

Dendoff Springs Ltd. 12045 Old Yale Road Surrey, British Columbia Canada V3V 3X4 Phone: 604-580-3400 Toll-Free: 800-661-4205 Fax: 604-580-3600 Email: sales@dendoff.com

SPRING CONFIGURATIONS

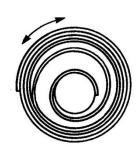
It is extremely important in the design process to select the right spring configuration in order for the spring to properly perform the function that is intended.

Helical Compression

Push – wide load and deflection range – constant rate.

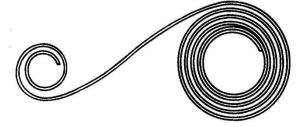
Push – wide load and deflection range.
Conical spring can be made with minimum solid height and with constant or increasing rate. Barrel, hourglass, and variable-pitch springs used to minimize resonant surging and vibration.

Power, Motor or Clock

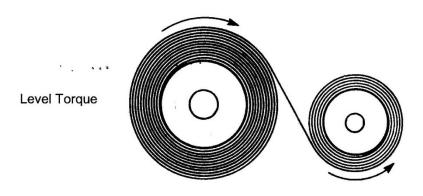


Twist – exerts torque over many turns.

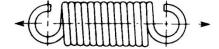
Supplied in retainer.


Removed from retainer.

Prestressed Power


Twist – exerts torque over many turns.

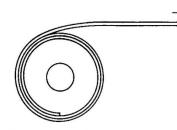
Supplied in retainer.


Removed from retainer.

Constant Force Spring Motor

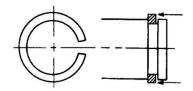
Twist – exerts close-toconstant torque over many turns.

Helical Extension


Pull – wide load and deflection range – constant rate.

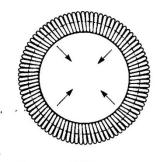
Drawbar

Pull – extension to a solid stop.

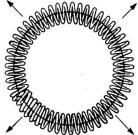

Constant Force

Pull – very long deflection at constant load or low rate.

Retaining Rings

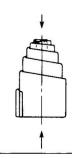

Round or Rectangular Wire

Pull or push – to resist axial loads.


Garter

Pull with radial pressure.

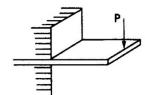
Compression


Push with radial pressure.

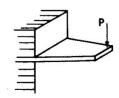
Spring Washer

deflections - choice of rates (constant, Belleville increasing, or decreasing). Push – light loads, low deflection-uses limited Wave radial space. Push - higher deflections than Slotted bellevilles. Push - for axial loading Finger of bearings. Push - used to absorb Curved axial end play.

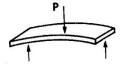
Push - high loads, low


Volute

Push – may have inherently high friction damping.

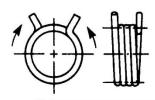

Beam

Cantilever, Rectangular Section



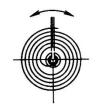
Push or pull – wide range of loads, low deflection range.

Cantilever, Trapezoidal Section



Simple Beam

Helical Torsion


Round or Rectangular Wire

Twist - constant rate.

Spiral

Hairspring

Twist

Brush

Twist or Push.

Energy Storage Capacity (ESC) of Various Spring Configurations:

Type of Spring	Energy (1) Storage Capacity	Space (2) Efficiency	Notes	Typical Amounts of Energy Stored in Spring Space Envelope	
				J/mm ³	ft-lbf/in ³
Compression or Extension	<u>S²</u> 4G		Space efficiency does not apply to extension springs.		
Round Wire		<u>πC</u> (C+1) ²		1.5 – 15 x 10 ⁻⁴	1.8 - 18
Square Wire	<u>S²</u> 6.5G	4C (C+1) ²		1.0 - 10 x 10 ⁻⁴	1.2 – 12
Rectangular Cantilever & Simply supported Beam	<u>S²</u> 18E	- -	- -	- -	-
Cantilever Beam – Triangular Plan	<u>S²</u> 6E				
Helical Torsion Spring					
Round Wire	<u>S²</u> 8E	$\frac{\pi C}{(C+1)^2}$		1.0 – 5 x 10 ⁻⁴	1.2 – 6
Square Wire	<u>S²</u> 6E	4C (C+1) ²		1.5 – 8 x 10 ⁻⁴	1.8 - 9.7
Spiral Torsion Spring (round Wire)	<u>S²</u> 8E	-		-	-
Belleville Washer	<u>S²</u> to <u>S²</u> 10E 40E	0.6 - 0.9	Ratio of O.D. to I.D. of 2 is preferred for most designs.	0.5 - 5 x 10 ⁻⁴	0.6 - 6
Power Spring	-	0.4 - 0.6	*	10 - 17 x 10 ⁻⁴	12 – 20
Pre stressed Power Spring	-	0.4 - 0.6	*	25 – 30 x 10 ⁻⁴	30 – 35

Energy storage capacity:

= 1/V $\int_0^f kf \, df$, where V = volume of active spring material. Note that stress correction factors due to spring geometry have been omitted.

^{*} For most efficient design, the amount of space occupied by spring material equals half of the space occupied by the spring in the free position. Due to friction, there is difficulty in estimating the amount of active material and the number of turns in the free position. Determine the ESC by estimating or measuring the area under the torque revolution curve.