'_”'-' e

D ES | G N CYCLE

ADVANCED TECHNIQUES FOR DESIGN ENGINEERS

M BY FRED EADY

Discuss this article in the Nuts & Volts forums at http://forum.nutsvolts.com.

Reprinted by permission of T&L Publications, Inc.

IT'S ALL ABOUT THE Uno32

HARDWARE

It used to be all about the hardware. Remember your first personal
computer? Yep, you and | were enthralled and bedazzled by the canned
software applications and the command line OS. In reality, our immediate
intention was to understand enough about the PC’s hardware design to
interface with the microprocessor and the 1/0 subsystem.

was talking to a friend last night and the discussion fell

back into the good old days of the Intel 1702 EPROM
and 8085 microprocessor. The 1702 required multiple
supply voltages and a unique negative 48 volt
programming pulse sequence to store data in its 256 x 8
memory matrix. If your program was big enough, it took a
full 30 seconds to program all 256 bytes of the 1702’s
nonvolatile memory. The 1702 was eventually replaced by
the single voltage 1K x 8 2708 and the 2K x 8 2716. | can
remember having multiple 2716s that | rotated through
the UV eraser with every new spin of code. The EPROMs
and companion microprocessor were all we had to work

with, and work with them we did. | couldn’t afford the
expensive EPROM programmers of the time. So, | (and
everybody else) designed and built my own. Compilers
and printed circuit boards were food for the gods. We
used assembler and wire-wrapped breadboards. In the
end, it was all about the hardware.

Despite the advent of the instant technology found in
our smart phones and electronic notepads, it is still all
about the hardware. If it weren’t for the 1702, the 8085,
and the men and women that plied them, we would still
be plunking quarters into public telephones and replacing
the needles on our phonographs.

fjﬂ

Pt DIGITAL

M2V-8 94V-8

5, HaeBE
LT ;ﬂ‘*

'.IPE,

= i cs
g mmumt

ﬁl‘ﬂﬂ

i.sUrl 32 ¢

A NEW
HARDWARE MODEL

The modern microcontroller
has replaced the breadboard
mounted rows and columns of
combinatorial logic ICs that | used
to design around. Gone also are
the heavily heatsinked high current
power supplies that were required
to support the garden of TTL
logic ICs.

The discrete hardware
components that we can buy
from electronic parts distributors
are getting smaller and smaller.
Some are too small for even
the most experienced
electronics experimenter to mount

MASTER

SLAVE

B PHOTO 1.The Uno32 is a very
simple electronic design with very
powerful possibilities.

58 NUTSEVOLTS March 2012

robin
Typewritten Text
Reprinted by permission of T&L Publications, Inc.

robin
Typewritten Text

robin
Typewritten Text

robin
Typewritten Text

robin
Typewritten Text

robin
Typewritten Text

robin
Typewritten Text

robin
Typewritten Text

robin
Typewritten Text

www.nutsvolts.com/index.php?/magazine/article/ma DesignCycle DESIGN CYCLE
UCCIU3
Jo o :
ca o3 USE UART Interiace
8.1uF i,
GO 1 SE1uF (ML - ;“E gg lﬁl_"K'" = 111 DY SOTY /RF 2
UCCoUR WCcC H
—2 R sAn prse (22 1 AL TX/SO01 /RF 3
SHL 1 USBOH CTSE i p3 1K
B G f usanp OTRE 3
L[gye B pses Xirm 1 JPL
T Qo B RESETH ocos
@ 0= 1 Rlm 55
& U 0sC1 CBULe (=
SHZ osco CBUS QL
e I e S cousz (b9 oz
N - = J30UT CBuUsa |== 0z
E ceuss |- O 4
w0,
o . < — T3
2 238 H B R
i
= [Vlet
E::E B.iuF g-i 'l"\'iﬁ q 1C1 H *ﬁl;"s s
GO [1 11 Fraazra-tray b

B SCHEMATIC 1. A MAX232 just wouldn't fit very well in
this role. The FT232RQ has it beat in terms of
speed and versatility.

by hand. Thus, instead of revolving around a set of passive
discrete components, we find ourselves plotting designs
that are centered on a cluster of “smart” electronic
components.

In one-off designs, the passives and logic that
made up your electronic cluster would be customized
for the application. However, universal electronic cluster
designs tend to be cheaper in the long run since the
universal cluster can be adapted to multiple missions.
More often than not, a universal electronic
cluster is built around a microcontroller. The | Foi FT Prog - Device: 0 [Loc ID:0%41]
Arduino hardware concept is a perfect
example of a universal electronic cluster

Uno32’s 32-bit electronics cluster.

The Uno32’s serial port design is graphically depicted
in Schematic 1. The Uno32 embedded platform uses an
FTDI USB device instead of an RS-232 interface IC as its
serial port interface hardware. The advantages of
implementing a USB interface solution in this situation are

& EEPROM |3 Flah AOM

design. & .;"5'“!' ;.":."*.'},J 8

The Arduino environment provides a way _M"H'JHM ;
to write applications without the Arduino D’“;: e i) | Veloo
programmer having to know anything about = E_'_, F.:EEE':D.] Bus Powered ®
the hardware. From a pure programmer’s point ® =3 Chip Details Sell Povand: 0
of view, that’s a good thing. From a hardware ot :uaamm:mr b Bus Fowac 30 |mawps
head'’s point of view, that could be a bad 1 &y oknise Ui hmwelagr [
thing. | like to know everything | can about the = REMOWVIBWENIE! | oy 0co 0 Prsin S8 [
hardware. Since you're reading Design Cycle, :: EelPausnd Suspend
I’'m sure you do too. =5 iOpullDown W rration B

= MaPowet S8 Config Descriptors
=5 U8B String Descrigtors

IT'S ALL ABOUT s = Hardwars Spechic S——

The Digilent Uno32 captured in Photo 1

qualifies as a universal electronics cluster that
can interoperate in an Arduino or native
programming environment. I’'m sure that there
are new Arduino sketches being written for the
Uno32 as we speak. While the Arduino
programmers are hammering out libraries and
applications, we’ll turn our attention to the

B SCREENSHOT 1. FTProg is a free utility that
can be downloaded from the FTDI site. Here,
we see that the Uno32's USB portal is bus
powered, asking for a maximum of

Dervice U';b-l

Ed

gad EEPROM Device O
a0
oo

moorer

0 0040 0304 0160 0000 AOID OR00 0000 PROA

8: AZI0 CZL1Z Z310 OF0D OADZ 4600 5400 4400
00L0: 4900 00D 4600 $400 00 II00 IT00 SI00
EQDD 5500 5300 4200 2000 5500 4100 SZ00
0020: S400 1203 4100 IL0O0 3000 3000 IHO00 SEOO
0028: 4BOOD 3900 S4BE I0OLO 0000 000D G000 00GO
0030 0000 D000 GO0OD 0000 (OO0 QODD OO0OO 0000
0038: 0000 O000 G000 Q000 0000 0000 QOO0 ATES
0040: 3004 CZFE OO0 5485 2010 4200 D000 000D
0048 0000 D000 GOO0 Q000 314l JEES 4F5I ITE0

90 mA of that power.

March 2012 NUTS:VOLTS 59

LCCSUR
UCC3u3

L

@
&
22uF

18uF

l%

£071

No Load

T

LUSRASUA = Jw
L&]1
~To at

1C4G1

urp 3}

1
u;naua____i;::::}___
MCP6@01-0T
GO

Lo Je

——

Ciz

Jo

@uF/s3el [18uF/3p

4

JP2

HAT

L
[=
EH
mn\Juﬂ
=
O+ = > 0O
ax] 3 o T© @& |M
Tl @ £ 4 85 |4
i L =
w O o
e x. B
3 0¥d g
[}
& =
20z =2 2 B
M= > m
iy
o e e I
4 !
o
M
a
4
S
(40 T R
r:_}|fw-|
ALY
L
3
[~
U(ri
L 1
= 7
m
%I—N
= [~
U] 5
. |98 su
ﬂjll\
g
o rod
a |4
> |d
B =9

No Load

AT
a1ty

i

60 NUTSEVOLTS March 2012

many. For instance, it is not likely that
you'll find a nine-pin RS-232 portal
on any desktop or laptop computer
that is marketed today. However,
odds are that you will find at least
one USB portal on any PC you can
buy new right now. In terms of
speed, the FT232RQ easily outruns
any MAX232 variant. The FT232RQ
is also more versatile than a single
RS-232 interface IC.
A single FT232RQ can process
transmit and receive data traffic
while simultaneously supervising all
of the common modem control
signals. Transmit/receive visual
signaling duty is also handled by
the FT232RQ via its programmable
five-bit I/O control subsystem. A
single FT232RQ literally replaces a
herd of RS-232 ICs.

The Uno32’s FT232RQ data
transfer functions are supported
on the PC side by a set of FTDI
drivers that are used to construct a
Virtual Comm Port, or VCP. On the
Uno32 side, the FT232RQ needs no
special programming and can be
configured using FTDI’s FT Prog
Utility

I've connected my laptop to our
Uno32’s FT232RQ-based USB portal
and fired up an instance of the FTDI
FT Prog Utility. Screenshot 1 contains
the USB Config Descriptor
information. The Screenshot 1
FT232RQ scoop tells us that the
Uno32’s USB portal is bus powered
and will require a maximum of 90
mA from the USB host. The fact that

Bl SCHEMATIC 3. No rocket science
here. If you've ever worked with a
linear voltage regulator, everything
should be obvious to even the most
casual observer.

B SCHEMATIC 2. When the MCP6001
op-amp's VCMP input is less than +3.3
volts, MOSFET Q1 allows the Uno32
to be powered by the USB host.

the Uno32’s FT232RQ is bus
powered is not obvious in the realm
of Schematic 1. So, let’s follow the
FT232RQ’s power train beginning
with Schematic 2.

The MCP6001 operational
amplifier you see in Schematic 2 is
used as a comparator. When the
MCP6001’s VCMP input is
presented with less than +3.3 volts,
MOSFET Q1 is biased ON and
allows the USB host to power the
Uno32 via the USB host portal.
MOSFET Q1’s source pin feeds the
VCC5V0 power signal you see in
Schematic 3. While your eyes are on
Schematic 3, note that the Uno32
can also be powered by an external
power source other than a host USB
portal. The VCMP power signal is
derived from the external power
source that does not originate from
the USB host. Thus, the use of a USB
host power source and an external
non-USB power source is mutually
exclusive. The host USB power
source will always be overridden by
an external power source greater
than 7.0 VDC.

Now that we know how the
Uno32’s FT232RQ is powered, we
can look back at Schematic 1 and
see that the FT232RQ'’s 1/O
subsystem is set up for 3.3 volt logic
levels via the voltage applied to its
VCCIO pin. Also, note that the
FT232RQ’s active-low RESET pin is
controlled by the host USB portal.
The voltage divider made up of
resistors R4 and R6 provide a pullup
voltage source for the internal 1.5KQ
pullup resistor that is electrically
attached to the FT232RQ’s USBDP
pin. When power is applied to the
internal pullup 1.5KQ resistor, the
USB host is informed by the
presence of the pullup voltage that
the Uno32’s FT232RQ is a full speed
USB device.

Moving to the modem control /
I/O side of the FT232RQ, we find
transmit and receive data signals, a
modem control instantiated CPU
reset signal, and visual indicators in

DESIGN CYCLE

B SCREENSHOT 2. We have no direct control of [s
LEDs LD1 and LD2 unless we reconfigure the |- Eres ;. Devier: A [Loc Aot

FT232RQ's I/O controls. || # EEFROM |5 Rk RoM|

the guise of a couple of LEDs. The FT232RQ’s | it - m e .
TXD and RXD pins are operating at 3.3 volt . Al o Alm o)
logic levels and are electrically attached to the | | DevisTone | Propery Vike
Uno32’s PIC32MX320F128H UARTT interface. | [=% Peice Thec Do o MEDH

Driving the FT232RQ’s DTR signal logically @ b Chip Detalls] FALEDE v
low presents a reset condition to the == UGE Detdas Damcidplor - o 3
PIC32MX320F128H. As you’ve probably :jﬁg ;ﬁ:ﬁ:’:ﬂ: o e =
already ascertained, the modem control signals & = Hargware Specil; - — =
(DTR, RTS, etc.) are under the control of the : ;::Erm
PC program that’s in charge of the data flow o EdicbiOsH [itamiaton Box
on the USB portal. # =P Invert RE132 Signals 110 Controls

The operation qf the LED indicators, LD1 & "’_b - e § CBUS pins e be configured, axpand for detals
and LD2, is preconfigured using the FTDI 5
FT_Prog Ultility. Screenshot 2 is representative =h C2
of how the Uno32’s FT232RQ I/O controls are s
set up. LD1 flashes on transmit events while
LD2 blinks when data is received. [e Dt

Photo 2 is a spy satellite view of the Fad EEFR.OM Devica 0
Uno32’s FT232RQ resident area on the u-u;:: 0040 0304 OL60 000D ADZD 0800 0000 SEOA
Uno32’s PCB. The entire FT232RQ design fits S it s
within the space of a quarter. The FT232RQ DOLE: 2000 £500 E304 4200 2000 EEBO 4100 £200
USB-to-TTL services could also be performed bozs: 400 3000 $4BS 201 ODO 0000 50D 50O
by the PIC32MX320F128H’s internal USB G0 S0k0 i GG ikl 300 i G K
engine. The FT232RQ is a better choice here e ot Bots it tons oae
as it conserves PIC32MX320F128H 1/O pins by
providing the CPU reset and visual indicator
control via its software-controlled modem | s
control signals and five-bit 1/O control '

subsystem. Plus, we didn’t have to write a byte
of code to partake of the FT232RQ’s control
and signaling services.

Take another close look at Photo 1. The
only other programmable electronic
component in the universal electronic cluster
called Uno32 is the PIC32MX320F128H. All of
the Uno32’s base peripherals are stationed in
the PIC32MX320F128H silicon. | won't quote
the PIC32MX320F128H datasheet here since
you can download your own copy. All of that
peripheral potential energy cooped up in the
PIC32MX320F128H silicon is useless if we
can’t access it. It’s all about the hardware. So,
let’s provide the PIC32MX320F128H’s internal
peripherals with a playmate.

HUMAN INTERFACE
HARDWARE

The Uno32 can be enhanced with yet
another electronic cluster in the form of a
Digilent Basic 1/O Shield. In the Arduino sense,

B PHOTO 2. Small size and minimal board
space requirements are two advantages to the
FTDI USB serial interface solution.

B PHOTO 3.The
combination of the
Basic I/0 Shield and
Uno32 is simple
enough for the
beginner to understand
and complex enough to
aid in professional
embedded
development.

TACOS

There are beef
tacos, pork tacos, and
fish tacos just to name
a few. No matter
what’s inside the taco
shell, it’s still a taco.
High level languages
are like tacos. For
instance, the C
programming language
basically uses the
same statements and
rules to create
assembly code for an
8085 microprocessor
as it does for a PIC. In

0
&1
5
e
5
=

en
J

B

the Basic I/O Shield is a universal electronic cluster as it is
designed to be interoperable with the stock Arduino
hardware. The Basic 1/O Shield is made up of familiar
electromechanical and electronic components. You can
identify most of the Shield’s features just by observing
them in Photo 3.

The Basic 1/O Shield is intended for use by both
neophyte and professional. Resident Shield hardware
includes pushbuttons, slide switches, a byte-wide group of
LEDs, and a potentiometer. The potentiometer is designed
in as an analog input device and is electrically connected
to one of the PIC32MX320F128H’s analog inputs.

The Shield also offers advanced 1/O devices. You'll
find a 24LC256 EEPROM and a TCN75 digital
temperature sensor on its I°C bus. The Shield’s SPI portal
directly supports a 128 x 32 pixel OLED display. For those
of you that wish to control high current loads such as
motors or solenoids, the 1/O Shield is equipped with a
quad of N-channel MOSFETs in an open drain
configuration.

The idea behind the Basic /O Shield is to allow the
application designer to use standard Arduino calls to
manipulate the Shield’s 1/O devices. To that end, you’ll
find documentation detailing its pinout in Arduinoese. If
you prefer not to go with Arduino as a development tool,
you can use the Shield schematic to map the 1/O devices
to the PIC32MX320F128H. The folks at Digilent do a very
good job at documentation, and you can get the
information and specifications you need for the price of a
free download.

62 NUTSEVOLTS March 2012

the case of the
Uno32, Arduino takes the taco concept one shell further.
An Uno32 Arduino language statement begins as a PIC C
function. The PIC C function is then wrapped up as a C++
object that eventually becomes an Arduino statement. So,
one could say that even with high level languages it’s still
all about the hardware. To emphasize the point, let’s see
what’s behind the Uno32 Arduino statement that
initializes the OLED display that is integral to the Basic /O
Shield.

Here’s the Arduino way to wake up the Shield’s OLED
display:

void setup()
{

T0ShieldOled.begin() ;
}

Right away, we know that an object called
IOShieldOled has been instantiated. We also know that
the begin() function is a member of the object
IOShieldOled. The class declaration from which the object
IOShieldOled is spawned looks like this:

class I0ShieldOledClass
{

private:

public:
/* Class Constants*/
static const int colMax = 128;
//number of columns in the display
static const int rowMax = 32;
//number of rows in the display
static const int pageMax = 4;

//number of display pages

static const int modeSet = 0;
//set pixel drawing mode
static const int modeOr = 1;

//or pixels drawing mode
static const int modeAnd = 2;
//and pixels drawing mode
static const int modeXor = 3;
//x0r pixels drawing mode

I0ShieldOledClass () ;

/* Basic device control functions.*/
void begin(void) ;

void end(void) ;

void displayOn(void) ;

void displayOff (void) ;

void clear (void) ;

vold clearBuffer (void) ;

void updateDisplay (void) ;

/* Character output functions.*/

void setCursor(int xch, int ych);
void getCursor (int *pxcy, int *pych);
int defineUserChar (char ch, BYTE
*pbDef) ;

void setCharUpdate(int f);

int getCharUpdate (void) ;

void putChar (char ch);

vold putString(char *sz);

/* Graphic output functions. */
void setDrawColor (BYTE clr);

void setDrawMode (int mod) ;

int getDrawMode () ;

BYTE* getStdPattern(int ipat);

void setFillPattern(BYTE *pbPat);

void moveTo (int xco, int yco);
void getPos (int *pxco, int *pyco);
void drawPixel (void) ;

BYTE getPixel (void) ;

void drawLine

(int xco, int vyco);

void drawRect

(int xco, int vyco);

void drawFillRect

(int xco, int vyco);

void getBmp

(int dxco, int dyco,

BYTE *pbBmp) ;

void putBmp

(int dxcp, int dyco,

BYTE *pbBmp) ;

void drawChar (char ch);

void drawString(char *sz);

Everything — | mean everything — that has to do with

controlling the Shield’s OLED display is defined within the
10ShieldOledClass class declaration. Note that our begin()
control function is contained within the IOShieldOledClass
class declaration’s braces. The class declaration can be
found in the /IOShieldOled.h file.

An instance of the class IOShieldOledClass called

10ShieldOled is created in the IOShieldOled.cpp C++
source file. We also place C++ code to flesh out the
function members of the class IOShieldOledClass in the
10ShieldOled.cpp C++ source file. All of the functions are
addressed. However, we're only interested in the begin()
control function:

DESIGN CYCLE

void IOShieldOledClass: :begin(void)
{

OledInit () ;
}

As it turns out, the OledInit() function is part of the
Oled driver code which is found in the file Oleddriver.c:

vold OledInit ()
{

/* Init the PIC32 peripherals used to
** talk to the display. */
OledHostInit () ;

/* Init the memory variables used to
** control access to the display. */
OledDvrInit () ;

/* Init the OLED display hardware. */
OledbevInit () ;

/* Clear the display. */
OledClear () ;

Since it’s all about the hardware, let’s look at the meat
of the OledHostlnit() function:

void OledHostInit ()

{

#if defined (_BOARD_UNO_)
/* Initialize SPI port 2.*/
SPI2CON = 0;
SPI2BRG = 4;
//8Mhz, with 80Mhz PB clock
SPI2STATbits.SPIROV = O0;
SPI2CONbits.CKP = 1;
SPI2CONbits.MSTEN = 1;
SPI2CONbits.ON = 1;

#elif defined (_BOARD_MEGA_)
/* Initialize pins for bit bang
**3SPI. The Arduino Mega boards,
** and therefore the Max32 don’t
**have the SPI port on the same
** connector pins as the Uno. The
**Basic I/0 Shield doesn’t even
** connecto to the pins where the
**SPI port is located. So, for
** the Max32 board we need to do
**pbit-banged SPI.
*/
PORTSetBits (prtSck, bitsck);
PORTSetBits (prtMosi, bitMosi);
PORTSetPinsDigitalOut (prtsSck,

bitsck) ;
PORTSetPinsDigitalOut (prtMosi,
bitMosi) ;

#else
#ferror “No Supported Board
Defined”

#endif

PORTSetBits (prtbataCmd, bitDataCmd) ;
PORTSetBits (prtvddCtrl, bitvddCtrl);
PORTSetBits (prtVbatCtrl, bitVbatCtrl);

PORTSetPinsDigitalOut (prtDataCmd,

bitDataCmd); //Data/Command# select
PORTSetPinsDigitalOut (prtvddCtrl,
bitvddcCctrl); //VDD power control (l=off)

PORTSetPinsDigitalOut (prtVbatCtrl,
bitVbatCtrl); //VBAT power control
(1=0off)

March 2012 NUTS:VOLTS 63

/* Make the RGY9 pin be an output. On the
** Basic I/0 Shield, this pin is tied to
** reset.*/

PORTSetBits (prtReset, bitReset);
PORTSetPinsDigitalOut (prtReset,

We're finally down to the C code that speaks directly
to the PIC32MX320F128H. Every function within the
Oledinit() function will execute initializing the
PIC32MX320F128H, the Oled hardware, and the Oled
driver. All of the definitions for the arguments of the
functions contained within the functions found in
Oledinit() are contained within the OledDriver.h file. The
PORTSet functions are PIC32MX peripheral library calls
that are part of the PIC32MX Peripheral Library, which is
part of the Microchip.PIC32MX C compiler.

bitReset) ;

IT'S STILL ALL ABOUT
THE HARDWARE

Now you know what happens behind that
10ShieldOled.begin() Arduino statement. | guess you
could classify the Arduino statement we examined with
one of those tacos with two shells separated by cheese.
The C and C++ code we discussed ends up being

compiled to form an Arduino OLED library. Naturally,
the IOShieldOled.xxx calls are used in your Arduino
sketches.

If we equate eating with coding, Arduinoese is easy to
swallow. The C behind the Arduinoese is a bit chewy, but
easily consumed. If you're interested in moving from being
an Arduino user to an Arduino developer, the Uno32 can
help you get there. The Uno32 comes with a factory
installed bootloader that is designed to be used with
Digilent’s MPIDE Arduino-compatible development tool.
For those of you that aren’t grazing on the Arduino farm,
the Uno32 is PICkit3-ready too.

You can use assembler, C, C++, and Arduinoese to
prod the Uno32’s PIC32MX320F128H into programmable
action. The bottom line is that the Uno32’s hardware is a
common denominator no matter what programming
language you choose to use. The Uno32 puts 32-bit
Arduino computing into your Design Cycle. NV

SOURCES

Digilent
Uno32
Basic I/0O Shield
MPIDE
www.digilentinc.com

muph:nﬂuﬂm (= ‘ﬁﬂl

PSaelig =

unigua alzcitronics

New Low Price!
=

iPhone/iPad Scope 100MHz Scope Mixed Sig. Scope
Z mixed signal scope z 5 BCOpE

X 100MHz scope, speclrum
adapier for iPhone & iPad. wi 2000 wimds refresh rate. and logic analyzer 4MSa
IMS0-104 §207.99 DS1102E $785 Mow 5399

storage. CS328A 51359

LLLLY

of

iPad WiFi Analyzer

Custom Meter

World's first power meter +
spec analyzer for the iPad
and IPhone. WiPry 195,95

T-ill-1 S

spm::lrum pprimbime)
gen. CGR-IM $188

Smallest Scope

World's smaliest MS0 with
arbitrary wim gen in a DIP
module, Xprotolab 548

High contrast 2.4° TFT color
LCD w budll-in touch screen
8GD 24-M

5¥90.25

Windows Touchpanel
Touch-input 10.2° LCD 12V

powered Windows PC 4GE
CUPC-PEOOI20 $60E+

&

I/O Controllers

Simple-to-use unversal 110
controliers for USE interface,
No drivers req'd, $10.35+

888-772-3544 WWW.saelig.com

Host Adapter coniroliad from
PC through USB. §1209

2-ch Z3MHEZ oolor LTD - FFT,
Bautoscale, & trigger delay
functions. PDS50228 £279

Digital Microsco

microsoope and magnifier.
MVZDOUM 559.95

info@saelig.com

64 NUTSEVOLTS March 2012

THE ORIGINAL SINCE

CB-PNOL

Beta LAYOUT

'}

FREE Stencil
with every prototype orde

.
“Sprp-pNL .
pcb-pool.com/download-button . =

on your first order EX A

- -
i _-=_ I I ey "."-"L"h
Call Tyler: 1 707 447 774x‘|']
» 5

sales@pcb-pool.us

PCB-POOL® s a registered tradémark 'of

Bela

LAYOUT

www.pcb-pool.com

