Chipstar应用于手机的模拟解决方案

Chipstar 音频功放为移动设备带来完美的音乐体验

Chipstar ClassAB and Class-D 音频功放的特点

Chipstor应用于手机类移动设备上的音频功放大多采用DFN2*2_8L封装,和现在市面上的大多数供应商采用的WLCSP的封装相比,具有以下几个优点:

- 1.散热好:由于DFN封装下面有散热片,因此和WLCSP相比,DFN封装的散热性要比WLCSP要好很多
- 2.易运输:由于WLCSP封装是wafer级的封装,只是在die上植焊球,外面没有塑封料,因此芯片在运输过程中极易损坏
- 3.后续维护简单,可以重复焊接: WLCSP封装是die上直接植焊球,在焊下后,不能再焊接上去,而且手工焊接要求比较高,但是DFN封装可以重复焊接,而且手工焊接简单方便
- 4.SMT: 由于WLCSP封装外面没有塑封料,比较轻,卷带中若有些许水汽,在SMT过程中就很容易发生粘管和掉管或者抛料等情况,而且WLCSP封装对SMT的工艺要求也比DFN高
- 5.封装工艺:DFN封装是技术非常成熟的,而WLCSP作为一种过渡性质的封装类型,技术上还不是非常成熟,经常会出现掉球等现象,特别是有些厂家为了降低成本,采取在芯片上直接植球,不做RDL层,更容易发生掉球现象.
- 6.产能:目前能大量量产WLCSP封装的只有长电先进一家封装厂,很容易出现产能紧张造成缺货问题,而DFN封装产能国内是全球最大的,不会造成产能紧张而造成缺货的问题

CS8120和同类产品的性能比较

	CS8120	TPA2010	AW8010	PAM8303
最大输出功率: VDD=5V,f=1KHz,THD+N=10%,RL=4ohm	3.1W	2.5W	3W	3W
VDD=5V,f=1KHz,THD+N=10%,RL=8ohm	1.8W	1.45W	1.8W	1.75W
VDD=5V,f=1KHz,THD+N=1%,RL=4ohm	2.5W	2.08W	2.45W	2.5W
VDD=5V,f=1KHz,THD+N=1%,RL=8ohm	1.47W	1.19W	1.45W	1.4W
最小总谐波失真: VDD=5V,f=1KHz,PO=0.6W,RL=8ohm	0.02%	0.2%	0.045%	0.35%
VDD=4.2V,f=1KHz,PO=0.4W,RL=8ohm	0.03%	0.2%	0.035%	0.45%
EMI	很低	大	低	大

防破音ClassD CS8115和同类产品的性能比较--(1)

	CS8115	YDA145	AW8145
最大输出功率: VDD=5V,f=1KHz,THD+N=10%,RL=4ohm	3.30W	2.1W	3W
VDD=5V,f=1KHz,THD+N=10%,RL=8ohm	1.84W	1.00W	1.8W
VDD=5V,f=1KHz,THD+N=1%,RL=4ohm	2.65W	1.65W	2.60W
VDD=5V,f=1KHz,THD+N=1%,RL=8ohm	1.55W	0.75W	1.50W
最小总谐波失真: VDD=5V,f=1KHz,PO=0.6W,RL=8ohm	0.030%	0.030%	0.045%
VDD=4.2V,f=1KHz,PO=0.4W,RL=8ohm	0.035%	0.035%	0.035%
EMI	很低	高	低
Pop Noise	很小	小	小

防破音ClassD CS8115和同类产品的性能比较--(2)

防破音和非防破音状态下功率与失真比较

Conditions	C\$8115				AW8145				
	NCN:Po(W)THD+N(%) NC		NCNOFF:Po	NCNOFF:Po(W)THD+N(%)		NCN:Po(W)THD+N(%)		NCNOFF:Po(W)-THD+N(%)	
5V,8R	0.98	0.33	1.5	1%	0.91	0.77	1.43	1%	
4.2V,8R	0.68	0.33	1.05	1%	0.5	0.8	0.99	1%	
3.8V,8R	0.55	0.28	0.85	1%	0.37*	0.9	0.8	1%	
3.6V,8R	0.49	0.32	0.76	1%	0.47	0.9	0.71	1%	
5V,4R	1.74	0.49	2.67	1%	1.37	0.76	2.34	1%	
4.2V,4R	1.22	0.5	1.9	1%	0.82	1.15	1.7	1%	
3.8V,4R	0.99	0.43	1.53	1%	0.65	1.3	1.39	1%	
3.6V,4R	0.98	0.38	1.38	1%	0.54	1.05	1.25	1%	

结论:CS8115不管在防破音模式和非防破音的模式下,都可以输出更大的功率,提供更优质的音质。

CS8115提供最为先进的pop noise抑制技术,彻底解决便携式设备由于音频功放而带来的令人厌恶的pop声。

• AERC(Adaptive Edge Rate Control)技术 – 超低EMI

传统的Class D一直倍受EMI的困扰,Chipstar采用AERC技术的新一代Class D最大程度的降低了EMI干扰,使得在AM,FM,手机系统中应用不受影响。

EMI主要来源:

- 1、输出方波在高低切换过程中释放的高频能量
- 2、由于"死区"时间的存在,死区释放后,功率管体二极管反向恢复引起尖峰能量
- 3、PCB上杂散的电容和电感引起的输出方波上叠加的振铃能量

传统的Class D一般都是用开关管直接驱动功率管输出功率,可以说对输出方波的上升和下降时间以及波形完全是失控的。如图1,2所示,实际应用中传统Class D的输出方波有很大的过冲和很长时间的振铃,并且上升时间和下降时间完全是失控的。因此,会有很大的EMI干扰。

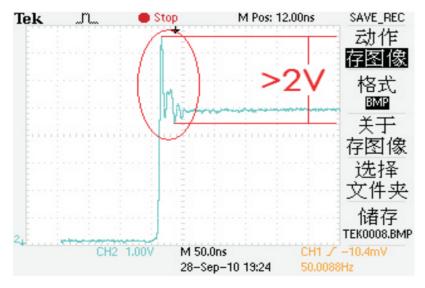


图1 传统ClassD上升沿

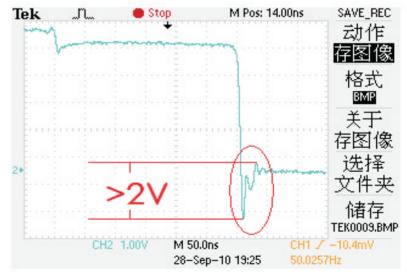


图2传统ClassD下降沿

Chipstar采用AERC技术的新一代Class D的输出波形如图3.4所示,可以明显的看出,方波上叠加的振铃明显减小,甚至消失。同时,高级的自适应技术,可以精妙的控制输出方波的边沿上升和下降时间和形状,最大程度的减小了Class D输出波形中携带的高频EMI能量。

Chipstar新一代的Class D同时结合了D高效和AB类完美音质和无EMI干扰的优点,能提供优异的全带宽 EMI抑制能力,在不加任何辅助设计时,在FCC Part15 Class B标准下仍然具有超过20dB的裕量,特别适合FM、CMMB、手机模拟电视等易受EMI干扰的应用。

图3 新一代ClassD 上升沿

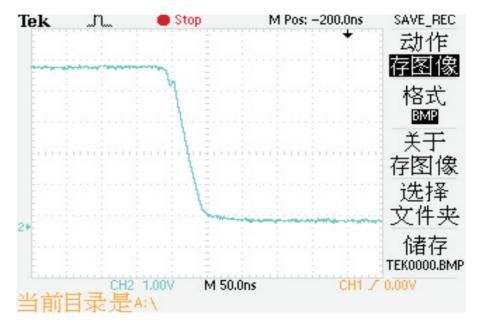


图4 新一代ClassD下降沿

• AFS(Advanced Feedback System)技术

- 体现完美的音质

为了带来更为逼真的声音还原和体验,Chipstar新一代的Class D创新的使用了AFS高阶反馈技术,在系统的复杂度和稳定度之间做到完美的折中和平衡。

更高阶的反馈系统,使得Chipstar新一代的Class D的失真度减小到 0.03%。

采用AFS技术的新一代Class D在保持高效率(>90%)的同时,为用户带来比AB类还要逼真的完美音乐体验,如图5所示。

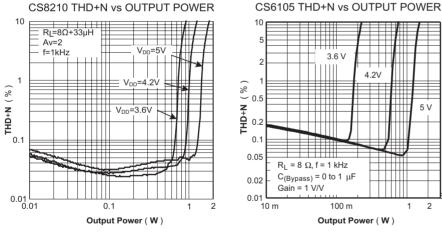


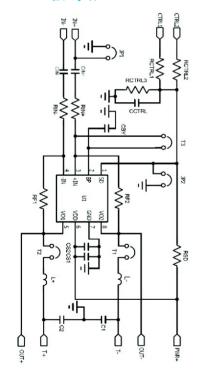
图5: Chipstar新一代ClassD和ClassAB失真度对比

- 超大音量,为便携带式设备提供3W以上足够的音量输出
- 可以自动恢复的短路保护功能
- 完备的ESD保护

很多传统的Class D都不具备完备的ESD防护,尤其很多IC不能提供合格的机器模型MM(Machine Model)保护。

Chipstor新一代的Class D在保证人体模型>4000V的前提下,还能提供>400V的MM模型保护。使得IC的可靠性大大提高。

Chipstor 音频功放产品应用在便携式设备上兼容指南 – (DFN2*2_8L封装)


本指南提供了DFN2*2封装的完美设计方案,该方案能让工程师灵活选择市面上的主流应用。采用PCB兼容的layout,仅需要稍改外围元件,就能实现AB类,D类的超强兼容!一次设计,一劳永逸,从此您再无后顾之忧。

几款可以兼容布局的音频功放IC

C\$6190T	C\$6105T	C\$8120T	C\$8115T	C\$8110T	
Class AB Audio PA Class AB Audio PA		Class D Audio PA	Class D Audio PA	Class D Audio PA	
1.2W、单通道、单端输入	1.35W单通道、单端\差分输入	3.1W、单通道、单端\差分输入	3.3W、单通道、单端\差分输入	3.3W、单通道、单端\差分输入	

DEMO板线路

/./.	co.t	Part number						
22	印标号	CS6190T	CS6105T	CS8120T	CS8115T	CS8110T		
	RIN+	NC	20ΚΩ	150ΚΩ	0Ω	150ΚΩ		
	RIN-	20ΚΩ	20ΚΩ	150ΚΩ	0Ω	150ΚΩ		
	FR1	20ΚΩ	20ΚΩ	NC	NC	NC		
	FR2	NC	20ΚΩ	NC	NC	NC		
	FSD	20ΚΩ	20ΚΩ	20ΚΩ	20ΚΩ	20ΚΩ		
	RCTRL1	NC	NC	NC	*	*		
	RCTRL2	NC	NC	NC	*	*		
	RCTRL3	NC	NC	NC	*	*		
IK	CIN+	NC	0.22uF	10nF	33nF	10nF		
车	CIN-	0.39uF	0.22uF	10nF	33nF	10nF		
	CS1	NC	NC	10uF	10uF	10uF		
	CS2	1uF	1uF	1uF	1uF	1uF		
	C1	NC	NC	1uF	1uF	1uF		
	C2	NC	NC	1uF	1uF	1uF		
	CBY	1uF	0.22uF	NC	1uF	NC		
	CCTRL	NC	NC	NC	0.1uF	0.1uF		
	L1	NC	NC	33uH	33uH	33uH		
	L2	NC	NC	33uH	33uH	33uH		
改	T1	Open	Open	Short	Short	Short		
短接,	T2	Open	Open	Short	Short	Short		
泗	T3	Short	Open	Open	Open	Open		

	I/O port H level output voltage of microcomputer	1.8V	2.6V	3.0V	3.3V	5.0V
*	Rctrl 1	27ΚΩ	33ΚΩ	33ΚΩ	33ΚΩ	56ΚΩ
	Rctrl 2	56ΚΩ	68ΚΩ	68ΚΩ	68KΩ	120ΚΩ
	Retrl 3	82ΚΩ	27ΚΩ	22ΚΩ	18ΚΩ	15ΚΩ

DEMO板各跳线说明

JP1: Short为单端输入方式 Open为差分输入方式。 JP2: Short为关断状态 Open为工作状态。

快速连接

PWR+,PWR-电源输入端 IN+,-IN,GND信号输入端 OUT+,OUT-负载连接端 T+,T-测试端 CTRL1,CTRL2控制输入端

设计注意点

- 1、差分信号输入线路尽量按等长平行规则布线;
- 2、信号地和电源地最好隔离;
- 3、元器件尽可能的靠近IC布放;
- 4、实际应用时,L+与L-两个电感可以根据实际情况用 磁珠或者短接; T1与T2可以省略。