
Extending the Arduino
Runtime Environment

for 32-bit MCUs

June 2016

2

Agenda

 Introduction

 From the Outside Looking In

 Extending the Arduino System

 32-bit Development Boards

 Industrial Applications

 Runtime Environment

 What’s Coming Soon

 Conclusions

3

chipKIT™ Introduction

4

What is the
chipKIT™ Platform?

 A high-performance, Arduino-compatible
computing environment designed for ease-of-
use and rapid prototyping

 Using hardware abstraction and PIC32 MCUs,
the platform is intended for beginners as well
as experienced engineers

 The system also provides a migration path to
professional engineering tools

5

What’s in a Name?

 In 2010 we resolved to offer our
32-bit technology to this
community

 So we visited with the Arduino
leaders

… but that didn’t go very well

 In response, we created our own
brand

6

What’s in a Name?

 chipKIT™ name is a trademarked
brand of Microchip Technology Inc.

 Free license is available to encourage
community participation

 We make it easy to leverage the
chipKIT brand and ecosystem

7

What’s in a Name?

 After rejection by Arduino.cc, we named our
board “chipKIT Uno32”, the first 32-bit
Arduino-compatible development board

 The Uno32 name was seen as provocative

… Adafruit refused to carry our boards,
because the names were too similar

 Lesson learned: Use a less confrontational
name

8

chipKIT™ Introduction

 At Maker Faire Bay Area in 2011, we issued a
press release with a direct comparison of our
32-bit solution vs. Arduino 8-bit boards

 Later, we received an unfriendly letter

 Lesson learned: Use a more respectful tone

9

Engineers Know How to
Cooperate

 We created a multi-platform version
of Arduino IDE

 Retained AVR functionality

 Added PIC32 support

 Later, chipKIT engineers and
Arduino engineers worked together
to incorporate this functionality into
Arduino IDE

 Lesson learned:

Cooperation is more productive
than confrontation

10

Let’s Keep Working Together

 Continue to push the technology
forward

 Continue to support Open Source

 Share resources when appropriate

 Respect the Arduino community

11

Extending the Arduino System:
32-bit Development Boards

12

 Pin-out compatible with Arduino shields

 But much faster, more memory and I/O

The First chipKIT™ Board

Lesson learned: Stackable headers are expensive

13

Basic I/O Shield

 128x32 OLED display

 Four buttons

 Four slide switches

 Eight LEDs

 Four open drain FETs

 I2C EEPROM

 I2C Temp sensor

 Potentiometer

Why did we call this “Basic”?

14

Basic I/O Shield

 128x32 OLED display

 Four buttons

 Four slide switches

 Eight LEDs

 Four open drain FETs

 I2C EEPROM

 I2C Temp sensor

 Potentiometer

Complesso

15

chipKIT™ Wi-FIRE

 PIC32MZ MCU w/ 2MB Flash, 512K RAM

 200 MHz 32-bit MIPS core

 Four 64-bit accumulators

 Floating Point Unit

 MRF24WG0MA WiFi module

 Micro SD card slot

• 50 MHz SPI ports

• USB 2.0 Full-Speed / Hi-Speed controller

• 43 available I/O pins with on-board user
interfaces:

• 4 LEDs, 2 Buttons, 1 Potentiometer

16

Extending the Arduino System:
Industrial Applications

17

Open-source CAN bus
interface created by Ford

Based on chipKIT™
Max32 and Network
Shield

OpenXC Platform

18

OpenBCI Brain Computer
Interface

Open-source brain
research tool,
funded by
Kickstarter

Used at many
leading institutions

19

PONTECH Quick 240 Industrial
Controller

Open-source factory
automation controller,
based on chipKIT Max32

Used at biomedical and
electronics factories in
California

20

Extending the Arduino System:
Runtime Environment

21

Open-Source Libraries

Core Timer
SoftPWMServo
Task Manager
SoftSPI
DSPI
DTWI

Where there is overlap with
a standard Arduino library,
we’ve enhanced it with
additional error codes
and/or callback functions.

TCP/IP Stack
HTTP Server
DFATFS
DSDVOL
RAMVOL
DisplayCore

Here are some of the C++ libraries we
have contributed to the community:

22

Core Timer Library

 Simple time-based callback mechanism
for scheduling system functions

 Registered functions are called from ISR
context

 25ns resolution, up to 90s in the future

 Only a few Core Timer functions are
permitted, to minimize latency

 Provides for accurate timing of system
functions

23

SoftPWMServo Library

 Utilizes Core Timer functions to schedule
RC servo or AnalogWrite() type PMW
output

 Can run 82 servos simultaneously using
only 10% of CPU time with very low jitter

 All pins can be servo or PWM output,
simplifying project development

24

SoftPWMServo Example

#include <SoftPWMServo.h>

char dim = 0;

void setup() {}

void loop() {
SoftPWMServoPWMWrite(0, dim++); // fade pin 0
delay(20);
if (dim == 70) dim = 0;

}

25

Task Manager

 User can register functions to be called at
periodic intervals, or at a specific time

 Task scheduling is hidden within system
functions loop() and delay()

 Scheduling is non-preemptive and round-robin

 Complexity is hidden from the user

26

Task Manager Example

#include <SoftPWMServo.h>

char dim = 0;
void UpdateLED(int id, void * tptr) {

SoftPWMServoPWMWrite(0, dim++); // fade pin 0
if (dim == 70) dim = 0;

}

void setup() {
createTask(UpdateLED, 20, TASK_ENABLE, NULL);

}

void loop() {}

27

SoftSPI Library

 SoftSPI supports basic SPI comms on
any set of 4 pins

 Multiple slaves on one SPI bus can be
problematic; SoftSPI allows for arbitrary
separate SPI busses

 PIC32 speed and efficiency is leveraged
to hide bit-banging complexity

28

SoftSPI Example

#include <SoftSPI.h>

SoftSPI spi;

/* … */

spi.begin(pinSS, pinMOSI, pinMISO, pinSCK);

spi.setSpeed(250000); // 250 kHz

spi.setMode(SSPI_MODE0);

spi.setDirection(SSPI_SHIFT_LEFT);

spi.setDelay(6); // 6 uSec

/* … */

spi.setSelect(LOW);

spi.transfer(5, Send_Bytes, Receive_Bytes);

spi.setSelect(HIGH);

29

DSPI Library

 DSPI supports advanced SPI comms

 Uses all hardware SPI ports on chipKIT
boards (2, 4, or 6) up to 50 MHz

 Supports 32-bit transfers and block transfers
under Interrupt control

30

TCP/IP Library

 Digilent’s Embedded IP Stack

 Mostly, RFC 1122 / 793 compliant

 Supports multiple concurrent network interfaces

 Written in C, with C++ wrappers

 Processor Specific Hardware Abstraction Layer

 Big/Little Endian, Timers, Checksum, Processor
speed

 MAC/PHY Abstraction Layer (Network Adaptors)

 Memory Abstraction Layer

 Network Packets and Socket Buffers

 Designed for a cooperative, non-preemptive
embedded environment

31

HTTP Server Library

 Implements basic HTTP Server framework

 Manages Network / WiFi connections, TCP
sockets, cooperative task scheduling

 Manages reading / writing data from / to the TCP
socket, URL identification, line parsing, and calling
Compose functions

 Provides helper functions to create basic
HTTP headers

 Enables multiple concurrent connections
and page processing

32

Robust Network Software

Torture testing
with 30 clients
banging away on
a server for days
at a time

Every router is
different;
creating a truly
robust system is
difficult

33

DFATFS Library

 Several chipKIT boards have microSD card slots

 Users can mount Windows-compatible file systems,
create and access files stored on memory cards

 Supports virtual disk volumes in internal or SPI RAM

 Up to 5 volumes can be mounted and used at once

34

DSDVOL Example

#include <DSDVOL.h>

// create the sd volume and a file instance to use
DefineSDSPI(dSDSpi); // Create an SPI object
DSDVOL dSDVol(dSDSpi); // Create an SD Vol
DFILE dFile; // Create a File handle

/* … */
// Mount the SD Vol to drive "0"
// Use the helper Volume strings provided by szFatFsVols
if((fr = DFATFS::fsmount(dSDVol, DFATFS::szFatFsVols[0], 1)) == FR_OK)
{
Serial.print("Drive ");
Serial.print(DFATFS::szFatFsVols[0]);
Serial.println(" mounted!");

}

35

DisplayCore Library

 Supports several different display types

 TFT, OLED, LCD, Virtual, and Touch

 Provides a large collection of fonts (70+),
icons, drivers, and widget toolkits

 Uses a modular design

to optimize memory use

36

DisplayCore Example

#include <Picadillo.h>
#include <Roboto.h>

Picadillo tft;

void setup() {
tft.initializeDevice();
tft.fillSceen(Color::Black);
tft.setFont(Fonts::Roboto);
tft.setTextColor(Color::Green);
tft.setCursor(100, 100);
tft.println("Hello World");

}

void loop() {}

37

What’s Coming Soon

38

Long Range, Low Power Wireless

 RN2483 module has a simple UART interface

 Compatible with any MCU

 Long range coverage with low power

 Up to 5km range in the city

 Up to 15km in the country

 >10 year battery life capability

 No interference from Wi-Fi, Bluetooth, GSM,
LTE, etc

39

LoRa ® Modem Features

 Transmit output power:
 +18 dBm @ 915 MHz (FCC)

 +14 dBm @ 868 MHz (ETSI)

 +10 dBm @ 433 MHz

 High sensitivity: down to -148 dBm

 Transmit current: 40 mA typical at +14
dBm

 Receive current: 14.2 mA typical
 Sleep mode/ low power down mode: 1 uA

typical

 Excellent blocking immunity

40

More chipKIT Libraries

 Standard C File I/O
 Provides fopen(), fread(), fprintf(), etc.

 Harmony USB
 Provides Hi-Speed, Host, HID, MSD, etc.

 Audio Special Effects
 For guitar and other musical instruments

 Provides Filters, Chorus, Flanger, Phaser,
etc.

41

MikroE Clicker 2

 PIC32MX460 MCU at 80 MHz

 512K Flash, 32K RAM

 LiPo battery power circuit

 2 sockets for Click boards

42

MikroE Flip & Click

 PIC32MZ MCU at 200 MHz

 2048K Flash, 512K RAM, Floating Point Unit

 4 sockets for Click™ expansion

boards on the “Flip” side

 Uno-style I/O headers

43

chipKIT™ Lenny

 PIC32MX270 MCU at
40 MHz

 256K Flash, 64K
RAM

 Peripheral Pin
Select (PPS)

 Beefy power circuit

44

chipKIT™ BLE Blaster

 Dual mode: Bluetooth Classic and BLE 4.2

 Designed for remote monitoring and control

 Compatible with 3.3V or 5V MCUs

 4 Power FETS (20V, 4A)

 4 RX,TX options

45

chipKIT™ Data Station

 Four-channel remote datalogger w/ LoRa® and BLE 4.2

 Sends data to remote host, w/ SD card backup

 Android app for config and control

 Supports these Click™ sensors:

46

chipKIT™ Data Station

On-board
Temp & Light
sensors, plus
2 Click™
sockets

Operates on
battery power
for weeks or
months at a
time

47

chipKIT™ Data Station

Prototype hardware and software
available today

LoRa® and BLE
modules
controlled with
simple ASCII
commands

48

Conclusions

49

Conclusions

 Competition Can Be Fun

… but Cooperation is better

 Makers are Self-Directed Innovators

 Open Source is Important

 Do Good Things in the World

… no matter the Challenges

Thank you!

