
Page 1

Cosmic’s C cross compiler, cx6808 for the Freescale 68HC08 and HCS08 family of microcontrollers,
incorporates over twenty years of innovative design and development effort. In the field since 1995, cx6808 is
reliable, field-proven and incorporates many features to help ensure your embedded HC08/HCS08 design
meets and exceeds performance specifications.
The C Compiler package for Windows includes: Cosmic integrated development environment (IDEA), optimizing C

cross compiler, macro assembler, linker, librarian, hex file generator, debugging support utilities, run-time libraries and a

compiler command driver. The PC compiler package runs under Windows 95/98/ME/NT4/2000 and XP.

Microcontroller-Specific Design
cx6808, is optimized specifically for the Freescale
HC08/HCS08 family of microcontrollers; all HC08/HCS08
family processors are supported. You also get header file
support for all the popular HC08/HCS08 peripherals, so you
can access their memory mapped objects by name either at the
C or assembly language levels.

ANSI / ISO Standard C
This implementation conforms with the ANSI and ISO
Standard C specifications which helps you protect your
software investment by aiding code portability and reliability.

Flexible User Interface
The Cosmic C compiler can be used with the included
Windows IDEA or as a Windows 32-bit command line
application for use with your favorite editor, make or source
code control system. It’s your choice!!

Automatic Checksum
The linker can automatically create and maintain a multiple
segment check sum mechanism in your application. Choose
either an 8 or 16-bit checksum algorithm. Call one of the
included checksum verify functions from any part of your
application to calculate and compare the checksums.

Function Copy (Boot loader)
Create a block of functions that is stored in ROM and copied to
RAM by a included library routine. Multiple blocks may be
setup and copied and/or executed independently. Separate
copies of library routines may also be included in the RAM
code without symbol conflicts.

Cosmic Software
C Cross Compiler
For Freescale

HC08/HCS08

Key Features
Supports All 68HC08 and HCS08 microcontrollers,

ANSI C Implementation,

Extensions to ANSI for Embedded Systems,

Global and Processor-Specific Optimizations,

Debug Fully Optimized Code ,

Automatic Checksums,

C Support for Internal EEPROM,

C Support for Direct Page Data,

C Support for Code Bank Switching,

C Support for Interrupt Handlers,

Full User Control Over Stack Use,

Single Precision Float Support,

Freescale MCUasm™ Compatible Assembler,

Assembler Supports C #defines and #includes,

Absolute C and Assembly Listings,

Static Analysis of Stack Usage,

Royalty-Free Library Source Code,

IEEE-695, ELF/DWARF and P&E Debug support,

Most HC08/HCS08 In-Circuit Emulators supported,

First Year of Support Service Included with,

No Charge Upgrades.

Cosmic C Cross Compiler Product Description Supporting Freescale HC08/HCS08

Page 2/5
Trademarks are the property of their respective holders.

C Runtime Support
C runtime support consists of a subset of the standard ANSI
library, and is provided in C source form with the binary
package so you are free to modify library routines to match
your needs. The basic library set includes the support
functions required by a typical embedded system application.
All runtime library functions are ROMable and reentrant.
Runtime library functions include:

 Character handling
 Mathematical functions
 Non-local jumps
 Formatted serial input/output
 String handling
 Memory management

The package provides both an integer-only library as well as
the standard single precision floating point library. This
allows you to select the smaller and faster integer-only
functions, if your application does not require floating point
support.

Optimizations
cx6808 includes global and microcontroller-specific
optimizations to give your application maximum chance of
meeting and exceeding its performance specifications. You
retain control over optimizations via compile-time options
and keyword extensions to ANSI C, so you can fine tune your
application code to match your design specification:

♦ fully optimized code can be debugged, without change,
using Cosmic’s ZAP MMDS08, ZAP SIM08 or ZAP
MON08 debuggers,

♦ cx6808 supports global optimizations which allow it to
optimize whole C functions as well as C statements,

♦ Peephole optimizer further optimizes cx6808’s output by
replacing inefficient code sequences with optimal code
sequences for the HC08/HCS08,

♦ C functions can be declared to not use a stack using the
@nostack keyword, or as a compile-time option; function
arguments and local data are then placed in private or
shared static memory in either direct page (.bsct) or the
.bss data section and stack usage is minimized. When local
data is placed in direct page memory, application
execution times and code sizes can be reduced by up to
10% compared to the default stack model,

♦ Function arguments are passed in registers when possible,
and char-sized data can be passed without widening to int,

♦ Commonly used static data can be selectively placed into
direct page memory (the first 256 bytes of memory) using
the @tiny keyword, or globally, using a compile-time

option. This reduces access times and byte counts by
using direct addressing and single byte pointers and
references,

♦ The HC08/HCS08 bit instructions
(bclr,bit,bset,brclr,brset) are used extensively for bit
operations,

♦ Arithmetic operations are performed in char precision if
the types are 8-bit,

♦ Strict single-precision (32-bit) floating point arithmetic
and math functions. Floating point numbers are
represented as in the IEEE 754 Floating Point Standard,

♦ Other optimizations include: branch shortening logic,
jump-to-jump elimination, constant folding, elimination of
unreachable code, removal of redundant loads/stores, and
switch statement optimizations.

Extensions to ANSI C
cx6808 includes several extensions to the ANSI C standard
which have been designed specifically to give you maximum
control of your application at the C level and to simplify the
job of writing C code for your embedded HC08/HCS08 design:
♦ The @far keyword can be attached to a C function

declaration to instruct the compiler to generate special
function call/return sequences to allow bank-switching of
C code. The HC08/HCS08 EBI-style bank-switching
scheme is supported by default, but all support routines are
provided in source form and can be customized to custom
hardware schemes,

♦ The @eeprom modifier can be attached to a C data
declaration to inform the compiler that the data object
resides in HC08/HCS08 EEPROM space; the compiler
will automatically generate the required code sequence
when writing to the EEPROM location,

♦ The _asm() statement can be used to insert assembly
instructions directly in your C code to avoid the overhead
of calling assembly language functions. _asm() statements
can be used within C function code and can be used in C
expressions,

♦ Arguments can be passed into _asm() assembly language
statements to allow access to C local variables from
assembly language code,

♦ Assembly language statements can be inserted inside or
outside of C functions using #pragma asm .. #pragma
endasm or the alias #asm .. #endasm,

♦ User-defined program sections are supported at the C and
assembler levels: #pragma section <name> declares a
new program section name for code or data which can be
located separately at link time,

♦ The @interrupt keyword can be attached to a C function
definition to declare the function as an interrupt service
routine. The compiler preserves volatile registers not
already saved by the processor,

Cosmic C Cross Compiler Product Description Supporting Freescale HC08/HCS08

Page 3/5
Trademarks are the property of their respective holders.

♦ @<address> syntax allows an absolute address to be
attached to a data or function definition; this is useful for
interrupt handlers written in C and for defining memory
mapped I/O,

♦ char- and int-sized bitfields can be defined, and bit
numbering from right-to-left or left-to-right can be
selected,

Additional Compiler Features

♦ Full C and assembly source-level debugging support.
There is no limit on the size of the debug section,

♦ Absolute and relocatable listing file output, with
interspersed C, assembly language and object code;
optionally, you can include compiler errors and compiler
optimization comments,

♦ Extensive and useful compile-time error diagnostics,

♦ Fast compile and assemble time,

♦ Full user control over include file path(s), and placement
of output object, listing and error file(s),

♦ All objects are relocatable and host independent. (i.e. files
can be compiled on a workstation and debugged on a PC),

♦ Function code and switch tables are generated into the
code (.text) section. Constant data such as string constants
and const data are generated into a separate .const program
section,

♦ Initialized static data can be located separately from
uninitialized data or data initialized to zero,

♦ All function code is (by default) reentrant, never self-
modifying, including structure assignment and function
calls, so it can be shared and placed in ROM,

♦ Code is generated as a symbolic assembly language file so
you can examine compiler output,

♦ cx6808 creates all its tables dynamically on the heap,
allowing very large source files to be compiled,.

♦ Common string manipulation routines are implemented in
assembly language for fast execution.

HC08/HCS08 Assembler
The Cosmic HC08/HCS08 assembler, ca6808, conforms to
the standard Freescale syntax as described in the document
Assembly Language Input Standard; ca6808 supports macros,
conditional assembly, includes, branch optimizations,
expression evaluation, relocatable or absolute output,
relocatable arithmetic, listing files and cross references.
Assembler accepts C syntax for #includes and #defines so
include files can be shared between C and Assembly modules.
The assembler also creates full debug information, so that
debuggers can perform full source-level debug at the assembly
language level.

Linker
The Cosmic linker, clnk, combines relocatable object files
created by the assembler, selectively loading from libraries of
object files made with the librarian, clib, to create an
executable format file. clnk features:

♦ Flexible and extensive user-control over the linking
process and selective placement of user application code
and data program sections,

♦ clnk analyzes stack usage for local variables and function
arguments and the function calling hierarchy to provide a
static analysis of stack usage which helps you understand
how much stack space your application needs,

♦ Multi-segment image construction, with user control over
the address for each code and data section. Specified
addresses can cover the full logical address space of the
target processor with up to 255 separate segments. This
feature is useful for creating an image which resides in a
target memory configuration consisting of scattered areas
of ROM and RAM,

♦ Generation of memory map information to assist
debugging,

♦ All symbols and relocation items can be made absolute to
prelocate code that will be linked in elsewhere,

♦ Symbols can be defined, or aliased, from the Linker
command File.

Librarian
The Cosmic librarian, clib, is a development aid which allows
you to collect related files into one named library file, for more
convenient storage. clib provides the functions necessary to
build and maintain object module libraries. The most obvious
use for clib is to collect related object files into separate named
library files, for scanning by the linker. The linker loads from
a library only those modules needed to satisfy outstanding
references.

Object Module Inspector
The Cosmic object module inspector, cobj, allows you to
examine library and relocatable object files for symbol table
and file information. This information is an essential aid to
program debugging.

♦ Symbol table cross referencing,
♦ Section sizes of the individual program sections can be

printed for object and library files,
♦ Program segment map: lists all program segments, their

sizes, absolute addresses and offsets.

Cosmic C Cross Compiler Product Description Supporting Freescale HC08/HCS08

Page 4/5
Trademarks are the property of their respective holders.

Absolute Hex File Generator
The Cosmic hex file generator, chex, translates executable
images produced by the linker to one of several hexadecimal
interchange formats for use with most common In-Circuit
Emulators and PROM programmers:

♦ Standard Intel hex format,
♦ Freescale S-record and S2 record format,
♦ Tektronix standard and extended hex formats,
♦ Rebiasing of text and data section load addresses.

Absolute C and Assembly Listings
Paginated listings can be produced to assist program
understanding. Listings can include original C source code
with interspersed assembly code and absolute object code.
Optionally, you can include compiler errors and optimization
comments.

Debugging Utilities
The cross compiler package includes utility programs which
provide listings for all debug and map file information. The clst
utility creates listings showing the C source files that were
compiled to obtain the relocatable or executable files. The cprd
utility extracts and prints information on the name, type,
storage class and address of program static data, function
arguments and function automatic data.

ZAP Debuggers
cx6808 is designed to work seamlessly with Cosmic’s line of C
and assembly debuggers. Cosmic’s ZAP debuggers for
Freescale’s HC08 and HCS08 are available for several
execution platforms including: ZAP Simulation, MON08,
HCS08 BDM, inDART and ZAP MMDS and MMEVS08.

Third Party Support
cx6808 supports ANSI /ISO conventions, IEEE-695 and
ELF/DWARF debug formats to ensure compatibility with most
3rd party hardware and software vendors including:
RTOS and kernels - CMX, MicroC/OS-II and OSEK
Emulators - Hitex, Freescale and Lauterbach
Programming Utilities – CodeWright, PC-Lint, PVCS,
Rhapsody and VectorCast Unit test software.
Compiler integration files for Borland’s CodeWright®
“Programmer’s Editing System”, GNU make utility and
examples are available from Cosmic.

Packaging
All compiler packages are provided on standard CD-ROM with
on-line user documentation in Adobe PDF format.
Cosmic’s C Compiler package include: an optimizing C cross
compiler, macro assembler, linker, librarian, hex file generator,
debug format utilities and run-time library objects and source.
The compiler package for Windows includes Cosmic’s own
easy-to-use integrated development environment (IDEA).
Compiler packages are also available for SUN Solaris, HP-UX
and PC Linux.

Support Services
All Cosmic Software products come with the first year of
support included in the price. You will receive courteous and
prompt service from our technical support staff and you retain
control of the severity of the problem i.e. if it’s a problem
that is critical to your project we guarantee you a response time
of one to three business days depending on the severity of the
problem. Service is provided during normal business hours
E.S.T. via email, fax or telephone and is unlimited while you
have a valid annual support agreement. New releases of the
software are provided free of charge to support customers.

Ordering Information
cx6808 package product codes are as follows:

Host System Product Code

 PC MS Windows CWSH08
 Windows 95/98/ME/NT4/2000/XP
 PC Linux CLXH08
 SUN SPARC(SunOS/Solaris) CSSH08
 HP9000(HPUX) CHPH08

Contact our sales department for license options, fees and
discounts.

Other Cosmic Software Products
Cosmic Software products focus on 8, 16 and 32-bit
microcontrollers. C-Compiler/debugger support is available for
a wide range of target processors. For more information on
Cosmic’s ZAP C and assembler source-level debugger, ask for
the ZAP Product Description and demo disk.

Tool Customization Services
Some customers have special tool needs and through Cosmic’s
tool customization service, you have the ability to control the
core tool technology to help solve your technical and/or
business problems. Cosmic works closely with you to
understand define and implement technical solutions according
to your needs and schedule.

Cosmic C Cross Compiler Product Description Supporting Freescale HC08/HCS08

Page 5/5
Trademarks are the property of their respective holders.

For more Information please contact one of our

corporate offices or visit our website:

 Cosmic Software, Inc.
 400 West Cummings Park, Suite 6000
 Woburn, MA 01801-6512 USA
 Phone: +1 781 932 2556 Fax: +1 781 932 2557
 Email: sales@cosmic-us.com
 web: www.cosmic-software.com

 Cosmic Software France
 33 Rue Le Corbusier, Europarc Creteil
 94035 Creteil Cedex France
 Phone: +33 1 43 99 53 90 Fax: +33 1 43 99 14 83
 Email: mailto:sales@cosmic.fr
 web: www.cosmic.fr

Cosmic Software UK
Oakwood House

 Wield Road, Medstead
 Alton, Hampshire
 GU34 5NJ, U.K.
 Phone: +44 1420 563498 Fax: +44 1420 561946
 Email: sales@cosmic.co.uk

 Cosmic Software GmbH
 Rohrackerstr 68 D-70329 Stuttgart Germany
 Tel.+49 711 420 4062 Fax +49 711 420 4068
 Email: sales@cosmic-software.de
 web: www.cosmic-software.de

