COSMIC SOFTWARE
Application Note N °65 — Cosmic vs MW ST7 compiler

Understanding the differences between Cosmic and

Metrowerks ST7 C compilers

(')
OSMIC

Software
Cosmic vs Metrowerks
\ ST7 C compiler /

This technical article explains the main differences between Cosmic and Metrowerks ST7 C

Compiler and is particularly intended for people porting an application from MW to Cosmic,
as well as for people benchmarking the two compilers. This articles is based on the latest

compilers available as of August 2004.

Application Note N °65 -1- 23/08/2004

COSMIC SOFTWARE
Application Note N °65 — Cosmic vs MW ST7 compiler

Memory Models

MEMORY MODELS
Mw COSMIC
No STACK model STACK models:
Locals Globals
SHORT (+mods) X S
LARGE (+modsl) X L
MEMORY models: MEMORY models:
Locals Globals Locals Globals
SMALL S S COMPACT (+modc) S S
SHORT (+modm) S S
LARGE S kK SMALL (+modms) S L
MEDIUM (+modmm) L S
LARGE Extended L L LARGE (+modml) L L

The main difference between the two compilers is in how memory models are managed (for
an explanation of what a memory model is and how it affects your application see AN 64).
Note first that MW does not offer “stack” memory models, that is, it is not possible to write
reentrant or recursive applications with the MW compiler. Coming to “standard” (for the ST7)

memory models, it is important to note that the same name does not mean the same thing

for the two compilers: from the table above you can see that the SMALL model for MW is

comparable to the COMPACT model for Cosmic (because they both put Locals and Globals
in the short addressing range + 8 bit pointers), and that the LARGE model for Cosmic is
comparable with the LARGE EXTENDED from MW.

The first implication of this is that if you make a quick bechmark by just selecting the
memory model with the same name for the two compilers, MW will logek consistently better,
but you are comparing apples with oranges: for a fair comparison, you should choose memory
models as explained above, or, even better, choose for each compiler the smaller model that
will allow to you to compile, /ink and run your application correctly (more on benchmarking
in the last page of this document). On the same line, note that if you just take the default
memory model for each compiler, the comparison won’t be any useful, as MW defaults to the
smaller model, whereas Cosmic default to the more general (which is also the biggest).

If you are porting an application, you should at first try to use the “comparable” memory

model.

Application Note N °65 -2- 23/08/2004

COSMIC SOFTWARE

Application Note N °65 — Cosmic vs MW ST7 compiler

Function call and parameter passing (v4.4h and lower)

FUNCTION CALL

result = func(char p0, char p1, char p2, char p3);

MW
p2 passed in register X

COsMIC

p0 passed in register A

char result in register A 28 ezl lu gl

char result in register A

result = func(int p0, int p1, int p2, int p3);

[/ WS

COSMIC MW
p0 passed in register X:A pO0 passed in register X:A
int result in register X:A int result in register X:A

This information only apply for Cosmic compiler v4.4h and lower: from v4.5a onward please

see next page.

The Cosmic and Metrowerks ST7 C compilers use different conventions for parameter
passing: this is usually transparent to the user, but if you call assembler routines in your
application (which, by the way, is a porting nightmare from many points of view), you will
need to modify them to keep this into account. Understanding how parameters are passed can
also be useful when fine tuning the application, as you might want to arrange your parameters
in such a way to use registers as much as possible: for example, using a long as the first
parameter with Cosmic will mean no parameters are in registers (because long is 4 bytes ->
too big for registers), whereas doing the same with the last parameter for MW will result in
the same problem. Bottom line is: if you care to optimize the order of your parameters, the

optimal order is reversed for Cosmic and MW.

Application Note N °65 -3- 23/08/2004

COSMIC SOFTWARE

Application Note N °65 — Cosmic vs MW ST7 compiler

Function call and parameter passing (v4.5a and higher)

FUNCTION CALL

result = func(char p0, char p1, char p2, char p3);

cosMIC L
p0 passed in register X 2 e T e

p1 passed in register A 8 ezl gl

char result in register A SHE (EEULE [CEEIEET A

result = func(int p0, int p1, int p2, int p3);

[W7

COSsMIC MW
p0 passed in register X:A p0 passed in register X:A
int result in register X:A int result in register X:A

This information only apply for Cosmic compiler v4.5a and higher: for v4.4h and earlier

please see the previous page.

The Cosmic and Metrowerks ST7 C compilers use different conventions for parameter
passing: this is usually transparent to the user, but if you call assembler routines in your
application (which, by the way, is a porting nightmare from many points of view), you will
need to modify them to keep this into account. Understanding how parameters are passed can
also be useful when fine tuning the application, as you might want to arrange your parameters
in such a way to use registers as much as possible: for example, using a long as the first
parameter with Cosmic will mean no parameters are in registers (because long is 4 bytes ->
too big for registers), whereas doing the same with the last parameter for MW will result in
the same problem. Bottom line is: if you care to optimize the order of your parameters, the

optimal order is reversed for Cosmic and MW.

Application Note N °65 -4- 23/08/2004

COSMIC SOFTWARE

Application Note N °65 — Cosmic vs MW ST7 compiler

Mixing Memory Models

MIXING MODELS

* One default model for the whole application
» One matching library type for the whole application
* Possible mixing in the same application of
- mods with modsl
- modm with modms
- modmm with modml
» Use madifiers to adapt behaviour:
- @stack forces arguments and locals on the physical stack
- @nostack forces arguments and locals in simulated stack

* Interrupt functions defaulted to stack model for nested interrupts

The Cosmic compiler allows for some mixing of different memory models on the same
application, as explained in the slide above. This can be useful, for example, to decide which
variables go to page zero and which go to the long range on a file by file basis, without having

to touch the code to add @tiny and @near modifiers.

Application Note N °65 -5- 23/08/2004

COSMIC SOFTWARE
Application Note N °65 — Cosmic vs MW ST7 compiler

Code allocation

CODE ALLOCATION
MW COSMIC

#pragma CODE_SEG MY_ROM #pragma section (MY_ROM)
void func1(void) void func1(void) MY ROM

{ {

} }
#pragma CODE_SEG DEFAULT #pragma section ()
void func2(void) void func2(void) text

{ {

} }

If your application uses named code segments (other than the default segment), the syntax to

specify the segment name is slightly different for the two compilers, as shown above.

Application Note N °65 -6- 23/08/2004

COSMIC SOFTWARE
Application Note N °65 — Cosmic vs MW ST7 compiler

Constant allocation

CONSTANT ALLOCATION

MW COosmMmIC

#pragma CONST_SEG MY_CONST #pragma section const {MY_CONST}

const char table[] ={ ... }; const char table[] ={ ... }; MY CONST

#pragma section const {}

const int tsize = 10; .const

+nocst forces constants to .text

On the same line of what happens for code, if your application uses named segments for
constants (other than the default const segment), the syntax to specify the segment name is
slightly different for the two compilers, as shown above. Note that the Cosmic compiler

includes an option to store constants together with the code rather than in a separate segment.

Application Note N °65 -7- 23/08/2004

Application Note N °65 — Cosmic vs MW ST7 compiler

COSMIC SOFTWARE

DATA allocation

char var;

DATA ALLOCATION

MW

Variables in zero page:

#pragma DATA_SEG SHORT MY_RAMO

char pageOvar;

Other variables:

#pragma DATA_SEG MY_RAM

COsMIC

Variables in zero page:

#pragma section @tiny {(MY_RAMO0}
char pageOvar = 1; -MY_RAMO
#pragma section @tiny [MY_BSS0]

char pageOuvar; .MY_BSS0

Other variables:

#pragma section @near {MY_RAM}

charvar = 1; .MY_RAM
#pragma section @near [MY_BSS]
char uvar; .MY_BSS

As with code and constants, declaring DATA segments requires a different syntax for the two

compilers.

Note that, with the MW compiler, the only way to assign a variable to an addressing space

(for example, short/long), is to use the syntax above whereas, with the Cosmic compiler, you

can either use the syntax above (if you are porting and you want to minimize your work), or,

more simply, you can use the @tiny (short) and @near (long) modifiers in the variable

declaration (see next page for an example).

Application Note N °65

23/08/2004

COSMIC SOFTWARE
Application Note N °65 — Cosmic vs MW ST7 compiler

DATA allocation

DATA ALLOCATION
COSMIC default section names

Initialized: .bsct

Page zero @tiny char pageOvar;

/ T Non initialized: .ubsct

Variable — eeprom ———— .+ eeprom @eeprom char eevar;

Initialized: .data

e

Long range @near char var;

Non initialized: .bss

+nobss forces all data in initialized mode

This slide shows how the Cosmic compiler allocates data; using the proper modifier (@xxx,
right colum), will force the data in the desired addressing range (more specifically, in the
default segment for that addressing range), without using any pragma.

Note that the Cosmic compiler (and libraries) fully support EEPROM variables, whereas
EEPROM must be managed manually with the MW compiler.

Application Note N °65 -9- 23/08/2004

COSMIC SOFTWARE

Application Note N °65 — Cosmic vs MW ST7 compiler

Pointer Usage

Mw COSMIC
pointers to zero page: Pointers to zero page:
char * near pageOptr; @tiny char *page0Optr;
\ DANGER @tiny char * @tiny pageOptr0;
- wording @tiny char * @near pageOptr;
. location
Pointers to all memory: \ointers to all memory:
char * far ptr; @near char *ptr;
@near char * @near ptr0;
@near char * @near ptr;

Qualified pointers (that is, pointers that do not default to the standard of the memory model
being used) are tricky because they are managed in a completely different way in the two
compilers. You first need to consider that the MW compiler uses the keywords “near” and
“far” for the short (8 bit) and long (16 bit) addressing range respectively, whereas the Cosmic
compiler uses the keywords @tiny and @near for the same. As you see, the keyword “near”
means a different thing for the two compilers.

Besides this, the Cosmic compiler allows to specify the storage class for both the pointed
object (before the *) and the pointer itself (after the *), whereas the MW compiler only allows
to specify the pointed object (the storage class for the pointer itself can be specified via

pragmas). Note that the position after the * symbol denoted the storage class for the pointed

object in MW and the storage class for the pointer itself in Cosmic!

Application Note N °65 -10 - 23/08/2004

COSMIC SOFTWARE
Application Note N °65 — Cosmic vs MW ST7 compiler

Interrupt functions

MW

#pragma TRAP_PROC
void int_func(void)

{

void int_func(void)

{

INTERRUPT FUNCTIONS

COsMIC

void @interrupt int_func(void)

{

/I default to stack model

#pragma TRAP_PROC SAVE_REGS void @interrupt @nostack int_func(void)

{

/I forces to memory model

Interrupt routines are managed via pragmas by the MW compiler (with the option to save or

not the compiler working registers), whereas the Cosmic compiler simply requires the

@interrupt qualifier to identify an interrupt handler. The Cosmic compiler generates reentrant

code by default in the interrupt function, so that managing nested interrupts is not a problem.

The MW compiler requires additional code to be able to manage nested interrupts.

Application Note N °65

-11 -

23/08/2004

COSMIC SOFTWARE
Application Note N °65 — Cosmic vs MW ST7 compiler

Interrupt functions

INTERRUPT FUNCTIONS

COSMIC compiler internal variables

» c_X (2 bytes) used for extending X register to 16 bits
* c_y (2 bytes) used for extending Y register to 16 bits

* c_Ireg (4 bytes) used for long and float operations

Automatically and selectively saved with the Y register by interrupt functions

If there is a function call inside the interrupt routine:

=Y, c_x, c_y saved even if not explicitly used, unless if @nosvf specified

+ c_Ireg NOT saved if not explicitly used, unless if @svlireg specified

This slide provides more details about how interrupts are managed by the Cosmic compiler :
in addition to the hardware registers already saved by the hardware, the compiler knows
which registers are used in the interrupt routine and automatically save only those that need to
be, thus generating small code with low interrupt latency. The only exception to this rule, is
when there are function calls in the interrupt handler: in this case the compiler cannot know
which registers are used or not, so it saves all the commonly used ones (Y, ¢_x and ¢_y) but
does not save the ones used for float and long operations (c_Ireg, 4 bytes), as these operations
are best avoided in an interrupt routine. This default behaviour can be modified as explained

in the yellow box.

Application Note N °65 -12 - 23/08/2004

COSMIC SOFTWARE
Application Note N °65 — Cosmic vs MW ST7 compiler

Including Assembler

ASSEMBLER INCLUSION

MW COSMIC
asm LD AX; #asm
LD AX

asm { LD Y,A

LD AX #endasm

LD Y,A

} result = _asm(« asm code », input);
« Direct access to any C objects * Possible access to global C objects

* NO ACCESS to local C objects

» Use _asm() feature for C objects interface

Assembler inclusion is managed in a fairly similar manner by the two compilers for what
concern « simple assembler ». However, if the assembler gets more complex and starts
interacting with C, more differences arise (in addition to the differences in the parameters
passing convention already explained); for example, the MW compiler allows to access any
object, while the Cosmic compiler allows only access to global objects, because local objects
can be in the stack (stack models) thus making it impossible to access them directly.

The next slide shows how to interact with local objects.

Application Note N °65 -13 - 23/08/2004

COSMIC SOFTWARE

Application Note N °65 — Cosmic vs MW ST7 compiler

Including Assembler

ASSEMBLER INCLUSION

COSMIC _asm() feature

result = _asm(« asm code », input);

/ N\

Result copied from returned Input expression computed in
value in A (char) or X:A (int) A (char) or X:A (int)
Assembler code

G B
crc = _asm(« add a,#$80\n ric a », crc); 1o A.crc
ADD A/#$80
RLC A
|l D _crc,A

The asm function allows to access local objects. The compiler will generate the necessary

code to access the parameters and to store the result in the specified variable.

Application Note N °65 -14 -

23/08/2004

COSMIC SOFTWARE
Application Note N °65 — Cosmic vs MW ST7 compiler

Linker Optimizations

LINKER OPTIMIZATION
MW COSMIC
» Unused functions and variables » Unused functions and variables kept
removed by default by default

* object.o+ syntax to keep an object * Unused functions removed when
compiling with +split option

« -k option to keep a segment in the
linker command file (necessary on
interrupt vectors)

« Stack size information in the map file

The MW and Cosmic linker are different in what the MW removes by default unused objects,
whereas the Cosmic keeps them unless the +split option is used. This difference can play in
subtle ways when doing quick benchmarks; if, for example, you decide to leave out the vector
table “because it’s just to get an idea”, the MW linker will also remove all the interrupt
functions (because they appear as unused), whereas the Cosmic linker will keep them, thus

showing a false difference in code size.

Application Note N °65 -15- 23/08/2004

COSMIC SOFTWARE
Application Note N °65 — Cosmic vs MW ST7 compiler

Peripherals Access

PERIPHERALS ACCESS
MW COSMIC
- object file to be linked « header file to be included
« file.o+ syntax to keep all definitions #include <i0o72254.h>
* no support of timer registers * no object to be linked

« C syntax to simply load a register:
TASR;

« direct support of timer registers:
TAOCR1 += 1000;

When it comes to hardware access, the Cosmic compiler comes with a complete set of
predefined include files where all hardware registers for the most common derivatives are
defined. Using these registers is as easy as assigning a value to them, and the compiler
manages correctly the multi-byte registers that must be accessed in a well defined order. On
the same idea of no-need to use assembler, registers that must be accessed but whose value is
not significant, can be accessed with the syntax shown above.

With the MW compiler, SFR definitions must be linked in as an objet file. Using the registers
in C is the same as with Cosmic, but timer registers require to use assembler as the compiler

does not access them in the right order.

Application Note N °65 -16 - 23/08/2004

COSMIC SOFTWARE

Application Note N °65 — Cosmic vs MW ST7 compiler

Benchmarking guidelines

This page provides a simple set of guidelines to follow when you are benchmarking Cosmic
and MW compilers for ST7. Our experience shows that it is very easy to be misleaded when

doing benchmarks, so here are the main points to check:

- A “good” benchmark should not only compile, but also link and run with both toolchains
before you can compare the numbers: this might seem obvious, but as benchmarks are
often done during an evaluation phase, sometimes there is no time to complete them
properly (especially when porting from another micro). Here are a few examples of what
might occur with uncomplete benchmarks:

o A compiler might do a great job of producing tight code by putting everything
in page zero, only to find out that the linker will actually report that page zero
is full and the application cannot link

o The linker might report everything is fine, except it might have discarded all
the interrupt handlers if the interrupt table was not defined correctly: in this
case the application will not run.

- Make sure you compare Memory Models that are comparable: the biggest incidence on
the code size for a given application is given by where the variables are stored
(short/long/stack) and this is decided mainly by the memory model. As explained earlier
in this presentation, memory models with the same name are NOT comparable between
Cosmic and MW. Also consider the pointer size (8 or 16 bits) and make sure the model
selected use the same size for both compilers; check each compiler manual for more
information on this.

- Check the main compilation options and make sure they are set consistently for both
compilers; for example, some versions of the Cosmic compiler have the “factorization
option” turned off by default (to facilitate debugging), whereas the same option for MW is
ON by default.

- Compare the whole application performance. Comparing funcion by function can be
useful to spot where a particular compiler is strong or weak, but in this case you have to

take special care at the “side effects™:

Application Note N °65 -17 - 23/08/2004

COSMIC SOFTWARE

Application Note N °65 — Cosmic vs MW ST7 compiler

o a string manipulation can give a great benchmark if the string is in page0, but
in this case you must keep into account that some other function (possibly in
another module, or even in the startup file) must have copied it from ROM to
RAM, and this other function takes place and time to execute, place and time
that will likely not show in your bench

o A compiler might decide to inline a function in some cases: the overall
application will be smaller and faster, but the module where the application is
inlined will look bigger (but still faster) compared to a call to the same
function in a library file

o Individual functions can be very small: a 20% difference in code size is almost
meaningless if the code is 10 and 12 bytes, whereas it is much more
representative is the code is 10k and 12k.

- Know what you want to compare and how to achieve it. Benchmarks usually take into
account code size and execution speed; although code size is usually the most important
parameter for an ST7 application, some optimizations that allow a small gain on the size
against a big loss in execution speed might not be enabled by default in one or both
compilers

- And, to finish, a rule of thumb: it is not scientific and there might be exceptions, but it’s
worth to keep in mind that:

o Ifyou find a difference of >10% between the two compilers (code size), there
is likely some different setup between the two: check the points above.

o Ifyou find a difference of >20% there is almost definitely something wrong
(different options, benchmark too small, too selective or biased); please contact

support.

Application Note N °65 -18 - 23/08/2004

