
Application Note: 251       
Create Software Packs for Software Components 

 

Abstract 

This application note explains how to create a Software Pack for distributing software components to a target audience. It 

explains the basic steps for generating a Software Pack and demonstrates features such as dependency checking, file 

selection, variant creation and versioning of software components. How to add code templates and example projects to a 

Software Pack is also explained in detail. 

Contents 

Abstract ............................................................................................................................................................................................................ 1 

Revision History ............................................................................................................................................................................................. 1 

What is a Software Pack? ............................................................................................................................................................................. 1 

What is a Software Component? ............................................................................................................................................................... 2 

Application Note Collaterals ...................................................................................................................................................................... 2 

Example 1: Create a Simple Software Pack ............................................................................................................................................. 2 

Generate and Install the Software Pack ................................................................................................................................................... 4 

Example 2: Create Conditions for Dependency Checking and File Selection ............................................................................... 5 

Example 3: Create Variants ......................................................................................................................................................................... 6 

Example 4: Create a Bundle ........................................................................................................................................................................ 7 

Example 5: Versions, Project Examples, and User Code Templates ................................................................................................ 8 

Conclusion ..................................................................................................................................................................................................... 10 

 

Revision History 

 November 2013: Initial Version 

 

What is a Software Pack? 

Software Packs provide support for microcontroller devices, contain software components such as drivers and middleware, 

and may include project examples and code templates. There are four major categories of Software Packs: 

 Device Pack: generated by a silicon supplier or tool vendor; provides support to create software applications for a 

specific target microcontroller. 

 CMSIS Pack: provided by ARM® and includes support for CMSIS Core, DSP, and RTOS. 

 Middleware Pack: created by a silicon supplier, tool vendor or a third party; reduces development time by giving 

access to popular software components (such as software stacks, special hardware libraries, etc.). 

 Board Support Pack: made available by the manufacturer/designer of a development board; adds drivers for 

external peripherals that are mounted on the board. 

 In-house components: developed by the tool user for internal or external distribution. 

A Software Pack is a ZIP archive containing all required libraries and files and a package description file (PDSC) with all the 

information about the Software Pack. The structure of a Software Pack is defined in CMSIS. Refer to CMSIS-Pack 

(www.keil.com/CMSIS/Pack) for more information. 

The application note “Product Lifecycle Management with Software Packs” gives you more insight into the benefits 

of Software Packs (www.keil.com/appnotes/docs/apnt_252.asp). 

 

  

http://www.keil.com/CMSIS/Pack
http://www.keil.com/appnotes/docs/apnt_252.asp


Create Software Packs for Software Components 

 

  Copyright © 2013 ARM Ltd. All rights reserved  

Application Note: 251        www.keil.com 2 

What is a Software Component? 

Software components may contain 

 Source code, libraries, header/configuration files and documentation. 

 Complete example projects that show the usage of the software component and which can be downloaded 

and executed on evaluation hardware. 

 Code templates that can be used as a starting point for using software components. 
 

Application Note Collaterals 

This application note provides a ZIP file (apnt_251.zip) containing five Software Packs in ZIP format: 

\MyVendor.MySimplePack.1.0.0.zip: Used in Example 1 

\MyVendor.MyConditionPack.1.0.0.zip: Used in Example 2 

\MyVendor.MyVariantsPack.1.0.0.zip: Used in Example 3 

\MyVendor.MyBundlePack.1.0.0.zip: Used in Example 4 

\MyVendor.MySimplePack.1.1.0.zip: Used in Example 5 

The source files in the Packs are intentionally empty and fulfill demonstation purposes only. All Packs are fully functional in 

the way that they can be installed using Pack Installer. Refer to the µVision User’s Guide - Pack Installer for more 

details.The latest version of this PDF and the ZIP file can be found here: www.keil.com/appnotes/docs/apnt_251.asp. 

 

Example 1: Create a Simple Software Pack 

In this example several source code files that you have written should be distributed within an engineering group. You want 

to distribute them in a controlled manner to ensure overall consistency. This example assumes the vendor name 

”MyVendor”, the package name ”MySimplePack”, and version 1.0.0. 

The XML based package description file (PDSC) contains all required information about a Software Pack. In this example it 

is called MyVendor.MySimplePack.pdsc. It is starts with information about the XML version and the encoding: 

<?xml version="1.0" encoding="utf-8"?> 

<package schemaVersion="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" 

xs:noNamespaceSchemaLocation="PACK.xsd"> 

  <name>MySimplePack</name> 

  <description>Internal Software Pack</description> 

  <vendor>MyVendor</vendor> 

  <url></url> 
 

The XML schema is defined in the PACK.xsd file that is part of the MDK installation (C:\Keil\UV4). It opens with any 

text editor and can be used for the validation of the PDSC file that you are about to generate. 

The <name> and the <vendor> tags define the basics of the Pack and are also used for the file name of the PACK file. 

The description should contain some additional information on the Pack itself and/or its contents.  

The <url> tag may contain an URL with a download link of the Pack. This can be any type of valid URL, for example 

http://localhost (for your own machine, if a web server is installed), http://192.168.0.0 for a machine in your local intranet, 

or a machine that is available from the Internet, such as http://www.example.com. This makes it easy to supply users with 

updates as the Pack Installer checks the given URL for new versions of the Software Pack. In the web server’s directory that 

is specified by the URL, two files need to reside: the PDSC file (without the version number in its name) and the PACK file 

with the version number. 

You need to specify a <release> section with a <release version> tag as this is used by the Pack Installer to 

identify the version of a Pack. This enables you to work with different versions. 

  <releases> 

    <release version="1.0.0"> 

      Oct/15/2013, Initial version 

    </release> 

  </releases> 

 

http://www.keil.com/support/man/docs/uv4/uv4_ca_packinst_imp.htm
http://www.keil.com/appnotes/docs/apnt_251.asp
http://localhost/
http://192.168.0.0/
http://www.example.com/


Create Software Packs for Software Components 

 

  Copyright © 2013 ARM Ltd. All rights reserved  

Application Note: 251        www.keil.com 3 

After that, you may define keywords that are used for search indexing: 

  <keywords> 

    <keyword>MyVendor</keyword> 

    <keyword>My Software Component</keyword> 

  </keywords> 

 

The <taxonomy> section describes your Cclass (see below) in more detail: 

  <taxonomy> 

    <description Cclass="MySimpleClass">Software components of MyVendor</description> 

  </taxonomy> 

 

Finally, you define your software component: 

  <components> 

      <component Cclass="MySimpleClass" Cgroup="MyGroup" Csub="MySubGroup" Cversion="1.0.0"> 

        <description>MySWComp</description> 

        <files> 

          <file category="doc" name="Docs\MySWComp.htm"/> 

          <file category="header" name="MySWComp\header_mylib.h"/> 

          <file category="header" name="MySWComp\config_mylib.h" attr="config"/> 

          <file category="source" name="MySWComp\mylib_one.c"/> 

          <file category="source" name="MySWComp\mylib_two.c"/> 

        </files> 

      </component> 

  </components> 

 

A software component needs the attributes component class (Cclass), component group (Cgroup), and a revision 

number called Cversion. Optionally a sub-component attribute (Csub) may provide an additional level of hierarchy. You 

may install multiple Software Components. Each component is therefore identified by its attributes Cbundle, 

Cvendor, Cclass, Cgroup, Csub, Cversion and Cvariant. 

The information above is for example shown in the Manage Run-Time Environment window: 

 

 

  



Create Software Packs for Software Components 

 

  Copyright © 2013 ARM Ltd. All rights reserved  

Application Note: 251        www.keil.com 4 

Selecting a component, source files of the section <files> are added to the project as described in the following table. 

The attributes category and attr specify how the file is added to the project.  

category attr Project Use 

doc  File stays in Pack folder; is used for documentation links, i.e. in the Manage Run-Time 

Environment window. 

header 

 File stays in Pack folder; path is added to the Compiler #include search path which allows 

usage during project build 

config Copied to the project for configuration purposes 

template Copied to the project on demand using the Add New Items to Group functionality 

image template Can be added to the project manually; will be then translated using FCARM.EXE. 

library  File stays in Pack folder and is linked to project 

object  File stays in Pack folder and is linked to project 

source 

 File stays in Pack folder and is compiled and linked to project 

config Copied to the project for configuration purposes 

template Copied to the project on demand using the Add New Items to Group functionality 

 

After selecting the software component and clicking OK, your project should look like this: 

 
 

Generate and Install the Software Pack 

There are a few steps that need to be taken to generate a Software Pack: 

1. Save the PDSC file in the vendor.name.pdsc format (MyVendor.MySimplePack.pdsc). 

2. Create a ZIP file in the vendor.name.version.zip format (MyVendor.MySimplePack.1.0.0.zip), 

using the folder structure as demonstrated in the application note’s ZIP file. 

3. Rename the ZIP file to MyVendor.MySimplePack.1.0.0.pack. 

4. Double-click the file to install it. 

After installation, the Software Pack appears in the Pack tab of the Pack Installer: 

 

 

The Software Pack is automatically copied to two locations. In the directory C:\Keil\ARM\Pack\.Downloads you 

will find the PACK and the PDSC file. In the directory C:\Keil\ARM\Pack\vendor\name\version you will find 

the extracted files of the Software Pack.  



Create Software Packs for Software Components 

 

  Copyright © 2013 ARM Ltd. All rights reserved  

Application Note: 251        www.keil.com 5 

Example 2: Create Conditions for Dependency Checking and File Selection 

A condition describes dependencies on device, processor, and tool attributes as well as the presence of other components. 

Each condition has an id that is unique within the scope of the PDSC file. An id can be referenced in the condition 

attribute of components, APIs, examples, and files. 

In this example, a CMSIS-RTOS compliant operating system needs to be present. Based on the Cortex-M class core, three 

different versions of a library are distributed: 

 mylib_cm0.lib for use with a Cortex-M0 and Cortex-M0+ processor 

 mylib_cm3.lib for use with a Cortex-M3 processor 

 mylib_cm4.lib for use with a Cortex-M4 processor 

Conditions are used to accomplish this: 

  <conditions>  

    <condition id="CM0"> 

      <description>Cortex-M0 based device</description> 

      <accept Dcore="Cortex-M0"/> 

      <accept Dcore="Cortex-M0+"/> 

    </condition> 

    <condition id="CM3"> 

      <description>Cortex-M3 based device</description> 

      <accept Dcore="Cortex-M3"/> 

    </condition> 

    <condition id="CM4"> 

      <description>Cortex-M4 based device</description> 

      <accept Dcore="Cortex-M4"/> 

    </condition> 

    <condition id="CMSIS Core with RTOS"> 

      <description>CMSIS Core with RTOS for Cortex-M processor</description> 

      <accept condition="CM0"/> 

      <accept condition="CM3"/> 

      <accept condition="CM4"/> 

      <require Cclass="CMSIS" Cgroup="CORE"/> 

      <require Cclass="CMSIS" Cgroup="RTOS"/> 

    </condition> 

  </conditions> 
 

An <accept> tag gives an option to a condition. In this example, the condition “CMSIS Core with RTOS” is fulfilled, if a 

Cortex-M0, a Cortex-M0+, a Cortex-M3 or a Cortex-M4 is present. The <require> tag describes a condition that is 

required to be true for the condition to be fulfilled. Here, the software components CMSIS-Core and CMSIS-RTOS need to 

be present. For more information on the allowed conditions, refer to CMSIS-Pack - /package/conditions level. 

In the example, the Cclass uses the condition “CMSIS Core with RTOS”. The library files are added to the project 

depending on the Cortex-M processor used in the selected microcontroller device: 

      <component Cclass="MyConditionClass" Cgroup="MyGroup" Csub="MySubGroup" 

 Cversion="1.0.0" condition="CMSIS Core with RTOS"> 

        <description>MySWComp</description> 

        <files> 

          <file category="doc" name="Docs\MySWComp.htm"/> 

          <file category="header" name="MySWComp\header_mylib.h"/> 

          <file category="header" name="MySWComp\config_mylib.h" attr="config"/> 

          <file category="source" name="MySWComp\mylib_one.c"/> 

          <file category="source" name="MySWComp\mylib_two.c"/> 

          <file category="library" condition="CM0" name="MySWComp\lib\mylib_cm0.lib"/> 

          <file category="library" condition="CM3" name="MySWComp\lib\mylib_cm3.lib"/> 

          <file category="library" condition="CM4" name="MySWComp\lib\mylib_cm4.lib"/> 

        </files> 

      </component> 
 

  

http://www.keil.com/pack/doc/CMSIS/Pack/html/pdsc_conditions_pg.html


Create Software Packs for Software Components 

 

  Copyright © 2013 ARM Ltd. All rights reserved  

Application Note: 251        www.keil.com 6 

The Manage Run-Time Environment window shows the new dependencies and asks the user to resolve them: 

 

 

The Validation Output clearly identifies the component dependencies. Clicking on “ARM::CMSIS::CORE” takes you 

directly to the right entry in the Software Component list. If you select the CORE, you will see that this component has 

another dependency to “Keil::Device::Startup”. All dependencies should be resolved before continuing. 

The Resolve button will try to check all required boxes for you. Sometimes, an automatic resolution is not possible. This is 

usually the case if you have a choice between different components (based on an <accept> condition). Such dependencies 

need to be resolved manually. 

 

Example 3: Create Variants 

This example creates a software component that consists of two (mutually exclusive) variants “Debug” and “Release”. The 

attribute Cvariant allows defining different variant of the same Cclass and Cgroup component: 

      <component Cclass="MyVariantsClass" Cgroup="MyGroup" Cvariant="Debug" Cversion="1.0.0" 

 condition="CMSIS Core"> 

        <description>Debug version of the software component</description> 

        <files> 

          <file category="doc" name="Docs\Debug.htm"/> 

          <file category="header" name="MySWComp\debug.h"/> 

          <file category="header" name="MySWComp\config_debug.h" attr="config"/> 

          <file category="source" name="MySWComp\debug.c"/> 

          <file category="source" name="MySWComp\all_variants.c"/> 

        </files> 

      </component> 

      <component Cclass="MyVariantsClass" Cgroup="MyGroup" Cvariant="Release" 

 Cversion="1.0.0" condition="CMSIS Core"> 

        <description>Release version of the software component</description> 

        <files> 

          <file category="doc" name="Docs\Release.htm"/> 

          <file category="header" name="MySWComp\release.h"/> 

          <file category="header" name="MySWComp\config_release.h" attr="config"/> 

          <file category="source" name="MySWComp\release.c"/> 

          <file category="source" name="MySWComp\all_variants.c"/> 

        </files> 

      </component> 

  </components> 
 

  



Create Software Packs for Software Components 

 

  Copyright © 2013 ARM Ltd. All rights reserved  

Application Note: 251        www.keil.com 7 

The variants are selected using a drop-down menu in the Manage Run-Time Environment window: 

 

 

Example 4: Create a Bundle 

A bundle is a variant on the Cclass level. In this example, a bundle is created to add support for a custom 

microcontroller board, based on the STM32F2xx family. A condition checks for the right microcontroller device. The 

Cclass “Board Support” is used for the Cbundle “MyBoardSupport”. The board support package consists of three 

software components: Board Setup, LED, and ADC. LED and ADC require Board Setup to work properly: 

  <conditions> 

    <condition id="STM32F2xx"> 

      <description>STM32F2xx device required</description> 

      <require Dfamily="STM32F2 Series" Dvendor="STMicroelectronics:13"/> 

    </condition> 

    <condition id="STM32F2xx Board Setup"> 

      <description>Board Setup Code required</description> 

      <require condition="STM32F2xx"/> 

      <require Cclass="Board Support" Cgroup="Board Setup"/> 

      </condition> 

  </conditions> 

 

  <components> 

    <bundle Cbundle="MyBoardSupport" Cclass="Board Support" Cversion="1.0.0"> 

      <description>MyVendor custom board support package</description> 

      <doc>Docs\MyBSP.htm</doc> 

      <component Cgroup="Board Setup" condition="STM32F2xx"> 

        <description>Custom board setup code</description> 

        <files> 

          <file category="doc" name="Docs\Setup.htm"/> 

          <file category="header" name="MySWComp\setup.h"/> 

          <file category="source" name="MySWComp\setup.c"/> 

        </files> 

      </component> 

      <component Cgroup="I/O" Csub="LED" condition="STM32F2xx Board Setup"> 

        <description>LED code for custom board</description> 

        <files> 

          <file category="doc" name="Docs\LED.htm"/> 

          <file category="header" name="MySWComp\led.h"/> 

          <file category="header" name="MySWComp\config_led.h" attr="config"/> 

          <file category="source" name="MySWComp\led.c"/> 

        </files> 



Create Software Packs for Software Components 

 

  Copyright © 2013 ARM Ltd. All rights reserved  

Application Note: 251        www.keil.com 8 

      </component> 

      <component Cgroup="I/O" Csub="ADC" condition="STM32F2xx Board Setup"> 

        <description>ADC code for custom board</description> 

        <files> 

          <file category="doc" name="Docs\ADC.htm"/> 

          <file category="header" name="MySWComp\adc.h"/> 

          <file category="header" name="MySWComp\config_adc.h" attr="config"/> 

          <file category="source" name="MySWComp\adc.c"/> 

        </files> 

      </component> 

    </bundle> 

  </components> 
 

Example 5: Versions, Project Examples, and User Code Templates 

Add Projects Examples to a Software Pack 

An example project is added using the <examples> section in the PDSC file: 

  <examples> 

    <example name="MyVendor Demo" doc="Abstract.txt" folder="MySWComp\demo"> 

      <description>Software Component Demo, showing its capabilities</description> 

      <board name="MCBSTM32C" vendor="Keil" Dvendor="STMicroelectronics:13" 

 Dname="STM32F107VC"/> 

      <project> 

        <environment name="uv" load="MySWComp.uvprojx"/> 

      </project> 

      <attributes> 

        <category>MyCategory</category> 

      </attributes> 

    </example> 

  </examples> 

 

You need to specify the <name> attribute of the example, a <doc> file for documentation, and the project <folder> 

within the Software Pack. The <vendor> and <name> tag of a Software Pack and the name, Dvendor and Dname 

attributes of the <board> tag are required and used to generate the unique ID for the example. The <attributes> tag 

may contain information about the software components that are used in the example. A <category> tag can be used to 

filter the list of example projects. 

Pack Installer’s Examples tab shows the example. A tooltip is used to show more details about the example project, such 

as required development board, device, and the version of the Software Pack: 

 

 

  



Create Software Packs for Software Components 

 

  Copyright © 2013 ARM Ltd. All rights reserved  

Application Note: 251        www.keil.com 9 

Add a User Code Template to a Software Pack 

User code templates help to better understand basic concepts of a software component and to give the user a quick start 

for implementing his application. They can be added to a Pack using the file category “source” and the attr “template”: 

      <component Cclass="MySimpleClass" Cgroup="MyGroup" Csub="MySubGroup" Cversion="1.1.0"> 

        <description>MySWComp</description> 

        <files> 

          <file category="doc" name="Docs\MySWComp.htm"/> 

          <file category="header" name="MySWComp\header_mylib.h"/> 

          <file category="header" name="MySWComp\config_mylib.h" attr="config"/> 

          <file category="source" name="MySWComp\mylib_one.c"/> 

          <file category="source" name="MySWComp\mylib_two.c"/> 

          <file category="source" name="MySWComp\mylib_template1.c" attr="template"      

     select="Simple Template"/> 

          <file category="source" name="MySWComp\mylib_template2.c" attr="template"   

     select="Intermediate Template"/> 

          <file category="source" name="MySWComp\mylib_template3.c" attr="template"      

     select="Complex Template"/> 

        </files> 

      </component> 
 

You can specify a select attribute that is used to identify the template in the Add New Item to Group window: 

 

 

Versioning of a Software Pack 

This example’s PDSC file is based on the first example. To reflect the changes, the version number is increased. Versioning 

helps to distinguish between different versions of the same Software Pack. Pack Installer shows the version in the Pack 

tab: 

 



Create Software Packs for Software Components 

 

  Copyright © 2013 ARM Ltd. All rights reserved  

Application Note: 251        www.keil.com 10 

The Version column in the Manage Run-Time Environment window also shows the new number: 

 

 

At some point, the user might want to stick to one particular version of a software component. This can be accomplished 

using the Options for Component Class dialog. Right-click on any software component in the Project window and a 

similar dialog appears: 

 

 

Unchecking the Use latest installed version checkbox lets you select which version of the software component to use in 

the project. If the software component has multiple variants available, the Variant drop-down box lets you select one of 

them for further use in the project. 

 

Conclusion 

This application note shows the benefits of using Software Packs when it is applied to Software Components.  You can 

easily supply source and object code. It shows that various different library version, for example for different processor 

cores can be selected from project context (in this case the microcontroller that is chosen). 

Software Packs allow also to bundle multiple components, supply different variants of a Software Component and provide 

related documentation, example projects, and user code templates. 


