ
_12C4_MASTER_IRQ
_SPI2A_TX_IRQ
_SPI2_TX_IRQ
_UART2A_TX_IRQ
_UART3_TX_IRQ
_1203A_ERR_IRQ
_1205_BUS_IRQ
_SPI3A_ERR_IRQ
_SPI4_ERR_IRQ
_UART2_ERR_IRQ
_UART3A_ERR_IRQ
_1203A_RX_IRQ

1205 SLAVE_IRQ
_SPI3A_RX_IRQ
_SPI4_RX_IRQ
_UART2_RX_IRQ
_UART3A_RX_IRQ
_1203A_TX_IRQ

1205 MASTER_IRQ
_SPI3A_TX_IRQ
_SPI4_TX_IRQ
_UART2_TX_IRQ
_UART3A_TX_IRQ
1202 _BUS_IRQ

1202 SLAVE_IRQ
_12C2_MASTER_IRQ
_FAIL_SAFE_MONITOR_IRQ
_RTCC_IRQ
_DMAO_IRQ
_DMA1_IRQ
_DMA2_IRQ
_DMA3_IRQ
_DMA4_IRQ
_DMA5_IRQ
_DMA6_IRQ
_DMA7_IRQ
_FLASH_CONTROL_IRQ
_USB_IRQ

_CAN1_IRQ
_CAN2_IRQ
_ETHERNET IRQ
_INPUT_CAPTURE_ERROR_1_IRQ
_INPUT_CAPTURE_ERROR_2_ IRQ

_INPUT_CAPTURE_ERROR_3_IRQ
_INPUT_CAPTURE_ERROR_4_IRQ
_INPUT_CAPTURE_ERROR_5_IRQ
_PMP_ERROR_IRQ
_UARTIB_ERR_IRQ
_UART4_ERR_IRQ
_UARTIB_RX_IRQ
_UART4_RX_IRQ
_UARTIB_TX_IRQ
_UART4_TX_IRQ
_UART2B_ERR_IRQ
_UART6_ERR_IRQ
_UART2B_RX_IRQ
_UART6_RX_IRQ
_UART2B_TX_IRQ
_UART6_TX_IRQ
_UART3B_ERR_IRQ
_UART5_ERR_IRQ
_UART3B_RX_IRQ
_UART5_RX_IRQ
_UART3B_TX_IRQ
_UART5_TX_IRQ

B.2 PIC32MZ

The PIC32MZ family has a direct 1:1 mapping between
interrupt vector numbers and interrupt request numbers.
You should use the vector name in place of any interrupt
request names for the PIC32MZ family.

AN1132.pdf

10

Revision 3

Majenko Technologies Working with chipKITT™Interrupts

Glossary

interrupt flag Whenever an interrupt occurs. 4, 11

vector table The vector table is a list of addresses in memory. When an interrupt occurs. 2, 11

AN1132.pdf 11 Revision 3

Majenko Technologies Working with chipKITT™Interrupts

C Document Revisions

Lo M L2402/ 2005 ot Initial draft
2. MJ L.026/02/2015 oo Added User ISR macro information
3. SB .. 03/03/2015 oo Improved wording for interrupt workings

AN1132.pdf 12 Revision 3

	Introduction
	Priorities
	Vectors and IRQs

	Controlling Interrupts: Enabling and Disabling
	Configuring An Interrupt
	Writing an ISR
	Global Variables

	Bringing It All Together
	Common Vector Names
	PIC32MX
	PIC32MZ

	Interrupt Request Names
	PIC32MX
	PIC32MZ

	Document Revisions

