

Bedienungsanleitung

Control Plex® Controller CPC10PB

Inhalt

2	Allg	emeine Hinweise	.4
	2.1	Sicherheitshinweise	.4
	2.2	Qualifiziertes Personal	4
	2.3	Verwendung	4
	2.4	Auslieferzustand	4
3	Allg	emeine Beschreibung	.5
	3.1	Aufbau des Gesamtsystems	.6
	3.2	Abmessungen der Variante CPC10PB-T1	.7
	3.3	Abmessungen der Variante CPC10PB-T4	.7
	3.4	Anzeigeelemente und Anschlüsse	.8
		3.4.1 Klemmen für die Spannungsversorgung	. 8
		3.4.2 Anschlussbuchse für den <i>ELBus</i> ®, Anschlussbuchsen X51, X52, X53, X54	.8
		3.4.3 USB-Serviceschnittstelle, Klemmen X61	.9
		3.4.4 Busschnittstellen zum PROFIBUS-DP, Buchse X81	.9
		3.4.5 Leuchtdiode PWR	.9
		3.4.6 Leuchtdiode CE	.9
		3.4.7 Leuchtdiode CM	.9
		3.4.8 Leuchtdiode MS	.9
		3.4.9 Leuchtdiode NS	.9
4	Mor	ntage und Installation	. 10
	4.1	Montage des Systems	. 10
	4.2	Verkabelung und Anschlüsse der Module	.10
		4.2.1 Einspeisung Klemmleiste X41	.10
		4.2.2 ELBus ®-Anschlüsse zum Stromverteiler (-X51, -X52, -X53, -X54)	.11
		4.2.3 USB Service- und Wartungsschnittstelle (-X61)	. 12
		4.2.4 PROFIBUS-DP-Schnittstelle (-X81)	. 12
5	Betr	riebsarten des CPC10PB Controllers	. 12
	5.1	Betriebsart: Startup Mode	. 12
	5.2	Betriebsart: System Error Mode	. 12
	5.3	Betriebsart: Configuration Error Mode	. 12
	5.4	Betriebsart: Standalone Mode	. 12
	5.5	Betriebsart: Slave Mode	. 13
	5.6	Betriebsart: Firmwareupdate Mode	. 13
	5.7	Signalisierung der verschiedenen Betriebsarten	. 13
6	Gru	ndfunktionalitäten des Gesamtsystems	. 14
	6.1	Interne Zykluszeiten	
	6.2	Hot Swap der Sicherungsautomaten	.14
	6.3	Kommunikation über die USB-Service-Schnittstelle	. 15
7	Kon	nmunikation über PROFIBUS-DP	. 15
	7.1	Modul I/O-Daten CPC10PB-Device	.16
	7.2	Modul Control-Messwerte	.16
		7.2.1 Status Sicherungsautomat	. 17
		7.2.2 Control Sicherungsautomat	
		7.2.3 Messwerte Sicherungsautomat	
	7.3	Modul Control	.18

8	Azyl	klische	Daten	19
	8.1	Konfig	gurationsdaten CPC10PB Controller	20
	8.2	Konfig	gurationsdaten Steckplatz für Sicherungsautomat	21
	8.3	Geräte	einformationen CPC10PB Controller	22
		8.3.1	Gerätetype	22
		8.3.2	Seriennummer	22
		8.3.3	Hardwareversion	23
		8.3.4	Softwareversion	23
	8.4	Geräte	einformationen Sicherungsautomat	24
		8.4.1	Gerätetype	24
		8.4.2	Seriennummer	24
		8.4.3	Hardwareversion	24
		8.4.4	Softwareversion	25
	8.5	Geräte	eparameter Sicherungsautomat	25
		8.5.1	Nennstrom	25
		8.5.2	Einschaltverhalten	26
		8.5.3	Überlastabschaltung	26
		8.5.4	Abschaltzeit bei Überlast	26
		8.5.5	Abschaltzeit bei Kurzschluss	27
		8.5.6	Einschaltverzögerung	27
		8.5.7	Grenzwert Laststrom	27
		8.5.8	Hysterese des Grenzwerts	28
	8.6	Aktion	sbefehle Sicherungsautomat	28
	8.7	Ereigr	nismeldungen Sicherungsautomat	29
	8.8	Diagn	osemeldungen Sicherungsautomat	29
		8.8.1	Fehlerspeicher	29
		8.8.2	Auslösezähler	30
		8.8.3	Auslösegrund	30
		8.8.4	Betriebsspannung	30
		8.8.5	Gerätetemperatur	31
		8.8.6	Interne Kommunikationsmeldungen	31
9	Anh	ang		32
	9.1	Abbilo	dungsverzeichnis	32
	9.2	Techn	ische Daten	33
	9.3	Stichy	vortverzeichnis	33

2 Allgemeine Hinweise

2.1 Sicherheitshinweise

Diese Bedienanleitung weißt auf mögliche Gefahren für Ihre persönliche Sicherheit hin und gibt Hinweise darauf was beachtet werden muss, um Sachschäden zu vermeiden. Im Einzelnen werden die folgenden Sicherheitssymbole verwendet, welche den Leser auf die im Text nebenstehenden Sicherheitshinweise aufmerksam machen soll.

Gefahr!

Es bestehen Gefahren für das Leben und die Gesundheit, wenn nicht die folgenden Sicherheitsmaßnehmen getroffen werden.

Warnung!

Es bestehen Gefahren für Maschinen, Materialien oder die Umwelt, wenn nicht die folgenden Sicherheitsmaßnehmen getroffen werden.

Hinwaisl

Es werden Hinweise gegeben, welche zu einem verbesserten Verständnis führen sollen.

Achtung

Elektrostatisch gefährdete Bauelemente (EGB). Öffnung des Geräts ausschließlich durch den Hersteller.

Entsorgungsrichtlinien

Verpackung und Packhilfsmittel sind recyclingfähig und sollen grundsätzlich der Wiederverwertung zugeführt werden.

2.2 Qualifiziertes Personal

Die Bedienanleitung darf ausschließlich von qualifiziertem Personal verwendet werden. Dieses sind Personen, welche Aufgrund ihrer Ausbildung und Erfahrung befähigt sind, beim Umgang mit dem Produkt, auftretende Risiken zu erkennen und entsprechende Gefährdungen zu vermeiden. Diese Personen müssen gewährleisten, dass der Einsatz des beschrieben Produktes allen Sicherheitsanforderungen sowie den geltenden Bestimmungen, Vorschriften, Normen und Gesetzten genügt.

2.3 Verwendung

Das Produkt befindet sich in einer ständigen Weiterentwicklung. Aus diesem Grund kann es zu Abweichungen zwischen dem Produkt und der Dokumentation kommen. Diese werden durch eine regelmäßige Überprüfung und der daraus erfolgenden Korrektur in den folgenden Auflagen beseitigt. Sollte die Dokumentation technische oder orthografische Fehler enthalten, behalten wir uns das Recht vor, diese Korrekturen ohne vorherige Ankündigung durchzuführen.

2.4 Auslieferzustand

Das Produkt wird mit einer definierten Hard- und Softwarekonfiguration ausgeliefert. Sollten Änderungen, welche über die dokumentierten Möglichkeiten hinausgehen, vorgenommen werden, sind diese unzulässig und haben einen Haftungsausschluss zur Folge.

3 Allgemeine Beschreibung

Die Anforderungen in der modernen Automatisierungswelt werden immer vielschichtiger und anspruchsvoller. Dabei steht nicht nur die Steuerung, sondern auch immer mehr die Überwachung von Komponenten und Prozessen im Vordergrund. Auf diesen Bereich zielt das intelligente und busfähige Stromverteilungssystem *ControlPlex*[®]. Es dient zur Absicherung von industriellen Anwendungen sowie zu deren Überwachung und Steuerung. Dabei ist der Busklemmen-Controller CPC10 das Herzstück des Systems und übernimmt den Datenaustausch zu den über- und untergeordneten Komponenten. Dabei handelt es sich um die speicherprogrammierbaren Steuerungen auf der einen und dem Stromverteilungssystem SVS201-PWR-xx mit den elektronischen Sicherungsautomaten ESX50D-S1xx auf der anderen Seite. Der Busklemmen Controller CPC10 kann mit vier voneinander unabhängigen Stromverteilern SVS201-PWR-xx verbunden werden und bietet die Möglichkeit zur Kommunikation mit bis zu 96 elektronischen Sicherungsautomaten. Diese umfasst neben der Übertragung des Gerätezustandes, der Messwerte und der Geräteinformationen der angeschlossenen Komponenten, auch das Verändern der gerätespezifischen Parameter wie z.B. die Stromstärke und das Ausführen von Aktionen wie z.B. das Ein- und Ausschalten.

Die Informationen können zyklisch, bzw. azyklisch an das übergeordnete Steuerungssystem oder über eine vorhandene Serviceschnittstelle an den angeschlossenen Servicerechner übertragen werden. Sollte keine Verbindung zu einer überlagerten Steuerung vorhanden sein, hat dieses keinen Einfluss auf das Verhalten der angeschlossenen Sicherungsautomaten. Der Busklemmen-Controller ist auch ohne Verbindung zu einer übergeordneten Steuerung in der Lage deren Funktionalität sicherzustellen. Dazu werden die gespeicherten Parameter verwendet.

Das busfähige Stromverteilungssystem **ControlPlex**® bietet die bekannte Qualität und Sicherheit im Bereich des Überstromschutzes aus dem Hause E-T-A in Kombination mit den innovativen Funktionen auf dem Gebiet der Automatisierungstechnik.

3.1 Aufbau des Gesamtsystems

Das Zentrum des **ControlPlex®**-Systems bildet der Busklemmen-Controller CPC10PB-Tx. Dieser ermöglicht mit seinen Schnittstellen die durchgängige Kommunikation zwischen den Stromverteilern SVS201-PWR-xx mit den gesteckten elektronischen Sicherungsautomaten ESX50D-S1xx und der übergeordneten Steuerungen sowie dem Service-Rechner.

Die PROFIBUS-DP Schnittstelle zur überlagerten Steuerung ist mit einer 9-poligen SUB-D Buchse realisiert. Sie ermöglicht den Anschluss der gewünschten Steuerung an das *ControlPlex®*-System. Dadurch ist die Anzeige und Analyse der einzelnen Messwerte sowie die Diagnose und die Steuerung der einzelnen elektronischen Sicherungsautomaten möglich. Die gleichen Funktionen werden auch an der USB-Serviceschnittstelle zur Verfügung gestellt. Sollten sich Änderungen im Automatisierungssystem ergeben, so können alle notwendigen Messwerte der elektronischen Sicherungsautomaten mit der Serviceschnittstelle beobachtet und, sofern diese Funktionalität von der übergeordneten Steuerung freigegeben wurde, die Geräteparameter angepasst werden. Dies ermöglicht dem Anwender auch im Störungsfall einen uneingeschränkten Zugriff auf sicherheitsrelevanten Funktionen. Auftretende Störungen werden zielgerichtet und schnell detektiert und können umgehend behoben werden. Das System CP verringert zielführend Anlagenstillstandszeiten und erhöht die Produktivität signifikant.

Die Schnittstelle zu den bis zu vier Stromverteilern SVS201-PWR-xx wird mit dem im Hause E-T-A eigens definierten lokalen Bus *ELBus*® realisiert. Dieser überträgt alle zyklischen und azyklischen Daten in einer Zykluszeit von 230 - 730 Millisekunden (abhängig von der Ausbaustufe der bis zu vier Stromverteiler SVS201-PWR-xx). Die Power Boards sind voneinander unabhängig und werden parallel von der Kommunikationseinheit angesprochen. Die Ausbaustufe der Stromverteilern SVS201-PWR-xx ist vom Kunden in den bereitgestellten Steckplatzvarianten mit vier, acht, zwölf, sechzehn, zwanzig und vierundzwanzig elektronischen Sicherungsautomaten verfügund wählbar.

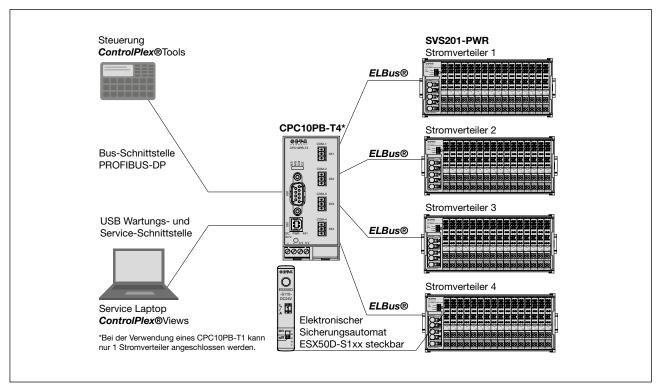


Abbildung 1: Systemübersicht

3.2 Abmessungen der Variante CPC10PB-T1

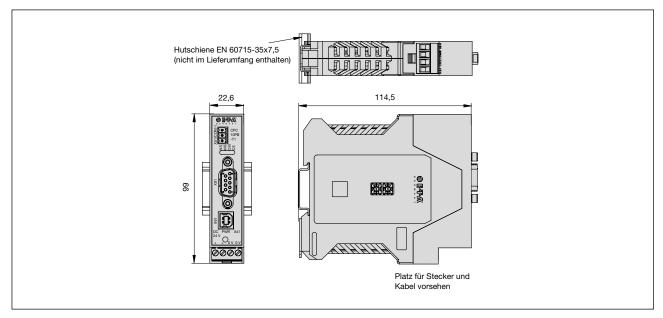


Abbildung 2: CPC10PB-T1 (1-Port)

3.3 Abmessungen der Variante CPC10PB-T4

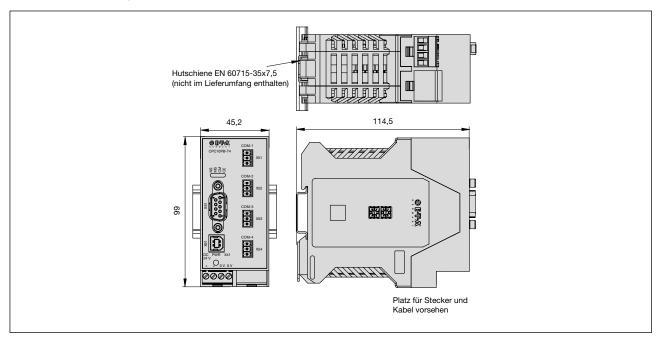


Abbildung 3: CPC10PB-T4 (4-Port)

3.4 Anzeigeelemente und Anschlüsse

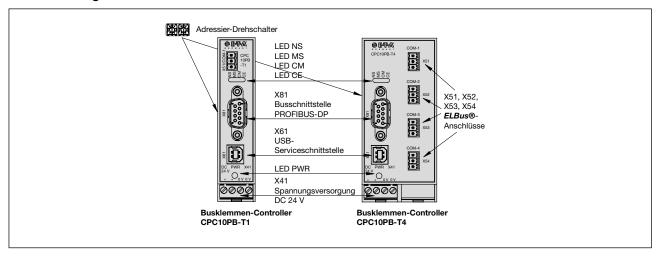


Abbildung 4: Anzeigeelemente und Anschlüsse CPC10PB-T4

3.4.1 Klemmen für die Spannungsversorgung

Die Betriebsspannung des Gerätes beträgt 24 V DC. Der fehlerfreie Betrieb des Gerätes wird in einem Spannungsbereich von 18 V bis 32 V sichergestellt. Die Stromaufnahme beträgt während des Betriebes typ. 60 mA.

Die Verwendung einer Versorgungsspannung, welche nicht dem angegebenen Betriebsbereich entspricht kann zu Fehlfunktionen beziehungsweise zur Zerstörung des Gerätes führen.

3.4.2 Anschlussbuchse für den ELBus®, Anschlussbuchsen X51, X52, X53, X54

Diese Anschlussbuchsen dienen zur Verbindung der Kommunikationseinheit CPC10 mit den bis zu vier Stromverteiler SVS201-PWR-xx. Die Verbindung der Geräte wird mit einer eins zu eins Verdrahtung realisiert. Die Verbindung soll vorzugsweise mit einer Leitung vom Typ H07V-K 1,5mm² realisiert werden. Eine gesonderte Schirmung der Leitung ist nicht erforderlich. Die Leitungslänge zwischen dem Busklemmen Controller und dem Stromverteiler SVS201-PWR-xx darf 2 m nicht überschreiten.

Der Gebrauch der Anschlüsse für die in der Bedienanleitung nicht vorgesehenen Anwendungen oder ein nicht ordnungsgemäßer Anschluss kann zu Fehlfunktionen beziehungsweise zur Zerstörung des Gerätes führen.

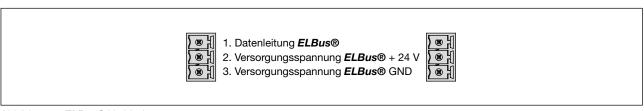


Abbildung 5: **ELBus**® Verbindung

Werden die Anschlüsse der verschiedenen Stromverteiler SVS201-PWR-xx untereinander getauscht, z.B. ein Tausch der Anschlüsse X51 mit X52, so kommt es automatisch zu einer Neuparametrierung der angeschlossenen elektronischen Sicherungsautomaten.

3.4.3 USB-Serviceschnittstelle, Klemmen X61

Die USB-Schnittstelle dient zum Anschluss des Service-Rechners. Mit Hilfe der zur Verfügung gestellten Anwendersoftware *ControlPlex®Views* besteht die Möglichkeit die Messwerte der einzelnen Sicherungsautomaten einzulesen, Parameter zu verändern und die Geräte ein- bzw. auszuschalten. Die Verbindung wird mit USB-2.0 Typ B realisiert. Die Länge der Leitung muss weniger als 3m betragen. Bei bestehender Buskommunikation zur übergeordneten Steuerung ist die Anwendersoftware nur leseberechtigt. Sollen auch Ändern der Geräteparameter von Seiten der Anwendersoftware möglich sein, muss dieses explizit von der übergeordneten Steuerung freigegeben werden.

3.4.4 Busschnittstelle zum PROFIBUS-DP, Buchse X81

Die PROFIBUS-DP-Anbindung ist über eine 9-polige SUB-D Buchse realisiert. Mit dieser kann das Gerät direkt mit anderen PROFIBUS-DP-Teilnehmern verbunden werden. Für die Montage und spezielle Auswahl des Kabels sowie der Steckverbinder wird auf die Montagerichtlinie der PNO verwiesen.

3.4.5 Leuchtdiode PWR

Bei angelegter Versorgungsspannung leuchtet die Diode PWR grün.

3.4.6 Leuchtdiode CE

Die Leuchtdiode CE zeigt den Status der Kommunikationseinheit an. Nähere Informationen entnehmen sie bitte dem Kapitel »Signalisierung der verschiedenen Betriebsarten«.

3.4.7 Leuchtdiode CM

Die Leuchtdiode CM zeigt den Status der Kommunikation zwischen der Kommunikationseinheit und den elektronischen Sicherungsautomaten an. Nähere Informationen entnehmen sie bitte dem Kapitel »Signalisierung der verschiedenen Betriebsarten«.

3.4.8 Leuchtdiode MS

Die Leuchtdiode MS zeigt den Status des internen PROFIBUS-DP-Kommunikationsmoduls an.

3.4.9 Leuchtdiode NS

Die Leuchtdiode NS zeigt den Netzwerkstatus der Kommunikation des internen PROFIBUS-DP-Kommunikationsmoduls zum PROFIBUS-DP-Master an.

4 Montage und Installation

4.1 Montage des Systems

Die bevorzugte Einbaulage des *ControlPlex*®Systems ist waagerecht.

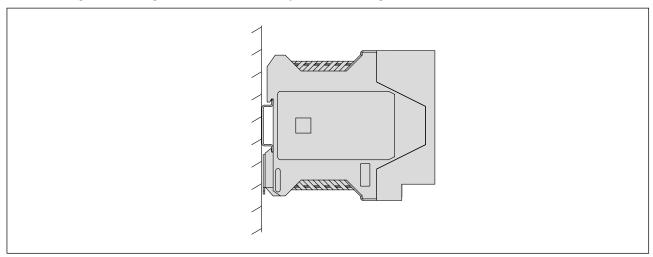


Abbildung 6: Montagezeichnung

4.2 Verkabelung und Anschlüsse der Module

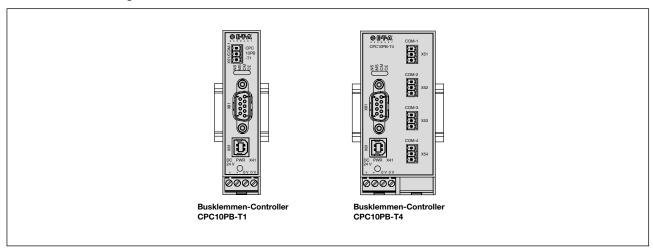


Abbildung 7: Anschlüsse CPC10PB-T1 und -T4

4.2.1 Einspeisung Klemmleiste X41

Nennspannung:	DC 24 V (1832 V)
Nennstrom:	typ. = 60 mA
Anschlüsse:	4 x Schraubklemmen, (+/+/0 V/0 V)
Anschlussvermögen (Leiterquerschnitt)	max. 2,5 mm ²
flexibel mit Aderendhülse (mit Kunststoffhülse)	0,25 – 1,5 mm ²
flexibel mit Aderendhülse (ohne Kunststoffhülse)	0,25 – 2,5 mm ²
Abisolierlänge	7 mm
Anzugsdrehmoment	0,5 bis 0,6 Nm

4.2.2 ELBus®-Anschlüsse zum Stromverteiler (-X51, -X52, -X53, -X54)

- 1. Datenleitung *ELBus*®
 2. Versorgungsspannung *ELBus*® + 24 V
 3. Versorgungsspannung *ELBus*® GND

Abbildung 8: Anschlüsse der ELBus® Verbindungsstecker

X51 COM-1: Anschluss für den ersten Stromverteiler SVS201-PWR-xx

Leitungslänge:	max. 2 m	
Typischerweise:	H07V-K 1,5 mm ²	
Buchse 1:	ELBus ® ELB	Datenleitung
Buchse 2:	ELBus ®	DC + 24 V
Buchse 3:	ELBus ®	GND

X52 COM-2: Anschluss für den zweiten Stromverteiler SVS201-PWR-xx

Leitungslänge:	max. 2 m	
Typischerweise:	H07V-K 1,5 mm ²	
Buchse 1:	ELBus ® ELB	Datenleitung
Buchse 2:	ELBus ®	DC + 24 V
Buchse 3:	ELBus ®	GND
(nur bei CPC10PN-T4)		

X53 COM-3: Anschluss für den dritten Stromverteiler SVS201-PWR-xx

Leitungslänge:	max. 2 m	
Typischerweise:	H07V-K 1,5 mm ²	
Buchse 1:	ELBus ® ELB	Datenleitung
Buchse 2:	ELBus ®	DC + 24 V
Buchse 3:	ELBus ®	GND
(nur bei CPC10PN-T4)		

X54 COM-4: Anschluss für den vierten Stromverteiler SVS201-PWR-xx

Leitungslänge:	max. 2 m	
Typischerweise:	H07V-K 1,5 mm ²	
Buchse 1:	ELBus ® ELB	Datenleitung
Buchse 2:	ELBus ®	DC +24 V
Buchse 3:	ELBus ®	GND
(nur bei CPC10PN-T4)		

4.2.3 USB Service- und Wartungsschnittstelle (-X61)

X61:	Verbindung zum PC zur Kommunikation mit der Anwendersoftware <i>ControlPlex</i> ®Views
Тур:	USB-2.0 Typ B
Leitungslänge:	max. 2,5 m

4.2.4 PROFIBUS-DP-Schnittstelle (-X81)

X81:	Verbindung an das Bussystem PROFIBUS-DP
Тур:	Buchse 9-poligen SUB-D
Bei der Verdrahtu	ung und dem Anschluss an das Bussystem PROFIBUS-DP sind die Installations- und

Bei der Verdrahtung und dem Anschluss an das Bussystem PROFIBUS-DP sind die Installations- und Verdrahtungsvorschriften der PROFIBUS Nutzerorganisation e.V. (PNO) einzuhalten.

5 Betriebsarten des CPC10PB Controllers

5.1 Betriebsart: Startup Mode

Mit dem Anlegen der Versorgungsspannung wird der Busklemmen-Controller CPC10 initialisiert. Dabei führt das Gerät implementierte Programmspeichertests und Selbsttestroutinen durch. Während dieser Zeit ist eine Kommunikation über die Schnittstellen nicht möglich.

5.2 Betriebsart: System Error Mode

Wurde bei den durchgeführten Selbsttestroutinen ein Fehler festgestellt, wechselt der Busklemmen-Controller in die Betriebsart System Error. Diese Betriebsart kann nur durch einen Neustart des Gerätes beendet werden und verhindert den Datenaustausch über die Schnittstellen. Befindet sich der Busklemmen-Controller in dieser Betriebsart können die elektronischen Sicherungsautomaten nicht von diesem gesteuert werden und bleiben im Standalone (Überstromschutz) Mode.

5.3 Betriebsart: Configuration Error Mode

Befinden sich im Busklemmen-Controller keine oder ungültige Konfigurationsdaten, so wechselt dieser in diese Betriebsart. In dieser Betriebsart ist nur der azyklische Datenaustausch möglich. Der zyklische Datenaustausch wird verhindert. Verlassen wird diese Betriebsart nachdem Erhalt von korrekten Slot-Parametern und Konfigurationsdaten.

5.4 Betriebsart: Standalone Mode

Im Normalbetrieb besteht eine Verbindung zwischen dem Busklemmen-Controller und der übergeordneten Steuerung. Somit wird die Steuerung der elektronischen Sicherungsautomaten und die Änderung deren Parameter von der übergeordneten Steuerung durchgeführt. Sollte es zu einem Ausfall der Kommunikation zwischen den beiden Teilnehmern kommen, hat dieses keinen Einfluss auf das Schutzverhalten der Sicherungsautomaten. In diesem Fall übernimmt der Busklemmen-Controller CPC10 eigenständig die Kontrolle über die Steuerung und die Parametrisierung der elektronischen Sicherungsautomaten, da in ihm alle benötigten Datensätze gespeichert sind. Mit Hilfe der Anwendersoftware *ControlPlex®Views* kann über die Wartungs- und Serviceschnittstelle auf die elektronischen Sicherungsautomaten, deren Status und deren Parameter zugegriffen werden. Das Ändern von z.B. Parameterdaten der unterschiedlichen elektronischen Sicherungsautomaten ist somit möglich. Ist der Fehler auf der Kommunikationsebene behoben, wird diese Betriebsart verlassen und die übergeordnete Steuerung übernimmt, als Master wieder die Kontrolle. Wurde während der Zeit, bei nicht vorhandener Kommunikation, ein Parameter geändert, so wird dieses der übergeordneten Steuerung gemeldet. In diesem Fall kann das Verhalten der Steuerung vom Anwender entsprechend definiert und in seiner speicherprogrammierbaren Steuerung programmiert werden. Dadurch ermöglicht man dem Anwender die Wahl einer auf seine Bedürfnisse angepasste Reaktion.

5.5 Betriebsart: Slave Mode

In dieser Betriebsart ist der Busklemmen-Controller CPC10 in ein PROFIBUS-DP System eingebunden. Die Kommunikation zum Busklemmen Controller CPC10 funktioniert fehlerfrei und dieser kann von der übergeordneten Steuerung angesprochen und gesteuert werden.

Das Verhalten des Busklemmen-Controllers bei gleichzeitiger Verwendung der Feldbusschnittstelle sowie der USB Service- und Wartungsschnittstelle, kann über die Konfiguration des Gerätes in der übergeordneten Steuerung festgelegt werden. Dort kann vorgewählt werden, dass der USB Service- und Wartungsschnittstelle nur Leserechte, bzw. Lese- und Schreibrechte gewährt werden. Werden Schreibrechte gewährt können Änderungen an der Parametrierung der elektronischen Sicherungsautomaten, parallel zum Feldbussystem vorgenommen werden. Diese Änderungen der Parameter werden dann dem übergeordneten Steuerungssystem mitgeteilt und könnten von diesem übernommen oder auch wieder überschrieben werden. Der Anwender kann das Verhalten entsprechend wählen.

5.6 Betriebsart: Firmwareupdate Mode

Die Geräte werden mit einer für ihre Funktionalität programmierten Software ausgeliefert. Sollte es zu Erweiterungen des Funktionsumfangs der Geräte kommen, werden diese in der Firmware durchgeführt. Daher ist es notwendig ein Update der Firmware des Gerätes durchzuführen, wenn diese neue Funktionalität verwendet werden soll. Genauere Informationen zum Update der Firmware werden im Benutzerhandbuch der Anwendersoftware *ControlPlex*®Views zur Verfügung gestellt.

5.7 Signalisierung der verschiedenen Betriebsarten

Die unterschiedlichen Betriebsarten des Busklemmen-Controllers CPC10 werden wie folgt dargestellt:

Betriebsart	Signalisierung der Betriebsart					
	LED CM	LED CE	LED PWR			
Startup Mode	gelb	gelb	grün			
System Error Mode	gelb	rot	grün			
Configuration Error Mode	gelb	rot/aus*	grün			
Stand Alone Mode	gelb	-	grün			
Slave Mode	grün	rot	grün			
Frimeware Update	rot/aus*	rot/aus*	rot/aus*			
* blinkend	. 54 445	. 5 3, 466	. 35 446			

Abbildung 9: Darstellung der Betriebsarten

6 Grundfunktionalitäten des Gesamtsystems

6.1 Interne Zykluszeiten

Die Zykluszeit des Systems ist abhängig von der Anzahl der zu übertragenden Daten zwischen dem Busklemmen Controller CPC10 sowie die auf dem Stromverteiler projektierten Steckplätze für die elektronischen Sicherungsautomaten ESX50D-S. So verringert sich die Zykluszeit bei der Verwendung eines Stromverteilers mit vier Steckplätzen im Gegensatz zu der Zykluszeit bei einem Stromverteiler mit vierundzwanzig Steckplätzen von 730 ms auf 230 ms. Im genannten Zeitraum werden der Status, die Ausgangsspannung und der Laststrom jedes Sicherungsautomaten zyklisch an den CPC10 übertragen. Dieses ist unabhängig von der Anzahl der angeschlossenen Stromverteiler SVS201-PWR zu betrachten, mit denen der CPC10 parallel kommuniziert. Die Zykluszeit des Gesamtsystems richtet sich nach der längsten Zykluszeit des projektierten Stromverteilers. Wird zum Beispiel an einem CPC10PB-T4 ein Stromverteiler mit 16 und drei weitere mit 8 Steckplätzen angeschlossen, so richtet sich die Zykluszeit nach dem Stromverteiler mit den 16 Steckplätzen und beträgt somit für aller vier angeschlossenen Stromverteiler 530 ms.

Die Datenmenge bei der Kommunikation zur übergeordneten Steuerung kann ebenfalls gewählt werden. Dieses kann durch die Verwendung der unterschiedlichen Datenmodelle erreicht werden. So ist es möglich entweder den Status, die Messwerte für den Laststrom und die Ausgangsspannung des elektronischen Sicherungsautomaten zu übertragen oder andererseits nur den Status des Schutzschalters an die übergeordnete Steuerung zu senden. Diese Wahlmöglichkeit zwischen den unterschiedlichen Datenmodellen wird dem Anwender in der GSD-Datei des Steuerungssystems zur Verfügung gestellt. Dabei handelt es sich um Konfigurationsdaten, welche mit der Hardwarekonfiguration des CPC10 an die speicherprogrammierbare Steuerung übertragen werden.

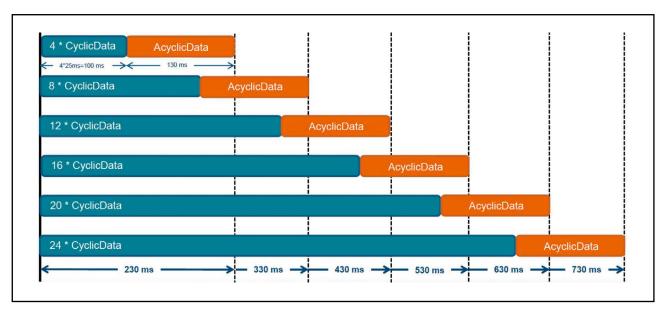


Abbildung 10: Zykluszeiten des Systems

6.2 Hot Swap der Sicherungsautomaten

Das Stecken eines elektronischen Sicherungsautomaten ESX50D-S1xx auf den Stromverteiler SVS201-PWR-xx ist jederzeit möglich. Dafür muss sich der ON/OFF Schalter der elektronische Sicherungsautomat in der Stellung OFF befinden.

Das Stecken eines elektronischen Sicherungsautomaten ESX50D-S xx ist, aus sicherheitstechnischen Gründen nur im ausgeschalteten Zustand erlaubt.

Nach dem Stecken des Sicherungsautomaten wird dieser, sofern für diesen Steckplatz Parameter vorhanden sind, automatisch parametriert. Die Übertragung der Parameter findet ohne Unterbrechung des zyklischen Datenaustausches zwischen der Kommunikationseinheit SVS200-COM und dem elektronischen Sicherungsautomaten ESX50D-Sxxx statt. Nachdem Einschalten des Gerätes am ON/OFF Schalter ist der elektronische Sicherungsautomat für den Betrieb bereit.

6.3 Kommunikation über die USB-Service-Schnittstelle

Dem Anwender wird zusätzlich zu der PROFIBUS-DP- auch eine Wartungs- und Service Schnittstelle zur Verfügung gestellt. Diese ermöglicht den direkten Zugriff auf den Busklemmen-Controller CPC10PB. Dies ist auch möglich bei fehlender Kommunikation über die Feldbusschnittstelle. Befindet sich das Gerät in der Betriebsart Standalone so kann der Anwender über diese Schnittstelle jederzeit auf den Busklemmen-Controller und die angeschlossenen elektronischen Sicherungsautomaten schreibend und lesend zugreifen. Der Zugriff in der Betriebsart Slave ist vom Anwender über die Feldbusschnittstelle parametrierbar. Im Auslieferzustand ist der Zugriff nur lesend möglich. Der schreibende Zugriff muss explizit vom Anwender in der übergeordneten Steuerung freigegeben werden.

Wird eine Änderung an den Steckplatzparametern vorgenommen, so wird diese Änderung an die übergeordnete Steuerung weitergemeldet. Der Anwender ist somit in der Lage diese Änderungen in seiner Steuerung entsprechend zu verarbeiten.

Für die Parametrierung der einzelnen elektronischen Sicherungsautomaten steht für die USB-Service-Schnittstelle die entsprechende Anwendersoftware *ControlPlex®Views* zur Verfügung. Diese Software kann von der E-T-A Homepage heruntergeladen und auf einem Windows® Rechner installiert werden. Die Beschreibung der Anwendersoftware ist in einem separaten Handbuch beschrieben.

7 Kommunikation über PROFIBUS-DP

Je nach projektierter Konfiguration werden unterschiedlich viele Daten-Bytes im zyklischen Datenverkehr zwischen Master und Slave ausgetauscht.

Das System erlaubt festzulegen, in welchem Umfang Daten ausgetauscht werden. Es kann zwischen zwei verschiedenen Modulen pro PWR-Board mit unterschiedlichen Konfigurationen (4, 8, 12, 16, 20 oder 24 Steckplätze für die Sicherungsautomaten) gewählt werden.

Das Modul Control-Measure tauscht I/O-Daten (Status/Control) und Messwerte der einzelnen Sicherungsautomaten mit dem Master aus. Das Modul Control tauscht nur die I/O-Daten (Status/Control) der einzelnen Sicherungsautomaten mit dem Master aus.

Die für das Projektierungswerkzeug bereitgestellte GSD-Datei ermöglicht dies zu konfigurieren, – das System erkennt alle erlaubten Konfigurationen und verarbeitet die in der Projektierung definierten zyklischen Daten.

Einzig das Modul I/O-Daten CPC10PB-Device ist fest vorgegeben und kann nicht entfernt werden, da die Eingangsbytes wie nachfolgend beschrieben, wichtige Fehler und Diagnoseinformationen enthalten.

Die maximale Anzahl der Eingangs, -sowie der Ausgangsdaten ist auf je 244 Bytes limitiert. In Summe dürfen maximal 368 Bytes ausgetauscht werden.

7.1 Modul I/O-Daten CPC10PB-Device

Die 2 Bytes Eingangsdaten enthalten die folgenden globalen Fehler und Diagnosemeldungen. Dieses Modul enthält keine Ausgangsdaten.

Wertebereich: 0 - 65535

Datenlänge: 2 Byte (Unsigned Integer)

Byte[0] Low	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Keine Konfigurationsdaten vorhanden								0/1*
Ungültige Konfigurationsdaten							0/1*	
Reserve								
Reserve								
Kommandospeicher Überlauf				0/1*				
Reserve								
Reserve								
Keine Kommunikation zu mindestens einem PWR-Board	0/1*							
Byte[1] Low	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reserve								
CPC10PB Temporärer Fehler							0/1*	
CPC10PB Hardware Fehler						0/1*		
Reserve								
Reserve								
Reserve								
Netzwerk Fehler		0/1*						
Schreiben über USB gesperrt	0/1*							

^{*} Status nicht gesetzt = 0 / Status gesetzt = 1

Abbildung 11: Eingangsdaten für globale Fehler und Diagnose

7.2 Modul Control-Messwerte

Je nach Konfiguration (Anzahl der Steckplätze der Sicherungsautomaten) werden hier pro Sicherungsautomat-Steckplatz fünf Byte Eingangsdaten mit dem Status des Sicherungsautomaten (1 Byte) und mit den Messwerten von Laststrom und Lastspannung (4 Byte) des entsprechenden Sicherungsautomaten bereitgestellt. Zum Steuern des Sicherungsautomaten wird 1 Byte Ausgangsdaten benötigt. Für ein Leistungsmodul mit 16 Steckplätzen werden demnach 80 Byte Eingangsdaten und 16 Byte Ausgangsdaten ausgetauscht.

Die Adressierung erfolgt entsprechend der konfigurierten Steckplätze N der Sicherungsautomaten.

Byte-Adresse [0...N-1] Status/Control.

Byte-Adresse [N...4*N-1] Messwerte.

7.2.1 Status Sicherungsautomat

Pro Sicherungsautomat-Steckplatz ist der Aufbau des Eingangsbyte (Status Sicherungsautomat) wie folgt:

Wertebereich: 0 - 255

Datenlänge: 1 Byte (Unsigned Character)

Byte[0] Low	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Status Lastausgang								0/1*
Status Kurzschluss							0/1*	
Status Überlast						0/1*		
Status Unterspannung					0/1*			
Status Überspannung				0/1*				
Status Übertemperatur			0/1*					
Status Grenzwert Strom		0/1*						
Status Ereignis	0/1*							

^{*} Status nicht gesetzt = 0 / Status gesetzt = 1

Abbildung 12: Eingangsbyte Sicherungsautomat - Status

7.2.2 Control Sicherungsautomat

Pro Sicherungsautomat-Steckplatz ist der Aufbau des Ausgangsbyte (Control Sicherungsautomat) wie folgt:

Wertebereich: Lastausgang ein/ausschalten, Lastausgang rücksetzen, Ausgangsdaten gültig/ungültig

Datenlänge: 1 Byte (Unsigned Character)

Byte[0] Low	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Lastausgang ein / ausschalten Lastausgang								0/1*
Lastausgang rücksetzen							1**	
Reserve								
Reserve								
Reserve								
Reserve								
Reserve								
Ausgangsdaten gültig/ungültig	0/1***							

^{*} Lastausgang einschalten = 1 / Lastausgang ausschalten = 0

Abbildung 13: Ausgangsbyte Sicherungsautomat - Control

^{**} Reaktion nur auf steigende Flanke (Bit 1 benötigt im vorherigen Zyklus den Wert NULL)

^{***} Ausgangsdaten gültig = 1 / Ausgangsdaten ungültig = 0

7.2.3 Messwerte Sicherungsautomat

Die Messwerte beinhalten die Daten von Laststrom und Lastspannung eines Sicherungsautomaten. Die Reihenfolge der Messwerte ist Laststrom (2 Byte), gefolgt von Lastspannung (2 Byte).

Laststrom Sicherungsautomat

Pro Sicherungsautomat-Steckplatz ist der Aufbau der Eingangsbytes (Messwert Laststrom) wie folgt:

Wertebereich: 0 - 65535

Datenlänge: 2 Byte (Unsigned Integer)

Byte[0] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[1] (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	327688	16384	8192	4096	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Der Laststrom wird als normierter 16 Bit-Wert mit einer Auflösung von 10 mA zur Verfügung gestellt.

Beispiel: Messwert Laststrom = 1025 realer Messwert = 10,25 A

Abbildung 14: Eingangsbyte Laststrom Sicherungsautomat

Lastspannung Sicherungsautomat

Pro Sicherungsautomat-Steckplatz ist der Aufbau der Eingangsbytes (Messwert Lastsspannung) wie folgt:

Wertebereich: 0 - 65535

Datenlänge: 2 Byte (Unsigned Integer)

Byte[2] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[3] (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	327688	16384	8192	4096	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Die Lastspannung wird als normierter 16 Bit-Wert mit einer Auflösung von 10 mV zur Verfügung gestellt. **Beispiel:** Messwert Lastspannung = 2456 realer Messwert = 24,56 V

Abbildung 15: Eingangsbyte Lastspannung Sicherungsautomat

7.3 Modul Control

Je nach Konfiguration (Anzahl der Steckplätze der Sicherungsautomaten) werden hier pro Sicherungsautomat-Steckplatz ein Byte Eingangsdaten mit dem Status des Sicherungsautomaten und ein Byte Ausgangsdaten zum Steuern der Sicherungsautomaten ausgetauscht.

Für ein Leistungsmodul mit 16 Steckplätzen werden demnach 16 Byte Eingangsdaten und 16 Byte Ausgangsdaten ausgetauscht.

Die Adressierung erfolgt entsprechend der konfigurierten Steckplätze N der Sicherungsautomaten.

Byte-Adresse [0...N-1] Status/Control.

Status Sicherungsautomat (Siehe Kapitel "Modul Control-Messwerte")

8 Azyklische Daten

Über azyklische PROFIBUS-DP-Dienste ist es möglich weitere Daten mit dem CPC10PB Controller und den Sicherungsautomaten auszutauschen. Der azyklische Zugriff erlaubt auch die direkte Adressierung eines Sicherungsautomaten auf einem SVS201-PWR Board.

Die Adressierung der Daten erfolgt durch die Angabe der HW-Kennung und des Index.

Bei *ControlPlex*® enthält die HW-Kennung den CPC10PB-Controller, sowie das jeweilige SVS201-PWR Board, der Index enthält die Steckplatznummer und den Parameter-Index.

Der Index setzt sich aus der Steckplatznummer und dem Parameter-Index zusammen.

Bezeichnung	Dezimalstelle	Beschreibung
Steckplatz des Sicherungsautomaten	Dezimalziffern 10 ² und 10 ¹	Steckplatz des Sicherungsautomaten auf dem SVS201-PWR Board. Gültiger Wertebereich: 0024.
Parameter Index	Dezimalziffer 10 ^o	Der Parameterindex definiert den Datenbereich und den Datentyp der zu lesenden/schreibenden Daten. Gültiger Wertebereich: 09.

Abbildung 16: Aufbau Index

Beispiel: Index um Geräteinformationen des Sicherungsautomaten auf Steckplatz 2 zu lesen.

02 1

Parameter Index

Steckplatz des Sicherungsautomaten

Der Parameter Index ist folgenden azyklischen Datenbereichen zugeordnet:

Parameter Index	Steckplatz Nummer	Anzahl der Datenbytes	Lesen (R) Schreiben (W)	Beschreibung
0	0124	8	R/W	Geräteparameter eines Sicherungsautomaten (siehe Kapitel 8.5).
1	00	9	R	Geräteinformationen des CPC10PB Controllers (siehe Kapitel 8.3).
1	0124	9	R	Geräteinformationen eines Sicherungsautomaten (siehe Kapitel 8.4).
2	00	6	R/W	Konfigurationsdaten des CPC10PB Controllers (siehe Kapitel 8.1).
2	0124	6	R/W	Konfigurationsdaten eines Steckplatzes für den Sicherungsautomaten (siehe Kapitel 0).
3	0124	1	R	Ereignis eines Sicherungsautomaten (siehe Kapitel 8.7).
4	0124	1	W	Aktionsbefehle für einen Sicherungsautomaten (siehe Kapitel 8.6).
4	00	1	W	Aktionsbefehle für alle Sicherungsautomaten auf einem PWR-Board (siehe Kapitel 8.6).
5	0124	9	R	Diagnosedaten eines Sicherungsautomaten (siehe Kapitel 8.8).

Abbildung 17: Aufbau Parameter Index

8.1 Konfigurationsdaten CPC10PB Controller

Diese Bytes enthalten die Konfigurationsdaten für den CPC10PB Controller.

Als Konfigurationsdaten für den CPC10PB Controller werden 6 Byte azyklisch ausgetauscht. Dabei enthält aktuell nur das erste Byte Konfigurationsmöglichkeiten. Die weiteren Bytes dienen im Moment als "Platzhalter" für eventuelle spätere Erweiterungen und werden nicht ausgewertet.

Byte[0] enthält Konfigurationsmöglichkeiten der Service Schnittstelle (USB), sowie über das Verhalten der Sicherungsautomaten wenn die Verbindung zur Master-Steuerung unterbrochen wird.

Wertebereich: 0 – 255

Default-Wert: 03

Datenlänge: 1 Byte (Unsigned Character)

Byte[0]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Schreibbefehle über USB (Service Schnittstelle)								0/1*
Offline Verhalten (Low/Freeze)							0/1**	
Energiesparmodus						0/1***		
Reserve								
Reserve								
Reserve								
Reserve								
Reserve	0/1***							

^{*} Schreiben über USB gesperrt = 0 / Schreiben über USB freigegeben = 1

Abbildung 18: Konfigurationsdaten CPC10PB

Byte[1] - Byte[5] enthalten keine Informationen.

Wertebereich: Default-Wert: -

Datenlänge: 5 Byte (Unsigned Character)

Byte[1] - Byte[5]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reserve	-	-	-	-	-	-	-	-

Abbildung 19: Konfigurationsdaten Reservebytes

^{**} Low = 0 (alle Lastausgänge der Sicherungsautomaten werden ausgeschaltet und der CPC10PB Controller wechselt in die Betriebsart Standalone).

^{**} Freeze = 1 (alle Lastausgänge der Sicherungsautomaten behalten ihren aktuellen Zustand und der CPC10PB Controller wechselt in die Betriebsart Standalone).

^{***}Energiesparmodus deaktiviert = 0 / Energiesparmodus aktiviert = 1

8.2 Konfigurationsdaten Steckplatz für Sicherungsautomat

Diese Bytes enthalten Konfigurationsdaten für die Steckplätze der Sicherungsautomaten.

Als Konfigurationsdaten für die Steckplätze werden 6 Byte azyklisch ausgetauscht. Dabei enthält das erste Byte den Gerätetyp welcher in den entsprechenden Steckplatz gesteckt werden soll. Das zweite Byte enthält die Information ob der Steckplatz freigegeben oder gesperrt ist. Mit einem gesperrten Steckplatz ist keine Kommunikation, also auch kein Betrieb des Sicherungsautomaten möglich.

Die weiteren Bytes dienen im Moment als "Platzhalter" für eventuelle spätere Erweiterungen und werden nicht ausgewertet.

Byte[0] enthält die Gerätetype des Sicherungsautomaten.

Wertebereich: 80-81
Default-Wert: 80

Datenlänge: 1 Byte (Unsigned Character)

Byte[0]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
ESX50D-S100 (80)	0	1	0	1	0	0	0	0
ESX50D-S110 (81)	0	1	0	1	0	0	0	1

Abbildung 20: Konfigurationsdaten Gerätetyp

Byte[1] enthält die Freigabeinformation des Steckplatzes für den Sicherungsautomaten.

Wertebereich: 0 – 255

Default-Wert: 01

Datenlänge: 1 Byte (Unsigned Character)

Byte[1]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Freigabe Steckplatz								0/1*
Reserve								
Reserve								
Reserve								
Reserve								
Reserve								
Reserve								
Reserve								

^{1 *} Steckplatz gesperrt = 0 / Steckplatz freigegeben = 1

Abbildung 21: Konfigurationsdaten Freigabe Steckplatz

Byte[2] - Byte[5] enthalten keine Informationen.

Wertebereich: Default-Wert: -

Datenlänge: 4 Byte (Unsigned Character)

Byte[2] - Byte[5]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reserve	-	-	-	-	-	-	-	-

Abbildung 22: Konfigurationsdaten Reservebytes

8.3 Geräteinformationen CPC10PB Controller

8.3.1 Gerätetype

Byte[0] enthält die Information über die Gerätetype des CPC10PB Controllers.

Wertebereich: 80-81

Fehler: Gerätetype nicht verfügbar (255)

Datenlänge: 1 Byte (Unsigned Character)

Byte[0]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
CPC10PB-T1 (tbd)								
CPC10PB-T4 (tbd)								

Abbildung 23: Geräteinformation CPC10 - Gerätetyp

8.3.2 Seriennummer

Byte[1] - Byte[4] enthalten die Seriennummer des CPC10PB Controllers.

Wertebereich: 0...4294967295

Fehler: Seriennummer nicht verfügbar (4294967295)

Datenlänge: 4 Byte (Unsigned Long)

Byte[1] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[2]	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096 2048	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[3]	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
Beschreibung	8388608	4194304	2097152	1048576	524288	262144	131072	65536
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[4] (HIGH)	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
Beschreibung	2147483648	1073741824	536870912	268435456	134217728	67108864	33554432	16777216
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Abbildung 24: Geräteinformation CPC10 - Seriennummer

8.3.3 Hardwareversion

Byte[5] - Byte[6] enthalten die Hardwareversion des CPC10PB Controllers. Die Hardwareversion wird als ganzzahlige Nummer zur Verfügung gestellt.

Wertebereich: 0...65535

Fehler: Hardwareversion nicht verfügbar (65535)

Datenlänge: 2 Byte (Unsigned Integer)

Byte[5] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[6] (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096 2048	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Abbildung 25: Geräteinformation CPC10 - Hardwareversion

8.3.4 Softwareversion

Byte[7] - Byte[8] enthalten die Softwareversion des CPC10PB Controllers. Die Softwareversion wird BCD codiert zur Verfügung gestellt. Sie ist folgendermaßen codiert:

SW-Version = X.Y.Z

High Byte (Bit 12 - Bit 15) = 0

High Byte (Bit 8 - Bit 11) = X

Low Byte (Bit 4 - Bit 7) = Y

Low Byte (Bit 0 - Bit 3) = Z

Wertebereich: 0...65535

Fehler: Softwareversion nicht verfügbar (65535)

Datenlänge: 2 Byte (Unsigned Integer)

Byte[7] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[8] (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096 2048	2048	1024	512	256
Wert	0/1	0	0	0	0/1	0/1	0/1	0/1

Abbildung 26: Geräteinformation CPC10 - Softwareversion

8.4 Geräteinformationen Sicherungsautomat

8.4.1 Gerätetype

Byte[0] enthält die Information über die Gerätetype des Sicherungsautomaten.

Wertebereich: 80-81 / Fehler: Gerätetype nicht verfügbar (255) / Datenlänge: 1 Byte (Unsigned Character)

Byte[0]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
ESX50D-S100 (80)	0	1	0	1	0	0	0	0
ESX50D-S110 (81)	0	1	0	1	0	0	0	1

Abbildung 27: Geräteinformation Sicherungsautomat - Gerätetyp

8.4.2 Seriennummer

Byte[1] - Byte[4] enthalten die Seriennummer des Sicherungsautomaten.

Wertebereich: 0...4294967295

Fehler: Seriennummer nicht verfügbar (4294967295)

Datenlänge: 4 Byte (Unsigned Long)

Byte[1] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[2]	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096 2048	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[3]	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
Beschreibung	8388608	4194304	2097152	1048576	524288	262144	131072	65536
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[4] (HIGH)	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
Beschreibung	2147483648	1073741824	536870912	268435456	134217728	67108864	33554432	16777216
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Abbildung 28: Geräteinformation Sicherungsautomat - Seriennummer

8.4.3 Hardwareversion

Byte[5] - Byte[6] enthalten die Hardwareversion des Sicherungsautomaten. Die Hardwareversion wird als ganzzahlige Nummer zur Verfügung gestellt.

Wertebereich: 0...65535

Fehler: Hardwareversion nicht verfügbar (65535)

Datenlänge: 2 Byte (Unsigned Integer)

Byte[5] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[6] (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096 2048	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

8.4.4 Softwareversion

Byte[7] - Byte[8] enthalten die Softwareversion des Sicherungsautomaten. Die Softwareversion wird BCD codiert zur Verfügung gestellt. Sie ist folgendermaßen codiert:

SW-Version = X.Y.Z

High Byte (Bit 12 - Bit 15) = 0

High Byte (Bit 8 - Bit 11) = X

Low Byte (Bit 4 - Bit 7) = Y

Low Byte (Bit 0 - Bit 3) = Z

Wertebereich: 0...65535

Fehler: Softwareversion nicht verfügbar (65535)

Datenlänge: 2 Byte (Unsigned Integer)

Byte[7] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[8] (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096 2048	2048	1024	512	256
Wert	0/1	0	0	0	0/1	0/1	0/1	0/1

Abbildung 30: Geräteinformation Sicherungsautomat - Softwareversion

8.5 Geräteparameter Sicherungsautomat

8.5.1 Nennstrom

Der Parameter in Byte[0] legt die Nennstromstärke des ESX50D-S100 fest.

Wertebereich: 1A – 10 A (ganzzahlig)

Default-Wert: 1 A (nur bei Gerätetype ESX50D-S100)

Datenlänge: 1 Byte (Unsigned Character)

Bei diesem Parameter muss zwischen zwei Gerätetypen unterschieden werden. Dieser Parameter ist nur bei der Gerätetype ESX50D-S100 schreib- und lesbar. Bei der Type ESX50D-S110 ist dieser Parameter nur lesbar.

Byte[0]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	1	0	1	0	0/1	0/1	0/1	0/1
1 Ampere (161)	1	0	1	0	0	0	0	1
2 Ampere (162)	1	0	1	0	0	0	1	0
3 Ampere (163)	1	0	1	0	0	0	1	1
4 Ampere (164)	1	0	1	0	0	1	0	0
5 Ampere (165)	1	0	1	0	0	1	0	1
6 Ampere (166)	1	0	1	0	0	1	1	0
7 Ampere (167)	1	0	1	0	0	1	1	1
8 Ampere (168)	1	0	1	0	1	0	0	0
9 Ampere (169)	1	0	1	0	1	0	0	1
10 Ampere (170)	1	0	1	0	1	0	1	0

Abbildung 31: Gerätepara. Sicherungsautom. - Nennstrom

8.5.2 Einschaltverhalten

Dieser Parameter in Byte[1] legt fest, wie sich der Lastausgang des ESX50D nach dem Zuschalten der Versorgungsspannung verhält.

Wertebereich: 161-163

Default-Wert: 161 (Zustand vor PowerOff)

Datenlänge: 1 Byte (Unsigned Character)

Byte[1]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Zustand vor PowerOff (161)	1	0	1	0	0	0	0	1
Off (162)	1	0	1	0	0	0	1	0
On (163)	1	0	1	0	0	0	1	1

Abbildung 32: Gerätepara. Sicherungsautom. - Einschaltverhalten

8.5.3 Überlastabschaltung

Der Parameter in Byte[2] legt fest, bei wieviel Prozent des Nennstroms der ESX50D Überlast meldet.

Wertebereich: 105 % - 135 % (ganzzahlig)

Default-Wert: 120 %

Datenlänge: 1 Byte (Unsigned Character)

Byte[2]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Bsp.: 112 %	0	1	1	1	0	0	0	0

Abbildung 33: Gerätepara. Sicherungsautom. - Überlastabschaltung

8.5.4 Abschaltzeit bei Überlast

Der Parameter in Byte[3] legt fest, nach welcher Zeit im Überlastbereich der Lastausgang des ESX50D abgeschaltet wird.

Wertebereich: 50 ms – 10.000 ms (ganzzahlig in 50 ms Schritten)

Default-Wert: 3000 ms

Datenlänge: 1 Byte (Unsigned Character)

Byte[3]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Bsp.: 3000 ms 50 ms * Wert (Multiplikator) = 50 ms * 60 = 3000 ms	0	0	1	1	1	1	0	0

Abbildung 34: Gerätepara.Sicherungsautom.- Abschaltzeit Überlast

8.5.5 Abschaltzeit bei Kurzschluss

Dieser Parameter (Byte[4]) legt fest, nach welcher Zeit im Kurzschlussbereich der Lastausgang des ESX50D abgeschaltet wird.

Wertebereich: 50 ms – 1.000 ms (ganzzahlig in 10 ms Schritten)

Default-Wert: 100 ms

Datenlänge: 1 Byte (Unsigned Character)

Byte[4]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Bsp.: 100 ms 10 ms * Wert (Multiplikator) = 10 ms * 10 = 100 ms	0	0	0	0	1	0	1	0

Abbildung 35: Gerätepara. Sicherungsautom. – Abschaltzeit Kurzschluss

8.5.6 Einschaltverzögerung

Der Parameter in Byte[5] legt die Zeitverzögerung zwischen Einschaltbefehl und dem Einschalten des Lastausgangs des ESX50D fest.

Wertebereich: 50 ms – 2.500 ms (ganzzahlig in 10 ms Schritten)

Default-Wert: 100 ms

Datenlänge: 1 Byte (Unsigned Character)

Byte[5]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Bsp.: 50 ms 10 ms * Wert(Multiplikator) = 10 ms * 5 = 50 ms	0	0	0	0	0	1	0	1

Abbildung 36: Gerätepara. Sicherungsautom. - Einschaltverzögerung

8.5.7 Grenzwert Laststrom

Der Parameter in Byte[6] legt fest, bei wieviel Prozent des Nennstroms der ESX50D "Grenzwert überschritten" meldet.

Wertebereich: 50 % - 100 % (ganzzahlig)

Default-Wert: 80 %

Datenlänge: 1 Byte (Unsigned Character)

Byte[6]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Bsp.: 100 %	0	1	1	0	0	1	0	0

Abbildung 37: Gerätepara.Sicherungsautom.- Grenzwert Laststrom

8.5.8 Hysterese des Grenzwerts

Dieser Parameter (Byte[7]) legt die Hysterese des Grenzwerts Strom fest.

Wertebereich: 5 % – 20 % (ganzzahlig)

Default-Wert: 5 %

Datenlänge: 1 Byte (Unsigned Character)

Byte[7]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Bsp.: 10 %	0	0	0	0	1	0	1	0

Abbildung 38: Gerätepara. Sicherungsautom. – Hysterese Grenzwerts

8.6 Aktionsbefehle Sicherungsautomat

Mit diesem Ausgangsbyte können azyklisch alle Aktionen welche der Sicherungsautomat unterstützt ausgeführt werden. Alle Aktionen sind auch als "Broadcast-Befehl" möglich. Damit werden alle Sicherungsautomaten auf einem PWR-Board gleichzeitig angesprochen. Der Indexteil welcher den Steckplatz des Sicherungsautomaten adressiert, ist in diesem Fall auf 99 zu setzen.

Wertebereich: 112-118, 126-127

Datenlänge: 1 Byte (Unsigned Character)

Byte[0]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Lastausgang einschalten (112)	0	1	1	1	0	0	0	0
Lastausgang ausschalten (113)	0	1	1	1	0	0	0	1
Lastausgang rücksetzen (114)	0	1	1	1	0	0	1	0
Fehlerspeicher rücksetzen (115)	0	1	1	1	0	0	1	1
Auslösezähler rücksetzen (116)	0	1	1	1	0	1	0	0
Histogramm löschen (117)	0	1	1	1	0	1	0	1
Geräteparameter auf Werkseinstellungen rücksetzen (118)	0	1	1	1	0	1	1	0
LED-Signalisierung aktivieren (126)	0	1	1	1	1	1	1	0
LED-Signalisierung deaktivieren (127)	0	1	1	1	1	1	1	1

Abbildung 39: Aktionsbefehle Sicherungsautomat

8.7 Ereignismeldungen Sicherungsautomat

Dieses Byte enthält Informationen über Ereignisse des Sicherungsautomaten.

Wertebereich: 0 – 255

Datenlänge: 1 Byte (Unsigned Character)

Byte[0]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Warten auf Parametrierung								0/1*
Histogramm vorhanden							0/1*	
Neuer Nennstrom vorhanden						0/1*		
Schiebeschalter = OFF					0/1*			
Reserve								
Reserve								
Reserve								
Gerätefehler erkannt	0/1*							

^{*} Ereignis nicht vorhanden = 0 / Ereignis vorhanden = 1

Abbildung 40: Ergebnismeldungen Sicherungsautomat

8.8 Diagnosemeldungen Sicherungsautomat

8.8.1 Fehlerspeicher

Byte[0] enthält den internen Fehlerspeicher des Sicherungsautomaten.

Wertebereich: 0 – 255

Datenlänge: 1 Byte (Unsigned Character)

Byte[0]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Keine Parameter vorhanden								0/1*
Fehler Parameterspeicher							0/1*	
Fehler Programmspeicher						0/1*		
Fehler Datenspeicher					0/1*			
Fehler Steuereinheit				0/1*				
Reset durch Watchdog			0/1*					
Reserve								
Reserve								

^{*} Fehler nicht vorhanden = 0 / Fehler vorhanden = 1

Abbildung 41: Diagnose Sicherungsautomat - Fehlerspeicher

8.8.2 Auslösezähler

Byte[1] – Byte[2] enthalten den Auslösezähler des Sicherungsautomaten.

Wertebereich: 0...65535

Datenlänge: 2 Byte (Unsigned Integer)

Byte[1] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[2] (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096 2048	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Abbildung 42: Diagnose Sicherungsautomat - Auslösezähler

8.8.3 Auslösegrund

Byte[3] enthält den zuletzt aufgetretenen Auslösegrund des Sicherungsautomaten.

Wertebereich: 0-4

Datenlänge: 1 Byte (Unsigned Character)

Byte[3]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Keine Auslösegrund vorhanden (0)	0	0	0	0	0	0	0	0
Auslösegrund Kurzschluss (1)	0	0	0	0	0	0	0	1
Auslösegrund Überlast (2)	0	0	0	0	0	0	1	0
Auslösegrund Gerätetemperatur (3)	0	0	0	0	0	0	1	1
Auslösegrund Interner Gerätefehler (4)	0	0	0	0	0	1	0	0

Abbildung 43: Diagnose Sicherungsautomat - Auslösegrund

8.8.4 Betriebsspannung

Byte[4] – Byte[5] enthalten die Betriebsspannung des Sicherungsautomaten.

Wertebereich: 0 - 65535

Datenlänge: 2 Byte (Unsigned Integer)

Byte[4] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[5] (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096 2048	2048	1024	512	256
_								

Abbildung 44: Diagnose Sicherungsautomat - Betriebsspannung

Die Betriebsspannung wird als normierter 16 Bit-Wert mit einer Auflösung von 10 mV zur Verfügung gestellt. **Beispiel:** Messwert Betriebsspannung = 2512 realer Messwert = 25,12 V.

8.8.5 Gerätetemperatur

Byte[6] – Byte[7] enthalten die interne Gerätetemperatur des Sicherungsautomaten.

Wertebereich: 0 - 65535

Datenlänge: 2 Byte (Integer)

Byte[6] (LOW)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Byte[7] (HIGH)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Beschreibung	32768	16384	8192	4096 2048	2048	1024	512	256
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Abbildung 45: Diagnose Sicherungsautomat – Gerätetemperatur

Die interne Gerätetemperatur wird als normierter 16 Bit-Wert (Integer) mit einer ganzzahligen Auflösung in Grad Celsius zur Verfügung gestellt. **Beispiele:** Messwert Gerätetemperatur = 45 realer Messwert = 45 °C.

8.8.6 Interne Kommunikationsmeldungen

Intern kommuniziert der CPC10PB Controller mit jedem der Sicherungsautomaten über ein eigens dafür definiertes Protokoll. Byte[8] enthält die jeweils letzte Rückmeldung des Sicherungsautomaten an den CPC10PB Controller.

Wertebereich: 0 – 255

Datenlänge: 1 Byte (Unsigned Character)

Byte[8]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Beschreibung	128	64	32	16	8	4	2	1
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Vorhandene Gerätetype stimmt nicht mit der konfigurierten Gerätetype überein (1)	0	0	0	0	0	0	0	1
Geräteparameter nicht plausibel (144)	1	0	0	1	0	0	0	0
Kein Histogramm vorhanden (145)	1	0	0	1	0	0	0	1
Schiebeschalter befindet sich in OFF-Position (146)	1	0	0	1	0	0	1	0
Unterspannung erkannt (147)	1	0	0	1	0	0	1	1
Übertemperatur erkannt (148)	1	0	0	1	0	1	0	0
Rücksetzbefehl notwendig (149)	1	0	0	1	0	1	0	1
Befehl wurde korrekt verarbeitet (150)	1	0	0	1	0	1	1	0
Parametrierung notwendig (151)	1	0	0	1	0	1	1	1
Interner Gerätefehler erkannt (152)	1	0	0	1	0	0	0	0
Unbekannter Befehl (153)	1	0	0	1	0	0	0	1
Satzlängenfehler (154) Nennstrom vorhanden	1	0	0	1	0	0	1	0
Checksummenfehler (155)	1	0	0	1	0	0	1	1
Nennstromwahlschalter wurde betätigt (156)*	1	0	0	1	0	1	0	0

^{*} Nur beim Gerätetyp ESX50D-S100

9 Anhang

9.1 Abbildungsverzeichnis

Abbildung 1: Systemübersicht	6
Abbildung 2: CPC10PB-T1 (1-Port)	7
Abbildung 3: CPC10PB-T4 (4-Port)	7
Abbildung 4: Anzeigeelemente und Anschlüsse CPC10PB-T4	8
Abbildung 5: ELBus ® Verbindung	8
Abbildung 6: Montagezeichnung	10
Abbildung 7: Anschlüsse CPC10PB-T1 und -T4	10
Abbildung 8: Anschlüsse der <i>ELBus</i> ® Verbindungsstecker	11
Abbildung 9: Darstellung der Betriebsarten	13
Abbildung 10: Zykluszeiten des Systems	14
Abbildung 11: Eingangsdaten für globale Fehler und Diagnose	16
Abbildung 12: Eingangsbyte Sicherungsautomat - Status	17
Abbildung 13: Ausgangsbyte Sicherungsautomat - Control	17
Abbildung 14: Eingangsbyte Laststrom Sicherungsautomat	18
Abbildung 15: Eingangsbyte Lastspannung Sicherungsautomat	18
Abbildung 16: Aufbau Index	19
Abbildung 17: Aufbau Parameter Index	19/20
Abbildung 18: Konfigurationsdaten CPC10PB	20
Abbildung 19: Konfigurationsdaten Reserve	21
Abbildung 20: Konfigurationsdaten Gerätetyp	21
Abbildung 21: Konfigurationsdaten Freigabe Steckplatz	21
Abbildung 22: Konfigurationsdaten Reserve	22
Abbildung 23: Geräteinformation CPC10 - Gerätetyp	22
Abbildung 24: Geräteinformation CPC10 - Seriennummer	22
Abbildung 25: Geräteinformation CPC10 - Hardwareversion	23
Abbildung 26: Geräteinformation CPC10 - Softwareversion	23
Abbildung 27: Geräteinformation Sicherungsautomat - Gerätetyp	24
Abbildung 28: Geräteinformation Sicherungsautomat - Seriennummer	24
Abbildung 29: Geräteinformation Sicherungsautomat - Hardwareversion	24
Abbildung 30: Geräteinformation Sicherungsautomat - Softwareversion	25
Abbildung 31: Gerätepara.Sicherungsautom Nennstrom	25
Abbildung 32: Gerätepara.Sicherungsautom Einschaltverhalten	26
Abbildung 33: Gerätepara.Sicherungsautom Überlastabschaltung	26
Abbildung 34: Gerätepara.Sicherungsautom Abschaltzeit Überlast	26
Abbildung 35: Gerätepara.Sicherungsautom Abschaltzeit Kurzschluss	27
Abbildung 36: Gerätepara.Sicherungsautom Einschaltverzögerung	27
Abbildung 37: Gerätepara.Sicherungsautom Grenzwert Laststrom	27
Abbildung 38: Gerätepara.Sicherungsautom Hysterese Grenzwerts	28
Abbildung 39: Aktionsbefehle Sicherungsautomat	28

Abbildung 40: Ergebnismeldungen Sicherungsautomat	29
Abbildung 41: Diagnose Sicherungsautomat – Fehlerspeicher	29
Abbildung 42: Diagnose Sicherungsautomat – Auslösezähler	30
Abbildung 43: Diagnose Sicherungsautomat – Auslösegrund	30
Abbildung 44: Diagnose Sicherungsautomat – Betriebsspannung	30
Abbildung 45: Diagnose Sicherungsautomat – Gerätetemperatur	31
Abbildung 46: Diagnose Sicherungsautomat – int. Kommunikation	31

9.2 Technische Daten

Die technischen Daten zum CPC10PN können dem Datenblatt entnommen werden.

9.3 Stichwortverzeichnis

Bedienungsanleitung/Instruction manual CPC10PB-Tx-xxx (D) Bestell-Nr. / Ref. number Y31191401 - Index: a Ausgabe / Issue: 01/2015

Alle Rechte vorbehalten / All rights reserved

E-T-A Elektrotechnische Apparate GmbH Industriestraße 2-8 · 90518 ALTDORF DEUTSCHLAND Tel. 09187 10-0 · Fax 09187 10-397 E-Mail: info@e-t-a.de · www.e-t-a.de