
OpenLNS
Programmer's Reference

078-0437-01A

ii

Echelon, LON, LonWorks, Neuron, 3120, 3150, i.LON, LNS,
LonMaker, LONMARK, LonTalk, NodeBuilder, and the
Echelon logo are trademarks of Echelon Corporation
registered in the United States and other countries.
LonSupport, OpenLDV, and LNS Powered by Echelon
are trademarks of Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not
designed for use in equipment or systems which involve
danger to human health or safety or a risk of property
damage and Echelon assumes no responsibility or
liability for use of the Neuron Chips or LonPoint Modules
in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been
tested by Echelon. It is the responsibility of the customer
to determine the suitability of these parts for each
application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR
CONDITION OF ANY KIND, EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE OR IN ANY COMMUNICATION WITH YOU,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, FITNESS FOR ANY PARTICULAR PURPOSE,
NONINFRINGEMENT, AND THEIR EQUIVALENTS.

No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Echelon Corporation.

Printed in the United States of America.
Copyright ©1997–2013 by Echelon
Corporation.
Echelon Corporation
www.echelon.com

OpenLNS Programmer’s Reference iii

Table of Contents
Preface .. xxxi

Purpose .. xxxii
Audience ... xxxii
System Requirements .. xxxii

OpenLNS SDK ... xxxii
OpenLNS Server Computer (Smaller Network) xxxiii
OpenLNS Server Computer (Larger, Busier Network) xxxiii

OpenLNS Documentation ... xxxiv
For More Information and Technical Support .. xxxiv
Content .. xxxvi

1 OpenLNS Object Server .. 1
Introduction .. 2
OpenLNS Object Server Object Model ... 2
OpenLNS Object Hierarchy ... 4
Object Naming Convention ... 5

2 Objects ... 7
Account .. 8

Methods .. 8
Properties .. 8

AccountNumber .. 8
Charges .. 8
ClassID ... 9
Description .. 9
Name .. 10

Accounts .. 10
Methods .. 10

Add ... 11
Remove .. 11

Properties .. 11
ClassId .. 11
Count .. 12
Item ... 12
_NewEnum ... 13

ActivationLicense ... 14
Methods .. 14

Refresh ... 14
Properties .. 14

ActivatedVersion ... 15
ClassId .. 15
DaysRemaining .. 16
DeviceCapacity ... 16
DeviceCapacityConsumed ... 16
ExpirationDate .. 17
LicenseId .. 17
LicenseStatus ... 18
IsTrialLicense ... 18
MaxOpenSystems .. 19
RequiredVersion ... 19
RunTimeLimit ... 20
RunTimeRemaining .. 20

OpenLNS Programmer’s Reference iv

Alias ... 21
Methods .. 21
Properties .. 21

ClassId .. 21
Index ... 22
Parent ... 22
Selector .. 23

Aliases ... 23
Methods .. 24

ItemByIndex .. 24
Refresh ... 24

Properties .. 24
ClassId .. 25
Count .. 25
Item ... 25
Parent ... 26
_NewEnum ... 26

AppDevice ... 27
Methods .. 29

ClearStatus ... 29
Commission .. 29
CommussionEx .. 32
Decommission .. 33
Delay ... 33
DownloadConfigProperties ... 34
GetMessagePoint ... 38
Load .. 40
LoadEx.. 42
MoveEx ... 43
PostMove .. 45
PreMove ... 45
PropagateDeviceConfigUpdates .. 46
Reboot .. 47
ReleasePendingUpdates .. 47
Replace .. 48
ReplaceEx .. 49
Reset .. 51
ResyncToTemplate .. 51
Test ... 52
Upgrade .. 58
UploadConfigProperties ... 60
Wink .. 63

Properties .. 63
AliasCapacity .. 64
AliasUseCount .. 65
AppImagePath .. 65
AttachmentStatus ... 66
AuthenticationEnabled ... 66
BitmapFilePath ... 68
Channel .. 68
ClassId .. 69
CommissionStatus .. 69
ConfigurationState .. 71
ConnectionUpdateType .. 72
Delay ... 73
Description .. 73

OpenLNS Programmer’s Reference v

DetailInfo .. 74
Device Template ... 74
Extensions .. 74
Handle .. 75
HasBeenCommissioned ... 75
IconFilePath .. 76
InitialAuthenticationKey .. 76
Interface .. 77
Interfaces .. 77
LastTestInfo .. 78
LastUpgradeStatus ... 78
Location .. 79
LocationInNeuron ... 79
MonitorSets .. 80
MtHubs ... 80
Name .. 81
NetworkServiceDevice ... 81
NeuronId ... 81
NodeId .. 82
NonGroupRcvTimerNonGroupRcvTimer_Property 83
NsiHandle ... 83
NVHubs .. 84
Parent ... 84
PingClass ... 85
PendingNeuronIdPendingNeuronId_Property.................................. 86
Priority ... 86
ProgramId ... 87
SelfDocumentation ... 87
State ... 88
SubnetId ... 90
Subnets .. 90
Subsystems .. 91
UpgradeRequirement ... 91

AppDevices ... 92
Methods .. 93

Add ... 93
AddReference ... 95
ItemByHandle ... 96
ItemByNeuronID ... 96
Remove .. 96

Properties .. 97
ClassId .. 97
Count .. 98
Item ... 98
Parent ... 99
_NewEnum ... 99

Application ... 100
Methods .. 100
Properties .. 100

ClassId .. 101
MajorAPIVersion ... 101
MajorVersion .. 101
MinorAPIVersion ... 102
MinorVersion .. 102
Name .. 102
Parent ... 103

OpenLNS Programmer’s Reference vi

State ... 103
BufferConfiguration .. 104

Methods .. 105
Properties .. 105

ClassId .. 105
InputBufferCount .. 106
InputBufferSize ... 106
OutputBufferCount .. 107
OutputBufferSize .. 107
PriorityBufferCount ... 108
PriorityBufferSize .. 108

Channel ... 109
Methods .. 109
Properties .. 110

AltPathType .. 110
AppDevices .. 111
BitmapFilePath ... 111
ClassId .. 112
Delay ... 112
Description .. 113
Extensions .. 113
Handle .. 114
IconFilePath .. 114
MaxPriority .. 115
Name .. 115
Parent ... 116
RouterDevices .. 116
TransceiverId .. 117

Channels ... 119
Methods .. 119

Add ... 119
ItemByHandle ... 121
Remove .. 122

Properties .. 122
ClassId .. 122
Count .. 123
FilterType .. 123
Item ... 124
Parent ... 125
RefChannel 1 .. 125
RefChannel 2 .. 126
RefTransceiverType ... 126
_NewEnum ... 127

ComponentApp .. 128
Methods .. 128
Properties .. 128

ClassId .. 129
CommandID ... 129
ComponentClassID .. 130
DefaultAppFlag ... 132
Description .. 133
ManufacturerID ... 133
Name .. 134
Parent ... 134
RegisteredServer .. 135
VersionNumber ... 135

OpenLNS Programmer’s Reference vii

ComponentApps .. 135
Methods .. 136

Add ... 136
Remove .. 137

Properties .. 137
ClassId .. 137
Count .. 138
Item ... 138
Parent ... 139
_NewEnum ... 139

ConfigProperties .. 140
Methods .. 140

ItemByHandle ... 140
Properties .. 141

ClassId .. 141
Count .. 141
Item ... 142
Parent ... 143
_NewEnum ... 143

ConfigProperty ... 144
Methods .. 145

GetDataPoint .. 145
GetRawValuesEx ... 147
SetRawValuesEx .. 149
SetValueToUnknown .. 150

Properties .. 150
AppliesTo .. 151
AppliesToType .. 151
ByteLength ... 153
ClassId .. 153
ConfigFileOffset .. 154
ConfigFileType ... 155
ConfigNv ... 156
ConfigNvIndex .. 157
ConstantAttribute .. 158
Description .. 160
DeviceSpecificAttribute .. 160
Dimension ... 162
FlagsByte .. 162
FormatName ... 163
FuncProfileDescription ... 166
FuncProfileName .. 166
FuncProfileProgrammaticName ... 167
Handle .. 167
ImplementationType ... 167
Mode ... 169
Name .. 170
Parent ... 170
Precision ... 171
TypeInherits .. 171
TypeIndex ... 172
ValueStatus .. 173

ConnectDescTemplate .. 174
Methods .. 175
Properties .. 175

AliasOptions ... 176

OpenLNS Programmer’s Reference viii

BroadcastOptions ... 176
ClassId .. 177
Description .. 178
Handle .. 178
MTHubs .. 178
Name .. 179
NVHubs .. 179
Parent ... 180
PropertyOptions .. 180
ReceiveTimer ... 182
RepeatCount .. 183
RepeatTimer ... 184
RetryCount ... 186
ServiceType .. 187
TransmitTimer .. 188
UseAuthenticationFlag ... 189
UsePriorityFlag ... 190

ConnectDescTemplates .. 191
Methods .. 191

Add ... 191
ItemByHandle ... 192
Remove .. 192

Properties .. 192
ClassId .. 192
Count .. 193
Item ... 193
Parent ... 194
_NewEnum ... 194

Connections ... 195
Methods .. 196
Properties .. 196

ClassId .. 196
MessageTags ... 196
NetworkVariables ... 197
Parent ... 197

CreditInfo ... 198
Methods .. 198
Properties .. 198

ClassId .. 198
DaysRemaining .. 199
DeficitCredits (Deprecated) .. 199
LicensedCredits (Deprecated) ... 200
LicenseType (Deprecated) ... 200
MaxDeficitCredits (Deprecated) ... 201
UsedCredits (Deprecated) .. 201

DatabaseValidationReport .. 201
Methods .. 202

Export ... 202
Properties .. 203

ClassId .. 203
ErrorSummaries ... 204
Parent ... 204
PassedValidation .. 205
RepairedErrors ... 205
TotalObjectsValidated .. 206
UnrepairedErrors .. 207

OpenLNS Programmer’s Reference ix

DatabaseValidationErrorInstance .. 207
Methods .. 208
Properties .. 208

ClassId .. 208
ErrorType .. 209
ObjectClassInvolved ... 212
ObjectInternalId .. 213
ObjectName .. 213
Parent ... 214
ParentObjectClass.. 215
ParentObjectInternalId ... 216
ParentObjectName ... 217
Repairable .. 217
RepairAttempted ... 219
Repaired ... 219

DatabaseValidationErrorSummaries ... 220
Methods .. 221
Properties .. 221

ClassId .. 221
Count .. 222
Item ... 222
Parent ... 223
_NewEnum ... 223

DatabaseValidationErrorSummary .. 224
Methods .. 224

GetInstance .. 224
Properties .. 225

ClassId .. 225
ErrorType .. 226
NumberOfInstances ... 229
ObjectDetailsAvailable ... 230
Parent ... 230
Repairable .. 231
RepairAttempted ... 232

DataPoint ... 232
Methods .. 233

GetField .. 234
Read ... 234
Write ... 235

Properties .. 235
AutoRead .. 236
AutoWrite .. 237
ClassId .. 238
FieldCount .. 238
FieldName .. 239
FormatSpec .. 240
FormattedValue .. 241
MaxValue .. 243
MessageCode .. 244
MinValue ... 245
Parent ... 246
RawValue ... 247
SourceIndex ... 248
SourceOptions .. 249
TypeName .. 251
Value ... 251

OpenLNS Programmer’s Reference x

DataValue .. 253
Methods .. 253
Properties .. 254

AppDevice .. 254
ClassId .. 254
Data .. 255
DataType .. 255
FloatValue .. 255
IntValue... 255
Length ... 256
MonitorTag ... 256
NetworkVariable ... 256
SourceNodeId ... 257
SourceSubnetId .. 258
StringValue ... 258

DetailInfo .. 258
Methods .. 259
Properties .. 259

ClassId .. 259
ErrorLog .. 260
LostMessages .. 260
MissedMessages .. 261
ModelNumber ... 261
Parent ... 262
ReceiveTxFull ... 262
ResetCause .. 263
State ... 264
TransactionTimeouts .. 266
VersionNumber ... 266
XmitErrors ... 266

DeviceTemplate ... 267
Methods .. 268

Import .. 268
ResyncToResources .. 268

Properties .. 270
AppDevices .. 270
BitmapFilePath ... 271
ClassId .. 271
ComponentApps ... 272
Description .. 272
DeviceClass .. 273
DeviceSubclass .. 273
DeviceValidation ... 273
DynamicNvSupported .. 276
Extensions .. 277
Format .. 277
Handle .. 278
HostSelect .. 278
IconFilePath .. 279
Interface .. 279
ManufacturerID ... 280
ModelNo ... 280
Name .. 280
Parent ... 281
ProgramId ... 281
ProgramType .. 282

OpenLNS Programmer’s Reference xi

RegisteredComponent ... 282
SelfDocConsistency ... 283
SelfDocumentation ... 285
UserTypeFileName... 285
XifPath .. 286

DeviceTemplates ... 286
Methods .. 287

Add ... 287
ItemByHandle ... 288
ItemByProgramID ... 288
Remove .. 288

Properties .. 289
ClassId .. 289
Count .. 289
Item ... 290
Parent ... 290
_NewEnum ... 291

Error ... 292
Methods .. 292
Properties .. 292

Category ... 293
ClassId .. 293
ConnErrAppDeviceHandle1 ... 294
ConnErrAppDeviceHandle2 ... 294
ConnErrIndex1 ... 295
ConnErrIndex2 ... 295
ConnErrIndexType1 ... 296
ConnErrIndexType2 ... 297
Description .. 298
ErrObjClassId ... 298
ErrObjHandle .. 300
Number ... 301
Parent ... 301

Extension ... 302
Methods .. 302
Properties .. 302

ClassId .. 303
CopyWithParent ... 303
Description .. 304
Extensions .. 304
Handle .. 305
Key .. 305
Owner ... 305
OwnerClassId ... 306
Parent ... 306
Value1... 307
Value2... 308
Value3... 308

Extensions ... 309
Methods .. 310

Add ... 310
ItemByHandle ... 310
Remove .. 311

Properties .. 311
ClassId .. 311
Count .. 312

OpenLNS Programmer’s Reference xii

Item ... 312
Parent ... 313
_NewEnum ... 313

FileTransfer ... 314
Methods .. 315

AddTarget ... 315
ClearTargets ... 315
ReadFile ... 316
WriteFile ... 317

Properties .. 317
AuthenticationFlag .. 318
ClassId .. 318
FileCount .. 319
FileIndex ... 320
FileInfo .. 321
FileSize ... 321
FileType .. 322
HostTimeout ... 322
Parent ... 323
PriorityFlag ... 323
ReadBufferLength .. 324
RetryCount ... 324
RxTimeOut ... 325
StartPosition ... 325
TxTimeOut .. 326

FormatLocale ... 327
Methods .. 328
Properties .. 328

CategoryPreferenceList .. 329
ClassId .. 330
DateFormatSeparator ... 331
DateFormatSeparatorSource ... 331
DecimalPointCharacter .. 333
DecimalPointCharacterSource ... 333
DoubleFloatPrecision ... 335
FallbackFormat ... 336
FloatPrecision ... 337
LanguageId ... 338
LanguageIdSource ... 339
ListSeparatorCharacter .. 341
ListSeparatorCharacterSource ... 341
MeasurementUnits ... 343
MeasurementUnitsSource .. 344
Name .. 345
Parent ... 345
ShortDateFormat .. 346
ShortDateFormatSource .. 347
ShortTimeFormat .. 348
ShortTimeFormatSource .. 350
TimeFormatSeparator .. 351
TimeFormatSeparatorSource ... 352

FormatLocales ... 353
Methods .. 354

Add ... 354
Remove .. 355

Properties .. 356

OpenLNS Programmer’s Reference xiii

ClassId .. 357
Count .. 357
Item ... 357
Parent ... 358
_NewEnum ... 359

FormatSpec ... 359
Methods .. 360
Properties .. 360

AltFormatName .. 361
AltFormatNamesCount ... 361
ClassId .. 362
FormatName ... 362
FormatType .. 364
Index ... 365
Parent ... 366
Precision ... 366
ProgramId ... 367
Scope.. 368
Units .. 370
UnitsAdder .. 370
UnitsMultiplier ... 371

Interface ... 371
Methods .. 373

AddCompatibleNv ... 373
AddCompatibleNvEx .. 374
AddComplementaryNv ... 375
AddComplementaryNvEx ... 376
AddNvFromString ... 378
CreateTypeSpec ... 378
DownloadConfigProperties ... 379
RemoveNv .. 385
UploadConfigProperties ... 385

Properties .. 387
ClassId .. 388
ConfigProperties ... 388
ConfigPropertiesAvailable .. 389
CpByHandle ... 390
DynamicLonMarkObjectCapacity ... 391
DynamicMessageTags ... 392
LonMarkObjects ... 392
MaxNvInUse ... 393
MaxNvSupported .. 393
MessageTags ... 394
Name .. 394
NetworkVariables ... 395
Parent ... 395
StaticNvCount ... 396
SupportsDynamicNvsOnStaticLMOs ... 396
Version ... 397

Interfaces ... 398
Methods .. 398

Add ... 398
Remove .. 399

Properties .. 399
ClassId .. 399
Count .. 400

OpenLNS Programmer’s Reference xiv

Item ... 400
Parent ... 401
_NewEnum ... 401

LdrfLanguage .. 402
Methods .. 402
Properties .. 403

ClassId .. 403
Extension .. 403
LanguageCode ... 405
LdrfId ... 406
Name .. 407
Parent ... 407

LdrfLanguages ... 408
Methods .. 408
Properties .. 408

ClassId .. 408
Count .. 409
Item ... 409
Parent ... 410
_NewEnum ... 410

LonMarkAlarm ... 411
Methods .. 412
Properties .. 412

AlarmType .. 412
ClassId .. 413
IndexToSNVT ... 413
LimitValue ... 414
Location .. 414
ObjectId .. 415
Parent ... 415
PriorityLevel .. 416
TimeStamp ... 416
Value ... 417

LonMarkObject (Functional Block) .. 417
Methods .. 418

AssignNetworkVariable .. 418
MoveToInterface ... 419
UnassignNetworkVariable .. 421

Properties .. 421
AlarmFormat ... 422
ClassId .. 423
ComponentApps ... 424
ConfigProperties ... 424
Description .. 425
Extensions .. 425
FuncProfileDescription ... 426
FuncProfileIsDerived .. 426
FuncProfileName .. 427
FuncProfileProgrammaticName ... 427
Index ... 427
IsDynamic ... 428
LonMarkAlarm .. 428
Mode ... 429
Name .. 431
NetworkVariables ... 431
Parent ... 431

OpenLNS Programmer’s Reference xv

ParentInterface ... 432
PrincipalNv ... 433
ProgrammaticName.. 433
ReportMask .. 434
Request .. 435
SelfTestResults .. 437
Status .. 439
TypeIndex ... 440
TypeSpec ... 440

LonMarkObjects .. 441
Methods .. 441

Add ... 441
AddEx ... 443
AddFromTypeSpec ... 443
ItemByIndex .. 444
ItemByProgrammaticName .. 444
Remove .. 445
RemoveByIndex ... 445

Properties .. 446
ClassId .. 447
Count .. 447
Item ... 447
Parent ... 448
_NewEnum ... 449

MessageTag .. 449
Methods .. 450

AddTarget ... 450
Connect .. 451
Disconnect .. 452

Properties .. 452
AddressTableIndex... 453
AppDevice .. 454
AppDeviceName ... 454
ClassId .. 454
ConnectDescTemplate ... 455
Direction ... 455
Index ... 456
IsDynamic ... 456
MtHubs ... 457
MtTargets ... 457
Name .. 458
Parent ... 458

MessageTags .. 459
Methods .. 459

Add ... 459
Remove .. 460

Properties .. 461
ClassId .. 461
Count .. 461
Item ... 462
Parent ... 463
_NewEnum ... 463

MonitorSet ... 464
Methods .. 466

Close... 466
Disable .. 466

OpenLNS Programmer’s Reference xvi

Enable... 467
Open ... 468

Properties .. 470
ClassId .. 470
IsEnabled .. 471
IsOpen .. 472
IsPollingEnabled ... 472
MsgMonitorPoints ... 473
MsgOptions .. 473
Name .. 474
NvMonitorPoints ... 475
NvOptions ... 475
Parent ... 476
Tag .. 477

MonitorSets ... 478
Methods .. 478

Add ... 478
Remove .. 479

Properties .. 480
ClassId .. 480
Count .. 480
Item ... 481
Parent ... 482
_NewEnum ... 482

MsgMonitorOptions ... 483
Methods .. 484
Properties .. 484

Authentication ... 484
ClassId .. 484
FilterByCode ... 485
FilterBySource .. 486
FilterCode ... 486
Parent ... 487
Priority ... 487
Retries .. 488
ServiceType .. 489
UseAsyncSend ... 490

MsgMonitorPoint .. 493
Methods .. 493

Advise ... 494
Disable .. 494
Enable... 495
SendMsgWait ... 496
Unadvise ... 496

Properties .. 497
ClassId .. 497
CurrentOptions ... 498
DefaultOptions .. 498
InputFormatSpec .. 500
Name .. 500
OutputDataPoint ... 501
OutputFromatSpec ... 501
Parent ... 502
RequestDataPoint .. 502
Tag .. 504

Events ... 505

OpenLNS Programmer’s Reference xvii

UpdateErrorEvent ... 505
UpdateEvent ... 505

MsgMonitorPoints .. 508
Methods .. 508

Add ... 508
Remove .. 510

Properties .. 511
ClassId .. 511
Count .. 511
Item ... 512
Parent ... 513
_NewEnum ... 513

Network.. 514
Methods .. 515

Backup .. 515
CancelValidation ... 516
Close... 517
CloseIndependent .. 517
CompactDb ... 517
CreateTemporaryMonitorSet .. 518
Open ... 518
OpenIndependent ... 519
PreReplace ... 520
Replace .. 521
Validate ... 522

Properties .. 524
AllowPropagateModeDuringRemote .. 525
BitmapFilePath ... 526
Channels .. 527
ClassId .. 527
CurrentMonitorSets .. 527
DatabasePath ... 528
Description .. 529
EventInterval ... 529
Extensions .. 530
Handle .. 531
IconFilePath .. 531
IsOpen .. 532
IsOpenIndependent .. 532
MyVNI ... 533
Name .. 533
NetworkServiceDevices ... 534
NsiTimeout ... 534
OriginalName .. 535
Parent ... 535
RemoteNetworkName .. 536
ServerIdentifier ... 537
Systems .. 538

Networks .. 538
Methods .. 538

Add ... 539
RemoveEx .. 540

Properties .. 541
ClassId .. 542
Count .. 542
Item ... 543

OpenLNS Programmer’s Reference xviii

Parent ... 543
_NewEnum ... 544

NetworkInterface ... 544
Methods .. 545
Properties .. 545

ClassId .. 545
Name .. 546
Parent ... 546

NetworkInterfaces .. 547
Methods .. 547
Properties .. 547

ClassId .. 548
Count .. 548
Item ... 549
_NewEnum ... 549

NetworkResources .. 550
Methods .. 550
Properties .. 551

AppDeviceCount ... 551
ClassId .. 551
ExclusiveSelectorPoolSize ... 552
ExclusiveSelectorsAvailable ... 553
GroupIdsAllocated .. 554
Parent ... 554
RouterCount ... 555
SharableSelectorPoolSize .. 555
SubnetsAllocated .. 556

NetworkServiceDevice .. 556
Methods .. 557

BeginResetEvent .. 557
EndResetEvent ... 558

Properties .. 558
AppDevice .. 558
BitmapFilePath ... 559
ClassId .. 559
DefaultApplication ... 560
Description .. 560
Dialup.. 561
Extensions .. 561
IconFilePath .. 562
Interfaces .. 562
LcaNsdType ... 563
MipIsLayer2 .. 563
Name .. 564
NetworkInterface .. 564
NetworkInterfaceFlag ... 565
NodeHandle .. 565
NsiHandle ... 566
NsiNodeId ... 566
NsiSubnetId .. 567
NssFlag .. 567
Parent ... 568
PingClass ... 568

NetworkServiceDevices .. 569
Methods .. 569

Remove .. 570

OpenLNS Programmer’s Reference xix

Properties .. 570
ClassId .. 570
Count .. 571
Item ... 571
Parent ... 572
_NewEnum ... 572

NetworkVariable .. 573
Methods .. 574

AddTarget ... 575
Connect .. 576
Disconnect .. 577
DsRestoreOptions .. 577
DsSaveOptions ... 578
GetDataPoint .. 578
MoveToInterface ... 579
ToString .. 580

Properties .. 580
Aliases .. 582
AppDevice .. 582
AppDeviceName ... 583
AuthenticationConfigFlag ... 583
AuthenticationFlag .. 584
ChangeableTypeSupport ... 584
ClassId .. 586
ConfigClassFlag ... 587
ConfigProperties ... 588
ConnectDescTemplate ... 588
Description .. 589
Direction ... 589
DsFormatType .. 590
DsIsDefaultFormat .. 594
DsPollInterval ... 595
DsPriority .. 597
EstimatedMaxRate ... 597
EstimatedRate .. 598
Extensions .. 598
FuncProfileDescription ... 598
FuncProfileName .. 599
FuncProfileProgrammaticName ... 599
ImplementsCp .. 600
Index ... 600
IsConfigProperty ... 601
IsDynamic ... 602
IsPolled ... 602
Length ... 603
LmNumberManufacturerAssigned ... 604
LonMarkMemberIndex ... 604
LonMarkMemberNumber ... 605
LonMarkObjectNumber .. 606
MaxLength .. 606
Name .. 607
NvHubs ... 608
NvTargets ... 608
OfflineFlag .. 609
Parent ... 609
ParentInterface ... 610

OpenLNS Programmer’s Reference xx

Priority ... 610
PriorityConfigFlag ... 611
ProgrammaticName.. 612
Selector .. 613
SelfDocumentation ... 613
ServiceType .. 614
ServiceTypeConfigFlag .. 615
SnvtId .. 616
SnvtTypeIsModifiable ... 616
SyncFlag ... 617
TypeSpec ... 618

NetworkVariables .. 618
Methods .. 619

Add ... 619
ItemByIndex .. 623
ItemByProgrammaticName .. 623
Remove .. 624
RemoveByIndex ... 625

Properties .. 625
ClassId .. 626
Count .. 626
Item ... 626
Parent ... 627
_NewEnum ... 628

NvMonitorOptions .. 628
Methods .. 629
Properties .. 629

Authentication ... 630
ClassId .. 630
GenerateInitialFetch ... 631
Parent ... 632
PollInterval .. 632
Priority ... 633
ReportByException ... 634
ResetPollingIfUpdated .. 635
Retries .. 636
ServiceType .. 637
SuppressPollingIfBound ... 639
ThrottleInterval .. 640
UseAsyncSend ... 641
UseBoundUpdates ... 643

NvMonitorPoint .. 644
Methods .. 645

Advise ... 645
Disable .. 646
Enable... 646
Unadvise ... 647

Properties .. 647
ClassId .. 648
CurrentOptions ... 648
DataPoint .. 649
DefaultOptions .. 650
FormatSpec .. 651
Name .. 651
Parent ... 652
Tag .. 652

OpenLNS Programmer’s Reference xxi

Events ... 653
UpdateErrorEvent ... 654
UpdateEvent ... 654

NvMonitorPoints .. 657
Methods .. 657

Add ... 657
Remove .. 659

Properties .. 659
ClassId .. 659
Count .. 660
Item ... 660
Parent ... 661
_NewEnum ... 661

ObjectServer .. 662
Methods .. 664

AboutBox .. 664
AcceptIncomingSession ... 665
BeginIncomingSessionEvents .. 666
Close... 667
CompactDb ... 668
Drag .. 668
EndIncomingSessionEvents ... 668
ExtensionByHandle .. 669
Move ... 669
Open ... 669
RebuildLdrfCatalog ... 671
SetCustomerInfo ... 671
SetFocus .. 672
SetLicenseInfo .. 672
SetLicenseInfoEx .. 672
ShowWhatsThis .. 672
ZOrder .. 672

Properties .. 673
ActiveNetwork ... 673
ActiveRemoteNI .. 674
CausesValidation .. 675
ClassId .. 675
ComponentApps ... 675
Container .. 676
CurrentFormatLocale ... 676
DatabasePath ... 677
DragIcon ... 677
DragMode ... 677
Extensions .. 677
Flags ... 678
FormatLocales .. 680
Height ... 681
HelpContextId ... 681
Index ... 681
IsOpen .. 681
LdrfLanguages .. 682
LdrfCatalogPath .. 683
Left .. 683
Name .. 683
NetworkInterfaces... 684
Networks ... 684

OpenLNS Programmer’s Reference xxii

Object ... 685
Parent ... 685
RemoteFlag .. 686
RemoteNetworks .. 687
ResourceLanguageId ... 688
TabIndex ... 689
TabStop .. 689
Tag .. 689
ToolTipText ... 689
Top .. 689
Version ... 689
Visible ... 690
VNINetworks ... 690
WhatsThisHelpID .. 691
Width ... 691

Events ... 691
DragDrop .. 692
DragOver .. 692
GotFocus .. 692
LostFocus ... 692
OnAttachmentEvent ... 692
OnChangeEvent ... 694
OnCommission ... 696
OnDbConversionEvent ... 698
OnDbValidationEvent ... 699
OnIncomingSessionEvent .. 700
OnLonMarkObjectStatusChange ... 701
OnMissedEvent .. 702
OnMsgMonitorPointErrorEvent .. 702
OnMsgMonitorPointEvent .. 705
OnMsgMonitorPointUpdateEvent ... 707
OnNetworkServiceDeviceResetNew .. 708
OnNetworkVariableStringUpdate ... 708
OnNetworkVariableUpdate ... 709
OnNodeConnChangeEvent .. 710
OnNodeIntfChangeEvent ... 712
OnNvMonitorPointErrorEvent ... 717
OnNvMonitorPointEvent ... 719
OnNvMonitorPointUpdateEvent ... 722
OnNVUpdateError .. 722
OnSessionChangeEvent .. 722
OnSystemMgmtModeChangeEvent ... 724
OnSystemNssIdle ... 725
OnSystemServicePin .. 726
Validate ... 727

ObjectStatus .. 727
Methods .. 728
Properties .. 728

AlarmNotifyDisabled ... 729
ClassId .. 730
CommFailure .. 731
Disabled .. 732
ElectricalFault ... 733
FailSelfTest ... 734
FeedbackFailure ... 735
InAlarm ... 736

OpenLNS Programmer’s Reference xxiii

InOverride ... 737
InvalidId .. 738
InvalidRequest .. 738
LockedOut .. 739
ManualControl .. 740
MechanicalFault ... 741
ObjectId .. 742
OpenCircuit ... 742
OutOfLimits ... 743
OutOfService .. 744
OverRange ... 745
Parent ... 746
ProgrammingFail .. 746
ProgrammingMode ... 747
ReportMask .. 748
ResetComplete ... 749
SelfTestInProgress ... 750
Summary .. 751
UnableToMeasure .. 752
UnderRange ... 753

PingIntervals .. 754
Methods .. 754
Properties .. 754

ClassId .. 754
MobileClassPingInterval ... 755
Parent ... 756
PermanentClassPingInterval .. 756
StationaryClassPingInterval ... 757
TemporaryClassPingInterval .. 757

RecoveryStatus ... 758
Methods .. 759
Properties .. 759

ClassId .. 759
CurrentPhaseNumber .. 760
ItemsInPhase .. 760
NumbersPhases ... 761
Parent ... 761
PhaseType ... 761
ProgressIndicator ... 762
ProgressIndicatorType ... 763
Status .. 763
TotalAppDevices .. 764
TotalChannels .. 764
TotalConnections .. 765
TotalNvMts ... 765
TotalRouters ... 766

Router .. 766
Methods .. 767

Commission .. 767
CommissionEx .. 768
Decommission .. 769
MoveEx ... 769
PostMove .. 771
PreMove ... 771
Reboot .. 772
Replace .. 772

OpenLNS Programmer’s Reference xxiv

ReplaceEx .. 773
Reset .. 774
Test ... 774

Properties .. 780
AttachmentStatus ... 780
AuthenticationEnabled ... 781
BitmapFilePath ... 783
Class ... 783
ClassId .. 784
CommissionStatus .. 784
Description .. 785
Extensions .. 786
FarSide ... 786
Handle .. 787
IconFilePath .. 787
InitialAuthenticationKey .. 788
Location .. 788
Name .. 789
NearSide ... 789
Parent ... 790
PingClass ... 790
State ... 791
Subsystems .. 793

Routers .. 793
Methods .. 794

Add ... 794
AddEx ... 795
AddReference ... 797
ItemByHandle ... 797
ItemByNeuronID ... 798
Remove .. 798
RemoveEx .. 799

Properties .. 800
ClassId .. 800
Count .. 800
Item ... 801
_NewEnum ... 801

RouterSide ... 802
Methods .. 803

ClearStatus ... 803
Properties .. 803

BufferConfiguration ... 803
Channel .. 804
ClassId .. 805
DetailInfo .. 805
LastTestInfo .. 806
NeuronId ... 806
NodeId .. 806
Parent ... 807
PendingNeuronId .. 807
Priority ... 808
ProgramId ... 808
State ... 809
SubnetId ... 811
Subnets .. 811

ServiceStatus .. 812

OpenLNS Programmer’s Reference xxv

Methods .. 812
Properties .. 812

ClassId .. 812
Parent ... 813
QueuePosition .. 814
ResourceType .. 814
Status .. 815

SourceAddress .. 816
Methods .. 816
Properties .. 816

ClassId .. 817
DomainId .. 817
NodeId .. 818
Parent ... 818
SubnetId ... 818

Subnet ... 819
Methods .. 820
Properties .. 820

BitmapFilePath ... 820
ClassId .. 820
Description .. 821
DomainId .. 821
Extensions .. 822
IconFilePath .. 822
Name .. 823
Parent ... 823
SubnetId ... 824

Subnets .. 824
Methods .. 825

Add ... 825
Remove .. 825

Properties .. 826
ClassId .. 826
Count .. 826
Item ... 827
Parent ... 827
_NewEnum ... 828

Subsystem ... 829
Methods .. 830
Properties .. 830

AppDevices .. 830
BitmapFilePath ... 831
ClassId .. 831
Description .. 832
Extensions .. 832
Handle .. 833
IconFilePath .. 833
Name .. 834
Parent ... 834
Path .. 835
RouterDevices .. 835
Subsystems .. 836

Subsystems ... 836
Methods .. 837

Add ... 837
ItemByHandle ... 838

OpenLNS Programmer’s Reference xxvi

Remove .. 838
Properties .. 839

ClassID ... 839
Count .. 839
Item ... 840
Parent ... 840
_NewEnum ... 841

System ... 841
Methods .. 844

BeginAttachmentEvent ... 844
BeginChangeEvent ... 845
BeginCommissionEvent ... 845
BeginLonMarkObjectStatusChangeEvent 846
BeginMissedEvent .. 846
BeginNodeConnChangeEvent ... 847
BeginNodeIntfChangeEvent ... 847
BeginNssIdleEvent ... 847
BeginServicePinEvent .. 848
BeginSession .. 848
BeginSystemMgmtModeChangeEvent .. 849
CancelTransaction ... 850
Close... 850
CommittTransaction ... 851
DeconfigNetwork .. 851
DiscoverDevices ... 854
DoEventSync .. 856
DoRestoreOptions .. 857
DsSaveOptions ... 857
EndAttachmentEvent .. 858
EndChangeEvent ... 858
EndCommissionEvent .. 859
EndLonMarkObjectStatusChangeEvent .. 859
EndMissedEvent ... 859
EndNodeConnChangeEvent .. 860
EndNodeIntfChangeEvent .. 860
EndNssIdleEvent .. 860
EndServicePinEvent ... 860
EndSession .. 861
EndSystemMgmtModeChangeEvent ... 861
ExtensionByHandle .. 862
GetPermission .. 862
GetProgramId ... 863
Open ... 863
PrepareToRecoverFromNetwork ... 864
RecoverFromNetwork .. 866
RetryUpdates .. 868
SetEventSyncMode .. 869
StartTransaction ... 871
WinkByNeuronId ... 872

Properties .. 872
Accounts ... 873
ActivationLicense .. 874
ApplicationHandle ... 874
ApplicationName .. 875
AuthenticationKey ... 875
ClassId .. 876

OpenLNS Programmer’s Reference xxvii

ClientId.. 877
CommissionedDeviceCount ... 877
ComponentApps ... 878
Connections .. 878
CurrentAccount ... 878
CurrentDeviceCount ... 879
CustomerId ... 879
DebugTraceFlag ... 879
Description .. 880
DiscoveryInterval .. 880
DiscoveryLimitedFlag ... 881
DomainId .. 882
DsPollInterval ... 883
DsPriority .. 884
DsRepeatTimer .. 885
DsRetries .. 886
DsRetryCount ... 887
DsTxTimer .. 888
Extensions .. 889
FileTransfer .. 889
Handle .. 890
HostTimer ... 890
ImportDirectory ... 891
InstallOptions .. 891
IsOpen .. 893
LastError ... 893
LaunchLcaServerFlag .. 894
LdrfCatalogPath .. 895
LdrfLanguages .. 896
MgmtMode .. 896
Name .. 898
NetworkResources ... 898
NetworkServiceDevice ... 899
NssDbVersion ... 899
Parent ... 900
PermissionString .. 900
PingIntervals ... 901
RecoveryStatus .. 901
RegisterServicePin ... 902
RemoteChannel .. 903
RepeatTimer ... 904
ResourceLanguageId ... 906
RetryCount ... 907
SecurityLevel .. 907
ServiceStatus ... 908
State ... 909
Subnets .. 910
Subsystems .. 911
TemplateLibrary .. 911
TxTimer... 912
UncommissionedDeviceCount ... 913
UninstalledDeviceCount ... 914
UpdateInterval .. 915

Systems ... 916
Methods .. 916
Properties .. 916

OpenLNS Programmer’s Reference xxviii

ClassId .. 916
Count .. 917
Item ... 917
Parent ... 918
_NewEnum ... 918

TemplateLibrary ... 919
Methods .. 919
Properties .. 919

ClassId .. 920
ConnectDescTemplates ... 920
Description .. 920
DeviceTemplates .. 921
Parent ... 921

TestInfo .. 922
Methods .. 922
Properties .. 922

ActualDomainId .. 923
ActualNeuronId ... 923
ActualNodeId .. 924
ActualProgramId ... 924
ActualSubnetId ... 925
AuxResultData .. 925
ClassId .. 926
DetailInfo .. 927
ExpectedDomainId ... 927
ExpectedNeuronId .. 928
ExpectedNodeId ... 928
ExpectedProgramId .. 929
ExpectedSubnetId .. 929
IsDetailInfoValid .. 930
Parent ... 930
Status .. 931

TypeSpec... 936
Methods .. 937

Lookup .. 937
Properties .. 937

ClassId .. 937
Index ... 938
IsComplete ... 938
Length ... 939
ObjectType ... 940
Parent ... 940
ProgramId ... 941
Scope.. 942
TypeName .. 943

UpgradeInfo ... 944
Methods .. 944
Properties .. 944

Class ... 945
ClassId .. 946
FromIndex .. 946
FromOwnerIndex .. 947
Parent ... 948
Reason ... 948
Status .. 951
ToIndex ... 953

OpenLNS Programmer’s Reference xxix

ToOwnerIndex .. 953
UpgradeInfos ... 954

Methods .. 954
Properties .. 954

ClassId .. 955
Count .. 955
Item ... 955
Parent ... 956
_NewEnum ... 957

UpgradeStatus ... 957
Methods .. 958
Properties .. 958

ClassId .. 958
Parent ... 958
Result.. 959
Sequence ... 960
UprgradeInfos ... 960

3 Interfaces ... 963
ILcaMsgMonitorPointListener .. 964

Methods .. 964
UpdateErrorEvent ... 964
UpdateEvent ... 965

ILcaNvMonitorPointListener .. 966
Methods .. 966

UpdateErrorEvent ... 966
UpdateEvent ... 967

ILcaProgressListener .. 968
Methods .. 968

ProgressUpdate .. 968
4 OpenLNS Errors .. 971

Errors ... 972
Network Services Errors .. 972
Network Interface Errors ... 993
Connection Errors .. 996
Object Server Errors .. 1001
Data Server Errors ... 1013
Formatter Errors .. 1021
VNI Errors .. 1025

Appendix A Deprecated Items ... 1033
Deprecated Items .. 1034

Deprecated Objects .. 1035
Deprecated Methods ... 1036
Deprecated Properties .. 1038
Deprecated Events ... 1043

OpenLNS Programmer’s Reference xxx

OpenLNS Programmer's Reference xxxi

Preface

This document provides an overview of how to use the OpenLNS Object
Server Active X control, and it contains detailed information on each

object, property, method, event and constant you will use when writing
OpenLNS applications. This includes information such as the syntax you

should use when calling a method or writing to a property, and the
version when each item was Added to API.

OpenLNS Programmer's Reference xxxii

Purpose
This document provides reference information for writing OpenLNS applications.

Audience
This guide is intended for software developers creating OpenLNS applications. OpenLNS
applications may be written in any language that supports COM Components or ActiveX
controls, including Microsoft® Visual C# .NET, Visual C++ .NET, and Visual Basic .NET.
Readers of this guide should have experience programming in these languages, and be
familiar with LONWORKS® technology and COM/ActiveX control concepts.

System Requirements
The following section lists the system requirements for computers running the OpenLNS
Standard Developer’s Kit (SDK) and the OpenLNS Server (requirements for smaller and
larger systems are listed separately).

OpenLNS SDK
System requirements for computers running the OpenLNS SDK are as follows:

• Windows 7 (64-bit and 32-bit), Windows Server 2008 SR2 64-bit and 32-bit (64-bit
RNI required; U10/U20 desirable), Windows Vista with Service Pack (SP) 1, or
Windows XP with SP3 (32-bit).

• 500 MHz processor or faster.

• 2 GB or more of free disk space.

• 512 MB RAM.

• 1,024 MB page file minimum.

• Microsoft Visual Studio 2010 or Microsoft Visual Studio 2008 (.NET Framework 3.5)
for development of Visual C# .NET, Visual C++ .NET, and Visual Basic .NET
applications.

• DVD-ROM drive

• 1,024 x 768 or higher-resolution display with at least 256 colors.

• Mouse or compatible pointing device

• Local, remote, or IP-852 OpenLDV 4.0 network interface.
o Compatible local network interfaces include the U10/U20 USB network interface;

PCC-10, PCLTA-20, or PCLTA-21 network interface cards; and the SLTA-10
Serial LonTalk Adapter. The PCC/PCLTA and SLTA-10 network interfaces are
compatible with 32-bit versions of Windows only.

o Compatible remote network interfaces include the SmartServer, i.LON 100 e3
Internet Server, i.LON 600 LONWORKS/IP-852 Router, and i.LON 10 Ethernet
Adapter.

o Compatible IP-852 network interfaces include the SmartServer, i.LON 100 e3
Internet Server, and i.LON 600 LONWORKS/IP-852 Router.

OpenLNS Programmer's Reference xxxiii

OpenLNS Server Computer (Smaller Network)
System requirements for computers running the OpenLNS Server on a smaller network
are as follows:

• Windows 7 (64-bit and 32-bit), Windows Server 2008 SR2 64-bit and 32-bit (64-bit
RNI required; U10/U20 desirable), Windows Vista with Service Pack (SP) 1, or
Windows XP with SP3 (32-bit).

• 100MHz processor or faster

• 50 MB or more of free disk space. This does not account for the size of the OpenLNS
application or the OpenLNS network databases.

• 256 MB RAM or more. This may vary depending on the requirements of the
OpenLNS Server and the OpenLNS applications running on the computer.

• 1,024 MB page file minimum.

• Microsoft Visual Studio 2010 or Microsoft Visual Studio 2008 (.NET Framework 3.5)
for development of Visual C# .NET, Visual C++ .NET, and Visual Basic .NET
applications.

• DVD-ROM drive

• 1,024 x 768 or higher-resolution display with at least 256 colors.

• Mouse or compatible pointing device

• Local, remote, or IP-852 OpenLDV 4.0 network interface.
o Compatible local network interfaces include the U10/U20 USB network interface;

PCC-10, PCLTA-20, or PCLTA-21 network interface cards; and the SLTA-10
Serial LonTalk Adapter. The PCC/PCLTA and SLTA-10 network interfaces are
compatible with 32-bit versions of Windows only.

o Compatible remote network interfaces include the SmartServer, i.LON 100 e3
Internet Server, i.LON 600 LONWORKS/IP-852 Router, and i.LON 10 Ethernet
Adapter.

o Compatible IP-852 network interfaces include the SmartServer, i.LON 100 e3
Internet Server, and i.LON 600 LONWORKS/IP-852 Router.

OpenLNS Server Computer (Larger, Busier Network)
System requirements for computers running the OpenLNS Server on a larger network
are as follows (these requirements are also valid for computers on which a large network
database is engineered prior to the network’s OpenLNS Server becoming operational):

• Windows 7 (64-bit and 32-bit), Windows Server 2008 SR2 64-bit and 32-bit (64-bit
RNI required; U10/U20 desirable), Windows Vista with Service Pack (SP) 1, or
Windows XP with SP3 (32-bit).

• 2GHz processor or faster

• 50 MB or more of free disk space. This does not account for the size of the OpenLNS
application or the OpenLNS network databases. Use a high-performance hard disk
for the best performace during development.

• 2 GB RAM or more. This may vary depending on the requirements of the OpenLNS
Server and the OpenLNS applications running on the computer.

• 2,048 MB page file minimum.

OpenLNS Programmer's Reference xxxiv

• Microsoft Visual Studio 2010 or Microsoft Visual Studio 2008 (.NET Framework 3.5)
for development of Visual C# .NET, Visual C++ .NET, and Visual Basic .NET
applications.

• DVD-ROM drive

• 1,024 x 768 or higher-resolution display with at least 256 colors.

• Mouse or compatible pointing device

• Local, remote, or IP-852 OpenLDV 4.0 network interface.
o Compatible local network interfaces include the U10/U20 USB network interface;

PCC-10, PCLTA-20, or PCLTA-21 network interface cards; and the SLTA-10
Serial LonTalk Adapter. The PCC/PCLTA and SLTA-10 network interfaces are
compatible with 32-bit versions of Windows only.

o Compatible remote network interfaces include the SmartServer, i.LON 100 e3
Internet Server, i.LON 600 LONWORKS/IP-852 Router, and i.LON 10 Ethernet
Adapter.

o Compatible IP-852 network interfaces include the SmartServer, i.LON 100 e3
Internet Server, and i.LON 600 LONWORKS/IP-852 Router.

OpenLNS Documentation
The documentation for OpenLNS is provided as Adobe Acrobat PDF files and online help
files. The PDF file for this document is installed in the Echelon OpenLNS Utilites
program folder when you install the Echelon OpenLNS software. You can also download
the latest OpenLNS documentation, including the latest version of this guide, by going to
the Echelon OpenLNS Web site at www.echelon.com/openlns.

OpenLNS CT User’s Guide Describes how to use the OpenLNS Commissioning Tool
(CT) to design, commission, modify, and maintain
LONWORKS networks.

OpenLNS Programmer’s Guide

Describes how to use the OpenLNS Object Server
ActiveX Control to develop OpenLNS apps.

OpenLNSPlug-in Framework
Developer’s Guide

Describes how to write OpenLNS system and device
plug-ins using .NET programming languages such as
C# and Visual Basic .NET.

The following documents supplement the material provided in this guide. You can
download these documents from Echelon’s Web site at www.echelon.com/docs.

Introduction to the LONWORKS
Platform

Provides a high-level introduction to LONWORKS
networks and the tools and components that are used
for developing, installing, operating, and maintaining
them.

For More Information and Technical Support
The Echelon OpenLNS Utilties ReadMe document provides descriptions of known
problems, if any, and their workarounds. To view the Echelon OpenLNS Utilties
ReadMe document, click Start, point to Programs, point to Echelon OpenLNS
Utilities, and then select Echelon OpenLNS Utilities ReadMe.

http://www.echelon.com/openlns
http://www.echelon.com/docs

OpenLNS Programmer's Reference xxxv

If you have technical questions that are not answered by this document, the online help
files provided with the OpenLNS Standard Developer’s Kit, or the Echelon OpenLNS
Utilties ReadMe document, you can contact technical support. Free e-mail support is
available or you can purchase phone support from Echelon or an Echelon support
partner. See www.echelon.com/support for more information on Echelon support and
training services.

Region Languages Supported Contact Information
The Americas

English
Japanese

Echelon Corporation
Attn. Customer Support
550 Meridian Avenue
San Jose, CA 95126
Phone (toll-free):
1.800-258-4LON (258-4566)
Phone: +1.408-938-5200
Fax: +1.408-790-3801
lonsupport@echelon.com

Europe

English
German
French
Italian

Echelon Europe Ltd.
Suite 12
Building 6
Croxley Green Business
Park
Hatters Lane
Watford
Hertfordshire WD18 8YH
United Kingdom
Phone: +44 (0)1923 430200
Fax: +44 (0)1923 430300
lonsupport@echelon.co.uk

Japan

Japanese Echelon Japan
Holland Hills Mori Tower,
18F
5-11.2 Toranomon,
Minato-ku
Tokyo 105-0001
Japan
Phone: +81.3-5733-3320
Fax: +81.3-5733-3321
lonsupport@echelon.co.jp

China

Chinese
English

Echelon Greater China
Rm. 1007-1008, IBM Tower
Pacific Century Place
2A Gong Ti Bei Lu
Chaoyang District
Beijing 100027, China
Phone: +86-10-6539-3750
Fax: +86-10-6539-3754
lonsupport@echelon.com.cn

Other Regions

English
Japanese

Phone: +1.408-938-5200
Fax: +1.408-328-3801
lonsupport@echelon.com

http://www.echelon.com/support
mailto:lonsupport@echelon.com
mailto:sales@echelon.co.uk
mailto:lonsupport@echelon.co.jp
mailto:lonsupport@echelon.com.cn
mailto:lonsupport@echelon.com

OpenLNS Programmer's Reference xxxvi

Content
This guide includes the following content:

• OpenLNS Object Server. Introduces the OpenLNS Object Server, describes the
OpenLNS Object model, hierarchy, and naming conventions, and it

• Objects. Describes the objects in the OpenLNS Object hierarchy, and details their
methods, properties, and events.

• Interfaces. Details each interface in the OpenLNS Object hierarchy.
• OpenLNS Errors. Lists and describes the OpenLNS errors that may be generated by

the various OpenLNS components.

• Appendix A: Deprecated Items. Lists methods, properties, and objects that should no
longer be used in OpenLNS.

OpenLNS Programmer's Reference xxxvii

OpenLNS Programmer's Reference 1

1

OpenLNS Object Server

This chapter introduces the OpenLNS Object Server, describes
the OpenLNS Object model, hierarchy, and naming conventions.

OpenLNS Programmer's Reference 2

Introduction
The OpenLNS Object Server ActiveX Control provides high-level services for installing,
diagnosing, maintaining, and monitoring and controlling LONWORKS networks. This
ActiveX control is an OpenLNS client application interface into the OpenLNS network
operating system. The OpenLNS network operating system allows LONWORKS network
tools to interoperate with one another, and interact with the managed LONWORKS
network. OpenLNS brings the power of client-server architecture, and object-oriented,
component-based software design into control networks. This enables OpenLNS tools to
work together to install, maintain, monitor, and control LONWORKS networks. In
addition, it provides the fastest, most efficient way to bring control on-line with all your
other information systems.
The OpenLNS Object Server provides its services through a set of objects which
correspond to components within a LONWORKS network. These objects are therefore
referred to as LONWORKS Component Architecture (LCA) objects. The classes which
define the LCA objects are organized into the OpenLNS Object Hierarchy. The
LcaObjectServer class is the highest level (root) class within this hierarchy. The root
class contains lower level objects, and the lower level objects contain additional objects,
creating a tree structure.
An object is "contained" by a higher level, or parent, object when it may be accessed
through a property of the parent. Some properties return individual objects, while
others contain a collection of objects. Lower level objects may appear in several locations
within the class tree. For example, Interface objects are contained by both
DeviceTemplate and AppDevice objects. See the OpenLNS Object Server Object Model
for more information.

OpenLNS Object Server Object Model
This section gives an overview of the object model depicted in the OpenLNS Object
Hierarchy. The "Lca" prefixes have been eliminated from the names for this discussion
for reasons discussed in Object Naming Convention.

The ObjectServer class is the highest level (root) class within this hierarchy. An instance
of this class can be created directly by an OpenLNS application. Typically, in
development tools such as Visual C# .NET, Visual C++ .NET, and Visual Basic .NET,
this is done by dragging a representation of the control from a palette onto a form or
workspace. This creates an ObjectServer object, which represents an instance of the
OpenLNS ActiveX control.
Many objects include properties that reference other objects or collections of objects. For
example, an AppDevice object contains a DeviceTemplate object which references the
device template which was used to create the application device that the AppDevice
object represents. These object references define a tree structure for the Object Server.

The ObjectServer object directly references six collection objects: the ComponentApps
class (in the ObjectServer object's ComponentApps property), the NetworkInterfaces class
(in the NetworkInterfaces property), three instances of the Networks class (in the
Networks, RemoteNetworks, and VNINetworks properties), and the Extensions class (in
the Extensions property). These objects represent the component applications, network
interfaces, extensions, and networks which have been registered on the computer or are
otherwise available for use by the Object Server.

OpenLNS Programmer's Reference 3

The remainder of the OpenLNS Objects originate from the three Networks collections. A
network is represented by an instance of the Network object, which contains both a
systems and channels collection. A network defines a physical LONWORKS network,
while a system is an entity, both logical and physical, that uses the network fabric. Each
Network object has a MyVNI property which contains an AppDevice object which
contains the MonitorSets collection for that network. Each MonitorSet contains an
NvMonitorPoints collection and an MsgMonitorPoints which represent the network
variable and message monitor points contained in that monitor set.

One System object is supported per network. Channels are physical objects which may
be shared by multiple systems (each with their own independent OpenLNS Server); they
are accessible via the Network object.

The System object has a tree of objects below it. A TemplateLibrary object has the role of
a profile or “parts catalog”, containing generic parts that can be applied across different
objects. For example, a single HardwareTemplate object or DeviceTemplate object can be
defined that is later associated with more than one AppDevice. A HardwareTemplate
contains information such as the hardware type and Neuron model of a device and is
used only for devices with application images which are built from source code using the
LCA Field Compiler. A DeviceTemplate contains all the information necessary to define
a generic AppDevice; the information contained in the DeviceTemplate can come from
the external interface files (.XIF, .XFB, and .XFO extensions), a source program, or the
device itself. A ConnectDescTemplate object describes a generic connection, including its
LonTalk protocol service and other connection attributes.

The System object contains a Subsystems collection. Subsystems are used to organize
devices similar to how directories are used to organize files—they could represent
groupings of devices in a room, for instance. The concept of a location in the OpenLNS
Commissioning Tool (CT) can be represented using a Subsystem. By allowing nested
Subsystems, the Object Server makes it possible to define subsystem hierarchies. For
example, a building subsystem may consist of floor subsystems, each of which consists of
room subsystems, each of which consist of HVAC, security, and lighting subsystems.
A single device may be associated with multiple subsystems, and must be associated
with at least one. For example, a VAV controller may appear in both a Floor subsystem
and an HVAC subsystem. When initially defining a device, it is first added to a single
subsystem. References to the device may then be added to other subsystems. The device
is not deleted from the OpenLNS database or decommissioned until all references have
been deleted. The device’s association with the first subsystem is also treated as a
reference, so it may be removed from its initial subsystem at any time.

The AppDevices collection, and the AppDevice objects that are part of it, are key
components of a System. AppDevice objects represent individual application devices (also
called nodes). Both Neuron Chip-hosted and host-based devices are represented by this
object.

Each AppDevice object contains an Interface object. The Interface object contains
LonMarkObject, NetworkVariable, ConfigProperty, and MessageTag objects that define
the external interface to the device. AppDevices may also contain an Interfaces collection
object, if the underlying physical device supports dynamic network variables.

DeviceTemplate objects also contain an Interface object that defines the external
interface for the device template. The DeviceTemplate object’s Interface has the same
definition as the AppDevice object’s Interface.
User-defined object names must be unique within their respective collections. For
example, Subsystem names, AppDevice names, and Router names must be unique within

OpenLNS Programmer's Reference 4

a Subsystem. Different Subsystems can contain devices with the same name, however.
For example, a building may consist of a Subsystem object for each room, with each room
Subsystem including AppDevice objects called VAV and Thermostat.

The NetworkServiceDevice class provides a logical representation of the OpenLNS Server
and its NSI. The network service device, in turn, contains a NetworkInterface object.
This network interface determines the driver name to be associated with the system, if
any. Many additional object classes are provided to OpenLNS applications through the
Object Server.

OpenLNS Object Hierarchy

System

TemplateLibrary

Interface

Channel

NetworkServiceDevice

ComponentApp Extension NetworkInterface

DeviceTemplate

Subnet

Subsystem

Subsystem

AppDevice
ConnectDescTemplate NetworkInterface

AppDevice

ObjectServer

Channel

NetworkInterface

AppDevice

Extension
Extension

NetworkServiceDevice

Subnet

Connections

MessageTag

NetworkVariable

Interface

Alias

DeviceTemplate

ComponentApp

Extension

Interface

NetworkVariable

ConfigProperty

MessageTag

ConfigProperty

LonMarkObject

NetworkVariable

LonMarkAlarm

ObjectStatus (2)

Network (3)

Application

Interface

AppDevice (MyVNI)

NvMonitorPoint

NvMonitorOptions (2)

FormatSpec

MsgMonitorOptions (2)

LdrfLanguage

Router

Channel

Subnet

RouterSide (2)

Extension

Subsystem

DetailInfo

Extension

UpgradeStatus

UpgradeInfo

NvMonitorOptions

MsgMonitorOptions

FormatSpec

DataPoint

A parenthetical number next to an object or collection
indicates that the parent object references multiple
copies of that object or collection.

FormatSpec

DataPoint

Extension

DetailInfo

Subsystem

TestInfo

Error

Extension

RecoveryStatus

ComponentApp

PingIntervals

ServiceStatus

ConfigProperty

Account

FileTransfer

MsgMonitorPoint

MonitorSet

DataValue*
SourceAddress*

FormatSpec (2)

*Object is not referenced directly by any other object, but is
created by events and methods. The DataValue and
SourceAddress objects are created by network variable and
monitor point update events, respectively. The
DatabaseValidationReport,
DatabaseValidationErrorSummary,
andDatabaseValidationErrorInstance objects are created
when you call the Validate() method.

NetworkResources

FormatLocale

TestInfo

TypeSpec

DatabaseValidationReport*

DatabaseValidationErrorSummary*

DatabaseValidationErrorInstance*

MonitorSet

DataPoint

DataPoint

ActivationLicense KEY:

 Object Only
Object &
Collection

TypeSpec

OpenLNS Programmer's Reference 5

Object Naming Convention
While the documentation currently references most objects by their base names, it is
important to note that this name is not the full class name. The full name, which must
be used when declaring object types, includes the "Lca" prefix.
For example,
Base Name Full Class Name
AppDevice LcaAppDevice

Network LcaNetwork
Subsystems LcaSubsystems
The use of the prefix is necessary to avoid conflicts with other ActiveX controls and
servers, since the ActiveX software architecture uses a single name space for all controls
and servers.

OpenLNS Programmer's Reference 6

OpenLNS Programmer's Reference 7

2

Objects

This chapter describes the objects in the OpenLNS Object hierarchy, and
details their properties, methods, and events.

OpenLNS Programmer's Reference 8

Account
Description Represents an OpenLNS licensing account. Reserved for

future use.

Added to API Prior to LNS Release 3.0.

Accessed Through Accounts collection object
System object

Default Property Name property.

Methods None

Properties • AccountNumber
• Charges
• ClassID
• Description
• Name

Methods
The Account object does not contain any methods.

Properties
The Account object contains the following properties:

• AccountNumber
• Charges
• ClassID
• Description
• Name

AccountNumber
Summary Contains the account number for the specified account.

Reserved for future use. This property and the associated
Account and Accounts objects are reserved for future use

Availability Local, full, and lightweight clients.

Syntax acctNumber = acctObject.AccountNumber
Element Description

acctNumber A Long containing the account number.

acctObject The Account object to be acted on.

Data Type Long.

Read/Write Read and write.

Added to API Prior to LNS Release 3.0.

Charges
Summary Contains the number of charges applied to the specified

account. Reserved for future use. This property allows the
object type to be determined when it is unknown (for

OpenLNS Programmer's Reference 9

example, when the object was accessed using the Parent
property of another object).

Availability Local, full, and lightweight clients.

Syntax numCharges = acctObject.Charges
Element Description

numCharges A Long containing the number of
charges.

acctObject The Account object to be acted on.

Data Type Long.

Read/Write Read and write.

Added to API Prior to LNS Release 3.0.

Comments This property and the associated Account and Accounts
objects are reserved for future use.

ClassID
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Account object in the ConstClassIds
constant:
54 lcaClassIdAlias

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Description
Summary Stores description information about the object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax stringValue = object.Description
Element Description

OpenLNS Programmer's Reference 10

stringValue A string description of the object.

object The object to be acted on.

Data Type Long.

Read/Write Read and write.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property is read only for Error objects.

Name
Summary Specifies the name of an object as a character string.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Accounts
The following table summarizes the Accounts object.

Description Represents an OpenLNS licensing account. Reserved for
future use.

Added to API Prior to LNS Release 3.0.

Accessed Through System object

Default Property Item property.

Methods • Add
• Remove

Properties • ClassID
• Count
• Item
• _NewEnum

Methods
The Account object contains the following methods:

OpenLNS Programmer's Reference 11

• Add
• Remove

Add
Summary Adds an object to the specified collection.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax objectColl.Add name

Element Description

objectColl The collection being acted upon.

name A String value specifying the name of
the object being added.

Added to API Prior to LNS Release 3.0.

Remove
Summary Removes an object from the specified collection.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax objectColl.Remove indexName

Element Description

objectColl The collection containing the object to
be removed.

name A Long value specifying the collection
index of the object to remove, or a
String value specifying the name of the
object to remove.

Added to API Prior to LNS Release 3.0.

Properties
The Account object contains the following properties:

• ClassID
• Count
• Item
• _NewEnum

ClassId
Summary Identifies the object class of this object. This property allows

the object type to be determined when it is unknown (for
example, when the object was accessed using the Parent
property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

OpenLNS Programmer's Reference 12

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Accounts object in the ConstClassIds
constant:
55 lcaClassIdAccounts

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property is read only for Error objects.

Item
Summary Returns an object from a collection. You can retrieve an

object from its collection by passing its index (ordinal
position) within that collection as the argument for the Item
property. Index values start at 1.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)

OpenLNS Programmer's Reference 13

Element Description

retrievedObject The object retrieved from the collection.

collObject The collection object to be acted on.

index A Long type specifying the ordinal
index of the object to retrieve.

stringExpression A string type specifying the name of the
object to retrieve.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

OpenLNS Programmer's Reference 14

ActivationLicense
An ActivationLicense object represents a snapshot of the current activation license and
related information on the OpenLNS Server at the time it was first accessed. The following
table summarizes the ActivationLicense object.

Description A snapshot of the current activation license on the OpenLNS
Server.

Added to API OpenLNS.

Accessed Through System object.

Default Property None.

Methods • Refresh

Properties • ActivatedVersion
• ClassId
• DaysRemaining
• DeviceCapacity
• DeviceCapacityConsumed
• ExpirationDate
• LicesnseId
• LicenseStatus
• IsTrialLicense
• MaxOpenSystems
• RequiredVersion
• RunTimeLimit
• RunTimeRemaining

Methods
The ActivationLicense object contains the following method.

Refresh
Summary Updates the ActivationLicense object with a fresh snapshot of

the activation license.

Availability Local, full, and lightweight clients.

Syntax ActivationLicense.Refresh

Element Description

ActivationLicense The ActivationLicense object to be acted
on.

Added to API OpenLNS.

Properties
The ActivationLicense object contains the following properties:

• ActivatedVersion
• ClassId
• DaysRemaining

OpenLNS Programmer's Reference 15

• DeviceCapacity
• DeviceCapacityConsumed
• ExpirationDate
• LicesnseId
• LicenseStatus
• IsTrialLicense
• MaxOpenSystems
• RequiredVersion
• RunTimeLimit
• RunTimeRemaining

ActivatedVersion
Summary The version number that the license covers. If there is no

valid license, this value is an empty string.

Availability Local, full, and lightweight clients.

Syntax version = alObject.ActivatedVersion
Element Description

version The version number that the license
covers.

alObject The ActivationLicense object to be acted
on.

Data Type String.

Read/Write Read only.

Added to API OpenLNS.

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the Alias
object in the ConstClassIds constant:
97 lcaClassIdActivationLicense

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 16

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

DaysRemaining
Summary Indicates the number of days remaining before the OpenLNS

Server license expires.

Availability Local, full, and lightweight clients.

Syntax days = alObject.DaysRemaining
Element Description

days The number of days until the license
expires.
A value of lcaLicenseNoRestriction (-1)
indicates that there is no expiration.

alObject The ActivationLicense object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API OpenLNS.

DeviceCapacity
Summary The total number of devices that can be defined in the

database, excluding NSDs and routers.
A device that has been added without specifying both a
device template and a channel is not considered “defined”
until that device has been commissioned.

Availability Local, full, and lightweight clients.

Syntax numberDevices = alObject.DeviceCapacity
Element Description

numberDevices The number of devices that can be defined
in the database.
A value of 65535 indicates that the
database has unlimited capacity.

alObject The ActivationLicense object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API OpenLNS.

DeviceCapacityConsumed
Summary The total number of devices that have been defined in the

OpenLNS Programmer's Reference 17

database, excluding NSDs and routers.
A device that has been added without specifying both a
device template and a channel is not considered “defined”
until that device has been commissioned.

Availability Local, full, and lightweight clients.

Syntax numberDevices = alObject.DeviceCapacityConsumed
Element Description

numberDevices The number of devices that have been
defined in the database.

alObject The ActivationLicense object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API OpenLNS.

ExpirationDate
Summary The date on which the license expires. The license will expire

at 00:00 local time on the morning of the specified date.

Availability Local, full, and lightweight clients.

Syntax date = alObject.ExpirationDate
Element Description

date The date the license expires. An empty
string indicates that there is no expiration
date for the license.

alObject The ActivationLicense object to be acted
on.

Data Type Date.

Read/Write Read only.

Added to API OpenLNS.

LicenseId
Summary The unique LNS activation license ID.

Availability Local, full, and lightweight clients.

Syntax licenseIdValue = alObject.LicenseId
Element Description

licenseIdValue The LNS activation license ID. This is an
empty string if no license ID is found.

alObject The ActivationLicense object to be acted
on.

OpenLNS Programmer's Reference 18

Data Type String.

Read/Write Read only.

Added to API OpenLNS.

LicenseStatus
Summary Indicates whether the activation license is valid, and indicates

why an activation license is invalid.

Availability Local, full, and lightweight clients.

Syntax stateValue = alObject.LicenseStatus
Element Description

stateValue The enumerated values for this
element, which are contained in the
ConstActivationLicenseStatus constant,
are as follows:
0 lcaActivationLicenseStatusActivated
The license is valid.
1 lcaActivationLicenseStatusInvalid
The license file is invalid.
2 lcaActivationLicenseStatusWrongPc
The license file not valid for this computer.
3 lcaActivationLicenseStatusExpired
The license has expired.
4
lcaActivationLicenseStatusInvalidVersion
The license is valid, but not for this release.
5 lcaActivationLicenseStatusTimedOut
The RunTimeLimit has run out.

alObject The ActivationLicense object to be acted on.

Data Type String.

Read/Write Read only.

Added to API OpenLNS.

IsTrialLicense
Summary Indicates whether the activation license is a trial license.

Availability Local, full, and lightweight clients.

Syntax trialLicenseValue = alObject. IsTrialLicense
Element Description

trialLicenseValue A True of False value indicating

OpenLNS Programmer's Reference 19

whether the activation license is a trial
license.
TRUE. The activation license is a trial

license.
FALSE. The activation license is not a

trial license.

alObject The ActivationLicense object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API OpenLNS.

MaxOpenSystems
Summary Indicates the maximum number of local systems that can be

opened at a given time on this computer.

Availability Local, full, and lightweight clients.

Syntax numberSystems = alObject. MaxOpenSystems
Element Description

numberSystems The maximum number of local systems
that can be opened on the computer.
A value of lcaLicenseNoRestriction
(-1) indicates that there is no limit.

alObject The ActivationLicense object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API OpenLNS.

RequiredVersion
Summary The minimum version number that is required by the current

release.

Availability Local, full, and lightweight clients.

Syntax VersionNumber = alObject. RequiredVersion
Element Description

timeValue The minimum version number required
by the current release.
An empty string indicates that there is
no version requirement.

alObject The ActivationLicense object to be acted
on.

OpenLNS Programmer's Reference 20

Data Type String.

Read/Write Read only.

Added to API OpenLNS.

RunTimeLimit
Summary The maximum number of minutes that the application can

use LNS after opening the first network.

Availability Local, full, and lightweight clients.

Syntax timeValue = alObject. RunTimeLimit
Element Description

timeValue The maximum number of minutes that
the application can use LNS after
opening the first network.
A value of lcaLicenseNoRestriction
(-1) indicates that there is no runtime
limit.

alObject The ActivationLicense object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API OpenLNS.

RunTimeRemaining
Summary The number of minutes that the application can continue to

use LNS after opening the first network.

Availability Local, full, and lightweight clients.

Syntax timeLimitValue = alObject. RunTimeLimit
Element Description

timeValue The number of minutes that the
application can continue to use LNS
after opening the first network.
A value of lcaLicenseNoRestriction
(-1) indicates that there is no runtime
limit.

alObject The ActivationLicense object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API OpenLNS.

OpenLNS Programmer's Reference 21

Alias
The following table summarizes the Alias object.

Description Represents an alias in-use for a network variable on an
application device.

Added to API Prior to LNS Release 3.0.

Accessed Through Aliases collection object

Default Property Index property.

Methods None.

Properties • ClassID
• Index
• Parent
• Selector

Methods
The Alias object does not contain any methods.

Properties
The Alias object contains the following properties:

• ClassID
• Index
• Parent
• Selector

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the Alias
object in the ConstClassIds constant:
58 lcaClassIdAlias

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 22

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Index
Summary Returns the index within an application device of the

network variable alias.

Availability Local, full, and lightweight clients.

Syntax index = object.Index
Element Description

object The object to be acted on.

index Index of the message tag or network
variable.

Valid Values Property Values

Message tags 0–14

Neuron-hosted
applications

0–62

Host-based
applications

0–8,191

msg_in
message tag

MSG_IN_TAG (-2)

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is

OpenLNS Programmer's Reference 23

added to the API.

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Selector
Summary The network variable selector value assigned to this network

variable alias.
When a device is installed, selector values that represent
unbound network variables are assigned to the network
variables in that device. When placing the network variable
in a connection, the OpenLNS Object Server assigns a value
representing that connection.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax selectorValue = object.Selector
Element Description

object The Alias object to be acted on.

selectorValue The network variable selector value

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Aliases
An Aliases object is a collection of Alias objects. The collection contains an Alias object for
each alias in-use for the parent network variable. Unused alias entries contained within an
application device's alias table will not appear in an Aliases collection.

The Aliases object is not updated as changes occur on the network, all property values are
cached on the OpenLNS Server when the object is created. As a result, an Aliases object
must be periodically refreshed by invoking the Refresh method, or by fetching a new Aliases
collection object from the parent NetworkVariable object. The following table summarizes the
Aliases object.

Description Represents a collection of Alias objects.

Added to API Prior to LNS Release 3.0.

Accessed Through NetworkVariable object.

Default Property Item property.

Methods • ItemByIndex
• Refresh

Properties • ClassID
• Count
• Item

OpenLNS Programmer's Reference 24

• Parent
• _NewEnum

Methods
The Aliases object contains the following methods.

• ItemByIndex
• Refresh

ItemByIndex
Summary Retrieves an Alias object from an Aliases collection. The

Alias object to be retrieved must be specified by its index
value.

Availability Local, full, and lightweight clients.

Syntax itemObject = itemsColl.ItemByIndex index

Element Description

itemObject The Alias object retrieved from the
collection.

itemsColl The Aliases collection to be acted on.

index An Integer value specifying the Index
property of the Alias object to be
retrieved.

Added to API LNS Release 3.0.

Refresh
Summary Causes the OpenLNS Server to read the alias table of the

affiliated application device for aliases belonging to the
("parent") network variable. Any previously obtained Alias
objects are not updated, and their values should be ignored
and the objects released.

Availability Local, full, and lightweight clients.

Syntax aliasesColl.Refresh

Element Description

aliasesColl The Aliases collection object to be acted
on.

Added to API Prior to LNS Release 3.0.

Properties
The Aliases object contains the following properties:

• ClassID
• Count
• Item
• Parent
• _NewEnum

OpenLNS Programmer's Reference 25

ClassId
Summary Identifies the object class of this object. This property allows

the object type to be determined when it is unknown (for
example, when the object was accessed using the Parent
property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the Aliases
object in the ConstClassIds constant:
59 lcaClassIdAliases

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns an object from a collection. You can retrieve an

object from its collection by passing its index (ordinal
position) within that collection as the argument for the Item

OpenLNS Programmer's Reference 26

property. Index values start at 1.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The object retrieved from the collection.

collObject The collection object to be acted on.

index A Long type specifying the ordinal
index of the object to retrieve.

stringExpression A string type specifying the name of the
object to retrieve.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,

OpenLNS Programmer's Reference 27

you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

AppDevice
An AppDevice object represents a LONWORKS application device, including both
Neuron-hosted and host-based applications. The following table summarizes the AppDevice
object.

Description Represents a LONWORKS application device.

Added to API Prior to LNS Release 3.0.

Accessed Through AppDevices collection object.
NetworkServiceDevice object.

Default Property Name property.

Methods • ClearStatus
• Commission
• CommissionEx
• Decommission
• Delay
• DownloadConfigProperties
• GetMessagePoint
• Load
• MoveEx
• PostMove
• PreMove
• PropagateDeviceConfigUpdates
• Reboot

OpenLNS Programmer's Reference 28

• ReleasePendingUpdates
• Replace
• ReplaceEx
• ReplaceEx
• Reset
• ResyncToTemplate
• Test
• Upgrade
• UploadConfigProperties
• Wink

Properties • AliasCapacity
• AliasUseCount
• AppImagePath
• AttachmentStatus
• AuthenticationEnabled
• BitmapFilePath
• Channel
• ClassId
• CommissionStatus
• ConfigurationState
• ConnectionUpdateType
• Description
• DetailInfo
• DeviceTemplate
• Extensions
• Handle
• HasBeenCommissioned
• IconFilePath
• InitialAuthenticationKey
• Interface
• Interfaces
• LastTestInfo
• LastUpgrade Status
• Location
• LocationInNeuron
• MonitorSets
• MtHubs
• Name
• NetworkServiceDevice
• NeuronId
• NodeId
• NonGroupRcvTimer
• NsiHandle
• NVHubs
• Parent
• PingClass
• PendingNeuronId
• Priority
• ProgramId
• SelfDocumentation
• State
• SubnetId

OpenLNS Programmer's Reference 29

• Subnets
• Subsystems
• Upgrade Requirement

Methods
The AppDevice object contains the following methods.

• ClearStatus
• Commission
• CommissionEx
• Decommission
• DownloadConfigProperties
• GetMessagePoint
• Load
• MoveEx
• PostMove
• PreMove
• PropagateDeviceConfigUpdates
• Reboot
• ReleasePendingUpdates
• Replace
• ReplaceEx
• ReplaceEx
• Reset
• ResyncToTemplate
• Test
• Upgrade
• UploadConfigProperties
• Wink

ClearStatus
Summary Clears the status information stored in the device.

The clear status method causes a LonTalk Clear Status
network diagnostic message to be sent to the specified device.
This clears the error log, last reset cause, and communication
counters, which are generally accessed by reading the
device's DetailInfo object.

Availability Local, full, and lightweight clients.

Syntax object.ClearStatus

Element Description

object The AppDevice object.

Added to API Prior to LNS Release 3.0.

Commission
Summary Associates an AppDevice object with a physical device, and

loads the device’s network image. You can also use this
method at any time to force a reload of the device’s network

OpenLNS Programmer's Reference 30

image.
Adding an application device to the system is a two-step
operation. First, you should define the device and load the
device’s application image with the Load or LoadEx methods.
Then, you should commission it. You can use the Add
methods of the AppDevices object to define the application
device.

You can then use the Commission method to assign that
definition to an actual physical device. If you invoke the
Commission method while the network management mode is
set to lcaMgmtModeDeferConfigUpdates (1), physical
devices will not updated with configuration changes caused
by the commission process until the network management
mode is set to lcaMgmtModePropagateConfigUpdates
(0). However, as of LNS 3.20, you can use the CommissionEx
method to update the physical devices while the network
management mode is set to
lcaMgmtModeDeferConfigUpdates (1).
The Neuron ID of the physical device must be set before
commissioning it. The Neuron ID of an AppDevice is stored
in its NeuronId property.
The commission procedure will also validate that the physical
device has the same external interface and program ID as
defined for the AppDevice object in the OpenLNS database.
It will also validate that the physical device is on the channel
assigned to the AppDevice object in the OpenLNS database.
If the physical device is not using the same external interface
or program ID as defined in the database, the commission
will fail, and either the NS, #59
lcaErrNsProgramIntfMismatch or NS, #38
lcaErrNsProgramidMismatch exceptions will be thrown.
If the physical device is not on the channel assigned to it in
the database, the commission will fail, and the NS, #72
lcaErrNsWrongChannel exception will be thrown.
You should note that this validation will only be performed if
the network management mode is set to
lcaMgmtModePropagateConfigUpdates (0). You can also
determine what level of validation will be performed on the
device with the DeviceValidation property of the
DeviceTemplate used by the device.
When commissioning is complete, an application device is
placed in the lcaStateCnfgOffline state.

Before commissioning an AppDevice object, you should make
sure that the configuration property information contained in
the OpenLNS database for the device is complete, and you
should download the configuration property values in the
OpenLNS database into the physical device before
commissioning the device. You can do so by calling the
DownloadConfigProperties method on the AppDevice object
before commissioning. Use the

OpenLNS Programmer's Reference 31

lcaConfigPropOptLoadValues and
lcaConfigPropOptLoadUnknown download options when
you call DownloadConfigProperties. This will set any
unknown configuration properties in the AppDevice object in
the OpenLNS database to the default values, and then set all
configuration property information in the physical device on
the network to match the information stored in the OpenLNS
database. As a result, once the device has been
commissioned, it will contain current values for any
configuration properties that have been explicitly set, and
default values for any configuration properties that were
unknown before the download.

Note that by using the DownloadConfigProperties method as
described above, you will preserve the information stored in
the OpenLNS database for the AppDevice object, by
changing the configuration property information stored in
the physical device to match that stored in the OpenLNS
database. In some cases, you may want to do the opposite.
You may want to change the configuration property
information stored in the OpenLNS database for the
AppDevice object, to match the information stored in the
physical device on the network before commissioning. This
can usually be accomplished using the
UploadConfigProperties method, but you cannot use this
method until a device has been commissioned. If you are
commissioning a device for the first time and want to
preserve the configuration property information stored in the
physical device, not the information in the database, the
solution is to call the DownloadConfigProperties and use the
lcaConfigPropOptSetUnknown value as the download
option. All configuration property information in the
database will be set to unknown, but the configuration
property in the physical device will not be affected. Once the
device has been commissioned, you can use the
UploadConfigProperties method to set the configuration
property in the database to match the configuration property
information that had been stored in the device.
It is recommended that you use the same explicit transaction
to call DownloadConfigProperties and the Commission
method. Otherwise, this procedure will take longer, and
consume more network bandwidth, than it would when
performed within a transaction.

Do not read or write to the State property of an AppDevice or
Router in the same explicit transaction with this method.

In addition, you must set the InitialAuthenticationKey
property to the proper value before commissioning an
application device that has network management
authentication enabled, and has been previously
commissioned outside of LNS, or commissioned on a different
OpenLNS network. In these circumstances, OpenLNS will
not be able to communicate with the device or router without

OpenLNS Programmer's Reference 32

knowing its authentication key, since the device has
authentication enabled. If the InitialAuthenticationKey is set
prior to commissioning the device or router, OpenLNS will
use this key to authenticate messages sent to the device or
router during the commissioning process.

See Chapters 5 and 6 of the OpenLNS Programmer’s Guide
for more information on the steps you should take when
installing devices on a network and commissioning those
devices.

Availability Local, full, and lightweight clients.

Syntax object.Commission

Element Description

object The AppDevice object to be
commissioned.

Added to API Prior to LNS Release 3.0.

CommussionEx
Summary Associates an AppDevice object with a physical device, and

loads the device’s network image. This method is the same as
the Commission method except that it provides additional
options that you can choose from when commissioning the
device (see the description of the options element for more
information).

Availability Local, full, and lightweight clients.

Syntax object.CommissionEx options

Element Description

object The AppDevice object to be commissioned.

options A Long value indicating the options to be
used when commissioning the device. This
determines whether the changes caused by
the commission process will be applied to
the physical device if the network
management mode is set to
lcaMgmtModeDeferConfigUpdates (1).
The values for this element, which are
stored in the ConstCommissionFlags
constant, are as follows:
0 lcaCommissionFlagNone
Updates the device as soon as the
network management mode is set to
lcaMgmtModePropagateConfigUpda
tes (0).
Use this option if you do not want the
device to be updated if the network
management mode property is set to

OpenLNS Programmer's Reference 33

lcaMgmtModeDeferConfigUpdates
(1).
1 lcaCommissionFlagPropagate
Propagates the device’s network image in
the OpenLNS database to the physical
device when the network management
mode is set to
lcaMgmtModeDeferConfigUpdates
(1). If this will cause network
inconsistencies, OpenLNS will defer the
updates, and the NS, #4039
lcaErrNsUpdatesDeferred exception will
be thrown.
If the network management mode is set
to
lcaMgmtModePropagateConfigUpda
tes (0), the device’s network image in the
OpenLNS database will be propagated to
the physical device, regardless of
whether this option is set.

Added to API Prior to LNS Release 3.0.

Decommission
Summary Sets the NeuronId property of the AppDevice to

"000000000000" (none) and deconfigures the device.

Availability Local, full, and lightweight clients.

Syntax object.Decommission

Element Description

object The AppDevice object to be
decommissioned.

Added to API Prior to LNS Release 3.0.

Delay
Summary Represents the average number of milliseconds required for a

packet to get onto the channel once queued.
This property allows OpenLNS applications to specify the
number of milleseconds expected to send a message and
receive an acknowledgment on the specified channel, so that
automatic timer calculations made by OpenLNS can be
affected accordingly. When this property contains the default
value of 0, the delay used will be equivalent to the time
required for two packet cycles, based on the average packet
size and channel transceiver type.
When you write to this property, you should note that the
delays for transactions on a given channel must be calculated
as round-trip delays. Make sure you set this property to a

OpenLNS Programmer's Reference 34

value that is based on the amount of time it will take for a
request message to be sent on the channel, and for the
response message to be sent back on the channel.
You should also note that you can set the expected delay for a
message to be sent to a specific device by writing to the Delay
property of the AppDevice object.

Availability Local, full, and lightweight clients.

Syntax delayValue = channelObject.Delay
Element Description

delayValue The delay associated with the channel,
in milliseconds. The valid range of this
property is 0 to 65,535.

Object Channel object to be acted upon.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

DownloadConfigProperties
Summary Downloads the configuration property values stored in the

logical AppDevice object into the corresponding physical
application device.
This method requires that the device being loaded be in a
configured state. Furthermore, if you are setting the
configuration property values to their default values (for
example, the downloadOptions element sets the
lcaConfigPropOptSetDefaults option), this method
requires that the configuration property values be uploaded
from the device (see the UploadConfigProperties method) or
imported from the device’s external interface file (see the
Import method).

Availability Local, full, and lightweight clients.

Syntax object.DownloadConfigProperties(downloadOptions)
Element Description

object The AppDevice object from which configuratio
to be downloaded into a physical device.

OpenLNS Programmer's Reference 35

download
Options

An Integer value specifying the download
options.
These values can be ORed together; however,
you must set the
lcaConfigPropOptLoadValues (1) option
for the values to be downloaded into the
physical device.
The values for this element, which are stored
in the ConstConfigPropOptions constant, are
as follows:
0 lcaConfigPropOptLoadDefinitions
This option has no effect during a
download. If this is the only option set
when you call DownloadConfigProperties,
OpenLNS will use the
lcaConfigPropOptLoadValues (1) as
the download option.
1 lcaConfigPropOptLoadValues
Downloads all known values in the
AppDevice object in the OpenLNS
database to the physical device on the
network. You must select this value if you
want the values to be downloaded into the
physical device, regardless of which other
flags you set. However, this is the default
option used if
lcaConfigPropOptLoadDefinitions (0)
is the only option specified in the call to
DownloadConfigProperties, or if no flags
are specified.
2 lcaConfigPropOptSetDefaults
Sets the configuration property values in
the AppDevice object to the default
configuration property values stored in the
DeviceTemplate, and downloads any
changed values to the physical device on
the network (if the
lcaConfigPropOptLoadValues flag is
set).
Manufacturing-only configuration
properties are not affected by this option
unless it is ORed with
lcaConfigPropOptIncludeMfgOnly (8).
This option should not be ORed with
lcaConfigPropOptLoadUnknown (4).
Note that setting SCPTnvType
configuration properties to their default
values may cause the download operation

OpenLNS Programmer's Reference 36

to fail. To exclude those configuration
properties from a download, you should OR
this value with the
lcaConfigPropOptExcludeNvTypeDefa
ults (512) value.
4 lcaConfigPropOptLoadUnknown
Sets all unknown configuration property
values in the AppDevice object to the
default values stored in the
DeviceTemplate, and then downloads all
known values into the physical device (if
the lcaConfigPropOptLoadValues flag
is set).
This will not affect manufacturing-only
configuration properties unless ORed with
lcaConfigPropOptIncludeMfgOnly (8).
This option should not be ORed with
lcaConfigPropOptSetDefaults (2), as
that would override this option by setting
all properties to their defaults.
Note that setting SCPTnvType
configuration properties to their default
values may cause the download operation
to fail. To exclude those configuration
properties from a download, you should OR
this value with the
lcaConfigPropOptExcludeNvTypeDefa
ults (512) value.
8 lcaConfigPropOptIncludeMfgOnly
Use this flag to in conjunction with the
lcaConfigPropOptSetDefaults (2) and
lcaConfigPropOptLoadUnknown (4)
options if you want the download operation
to include manufacturing-only
configuration properties.
Generally, these configuration properties
should only be modified during the
manufacturing process. However,
OpenLNS will not enforce this requirement
during a download if this flag is set, since
LNS may be the tool used to set the
configuration property values during the
manufacturing process.
16 lcaConfigPropOptSetUnknown
Sets all configuration properties in the
AppDevice object in the OpenLNS
database to unknown. This has no effect on
the values stored in the physical device on

OpenLNS Programmer's Reference 37

the network.
32
lcaConfigPropOptSetMfgOnlyUnknown
Sets all manufacturing only configuration
properties to unknown. The values will not
be downloaded into the physical device.
64
lcaConfigPropOptExcludeDeviceSpecific
Downloads only those configuration
properties that do not have the
device-specific attribute set into the device.
For example, if this option is ORed with
lcaConfigPropOptLoadUnknown (4)
and lcaConfigPropOptLoadValues (1),
LNS would set all configuration properties
that are not device-specific, and whose
values are unknown to their default values,
and then download those values into the
device.
This option should not be ORed with
lcaConfigPropOptOnlyDeviceSpecific
(128).
128
lcaConfigPropOptOnlyDeviceSpecific
Downloads only device-specific
configuration properties into the device.
For example, if this option is ORed with
lcaConfigPropOptLoadUnknown (4)
and lcaConfigPropOptLoadValues (1),
LNS would set all device-specific
configuration properties whose values are
unknown to their defaults, and download
those values into the device.
This option should not be ORed with
lcaConfigPropOptExcludeDeviceSpeci
fic (64).
256
lcaConfigPropOptClearUpdatePending
Clears the update pending flag on the
device configuration. This value may be
used alone, or ORed with other values. If
used alone, it will clear the update pending
flag of all configuration property values in
the device. It may be combined with
lcaConfigPropOptOnlyDeviceSpecific
(128) to clear only the pending flags of
device specific values.
This value has no effect on the database

OpenLNS Programmer's Reference 38

operations initiated by other flags passed
to the DownloadConfigProperties method.
However, updates to the device initiated by
the other flags will be cancelled. For
example, when combining this value with
lcaConfigPropOptSetDefaults (2), the
operation will set the values in the
database to their defaults, but the pending
update flag on the device will be cleared.
As a result, those values will not be loaded
into the device.
512
lcaConfigPropOptExcludeNvTypeDefault
You can OR this value with either the
lcaConfigPropOptSetDefaults (2) or
lcaConfigPropOptLoadUnknown (4)
values to prevent setting SCPTnvType
configuration property values to their
defaults during a download. Setting a
SCPTnvType configuration property to its
default value may not be allowed due to
connection constraints, and therefore
would cause the download operation to fail.
When ORed with
lcaConfigPropOptSetDefaults (2), all
configuration properties other than
SCPTnvType configuration properties will
be set to their default values. When ORed
with lcaConfigPropOptLoadUnknown
(4), all unknown configuration properties
whose values are unknown will be set to
their default values, except SCPTnvType
configuration properties.
This option does not affect the
lcaConfigPropOptLoadValues (1)
value. If the
lcaConfigPropOptLoadValues (1) value
is specified, SCPTnvType configuration
properties with known values will be
propagated to the device, even if setting
their values to the default has been
excluded.

Added to API Prior to LNS Release 3.0.

GetMessagePoint
Summary Returns a new message point that can be used to send a

message to the application device.

The returned MsgMonitorPoint object can set its
OutputDataPoint property or RequestDataPoint property to

OpenLNS Programmer's Reference 39

send a value on the created monitor point.
The device does not need to be commissioned to call this
method.
The device's application determines how it will react to any
messages sent using this MsgMonitorPoint object.
Note that you cannot use the message point returned by this
method to send a message to a Network Service Device. If
you invoke this method on an AppDevice object contained by
a NetworkServiceDevice object, the NS, #16
lcaErrNsNotImplemented exception will be thrown.

Availability Local, full, and lightweight clients.

Syntax msgMpObject =
adObject.GetMessagePoint(addressingMode)
Element Description

msgMpObject The MsgMonitorPoint object to be
returned.

adObject The AppDevice object to be acted on.

addressingMode A long value that determines whether
Neuron ID or Subnet/Node addressing
will be used to send messages to the
AppDevice .
The values for this element, which are
stored in the ConstAddressingMode
constant, are as follows:

0 lcaAddrNeuronId
Neuron ID broadcast addressing will
be used. Messages sent using Neuron
ID addressing will be sent on all
channels in a network, regardless of
subnet, and so Neuron ID addressing
will add extra traffic to your network.
However, unconfigured devices can
receive messages sent using Neuron
ID addressing. They cannot receive
messages sent using Subnet/Node
addressing.
1 lcaAddrSubnetNode
Subnet/Node addressing will be used.
Generally, you should use
Subnet/Node addressing. If you are
using a high-performance network
interface, you can send messages to
multiple devices simultaneously
when using Subnet/Node addressing.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 40

Load
Summary Loads the application image specified by the AppImagePath

property into a device.
This method loads the application image specified by the
AppImagePath property into a device. The application image
must be in the binary format used by OpenLNS, (an APB file
type).
A transaction is started implicitly when this method is called.
If OpenLNS detects an error while the load is in progress, it
automatically cancels the transaction. If the transaction is
canceled after the download has begun, the application
device will be left in the applicationless state.
The state of the device at the end of the application loading
process depends on the state of the device before the process
began and the image that was loaded, as follows:

• If the device was applicationless or unconfigured (for
example, did not have a network address) before the
loading process began, OpenLNS leaves the device in the
unconfigured state.

• If the device was configured and the application that was
previously in the device and the application that was
loaded have the same program ID (and thus the same
external interface), OpenLNS restores the device’s
network image (address and connection information) to
the state it was in before the application load started.

• If the device was configured, and the application that was
previously in the device and the application that was
loaded do not have the same program ID (and thus may
not have the same external interface), the Object Server
leaves the device in the unconfigured state. This will
cause the NS, #38 lcaErrNsProgramidMismatch
exception to be generated. In this case, you should
upgrade the device’s interface with the Upgrade method
before you load the new application. This will ensure that
the program IDs of the device and the new application
match.

• If the device had been previously commissioned, and the
device's old application image and its new application
image have the same program ID but a different external
interface, the OpenLNS Object Server will leave the
device in the unconfigured state, and the NS, #59
lcaErrNsProgramIntfMismatch exception will be thrown.
Per LonMark guidelines, LNS requires that each
program ID be associated with only one external
interface. This means that all components and properties
of each external interface using a given program ID must
be identical. However, LNS may not detect all violations
of this rule, as it would be very time consuming to
validate this on every commission or after every

OpenLNS Programmer's Reference 41

application download.
The system image used by the device must be compatible
with the application image being loaded for the operation to
complete successfully. If it is not, the application image will
fail to load and an NS error will be generated. However, some
devices support the use of the LoadEx method, which will
automatically upgrade the system image in the device if it is
not compatible with the application image being loaded.
If you are re-loading an application image into a device that
has already been commissioned, then OpenLNS will reload
the values of configuration properties with pending updates
into the device after the application download completes.
However, it will not reload the values of configuration
properties that have been successfully set and loaded into the
device. To ensure that the configuration properties are
managed as desired and as efficiently as possible, you should
clear pending updates on the device before performing the
application download, and then re-synchronize the
configuration properties in the device and in the OpenLNS
database after the application download has completed. To do
so, call the DownloadConfigProperties method with the
downloadOptions element set to
lcaConfigPropOptClearUpdatePending (256)
immediately before starting the application download. Once
the download is complete, you can preserve the values stored
in the OpenLNS database for the device by calling the
DownloadConfigProperties method with the
downloadOptions element set to
lcaConfigPropOptLoadValues (1) (and optionally ORed
with lcaConfigPropOptLoadUnknown (4) to set unknown
values to their defaults). Or, to preserve the values stored in
the device and load them into the OpenLNS database, call
the UploadConfigProperties method with the options element
set to lcaConfigPropOptLoadValues (1).

The system management mode must be set to
lcaMgmtModePropagateConfigUpdates (0) when you
invoke the Load method. If the system management mode is
set to lcaMgmtModeDeferConfigUpdates (1), the
operation will fail and the NS, #31
lcaErrNsDeferConfigUpdatesMgmntMode exception will be
thrown.

Availability Local, full, and lightweight clients.

Syntax appDeviceObject.Load

Element Description

appDeviceObject The AppDevice object to be loaded.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 42

LoadEx
Summary Loads the application image specified by the AppImagePath

property into a device.

This method is the same as the Load method except that it
provides additional options that you can choose from when
commissioning the device. For example, you can specify
options to upgrade the system image of the device if it is not
compatible with the application image being loaded (see the
description of the options element for more information).

See the Load method for more general information on loading
application devices.

Availability Local, full, and lightweight clients.

Syntax appDeviceObject.LoadEx upgradeOption

Element Description

appDeviceObject The AppDevice object to load.

upgradeOption A Long value defining the option to be
used if the system image stored in the
device is incompatible with the
application image. The valid values for
this element, which are stored in the
ConstLoadOptions constant, are as
follows:
0 lcaLoadOptionsNone
Do not upgrade the system image. In
this case, the method works exactly as
the Load method does. If the device
requires a new system image to load the
new application in this case, the load
will fail and an exception will be
generated.
1 lcaLoadOptionsUpgradeSystemImage
OpenLNS supports upgrading the
following Neuron models provided that
the current firmware version installed
in the Neuron chip and the new
firmware version to be downloaded are
standard system images with versions
(and variants) in the listed ranges:

• FT 5000 and Neuron 5000 (all
released versions up through
Version 19). Requires at least a
32K flash using a recognized flash
driver, or a 32K EEPROM.

• FT 3150 and 3150 (Versions 6–19).
Supports both 512 byte EEPROM
and 2K EEPROM system image

OpenLNS Programmer's Reference 43

variants. Requires the system
image to be stored in flash and to
have at least 32K bytes of
contiguous flash starting at location
0.

• PL 3150 (Versions 14–19). Supports
both 512 byte EEPROM and 2K
EEPROM system image variants.
Requires the system image to be
stored in flash and to have at least
32K bytes of contiguous flash
starting at location 0.

See the Load method for more general
information on loading application
devices.
Note that the device will be made
applicationless before the system image
upgrade is attempted. If the upgrade
fails for any reason, an exception will be
generated and the device will be left in
the applicationless state. The original
system image will remain intact.
Once the system image has been
upgraded successfully, the application
loading process begins. The application
image must be in the binary format
used by OpenLNS, i.e., an APB file
type. A transaction is started implicitly
when this method is called. If
OpenLNS detects an error while the
load is in progress, it automatically
cancels the transaction. If the
transaction is canceled after the
download has begun, the application
device will be left in the applicationless
state.

Added to API LNS Release 3.2.

MoveEx
Summary Performs the steps required to move an application device to

a new channel.
This method is used to perform the steps required to move an
application device to a new channel.
This method combines the functions performed by the
PreMove method and PostMove methods, and adds a flag
parameter to specify advanced options required for a small
set of move operations. Applications should use the PreMove
and PostMove methods whenever possible.

You must invoke the MoveEx method twice during a move.

OpenLNS Programmer's Reference 44

You first need to invoke it with the lcaMovePrePhysical
flag (analogous to the PreMove call), and then once the device
has been moved, you need to invoke it again with the
lcaMovePostPhysical flag.

You should invoke the BeginSession method to begin a
session before using the MoveEx method. This will allow your
application to avoid some failure scenarios that may occur
when devices or routers are moved.

Availability Local, full, and lightweight clients.

Syntax appDeviceObject.MoveEx newChannelObject,
newSubnetObject, flags

Element Description

appDeviceObject AppDevice to be moved to a different
channel.

newChannelObject New destination channel for the device.

newSubnetObject New destination subnet for the device.

flags A Long value specifying the movement
flags. Multiple options may be
specified by logically OR'ing individual
flag values. The flag values, which are
provided in the ConstMoveExFlags
constants, are as follows:
1 lcaMovePrePhysical
Specified when invoking MoveEx prior
to the physical move
2 lcaMovePostPhysical
Specified when invoking MoveEx
following the physical move.
8 lcaMoveOnline
Indicates that moved devices are to be
left online (default for routers).
16 lcaMoveOffline
Indicates that moved devices are to be
left offline (default for application
devices).
32 lcaMoveRestore
Indicates that moved devices will be
restored to their original online/offline
state. If a device is power cycled or
reset as part of the move, this
information is lost, and the device will
be put online.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 45

PostMove
Summary Completes the move of an application device from one

channel (or subnet) to another. As part of the move, the
device’s network address may change; however, the device’s
Handle property cannot change.
To move a device from one channel to another, follow these
steps:

1. Invoke the BeginSession method to begin a session. This
will allow your application to avoid some failure
scenarios that may occur when devices or routers are
moved.

2. Invoke the PreMove method. The target channel is
validated and the device is deconfigured. However, the
device still appears in the database as residing on the
original channel.

3. Physically move the device from one channel to another.
4. If the device being moved uses authentication, the

PostMove method should be called in a different session
than the PreMove method. This means you should call
the EndSession method to end the session begun in step
1, and then call the BeginSession method to begin a new
session.

5. Invoke the PostMove method. This method changes the
device’s channel assignment, does any necessary
rebinding, and updates the device’s configuration.

If you use explicit transactions during this procedure, make
sure that there are separate ones for the PreMove and
PostMove steps.

Availability Local, full, and lightweight clients.

Syntax object.PostMove

Element Description

object The AppDevice object to be moved from
one channel to another.

Added to API Prior to LNS Release 3.0.

PreMove
Summary Prepares an application device for movement from one

channel (or subnet) to another.
When you call this method, you must specify the new channel
(newChannelObject element). If no new Subnet is specified
(i.e. the newSubnetObject is NULL), then automatic subnet
determination is used to determine the new subnet. Note
that you can use this method to move a device from one
subnet to another, without switching channels. In this case,
specify the device’s current channel as the newChannelObject

OpenLNS Programmer's Reference 46

element, and the new subnet as the newSubnetObject
element.
If this method is called while not attached to the network,
this message will throw an exception. Ignore it and call the
PostMove method to move a device while in engineered mode.

See the PostMove method for more information on the steps
required to move an application device.

Availability Local, full, and lightweight clients.

Syntax appDeviceObject.PreMove newChannelObject,
newSubnetObject

Element Description

appDeviceObject AppDevice to be moved from one
channel to another.

newChannelObject Destination channel for the device.

newSubnetObject Destination subnet for the device.

Added to API Prior to LNS Release 3.0.

PropagateDeviceConfigUpdates
Summary Propagates any pending configuration changes to the

physical device associated with this AppDevice object.

The network management mode can be set to one of two
values: lcaMgmtModePropagateConfigUpdates (0), or
lcaMgmtModeDeferConfigUpdates (1). When it is set to
lcaMgmtModeDeferConfigUpdates (1), all network
configuration changes caused by your application will only be
applied to the OpenLNS database, and not to the physical
devices on the network.
Prior to LNS 3.20, these changes would be queued and then
applied to all the physical devices as soon as the network
management was set back to
lcaMgmtModePropagateConfigUpdates (0).
However, in LNS 3.20 and beyond, you can use this method
to apply device-only configuration changes to a physical
device without changing the network management mode
back to lcaMgmtModePropagateConfigUpdates (0). This
may be useful if you have configuration changes pending for
a large number of devices, and only want to apply them to a
subset of those devices. The device-only configuration
information propagated by this method includes
configuration property values and the device location string.
It does not include information such as network variable
configurations, address table entries and connection
information.
If you invoke this method and OpenLNS determines that it
cannot safely propagate the changes to the physical device,
the operation will fail, and the NS, #4039

OpenLNS Programmer's Reference 47

lcaErrNsUpdatesDeferred exception will be thrown. In this
case, the changes will not be propagated to the device until
the network management mode (MgmtMode property) is set
to lcaMgmtModePropagateConfigUpdates (0).

Availability Local, full, and lightweight clients.

Syntax device.PropagateDeviceConfigUpdates

Element Description

device The AppDevice representing the
physical device to which configuration
changes are to be propagated.

Added to API LNS Release 3.20.

Reboot
Summary Reboots the AppDevice .

This command should be used with extreme care. Rebooting
a device may destroy its communication parameters or
otherwise make the device unrecoverable. The result of
rebooting a device depends on the firmware state and reboot
options specified at the time of manufacture. Rebooting an
emulator will cause the emulator to fail. After rebooting a
device, it may be necessary to reload the application, and it
will be necessary to commission and download configuration
properties if applicable.

Availability Local, full, and lightweight clients.

Syntax object.Reboot

Element Description

object The AppDevice object to be rebooted.

Added to API Prior to LNS Release 3.0.

ReleasePendingUpdates
Summary Releases monitor point update events withheld after the

AcceptIncomingSession method has been called with the
postponeUpdates field set to True.
When your application receives an uplink session request,
you should use the AcceptIncomingSession method to accept
or reject the request. The method includes a parameter called
doPostponeUpdates. If this parameter is set to True when a
session is accepted, monitor point updates for the network
involved in this session will be withheld until the
ReleasePendingUpdates method is called. This ensures that
no monitor point update events that occur before the network
that has requested the uplink session is opened are lost, and
that the application will receive the monitor point update
event that caused the uplink session request.

OpenLNS Programmer's Reference 48

If you accept an xDriver session with the doPostponeUpdates
field set to True, you should open the network involved in the
session, and enable all the monitor sets you want to use.
Then, call the ReleasePendingUpdates method on the
AppDevice object contained by the network’s MyVni
property. This will release the updates that were withheld.
For an example of this, see the example uplink application in
the OpenLDV Programmer’s Guide, xDriver Supplement.
Echelon recommends that you only use this method when
operating as an Independent client, as using this method in
server-dependent mode may disrupt network management
operations. If you are operating in server-dependent mode
and you invoke this method, an exception will be thrown.
However, the monitor point update events will be released.
These methods only apply to clients that are using the
OpenLDV xDriver to connect to remote network interface
(RNI) devices. For an overview of the xDriver, see Chapter
11, OpenLNS Network Interface Drivers, of the OpenLNS
Programmer’s Guide.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax appDevice.ReleasePendingUpdates

Element Description

appDevice The AppDevice object being acted upon.

Added to API LNS Release 3.06.

Replace
Summary Replaces one application device with another. This method is

typically used to effect repair operations.
This method lets you replace one application device with
another. The new device receives the same network address
and connections as the old device. To automatically load the
old device’s configuration properties into the new device, use
the ReplaceEx method. The ReplaceEx method performs the
same function as the Replace method; however, it provides
options you can use to determine how the configuration
property information on the old device will be managed
during the replacement.

The new device is specified by setting the NeuronId property
of the object to the NeuronId of the new device.
When the replace method is complete, a new application
device is placed in the soft offline state (lcaStateSoftOffline)
and a new router device is placed in the online state
(lcaCnfgOnline).

You should not use this method on the AppDevice property of
a NetworkServiceDevice because OpenLNS will perform NSD

OpenLNS Programmer's Reference 49

replacements automatically in most cases. For information on
when you might need to manually replace a Network Service
Device and how to accomplish this, see the PreReplace
method.

Note: Do not read or write the State property of the device in
the same explicit transaction as the invocation of this
method.

Availability Local, full, and lightweight clients.

Syntax object.Replace

Element Description

object The application device to be replaced.

Added to API Prior to LNS Release 3.0.

ReplaceEx
Summary Replaces one application device with another. This method is

typically used to effect repair operations.

This method is similar to the Replace method except that it
provides additional options you can use to determine (1) how
the configuration property information on the old device will
be managed during the replacement, and (2) whether to
propagate network configuration changes caused by the
replacement if the network management mode (MgmtMode
property) is set to lcaMgmtModeDeferConfigUpdates.
See the description of the options element for more
information.

See the Replace method for more general information on
replacing application devices.

Availability Local, full, and lightweight clients.

Syntax object.ReplaceEx flags

Element Description

object The AppDevice object to be replaced.

flags The options which apply to this Replace
operation. This determines which
configuration property values will be
passed from the old device to the new
device, and whether changes caused by the
replacement should be propagated if the
network management mode (MgmtMode
property) is set to
lcaMgmtModeDeferConfigUpdates.
The possible values for this element, which
are contained in the ConstReplaceFlags
constant, are as follows:
0 No options

OpenLNS Programmer's Reference 50

Enter this value if do not want to use any
options.
1 lcaReplaceFlagCopy
Copies the values of all configuration
properties (CPs) from the old device to the
new device. If the old device has no CPs,
configuration network variables will be
copied, if present. Dynamic configuration
network variables will not be copied. This
flag may be ORed with
lcaReplaceFlagExcludeMfgOnly (2) and
lcaReplaceFlagUpload (4).
2 lcaReplaceFlagExcludeMfgOnly
Enables the new device to not inherit any
manufacturer configuration properties from
the old device. This flag must be ORed
with lcaReplaceFlagCopy (1).
4 lcaReplaceFlagUpload
Uploads all configuration properties in the
old device into the OpenLNS database
before the device is removed, and
subsequently downloads the CPs into the
new device. You can only use this option if
your application is still in communication
with the old device. This flag must be ORed
with lcaReplaceFlagCopy (1).
8 lcaReplaceFlagPropagateUpdates
Propagates the network image contained in
the database to the new device, and
deconfigures the old device, even if the
network management mode is set to
lcaMgmtModeDeferConfigUpdates (1)
when you call the ReplaceEx method.
If any of these changes will cause network
inconsistencies, OpenLNS will defer the
updates, and the NS, #4039
lcaErrNsUpdatesDeferred exception will be
thrown. Those updates will not be
propagated until the network management
mode is set back to
lcaMgmtModePropagateConfigUpdate
s (0).
If the network management mode is set to
lcaMgmtModePropagateConfigUpdate
s (0) when you call the ReplaceEx method,
the network image contained in the
database will be propagated to the new
device and the old device will be

OpenLNS Programmer's Reference 51

deconfigured, regardless if this option has
been set.

This flag should be ORed with
lcaReplaceFlagCopy (1). If it is not, all
configuration property information for the
old device will be removed from the
OpenLNS database during the
replacement, and it will not be stored in the
new device.

Added to API Prior to LNS Release 3.0.

Reset
Summary Sends a reset command to the application device.

The Network Service Device can be reset by invoking this
method on the AppDevice object owned by the
NetworkServiceDevice object.

Availability Local, full, and lightweight clients.

Syntax object.Reset

Element Description

object The AppDevice object to be reset.

Added to API Prior to LNS Release 3.0.

ResyncToTemplate
Summary Updates the DeviceTemplate object the application device is

using with information from newly modified or accessible
resource files.

You should call this method on an AppDevice object after you
have re-imported a device’s external interface file with the
Import method. When this happens, the information stored in
the DeviceTemplate is updated based on the contents of the
new external interface file. As a result, you need to call the
ResyncToTemplate method to resynchronize the devices using
the DeviceTemplate with the updated information.

You should also call this method on an AppDevice after you
have updated the DeviceTemplate object used by the device
with the ResyncToResources method. The ResyncToResources
method updates the DeviceTemplate with current information
from the resource files. You should call the
ResyncToTemplate method to re-synchronize the devices
using that DeviceTemplate with the updated information in
the DeviceTemplate .

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 52

Syntax appDevice.ResyncToTemplate options

Element Description

appDevice The AppDevice object to be re-synced to reso
files.

options A Long value specifying the options to use
when re-synchronizing the device. You can
use this element to determine which objects
on the device will be re-named during the
resynchronization. These options may be
ORed together.
The possible values for this element, which
are contained in the
ConstResyncToTemplateOptionFlags
constant, are as follows:
0 No options
Enter this value if do not want to update
any names updated as part of the
resynchronization.
1 lcaResyncToTemplateOptionUpdate
CpNames
Updates the names of configuration
properties on the device.

 2 lcaResyncToTemplateOptionUpdate
LonMarkObjectNames
Updates the names of LonMarkObject
objects on the device.

 4 lcaResyncToTemplateOptionUpdate
NetworkVariableNames
Updates the names of network variables on
the device.
Note: If you use an illegal value as the
options element, the LCA, #90
lcaErrVALUeOutOfRange exception will be
thrown.

Added to API LNS Release 3.2.

Test
Summary Tests an application device. You must set the application

device’s Neuron ID before invoking this method.
You can use this method to verify that an application device
is able to communicate on the network, and that a subset of
its configuration matches the information contained in the
OpenLNS database.
To pass the test, a device with the expected Neuron ID must

OpenLNS Programmer's Reference 53

exist on the network, and respond to queries. If the device is
installed, it must contain the expected domain/subnet/node
address, and respond to subnet/node messages on that
address. It must also contain the expected program ID, and
the expected network management authentication setting
(enabled or disabled). If network management authentication
is enabled on the device, it must contain the correct system
authentication key. Furthermore, the test verifies that there
are no other nodes that respond with the tested nodes
subnet/node address.

The results of the test are contained in the AppDevice
object's LastTestInfo property.
This service analyzes the result with the assumption that the
node's network image is up-to-date; therefore, ensure that
the node is up-to-date by invoking this service only while the
MgmtMode property is set to
lcaMgmtModePropagateConfigUpdates (0). This is
because discrepancies between the OpenLNS database and
the current configuration of the device on the network are
normal, and can be expected while the management mode is
lcaMgmtModeDeferConfigUpdates (1). These
discrepancies will typically be resolved automatically when
the system manage mode has been changed to
lcaMgmtModePropagateConfigUpdates (0).

For more information on the Test method, see the Testing
Devices and Detecting Device Failures section in Chapter 6 of
the OpenLNS Programmer’s Guide.

Availability Local, full, and lightweight clients.

Syntax testStatus = deviceToTest.Test

Element Description

testStatus An Integer value with the results returned
by the test.

The enumerated values for testStatus, which
are contained in the ConstTestResults
constant, are as follows:
0 lcaTestResultGood
The device passed all applicable tests.
1 lcaTestResultComm
The OpenLNS Server was unable to
communicate with the device using either
Neuron ID or its subnet/node addressing.
The Network Service Device might not be
attached to the network, the Network
Service Device might be unconfigured, the
target device might not be attached to the
network, the target device may be powered
off, or the target device may be faulty.

OpenLNS Programmer's Reference 54

2 lcaTestResultCommNeuronId
The OpenLNS Server was unable to
communicate with the device using Neuron
ID addressing. Because the device has not
been added or defined, the OpenLNS Server
could not test the device using subnet/node
ID addressing. The OpenLNS Server might
not be attached to the network, the Network
Service Device might be unconfigured, the
target device might not be attached to the
network, the target device may be powered
off, or the target device may be faulty.
3
lcaTestResultCommNeuronIdVerified
The OpenLNS Server was able to
communicate with the device using
subnet/node addressing, but could not
communicate with the device using Neuron
ID addressing. However, through the use of
subnet/node addressed messages, the
OpenLNS Server has verified that the device
contains the expected Neuron ID. This
might be caused by intermittent device or
channel failures. You may want to retry this
method to see if the error persists.
4 lcaTestResultCommSnode
The OpenLNS Server was able to
communicate with the device using Neuron
ID addressing, but could not communicate
with the device using subnet/node
addressing. The OpenLNS Server was
unable to verify whether the device has been
configured with the proper
domain/subnet/node address. The device
may have reconfigured itself, the device may
have been reconfigured by another network
management tool, or the device may be
faulty. The device may be restored using the
Commission method.
5 lcaTestResultSnodeVerified
The OpenLNS Server was able to
communicate with the device using Neuron
ID addressing, but could not communicate
with the device using subnet/node
addressing. However, through the use of
Neuron ID addressed messages, The
OpenLNS Server has verified that the device
contains the expected subnet/node address.
This error can occur if the target device is in
an unconfigured state. The device may need

OpenLNS Programmer's Reference 55

to be recomissioned or it may be in the
middle of a two-phase move. It also might be
caused by intermittent device or channel
failures. You may want to retry this method
to see if the error persists.
6 lcaTestResultDuplicateSnode
The OpenLNS Server was able to
communicate with the device using Neuron
ID addressing. However, when using
subnet/node addressing, the responding
device contains a different Neuron ID. This
failure indicates that multiple devices are
configured with the same
domain/subnet/node address. This could be
caused by attaching a new device to the
network which was previously configured as
part of another network or by two networks
sharing the same media and domain ID.
This condition could also occur if the
unexpected device was supposed to be
removed from the system, but the OpenLNS
Server was unable to update the device’s
network image during a Remove method;
meanwhile, the removed subnet/node
address has been reused for the device being
tested.
7 lcaTestResultMismatchDomain
The OpenLNS Server was able to
communicate with the device using Neuron
ID addressing but could not communicate
with the device using subnet/node
addressing. Using Neuron ID addressing,
the OpenLNS Server found that the domain
ID configured in the device does not match
the database. This result will be returned if
the device’s domain address has not be
configured or the device has become
unconfigured due to a checksum error.
8 lcaTestResultMismatchNeuronId
The OpenLNS Server was unable to
communicate with the device using Neuron
ID addressing. However, the device that
responded to the subnet/node addressed test
message contains a different Neuron ID. It
appears that the subnet/node address is
configured in the responding device but not
the tested device. One possible cause is that
the tested device is supposed to replace the
responding device, but the network images
in both devices have not been updated yet.

OpenLNS Programmer's Reference 56

You can resolve this problem by physically
removing the obsolete device.
9 lcaTestResultMismatchSnode
The OpenLNS Server was able to
communicate with the device using Neuron
ID addressing, but could not communicate
with the device using its subnet/node
addressing. Through the use of Neuron ID
addressed messages, the NSS has found that
the subnet/node address configured in the
device does not match the database. This
result will be returned if the device’s domain
address has not been configured.
10 lcaTestResultNoNeuronId
The device has not been assigned a Neuron
ID.
11 lcaTestResultMismatchProgramId
The OpenLNS Server was able to
communicate with the device using both
Neuron ID and subnet/node addressing.
However, the device does not contain the
expected program ID. The device’s program
ID may have been changed by its application
program. Host devices can modify the
program ID of their attached network
interface. The device should be Removed
and Added.
12
lcaTestResultCommSnodeNotVerified
The OpenLNS Server was able to
communicate with the device using Neuron
ID addressing, but could not communicate
with the device using subnet/node
addressing. The OpenLNS Server did not
attempt to verify that the device has been
configured with the proper
domain/subnet/node address because the
device is currently authenticated, and
reading the address would result in
transmitting the key over the network. The
device may have reconfigured itself, the
device may have been reconfigured by
another network management tool, or the
device may be faulty. The device may be
restored using the Commission method.
13 lcaTestResultAuthEnabled
The OpenLNS Server was able to
communicate with the device using both

OpenLNS Programmer's Reference 57

Neuron ID addressing and subnet/node
addressing. However, the device has
network management authentication
enabled despite the fact that the device’s
AuthenticationEnabled property is set to
FALSE. The device may have enabled
network management authentication itself,
the device may have been reconfigured by
another network management tool, or the
device may be faulty. It may be possible to
restore the device using the Commission
method.
14 lcaTestResultAuthDisabled
The OpenLNS Server was able to
communicate with the device using both
Neuron ID addressing and subnet/node
addressing. However, the device has
network management authentication
disabled despite the fact that the device's
AuthenticationEnabled property is set to
TRUE. The device may have disabled
network management authentication itself,
the device may have been reconfigured by
another network management tool, or the
device may be faulty. The device may be
restored using the Commission method.
15 lcaTestResultKeyMismatch
The OpenLNS Server was able to
communicate with the device using both
Neuron ID addressing and subnet/node
addressing. The device has network
management authentication enabled and the
node's AuthentictionEnabled property is set
to TRUE. However, the device does not
contain the current system authentication
key. The device may have changed its
authentication key itself, the device may
have been reconfigured by another network
management tool, or the device may be
faulty. It may be possible to restore the
device using the Commission method.
16 lcaTestResultInterfaceFailure
The OpenLNS Server was unable to
communicate with the OpenLNS network
interface. The OpenLNS network interface
may have become disconnected or faulty.
Exit all OpenLNS applications and perform
diagnostics on the OpenLNS network
interface using the LONWORKS Interfaces
Control Panel application.

OpenLNS Programmer's Reference 58

17 lcaTestResultInterfaceNotOnline
The OpenLNS network interface that the
OpenLNS Server is attempting to use is not
Online. Recommission the
NetworkServiceDevice of the System object
by calling the
System.NetworkServiceDevice.AppDev
ice.Commission method, and make sure
that the State property of the
NetworkServiceDevice object
(NetworkServiceDevice.AppDevice.State) is
set to lcaOnline.
18 lcaTestResultInterfaceConfigError
The OpenLNS network interface that the
OpenLNS Server is attempting to use is not
property configured. Recommission the
NetworkServiceDevice of the System object
by calling the
System.NetworkServiceDevice.AppDev
ice.Commission method.

deviceToTest The application device to be tested.

Added to API Prior to LNS Release 3.0.

Upgrade
Summary Makes an application device compatible with an updated

external interface without disrupting the existing device
configuration and connections.
When a device has a new application loaded, or when a
device is replaced, the device's external interface may
change. You can use the Upgrade method to upgrade the
device to be compatible with the updated external interface,
with minimal disruption.

When you call the Upgrade method, OpenLNS will upgrade
the device's external interface while attempting to preserve
the network variable and message tag connections,
configuration property settings, and monitor sets on the
device.

If a device template is not specified in the dtObject
parameter, the new external interface will be read from the
physical device. If you are not going to set the dtObject
parameter, be sure that the AppDevice object's NeuronId
property is set to the correct value before invoking this
method. This will ensure that OpenLNS can communicate
with the physical device during the upgrade. If OpenLNS
cannot communicate with the physical device, the Upgrade
method will fail, and the Result property of the
UpgradeStatus object returned by the method will contain
the value lcaUgResNotCommissioned.

OpenLNS Programmer's Reference 59

The UpgradeStatus object returned by this method contains
information indicating whether or not the upgrade was
successful, as well as information describing the changes that
were made to each component (for example, LonMark object,
network variable, message tag, configuration property,
monitor set, and monitor point) of the external interface
during the upgrade. You can always access the
UpgradeStatus object returned the last time the Upgrade
method was called on an AppDevice by reading its
LastUpgradeStatus property.
If the new interface supports dynamic functional blocks and
the old one did not, OpenLNS will automatically create
dynamic functional blocks and dynamic network variables for
any static functional blocks and static network variables in
the old interface that do not appear in the new interface. This
supports a migration strategy in which a new device will
support dynamic functional blocks, instead of defining all of
its functional blocks as static. All such added components will
have the same programmatic name as the original, unless the
original was an array. In this case, an index value will be
appended to the name, or if the name does not fit, the name
will be truncated. This may lead to the assignment of
duplicate names, but an OpenLNS application may change
both the user name (Name) and programmatic name
(ProgrammaticName) in this case.

A new custom interface will be created by OpenLNS to house
network variables and LonMarkObjects that are converted
from static to dynamic in this fashion. The name used for
these custom interfaces is "LcaUpgrade<n>", where <n> is a
sequential number reflecting the number of upgrades that
the device has gone through since LNS 3.20 was installed.
For example, the 3rd time the device is upgraded, this
interface would be named "LcaUpgrade3." You can determine
which objects have been converted from static to dynamic
during the upgrade with this Interface object, or with the
UpgradeInfos collection. If you need to store these network
variables and LonMarkObjects on another interface, you can
use the MoveToInterface method to do so.
This method should be called from within an explicit
transaction using the StartTransaction method. This allows
the upgrade to be easily undone if necessary. For more
information on using transactions with LNS, see Chapter 4,
Programming an OpenLNS Application, of the OpenLNS
Programmer’s Guide.

As noted previously, you may need to upgrade a device when
you load the device’s application. Specifically, if the device
was configured, and the application that was previously in
the device and the application that was loaded do not have
the same program ID (and thus may not have the same
external interface), the Object Server will leave the device in
the unconfigured state, and you will need to upgrade it.

OpenLNS Programmer's Reference 60

Echelon recommends that you upgrade the device before
loading the application image. This will allow you to verify
that the upgrade completed successfully before you load the
application.
After a device has been successfully upgraded, and the device
application has been loaded (if necessary), you should
re-commission it with the Commission or CommissionEx
methods.

For more information on replacing devices, see the Replace
and ReplaceEx methods. For more information on loading
device applications, see the Load and LoadEx methods.
Note: In some cases, it may necessary to upgrade your
client’s Network Service Device when you change the
network interface it is using. Generally, OpenLNS will
perform this upgrade automatically, as soon as the system is
opened. However, you can prevent LNS from automatically
upgrading the Network Service Device by setting the Flags
property to lcaFlagsManualNsdUpgrade. By default, this
flag is not set. When the flag is set, you will need to manually
perform the upgrade by calling the Upgrade method on the
AppDevice object that represents your client’s Network
Service Device. There are several factors you will need to
consider when doing so. For more information, see the
Network Interfaces and Network Service Devices section in
Chapter 11 of the OpenLNS Programmer’s Guide.

Availability Local, full, and lightweight clients.

Syntax usObject = adObject.Upgrade dtObject, reserved

Element Description

usObject An UpgradeStatus object which contains
the status and results of the upgrade.

adObject The AppDevice object to be upgraded.

dtObject Optionally, the DeviceTemplate object
containing the new external interface.

reserved An Integer value reserved for future use.
Set to 0.

Added to API LNS Release 3.0.

UploadConfigProperties
Summary Uploads all configuration property values from a physical

device on the network into the associated AppDevice object
in the OpenLNS database.
A configuration property's value is obtained using the
GetDataPoint method of the ConfigProperty object. The
ConfigProperties collection containing all the configuration
properties on a device is accessed through the AppDevice
object's Interface property (AppDevice.Interface). The

OpenLNS Programmer's Reference 61

UploadConfigProperties method can be invoked using either
the AppDevice object or the Interface object.

You cannot call the UploadConfigProperties method on a
device until you commission it with the Commission method.

Availability Local, full, and lightweight clients.

Syntax object.UploadConfigProperties options

Element Description

object The AppDevice object in the OpenLNS
database to which configuration properties are
to be uploaded.

options An Integer value specifying the desired upload
options. The values for this element, which are
stored in the ConstConfigPropOptions
constant, are as follows:
0 lcaConfigPropOptLoadDefinitions
Reads the template file and loads the
configuration property definitions for the
device into the OpenLNS database if the
configuration property template file on the
device has not been imported or uploaded into
the OpenLNS database.
1 lcaConfigPropOptLoadValues
Uploads all configuration property values from
the physical device on the network to the
associated AppDevice object in the OpenLNS
database. When combined with
lcaConfigPropOptExcludeDeviceSpecific
(64), configuration properties with the
device-specific attribute set will be excluded
from the upload.
2 lcaConfigPropOptSetDefaults
Sets the values stored for the device in the
OpenLNS database as the default
configuration property values in the AppDevice
object's DeviceTemplate. This operation will
change the default values that could be applied
to any device using the DeviceTemplate. Note
that this option will upload values from the
physical device, regardless of whether or not it
is ORed with lcaConfigPropOptLoadValues
(1). In either case, OpenLNS will upload all
the configuration property values from the
device into the OpenLNS database, and then
set all the values in the database as the
defaults.
You can OR this option with
lcaConfigPropOptLoadUnknown (4). In

OpenLNS Programmer's Reference 62

this case, only values that are unknown in the
OpenLNS database will be uploaded from the
physical device. Following that, all the values
stored in the OpenLNS database for the device
will be set as the defaults in the
DeviceTemplate object. This includes
the values uploaded by the call to
UploadConfigProperties, as well as all values
that were known in the OpenLNS database
before the operation began.
4 lcaConfigPropOptLoadUnknown
This option must be ORed with the
lcaConfigPropOptLoadValues (1) or the
lcaConfigPropOptSetDefaults (2) values to
have any effect. You can OR this with the
lcaConfigPropOptLoadValues (1) value to
upload all unknown values in the OpenLNS
database from the physical device on the
network. Alternatively, you can OR this with
the lcaConfigPropOptSetDefaults (2)
values to upload all the unknown values into
the OpenLNS database, and then set the
uploaded values (as well as all values that
were known in the database before the upload)
as the device’s defaults in the OpenLNS
database. Note that all configuration
properties in an AppDevice object start in the
unknown condition. Values that have been
explicitly set in the database are not affected
by this option.
64
lcaConfigPropOptExcludeDeviceSpecific
Do not upload configuration properties with
the device-specific attribute set into the
OpenLNS database. For example, if this option
is ORed with lcaConfigPropOptLoadValues
(1), LNS would upload all configuration
properties that are not device-specific from the
device into the OpenLNS database. This option
should not be ORed with
lcaConfigPropOptOnlyDeviceSpecific (128).
128
lcaConfigPropOptOnlyDeviceSpecific
Only upload configuration properties with the
device-specific attribute set into the OpenLNS
database. For example, if this option is ORed
with lcaConfigPropOptLoadUValues (1),
LNS would upload all device-specific
configuration properties from the device into
the OpenLNS database. This option should not

OpenLNS Programmer's Reference 63

be ORed with
lcaConfigPropOptExcludeDeviceSpecific
(64).

Added to API Prior to LNS Release 3.0.

Wink
Summary Invokes the device’s Wink task.

You can use this method to invoke the device’s Wink task.
Application devices may be programmed with a Wink task
which facilitates the identification and installation of the
device. Wink tasks are device specific, but they may include
such actions as the flashing of a light, or sounding of an
alarm.

Availability Local, full, and lightweight clients.

Syntax appDeviceObject.Wink

Element Description

appDeviceObject The AppDevice object to be winked.

Added to API Prior to LNS Release 3.0.

Properties
The AppDevice object contains the following properties:

• AliasCapacity
• AliasUseCount
• AppImagePath
• AttachmentStatus
• AuthenticationEnabled
• BitmapFilePath
• Channel
• ClassId
• CommissionStatus
• ConfigurationState
• ConnectionUpdateType
• Delay
• Description
• DetailInfo
• DeviceTemplate
• Extensions

OpenLNS Programmer's Reference 64

• Handle
• HasBeenCommissioned
• IconFilePath
• InitialAuthenticationKey
• Interface
• Interfaces
• LastTestInfo
• LastUpgrade Status
• Location
• LocationInNeuron
• MonitorSets
• MtHubs
• Name
• NetworkServiceDevice
• NeuronId
• NodeId
• NonGroupRcvTimer
• NsiHandle
• NVHubs
• Parent
• PingClass
• PendingNeuronId
• Priority
• ProgramId
• SelfDocumentation
• State
• SubnetId
• Subnets
• Subsystems
• Upgrade Requirement

AliasCapacity
Summary Returns the number of network variable aliases available on

the device. This information will be useful to you when
managing connections in large systems.
For more on network variable aliases, see Chapter 7 of the
OpenLNS Programmer’s Guide.

Availability Local, full, and lightweight clients.

Syntax capacity = adObject.AliasCapacity
Element Description

capacity The number of network variable
selectors available on the device.

adObject The AppDevice object being acted upon.

Valid Values The following value is defined for the Alias object in the
ConstClassIds constant.
lcaClassIdAliases 58

Data Type Integer.

OpenLNS Programmer's Reference 65

Read/Write Read only.

Added to API LNS Release 3.20.

AliasUseCount
Summary Returns the number of network variable aliases currently in

use on the device. The AliasCapacity property returns the
total number of network variable aliases available on the
device. This information will be useful to you when
managing connections in large systems.
For more on network variable aliases, see Chapter 7 of the
OpenLNS Programmer’s Guide.

Availability Local, full, and lightweight clients.

Syntax inUse = adObject.AliasUseCount
Element Description

inUse The number of network variable aliases
currently in use on the device.

adObject The AppDevice object being acted upon.

Valid Values The following value is defined for the Alias object in the
ConstClassIds constant.
lcaClassIdAliases 58

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.20.

AppImagePath
Summary Contains the application image path where the application

binary image file (.APB extension) associated with the device
is stored.

Use the Load method to load the application image specified
by this property.

Availability Local, full, and lightweight clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Comments If this application device is created from a device template,
this property will be set to the same path as the

OpenLNS Programmer's Reference 66

DeviceTemplate object's XifPath property.
If this application device was not created from a device
template, this property will be empty and must be assigned
by the OpenLNS application.

AttachmentStatus
Summary Indicates whether the device is attached and in the proper

state.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.Count
Element Description

attachmentStatus The attachment status of the device.
The values for this element, which are
stored in the
ConstDeviceAttachmentStatus
constant, are as follows:
0 lcaDeviceAttached
Indicates that the device that triggered
the event is now attached and in the
proper state.
1 lcaDeviceInImproperState
Indicates that the device that triggered
the event is now attached but not in
the proper state.
2 lcaDeviceNotAttached
Indicates that the device that triggered
the event is now not attached.

Object The AppDevice object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.0.

AuthenticationEnabled
Summary Indicates whether an application device uses network

management authentication.
The following sections describe how to enable and disable
authentication.
Enabling Authentication
To enable authentication for any of the devices in a system,
follow these steps:

1. Set the system’s authentication key using the System

OpenLNS Programmer's Reference 67

object’s AuthenticationKey property.

2. Set the AuthenticationEnabled property of the AppDevice
object that represents the System object’s
NetworkServiceDevice object to True. This enables
authentication for all Network Service Devices on the
system. As a result, the authentication key used by each
Full and Lightweight client application must match the
authentication key established in Step 1 the next time
any of those applications opens the network. Note that if
you have set the authentication key used by a Full
client's network interface to match the authentication
key established in step 1, then other clients can use that
connection without re-specifying the key, as long the first
Full client remains connected to the server.

3. Set the AuthenticationEnabled property to True the
AppDevice objects that will use authentication.

Disabling Authentication
To disable authentication for all the devices in a system,
follow these steps:

1. Set the AuthenticationEnabled property to False on the
AppDevice object that represents the System object’s
NetworkServiceDevice. This disables authentication for
all application devices, routers and Network Service
Devices operating on the system.

2. Set the System object’s AuthenticationKey property to ffff
ffff ffff if the network is using 48-bit authentication, or
to ffff ffff ffff ffff ffff if the network is using 96-bit
authentication.

Availability Local, full, and lightweight clients.

Syntax authEnabled = Object.AuthenticationEnabled
Element Description

authEnabled Boolean value indicating whether an
application device uses network
management authentication.

If the SecurityLevel property of the
System object is set to
lcaSecurityLevelKeyDistributionE
nabled, setting this property to True
enables network management
authentication and installs the system
key in the device or router.

If the SecurityLevel is not
lcaSecurityLevelKeyDistributionE
nabled, setting this property to True
implies that network management
authentication will be enabled by the
Object Server, but the system key will

OpenLNS Programmer's Reference 68

be installed in the device or router side
by some external means.
Setting this property to False results
in removing the system key from the
device or router side and disabling
network management authentication
on the device or router side.
Only application devices whose
AuthenticationEnabled property is
set to True are permitted to participate
in authenticated connections. If an
application device participates in
authenticated connections, you cannot
set this property to False.

Object The object to be acted on.

Data Type Boolean.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

BitmapFilePath
Summary Specify the path and file name of a bitmap (*.BMP file)

representation of the object.
The bitmap files are used to store object images which may
be accessed by a director level LNS component application. A
bitmap may be of any size, although the recommended
dimensions are 40x80 pixels.

See the IconFilePath property for related information.

Availability Local clients.

Syntax bmpFilePath = object.BitmapFilePath
Element Description

bmpFilePath The bitmap path and file name.

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyBMPs\Object.BMP).

Added to API Prior to LNS Release 3.0.

Channel
Summary Contains the Channel object associated with the specified

AppDevice object. The channel assigned to an AppDevice
object is determined when you add the device to the

OpenLNS Programmer's Reference 69

AppDevices collection.

Availability Local, full, and lightweight clients.

Syntax channelObject = object.Channel
Element Description

channelObject The channel object.

object The AppDevice object.

Data Type Channel object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
AppDevice object in the ConstClassIds
constant:
7 lcaClassIdAppDevice

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

CommissionStatus
Summary Stores the commission status of an application device.

When an application device is installed using the ad-hoc
installation scenario, this property will be set to
lcaCommissionUpdatesCurrent (0) before and after
commissioning.

For an application device defined from a DeviceTemplate
object and channel, this property will be
lcaCommissionUpdatesPending (1) before

OpenLNS Programmer's Reference 70

commissioning, and lcaCommissionUpdatesCurrent (0)
after a successful commission.
This property will be set to
lcaCommissionUpdatesPending (1) if any changes have
been made to the database that affect the configuration of a
router or application device, and those changes have not yet
been propagated to the device. Changes may not yet have
been propagated to the device because the network
management mode is set to
lcaMgmtModeDeferConfigUpdates (1), or because the
transaction has not yet been committed. If these updates are
attempted but fail, this property will be set to
lcaCommissionUpdatesFailed (2).
You can force a retry of any failed updates with the
RetryUpdates method, or you can set up retry updates at an
interval of your choice by setting the UpdateInterval property
to a positive value. The CommissionStatus property will be
restored to lcaCommissionUpdatesCurrent (0) after the
updates have been successfully propagated to the physical
devices.

Availability Local, full, and lightweight clients.

Syntax commStatusValue = object.CommissionStatus
Element Description

object The device object to be acted on.

commStatusValue The commission status of this object.
The values for this element, which
are stored in the commStatusValue
constant, are as follows:
0
lcaCommissionUpdatesCurrent
No outstanding commission updates
are pending.
1
lcaCommissionUpdatesPending
Commission updates are currently
pending, or in progress. When
database changes are made that
affect a device’s configuration, this
value represents the commission
status of the device.
The commission status will be
changed to
lcaCommissionUpdatesCurrent
(0) when the changes are successfully
propogated to the device, or to
lcaCommissionUpdatesFailed (2)
if there is a failure to propogate the

OpenLNS Programmer's Reference 71

changes.
2 lcaCommissionUpdatesFailed
Commission updates are currently
pending or in progress, and the most
recent update attempt failed.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ConfigurationState
Summary Identifies the current configuration state of an application

device.

Availability Local, full, and lightweight clients.

Syntax configStateValue = appDeviceObject.ConfigurationState
Element Description

appDeviceObject The application device to be acted on.

configStateValue The configuration state of this device.
The values for this element, which are
stored in the ConstConfigurationState
constant, are as follows:
0 lcaConfigurationNode

HasBeenConfigured
The application device has been
configured.
1 lcaConfigurationNode

HasNeverBeenConfigured
The application device has never been
configured.

If the ConfigurationState property is
set to this value, OpenLNS will
assume that the address table and
network variable configuration entries
in the device are set to their unbound
values. As a result, it will not update
empty address table entries or
unbound network variable
configuration entries when you
commission that device

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 72

ConnectionUpdateType
Summary Specifies in which state the AppDevice is placed while

performing a connection update.
Normally, when connecting network variables, the devices
containing the network variables are taken hard-offline prior
to making the update. Once all affected devices are in this
state, each device is updated, placed in the configured state,
and, if they were previously online, will be placed online
again. This way the configuration of all devices that are
currently online will be consistent at all times.
This property allows the device to remain online while these
changes are being made. This allows a device to continue
sending and receiving updates while its connection status is
being changed. This can result in invalid network variable
updates being sent or received.

Availability Local, full, and lightweight clients.

Syntax updateType = appDeviceObject.ConnectionUpdateType
Element Description

updateType The update type value. The values for
this element, which are stored in the
ConstConnectionUpdateTypes
constant, are as follows:
-1
lcaConnectionUpdateTypeNotSet

The device's ConnectionUpdateType
property has not been set. Its behavior
defaults to the value specified using
the global Flags property.
0
lcaConnectionUpdateTypeOffline
The device will be put offline while
connections are taking place.
1
lcaConnectionUpdateTypeOnline
The device will be left online while
connections are being made. This
setting is not recommended, as it may
cause your application to process or
send network variable updates using
inconsistent network variable
configuration. This may lead to
misinterpretation of network variable
updates on this or other devices.

appDeviceObject The application device to be acted on.

Data Type Integer.

OpenLNS Programmer's Reference 73

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Delay
Summary Represents the average number of milliseconds required for a

packet to get sent to the application device once queued.
This property allows OpenLNS applications to specify the
number of milleseconds expected for an application to send a
message and receive an acknowledgment from the device.
This enables the automatic timer calculations made by
OpenLNS to be adjusted accordingly. This value will be
added to any delays calculated by OpenLNS based on the
network topology. When this property contains the default
value of 0, OpenLNS will not calculate an extra delay for the
device.
You can set the expected delay for a message to be sent to a
specific channel by writing to the Delay property of the
Channel object.

Availability Local, full, and lightweight clients.

Syntax delayValue = Object.Delay
Element Description

delayValue The delay associated with the
application device, in milliseconds. The
valid range of this property is 0 to
65,535.

Object The AppDevice object being acted upon.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.20.

Description
Summary Stores description information about the object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the AppDevice
object.

object The AppDevice object to be acted on.

Data Type String.

Read/Write Read/write. This property is read-only for Error objects.

OpenLNS Programmer's Reference 74

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

DetailInfo
Summary Contains the DetailInfo object associated with the specified

AppDevice object. The DetailInfo object contains an error log
and communications status information for the AppDevice
object.

When you read this property from an AppDevice, OpenLNS
will send a query to the device to obtain this information.

Availability Local, full, and lightweight clients.

Syntax detailInfoObject = object.DetailInfo
Element Description

detailInfoObject The DetailInfo object associated with
the application device.

object The AppDevice object from which to
get status information.

Data Type DetailInfo object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Device Template
Summary Contains the DeviceTemplate object associated with the

specified AppDevice.

Availability Local, full, and lightweight clients.

Syntax devTemplateObject = appDeviceObject.DeviceTemplate
Element Description

devTemplateObject The device template object.

appDeviceObject The AppDevice object.

Data Type DeviceTemplate object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Extensions
Summary Contains the Extensions collection object associated with the

specified AppDevice.
This property returns an Extensions collection. The objects
in this collection represent user data reserved for
manufacturers. Each object is identified with a unique

OpenLNS Programmer's Reference 75

identifier set by the manufacturer

Availability Local, full, lightweight, and independent clients.

Syntax extensionsColl = object.Extensions
Element Description

extensionsColl The Extensions collection object.

object The object whose Extensions
collection is being returned.

Data Type Extensions collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Handle
Summary Contains the handle associated with the AppDevice object.

An OpenLNS Object that is part of a collection is assigned an
index corresponding to its position within that collection.
This index may be used when invoking the Item property and
may also be read using the Index property.
Some OpenLNS Objects are tracked internally by the
OpenLNS Server using a unique handle. Handles may be
used with the ItemByHandle method as an alternative means
of fetching objects.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.Handle
Element Description

returnValue The NSS handle of the object.

object The object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

HasBeenCommissioned
Summary Returns a boolean value indicating whether the application

device has been commissioned.

This property indicates the commission state of an AppDevice
object within the OpenLNS database, returning a True value
if the AppDevice 's Commission method has been invoked. If
the network management mode is set to
lcaMgmtModeDeferConfigUpdates (1), this property may
return True, although the physical application device
remains unconfigured on the network.

You can use the CommissionStatus property to determine

OpenLNS Programmer's Reference 76

whether all database changes have been propagated to the
physical device.

Availability Local, full, and lightweight clients.

Syntax cmValue = appDeviceObject.HasBeenCommissioned
Element Description

cmValue A Boolean type indicating the
commission state.

appDeviceObject The AppDevice object to be acted on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

IconFilePath
Summary Specifies the path and file name of an icon (*.ICO file)

representation of the object.

Availability Local clients.

Syntax IconFilePathFileName = object.IconFilePath
Element Description

IconFilePathFileName Icon file and path name

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyICOs\Object.ICO).
The icon file should contain the following representations:

• Standard (32x32 pixels) with 256 colors
• Small (16x16) with 16 colors
• Monochrome (32x32)
• Large (48x48) with 256 colors

Added to API Prior to LNS Release 3.0.

InitialAuthenticationKey
Summary Contains the initial authentication key to be used when

commissioning an application device.
This property must be set prior to commissioning an
application device that has network management
authentication enabled, and has been previously
commissioned outside of LNS, or commissioned on a different
OpenLNS network. In these circumstances, OpenLNS will
not be able to communicate with the device without knowing

OpenLNS Programmer's Reference 77

its authentication key because the device has authentication
enabled. If the InitialAuthenticationKey is set prior to
commissioning the device or router, OpenLNS will use this
key to authenticate messages sent to the device or router
during the commissioning process.
This property does not affect the key stored in the device or
router after a successful commission. Once the device or
router has been commissioned, its authentication key will
either be set to FFFFFFFFFFFF or the OpenLNS system
authentication key, as determined by the device’s
AuthenticationEnabled property.

Availability Local, full, and lightweight clients.

Syntax authenticationKey = object.InitialAuthenticationKey
Element Description

authenticationKey The authentication key to be used
when commissioning the application
device.

object The AppDevice object being acted
upon.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.20.

Interface
Summary Contains the main Interface object associated with the

specified AppDevice object. This includes the static interface
of the device, as well as all custom, virtual interfaces that
have been added to the device dynamically, with the Add
method. The collection of custom interfaces that have been
added to a device is contained in the Interfaces property.

Availability Local, full, and lightweight clients.

Syntax interfaceObject = object.Interface
Element Description

interfaceObject The Interface object retrieved from the
object.

object The AppDevice object to be acted on.

Data Type Interface object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Interfaces
Summary Contains the Interfaces collection object associated with the

specified AppDevice object. This is the collection of virtual

OpenLNS Programmer's Reference 78

and custom interfaces associated with the device.
The Interfaces collection allows virtual and custom interfaces
to be added to any device that supports dynamic network
variables, dynamic message tags, or dynamic
LonMarkObjects. You add custom interfaces to a device with
the Add method.

Availability Local, full, and lightweight clients.

Syntax interfaceColl = object.Interfaces
Element Description

interfaceColl The Interfaces collection to be
returned.

object The AppDevice object to be acted on.

Data Type Interfaces collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

LastTestInfo
Summary Contains the TestInfo object containing the results of the last

time the Test method was called for this device.

The AuxResultData property indicates which properties of
the LastTestInfo object contain useful information.

Availability Local, full, and lightweight clients.

Syntax lastTestInfor = adObject.LastTestInfo
Element Description

lastTestInfo The TestInfo object containing the last
test results.

adObject The AppDevice object to be acted on

Data Type TestInfo object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

LastUpgradeStatus
Summary Contains the UpgradeStatus object returned the last time the

Upgrade method was called on the AppDevice object. This
object contains a Summary of the changes made during the
upgrade of the device's external interface.

The Upgrade method is used to upgrade a device’s external
interface. It returns an UpgradeStatus object, which contains
information indicating whether or not the upgrade was
successful, as well as information describing the changes made
to each external interface component (for example, LonMark
object, network variable, message tag, configuration property,

OpenLNS Programmer's Reference 79

monitor set, and monitor point) during the upgrade.

If you have not called the Upgrade method on a device and
attempt to read this property, a LCA, #6 ObjectNotFound
exception is thrown.

Availability Local, full, and lightweight clients.

Syntax upgradeStatusObject = adObject.LastUpgradeStatus
Element Description

upgradeStatusObject The UpgradeStatus object returned
the last time the external interface
of the device was upgraded.

adObject The AppDevice object to be acted
on.

Data Type UpgradeStatus object.

Read/Write Read only.

Added to API LNS Release 3.20.

Location
Summary Contains the value of the specified AppDevice ’s six byte

location as a hex string. This property must contain a 12
digit hex string that is a valid hexadecimal value. The only
valid characters are 0-9 and A-F. For example,
"0000AC43F1B6" is a valid value.

The Location property allows you to read the AppDevice ’s
location from the OpenLNS database.

Availability Local, full, and lightweight clients.

Syntax locationValue = object.Location
object.Location = locationValue
Element Description

locationValue The location as read from the device
as a hex string.

object The AppDevice object to be acted
on.

Data Type String (6 bytes).

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

LocationInNeuron
Summary Reads the value of the specified AppDevice ’s six-byte

location as a hex string from the physical device’s EEPROM.

Availability Local, full, and lightweight clients.

Syntax locationValue = appDevObject.LocationInNeuron

OpenLNS Programmer's Reference 80

appDevObject.LocationinNeuron = locationValue
Element Description

locationValue The location as read from the device
as a hex string.

object The AppDevice object to be acted
on.

Data Type String (6 bytes).

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

MonitorSets
Summary Contains a collection of all the MonitorSet objects on this

device. Devices that do not support monitor sets will return
an empty collection for this property.

Availability Local, full, lightweight, and independent clients.

Syntax monitorSets = adObject.MonitorSets
Element Description

monitorSets The collection of MonitorSet objects
on this device.

adObject The AppDevice object to be acted
on.

Data Type MonitorSets object.

Read/Write Read only.

Added to API LNS Release 3.0.

MtHubs
Summary The message tags in this application device that are hubs in

a message tag connection.
When a new hub is added, it may not be added to the end of
the list of hubs; therefore, a cached copy of the complete hub
list should be updated when a new hub is added or deleted.

Availability Local, full, and lightweight clients.

Syntax mtCollection = adObject.MTHubs
Element Description

mtCollection The returned MessageTags
collection.

adObject The specified AppDevice object.

Data Type MessageTags collection object.

Read/Write Read only.

OpenLNS Programmer's Reference 81

Added to API LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

NetworkServiceDevice
Summary Returns the parent NetworkServiceDevice object of the

AppDevice object if the application device is associated with
an OpenLNS Server or NSI. If the device is an independent
application device, reading this property will generate an
lcaNotAnNsiHost error

Availability Local, full, and lightweight clients.

Syntax nsdObject = systemObject.NetworkServiceDevice
Element Description

systemObject The System object to be acted on.

nsdObject The NetworkServiceDevice object.

Data Type NetworkServiceDevice object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

NeuronId
Summary Contains the Neuron ID associated with the application

device. Neuron IDs are stored as 12-digit hexadecimal strings
(for example, "a327ff27ba44").

OpenLNS Programmer's Reference 82

Availability Local, full, and lightweight clients.

Syntax neuronIdValue = object.NeuronId
Element Description

neuronIdValue The NeuronId of the object.

object The AppDevice object to be acted
on.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

NodeId
Summary Contains the node ID associated with an application device.

The NodeId and SubnetId comprise the logical network
address assigned to an AppDevice when the Add method is
invoked on it. Each AppDevice is allocated a single node ID.
However, you should note that Network Service Devices are
allocated two Node IDs.
Note: As of OpenLNS, you can write to this property.

Availability Local, full, and lightweight clients.

Syntax nodeIdValue = object.NodeId
Element Description

nodeIdValue The NodeId of the object.

object The AppDevice object to be acted
on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 83

NonGroupRcvTimerNonGroupRcvTimer_Property
Summary The value of the device's non-group receive timer. This

determines the time period within which receiving devices
will treat messages from the same source with the same
reference ID, but from a different connection, as duplicate
messages. The default is calculated based on the network
topology, channel delays and current connections that the
device is involved in. The value is encoded as follows:
Encoded Value Seconds
0 0.128
1 0.192
2 0.256
3 0.384
4 0.512
5 0.768
6 1.024
7 1.536
8 2.048
9 3.072
10 4.096
11 6.144
12 8.192
13 12.288
14 16.384
15 24.576

Availability Local, full, and lightweight clients.

Syntax timerValue = adObject.NonGroupRcvTimer
Element Description

timerValue The non-group receive timer value.

adObject The AppDevice to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.0.

NsiHandle
Summary Returns the unique identifier assigned to an NSI by the

OpenLNS Server. This handle is different than the
NodeHandle and Handle properties. For the AppDevice
object, this property returns the handle for the device’s
parent NetworkServiceDevice object, provided the device is
associated with an NSI or OpenLNS Server. If the device is
an independent application device, the return value will be
zero.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 84

Syntax handleValue = nsdObject.NsiHandle
Element Description

handleValue The NSI’s handle.

nsdObject The NetworkServiceDevice to be
acted on

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

NVHubs
Summary The network variables in the connections of this application

device that represent the hubs of those connections (note that
the hubs are not necessarily on this application device).
When a new hub is added, it will not neccessarily be added to
the end of the list of hubs; therefore a cached copy of the
complete hub list should be updated when a new hub is
added or deleted.

Availability Local, full, and lightweight clients.

Syntax nvColl = adObject.NVHubs
Element Description

adObject The AppDevice object to be acted
on.

nvColl The collection of NetworkVariables
to be returned.

Data Type NetworkVariables collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy. For
example, an AppDevice object's parent can be a
NetworkServiceDevice object or a AppDevices collection object

Availability Local, full, lightweight, and independent clients. Note that
not all objects that contain this property are available to
Independent clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

OpenLNS Programmer's Reference 85

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

PingClass
Summary Determines the frequency with which a device is tested

(pinged) to determine if it is still attached to the network.
This property classifies devices based on the probability that
the device may be detached. The higher the probability, the
more frequently the device will be pinged. The Object Server
assumes a device to be detached if it cannot communicate
with that device three consecutive times.

Availability Local, full, and lightweight clients.

Syntax pingClassValue = Object.PingClass
Element Description

Object The device object to be acted on.

pingClassValue The ping class of this object.
The valid values for this element,
which are provided in the
ConstPingClass constant, are as
follows:
0 lcaPingClassDefault
If this value is written to the
PingClass property, OpenLNS will
use the default
lcaPingClassStationary (3) value.
1 lcaPingClassMobile
Class for nodes which move
frequently.
2 lcaPingClassTemporary
Class for temporary nodes.
3 lcaPingClassStationary
Class for nodes which rarely move.
This is the default value.
4 lcaPingClassPermanent
Class for nodes which never move.
Note: You change the ping interval
that applies to each class with the

OpenLNS Programmer's Reference 86

System object's PingIntervals
property.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

PendingNeuronIdPendingNeuronId_Property
Summary Contains the neuron ID that will be set when the device is

commissioned.
If a device is commissioned with one Neuron ID, then
replaced, then the new Neuron ID is set, the NeuronId
property will still show the old Neuron ID until the
Commission method is called. This property allows the new
Neuron ID to be read before commissioning.

Availability Local, full, and lightweight clients.

Syntax neuronId = adObject.PendingNeuronId
Element Description

neuronId The pending neuron ID.

adObject The AppDevice object to be acted on.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

Priority
Summary Determines the device’s priority assignment on its channel.

An assignment of 0 indicates that the object is not assigned a
priority slot. If the object is not assigned a priority slot,
messages with priority will still use priority buffers, and will
still be sent before messages without priority. In addition,
messages with priority have the priority bit set, so that
routers will send them out using priority buffers. If a router
has a priority slot defined, the message will be forwarded on
that slot.

Availability Local, full, and lightweight clients.

Syntax priorityValue = object.Priority
Element Description

priorityValue The priority value assigned to the
object. The enumerated values that
you can set for this property, which
are stored in the
ConstLNSNodePriority constant, are
as follows:

OpenLNS Programmer's Reference 87

127 lcaLNSNodePriorityMax
Represents the maximum number of
priority slots on any LonTalk
channel. Do not set the MaxPriority
property to a value greater than this.
255 lcaLNSNodePriorityAny
The Object Server will assign the
AppDevice object the next available,
or least used, priority slot on the
channel.

object The AppDevice object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ProgramId
Summary Stores the program ID for the application device. Every

LonMark compliant LONWORKS application device uses a
unique, 16 digit, hexadecimal standard program ID that uses
the following format:
FM:MM:MM:CC:CC:UU:TT:NN

See the Devices Interfaces section in Chapter 6 of the
OpenLNS Programmer’s Guide for a description of the format
used to display program IDs.

Availability Local, full, and lightweight clients.

Syntax programIdValue = object.ProgramId
Element Description

programIdValue The program ID value of the object.

object The object to be acted on.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

SelfDocumentation
Summary Stores the self-documentation string of the application

device.
The length of the string is not provided as a separate
property. To get the length, get the descriptionString, and
calculate the length from it. Note that this property returns
only the user portion (which follows the LonMark portion, if
any) of the self-documentation string

OpenLNS Programmer's Reference 88

Availability Local, full, and lightweight clients.

Syntax descriptionString = object.SelfDocumentation
Element Description

programIdValue The program ID value of the object.

object The object to be acted on.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

State
Summary Describes the state of a device.

You cannot set the state of a device in the same transaction
as an Add, Commission, or Replace method. You cannot set
the state of a device during the definition phase of the
predefined components installation scenario.
The state change may fail if the device has not been
completely updated due to a previous communication
problem or if the device has not been commissioned. If a
failure occurs, use the Commission method to force an update
of the device.
Devices cannot receive network events related to monitor and
control while they are set to an offline state. For example, if
the State property of an app device installed on the network
is set to offline, then that device will not be able to receive
incoming network variable events.
While considering this, it is important to note that devices
are placed offline while they are being configured or
commissioned. For example, if you add or remove a
connection between an application device and the Network
Service Device, both the application device and Network
Service Device will be taken offline while the change is being
made.

Availability Local, full, and lightweight clients.

Syntax stateValue = object.State
Element Description

stateValue The state of the device (online or
offline). The enumerated values for
this property, which are stored in the
ConstDeviceStates constant, are as
follows:
Note: The only two values that may
be written to this property are
lcaStateCnfgOnline(4) and
lcaStateSoftOffline(12). All other

OpenLNS Programmer's Reference 89

properties are read-only.
2 lcaStateUncnfg
The application is loaded but the
configuration is either not loaded,
being reloaded, or deemed corrupted
due to a configuration checksum
error. A Neuron Chip also can make
itself unconfigured by calling the
Neuron C function
go_unconfigured(). The device's
service LED flashes at a one second
rate in this state.
3 lcaStateNoApplUncnfg
No application is loaded yet, the
application is in the process of being
loaded, or the application has been
deemed corrupted due to an
application checksum error or
signature inconsistency. The
application does not run in this state.
The device's service LED is steadily
on in this state.
4 lcaStateCnfgOnline
Normal device state. The application
is running and the configuration is
considered valid. This is the only
state in which messages addressed to
the application are received. In all
other states, they are discarded. The
device's service LED is off in this
state.
6 lcaStateCnfgOffline
Application loaded but not running.
The configuration is considered valid
in this state; the network
management authentication bit is
honored. The device's service LED is
off in this state.
12 lcaStateSoftOffline
The device has an application, is
configured, and is soft-offline. It will
go online when it is reset or when
requested to go online. The device's
service LED is off in this state.
140 lcaStateCnfgBypass
The application confirmed the offline
request, but is still running (bypass

OpenLNS Programmer's Reference 90

mode). The device's service LED is
off in this state.

object The device to be acted on.

Data Type Integer.

Read/Write Read /write.

Added to API Prior to LNS Release 3.0.

SubnetId
Summary Contains the ID of the subnet. The AppDevice object's

SubnetId property identifies the subnet the device is part of.
This property can be used in conjunction with the NodeId
property to uniquely identify a device.
Note: As of OpenLNS, you can write to this property.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.SubnetId
Element Description

returnValue The subnet ID of the device.

object The AppDevice to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Subnets
Summary Contains the Subnets collection object associated with the

specified AppDevice. The Subnets collection contains subnets
that are associated with object. For example, the AppDevice
objects’ Subnets property returns a Subnets collection object
corresponding to the subnet for the device's index 0 domain
entry.

Availability Local, full, and lightweight clients.

Syntax subnetCollection = object.Subnets
Element Description

subnetCollection The returned subnet collection

object The AppDevice object to be acted
upon.

Data Type Subnets collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 91

Subsystems
Summary Contains the Subsystem collection object associated with the

specified AppDevice. A Subsystem object can in turn contain
a collection of Subsystems.

A System object’s Subsystems collection contains two default
Subsystems upon creation. These Subsystems are named
"ALL", which lists all of the devices in the system and
"Discovered", which lists all devices discovered by the object
server that have not yet been associated with a subsystem.
This includes both unconfigured devices discovered by the
NSS and configured devices that were added by some other
network management application that does not use the
Object Server.

Subsystems collection objects accessed through AppDevice
objects represent the Subsystems that contain the specified
AppDevice.

Availability Local, full, and lightweight clients.

Syntax subsystemCollection = object.Subsystems
Element Description

subsystemCollection Subsystems collection associated
with the object.

object The AppDevice object.

Data Type Subsystems collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

UpgradeRequirement
Summary Indicates whether the application in the device matches the

application information contained in the OpenLNS database.

If a new application is loaded into a device using the Load
method, the program ID of the application will not match the
ProgramId property of the AppDevice object. When this
occurs, the device's external interface can be upgraded with
minimal disturbance to existing connections using the
AppDevice object's Upgrade method.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 92

Syntax upgradeReqValue = adObject.UpgradeRequirement
Element Description

upgradeReqValue An enumerated value indicating
whether the device's application
matches the application information
in the OpenLNS database. The
values for this property, which are
stored in the ConstUpgrade
Requirement constant, are as follows:
0 lcaUgReqNotRequired
Indicates that the device's
application does not need to be
upgraded.
1 lcaUgReqProgramIdMismatch
Indicates that the program ID of the
application does not match the
ProgramId property of the AppDevice
object.

adObject The AppDevice object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

AppDevices
An AppDevices object is a collection of AppDevice objects. An instance of this collection is
typically used to hold all of the application devices in a subsystem. The following table
summarizes the AppDevices object.

Description Represents a collection of AppDevice objects.

Added to API Prior to LNS Release 3.0.

Accessed Through Subsystem object.

Default Property Item property.

Methods • Add
• AddReference
• ItemByHandle
• ItemByNeuronID
• Remove

Properties • ClassID
• Count
• Item
• Parent
• _NewEnum

OpenLNS Programmer's Reference 93

Methods
The AppDevices object contains the following methods.

• Add
• AddReference
• ItemByHandle
• ItemByNeuronID
• Remove

Add
Summary Defines a new AppDevice object. This method adds a device to

the system, but does not install the physical device. The
Commission method is used to install the physical device after
that device is defined using this method.
Adding an application device to the system is a two or three
step operation: definition, loading (optional), and
commissioning.

1. The Add method is used to define the device.

2. The Load method is optionally used to write the
application image on the device.

3. The Commission method is used to write the network
image on the physical device, including its network
address.

The Add method can be used whether OpenLNS is physically
attached to the network or not, and while the network
management mode (MgmtMode property) is set to
lcaMgmtModePropagateConfigUpdates (0) or
lcaMgmtModeDeferConfigUpdates (1).

You can specify the device’s definition when you call the Add
method by supplying a DeviceTemplate object as the
deviceTemplateObject parameter. If a DeviceTemplate is
provided, then the device definition is taken from there. You
can initialize a DeviceTemplate by importing an external
interface file (.XIF and .XFB extensions) with the Import
method. For more information on device interfaces, see
Chapter 6 of the OpenLNS Programmer’s Guide.

If you do not specify the DeviceTemplate object, the device
template will be assigned (and recovered from the device if
necessary) when the device is commissioned. In this case, the
device's interface will be unavailable until the device has been
commissioned. You should specify the device template
whenever possible.

The Add method (in combination with the Commission method
when either the deviceTemplateObject or channelObject
element is omitted) causes the following to occur:

• The device is assigned a subnet/node address in the
system’s domain.

OpenLNS Programmer's Reference 94

• The device’s network variables and message tags are
unbound;

• The device’s priority slot is set to zero.

• The device’s state is set to lcaStateCnfgOffline.

• The device’s use of network management authentication is
disabled.

• The device’s non-group receive timer to be set to 2,048 ms.
Other parts of the network image are not modified.

You cannot add devices to the AppDevices collection objects
contained in either the ALL or Discovered subsystems, as
write access to the app devices contained within these
pre-defined subsystems is limited. Devices may not be added
to, or deleted from, these subsystems. However, you can
create additional subsystems for your app devices with the
Add method of the Subsystems collection object.

Note: Do not read or write the State property of the AppDevice
in the same explicit transaction in which it is added or
commissioned.

Availability Local, full, and lightweight clients.

Syntax appDeviceObject = appDevicesColl.Add(deviceName,
deviceTemplateObject, channelObject, subnetObject)
Element Description

appDeviceObject The newly defined AppDevice
object.

appDevicesColl The AppDevices collection object.

deviceName A String containing the name of
the application device.

deviceTemplateObject DeviceTemplate object to be
associated with the device.
If you specify the
deviceTemplateObject parameter,
then you can also provide a
previously defined Channel object
as the channelObject parameter to
explicitly assign the device’s
channel.

A channelObject should always be
provided for multi-channel
networks with LonWorks routers
configured as repeaters.
If no channel is specified when the
device is created, the OpenLNS
Object Server will use automatic
channel determination to assign
the channel when the device is

OpenLNS Programmer's Reference 95

commissioned. You should specify
the channel whenever possible.

channelObject The Channel object of the channel
in which the device is to be placed.

subnetObject The Subnet object of the subnet to
which the device is to be assigned.
This parameter is optional, and is
not typically specified. If not
specified, the Object Server
determines the subnet assignment,
creating one if necessary.
To explicitly assign the subnet,
specify a previously defined
subnetObject. This allows you to
take advantage of subnet broadcast
messaging. Note that you can use
the MoveEx method to move a
device to a different subnet after
the device has been added.

Added to API Prior to LNS Release 3.0.

AddReference
Summary Adds an AppDevice object reference to an AppDevices

collection.

This method can be used to add an existing AppDevice to
multiple Subsystem objects (by invoking this method on the
AppDevices collection in those Subsystem objects). For
example, an application might contain both a logical
hierarchy for the system (where each subsystem represents a
function, such as lighting control or the first stage of a batch
process) and a physical hierarchy for the system (where each
subsystem represents a physical place such as a room or cell).
This method allows AppDevices to be placed within both
hierarchies in the appropriate subsystems.
When initially defining a device, it is first added to a single
subsystem. References to the device may then be added to
other subsystems. The device is not deleted from the
OpenLNS database or decommissioned until all references
have been deleted. The device’s association with the first
subsystem is also treated as a reference, so it may be
removed from its initial subsystem at any time.

If AddReference is used to "add" a device discovered in one of
the Discovered.<xxx> subsystems, invoking this method will
cause the device to be removed from its original discovered
subsystem.

Availability Local, full, and lightweight clients.

Syntax collection.AddReference object

OpenLNS Programmer's Reference 96

Element Description

collection The AppDevices collection to gain the
reference.

object The AppDevice object to be added.

Added to API Prior to LNS Release 3.0.

ItemByHandle
Summary Retrieves an AppDevice object, specified by its handle, from

an AppDevices collection. The AppDevice object to be
retrieved must be specified by its handle.

Availability Local, full, and lightweight clients.

Syntax object = coll.ItemByHandle(handle)
Element Description

object The object retrieved from the collection.

coll The collection object.

handle A Long value specifying the handle of
the object to retrieve.

Added to API LNS Release 3.0.

ItemByNeuronID
Summary Retrieves an AppDevice object, specified by its NeuronId

property, from an AppDevices collection.

Availability Local, full, and lightweight clients.

Syntax object = coll.ItemByNeuronId(neuronId)
Element Description

object The AppDevice retrieved from the
collection.

coll The AppDevices collection object.

neuronId A String specifying the Neuron ID of
the AppDevice object to be retrieved.

Added to API LNS Release 3.0.

Remove
Summary Removes an application device from a subsystem. If the

application device is not a member of any other subsystems,
then it is removed from the system and the network.
An application device is removed from a subsystem by
removing the corresponding AppDevice object from the
AppDevices collection object owned by that Subsystem object.
If the application device is in any other subsystems, then
nothing further is done.

OpenLNS Programmer's Reference 97

If the application device in not a member of any other
subsystem, then the application device is completely removed
from the system. The device is removed from all connections,
removed from the system domain, and placed in the
unconfigured state; the device’s channel ID is set to 0. No
other changes are made in the device’s network image. The
NSS Handle is also freed and is available for use by the
Object Server.

An AppDevice object can only be removed from a "regular"
subsystem. The AppDevices collection object’s Remove
method cannot be used on the All, Discovered.Installed, or
Discovered.Uninstalled subsystems.

Availability Local, full, and lightweight clients.

Syntax appDevicesColl.Remove indexName

Element Description

appDevicesColl The AppDevice collection object
containing the device to be removed.

indexName A Long value specifying the collection
index of the AppDevice object to
remove, or a String value specifying the
name of the AppDevice object to
remove.

Added to API Prior to LNS Release 3.0.

Properties
The Alias object contains the following properties:

• ClassID
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
AppDevices object in the ConstClassIds
constant:
8 lcaClassIdAppDevices

OpenLNS Programmer's Reference 98

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns an object from a collection. You can retrieve an

object from its collection by passing its index (ordinal
position) within that collection as the argument for the Item
property. Index values start at 1.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The object retrieved from the collection.

collObject The collection object to be acted on.

index A Long type specifying the ordinal
index of the object to retrieve.

OpenLNS Programmer's Reference 99

stringExpression A string type specifying the name of the
object to retrieve.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

OpenLNS Programmer's Reference 100

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

Application
Description Used to store application version, name, and state information.

Added to API LNS Release 3.0.

Accessed Through NetworkServiceDevice object.

Default Property Item property.

Methods None.

Properties • ClassId
• MajorApiVersion
• MajorVersion
• MinorApiVersion
• MinorVersion
• Name
• Parent
• State

Methods
The Application object does not contain any methods.

Properties
The Application object contains the following properties.

• ClassId
• MajorApiVersion
• MajorVersion
• MinorApiVersion
• MinorVersion
• Name
• Parent
• State

OpenLNS Programmer's Reference 101

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Application object in the ConstClassIds
constant:
70 lcaClassIdApplication

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

MajorAPIVersion
Summary Contains the major version of LNS used when the application

was compiled. This property is used with the
MinorApiVersion property to provide the full version
information. This property is set to 255 if there is no
available version information.

Availability Local, full, and lightweight clients.

Syntax majApiVersion = appObject.MajorApiVersion

Element Description

majApiVersion The major version of OpenLNS used
when this application was compiled.

appObject The Application object to be acted on.

Added to API LNS Release 3.0.

MajorVersion
Summary Contains the major version of the application. This property

is used with the MinorVersion property to provide the full
version information. This property is set to 255 if there is no
available version information.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 102

Syntax majVersion = appObject.MajorVersion

Element Description

majVersion The major version number of this
application when it was compiled.

appObject The Application object to be acted on.

Added to API LNS Release 3.0.

MinorAPIVersion
Summary Contains the minor version of LNS used when the application

was compiled. This property is used with the
MajorApiVersion property to provide the full version
information. This property is set to 255 if there is no
available version information.

Availability Local, full, and lightweight clients.

Syntax minApiVersion = appObject.MinorApiVersion

Element Description

minApiVersion The minor version of LNS used when
this application was compiled.

appObject The Application object to be acted on.

Added to API LNS Release 3.0.

MinorVersion
Summary Contains the minor version of the application. This property

is used with the MajorVersion property to provide the full
version information. This property is set to 255 if there is no
available version information.

Availability Local, full, and lightweight clients.

Syntax minVersion = appObject.MinorVersion

Element Description

minVersion The minor version number of this
application when it was compiled.

appObject The Application object to be acted on.

Added to API LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.

For AppDevice objects, this property can be a maximum of 85
characters long, but it may not contain the forward slash (/),
back slash (\), period (.), and colon (:) characters.

OpenLNS Programmer's Reference 103

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy. For
example, an AppDevice object's parent can be a
NetworkServiceDevice object or a AppDevices collection object

Availability Local, full, lightweight, and independent clients. Note that
not all objects that contain this property are available to
Independent clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

State
Summary Describes the state of the application.

Availability Local, full, and lightweight clients.

Syntax stateValue = appObject.State
Element Description

stateValue The state of the device (online or
offline). The enumerated values for
this property, which are stored in the

OpenLNS Programmer's Reference 104

ConstApplicationState constant, are as
follows:
0 LcaApplOnline
The application is currently executing.
1 LcaApplOffline
The application is not currently
executing.

appObject The Application object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.0.

BufferConfiguration
A BufferConfiguration object contains the communication buffer parameters for a RouterSide
object. Changes made to the buffer count and size properties are temporary. To save
changes to these properties and propagate the new values on the network, the
BufferConfiguration property of the RouterSide object must be set with the modified
BufferConfiguration object.
The maximum buffer size for a router side is determined when the router's external interface
file is imported. No changes may be made to the BufferConfiguration property of the
RouterSide object that would cause the total memory usage value to be exceeded. You can
specify a different external interface file that allows for greater memory for a router if you
want to change this value. The external interface file for a router must be specified before
the router is commissioned; therefore, you must follow this procedure to do so:

1. Use the Decommission method on the router that needs to be modified.

2. Use the AddEx method to add a replacement router object to the OpenLNS database.
Use lcaRouterFlagNoSplit (0) as the flags option when you call the method.

3. Import the external interface file that will be used by the router. Note that the
LonWorks\Import\Router.xif is the correct external interface file to use for all LonPoint
routers, and for any routers based on the RTR-10 SIM Module.

4. Set the ProgramId property of each RouterSide object of the replacement router to match
that of the external interface file used by that type of router. This should be the external
interface file imported in Step 3.

5. Use the Commission method on the replacement router. Once you have commissioned
the router, you can set the properties of the BufferConfiguration object to use the
additional memory allowed by the new external interface file.

6. Remove the old router.

The following table summarizes the BufferConfiguration object.

Description Contains the communication buffer parameters for a
RouterSide object.

Added to API Prior to LNS Release 3.0.

Accessed Through RouterSide object.

OpenLNS Programmer's Reference 105

Default Property None.

Methods None.

Properties • ClassId
• InputBufferCount
• InputBufferSize
• OutputBufferCount
• OutputBufferSize
• PriorityBufferCount
• PriorityBufferSize

Methods
The BufferConfiguration object does not contain any methods.

Properties
The BufferConfiguration object contains the following properties:

• ClassId
• InputBufferCount
• InputBufferSize
• OutputBufferCount
• OutputBufferSize
• PriorityBufferCount
• PriorityBufferSize

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
BufferConfiguration object in the
ConstClassIds constant:
56 lcaClassIdBufferConfiguration

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

OpenLNS Programmer's Reference 106

InputBufferCount
Summary Contains the value of the input buffer count used for router

configuration.
Changes made to this property are temporary. To save the
new value and send it to the Router on the network, set the
BufferConfiguration property of the RouterSide object to
point to the modified BufferConfiguration object.
The valid count values are discrete. If a specified value is
invalid, the buffer count property will be rounded up to the
next allowed value. Also, the combination of all input,
output, and priority buffers and counts must not exceed the
available memory. See the LONWORKS Router User's Guide
for more information.

Availability Local, full, and lightweight clients.

Syntax bufCount = bcObject.InputBufferCount
Element Description

bufCount The input buffer count.

bcObject The BufferConfiguration object to be
acted on.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

InputBufferSize
Summary Contains the value of the input buffer size used for router

configuration.
Changes made to this property are temporary. To save the
new value and send it to the Router on the network, set the
BufferConfiguration property of the original RouterSide
object to point to the modified BufferConfiguration object.
The valid size values are discrete. If a specified value is
invalid, the buffer size property will be rounded up to the
next allowed value. Also, the combination of all input,
output, and priority buffers and counts must not exceed the
available memory. See the LONWORKS Router User's Guide
for more information.

Availability Local, full, and lightweight clients.

Syntax bufSize = bcObject.InputBufferCount
Element Description

bufSize The input buffer size.

bcObject The BufferConfiguration object to be
acted on.

OpenLNS Programmer's Reference 107

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OutputBufferCount
Summary Contains the value of the output buffer count used for router

configuration.
Changes made to this property are temporary. To save the
new value and send it to the Router on the network, set the
BufferConfiguration property of the original RouterSide
object to point to the modified BufferConfiguration object.
The valid count values are discrete. If a specified value is
invalid, the buffer count property will be rounded up to the
next allowed value. Also, the combination of all output,
output, and priority buffers and counts must not exceed the
available memory. See the LONWORKS Router User's Guide
for more information.

Availability Local, full, and lightweight clients.

Syntax bufCount = bcObject.OutputBufferCount
Element Description

bufCount The output buffer count.

bcObject The BufferConfiguration object to be
acted on.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OutputBufferSize
Summary Contains the value of the output buffer size used for router

configuration.
Changes made to this property are temporary. To save the
new value and send it to the Router on the network, set the
BufferConfiguration property of the original RouterSide
object to point to the modified BufferConfiguration object.
The valid size values are discrete. If a specified value is
invalid, the buffer size property will be rounded up to the
next allowed value. Also, the combination of all output,
output, and priority buffers and counts must not exceed the
available memory. See the LONWORKS Router User's Guide
for more information.

Availability Local, full, and lightweight clients.

Syntax bufSize = bcObject.OutputBufferCount

OpenLNS Programmer's Reference 108

Element Description

bufSize The output buffer size.

bcObject The BufferConfiguration object to be
acted on.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

PriorityBufferCount
Summary Contains the value of the priority buffer count used for router

configuration.
Changes made to this property are temporary. To save the
new value and send it to the Router on the network, set the
BufferConfiguration property of the original RouterSide
object to point to the modified BufferConfiguration object.
The valid count values are discrete. If a specified value is
invalid, the buffer count property will be rounded up to the
next allowed value. Also, the combination of all priority,
priority, and priority buffers and counts must not exceed the
available memory. See the LONWORKS Router User's Guide
for more information.

Availability Local, full, and lightweight clients.

Syntax bufCount = bcObject.PriorityBufferCount
Element Description

bufCount The priority buffer count.

bcObject The BufferConfiguration object to be
acted on.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

PriorityBufferSize
Summary Contains the value of the priority buffer size used for router

configuration.
Changes made to this property are temporary. To save the
new value and send it to the Router on the network, set the
BufferConfiguration property of the original RouterSide
object to point to the modified BufferConfiguration object.
The valid size values are discrete. If a specified value is
invalid, the buffer size property will be rounded up to the
next allowed value. Also, the combination of all priority,
priority, and priority buffers and counts must not exceed the
available memory. See the LONWORKS Router User's Guide

OpenLNS Programmer's Reference 109

for more information.

Availability Local, full, and lightweight clients.

Syntax bufSize = bcObject.PriorityBufferCount
Element Description

bufSize The priority buffer size.

bcObject The BufferConfiguration object to be
acted on.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Channel
A Channel object represents a single instance of a LONWORKS channel. Channel objects
contain communication and transceiver information common to all devices on the channel.
The following table summarizes the Channel object.

Description Represents a single instance of a LONWORKS channel.
Channel objects contain communication and transceiver
information common to all devices on the channel.

Added to API Prior to LNS Release 3.0.

Accessed Through AppDevice object
Channels collection object
RouterSide object

Default Property Name.

Methods None.

Properties • AltPathType
• AppDevices
• BitmapFilePath
• ClassId
• Delay
• Description
• Extensions
• Handle
• IconFilePath
• MaxPriority
• Name
• Parent
• RouterDevices
• TransceiverId

Methods
The Channel object does not contain any methods.

OpenLNS Programmer's Reference 110

Properties
The Channel object contains the following properties:

• AltPathType
• AppDevices
• BitmapFilePath
• ClassId
• Delay
• Description
• Extensions
• Handle
• IconFilePath
• MaxPriority
• Name
• Parent
• RouterDevices
• TransceiverId

AltPathType
Summary Specifies whether the channel requires an alternate path so

that it can broadcast on separate frequencies. In some cases,
the use of alternate frequencies improves communication on
a channel.
Some transceivers broadcast on two frequencies for greater
signal reliability (for example, the PLT-22). This property
allows the user to explicitly inform LNS that a channel has
(or does not have) an alternate frequency.

Availability Local, full, and lightweight clients.

Syntax altPathType = channelObject.AltPathType
Element Description

channObject The Channel object to be acted on.

altPathType The alternate path type. The
enumerated values for this property,
which are contained in the
ConstChannelAltPathType constant, are
as follows:
0 lcaChannelDefaulAltPathType

Channels with their TransceiverId
property set to lcaXcvrPL_20A (15),
lcaXcvrPL_20A_AltClockRate (14),
lcaXcvrPL_20C (16), or
lcaXcvrPL_20N (17), will require the
alternate path, other channels will not.
The TransceiverType property does not
distinguish between PLT-20, PLT-21
and PLT-22. This is the default and the
recommended setting.

OpenLNS Programmer's Reference 111

1 lcaChannelAltPathNotRequired
This channel does not require use of the
alternate path. This value should be set
when a channel uses only PL-20s and
PL-21s. These power line transceivers
do not use the alternate path, but look
the same to LNS as the PL-22, which
does use the alternate path.
2 lcaChannelAltPathRequired
This channel requires use of both the
primary and alternate paths. This value
should be set when using a custom
transceiver that uses alternate
frequencies.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.0.

AppDevices
Summary Contains the AppDevices collection object associated with the

specified Channel object. This property represents all the
devices on the channel.

Availability Local, full, and lightweight clients.

Syntax appDevicesCollection = object.AppDevices
Element Description

appDevicesCollection The AppDevices collection returned.

object The Channel object to be acted on.

Data Type AppDevices collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

BitmapFilePath
Summary Specify the path and file name of a bitmap (*.BMP file)

representation of the object.
The bitmap files are used to store object images which may be
accessed by a director level LNS component application. A
bitmap may be of any size, although the recommended
dimensions are 40x80 pixels.

See the IconFilePath property for related information.

Availability Local clients.

OpenLNS Programmer's Reference 112

Syntax bmpFilePath = object.BitmapFilePath
Element Description

bmpFilePath The bitmap path and file name.

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s full
path and file name (for example, C:\MyBMPs\Object.BMP).

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Channel object in the ConstClassIds
constant:
12 lcaClassIdChannel

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Delay
Summary Represents the average number of milliseconds required for a

packet to get onto the channel once queued.
This property allows OpenLNS applications to specify the
number of milleseconds expected to send a message and
receive an acknowledgment on the specified channel, so that
automatic timer calculations made by OpenLNS can be
affected accordingly. When this property contains the default
value of 0, the delay used will be equivalent to the time
required for two packet cycles, based on the average packet

OpenLNS Programmer's Reference 113

size and channel transceiver type.
When you write to this property, you should note that the
delays for transactions on a given channel must be calculated
as round-trip delays. Make sure you set this property to a
value that is based on the amount of time it will take for a
request message to be sent on the channel, and for the
response message to be sent back on the channel.
You should also note that you can set the expected delay for a
message to be sent to a specific device by writing to the Delay
property of the AppDevice object.

Availability Local, full, and lightweight clients.

Syntax delayValue = channelObject.Delay
Element Description

delayValue The delay associated with the channel,
in milliseconds. The valid range of this
property is 0 to 65,535.

channelObject Channel object to be acted upon.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Description
Summary Stores description information about the Channel object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the AppDevice
object.

object The AppDevice object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

Extensions
Summary Contains the Extensions collection object associated with the

specified Channel.
This property returns an Extensions collection. The objects
in this collection represent user data reserved for

OpenLNS Programmer's Reference 114

manufacturers. Each object is identified with a unique
identifier set by the manufacturer

Availability Local, full, lightweight, and independent clients.

Syntax extensionsColl = object.Extensions
Element Description

extensionsColl The Extensions collection object.

object The object whose Extensions
collection is being returned.

Data Type Extensions collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Handle
Summary Contains the handle associated with the Channel object.

An OpenLNS Object that is part of a collection is assigned an
index corresponding to its position within that collection.
This index may be used when invoking the Item property of
the Channels collection object.
Some OpenLNS Objects are tracked internally by the
OpenLNS Server using a unique handle. Handles may be
used with the ItemByHandle method of the Channels
collection object as an alternative means of fetching Channel
objects.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.Handle
Element Description

returnValue The NSS handle of the object.

object The object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

IconFilePath
Summary Specifies the path and file name of an icon (*.ICO file)

representation of the object.

Availability Local clients.

Syntax IconFilePathFileName = object.IconFilePath
Element Description

IconFilePathFileName Icon file and path name

OpenLNS Programmer's Reference 115

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyICOs\Object.ICO).
The icon file should contain the following representations:

• Standard (32x32 pixels) with 256 colors
• Small (16x16) with 16 colors
• Monochrome (32x32)
• Large (48x48) with 256 colors

Added to API Prior to LNS Release 3.0.

MaxPriority
Summary Specifies the total number of priority slots allowed on a

channel.

Availability Local, full, and lightweight clients.

Syntax numPrioritySlots = channelObject.MaxPriority
Element Description

numPrioritySlots The total number of priority slots.
This value may be between 0 to
lcaNodePriorityMax (127).
Generally, this property only needs to
for channels based upon custom
transceivers.

channelObject The Channel object to be acted upon.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.
The default name for a discovered channel takes the
following form: Channel_<objectId>

OpenLNS Programmer's Reference 116

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

RouterDevices
Summary Returns the Routers collection for the specified Channel. This

collection contains all the Router objects attached to the
specified Channel object.

Availability Local, full, and lightweight clients.

Syntax routersCollection = object.RouterDevices
Element Description

object The Channel object to be acted on.

OpenLNS Programmer's Reference 117

routersCollection The Routers collection returned.

Data Type Routers collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

TransceiverId
Summary Contains the current transceiver ID of the channel.

Availability Local, full, and lightweight clients.

Syntax idValue = channelObject.TransceiverId
Element Description

idValue The transceiver ID value. The
TransceiverId property can contain a
standard transceiver ID (1-29) or a
custom ID (30).
The enumerated values for this
property, which correspond to standard
transceiver types, are stored in the
ConstTransceiverId constant. The
values are as follows:
1 lcaXcvrTP_XF_78
TP/XF-78 LONWORKS transceiver.
3 lcaXcvrTP_XF_1250
TP/XF-1250 LONWORKS transceiver.
4 lcaXcvrTP_FT_10

The TP/FT-10 channel used with FTT-
10, FTT-10A, LPT-10, LPT-11 and Free
Topology Smart Transceivers.

5 lcaXcvrTP_RS485_39

The TP/RS485-39 LONWORKS
transceiver.

7 lcaXcvrRF_10
RF-10 LONWORKS transceiver.
8 lcaXcvrPL_30
PLT-30 LONWORKS transceiver.
9 lcaXcvrPL_10
PL-10 LONWORKS transceiver.
10 lcaXcvrTP_RS485_625
TP/RS485-625 LONWORKS

OpenLNS Programmer's Reference 118

transceiver.
11 lcaXcvrTP_RS485_1250
TP/RS485-1250 LonWork transceiver.
12 lcaXcvrTP_RS485_78
TP/RS-485-78 LONWORKS transceiver.
14 lcaXcvrPL_20A_LOW

The low-powered PL-20A-LOW channel
used with PLT-20, PLT-21, PLT-22,
PLT-22A and Power Line Smart
Transceivers using the CENELEC A-
band.

15 lcaXcvrPL_20A

The PL-20A channel used with PLT-20,
PLT-21, PLT-22, PLT-22A and Power
Line Smart Transceivers using the
CENELEC A-band.

16 lcaXcvrPL_20C

The PL-20C channel used with PLT-20,
PLT-21, PLT-22, PLT-22A and Power
Line Smart Transceivers using the
CENELEC C-band.

17 lcaXcvrPL_20N

The PL-20N channel used with PLT-20,
PLT-21, PLT-22, PLT-22A, and Power
Line Smart Transceivers configured to
not use the CENELEC C-band protocol.
24 lcaXcvrFO_10
FO-10 LONWORKS transceiver.
25 lcaXcvrIP_10L
IP-10 LAN Low Latency LONWORKS
transceiver.
26 lcaXcvrIP_10W
IP-10 WAN High Latency LONWORKS
transceiver.
27 lcaXcvrDC_78
DC-78 LONWORKS transceiver.
28 lcaXcvrDC_625
DC-625 LONWORKS transceiver.

OpenLNS Programmer's Reference 119

29 lcaXcvrDC_1250
DC-1250 LONWORKS transceiver.

channelObject Channel object to be acted upon.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Channels
A Channels object is a collection of Channel objects. The instance of this collection accessed
through the Network object contains all of the Channel objects in the network.

Description Represents a collection of Channel objects.

Added to API Prior to LNS Release 3.0.

Accessed Through Network object

Default Property Item.

Methods • Add
• ItemByHandle
• Remove

Properties • ClassId
• Count
• FilterType
• Item
• Parent
• RefChannel1
• RefChannel2
• RefTransceiverType
• _NewEnum

Methods
The Channels object contains the following methods.

• Add
• ItemByHandle
• RemoveRemove

Add
Summary Defines a new Channel object. Channels only need to be

defined when router devices are added or for when automatic
channel determination is not used when adding devices (see
the Add method of the AppDevices object for more
information).

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax objectColl.Add name

OpenLNS Programmer's Reference 120

Element Description

channelObject The newly defined channel object.

channelsObject The Channels collection object.

channelName A String containing the name of the
channel.

transceiverId A Long value indicating the
transceiver type for the channel.
The enumerated values for this
element, which correspond to standard
transceiver types, are stored in the
ConstTransceiverId constant. The
values are as follows:
1 lcaXcvrTP_XF_78
TP/XF-78 LONWORKS transceiver.
3 lcaXcvrTP_XF_1250
TP/XF-1250 LONWORKS transceiver.
4 lcaXcvrTP_FT_10
TP/FTT-10 and FTT-11 LONWORKS
transceiver.
5 lcaXcvrTP_RS485_39
TP/RS485-29 LONWORKS transceiver.
7 lcaXcvrRF_10
RF-10 LONWORKS transceiver.
9 lcaXcvrPL_10
PL-10 LONWORKS transceiver.
10 lcaXcvrTP_RS485_625
TP/RS485-625 LONWORKS
transceiver.
11 lcaXcvrTP_RS485_1250
TP/RS485-1250 LonWork transceiver.
12 lcaXcvrTP_RS485_78
TP/RS-485-78 LONWORKS
transceiver.
14 lcaXcvrPL_20A_LOW
A low-powered version of PLT-20,
PLT-21, and PLT-22 LONWORKS
transceivers using CENELEC A-band.
15 lcaXcvrPL_20A
PLT-20, PLT-21, and PLT-22
LONWORKS transceivers using

OpenLNS Programmer's Reference 121

CENELEC A-band.
16 lcaXcvrPL_20C
PLT-20, PLT-21, and PLT-22
LONWORKS transceivers using
CENELEC C-band.
17 lcaXcvrPL_20N
PLT-20, PLT-21, and PLT-22
LONWORKS transceivers using
Non-CENELEC band.
18 lcaXcvrPL_30
PLT-30 LONWORKS transceiver.
24 lcaXcvrFO_10
FO-10 LONWORKS transceiver.
25 lcaXcvrIP_10L
IP-10 LAN Low Latency LONWORKS
transceiver.
26 lcaXcvrIP_10W
IP-10 WAN High Latency
LONWORKS transceiver.
27 lcaXcvrDC_78
DC-78 LONWORKS transceiver.
28 lcaXcvrDC_625
DC-625 LONWORKS transceiver.
29 lcaXcvrDC_1250
DC-1250 LONWORKS transceiver.

Added to API Prior to LNS Release 3.0.

ItemByHandle
Summary Retrieves a Channel object, specified by its handle, from an

Channels collection. The Channel object to be retrieved must
be specified by its handle.

Availability Local, full, and lightweight clients.

Syntax object = coll.ItemByHandle(handle)
Element Description

object The object retrieved from the collection.

coll The collection object.

handle A Long value specifying the handle of
the object to retrieve.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 122

Remove
Summary Removes a channel from the network. A channel may only be

removed if there are no devices or routers assigned to it.

Availability Local, full, and lightweight clients.

Syntax channelsColl.Remove indexName

Element Description

channelsColl The Channels collection object
containing the channel to be removed.

indexName A Long value specifying the collection
index of the Channel object to remove,
or a String value specifying the name of
the Channel object to remove.

Added to API Prior to LNS Release 3.0.

Properties
The Channels object contains the following properties:

• ClassId
• Count
• FilterType
• Item
• Parent
• RefChannel1
• RefChannel2
• RefTransceiverType
• _NewEnum

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Channels object in the ConstClassIds
constant:
13 lcaClassIdAppChannels

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is

OpenLNS Programmer's Reference 123

added to the API.

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property is read only for Error objects.

FilterType
Summary Enables a subset of the items in the Channels collection to be

selected.
The filter property can be set to allow queries on selected
groups of objects in the Channels collection. Set the
FilterType property to the appropriate constant values before
accessing any objects in the collection.

You can use RefChannel1 and RefChannel2 properties
included in the Channels object to help search a Channels
collection. These variants have meaning in the context of
particular filters.
To use channel filtering, a populated channel object must
first be obtained. For example:
Set AllChannels = Network.Channels
Set FilteredChannels = AllChannels
FilteredChannels.FilterType = lcaChannelFilterAdjacent

 'Print list of channels adjacent to channel named "Room1".
 'Assume PrintChannels ’function has been defined.

Set FilteredChannels.RefChannel1 = AllChannels.Item("Room1")
PrintChannels FilteredChannels

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 124

Syntax filterValue = channelsCollection.FilterType
Element Description

filterValue The active filter type. The valid values
for this property, which are contained
in the ConstChannelFilterTypes
constant, are as follows:
0 lcaChannelFilterNone
All objects in the collection are shown.
1 lcaChannelFilterAdjacent
Only channels adjacent to
RefChannel1 (as Channel object) are
shown.
2 lcaChannelFilterPath
Only channels connecting
RefChannel1 (as Channel object) and
RefChannel2 (as Channel object) are
shown.
3 lcaChannelFilterTransceiver
Only channels which have the
transceiver ID specified in
RefTransceiverType (as integer) are
shown.

channelsCollection The Channels collection object.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.0.

Item
Summary Returns an object from a collection. You can retrieve an

object from its collection by passing its index (ordinal
position) within that collection as the argument for the Item
property. Index values start at 1. You can also retrieve an
object in collections that contain objects with the Name
property by passing the object’s name as a string expression

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The Channel object retrieved from the
collection.

OpenLNS Programmer's Reference 125

collObject The Channels collection object to be
acted on.

index A Long type specifying the ordinal
index of the Channel object to be
retrieved.

stringExpression A string type specifying the name of the
Channel object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

RefChannel 1
Summary Contains filter data enabling access to selected channels

within the channels collection.

The meaning of this property depends on the FilterType
property of the Channels collection object:

• If the FilterType property is set to
lcaChannelFilterAdjacent, the Channels collection
object will access all channels adjacent—directly
connected by a router—to the channel specified by
RefChannel1.

OpenLNS Programmer's Reference 126

• If the FilterType property is set to
lcaChannelFilterPath, the Channels collection object
will access all channels connecting the channels specified
by RefChannel1 and RefChannel2.

RefChannel1 is not used for any other value of the
FilterType property.

Availability Local, full, and lightweight clients.

Syntax filterValue = channelsColl.RefChannel1
Element Description

channelObject The Channel object to be used as a
reference.

channelsColl The Channels collection object.

Data Type Channel object.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

RefChannel 2
Summary Contains filter data enabling access to selected channels

within the channels collection.

The meaning of this property depends on the FilterType
property of the Channels collection object. If the FilterType
property is set to lcaChannelFilterPath, the Channels
collection object will access all channels connecting the
channels specified by RefChannel1 and RefChannel2.

RefChannel2 is not used for any other value of the FilterType
property.

Availability Local, full, and lightweight clients.

Syntax filterValue = channelsColl.RefChannel2
Element Description

channelObject The Channel object to be used as a
reference.

channelsColl The Channels collection object.

Data Type Channel object.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

RefTransceiverType
Summary Contains filter data enabling access to selected Channel

objects within the Channels collection.
This property is expected to be correctly set and is used only
when the Channels collection object's FilterType property is

OpenLNS Programmer's Reference 127

set to lcaChannelFilterTransceiver. When this is the
case, the Channels collection object will access the Channel
objects with the TransceiverId property equal to this
property.

Availability Local, full, and lightweight clients.

Syntax rtTypeValue = channelsColl.RefTransceiverType
Element Description

channelsColl The Channels collection to be acted on.

rtTypeValue Transceiver ID value

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

OpenLNS Programmer's Reference 128

ComponentApp
This object describes a LONWORKS plug-in command. ComponentApps collection objects
are contained in the ObjectServer, System, and DeviceTemplate objects. An LCA director
application can determine what plug-in commands are available by examining the
ComponentApp objects and can launch the plug-in using the RegisteredServer property.
Plug-in commands to be used by all networks are listed in the ComponentApps collection in
the ObjectServer object. Plug-in commands that are specific to a network are listed in the
System objects. Plug-in commands that are specific to a device type are listed in the
DeviceTemplate objects.

The following table summarizes the ComponentApp object.

Description A LONWORKS plug-in command.

Added to API Prior to LNS Release 3.0.

Accessed Through ComponentApps collection object.

Default Property Name.

Methods None.

Properties • ClassId
• CommandId
• ComponentClassId
• DefaultAppFlag
• Description
• ManufacturerId
• Name
• Parent
• RegisteredServer
• VersionNumber

Methods
The ComponentApps object does not contain any methods.

Properties
The ComponentApp object contains the following properties:

• ClassId
• CommandId
• ComponentClassId
• DefaultAppFlag
• Description
• ManufacturerId
• Name
• Parent
• RegisteredServer
• VersionNumber

OpenLNS Programmer's Reference 129

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
ComponentApp object in the
ConstClassIds constant:
30 lcaClassIdComponentApp

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

CommandID
Summary Contains a command to be sent to the plug-in by the director

application.

Availability Local, full, lightweight, and independent clients.

Syntax commIdValue = caObject.CommandId
Element Description

caObject The ComponentApp object to be acted
on.

commIdValue The command ID for the specified
command as a Long. This may be a
standard command or a user-defined
command.
Standard commands are included in
the ConstCommandId constant.
User-defined commands are
application specific. Each plug-in
registers its commands in the
ComponentApps collections.
The values for standard commands are
as follows:

OpenLNS Programmer's Reference 130

1 lcaCommandIdNew
2 lcaCommandIdEditSource
10 lcaCommandIdBuildImage
11 lcaCommandIdCommission
12 lcaCommandIdLoad
13 lcaCommandIdConfigure
14 lcaCommandIdCalibrate
15 lcaCommandIdConnect
20 lcaCommandIdBrowse
21 lcaCommandIdMonitor
22 lcaCommandIdControl
23 lcaCommandIdReport
24 lcaCommandIdProperties
30 lcaCommandIdOnline
31 lcaCommandIdOffline
32 lcaCommandIdReset
33 lcaCommandIdTest
34 lcaCommandIdWink
35 lcaCommandIdDebug
40 lcaCommandIdUninstall
41 lcaCommandIdReplace
50 lcaCommandIdRegister
51 lcaCommandIdUnregister
60 lcaCommandIdRecover
61
lcaCommandIdMonitorRecovery
10000 lcaCommandUserStart

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ComponentClassID
Summary Specifies an object type. This is used by director applications

to determine the class of object specified in the object name
passed to a plug-in.

Availability Local, full, lightweight, and independent clients.

Syntax classIdValue = object.ComponentClassId
Element Description

classIdValue The enumerated value of the class ID. The
values for this property, which are included
in the ConstClassIds constant, are as
follows:
0 lcaClassIdObjectServer
1 lcaClassIdNetwork
2 lcaClassIdNetworks
3 lcaClassIdSystem
4 lcaClassIdSystems
5 lcaClassIdSubsystem

OpenLNS Programmer's Reference 131

6 lcaClassIdSubsystems
7 lcaClassIdAppDevice
8 lcaClassIdAppDevices
9 lcaClassIdRouter
10 lcaClassIdRouters
11 lcaClassIdRouterSide
12 lcaClassIdChannel
13 lcaClassIdChannels
14 lcaClassIdNetworkInterface
15 lcaClassIdNetworkInterfaces
16 lcaClassIdSubnet
17 lcaClassIdSubnets
18 lcaClassIdConnections
19 lcaClassIdInterface
20 lcaClassIdInterfaces
21 lcaClassIdTemplateLibrary
22 lcaClassIdNetworkVariable
23 lcaClassIdNetworkVariables
24 lcaClassIdMessageTag
25 lcaClassIdMessageTags
26 lcaClassIdConfigProp
27 lcaClassIdConfigProps
28 lcaClassIdLonMarkObject
29 lcaClassIdLonMarkObjects
30 lcaClassIdComponentApp
31 lcaClassIdComponentApps
32 lcaClassIdHardwareTemplate
33 lcaClassIdHardwareTemplates
34 lcaClassIdBuildTemplate
35 lcaClassIdBuildTemplates
36 lcaClassIdDeviceTemplate
37 lcaClassIdDeviceTemplates
38 lcaClassIdProgramTemplate
39 lcaClassIdProgramTemplates
40 lcaClassIdNetworkServiceDevice
41 lcaClassIdNetworkServiceDevices
42 lcaClassIdConnectDescTemplate
43 lcaClassIdConnectDescTemplates
44 lcaClassIdError
45 lcaClassIdLonMarkAlarm
46 lcaClassIdObjectStatus
47 lcaClassIdNetworkVariableField
48 lcaClassIdDetailInfo
49 lcaClassIdDataValue
50 lcaClassIdExtension
51 lcaClassIdExtensions
52 lcaClassIdRecoveryStatus
53 lcaClassIdCreditInfo
54 lcaClassIdAccount
55 lcaClassIdAccounts
56 lcaClassIdBufferConfiguration
57 lcaClassIdFileTransfer
58 lcaClassIdAlias

OpenLNS Programmer's Reference 132

59 lcaClassIdAliases
69 lcaClassIdPingIntervals
70 lcaClassIdApplication
71 lcaClassIdTestInfo
72 lcaClassIdDataPoint
73 lcaClassIdFormatSpec
74 lcaClassIdMonitorSet
75 lcaClassIdMonitorSets
76 lcaClassIdMsgMonitorOptions
77 lcaClassIdMsgMonitorPoint
78 lcaClassIdMsgMonitorPoints
79 lcaClassIdNvMonitorOptions
80 lcaClassIdNvMonitorPoint
81 lcaClassIdNvMonitorPoints
82 lcaClassIdSourceAddress
83 lcaClassIdLdrfLanguage
84 lcaClassIdLdrfLanguages
85 lcaClassIdServiceStatus
86 lcaClassIdUpgradeStatus
87 lcaClassIdUpgradeInfo
88 lcaClassIdUpgradeInfos
89 lcaClassIdDatabaseValidationReport
90 lcaClassIdDatabaseValidationErrorSummary
91
lcaClassIdDatabaseValidationErrorSummaries
92
lcaClassIdDatabaseValidationErrorInstance
93 lcaClassIdNetworkResources
94 lcaClassIdTypeSpec
95 lcaClassIdFormatLocale
96 lcaClassIdFormatLocales
97 lcaClassIdActivationLicense
-1 lcaClassIdUnknown

object The object to be acted on.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

DefaultAppFlag
Summary Specifies that a plug-in command is the default command for

the object type. Director applications can use this flag to
launch component applications as a default action such as
double-clicking on an icon representing the object or selecting
a command for the icon.

Availability Local, full, lightweight, and independent clients.

Syntax defaultAppFlag = compAppObject.DefaultAppFlag
Element Description

defaultAppFlag The flag value. A TRUE value
indicates that this plug-in command

OpenLNS Programmer's Reference 133

implements the default action

compAppObject The ComponentApp object to be acted
on.

Data Type Boolean.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Description
Summary Stores description information about the ComponentApps

object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the
ComponentApps object.

object The ComponentApps object to be acted
on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

ManufacturerID
Summary Reads the manufacturer ID assigned to a device template or

component application. This property is the manufacturer ID
field of the standard program ID. See the LonMark
Application Layer Interoperability Guidelines for more
information.

Availability Local, full, lightweight, and independent clients.

Syntax idValue = object.ManufacturerId
Element Description

idValue The component application or device
template’s manufacturer ID.

object The ComponentApp object to be acted
on.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 134

Name
Summary Specifies the name of a ComponentApp object as a character

string. This property is case sensitive. Searches by name
must match case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the ComponentApp
object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

OpenLNS Programmer's Reference 135

RegisteredServer
Summary Contains the plug-in name that is stored in the Windows

registry for this component application. Component
applications must follow the Windows component
registration guidelines.

Availability Local, full, lightweight, and independent clients.

Syntax serverName = compAppObject.RegisteredServer
Element Description

compAppObject The ComponentApp object to be acted
on.

serverName The registered name of the plug-in as
a string.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

VersionNumber
Summary The version number of the ComponentApp object.

Availability Local, full, lightweight, and independent clients.

Syntax versionValue = compAppObject.VersionNumber
Element Description

versionValue The component application version
number.

compAppObject The ComponentApp object from which
to get the information.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ComponentApps
A ComponentApps object is a collection of ComponentApp objects. ComponentApps collection
objects are contained in the ObjectServer, System, DeviceTemplate, and LonMarkObject
objects. An LCA director application can determine what plug-in commands are available by
examining the ComponentApp objects and can launch the plug-in using the RegisteredServer
property:

• Plug-in commands to be used by all networks are listed in the ComponentApps collection
in the ObjectServer object.

• Plug-in commands that are specific to a network are listed in the System objects.

• Plug-in commands that are specific to a device type are listed in the DeviceTemplate
objects.

OpenLNS Programmer's Reference 136

Note that the Interface property of all AppDevice objects contain a ComponentApps collection;
however, the behavior of this collection is unspecified.

The following table summarizes the ComponentApps object.

Description A collection of objects.

Added to API Prior to LNS Release 3.0.

Accessed Through DeviceTemplate object
LonMarkObject
ObjectServer object
System object

Default Property Item

Methods • Add
• Remove

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The ComponentApps object contains the following methods.

• Add
• Remove

Add
Summary Defines a new ComponentApp object.

Availability Local, full, lightweight, and independent clients.

Syntax compAppObject = compAppsColl.Add (compAppName,
registeredServer, classId)
Element Description

compAppObject The newly defined ComponentApp
object.

compAppsColl The ComponentApps collection object.

compAppName A String containing the name of the
plug-in command. The name should be
a descriptive name suitable for display
as a menu selection.

registeredServer A String containing the registered
(OLE) automation server name for the
plug-in containing the command.

classId An Integer value indicating the type of
object with which the ComponentApp
object is to be associated.

See the ComponentClassID property in

OpenLNS Programmer's Reference 137

the ComponentApp object for the
possible values.

Added to API Prior to LNS Release 3.0.

Remove
Summary Removes an object from the specified collection.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax objectColl.Remove indexName

Element Description

objectColl The collection containing the object to
be removed.

name A Long value specifying the collection
index of the object to remove, or a
String value specifying the name of the
object to remove.

Added to API Prior to LNS Release 3.0.

Properties
The ComponentApps object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
ComponentApps object in the
ConstClassIds constant:
31 lcaClassIdComponentApps

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

OpenLNS Programmer's Reference 138

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns an object from a collection. You can retrieve an

object from its collection by passing its index (ordinal
position) within that collection as the argument for the Item
property. Index values start at 1. You can also retrieve an
object in collections that contain objects with the Name
property by passing the object’s name as a string expression

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The object retrieved from the collection.

collObject The collection object to be acted on.

index A Long type specifying the ordinal
index of the object to retrieve.

stringExpression A string type specifying the name of the
object to retrieve.

OpenLNS Programmer's Reference 139

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 140

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

ConfigProperties
A ConfigProperties object is a collection of ConfigProperty objects. Configuration properties
may be associated with a device, LonMark object, or network variable. The following table
summarizes the ConfigProperties object.

Description A collection of ConfigProperty objects.

Added to API Prior to LNS Release 3.0.

Accessed Through Interface object
LonMarkObject object
NetworkVariable object

Default Property Item

Methods • ItemByHandle

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The ConfigProperties object contains the following method: ItemByHandle.

ItemByHandle
Summary Retrieves a ConfigProperty object, specified by its handle,

from a ConfigProperties collection. The ConfigProperty
object to be retrieved must be specified by its handle.

Availability Local, full, and lightweight clients.

Syntax object = coll.ItemByHandle(handle)
Element Description

object The ConfigProperty object retrieved
from the collection.

coll The collection object.

OpenLNS Programmer's Reference 141

handle A Long value specifying the handle of
the ConfigProperty object to be
retrieved.

Added to API LNS Release 3.0.

Added to API Prior to LNS Release 3.0.

Properties
The ConfigProperties object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
ConfigProperties object in the
ConstClassIds constant:
27 lcaClassIdConfigProps

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

OpenLNS Programmer's Reference 142

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a ConfigProperty object from a ConfigProperties

collection. You can retrieve an object from its collection by
passing its index (ordinal position) within that collection as
the argument for the Item property. Index values start at 1.
You can also retrieve an object in collections that contain
objects with the Name property by passing the object’s name
as a string expression

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The ConfigProperty object retrieved
from the ConfigProperties collection.

collObject The ConfigProperties collection object to
be acted on.

index A Long type specifying the ordinal
index of the ConfigProperty object to be
retrieved.

stringExpression A string type specifying the name of the
ConfigProperty object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 143

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

OpenLNS Programmer's Reference 144

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

ConfigProperty
A ConfigProperty object represents a single configuration property, which may be either a
standard configuration property type (SCPT) or a user configuration property type (UCPT).
The configuration property can be implemented on the target AppDevice as a configuration
network variable or as part of a configuration file (using sequential access,
sequential/random access, or direct memory access). Configuration properties may be
associated with a device, LonMark object, or network variable.

Description A single SCPT or UCPT.

Added to API Prior to LNS Release 3.0.

Accessed Through ConfigProperties collection object

Default Property Name

Methods • GetDataPoint
• GetRawValuesEx
• SetRawValuesEx
• SetValueToUnknown

Properties • AppliesTo
• AppliesToType
• ByteLength
• ClassId
• ConfigFileOffset
• ConfigFileType
• ConfigNv
• ConfigNvIndex
• ConstantAttribute
• Description
• DeviceSpecificAttribute
• Dimension
• FlagsByte
• FormatName
• FuncProfileDescription
• FuncProfileName
• FuncProfileProgrammaticName
• Handle
• ImplementationType
• Mode
• Name
• Parent
• Precision
• TypeInherits
• TypeIndex
• ValueStatus

OpenLNS Programmer's Reference 145

Methods
The ConfigProperties object contains the following methods:

• GetDataPoint
• GetRawValuesEx
• SetRawValuesEx
• SetValueToUnknown

GetDataPoint
Summary Returns a DataPoint object that can be used to read or write

the configuration property value.
Use this method to read and write configuration property
values instead of the deprecated ValueFromDevice,
RawValueFromDevice, Value and RawValue properties.
If the data point created applies to an element in an array,
the element’s index will be stored in the data point’s
SourceIndex property. You can write to this property to apply
the data point to another element of the array later (see the
SourceIndex property for more information). To read or write
to an entire configuration property array at once, you can use
the GetRawValuesEx and SetRawValuesEx methods.

Availability Local, full, and lightweight clients.

Syntax dpObject=configProp.DataPoint index, options

Element Description

dpObject The DataPoint object returned.

configProp The ConfigProperty object being acted upon.

index Specify which element in the configuration
property array to which the data point
applies.
Configuration properties may be stored in
array. In this case, you need to create a
separate data point to read and write to
each element in the array. If the
ConfigProperty is not a configuration
property array, specify 0 as the index
element.

options Specify how LNS reconciles differences
between the value of the ConfigProperty in
the OpenLNS database and the physical
application device when you read or write
to the DataPoint.
The possible values for this element, which
are stored in the ConstDataSourceOptions
constant, are as follows:
0 lcaDataSourceOptionsNormal

OpenLNS Programmer's Reference 146

The value of the ConfigProperty will be
updated in the OpenLNS database and in
the physical device each time you write to
the value of the DataPoint.

If the source ConfigProperty is
device-specific, the value will be read
directly from the device when you read the
value of the DataPoint.

If the source ConfigProperty is not
device-specific, the value will be read from
the database, as long as it is stored there.
If its value does not exist in the database,
then the value will read directly from the
device, as long as the network management
mode (MgmtMode property) is set to
lcaMgmtModePropagateConfigUpdate
s (0).

If the source ConfigProperty is not
device-specific, the value is not in the
database, and the network management
mode is set to
lcaMgmtModeDeferConfigUpdates (1),
then an exception will be thrown when you
read the value of the DataPoint.
1 lcaDataSourceOptionsFromDevice
The data point value is always matched to
the value of the source ConfigProperty in
the physical device. You can use this
information to synchronize the value of a
ConfigProperty in the OpenLNS database
with the value stored in the physical device.
To do so, read the value of a data point
created with this option set. Then, set the
SourceOptions property of the data point to
lcaDataSourceOptionsDatabaseOnly
(2), and call the Write method. The value of
the source ConfigProperty in the OpenLNS
database will then match the value of the
configuration property on the physical
device.
2
lcaDataSourceOptionsDatabaseOnly
The data point value is always read from
the OpenLNS database. When you write to
the data point, the new value will be
written to the ConfigProperty in the
OpenLNS database only, and not to the
physical device. Writing to a DataPoint
with the SourceOptions property set to this

OpenLNS Programmer's Reference 147

value is recommended only when updating
the database with a value that has just
been read from the device. For more
information on this, see the description of
the lcaDataSourceOptionsFromDevice
(1) value.
If you read the value of the data point, and
the value does not exist in the OpenLNS
database, then the NS, #113
lcaErrNsCpValueNotFound exception is
thrown.
3 lcaDataSourceOptionsTypeDefaultValue
The data point value is set to the default
value of configuration properties using the
same type as the source configuration
property. The default value is generally
read from the functional profile template on
the device containing the configuration
property, or from the type definition for this
configuration property type. Data points
created with this option set are read-only.
Note that this value represents the "type
default", as defined in the resource files.
The default value of a given configuration
property may differ from the default value
of its type, since the default configuration
property values for a given template are
defined in the external interface file and
can be set from the current values in the
device.

Added to API LNS Release 3.20.

GetRawValuesEx
Summary Retrieves the raw values of a range of configuration property

elements as a raw byte array.
The configuration property values are returned as a Variant
containing a one-dimensional byte array (MFC type VT_UI1
| VT_ARRAY). The application is responsible for parsing the
byte array and "reformatting" the raw values.

Availability Local, full, and lightweight clients.

Syntax rawValues = cpObject.GetRawValuesEx index, count, options

Element Description

rawValues A Variant containing the returned raw
values.

cpObject The ConfigProperty object being acted upon.

index Specify the first element in the array to be

OpenLNS Programmer's Reference 148

retrieved.
If you specify an invalid index, an LCA,
#90 lcaValueOutOfRange exception is
thrown.

count Specify the number of elements to be
retrieved.
If this number exceeds the value of the
ConfigProperty object’s Dimension property,
an LCA, #90 lcaValueOutOfRange
exception is thrown.

options Use this element to determine whether
OpenLNS will read the raw values of the
ConfigProperty array elements from the
OpenLNS database or the physical
application device.
The possible values for this element, which
are stored in the ConstDataSourceOptions
constant, are as follows:
0 lcaDataSourceOptionsNormal
The raw value array will be read directly
from the device if the ConfigProperty is
device-specific.

If the ConfigProperty is not device-specific,
the raw value array will be read from the
database, as long as it is stored there.

If the value of the ConfigProperty does not
exist in the database, then the raw value
value array will read directly from the
device, as long as the network management
mode (MgmtMode property) is set to
lcaMgmtModePropagateConfigUpdate
s (0).

If the ConfigProperty is not device-specific,
its value is not in the database, and the
network management mode is set to
lcaMgmtModeDeferConfigUpdates (1),
then an exception will be thrown when you
invoke the GetRawValuesEx method.
1 lcaDataSourceOptionsFromDevice
The raw value array is read directly from
the device.
2
lcaDataSourceOptionsDatabaseOnly
The raw value array is read from the
OpenLNS database.

OpenLNS Programmer's Reference 149

Added to API LNS Release 3.20.

SetRawValuesEx
Summary Sets the raw value for a range of elements in an array

configuration property.
You can specify configuration property values as either a byte
array or a Variant containing a byte array (MFC type
VT_UI1 | VT_ARRAY). The application is responsible for
creating the raw byte array that corresponds to the desired
configuration property values.

Availability Local, full, and lightweight clients.

Syntax cpObject.SetRawValuesEx index, count, array, options

Element Description

cpObject The ConfigProperty object to be acted on.

index Specify the first element in the array to
write to.
If you specify an invalid index, an LCA,
#90 lcaValueOutOfRange exception is
thrown.

count Specify the number of elements to write to.
If this number exceeds the value of the
ConfigProperty object’s Dimension property,
an LCA, #90 lcaValueOutOfRange
exception is thrown.

array A Variant containing the raw values to be
written to the ConfigProperty object.

options Use this element to determine whether
OpenLNS will write new raw values of the
ConfigProperty array elements to the
OpenLNS database or to the physical
application device.
The possible values for this element, which
are stored in the ConstDataSourceOptions
constant, are as follows:
0 lcaDataSourceOptionsNormal
Writes the raw value array to the physical
device.
2
lcaDataSourceOptionsDatabaseOnly
Writes the raw value array to the OpenLNS
database.

Calling the SetRawValuesEx method with
this option set is recommended only to
update the database with a value that has

OpenLNS Programmer's Reference 150

just been read from the device (for example,
create a data point with the
lcaDataSourceOptionsFromDevice (1)
option set, then set the SourceOptions
property of the data point to this value and
call the SetRawValuesEx method).

Added to API LNS Release 3.20.

SetValueToUnknown
Summary Sets the value of the ConfigProperty object to an unknown

state.
You can use this method to clear the value of a
ConfigProperty object from the OpenLNS database. When
you call this method, the value of the ConfigProperty will be
cleared from the OpenLNS database. In addition, all pending
updates to the ConfigProperty object will be cleared. You
should note that this affects how OpenLNS will manage the
configuration property in read and download operations. In
addition, you can use the UploadConfigProperties method to
read all unknown configuration property values into the
OpenLNS database, and you can use the
DownloadConfigProperties method to set all unknown
configuration property values to their defaults.
You can read the current state of the value of a
ConfigProperty object in the OpenLNS database with the
ValueStatus property. If this property is set to
lcaConfigPropertyValueMgmtStatusUnknown (0), then
the value of the ConfigProperty object is already set to an
unknown state. In this case, use of the SetValueToUnknown
method will have no effect on the ConfigProperty.

Availability Local, full, and lightweight clients.

Syntax cpObject.SetValueToUnknown

Element Description

cpObject The ConfigProperty object to be acted on.

Added to API LNS Release 3.20.

Properties
The ComponentApps object contains the following properties:

• AppliesTo
• AppliesToType
• ByteLength
• ClassId
• ConfigFileOffset
• ConfigFileType
• ConfigNv
• ConfigNvIndex

OpenLNS Programmer's Reference 151

• ConstantAttribute
• Description
• DeviceSpecificAttribute
• Dimension
• FlagsByte
• FormatName
• FuncProfileDescription
• FuncProfileName
• FuncProfileProgrammaticName
• Handle
• ImplementationType
• Mode
• Name
• Parent
• Precision
• TypeInherits
• TypeIndex
• ValueStatus

AppliesTo
Summary Returns the collection of objects to which the configuration

property applies.
Each configuration property applies to the interface of a
AppDevice or DeviceTemplate as a whole, a collection of
LonMarkObjects, or a collection of NetworkVariable objects.
This property returns a (generic) collection of objects to which
the configuration property applies. To determine the type of
the objects to which the configuration property applies, use
the AppliesToType property.

Availability Local, full, and lightweight clients.

Syntax coll = cpObject.AppliesTo
Element Description

nvObject The collection of objects to which this
configuration property applies. The
objects will be of the type specified by
the AppliesToType property.

cpObject The ConfigProperty object to be acted
on.

Data Type Collection.

Read/Write Read only.

Added to API OpenLNS.

AppliesToType
Summary Returns a constant identifying the type of objects to which

the ConfigProperty object applies.
Each configuration property applies to the interface of a

OpenLNS Programmer's Reference 152

AppDevice or DeviceTemplate as a whole, a collection of
LonMarkObjects, or a collection of NetworkVariable objects.
This property returns a (generic) collection of objects to which
the configuration property applies.

This property indicates ther type of objects the configuration
property applies. To access the actual objects to which the
configuration property applies, use the AppliesTo property.

Availability Local, full, and lightweight clients.

Syntax objectType = cpObject.AppliesToType
Element Description

objectType The type of objects to which this
configuration property applies. The
possible object types, which are
contained in ConstCpAppliesToTypes
constant, are as follows:
1 lcaCpAppliesToInterface
The configuration property applies to
an AppDevice or DeviceTemplate as a
whole. The object returned by the
AppliesTo property will be a collection
of Interface objects belonging to the
AppDevice or DeviceTemplate. For
static configuration properties, this
will include just the main interface.
2 lcaCpAppliesToLonMarkObject
The configuration property applies to
one or more LonMarkObjects.
3
lcaCpAppliesToNetworkVariable
The configuration property applies to
one or more NetworkVariable objects.

cpObject The ConfigProperty object to be acted
on.

Data Type Short.

Read/Write Read only.

Added to API OpenLNS.

OpenLNS Programmer's Reference 153

ByteLength
Summary Returns the length (in bytes) of a single configuration

property element.
Multiplying this length by the number returned by the
Dimension property gives you the total length (in bytes) of
this configuration property. If this configuration property is
not an array, the Dimension property returns 1, and the
ByteLength property returns the full length of the
configuration property.
Note: If a configuration property inherits its type from a
network variable that supports changeable types, and the
type of that network variable is changed, this property will
not be updated to reflect the change. You can check if the
configuration property inherits its type by reading the
TypeInherits property.

Availability Local, full, and lightweight clients.

Syntax length = cpObject.ByteLength
Element Description

cpObject The ConfigProperty object to be acted on

length The byte length of this ConfigProperty
object

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
ConfigProperty object in the
ConstClassIds constant:
26 lcaClassIdConfigProp

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is

OpenLNS Programmer's Reference 154

added to the API.

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

ConfigFileOffset
Summary Specifies the byte offset into the configuration value file that

implements the ConfigProperty object.

A ConfigProperty object is implemented by a configuration
network variable or a configuration value file. To determine
how the configuration property is implemented, read the
ImplementationType property of the ConfigProperty object.

• If the configuration property is implemented by a
configuration value file, this property identifies the byte
offset into the configuration value file. To determine the
value file to which this offset applies, read the
ConfigFileType property.
If the configuration property is an array implemented by
a configuration value file, elements will occupy
consecutive spaces in the file. This property returns the
byte offset into the configuration value file of the first
element. To determine the byte offset for subsequent
elements, simply add the appropriate multiple of the
element’s length to this offset. To determine the length
of the array’s elements, see the ByteLength property.

• If the configuration property is implemented by a
configuration network variable, this property throws an
LCA, #165 exception (“configuration property not
implemented by a configuration value file”).

Note: This property is not currently available from within a
DeviceTemplate object; therefore, it will throw a LCA, #38
LCA_APP_DEVICE_REQUIRED exception when accessed.

Availability Local, full, and lightweight clients.

Syntax fileOffset = cpObject.ConfigFileOffset
Element Description

fileOffset The byte offset into the configuration
value file implementing this
configuration property.
To determine the value file to which
this offset applies, read the
ConfigFileType property of the
ConfigProperty object.

cpObject The file-based ConfigProperty object
to be acted on.

Data Type Long.

OpenLNS Programmer's Reference 155

Read/Write Read only.

Added to API OpenLNS.

ConfigFileType
Summary Specifies the type of configuration value file that implements

the ConfigProperty object.

A ConfigProperty object is implemented by a configuration
network variable or a configuration value file. To determine
how the configuration property is implemented, read the
ImplementationType property of the ConfigProperty object.

• If the configuration property is implemented by a
configuration value file, this property identifies the type
of that value file. To determine the appropriate location
within this value file, read the ConfigFileOffset property.

• If the configuration property is implemented by a
configuration NV, this property throws an LCA, #165
exception (“configuration property not implemented by a
configuration value file”).

Note: This property is not currently available from within a
DeviceTemplate object; therefore, it will throw a LCA, #38
LCA_APP_DEVICE_REQUIRED exception when accessed.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 156

Syntax fileType = cpObject.ConfigFileType
Element Description

fileType The type of the configuration value
file implementing this configuration
property.
The possible values for this property,
which are stored in the
ConstConfigFileTypes constant, are
as follows:
1 lcaConfigFileWritable
The configuration property is stored
in the writable value file, which is the
mandatory (first) value file that is
typically stored in the read-write
memory on the device.
2 lcaConfigFileConstant
The configuration property is stored
in the constant value file, which is an
optional (second) value file that is
typically stored in the read-only
memory on the device.

cpObject The network variable-based
ConfigProperty object to be acted on.

Data Type Short.

Read/Write Read only.

Added to API OpenLNS.

ConfigNv
Summary If the configuration property is implemented by a network

variable, returns the configuration network variable object.

A ConfigProperty object is implemented by a configuration
network variable or a configuration value file. To determine
how the configuration property is implemented, read the
ImplementationType property of the ConfigProperty object.

• If the configuration property is implemented by a
configuration network variable, this property returns
that configuration network variable.
To identify just the index of the configuration network
variable, read the ConfigNvIndex property.
The configuration network variable returned by this
property refers back to this network variable-based
configuration property using the ImplementsCP property
of the NetworkVariable object.
If the configuration property is an array that is

OpenLNS Programmer's Reference 157

implemented by an array of network variables, array
elements will be implemented by consecutive network
variables. This property returns the network variable
that implements the first element. To retrieve the
network variables for subsequent elements, increment
the index of the network variable the appropriate number
of times, and call the ItemByIndex method on the
NetworkVariables property of the main Interface object.

• If the configuration property is implemented by a
configuration value file, this property throws an LCA,
#164 exception (“configuration property not implemented
by a configuration network variable”).

Note: This property is not currently available from within a
DeviceTemplate object; therefore, it will throw a LCA, #38
LCA_APP_DEVICE_REQUIRED exception when accessed.

Availability Local, full, and lightweight clients.

Syntax nvObject = cpObject.ConfigNv
Element Description

nvObject The configuration network variable
implementing this configuration
property.

cpObject The network variable-based
ConfigProperty object to be acted on.

Data Type NetworkVariable object.

Read/Write Read only.

Added to API OpenLNS.

ConfigNvIndex
Summary Specifies the index of the configuration network variable that

implements the ConfigProperty object iguration property.

A ConfigProperty object is implemented by a configuration
network variable or a configuration value file. To determine
how the configuration property is implemented, read the
ImplementationType property of the ConfigProperty object.

• If the configuration property is implemented by a
configuration NV, this property specifies the index of that
configuration network variable.

• If the configuration property is implemented by a
configuration value file, this property throws an LCA,
#164 exception (“configuration property not implemented
by a configuration network variable”).

To directly access the configuration network variable, read
the ConfigNv property (read the NV’s current selector).
If the configuration property is an array that is implemented

OpenLNS Programmer's Reference 158

by an array of network variables, the array elements will be
implemented by consecutive network variables. This
property returns the network variable index of the first
element. To determine the network variable index for
subsequent elements, simply increment this network variable
index the appropriate number of times.
Note: This property is not currently available from within a
DeviceTemplate object; therefore, it will throw a LCA, #38
LCA_APP_DEVICE_REQUIRED exception when accessed.

Availability Local, full, and lightweight clients.

Syntax nvIndex = cpObject.ConfigNvIndex
Element Description

nvIndex The index of the configuration
network variable implementing this
configuration property.

cpObject The network variable-based
ConfigProperty object to be acted on.

Data Type Short.

Read/Write Read only.

Added to API OpenLNS.

ConstantAttribute
Summary Reads or writes the constant attribute of the configuration

property.
Many configuration properties contain a constant attribute,
which indicates that the value of the configuration property
should not be changed by a network management tool such
as an OpenLNS application. You can use this property to set
or turn off the constant attribute of a configuration property.
Generally, configuration properties with the constant
attribute set should not be modified by OpenLNS
applications, or by any other means. However, version LNS
Release 3.20 of the LonMark Application-Layer
Interoperability Guidelines LNS Release 3.20 introduced
constant, device-specific configuration properties, which can
be modified by the device, but not by a network management
tool. Modifiable device-specific configuration properties were
introduced in version 3.4 of the LonMark Application-Layer
Interoperability Guidelines. These device-specific
configuration properties can be modified by the device, and
by a network management tool.
In the interim, many LonMark devices were defined with
constant, device-specific configuration properties. Some of
these configuration properties would more naturally have
been defined as modifiable, device-specific configuration
properties, if these had been defined by the LonMark

OpenLNS Programmer's Reference 159

organization at the time. As a result, LNS 3.20 allows
applications such as device plug-ins to modify the constant
attribute by writing to this property. Set this property to
True to turn on the constant attribute. Set this property to
False to turn off the constant attribute.
When modifying this property, you should note that some
configuration properties are stored in non-writable storage,
such a ROM. In this case, OpenLNS cannot verify whether it
is possible to update the value or not. If an OpenLNS
application sets the constant attribute to False, and that
configuration property’s value is stored in non-writable
memory, updating the value in the device will fail. The
failure may or may not be reported to LNS and to the
OpenLNS application, depending on how the value is stored.
Even if the value is stored in modifiable memory, such as
flash, it may be part of the checksumed application area. If
this is the case, modifying the value may cause the device to
detect an application checksum failure and enter the
applicationless state. In addition, it is not possible for LNS to
determine whether or not the device will operate correctly if
the configuration property value is successfully modified in
the device. For these reasons, you should take extreme care
when modifiying this property from its initial setting, and
only modify it if you have intimate knowledge of the device
application, and are certain you can successfully update the
value of the configuration property.
For more information on configuration property attributes,
see the Configuration Property Flags section of the LonMark
Application-Layer Interoperability Guidelines.

Availability Local, full, and lightweight clients.

Syntax returnValue = cpObject.ConstantAttribute
Element Description

returnValue A Boolean value indicating whether or
not the constant attribute flag of the
configuration property is set. If this
property is set to True, then the
attribute is set.

cpObject The ConfigProperty object being acted
on.

Data Type Boolean.

Read/Write This property is read-only for ConfigProperty objects that are
accessed through AppDevice objects.

This property is read/write for ConfigProperty objects
accessed through DeviceTemplate objects. Modifying this
property for a ConfigProperty on a DeviceTemplate will affect
all devices using that template.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 160

Description
Summary Stores description information about the ConfigProperty

object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the
ConfigProperty object.

object The ConfigProperty object to be acted
on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

DeviceSpecificAttribute
Summary Reads or writes the the device-specific attribute of the

configuration property.
Many configuration properties contain a device-specific
attribute, which indicates that the value of the configuration
property can be changed without the network manger’s
knowledge. For example, the configuration property value
may be changed locally by the device itself, or remotely by
another device on the network. As a consequence, the value
of the device stored in the OpenLNS database may not be the
most current value. It is not possible for LNS to know
whether the value of a device-specific configuration property
stored in the device or in the OpenLNS database is the
current value.

Depending on the setting of the SourceOptions property, the
device-specific attribute affects how OpenLNS will read or
write the value of the configuration property when it is
accessed via a data point, or via the ConfigProperty object’s
GetRawValuesEx and SetRawValuesEx methods. It may also
affect what configuration property values are downloaded or
uploaded to the OpenLNS database when you call the
DownloadConfigProperties and UploadConfigProperties
methods.
Initially, the device-specific attribute is defined by the
programmatic interface of the device, in the device’s external
interface file or self-documentation. However, whether the
configuration property can or should be modified without the
knowledge of OpenLNS is often dependent on the

OpenLNS Programmer's Reference 161

installation. Therefore, you can modify the device-specific
attribute by writing to this property. Set this property to
True to turn on the device-specific attribute. Set this
property to False to turn it off.
For more information on configuration property attributes,
see the Configuration Property Flags section of the LonMark
Application-Layer Interoperability Guidelines.

Availability Local, full, and lightweight clients.

Syntax deviceSpecific = cpObject.DeviceSpecificAttribute
Element Description

returnValue A Boolean value indicating whether or
not the device specific attribute flag of
the configuration property is set. If this
property is set to True, then the
attribute is set.

cpObject The ConfigProperty object being acted
on.

Data Type Boolean.

Read/Write This property is read-only for ConfigProperty objects that are
accessed through AppDevice objects.

This property is read/write for ConfigProperty objects
accessed through DeviceTemplate objects. Modifying this
property for a ConfigProperty on a DeviceTemplate will affect
all devices using that template.
The LONMARK organization does not allow modifiable
device-specific configuration properties to be stored in files
accessed via FTP on devices that support only sequential
access. Therefore, this property cannot be set to True on such
a configuration property, and an attempt to do so will result
in the NS, #293 lcaErrNsInvalidCpAttribute exception
being thrown.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 162

Dimension
Summary Returns the length (in bytes) of a single configuration

property element.
Multiplying this length by the number returned by the
Dimension property gives you the total length (in bytes) of
this configuration property. If this configuration property is
not an array, the Dimension property returns 1, and the
ByteLength property returns the full length of the
configuration property.
Note: If a configuration property inherits its type from a
network variable that supports changeable types, and the
type of that network variable is changed, this property will
not be updated to reflect the change. You can check if the
configuration property inherits its type by reading the
TypeInherits property.

Availability Local, full, and lightweight clients.

Syntax length = cpObject.ByteLength
Element Description

cpObject The ConfigProperty object to be acted on

length The byte length of this ConfigProperty
object

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

FlagsByte
Summary Returns the flags byte defined for this configuration property.

The flags byte represents the setting of several flags that
specifiy the behavior of the configuration property, including
whether it can be modified, and whether it is device-specific.

Availability Local, full, and lightweight clients.

Syntax flagsByteValue = cpObject.FlagsByte
Element Description

cpObject The ConfigProperty object to be acted
on.

flagsByteValue The value of the FlagsByte property.
The possible values for this element,
which are stored in the ConstCpFlags
constant, are as follows:
1 lcaCpFlagsDisabled
The configuration property is disabled.
2 lcaCpFlagsOffline

OpenLNS Programmer's Reference 163

The configuration property is offline.
4 lcaCpFlagsConstant
The configuration property has the
constant attribute set. You can use
LNS to read or write the value of the
constant attribute in some cases.

See the ConstantAttribute and
DeviceSpecificAttribute properties for
more information.
8 lcaCpFlagsReset
The configuration property has been
reset.
16 lcaCpFlagsManufactureOnly
The configuration property is a
manufacturer-only configuration
property.
32 lcaCpFlagsDeviceSpecific
The configuration property has the
device-specific attribute set. You can
use LNS to read or write the value of
the device-specific attribute in some
cases.

See the DeviceSpecificAttribute
property for more information.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

FormatName
Summary Specifies the formatting of the ConfigProperty object’s Value

property. The format is obtained on the computer running
the OpenLNS application for Local client applications, and on
the OpenLNS Server computer for Full and Lightweight
client applications:
OpenLNS will use a best-guess format to determine the
default FormatName property. You can also write to this
property to override the format determined by OpenLNS,
OpenLNS Best-Guess Format
OpenLNS will use a best-guess format when determining the
default for this property, using the following procedure:

1. If the ConfigProperty object's type is a standard
configuration property type (SCPT) or a user
configuration property type (UCPT) that is found in the
Device Resource File Type and Format files, and it is not

OpenLNS Programmer's Reference 164

a SNVT_xxx type, it will be formatted as specified by the
format file.

2. If the ConfigProperty object’s type does not appear in the
Device Resource File Type and Format files, or if it
appears but is designated as a SNVT_xxx type, the
OpenLNS Server will check to see if it applies to a
standard network variable. If it does, it will be formatted
according to the SNVT format specification in
STANDARD.FMT.

3. As a third option, OpenLNS will use the Hex Byte String
format as the default. In this case, each byte of the raw
value assigned to the ConfigProperty object will be
displayed as two hexadecimal digits. For example, the
byte sequence 1,2,3,4 would be displayed as 01020304.

Overriding the Best-Guess Format
When you successfully write to this property, the new value
will be stored persistently in the OpenLNS database.
However, you can revert the property back to the default
value chosen by OpenLNS at any time by writing an empty
string or the exact name of the type (e.g. SCPTmaxFlow) to
it. There are several possible syntaxes you can use when
writing to this property if you want to override the best-guess
format:
1. A format name beginning with "SCPT" for standard type

formats or "UCPT" for user-defined type formats (e.g.,
"SCPTmaxFlow"). The Data Server will use the resource
file catalog specified using the LdrfCatalogPath property
to search for SCPT and UCPT formats. There may be
several different formats for the same network variable
type. For example, the LonMaker Integration Tool has
two alternate formats for the type SCPTmaxFlow, and
those formats are named SCPTmaxFlow#SI and
SCPTmaxFlow#US.

In OpenLNS, the default formats for types such as
SCPTmaxFlow are determined using the Windows
regional settings of the computer where the data is
formatted (on the computer housing the OpenLNS Server
for local and lightweight clients, or on the computer
running the application for full clients). To determine
the settings being used on a computer, open the Windows
Control Panel and double-click the Regional Options icon.
Select the Numbers tab. OpenLNS uses the value of the
Measurement System field (either U.S. or metric) on this
tab to determine the default format to use for types such
as SCPTmaxFlow. You can also specify a full format
name (e.g. SCPTmaxFlow #SI or SCPTmaxFlow#US) to
select a specific format for that type. For UNVTs, you
must always specify a fully-qualified format name.

2. In some cases, a format exists for a given SCPT or UCPT

OpenLNS Programmer's Reference 165

that has the same name as the underlying type. This is
called the root format for the type, and may be different
from the default format for that type. In order to
explicitly use this root format, you will need to append
the ‘#’ character to the format name to indicate that you
are specifying the format name (and not the type name)
for this type. For example, if you read the value of a
configuration property of type SCPTminSndT when the
CategoryPreferenceList property of the FormatLocale
object your application is using is set to LO, and you set
the FormatName property to SCPTminSndT, the data
stored in the Value property will be formatted using the
SCPTminSndT#LO format. However, if you set the
FormatName property to SCPTminSndT#, the Value
property will be formatted using the root SCPTminSndT
format.

3. A fully-qualified format name, expressed in the following
syntax: "#<progID>[<scope>].<format name>"
In this syntax, the "#", "[", "]" and "." characters are
literal characters. A hex byte string represents the
program ID. The scope is a one-digit string. It represents
a filter that indicates relevant parts of the program ID,
and may be one of the following:
0 - Standard
1 - Device Class
2 - Device Class and Usage
3 - Manufacturer
4 - Manufacturer and Device Class
5 - Manufacturer, Device Class, and Device Subclass
6 - Manufacturer, Device Class, Device Subclass, and
Device Model
For example, #800001128000000[4].UNVT_date_event

4. The name of one of the Data Server built-in types, which
include "INT", "REAL", "DISCRETE", "BINARY", "RAW"
and "RAW_HEX".

Note: Use of the old syntax of <file name>.<type name>
for FormatName is no longer supported. This notation was
used for pre-LONMARK resource files.

Availability Local, full, and lightweight clients.

Syntax formNameValue = cpObject.FormatName
Element Description

cpObject The ConfigProperty object to be acted
on.

formNameValue The FormatName as a string.

OpenLNS Programmer's Reference 166

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

FuncProfileDescription
Summary Provides a desciptive comment of the functional profile

associated with the ConfigProperty object.
This property is accessed from the functional profile template
file associated with the object.

This property is language dependent. Set the System object's
ResourceLanguageId to control the language.

Availability Local, full, and lightweight clients.

Syntax description = object.FuncProfileDescription
Element Description

object The ConfigProperty object to be acted
on.

description The returned functional profile
description string.

Data Type String.

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

FuncProfileName
Summary Returns the functional profile name associated with the

ConfigProperty object.
This property is accessed from the functional profile template
file associated with the object. The name returned by this
property is accessed from the functional profile template file
associated with this object.

This property is language dependent. Set the System object's
ResourceLanguageId to control the language.

Availability Local, full, and lightweight clients.

Syntax typeNameValue = object.FuncProfileName
Element Description

object The ConfigProperty object to be acted
on.

typeNameValue The functional profile name to be
returned.

Data Type String.

OpenLNS Programmer's Reference 167

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

FuncProfileProgrammaticName
Summary Returns the functional profile programmatic name associated

with the ConfigProperty object.
This name is accessed from the functional profile template
file associated with the object. The programmatic name is
the base name stored for the object; it is not language
dependent like the FuncProfileName property.

Availability Local, full, and lightweight clients.

Syntax progNameValue = Object.FuncProfileProgrammaticName
Element Description

progName The functional profile programmatic
name of the object.

Object The ConfigProperty object to be acted
on.

Data Type String.

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

Handle
Summary Contains the handle associated with the ConfigProperty

object.
An OpenLNS Object that is part of a collection is assigned an
index corresponding to its position within that collection.
This index may be used when invoking the Item property.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.Handle
Element Description

returnValue The NSS handle of the object.

object The object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ImplementationType
Summary Specifies whether the ConfigProperty object is implemented

by a configuration network variable or a configuration value
file.

OpenLNS Programmer's Reference 168

Once the implementation type is known, a client can retrieve
the appropriate addressing information for the configuration
property by reading either the ConfigNvIndex property (for
NV-based CPs), or the ConfigFileType and ConfigFileOffset
properties (for file-based CPs).
This information is useful for tools that need to access
configuration property values when OpenLNS is not
available. For example, the SmartServer needs this
information to manage configuration property values when it
is running in standalone mode.
Notes: Modifying configuration property values without
OpenLNS is typically nor recoemmnded because it causes the
application device and the OpenLNS database to lose
synchronization.
This property is not currently available from within a
DeviceTemplate object; therefore, it will throw a LCA, #38
LCA_APP_DEVICE_REQUIRED exception when accessed.

Availability Local, full, and lightweight clients.

Syntax cpType = cpObject.ImplementationType
Element Description

cpType The configuration property’s
implementation type.
The possible values for this property,
which are stored in the
ConstImplementationTypes constant,
are as follows:
1 lcaImplementedByNetworkVariable
The configuration property is
implemented by a configuration
network variable. To determine the
index of the configuration variable,
read the ConfigNvIndex property of
the ConfigProperty object.
2 lcaImplementedByConfigFile
The configuration property is
implemented by a configuration value
file. To determine the type and offset
into the configuration value file, read
the ConfigFileType and
ConfigFileOffset properties of the
ConfigProperty object.

cpObject The ConfigProperty object to be acted
on.

Data Type Short.

Read/Write Read only.

OpenLNS Programmer's Reference 169

Added to API OpenLNS.

Mode
Summary Returns the scope of the LonMark resource file containing

the definition of the type used by this configuration property.
The value is acquired from the device during the import of
the LonMark information during installation.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classMode = cpObject.Mode
Element Description

classMode The scope of the LonMark resource file
containing the definition of the type this
configuration property is using.
The possible values for this property,
which are stored in the
ConstResourceScope constant (and in
the ConstConfigPropertyModes constant
for LNS versions prior to LNS Release
3.20), are as follows:
0 lcaResourceScopeStandard
Applies to all devices.
1 lcaResourceScopeClass
Applies to all devices of a specified
device class from any manufacturer.
2 lcaResourceScopeSubclass
Applies to all devices of a specified
device class and device subclass from
any manufacturer.
3 lcaResourceScopeMfg
Applies to all devices of a specified
manufacturer.
4 lcaResourceScopeMfgClass
Applies to all devices of a specified
manufacturer and device class.
5 lcaResourceScopeMfgSubClass
Applies to all devices of a specified
manufacturer, device class and device
subclass.
6 lcaResourceScopeMfgModel
Applies to all devices of a specified
manufacturer, device class, device

OpenLNS Programmer's Reference 170

subclass and model.
-1 lcaResourceScopeUnknown
The scope of the resource file is not
known, or could not be found.

cpObject The ConfigProperty object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

OpenLNS Programmer's Reference 171

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Precision
Summary Determines the precision of the ConfigProperty object. This

represents the number of digits that will be used when the
value of the configuration property is read and displayed.
If the data type used by the configuration property is a single
float type, the property defaults to 6 and has a range of 0-7. If
the data type used by the configuration property is a double
float type, the property defaults to 15 and has a range of
0-17.

Availability Local, full, lightweight, and independent clients.

Syntax precisionValue = object.Precision
Element Description

precisionValue The precision of the configuration
property value.

object The ConfigProperty object to be acted
upon.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

TypeInherits
Summary Indicates whether the configuration property inherits its type

from the network variable to which it applies.

Availability Local, full, lightweight, and independent clients.

Syntax inherits = configProperty.TypeInherits
Element Description

inherits The value of this property is taken from
the definition of the configuration
property in the device resource files.
If this property is set to 1, then the
configuration property always inherits
its type from the network variable to
which it applies. In this case, you may
need to program your application to

OpenLNS Programmer's Reference 172

account for changes to the configuration
property’s type. Only configuration
properties that apply to network
variables can inherit types.
For example, consider a configuration
property with the TypeInherits property
set to 1. If an application changes the
type of the network variable to which
the configuration property belongs, then
OpenLNS changes the type of the
configuration property automatically,
since the TypeInherits property is set to
1. You would need to know about this
change when reading the value of the
configuration property, and you can use
this property to keep track of which
configuration properties may be
modified by OpenLNS in this fashion.

configProperty The ConfigProperty object being acted
upon.

Data Type Short.

Read/Write Read only.

Added to API LNS Release 3.20.

TypeIndex
Summary Returns the type index of the configuration property.

Each ConfigProperty object uses a type defined in the
standard LonMark resource files, or in a user-defined
resource file. This property returns the index assigned to that
type within the resource file containing its definition.

If the Mode property is set to lcaResourceScopeStandard
(0), then the ConfigProperty object’s type is defined in the
standard resource files.

Availability Local, full, lightweight, and independent clients.

Syntax typeIndexValue = cpObject.TypeIndex
Element Description

cpObject The ConfigProperty object to be acted
on.

typeIndexValue The type index for the specified
ConfigProperty object.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 173

ValueStatus
Summary Determines the current state of the value stored in the

OpenLNS database for the ConfigProperty object.
In some cases, the stored value for a configuration property
in the OpenLNS database may not match the actual value of
the configuration property in the physical device on the
network. You can use this property to determine the current
state of the value stored in the OpenLNS database for the
configuration property.

Availability Local, full, lightweight, and independent clients.

Syntax returnValue = cpObject.ValueStatus
Element Description

returnValue The current status of the Value and
RawValue properties.
The values for this property, which are
stored in the
ConstConfigPropertyValueMgmtStatus
constant, are as follows:
0
lcaConfigPropertyValueMgmtStatu
sUnknown
The configuration property value is not
currently stored in the OpenLNS
database. To resolve this, follow these
steps:

1. Call the GetDataPoint method to
create a DataPoint for the
configuration property.
Use the
lcaDataSourceOptionsFromDevice (1)
value as the options element when
you create the data point. This
enables you to read the value of the
configuration property from the
device when the data point is
created.

2. Set the SourceOptions property of
the newly created DataPoint to
lcaDataSourceOptionsDatabase
Only (2).

3. Call the Write method to set the
value from the device in the
OpenLNS database.
Alternatively, you can load all
unknown configuration property
values for the device into the

OpenLNS Programmer's Reference 174

OpenLNS database by calling the
UploadConfigProperties method,
and specifying
lcaConfigPropOptLoadUnknow
n (4) as the options element.

1
lcaConfigPropertyValueMgmtStatu
sPendingUpdate
The configuration property value is
stored in the OpenLNS database, and
has been updated. This value needs to
be written to the device. OpenLNS will
write the value to the device
automatically as part of its normal
sweep operations.
2
lcaConfigPropertyValueMgmtStatu
sNormal
The configuration property value is
stored in the device, and there are no
pending updates. Typically this means
that the values of the configuration
property in the device, and in the
OpenLNS database, are identical.
However, if the value of the
configuration property can be modified
outside of LNS (for example, it is a
device-specific configuration property),
the value in the database and in the
device may be different—even if the
ValueStatus property is set to this
value.

cpObject The ConfigProperty object being acted
on.

Data Type Long

Read/Write Read only.

Added to API LNS Release 3.2.

ConnectDescTemplate
A ConnectDescTemplate object represents a generic connection description template that can
be applied to multiple network variable connections. This template describes the attributes
for a connection, including the messaging service. Using this object, standard connection
description templates can be defined and associated with multiple connections.
The values you assign to the active attributes of a connection description template will be
used by all of the devices added to the connections associated with that description template.
You can activate the attributes of the connection description template with the
PropertyOptions property.

OpenLNS Programmer's Reference 175

Description A generic connection description template that can be applied
to multiple network variable connections.

Added to API Prior to LNS Release 3.0.

Accessed Through ConnectDescTemplates collection object.
NetworkVariable object.

Default Property Name

Methods None

Properties • AliasOptions
• BroadcastOptions
• ClassId
• Description
• Handle
• MTHubs
• Name
• NVHubs
• Parent
• PropertyOptions
• ReceiveTimer
• RepeatCount
• RepeatTimer
• RetryCount
• ServiceType
• TransmitTimer
• UseAuthenticationFlag
• UsePriorityFlag

Methods
The ConnectDescTemplate object does not contain any methods.

Properties
The ConnectDescTemplate object contains the following properties:

• AliasOptions
• BroadcastOptions
• ClassId
• Description
• Handle
• MTHubs
• Name
• NVHubs
• Parent
• PropertyOptions
• ReceiveTimer
• RepeatCount
• RepeatTimer
• RetryCount
• ServiceType
• TransmitTimer
• UseAuthenticationFlag

OpenLNS Programmer's Reference 176

• UsePriorityFlag

AliasOptions
Summary Specifies how network variable aliases should be used in the

connection.
OpenLNS determines how it will use aliasing for a network
variable in a connection when the network variable is added
to the connection. As a result, changing the value of this
property in the ConnectDescTemplate object being used by a
connection will not affect the status of network variables that
have already been added to the connection. It will only affect
how aliasing will be used for network variables that are
added to the connection after the AliasOptions property has
been modified.
If you need to change the aliasing options for network
variables that have already been added to a connection, it
will be necessary to re-build the connection. You can do this
following these steps:

1. Call the Disconnect method on the connection’s hub
network variable.

2. Set the property of the hub network variable to the
desired value.

3. Add the target network variables back to the connection
with the AddTarget method.

4. Call the Connect method on the hub network variable.

Availability Local, full, and lightweight clients.

Syntax optionsValue = cdtObject.AliasOptions
Element Description

cdtObject The ConnectDescTemplate object to be
acted on.

optionsValue The desired alias options.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

BroadcastOptions
Summary Specifies the broadcast options for this ConnectDescTemplate

object.

Availability Local, full, and lightweight clients.

Syntax optionsValue = cdtObject.BroadcastOptions
Element Description

optionsValue The broadcast options. The valid values
for this element, which are contained in

OpenLNS Programmer's Reference 177

the ConstConnBroadcastOptions
constant, are as follows:
0 lcaBroadcastNever
No broadcast addressing will be used.
1 lcaBroadcastGroup
If a group address is required, but no
groups are available, broadcast
addressing will be used. A subnet
broadcast will be used if possible;
otherwise, a domain broadcast will be
used.
2 lcaBroadcastAlways
Broadcast addressing will be used in all
cases. A subnet broadcast will be used,
if possible; otherwise, a domain
broadcast will be used.

cdtObject The ConnectDescTemplate object to be
acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
ConnectDescTemplate object in the
ConstClassIds constant:
42
lcaClassIdConnectDescTemplate

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property allows the object type to be determined when it

OpenLNS Programmer's Reference 178

is unknown (for example, when the object was accessed using
the Parent property of another object).

Description
Summary Stores description information about the

ConnectDescTemplate object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax updateType = appDeviceObject.ConnectionUpdateType
Element Description

stringValue A string description of the
ConnectDescTemplate object.

object The ConnectDescTemplate object to be
acted on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

Handle
Summary Contains the handle associated with the

ConnectDescTemplate object.
An OpenLNS Object that is part of a collection is assigned an
index corresponding to its position within that collection.
This index may be used when invoking the Item property and
may also be read using the Index property.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.Handle
Element Description

returnValue The NSS handle of the object.

object The object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

MTHubs
Summary Returns a collection of Message Tags that have connections

that use this connection description template.
When a new hub is added, it may not be added to the end of

OpenLNS Programmer's Reference 179

the list of hubs; therefore, you should update the cached copy
of the complete hub list when you add or delete a hub.

Availability Local, full, and lightweight clients.

Syntax mtCollection = cdtObject.MTHubs
Element Description

mtCollection The returned MessageTags collection.

cdtObject The specified ConnectDescTemplate
object.

Data Type MessageTags collection object.

Read/Write Read only.

Added to API LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

NVHubs
Summary Returns a collection of Network Variables that have

connections that use this Connection Description Template.
When a new hub is added, it may not be added to the end of
the list of hubs; therefore, you should update the cached copy
of the complete hub list when you add or delete a hub.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

OpenLNS Programmer's Reference 180

Syntax nvColl = cdtObject.NVHubs
Element Description

cdtObject The ConnectDescTemplate object to
be acted on.

nvColl The collection of NetworkVariables
to be returned.

Data Type NetworkVariables collection object.

Read/Write Read only.

Added to API LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

PropertyOptions
Summary Specifies which attributes in the connection description

template are active.
If an attribute is not specified as active, the attributes in the
network variable declarations (in the device’s application
program) or the Object Server's internal defaults are used in
connections associated with the template. If an attribute is
designated as active, the corresponding value supplied in the
ConnectDescTemplate object overrrides the default.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 181

Syntax propOptionsValue = cdtObject.PropertyOptions
Element Description

cdtObject The ConnectDescTemplate object to be
acted on.

propOptionsValue The value indicating which attributes
are active. Multiple options can be
ORed together to form the set of
attributes that will be considered
active in the connection.
For example, you could OR
lcaConnPropsServiceType with
lcaConnPropsPriority to activate
the ServiceType and UsePriorityFlag
properties. The values of the
ServiceType and UsePriorityFlag
properties in the devices used in the
connection would then be overridden
by the values stored in the
ConnectDescTemplate object for those
properties. The values for all other
properties would still be taken from
device and internal defaults.
The possible options for this element,
which are contained in the
ConstConnPropOptions constant, are
as follows:
0 lcaConnPropsNone
1 lcaConnPropsServiceType
Select this value to activate the
ServiceType property of the
ConnectDescTemplate object.
2 lcaConnPropsPriority
Select this value to activate the
UsePriorityFlag property of the
ConnectDescTemplate object.
4 lcaConnPropsAuth
Select this value to activate the
UseAuthenticationFlag property of the
ConnectDescTemplate object.
8 lcaConnPropsRetryCount
Select this value to activate the
RetryCount property of the
ConnectDescTemplate object.
16 lcaConnPropsRepeatCount
Select this value to activate the

OpenLNS Programmer's Reference 182

RepeatCount property of the
ConnectDescTemplate object.
32 lcaConnPropsRepeatTimer
Select this value to activate the
RepeatTimer property of the
ConnectDescTemplate object.
64 lcaConnPropsReceiveTimer
Select this value to activate the
ReceiveTimer property of the
ConnectDescTemplate object.
128 lcaConnPropsTransmitTimer
Select this value to activate the
TransmitTimer property of the
ConnectDescTemplate object.
256
lcaConnPropsSuppressSourceAddr
This option is no longer supported.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ReceiveTimer
Summary Determines the time within which a received message with a

duplicate reference ID will be considered a duplicate
message.
This property will only be used by the Object Server if the
lcaConnPropsReceiveTimer option is set in the
ConnectDescTemplate object’s PropertyOptions property.

Availability Local, full, and lightweight clients.

Syntax receiveTimerValue = cdtObject.ReceiveTimer
Element Description

cdtObject The ConnectDescTemplate object to
be acted on.

receiveTimerValue The encoded value of the receive
timer. This value determines the
time period within which receiving
devices will treat messages from the
same source with the same reference
ID as duplicate messages.
If the
lcaConnPropsReceiveTimer
option is not activated in the
PropertyOptions property, the

OpenLNS Programmer's Reference 183

default receive timer is calculated
based on the network topology,
channel delays, and other
connections that exist on the system.
This property accepts a range of
encoded values from 0 to 15. The
encoded receive timer values are as
follows:
Encoded
Value

Seconds

0 0.128
1 0.192
2 0.256
3 0.384
4 0.512
5 0.768
6 1.024
7 1.536
8 2.048
9 3.072
10 4.096
11 6.144
12 8.192
13 12.288
14 16.384
15 24.576

Data Type Integer.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

RepeatCount
Summary Indicates the number of times to repeat a message sent using

the repeated message service (if the ConnectDescTemplate is
using the repeated message service, which is equal to
lcaSvcUnackdRpt).
This property will only be implemented if you set the
lcaConnPropsRepeatCount option in the
ConnectDescTemplate object’s PropertyOptions property. If
this property is not activated by the PropertyOptions
property, the default value is calculated based on network
topology.
You can set the frequency in which the repeat messages will
be sent by writing to the RepeatTimer property of the
ConnectDescTemplate object.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 184

Syntax repeatCountValue= cdtObject.RepeatCount
Element Description

cdtObject The ConnectDescTemplate object to be
acted on.

repeatCountValue The number of times (0–15) the
messages will be repeated. This
property is used to establish the
repeat count.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

RepeatTimer
Summary The encoded value of the repeat timer used for network

management messages. This value defines the interval to
wait between repeated messages sent using the
unacknowledged/repeat message service during network
management operations.
You must set the lcaConnPropsRepeatTimer option in the
ConnectDescTemplate object’s PropertyOptions property to
implement the repeat timer. If the option is not set in
PropertyOptions, then the connection will use the default
value for the property, which is based on network topology.
You can set the number of repeat messages that will be sent
by writing to the RepeatCount property of the
ConnectDescTemplate object.

Note: The value of this property in a ConnectDescTemplate
applies to all permanent monitor points involved in the
connections that are using that template. However, to set the
repeat timer value for monitor and control messages for
temporary monitor points, you need to use the
DsRepeatTimer property.

Availability Local, full, and lightweight clients.

Syntax repeatTimerValue = object.RepeatTimer
Element Description

OpenLNS Programmer's Reference 185

repeatTimerValue The encoded value of the repeat timer.
The default value for this property is
determined based on the network
topology. It is recommended that you
do not change this from the default
value. If the default value is not
suitable for your application, it is
recommended that you use the Delay
property of each Channel object on the
network to ensure that each message
is sent at the correct interval.
However, this property does accept a
range of encoded values from 0 to 15.
The encoded repeat timer values are
as follows:
Encoded Value Seconds
0 0.016
1 0.024
2 0.032
3 0.048
4 0.064
5 0.096
6 0.128
7 0.192
8 0.256
9 0.384
10 0.512
11 0.768
12 1.024
13 1.536
14 2.048
15 3.072

You can also write the value 254 to
the property at any time to restore it
to the default.
If you assign this property a value
outside the acceptable range, the NS,
#29 lcaErrNsOutOfRange exception
will be thrown.

object The ConnectDescTemplate to be acted
on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 186

RetryCount
Summary Sets the maximum number of times to resend messages sent

with the request/response, unacknowledged/repeat, or
acknowledged messaging services. This also sets the retry
count for polling.
You can set the service type for a connection by writing to the
ServiceType property of the ConnectDescTemplate object.

• If the acknowledged (lcaSvcAckd) or request/response
(lcaSvcRequest) service types are selected, the retry
count sets the number of retries to send when no
acknowledgment of (or response to) the original message
is received. You can set the interval for these retries by
writing to the TransmitTimer property of the
ConnectDescTemplate object.

• If the unacknowledged/repeat (lcaSvcUnackdRpt)
service type is selected, the retry count sets the number
of repeats to send for each network management
message. You can set the interval for the repeat
messages by writing to the RepeatTimer property of the
ConnectDescTemplate object.

Note: In the ConnectDescTemplate object, the value of this
property applies to all permanent monitor and control
messages sent by connections using that template. However,
to set the retry count for monitor and control messages for
temporary monitor sets, you need to use the DsRetryCount
property of the System object.

Availability Local, full, and lightweight clients.

Syntax retryCountValue = object.RetryCount
Element Description

retryCountValue The retry count value. The default
value is calculated based on network
topology, and the property has a range
of 0-15.
This property will only be used for a
ConnectDescTemplate object if the
lcaConnPropsRetryCount option is
set in the ConnectDescTemplate
object’s PropertyOptions
property.

object The ConnectDescTemplate or System
object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 187

ServiceType
Summary Stores the messaging service to be used for the connection.

Note: This property will only be read by the OpenLNS Object
Server if the lcaConnPropsServiceType option is set in
the ConnectDescTemplate object’s PropertyOptions property.
If the lcaConnPropServiceType option is not set, then
OpenLNS Object Server will determine the service type for
connections using the ConnectDescTemplate object by reading
the ServiceType property of the connection’s hub network
variable.

Availability Local, full, and lightweight clients.

Syntax serviceTypeValue = object.ServiceType
Element Description

serviceTypeValue The service type to be used. The
enumerated values for this element,
which are contained in the
ConstServiceTypes constant, are as
follows:
0 lcaSvcAckd
Acknowledged messaging service.
The device sends an acknowledgment
message after it has received the
message.
If your application will be sending
messages to large numbers of devices
at once, one of the unacknowledged
messaging services may be desirable,
as the acknowledgment messages may
generate a significant amount of
network traffic.
1 lcaSvcUnackdRpt
Unacknowledged repeat messaging
service. The device does not send
acknowledgment messages; however,
repeat messages are sent to the device
after the initial message is sent to it
to ensure that it reaches its
destination.
You can set the number of repeat
messages to send, and the interval at
which they will be sent, by writing to
the RepeatCount and RepeatTimer
properties.
2 lcaSvcUnackd
Unacknowledged messaging service.
The device does not send

OpenLNS Programmer's Reference 188

acknowledgment messages.
Do not use this service type on
channels that support altnerate
frequencies because the message will
only be sent using the primary path.
See the AltPathType property for
more information.
3 lcaSvcRequest
Request/Response messaging service.
You can use this value when sending
explicit messages if the device
receiving the message is designed to
send a response message for the
specified message code.

object The ConnectDescTemplate object to be
acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

TransmitTimer
Summary Specifies the interval between lcaSvcAckd and

lcaSvcRequest messages.

Availability Local, full, and lightweight clients.

Syntax transTimerValue = cdtObject.TransmitTimer
Element Description

cdtObject The ConnectDescTemplate object to be
acted on.

transTimerValue The value of the transmit timer.
This property will only be read by the
Object Server if the
lcaConnPropsTansmitTimer (128)
option is set in the
ConnectDescTemplate object’s
PropertyOptions property. Otherwise,
the transmit timer used by the
connection will be calculated
automatically based on the network
topology and channel delays.
This property accepts a range of
encoded values from 0 to 15. The
encoded transmit timer values are as
follows:
Encoded Value Seconds
0 0.016

OpenLNS Programmer's Reference 189

1 0.024
2 0.032
3 0.048
4 0.064
5 0.096
6 0.128
7 0.192
8 0.256
9 0.384
10 0.512
11 0.768
12 1.024
13 1.536
14 2.048
15 3.072

Data Type Integer.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

UseAuthenticationFlag
Summary Indicates whether this connection uses authentication.

Availability Local, full, and lightweight clients.

Syntax useAuthFlag = cdtObject.UseAuthenticationFlag
Element Description

cdtObject The ConnectDescTemplate object to be
acted on.

useAuthFlag A Boolean value.
This property will only be read by the
Object Server if the
lcaConnPropsAuth option is set in
the ConnectDescTemplate object’s
PropertyOptions property.

• A True value indicates that
authentication is enabled for this
connection.

• A False value indicates that
authentication is disabled for this
connection.

• If this value is not explicitly set
for a ConnectDescTemplate object,
the authentication settings for
connections using the template
will default to the setting of the
hub network variable’s

OpenLNS Programmer's Reference 190

AuthenticationFlag.
This property is used for network
variable connections only.

Data Type Boolean.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

UsePriorityFlag
Summary Indicates whether this connection uses priority messaging.

With priority messaging, the device with the highest priority
sends its packet before any other devices can send theirs.
This is accomplished by assigning each priority device a time
slot where it can transmit before all other lower priority and
non-priority devices. These time slots consume network
bandwidth; therefore, priority messaging should only be used
for critical devices and data.

Availability Local, full, and lightweight clients.

Syntax usePriorityFlag = cdtObject.UsePriorityFlag
Element Description

cdtObject The ConnectDescTemplate object to be
acted on.

usePriorityFlag A Boolean value.
This property will only be read by the
Object Server if the
lcaConnPropsPriority option is set
in the ConnectDescTemplate object’s
PropertyOptions property.

• A True value indicates that this
connection uses priority
messaging.

• A False value indicates that this
connection does not use priority
messaging.

• If this value is not explicitly set
for a ConnectDescTemplate object,
it defaults to the network
variable’s DsPriority property.

Data Type Boolean.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 191

ConnectDescTemplates
A ConnectDescTemplates object is a collection of ConnectDescTemplate objects. The instance
of this object is accessed through the TemplateLibrary object holds all of the
ConnectDescTemplate objects in the system. The following table summarizes the
ConnectDescTemplates object.

Description A collection of ConnectDescTemplate objects.

Added to API Prior to LNS Release 3.0.

Accessed Through TemplateLibrary object.

Default Property Item

Methods • Add
• ItemByHandle
• Remove

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The ConnectDescTemplates object contains the following methods.

• Add
• ItemByHandle
• Remove

Add
Summary Defines a new ConnectDescTemplate object. A

ConnectDescTemplate object needs to be created and
initialized before use. It may optionally be assigned to a
NetworkVariable or MessageTag object before invoking the
Connect method on that NetworkVariable or MessageTag
object.

Availability Local, full, and lightweight clients.

Syntax cdTemplateObject = cdTemplatesColl.Add(cdTemplateName)
Element Description

cdTemplateObject The newly defined
ConnectDescTemplate object.

cdTemplatesColl The ConnectDescTemplates collection
object.

cdTemplateName A String containing the name of the
connection description template.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 192

ItemByHandle
Summary Retrieves a ConnectDescTemplate object, specified by its

handle, from a ConnectDescTemplates collection. The
ConnectDescTemplate object to be retrieved must be specified
by its handle.

Availability Local, full, and lightweight clients.

Syntax object = coll.ItemByHandle(handle)
Element Description

object The object retrieved from the collection.

coll The collection object.

handle A Long value specifying the handle of
the object to be retrieved.

Added to API LNS Release 3.0.

Added to API Prior to LNS Release 3.0.

Remove
Summary Removes an object from the specified collection.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax objectColl.Remove indexName

Element Description

objectColl The collection containing the object to
be removed.

name A Long value specifying the collection
index of the object to remove, or a
String value specifying the name of the
object to remove.

Added to API Prior to LNS Release 3.0.

Properties
The ConnectDescTemplates object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to

OpenLNS Programmer's Reference 193

Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
ComponentApps object in the
ConstClassIds constant:
43
lcaClassIdConnectDescTemplates

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a ConnectDescTemplate object from a

ConnectDescTemplates collection. You can retrieve an object
from its collection by passing its index (ordinal position)
within that collection as the argument for the Item property.
Index values start at 1. You can also retrieve a
ConnectDescTemplate object with the Name property by

OpenLNS Programmer's Reference 194

passing the object’s name as a string expression

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The object retrieved from the collection.

collObject The collection object to be acted on.

index A Long type specifying the ordinal
index of the object to retrieve.

stringExpression A string type specifying the name of the
object to retrieve.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

OpenLNS Programmer's Reference 195

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

Connections
A Connections object contains all of the network variable and message tag connections in the
system. Each connection is represented by the connection hub network variable or message
tag. You can create connections using the AddTarget and Connect methods.

The following table summarizes the Connections object.

Description Connects all of the network variable and message tag
connections in the system.

Added to API Prior to LNS Release 3.0.

Accessed Through System object.

Default Property None

Methods None

Properties • ClassId
• MessageTags
• NetworkVariables
• Parent

OpenLNS Programmer's Reference 196

Methods
The Connections object does not contain any methods.

Properties
The Connections object contains the following properties:

• ClassId
• MessageTags
• NetworkVariables
• Parent

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Connections object in the ConstClassIds
constant:
18 lcaClassIdConnections

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

MessageTags
Summary Returns the MessageTags collection associated with the

object.

Availability Local, full, and lightweight clients.

Syntax mtCollection = object.MessageTags
Element Description

mtCollection The returned MessageTags collection.

object The Connections object to be acted on

OpenLNS Programmer's Reference 197

Data Type MessageTags collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

NetworkVariables
Summary Represents all of the network variable connections in the

system with a NetworkVariables collection object that
contains the hub network variables for all connections.

Availability Local, full, and lightweight clients.

Syntax nvCollection = object.NetworkVariables
Element Description

nvCollection The returned NetworkVariables
collection.

object The Connections object to be acted on

Data Type NetworkVariables collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

OpenLNS Programmer's Reference 198

CreditInfo
OpenLNS applications can determine a system’s current licensing status by reading the
properties of the CreditInfo object. These properties return information indicating the
number of days until the LNS activation license expires or the number of application devices
defined in a system.

Note: As of OpenLNS, the DeficitCredits, LicensedCredits, LicenseType, MaxDeficitCredits,
and UsedCredits properties of the CreditInfo object have been deprecated and no longer
provide any useful information.

The following table summarizes the CreditInfo object.

Description A single point of data in a LONWORKS network.

Added to API Prior to LNS Release 3.0.

Accessed Through System.

Default Property None.

Methods None.

Properties • ClassId
• DaysRemaining
• DeficitCredits
• LicensedCredits
• LicenseType
• MaxDeficitCredits
• UsedCredits

Methods
The CreditInfo object does not contain any methods:

Properties
The CreditInfo object contains the following properties:

• ClassId
• DaysRemaining
• DeficitCredits
• LicensedCredits
• LicenseType
• MaxDeficitCredits

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

OpenLNS Programmer's Reference 199

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
CreditInfo object in the ConstClassIds
constant:
53 lcaClassIdCreditInfo

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

DaysRemaining
Summary Returns the number of days until the OpenLNS activation

license expires or 255, whichever is lesser.
Note: In previous LNS releases, this property indicated the
number of days remaining before the OpenLNS Server
license would expire due to being in deficit mode. When not
in deficit mode, the value was always 255.

Availability Local, full, and lightweight clients.

Syntax numDays = object.DaysRemaining
Element Description

numDays The number of days until the LNS
activation license expires.

object The CreditInfo object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

DeficitCredits (Deprecated)
Summary Returns 0.

Note: In previous LNS releases, this property indicated how
many credits had been consumed over the number of credits
purchased.

Availability Local, full, and lightweight clients.

Syntax deficitValue = creditObject.DeficitCredits
Element Description

deficitValue The number of deficit credits, which is

OpenLNS Programmer's Reference 200

always 0.

creditObject The CreditInfo object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

LicensedCredits (Deprecated)
Summary Returns the currently licensed capacity, which is typically

either 6 for trial licenses, or 65,535 for non-trial licenses.
Note: In previous LNS releases, this property indicated the
number of credits defined in the LNS license.

Availability Local, full, and lightweight clients.

Syntax licValue = object.LicensedCredits
Element Description

licValue The number of LNS Device Credits.

creditObject The CreditInfo object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

LicenseType (Deprecated)
Summary Returns lcaLNSLicenseTypeNone.

Note: In previous LNS releases, this property indicted the
type of license (either lcaLNSLicenseTypeNone or
lcaLNSLicenseTypeStandard).

Availability Local, full, and lightweight clients.

Syntax licValue = object.LicensedCredits
Element Description

licValue The number of LNS Device Credits.

creditObject The CreditInfo object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 201

MaxDeficitCredits (Deprecated)
Summary Returns 0.

Note: In previous LNS releases, this property indicted the
the maximum number of deficit credits.

Availability Local, full, and lightweight clients.

Syntax maxValue = object.MaxDeficitCredits
Element Description

maxValue The maximum number of deficit credits,
which is always 0.

creditObject The CreditInfo object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

UsedCredits (Deprecated)
Summary Returns the number of devices defined, excluding NSDs and

routers.
Note: In previous LNS releases, this property indicted the
the number of credits used.

Availability Local, full, and lightweight clients.

Syntax maxValue = object.MaxDeficitCredits
Element Description

usedValue The number of of devices defined,
excluding NSDs and routers.

creditObject The CreditInfo object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

DatabaseValidationReport
The DatabaseValidationReport object is returned after a database validation has been
completed, and it contains information summarizing the results of the database validation.
You can initiate a database validation on a network by calling the Validate method of the
Network object.

• If the database passed the validation, no errors or inconsistencies were discovered during
the procedure, or OpenLNS was able to repair all the errors it discovered. In this case,
the PassedValidation property will be set to True.

• If the database does not pass the validation, then some errors still exist in the database
after the validation. In this case, the PassedValidation property will be set to False.

OpenLNS Programmer's Reference 202

All the other properties contain information describing the errors that were discovered in the
database during the validation. This information includes how many errors were discovered
during the validation, how many of the errors OpenLNS was able to repair, how many of the
errors OpenLNS was not able to repair, and the ErrorSummaries property, which contains a
collection of DatabaseValidationErrorSummary objects. Each
DatabaseValidationErrorSummary object contains information describing a certain type of
error that was discovered during the database validation.

The following table summarizes the DatabaseValidationReport object.

Description A single point of data in a LONWORKS network.

Added to API LNS Release 3.20.

Accessed Through Network object.

Default Property None.

Methods • Export

Properties • ClassId
• ErrorSummaries
• Parent
• PassedValidation
• RepairedErrors
• TotalObjectsValidated
• UnrepairedErrors

Methods
The DatabaseValidationReport object contains the following methods:

• Export

Export
Summary Contains information summarizing the results of a database

validation that was performed on a network. You can use this
method to export the contents of the database validation report
to a specified directory.
The contents of the validation report will be exported in XML
format. You must enter the directory and filename that will
contain the report as a valid system path. If OpenLNS is
unable to open the target directory for writing, or if the
specified filename already exists and the overwriteExisting
element is set to False, the LCA, #149
lcaErrorInvalidExportFilename exception will be thrown.

Availability Local clients.

Syntax validationReport.Export path, overwriteExisting

Element Description

validationReport The DatabaseValidationReport object
to be acted upon object being acted
upon.

path A string containing the path and

OpenLNS Programmer's Reference 203

filename to where the file is to be
exported. This must be a valid system
path

overwriteExisting This element is implemented if you
specify a path and filename that
already exists when you call this
method.
It has a Boolean value indicating
whether the exported report should
overwrite any existing files.
TRUE. The existing file is

overwritten.
FALSE. The existing file is not

overwritten, and an exception
is thrown.

Added to API LNS Release 3.20.

Properties
The DatabaseValidationReport object contains the following properties:

• ClassId
• ErrorSummaries
• Parent
• PassedValidation
• RepairedErrors
• TotalObjectsValidated
• UnrepairedErrors

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
DatabaseValidationReport object in the
ConstClassIds constant:
89
lcaClassIdDatabaseValidationReport

object The object to be acted on.

OpenLNS Programmer's Reference 204

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ErrorSummaries
Summary Contains the DatabaseValidationErrorSummaries collection

object returned by the database validation report.

The DatabaseValidationErrorSummaries collection object
contains a group of DatabaseValidationErrorSummary
objects. Each DatabaseValidationSummary object contains
information about a certain type of error that was discovered
during the database validation. You can use the information
stored in these objects to troubleshoot the problems that may
still exist in your database after a validation.

Availability Local clients.

Syntax summariesCollection = validationReport.ErrorSummaries
Element Description

summariesCollection The
DatabaseValidationErrorSummaries
collection object returned.

validationReport The DatabaseValidationReport
being acted upon.

Data Type DatabaseValidationErrorSummaries collection object.

Read/Write Read only.

Added to API LNS Release 3.20.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

OpenLNS Programmer's Reference 205

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

PassedValidation
Summary Indicates whether the network passed the database validation.

Availability Local clients.

Syntax validated = validationReport.PassedValidation
Element Description

validated A Boolean value indicating whether
the network passed the validation
procedure.
TRUE. The network passed the

database validation.
This will occur if no errors
were discovered during the
network validation, or if all
the errors discovered
during the validation were
repaired.

FALSE. The network database has
problems that were not
repaired during the
validation.

validationReport The DatabaseValidationReport
object to be acted upon.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.20.

RepairedErrors
Summary Contains the number of errors that were successfully repaired

by OpenLNS during the database validation.
You can initiate a database validation on a network by calling
the Validate method on the Network object. To have LNS
attempt to repair the errors it discovers during the validation,
select lcaDbValidateAndRepair (1) as the validationFlags
element when you call the Validate method.
You can determine the number of errors that were not repaired
during the validation by reading the UnrepairedErrors
property.

Availability Local clients.

OpenLNS Programmer's Reference 206

Syntax repairedCount = validationReport.RepairedErrors
Element Description

repairedCount The number of errors discovered
during the database validation that
were repaired.

validationReport The DatabaseValidationReport
object to be acted upon.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

TotalObjectsValidated
Summary Contains the number of objects that were validated during the

database validation. An object is validated if it can be accessed
through its parent object in the database.
Unvalidated objects are those that cannot be accessed through
their parent object in the database. These are considered to be
"orphan objects." A DatabaseValidationErrorSummary object
will be included for the orphan objects discovered in the
database.

Availability Local clients.

Syntax validatedCount = validationReport. TotalObjectsValidated
Element Description

validatedCount The number of objects that were
validated during the database
validation.

validationReport The DatabaseValidationReport
object to be acted upon.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 207

UnrepairedErrors
Summary Contains the number of errors discovered during the database

validation that were not repaired by OpenLNS. This includes
all errors OpenLNS did not attempt to repair, and all errors
OpenLNS was not able to repair.
You can initiate a database validation on a network by calling
the Validate method on the Network object. To have LNS
attempt to repair the errors it discovers during the validation,
select lcaDbValidateAndRepair (1) as the validationFlags
element when you call the Validate method.
You can determine the number of errors that were repaired
during the validation by reading the RepairedErrors property.

Availability Local clients.

Syntax repairedCount = validationReport.UnrepairedErrors
Element Description

repairedCount The number of errors discovered
during the database validation that
were not repaired.

validationReport The DatabaseValidationReport
object to be acted upon.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.20.

DatabaseValidationErrorInstance
The DatabaseValidationErrorInstance object is returned by the GetInstance method of the
DatabaseValidationErrorSummary object. It contains information indicating whether
OpenLNS was able to repair a specific error during a database validation. The returned
DatabaseValidationErrorInstance object also enables you to identify the object that caused
the error, including the class, internal ID, and name of the object, as well as its parent
object.

You can validate a database by calling the Validate method on the Network object. The
database validation generates a DatabaseValidationReport that includes the
DatabaseValidationErrorSummaries object, which contains a collection of
DatabaseValidationErrorSummary objects. Each DatabaseValidationErrorSummary object
contains information about a specific error type that was encountered during the database
validation. This information includes includes the number of times the error type was
encountered, whether OpenLNS can repair the error, and whether OpenLNS attempted to
repair the error.

If the ObjectDetailsAvailable property of the DatabaseValidationErrorSummary object is set
to True, you can use the GetInstance method to access specific details about each instance of
the error type summarized by this object.

The following table summarizes the DatabaseValidationErrorSummary object.

OpenLNS Programmer's Reference 208

Description Indicates whether OpenLNS was able to repair a specific
error during a database validation.

Added to API LNS Release 3.20.

Accessed Through DatabaseValidationErrorSummaries object.

Default Property None.

Methods None.

Properties • ClassId
• ErrorType
• ObjectClassInvolved
• ObjectInternalId
• ObjectName
• Parent
• ParentObjectClass
• ParentObjectInternalId
• ParentObjectName
• Repairable
• RepairAttempted
• Repaired

Methods
The DatabaseValidationErrorInstance object does not contain any methods:

Properties
The DatabaseValidationErrorInstance object contains the following properties:

• ClassId
• ErrorType
• ObjectClassInvolved
• ObjectInternalId
• ObjectName
• Parent
• ParentObjectClass
• ParentObjectInternalId
• ParentObjectName
• Repairable
• RepairAttempted
• Repaired

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

OpenLNS Programmer's Reference 209

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
DatabaseValidationErrorInstance object
in the ConstClassIds constant:
92 lcaClassIdDatabaseValidation

ErrorInstance

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ErrorType
Summary Indicates the type of error refernced by this

DatabaseValidationErrorInstance object.

The other properties of the DatabaseValidationErrorInstance and
DatabaseValidationErrorSummary objects contain additional
information that may be useful when troubleshooting these errors. See
these objects for more information.

Availability Local clients.

Syntax errorType = validationObject.ErrorType
Element Description

errorType The error type referenced by the
DatabaseValidationErrorInstance object.
The values that may be returned as this element,
which are contained in the
ConstDbValidationErrorType constant, are as
follows:
0 lcaDbValidationErrorOrphan
Device

An orphan AppDevice object was found in the
database. An orphan object is one that is no longer
accessible through its parent object.
1 lcaDbValidationErrorOrphan
Object
An orphan object was found in the database. An
orphan object is one that is no longer accessible
through its parent object.
2 lcaDbValidationError
DuplicateDynamicNV

OpenLNS Programmer's Reference 210

A duplicate dynamic network variable was found
on a device’s interface.
3 lcaDbValidationError
MissingNV
An invalid reference to a network variable, or a
missing network variable, was discovered on a
dynamic interface.
4 lcaDbValidationError
MissingLMO

An invalid reference to a LonMark object, or a
missing LonMark object, was discovered on a
dynamic interface.
5 lcaDbValidationError
MissingCP
An invalid reference to a configuration property,
or a missing configuration property, was
discovered.
6 lcaDbValidationError
MissingMT
An invalid reference to a message tag, or a missing
message tag, was discovered.
7 lcaDbValidationErrorBad
DbRecord
A corrupted or invalid record was discovered in
the global database.
8 lcaDbValidationErrorBadLink
An invalid reference to another object in the
database was discovered.
9 lcaDbValidationError
BadSystemPointer

An invalid reference to the System object from
another object was discovered in the database.
10 lcaDbValidationError
BadBaseObjectData
Invalid base-object data was discovered. This is an
internal error.
11 lcaDbValidationErrorBad
ObjectData
Invalid object data was discovered. This is an
internal error.
12
lcaDbValidationErrorDuplicateDynamicMT
Duplicate dynamic message tag data was

OpenLNS Programmer's Reference 211

discovered. This is an internal error.
13
lcaDbValidationErrorDuplicateDynamicLM
O
Duplicate LonMark object data was discovered.
This is an internal error.
14 lcaDbValidationErrorBadInterfaceCount
Incorrect interface count data was discovered. This
is an internal error.
15 lcaDbValidationErrorDuplicate
StaticNV
Duplicate static network variable data was
discovered. This is an internal error.
16 lcaDbValidationErrorMissing
Subsystem
An invalid reference to a subsystem, or a missing
subsystem, was discovered. This is an internal
error.
17 lcaDbValidationErrorMissing
AppDevice
An invalid reference to a device, or a missing
device, was discovered. This is an internal error.
18 lcaDbValidationErrorMissing Router
An invalid reference to a router, or a missing
router, was discovered.
19 lcaDbValidationError
DuplicateStaticLMO
Duplicate static functional block was discovered.
20 lcaDbValidationError
DuplicateObject
Duplicate object data was discovered.
128 lcaDbValidationErrorNss
RecordIntegrity
This is an internal error.
129 lcaDbValidationError
NssUniqueKeyIntegrity
This is an internal error.
130 lcaDbValidationErrorNss
NonUniqueKeyIntegrity
This is an internal error.
131 lcaDbValidationErrorNssSet

OpenLNS Programmer's Reference 212

Integrity
This is an internal error.
132 lcaDbValidationErrorNssLink
Integrity
This is an internal error.

validationObjec
t

The DatabaseValidationErrorInstance object being
acted upon.

Data Type Long.

Read/Writ
e

Read only.

Added to
API

LNS Release 3.20.

ObjectClassInvolved
Summary Indicates the class ID of the object that caused the error,

which is referenced by this DatabaseValidationErrorInstance
object.
For example, if the error type is
lcaDbValidationErrorOrphanObject, this property
indicates the class ID of the orphan object that was
discovered.
The values returned by this property map to the values of the
ConstClassIds constant; therefore you can use the
ConstClassIds constant to determine the object type the class
ID applies to. For example, if this property returns 7, the
object is an AppDevice object. See the ComponentClassID
property of the ComponentApp object for a list of the class
IDs.
You can determine the name of the object that caused the
error by reading the ObjectName property.

Availability Local clients.

Syntax classID = errorInstance.ObjectClassInvolved

Element Description

classID The class ID of the object that
caused the error.

errorInstance The
DatabaseValidationErrorInstance
object being acted upon.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 213

ObjectInternalId
Summary Indicates the internal ID of the object that caused the error,

which is referenced by this DatabaseValidationErrorInstance
object.
For example, if the error type is
lcaDbValidationErrorMissingLMO, this property would
contain the internal ID of the missing LonMarkObject.

Availability Local clients.

Syntax internalId = errorInstance.ObjectInternalId

Element Description

internalId The internal ID of the object that
caused the error.

errorInstance The
DatabaseValidationErrorInstance
object being acted upon.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.20.

ObjectName
Summary Indicates the name of the object that caused the error, which

is referenced by this DatabaseValidationErrorInstance object.
For example, if the error type is
lcaDbValidationErrorMissingNV, this property would
contain the name of the missing NetworkVariable object.
You can determine the type of error referenced by this object
by reading the ErrorType property.

Availability Local clients.

Syntax name = errorInstance.ObjectName

Element Description

name The name of the object that
caused the error.

errorInstance The
DatabaseValidationErrorInstance
object being acted upon.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 214

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 215

ParentObjectClass
Summary Indicates the class ID of the parent of the object that caused

the error, which is referenced by this
DatabaseValidationErrorInstance object.
For example, if the error type is
lcaDbValidationErrorMissingLMO, this property would
contain the class ID of the parent of the missing
LonMarkObject (the object the missing LonMarkObject
should be accessed through).
The values returned by this property map to the values of the
ConstClassIds constant; therefore you can use the
ConstClassIds constant to determine the object type the class
ID applies to. For example, if this property returns 9, the
object is a Router object. See the ComponentClassID
property of the ComponentApp object for a list of the class
IDs.
You can determine the type of error referenced by the
DatabaseValidationErrorInstance object by reading the
ErrorType property.
You can determine the name of the parent of the object that
caused the error by reading the ParentObjectName property.
If the object associated with the error does not have a parent
object (the error type is
lcaDbValidationErrorOrphanObject or
lcaDbValidationErrorOrphanDevice), this property will
contain an empty string.

Availability Local clients.

Syntax parentClass = errorInstance.ParentObjectClass

Element Description

parentClass The class ID of the parent of the
object that caused the error.

errorInstance The
DatabaseValidationErrorInstance
object being acted upon.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 216

ParentObjectInternalId
Summary Indicates the internal ID of the parent of the object that

caused the error, which is referenced by this
DatabaseValidationErrorInstance object.
For example, if the error type is
lcaDbValidationErrorMissingNv, this property would
contain the internal ID of the parent object of the missing
NetworkVariable object (the name of the object the missing
NetworkVariable object should be accessed through).
You can determine the type of error referenced by the
DatabaseValidationErrorInstance object by reading the
ErrorType property.
You can determine the name of the parent of the object that
caused the error by reading the ParentObjectName property.
If the object associated with the error does not have a parent
object (the error type is
lcaDbValidationErrorOrphanObject or
lcaDbValidationErrorOrphanDevice), this property will
contain an empty string.

Availability Local clients.

Syntax parentInternalId = errorInstance.ParentObjectInternalId
Element Description

parentInternalId The internal ID of the parent of
the object that caused the error.

errorInstance The
DatabaseValidationErrorInstance
object being acted upon.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 217

ParentObjectName
Summary Indicates the name of the parent of the object that caused the

error, which is referenced by this
DatabaseValidationErrorInstance object.
For example, if the error type is
lcaDbValidationErrorMissingNv, this property would
contain the name of the parent object of the missing
NetworkVariable object (the name of the object the missing
NetworkVariable object should be accessed through).
You can determine the type of error referenced by the
DatabaseValidationErrorInstance object by reading the
ErrorType property.
You can determine the name of the parent of the object that
caused the error by reading the ParentObjectName property.
If the object associated with the error does not have a parent
object (the error type is
lcaDbValidationErrorOrphanObject or
lcaDbValidationErrorOrphanDevice), this property will
contain an empty string.

Availability Local clients.

Syntax parentName = errorInstance.ParentObjectName
Element Description

parentName The name of the parent of the
object that caused the error.

errorInstance The
DatabaseValidationErrorInstance
object being acted upon.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.20.

Repairable
Summary Indicates whether OpenLNS can repair errors of this type as

part of the database validation procedure.

Availability Local clients.

OpenLNS Programmer's Reference 218

Syntax isRepairable = validationObject.Repairable
Element Description

validationObject The
DatabaseValidationErrorInstance
object being acted upon.

isRepairable A Boolean value indicating whether
OpenLNS can repair errors of this
type.
TRUE. OpenLNS can

automatically repair this
type of error (or this
specific instance of an error
type) as part of the
database validation
procedure.
To have LNS repair the
error, call the Validate
method to initiate the
database validation and
set the validationFlags
element to
lcaDbValidateAnd
Repair (1).
This will occur if no errors
were discovered during the
network validation, or if all
the errors discovered
during the validation were
repaired.

FALSE. OpenLNS can not
automatically repair this
type of error.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 219

RepairAttempted
Summary Indicates whether OpenLNS attempted to repair errors of this

type during the validation.

If you call the Validate method to initiate a database validation
procedure and set the validationFlags element to
lcaDbValidateAndRepair (1), OpenLNS will attempt to
repair some errors it finds automatically. LNS may not be able
to repair all error types or all the specific instances of an error
type it encounters during the validation. You can use this
property to determine whether OpenLNS attempted to repair a
specific error or a specific error type.
You can determine if OpenLNS was able to repair a specific
instance of an error by reading the Repaired property of the
error’s DatabaseSummaryErrorInstance object.

Availability Local clients.

Syntax repairAttempted = errorReport.RepairAttempted
Element Description

errorReport The
DatabaseValidationErrorInstance
object being acted upon.

repairAttempted A Boolean value indicating whether
OpenLNS attempted to repair errors
of this type during the validation.
TRUE. OpenLNS attempted to

repair errors of this type
during the validation.

FALSE. OpenLNS did not attempt
to repair errors of this type
during the validation.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.20.

Repaired
Summary Indicates whether LNS repaired the error referenced by this

DatabaseValidationErrorInstance object, and the action taken
by OpenLNS to make the repair.

Availability Local clients.

OpenLNS Programmer's Reference 220

Syntax repaired = errorReport.Repairable

Element Description

errorReport The DatabaseValidationErrorInstance
object being acted upon.

repaired This element indicates the action LNS
performed to repair the error.
The possible values that can be returned
as this element, which are contained in
the ConstDbValidationRepairLevel
constant, are as follows:
0 lcaDbValidationNotRepaired
No repair was performed on the object
that caused the error, or the repair was
not completed successfully.
1 lcaDbValidationObjectDeleted
The object causing the error was deleted.
This may be the case if there is an
orphan object in the database, or if there
is an invalid object reference in the
database.
2
lcaDbValidationObjectSetToDefaults
The object causing the error was deleted,
and then re-created with default values.
This may be the case if the error was
caused by a NetworkVariable,
ConfigProperty, or LonMarkObject object.
3
lcaDbValidationObjectFullyRepaire
d
The object causing the error was
completely repaired, with no loss of data.
This may be the case if the error was
caused by a bad link between two objects
in the database.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

DatabaseValidationErrorSummaries
The DatabaseValidationErrorSummaries property contains a collection of
DatabaseValidationErrorSummary objects. To retrieve a DatabaseValidationErrorSummary
object from this collection, use the Item property and specify the object to be retrieved by its

OpenLNS Programmer's Reference 221

index number. The index number will be in the range of 1 to x, where x represents the value
stored in the Count property.

The following table summarizes the DatabaseValidationErrorSummaries object.

Description A collection of DatabaseValidationErrorSummary objects.

Added to API LNS Release 3.0.

Accessed Through DatabaseValidationErrorSummary object.

Default Property Item.

Methods None.

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The DatabaseValidationErrorSummaries object does not contain any methods.

Properties
The DatabaseValidationErrorSummaries object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
DatabaseValidationErrorSummaries
object in the ConstClassIds constant:
91 lcaClassIdDatabaseValidation

ErrorSummaries

object The object to be acted on.

OpenLNS Programmer's Reference 222

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns an object from a collection. You can retrieve an object

from its collection by passing its index (ordinal position)
within that collection as the argument for the Item property.
Index values start at 1.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The object retrieved from the collection.

collObject The collection object to be acted on.

index A Long type specifying the ordinal
index of the object to retrieve.

stringExpression A string type specifying the name of the
object to retrieve.

Data Type Object.

OpenLNS Programmer's Reference 223

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is added
to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 224

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

DatabaseValidationErrorSummary
The DatabaseValidationErrorSummary object contains information describing a certain type
of error that was encountered during the database validation. This includes the number of
times the error type was encountered in the database, whether OpenLNS can repair errors of
that type, and whether OpenLNS attempted to repair any errors of that type.

If the ObjectDetailsAvailable property is set to True, you can use the GetInstance method to
access specific details about each instance of the error type summarized by this object

The following table summarizes the DatabaseValidationErrorSummary object.

Description A single point of data in a LONWORKS network.

Added to API LNS Release 3.20.

Accessed Through DatabaseValidationErrorSummaries object.

Default Property None.

Methods • GetInstance

Properties • ClassId
• ErrorType
• NumberOfInstances
• ObjectDetailsAvailable
• Parent
• Repairable
• RepairAttempted

Methods
The DatabaseValidationErrorSummary object contains the following methods:

• GetInstance

GetInstance
Summary Retrieves specific information about each instance of an error

type.
For some types of errors, you will not be able to access specific
information about each instance of the error type. You can check
if specific information about each instance is by reading the

OpenLNS Programmer's Reference 225

ObjectDetailsAvailable property.

If you specify an invalid number as the index element when
invoking this method, the LCA, #15
lcaErrInvalidCollectionIndex exception will be thrown.

Availability Local clients.

Syntax errorInstance = validationSummary.GetInstance index

Element Description

errorInstance The DatabaseValidationErrorInstance
object returned by the method. This
object will contain detailed information
about an error discovered during the
validation.

validationSummary The
DatabaseValidationErrorSummary
object being acted upon.

index The index value assigned to the error
to be accessed.
Each error is assigned an index value
in the range of 1 to x, where x
represents the value assigned to the
NumberOfInstances property of the
DatabaseValidationErrorSummary
object.

Added to API LNS Release 3.20.

Properties
The DatabaseValidationErrorSummary object contains the following properties:

• ClassId
• ErrorType
• NumberOfInstances
• ObjectDetailsAvailable
• Parent
• Repairable
• RepairAttempted

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId

OpenLNS Programmer's Reference 226

Element Description

classIdValue The object class of the object. The
following value is defined for the
DatabaseValidationErrorSummary
object in the ConstClassIds constant:
91 lcaClassId
DatabaseValidationErrorSummary

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ErrorType
Summary Indicates the type of error a

DatabaseValidationErrorSummary object represents.

The other properties of the DatabaseValidationErrorInstance
and DatabaseValidationErrorSummary objects contain
additional information that may be useful when
troubleshooting these errors. See these objects for more
information.

Availability Local clients.

Syntax errorType = validationObject.ErrorType
Element Description

errorType The error type that the
DatabaseValidationErrorSummary
object represents.
The values that may be returned as
this element, which are contained in
the ConstDbValidationErrorType
constant, are as follows:
0 lcaDbValidationErrorOrphan
Device

An orphan AppDevice object was found in
the database. An orphan object is one
that is no longer accessible through its
parent object.
1 lcaDbValidationErrorOrphan
Object
An orphan object was found in the
database. An orphan object is one that is
no longer accessible through its parent
object.

OpenLNS Programmer's Reference 227

2 lcaDbValidationError
DuplicateDynamicNV
A duplicate dynamic network variable
was found on a device’s interface.
3 lcaDbValidationError
MissingNV
An invalid reference to a network
variable, or a missing network variable,
was discovered on a dynamic interface.
4 lcaDbValidationError
MissingLMO

An invalid reference to a LonMark object,
or a missing LonMark object, was
discovered on a dynamic interface.
5 lcaDbValidationError
MissingCP
An invalid reference to a configuration
property, or a missing configuration
property, was discovered.
6 lcaDbValidationError
MissingMT
An invalid reference to a message tag, or
a missing message tag, was discovered.
7 lcaDbValidationErrorBad
DbRecord
A corrupted or invalid record was
discovered in the global database.
8 lcaDbValidationErrorBadLink
An invalid reference to another object in
the database was discovered.
9 lcaDbValidationError
BadSystemPointer

An invalid reference to the System object
from another object was discovered in the
database.
10 lcaDbValidationError
BadBaseObjectData
Invalid base-object data was discovered.
This is an internal error.
11 lcaDbValidationErrorBad
ObjectData
Invalid object data was discovered. This
is an internal error.

OpenLNS Programmer's Reference 228

12
lcaDbValidationErrorDuplicateDyna
micMT
Duplicate dynamic message tag data was
discovered. This is an internal error.
13
lcaDbValidationErrorDuplicateDyna
micLMO
Duplicate LonMark object data was
discovered. This is an internal error.
14
lcaDbValidationErrorBadInterfaceC
ount
Incorrect interface count data was
discovered. This is an internal error.
15
lcaDbValidationErrorDuplicate
StaticNV
Duplicate static network variable data
was discovered. This is an internal error.
16 lcaDbValidationErrorMissing
Subsystem
An invalid reference to a subsystem, or a
missing subsystem, was discovered. This
is an internal error.
17 lcaDbValidationErrorMissing
AppDevice
An invalid reference to a device, or a
missing device, was discovered. This is an
internal error.
18 lcaDbValidationErrorMissing
Router
An invalid reference to a router, or a
missing router, was discovered.
19 lcaDbValidationError
DuplicateStaticLMO
Duplicate static functional block was
discovered.
20 lcaDbValidationError
DuplicateObject
Duplicate object data was discovered.
128 lcaDbValidationErrorNss
RecordIntegrity

OpenLNS Programmer's Reference 229

This is an internal error.
129 lcaDbValidationError
NssUniqueKeyIntegrity
This is an internal error.
130 lcaDbValidationErrorNss
NonUniqueKeyIntegrity
This is an internal error.
131 lcaDbValidationErrorNssSet
Integrity
This is an internal error.
132 lcaDbValidationErrorNssLink
Integrity
This is an internal error.

validationObject The DatabaseValidationErrorSummary
object being acted upon.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

NumberOfInstances
Summary Indicates the number of times this type of error was

encountered in the database.
To determine the type of error represented by this object,
read the ErrorType property of the
DatabaseValidationErrorSummary object

Availability Local clients.

Syntax errorCount = validationObject.NumberOfInstances
Element Description

errorCount The number of errors of this type that
were discovered during the database
validation.

validationObject The DatabaseValidationErrorSummary
object being acted upon.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 230

ObjectDetailsAvailable
Summary Indicates whether you can retrieve specific information about

each instance of the error type from the object.
The availability of this information depends primarily on the
error type that this DatabaseValidationErrorSummary object
represents. To determine the error type, read the ErrorType
property of the DatabaseValidationErrorSummary object.

Availability Local clients.

Syntax detailsAvailable =
validationSummary.ObjectDetailsAvailable
Element Description

detailsAvailable A Boolean value that indicates
whether you can retrieve specific
information about each instance of
the error type from the object.
TRUE. You can obtain detailed

information about each
instance of this error type
from the object.

FALSE. You can only obtain
summary information for
this error type.

validationSummary The
DatabaseValidationErrorSummary
object being acted upon.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.20.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

OpenLNS Programmer's Reference 231

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Repairable
Summary Indicates whether OpenLNS can repair errors of this type as

part of the database validation procedure.

Availability Local clients.

Syntax isRepairable = validationObject.Repairable
Element Description

validationObject The
DatabaseValidationErrorSummary
object being acted upon.

isRepairable A Boolean value indicating whether
OpenLNS can repair errors of this
type.
TRUE. OpenLNS can

automatically repair this
type of error (or this specific
instance of an error type) as
part of the database
validation procedure.
To have LNS repair the
error, call the Validate
method to initiate the
database validation and set
the validationFlags
element to
lcaDbValidateAndRepai
r (1).
This will occur if no errors
were discovered during the
network validation, or if all
the errors discovered
during the validation were
repaired.

FALSE. OpenLNS can not
automatically repair this
type of error.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 232

RepairAttempted
Summary Indicates whether OpenLNS attempted to repair errors of this

type during the validation.

If you call the Validate method to initiate a database validation
procedure and set the validationFlags element to
lcaDbValidateAndRepair (1), OpenLNS will attempt to
repair some errors it finds automatically. LNS may not be able
to repair all error types or all the specific instances of an error
type it encounters during the validation. You can use this
property to determine whether OpenLNS attempted to repair a
specific error or a specific error type.
You can determine if OpenLNS was able to repair a specific
instance of an error by reading the Repaired property of the
error’s DatabaseSummaryErrorInstance object.

Availability Local clients.

Syntax repairAttempted = errorReport.RepairAttempted
Element Description

errorReport The
DatabaseValidationErrorSummary
object being acted upon.

repairAttempted A Boolean value indicating whether
OpenLNS attempted to repair errors
of this type during the validation.
TRUE. OpenLNS attempted to

repair errors of this type
during the validation.

FALSE. OpenLNS did not attempt
to repair errors of this type
during the validation.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.20.

DataPoint
A DataPoint object represents a single point of data in a LONWORKS network. You can
obtain a data point through any MsgMonitorPoint, NvMonitorPoint, NetworkVariable, or
ConfigProperty object. Once acquired, each data point is implicitly bound to the object from
which it was obtained. This object is referred to as the data point’s source object.
You can then use the data point to read and write to the value of the source object. Each data
point has three properties you can use to read and write to the data point’s value: the
FormattedValue property, the RawValue property, and the Value property. Each of these
properties represents the same value, but each one is formatted differently.
When you read and write to any of these properties, OpenLNS will also read or write the
data point’s source object (i.e. the value of the source object in the OpenLNS database and on

OpenLNS Programmer's Reference 233

the network device containing the source object) by default. You can change this behavior by
setting the AutoRead and AutoWrite properties of the DataPoint object to False. If these
properties are set to False, OpenLNS will not update the source object every time the value
properties of the data point are updated. However, in this case, you can still use data point’s
Write method to write the value stored in these properties to the data point’s source object.
You can also use the Read method to update the value stored in these properties with the
current value of the source object.
Formatting of each data point is handled locally. As a result, formatting changes made to the
value of a data point’s source object by your application do not affect other clients that are
attempting to read the value of the same network variable, monitor point or configuration
property. This will eliminate any confusion that may be caused by formatting changes made
by another client application.

The following table summarizes the DataPoint object.

Description A single point of data in a LONWORKS network.

Added to API LNS Release 3.0.

Accessed Through ConfigProperty
MsgMonitorPoint
NvMonitorPoint
NetworkVariable

Default Property None.

Methods • GetField
• Read
• Write

Properties • AutoRead
• AutoWrite
• ClassId
• FieldCount
• FieldName
• FormatSpec
• FormattedValue
• MaxValue
• MessageCode
• MinValue
• Parent
• SourceIndex
• SourceOptions
• TypeName
• Value

Methods
The ConfigProperties object contains the following methods:

• GetField
• Read

OpenLNS Programmer's Reference 234

• Write

GetField
Summary Gets a DataPoint object containing one field if the DataPoint

object contains a structure.

The AutoWrite property of the returned DataPoint is set to
False; therefore, the Write method must be called explicitly to
write the information to the network variable.

The number of fields in a DataPoint object can be determined
from the FieldCount property. The name of a field can be
determined by that field's FieldName property.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax dpField = dpObject.GetField(indexName)
Element Description

dpField The DataPoint object returned. This
represents the data point field requested in
the call to GetField.

dpObject The DataPoint object to be acted on.

indexName The index number or name of the data
point field to be returned.

Added to API LNS Release 3.20.

Read
Summary Updates the Value, RawValue, and FormattedValue

properties with the current value of the data point’s source
object. You can use either of these properties to read and
write to the data point’s value; however, they are formatted
differently. See these individual properties for more
information.

After the Read method is called, OpenLNS will update the
value of these properties to match the value of the data
point’s source object. For example, if the data point was
obtained through a network variable, the network variable
will be fetched from the network, and the three properties
would be updated to match the value reported by the physical
device on the network. This will ensure that the data point
returns a current value for its source object.

If the AutoRead property is set to True, OpenLNS will call
the Read method automatically each time you read the
RawValue, FormattedValue, or Value properties.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

OpenLNS Programmer's Reference 235

Syntax dpObject.Read

Element Description

dpObject The DataPoint object being acted upon.

Added to API LNS Release 3. 0.

Write
Summary Updates the value of the source object controlled by this data

point to match the current value stored in the data point’s
Value, RawValue, and FormattedValue properties.

Writing to either of the Value, RawValue, and
FormattedValue properties updates the values of all three so
that they always match. However, you must call the Write
method to propagate these new values to the source object.
After the Write method is called, OpenLNS will update the
value of the data point’s source object to match the value of
these properties.
For example, if the data point was obtained through a
network variable, the value of the network variable on the
physical device on the network would be updated to match
the values of these properties after the Write method was
called. This ensures that the data point returns a current
value for its source object.

If the AutoWrite property is set to True, this method will
automatically be called every time the RawValue,
FormattedValue, or Value properties are written to.

Note: If you call this method on a DataPoint obtained from a
NetworkVariable or NvMonitorPoint object before reading its
value from the network (either explicitly by calling the Read
method, or implicitly when the AutoRead property is set to
True), or before setting the Data Point’s value with the
RawValue, FormattedValue or Value properties, the DS,
#370 lcaErrLnsDsInvalidArg exception will be thrown.
This indicates that the DataPoint’s buffer is empty.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax dpObject.Write

Element Description

dpObject The DataPoint object being acted upon.

Added to API LNS Release 3.20.

Properties
The DataPoint object contains the following properties:

• AutoRead

OpenLNS Programmer's Reference 236

• AutoWrite
• ClassId
• FieldCount
• FieldName
• FormatSpec
• FormattedValue
• MaxValue
• MessageCode
• MinValue
• Parent
• SourceIndex
• SourceOptions
• TypeName
• Value

AutoRead
Summary Determines whether the Read method will be called

automatically whenever the Value, FormattedValue, or
RawValue properties are read.
You can use either of these properties to read the data point’s
value; however, they are formatted differently. See these
individual properties for more information.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax autoRead = dpObject.AutoRead
Element Description

dpObject The DataPoint object being acted upon.

autoRead A Boolean value.

• True. The Read method is called
automatically each time you read
the data point’s Value,
FormattedValue, or RawValue
properties.
This ensures that the value
returned by the data point, through
any of the three value properties,
always represents the current value
of the source object.

• False. You must call the Read
method manually.

The default is True. The only exception
is when the DataPoint object is to be
used for a response (see the
OnMsgMonitorPointUpdateEvent
event), or when the DataPoint object
represents a field (see the GetField

OpenLNS Programmer's Reference 237

method).

Data Type Boolean.

Read/Write Read/write.

Added to API LNS Release 3.0.

AutoWrite
Summary Determines whether the Write method will be called

automatically whenever the FormattedValue, RawValue, or
Value properties are written.
You can use either of these properties to write to the data
point’s value; however, they are formatted differently. See
these individual properties for more information.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax autoWrite = dpObject.AutoWrite
Element Description

dpObject The DataPoint object being acted upon.

autoWrite A Boolean value.

• True. The Write method is called
automatically each time you write
to the data point’s Value,
FormattedValue, or RawValue
properties.
This ensures that the value
returned by the data point, through
any of the three value properties,
always represents the current value
of the source object.

• False. You must call the Write
method manually to ensure the
values in all three properties
remain consistent.

This property defaults to True. The only
exception is when the DataPoint object
represents a field (see the GetField
method for more information).

Data Type Boolean.

Read/Write Read/write.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 238

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
DataPoint object in the ConstClassIds
constant:
72 lcaClassIdDataPoint

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

FieldCount
Summary Indicates the number of fields contained by this data point.

If a DataPoint object contains multiple fields, each field is
represented by its own DataPoint object. You can use the
DataPoint object's GetField method to get one of the
DataPoint object's fields. The fields can be indexed by
number and by name. The FieldCount property contains the
name of the field, if the DataPoint object represents one.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax fieldCountValue = dpObject.FieldCount
Element Description

fieldCountValue The field count.

dpObject The DataPoint object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 239

FieldName
Summary Indicates the name of the field if the DataPoint object

contains multiple fields.

If a DataPoint object contains multiple fields, each field is
represented by its own DataPoint object. Each DataPoint
object representing a field has a name; for example, a
DataPoint which contained the time could have three fields
called "hour", "minute", and "second".

When the GetField method is called, the fields can be
accessed either by name or by index number. The FieldCount
property indicates how many fields a DataPoint object
contains.

Note: If this DataPoint object does not represent a field, this
property will return an empty string.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax fieldName = dpObject.FieldName
Element Description

fieldName The name of the field.

dpObject The DataPoint object to be acted on.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 240

FormatSpec
Summary Contains the format specification information for data read

from the FormattedValue property in the DataPoint object.

This property contains a FormatSpec object that determines
the base type to use when reading the formatted values of the
data point or monitor point. For data points acquired through
NetworkVariable objects, the default settings for the
FormatSpec object are determined based on the network
variable’s TypeSpec property.

You can also use the CurrentFormatLocale property to
determine what options OpenLNS will use when displaying
the data stored in the FormattedValue property.

The FormatSpec object contained within this property is not
passed by reference. If you modify the values assigned to the
properties of a local FormatSpec object, you must then
explicitly assign the modified FormatSpec object back to the
FormatSpec property of the DataPoint for the changes to take
effect. This following code sample demonstrates this
procedure:

Set fsObject = dpObject.FormatSpec
fsObject.FormatName = "SNVT_temp_f#SI"
Set dpObject.FormatSpec = fsObject

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax fsObject= dpObject.FormatSpec
Element Description

fsObject The FormatSpec object containing the
format information.

dpObject The DataPoint object to be acted on.

Data Type FormatSpec object.

Read/Write Read/write.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 241

FormattedValue
Summary Contains the value of the data point as a Variant.

To read the value of a data point’s source object (the value of
the source object in the OpenLNS database and on the
network device containing the source object) as a formatted
value, call the DataPoint object's Read method, and then
read this property. If the AutoRead is set to True, the Read
method will be called automatically each time this property
is read.
To write the value stored in this property to a data point’s
source object (the value of the source object in the OpenLNS
database and on the network device containing the source
object), set this property to the desired value, and then call
the DataPoint object's Write method. If the AutoWrite
property is set to True, the Write method will automatically
be called each time this property is written to.

This property shares memory space with the Value and
RawValue properties, which means that the information
contained in all three properties represents the same value.
The only difference between the three properties is that each
them is formatted differently; therefore, when you write to
the FormattedValue property, OpenLNS will update the
values of the Value and RawValue properties automatically,
to match the updated FormattedValue property.
If the data point’s source object is a network variable, you
should note that reading the Value property always causes a
poll and returns the resulting response, even if the network
variable is bound to the host or if the Data Server is already
polling. If the Value property is read, and the poll fails, an
exception will be thrown.
If the data point’s source object is a configuration property,
you can use the ValueStatus property to determine if the
value stored in the OpenLNS database for the configuration
property matches the value stored on the physical device. In
addition, the setting of the DataPoint object’s SourceOptions
property affects how LNS accesses the value of the
configuration property (either from the physical device
containing the configuration property, or from the OpenLNS
database).You should also be aware that some configuration
properties contain a constant attribute. If a configuration
property has the constant attribute set, it marks the
configuration property as read-only. If this attribute is set
and you attempt to write to the FormattedValue property, an
exception will be thrown. However, in some cases, you can
use the ConstantAttribute property to set or turn off this
attribute using OpenLNS.

You can use the MinValue and MaxValue properties to set
the minimum and maximum possible values for the data
point. If you write a value to the FormattedValue property
that exceeds the range established by these properties, the

OpenLNS Programmer's Reference 242

Formatter#16 lcaErrFormatIllegalDataOnUnformat
exception will be thrown. You should note that OpenLNS
only performs this range checking on scalar types. If you are
using data points to read and write the value of a network
variable or configuration property whose type is a structure
and you want LNS to perform this range checking, you will
need to create a separate data point for each field. You can
create data points to represent each field in a given structure
with the GetField method.
You can set options that determine how the information
contained in the FormattedValue property will be formatted
and displayed by writing to the FormatLocale object
currently being used by the application. This includes options
such as the format used to display dates and times and the
measurement units used to display the value. You can
determine which FormatLocale object is currently being used
with the CurrentFormatLocale property of the ObjectServer
object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax value = dpObject.FormattedValue
Element Description

value The value of the data point as a
Variant.

dpObject The DataPoint object to be acted on.

Data Type Variant.

Read/Write Read/write.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 243

MaxValue
Summary Contains the maximum value that can be applied to the

FormattedValue property of the DataPoint object.

• If the data point’s source object is a network variable, the
default value for this property is determined based on the
network variable’s type, meaning that the default value
will be the maximum value supported by the type. This
value may be overridden by the network variable's entry
in the Functional Profile Template used by the device
hosting the network variable.

• If the data point’s source object is a network variable
monitor point, the default value for this property is
determined based on the source object’s type (i.e. the type
of the network variable being monitored). Note that the
override value from the network variable’s entry in the
Functional Profile Template used by the device hosting
the network variable is not available if the data point’s
source object is a network variable monitor point.

• If the data point’s source object is a configuration
property, the default value for this property is taken from
the type definitions of the configuration property type
used by the source configuration property, from the
configuration property’s entry in the Functional Profile
Template used by the device hosting the configuration
property, or from the device’s configuration property
definition file.

If OpenLNS is unable to retrieve a default maximum value
for the data point, this property will be set to
lcaRangeValueNotSet.
Note: OpenLNS will only enforce the range established by
this property when you write to the FormattedValue property
of a data point. OpenLNS will not enforce this range when
you write to the Value and RawValue properties of a data
point. As a result, you should program your application to
enforce this range for the Value and RawValue properties,
and therefore avoid writing invalid data to the data point.

In addition, the data stored in the MaxValue property is not
unit-converted as is the data stored in the FormattedValue
property. Instead, the data stored in the MaxValue property
is scaled data that has not been unit-converted (similar to the
data stored in the Value property). As a result, you need to
consider the unit conversions applied by the OpenLNS Object
Server when you write to the FormattedValue property to
avoid violating the range established for the data point. You
can determine what unit conversions are applied to a
particular data point by reading the UnitsMultiplier and
UnitsAdder properties of the FormatSpec object the data
point is using.

OpenLNS Programmer's Reference 244

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax maxValue = dataPoint.SourceIndex
Element Description

maxValue The maximum value that can be applied
to the FormattedValue property.

dataPoint The DataPoint object being acted upon.

Data Type Double.

Read/Write Read/write.

Added to API LNS Release 3.20.

MessageCode
Summary Contains the message code of the message associated with

this data point.

This property is only meaningful if the DataPoint object
represents a message. This value has no effect if the data
source is a configuration property or network variable;
however, you can still read and write to the value.

• If this DataPoint represents an input value, the message
code indicates what message code appeared in the
received message.

• If this data point represents an output message, this is
the code that will be sent with the message.

• If this DataPoint represents a response to an incoming
request, this property represents the response code of the
response message.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax messageCode = dpObject.MessageCode
Element Description

messageCode The message code of the message

dpObject The DataPoint object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 245

MinValue
Summary Contains the minimum value that can be applied to the

FormattedValue property of the DataPoint object.

• If the data point’s source object is a network variable, the
default value for this property is determined based on the
network variable’s type, meaning that the default value
will be the maximum value supported by the type. This
value may be overridden by the network variable's entry
in the Functional Profile Template used by the device
hosting the network variable.

• If the data point’s source object is a network variable
monitor point, the default value for this property is
determined based on the source object’s type (i.e. the type
of the network variable being monitored). Note that the
override value from the network variable’s entry in the
Functional Profile Template used by the device hosting
the network variable is not available if the data point’s
source object is a network variable monitor point.

• If the data point’s source object is a configuration
property, the default value for this property is taken from
the type definitions of the configuration property type
used by the source configuration property, from the
configuration property’s entry in the Functional Profile
Template used by the device hosting the configuration
property, or from the device’s configuration property
definition file.

If OpenLNS is unable to retrieve a default maximum value
for the data point, this property will be set to
lcaRangeValueNotSet.
Note: OpenLNS will only enforce the range established by
this property when you write to the FormattedValue property
of a data point. OpenLNS will not enforce this range when
you write to the Value and RawValue properties of a data
point. As a result, you should program your application to
enforce this range for the Value and RawValue properties,
and therefore avoid writing invalid data to the data point.

In addition, the data stored in the MinValue property is not
unit-converted as is the data stored in the FormattedValue
property. Instead, the data stored in the MinValue property
is scaled data that has not been unit-converted (similar to the
data stored in the Value property). As a result, you need to
consider the unit conversions applied by the OpenLNS Object
Server when you write to the FormattedValue property to
avoid violating the range established for the data point.
You can determine what unit conversions are applied to a
particular data point by reading the UnitsMultiplier and
UnitsAdder properties of the FormatSpec object the data
point is using.

OpenLNS Programmer's Reference 246

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax minValue = dataPoint.SourceIndex
Element Description

minValue The minimum value that can be applied
to the FormattedValue property.

dataPoint The DataPoint object being acted upon.

Data Type Double.

Read/Write Read/write.

Added to API LNS Release 3.20.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 247

RawValue
Summary Contains the value of the DataPoint as a raw byte array.

To read the value of the data point’s source object (the value
of the source object in the OpenLNS database and on the
network device containing the source object) as a raw byte
array, call the DataPoint object's Read method, and then
read this property. If the AutoRead property is set to True,
the Read method will be called automatically each time this
property is read.
To write the value stored in this property to the data point’s
source object, set this property to the desired value, and call
the DataPoint object's Write method. If the AutoWrite
property is set to True, the Write method will automatically
be called each time this property is written.
You should note that this property shares memory space with
the Value and FormattedValue properties, meaning that the
information contained in all three properties represents the
same value. The only difference between the three properties
is that each of them is formatted differently. So, when you
write to the RawValue property, OpenLNS will update the
values of the Value and FormattedValue properties
automatically, to match the updated RawValue property.
If the data point’s source object is a network variable, you
should note that reading the RawValue property always
causes a poll and returns the resulting response, even if the
network variable is bound to the host or if the Data Server is
already polling. If the RawValue property is read, and the
poll fails, an exception will be thrown.
If the data point’s source object is a configuration property,
you can use the ValueStatus property to determine if the
value stored in the OpenLNS database for the configuration
property matches the value stored on the physical device. In
addition, the setting of the DataPoint object’s SourceOptions
property affects how LNS accesses the raw value of the
configuration property (either from the physical device
containing the configuration property, or from the LNS
database).You should also be aware that some configuration
properties contain a constant attribute. If a configuration
property has the constant attribute set, it marks the
configuration property as read-only. If this attribute is set
and you attempt to write to the RawValue property, an
exception will be thrown. However, in some cases, you can
use the ConstantAttribute property to set or turn off this
attribute using LNS.

You can use the MinValue and MaxValue properties to set
the minimum and maximum possible values for the data
point. However, OpenLNS will only enforce the range
established by these properties when you write to the
FormattedValue property. You should program your
application to enforce this range for the RawValue property

OpenLNS Programmer's Reference 248

to avoid passing invalid data to data point.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax value = dpObject.RawValue
Element Description

value The value of the data point as a raw
byte array.

dpObject The DataPoint object to be acted on.

Data Type Variant.

Read/Write Read/write.

Added to API LNS Release 3.0.

SourceIndex
Summary Each data point that is acquired through a ConfigProperty

object that represents arrays of elements must apply to a
single element within that array. This property applies
mainly to DataPoint objects that are acquired through
ConfigProperty objects.

Some ConfigProperty objects represent arrays of elements. In
this case, you need to create a separate data point to read
and write to each element in the array. When you create a
DataPoint object for such ConfigProperty objects with the
GetDataPoint method, you specify the index number of the
element to which the new DataPoint object should apply.
This property returns that index value. You can write to this
value if you want the DataPoint object to apply to a different
element of the ConfigProperty array. These arrays are 0-
based, and the maximum index value is specified by the
Dimension property of the source ConfigProperty object. You
may find this procedure simpler than creating a separate
data point for each element in the array.

For DataPoint objects that were not acquired through
ConfigProperty objects, this property will be initialized to 0,
and you should not write to it.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax index = dataPoint.SourceIndex
Element Description

index The index number assigned to the
element associated with the data point.

dpObject The DataPoint object to be acted on.

OpenLNS Programmer's Reference 249

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.20.

SourceOptions
Summary You can use this property to determine which options were

used when the DataPoint was created. In doing so, you can
determine what information will be returned or altered when
you read or write to the value of that DataPoint.
This property is most useful for DataPoints that were
acquired through ConfigProperty objects. You can create such
DataPoints with the GetDataPoint method. When you do so,
you will use the options element to specify how OpenLNS will
reconcile differences between the value of the ConfigProperty
in the OpenLNS database, and on the physical device, when
you read or write to the value of the DataPoint.
You can read this property to determine which options were
used when the DataPoint was created, and in doing so
determine what information will be returned or altered when
you read or write to the value of that DataPoint. You can also
write to the SourceOptions property to change the behavior of
the DataPoint when you write to its value.

If the DataPoint was not created for use with a
ConfigProperty object, this property will return the
lcaDataSourceOptionsNotACp (-1) value. In this case, the
property is read-only.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax options = dpObject.SourceOptions
Element Description

options A Long value indicating which options were
used when the DataPoint was created. The
possible values, which are stored in the
ConstDataSourceOptions constant, are as
follows:
0 lcaDataSourceOptionsNormal

The value of the ConfigProperty will be
updated in the OpenLNS database and in
the physical device each time you write to
the value of the DataPoint.

If the source ConfigProperty is
device-specific, the value will be read
directly from the device when you read the
value of the DataPoint.

If the source ConfigProperty is not

OpenLNS Programmer's Reference 250

device-specific, the value will be read from
the database, as long as it is stored there.
If its value does not exist in the database,
then the value will read directly from the
device, as long as the network management
mode (MgmtMode property) is set to
lcaMgmtModePropagateConfigUpdate
s (0).

If the source ConfigProperty is not
device-specific, the value is not in the
database, and the network management
mode is set to
lcaMgmtModeDeferConfigUpdates (1),
then an exception will be thrown when you
read the value of the DataPoint.
1 lcaDataSourceOptionsFromDevice
The data point value is always matched to
the value of the source ConfigProperty in
the physical device. You can use this
information to synchronize the value of a
ConfigProperty in the OpenLNS database
with the value stored in the physical device.
To do so, read the value of a data point
created with this option set. Then, set the
SourceOptions property of the data point to
lcaDataSourceOptionsDatabaseOnly
(2), and call the Write method. The value of
the source ConfigProperty in the OpenLNS
database will then match the value of the
configuration property on the physical
device.
2
lcaDataSourceOptionsDatabaseOnly
The data point value is always read from
the OpenLNS database. When you write to
the data point, the new value will be
written to the ConfigProperty in the
OpenLNS database only, and not to the
physical device. Writing to a DataPoint
with the SourceOptions property set to this
value is recommended only when updating
the database with a value that has just
been read from the device. For more
information on this, see the description of
the lcaDataSourceOptionsFromDevice
(1) value.
If you read the value of the data point, and
the value does not exist in the OpenLNS
database, then the NS, #113
lcaErrNsCpValueNotFound exception is

OpenLNS Programmer's Reference 251

thrown.
3 lcaDataSourceOptionsTypeDefaultValue
The data point value is set to the default
value of configuration properties using the
same type as the source configuration
property. The default value is generally
read from the functional profile template on
the device containing the configuration
property, or from the type definition for this
configuration property type. Data points
created with this option set are read-only.
Note that this value represents the "type
default", as defined in the resource files.
The default value of a given configuration
property may differ from the default value
of its type, since the default configuration
property values for a given template are
defined in the external interface file and
can be set from the current values in the
device.

dpObject The DataPoint object to be acted on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

TypeName
Summary Contains the name of the current type used by this data

point. This type is defined by the data point's FormatSpec
property. You can change the data point’s type by writing to
the FormatSpec property.

Availability Local, full, and lightweight clients.

Syntax typeName = dpObject.TypeName
Element Description

typeName The name of the type.

dpObject The DataPoint object to be acted on.

Data Type String.

Read/Write Read-only.

Added to API LNS Release 3.0.

Value
Summary Contains the value of the data point as a scaled double float

value. This property can be used to read and write to scalar
data points.

OpenLNS Programmer's Reference 252

To read the value of the data point’s source object (the value
of the source object in the OpenLNS database and on the
physical device containing the source object) as an
unformatted numeric value, use the DataPoint object's Read
method, and then read this property. If the AutoRead
property is set to TRUE, the Read method will automatically
be called each time this property is read.
To write to the value stored in this property to the data
point’s source object, set this property to the desired value,
and call the DataPoint object's Write method. If the
AutoWrite property is set to TRUE, the Write method will
automatically be called each time this property is written.
You should note that this property shares memory space with
the FormattedValue and RawValue properties, meaning that
the information contained in all three properties represents
the same value. The only difference between the three
properties is that each of them is formatted differently;
therefore, when you write to the Value property, OpenLNS
will update the values of the FormattedValue and RawValue
properties automatically, to match the updated Value
property.

However, you can only use the Value property to read and
write the values of data points and data point fields that take
single, scalar values, such as SNVT_lev_percent. To read
and write the value of data points containing structures, such
as SNVT_switch, use the FormattedValue and RawValue
properties. You can only write scalar values to the Value
property. If you write a non-scalar value to the Value
property, the LCA, #122 exception is thrown.
If the data point’s source object is a network variable, you
should note that reading the Value property always causes a
poll and returns the resulting response, even if the network
variable is bound to the host or if the Data Server is already
polling. If the Value property is read, and the poll fails, a DS
200 exception is raised, which identifies the error as a
communications error.
If the data point’s source object is a configuration property,
you can use the ValueStatus property to determine if the
value stored in the OpenLNS database for the configuration
property matches the value stored on the physical device. In
addition, the setting of the DataPoint object’s SourceOptions
property affects how OpenLNS accesses the value of the
configuration property (either from the physical device
containing the configuration property, or from the OpenLNS
database). You should also consider that some configuration
properties contain a ConstantAttribute property. If a
configuration property has the constant attribute set, it
marks the configuration property as read-only. If this
attribute is set and you attempt to write to the Value
property, an exception will be thrown. However, in some
cases, you can use the ConstantAttribute property to set or

OpenLNS Programmer's Reference 253

turn off this attribute using OpenLNS.

You can use the MinValue and MaxValue properties to set
the minimum and maximum possible values for the data
point. However, OpenLNS will only enforce the range
established by these properties when you write to the
FormattedValue property. You should program your
application to enforce this range for the Value property to
avoid passing invalid data to data point.

Availability Local, full, lightweight, and independent clients.

Syntax value = dpObject.Value
Element Description

value The name of the type.

dpObject The DataPoint object to be acted on.

Data Type Double.

Read/Write Read/write.

Added to API LNS Release 3.0.

DataValue
The DataValue object represents a data value for a NetworkVariable object that is currently
being monitored. It is returned by the OnNetworkVariableUpdate Event. Only the
AppDevice, MonitorTag, and NetworkVariable properties are for external use; all other
properties are for internal use only.

Description A data value for a NetworkVariable object that is currently
being monitored.

Added to API Prior to LNS 3.0.

Accessed Through None.

Default Property None.

Methods None.

Properties • AppDevice
• ClassId
• Data
• DataType
• FloatValue
• IntValue
• Length
• MonitorTag
• NetworkVariable
• SourceNodeId
• SourceSubnetId
• StringValue

Methods
The DataValue object does not contain any methods.

OpenLNS Programmer's Reference 254

Properties
The DataValue object contains the following properties:

• AppDevice
• ClassId
• Data
• DataType
• FloatValue
• IntValue
• Length
• MonitorTag
• NetworkVariable
• SourceNodeId
• SourceSubnetId
• StringValue

AppDevice
Summary Identifies the application device that is the source of the

network variable update represented by this DataValue
object.

The DataValue object represents a value from a network
variable that is being monitored. It is returned by the
OnNetworkVariableUpdate Event. The AppDevice object
identifies the device containing the network variable.
Note: OpenLNS needs to fetch this object from the OpenLNS
database when you read it. As a result, you should avoid
reading this property if you are writing a high-performance
monitoring application.

Availability Local, full, and lightweight clients.

Syntax appDevObject = dvObject.AppDevice
Element Description

appDevObject The AppDevice object to be returned.

dvObject The DataValue object to be acted on.

Data Type AppDevice object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

OpenLNS Programmer's Reference 255

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
DataPoint object in the ConstClassIds
constant:
49 lcaClassIdDataValue

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Data
Summary INTERNAL USE ONLY

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

DataType
Summary INTERNAL USE ONLY

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

FloatValue
Summary INTERNAL USE ONLY

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.0.

IntValue
Summary INTERNAL USE ONLY

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 256

Length
Summary INTERNAL USE ONLY

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

MonitorTag
Summary Contains the monitor tag value assigned to the network

variable via its DsMonitorTag property.

Availability Local, full, and lightweight clients.

Syntax tagValue = dvObject.MonitorTag
Element Description

dvObject The DataValue object to be acted on.

tagValue The value of the monitor tag as a long.

Data Type Long

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

NetworkVariable
Summary Contains the NetworkVariable object associated with the

specified DataValue object. This identifies the network
variable being monitored and whose monitored value is
represented by the DataValue object.

Availability Local, full, and lightweight clients.

Syntax netVarObject = dvObject.NetworkVariable
Element Description

dvObject The DataValue object to be acted on.

netVarObject The NetworkVariable object to be
returned.

Data Type NetworkVariable object

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 257

SourceNodeId
Summary Indicates the node ID of the device making a network

variable update to a host network variable.
This value is only meaningful if the network variable being
monitored is a host network variable. This property, along
with the SourceSubnetId property, allows a number of
devices on the network to each have a network variable
explicitly bound to a single network variable on the host.
Once the network variable has been bound and monitoring is
turned on using the MonitorTag property,
OnNetworkVariableUpdate events will indicate that the host
network variable was updated. The SourceSubnetId and
SourceNodeId properties can then be used to determine
which of the devices on the network updated the host
network variable.
For high performance when using monitor and control, you
can use a temporary or permanent monitor point with a
defined tag for each remote network variable. You could use
the tag to identifiy the network variable source directly,
without having to translate the source subnet/node ID.

Availability Local, full, and lightweight clients.

Syntax nodeId = dvObject.SourceNodeId
Element Description

nodeId The node ID of the device which sent a
network variable update.

dvObject The DataValue object to be acted on.

Data Type Integer

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 258

 SourceSubnetId
Summary Indicates the subnet ID of the device making a network

variable update to a host network variable.
This value is only meaningful if the network variable being
monitored is a host network variable. This property, along
with the SourceNodeId property, allows a number of devices
on the network to each have a network variable explicitly
bound to a single network variable on the host. Once the
network variable has been bound and monitoring is turned
on using the MonitorTag property,
OnNetworkVariableUpdate events will indicate that the host
network variable was updated. The SourceSubnetId and
SourceNodeId properties can then be used to determine
which of the devices on the network updated the host
network variable.
For high performance when using monitor and control, you
can use a permanent or temporary monitor point with a
defined tag for each remote network variable. You could use
the tag to identifiy the network variable source directly,
without having to translate the source subnet/node ID.

Availability Local, full, and lightweight clients.

Syntax subnetId = dvObject.SourceSubnetId
Element Description

subnetId The subnet ID of the device which sent
a network variable update.

dvObject The DataValue object to be acted on.

Data Type Integer

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

StringValue
Summary INTERNAL USE ONLY

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

DetailInfo
The DetailInfo object contains an error log and communications status information for an
AppDevice or RouterSide. The following table summarizes the DetailInfo object.

Description An error log and communications status information for an
AppDevice or RouterSide.

Added to API Prior to LNS 3.0.

OpenLNS Programmer's Reference 259

Accessed Through AppDevice object
RouterSide object

Default Property None.

Methods None.

Properties • ClassId
• ErrorLog
• LostMessage
• MissedMessages
• ModelNumber
• Parent
• ReceiveTxFull
• ResetCause
• State
• TransactionTimeouts
• VersionNumber
• XmitErrors

Methods
The DetailInfo object does not contain any methods.

Properties
The DetailInfo object contains the following properties:

• ClassId
• ErrorLog
• LostMessage
• MissedMessages
• ModelNumber
• Parent
• ReceiveTxFull
• ResetCause
• State
• TransactionTimeouts
• VersionNumber
• XmitErrors

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

OpenLNS Programmer's Reference 260

classIdValue The object class of the object. The
following value is defined for the
DataPoint object in the ConstClassIds
constant:
48 lcaClassIdDetailInfo

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ErrorLog
Summary The most recently logged firmware error.

Availability Local, full, and lightweight clients.

Syntax errorValue = detailInfoObject.ErrorLog
Element Description

errorValue The error code for the most recently
logged error.

• 0 indicates no error.

• Error codes 128 and greater are
reserved by the system firmware.
See the Neuron Tools Errors Guide
for the list of firmware errors and
their meanings.

• Error codes 1 through 127 indicate
an error logged by the device's
application program, and the
meaning of rach of these error
codes is application-specific.

detailInfoObject The DetailInfo object from which to get
the information.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

LostMessages
Summary Contains the number of times a packet was received and no

application input buffer was available. This data is available
for application devices and router sides.

Availability Local, full, and lightweight clients.

Syntax numMessages = detailInfoObject.LostMessages

OpenLNS Programmer's Reference 261

Element Description

numMessages The number of lost messages.

detailInfoObject The DetailInfo object from which to get
the information.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

MissedMessages
Summary Contains the number of times a packet was received and no

network input buffer was available. This data is available for
application devices and router sides.

Availability Local, full, and lightweight clients.

Syntax numMessages = object.MissedMessages
Element Description

numMessages The number of missed messages.

object The DetailInfo object from which to get
the information.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ModelNumber
Summary Contains the type of Neuron Chip in the device. This data is

available for application devices and router sides. This
property is used only by the LCA Field Compiler.

Availability Local, full, and lightweight clients.

Syntax modelNum = object.ModelNumber
Element Description

modelNum The model number of the device's
Neuron Chip. The possible values for
this property, which are contained in
the ConstNeuronModels constant, are
as follows:
0 lcaNeuronModel3150
1 lcaNeuronModelPL3150
2 lcaNeuronModelCY3250
8 lcaNeuronModel3120
9 lcaNeuronModel3120E1
10 lcaNeuronModel3120E2
11 lcaNeuronModel3120E3
12 lcaNeuronModel3120A20

OpenLNS Programmer's Reference 262

13 lcaNeuronModel3120E5
14 lcaNeuronModel3120E4
15 lcaNeuronModelPL3120E4
16 lcaNeuronModelCY7C53120
32 lcaNeuronModelFT5000
33 lcaNeuronModel 5000
128 lcaNonNeuronModelGeneric
129 lcaNonNeuronModelPentagon
130 lcaNonNeuronModelMIPS

object The DetailInfo object from which to get
the information.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ReceiveTxFull
Summary Contains the number of times the device or router received a

packet for which there was no more room in the device's
transaction database. This data is available for application
devices and router sides.

Availability Local, full, and lightweight clients.

Syntax packetCount = object.ReceiveTxFull
Element Description

packetCount The number of packets.

OpenLNS Programmer's Reference 263

object The DetailInfo object from which to get
the information.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ResetCause
Summary Contains the cause of the most recent Neuron Chip reset.

This data is available for application devices and router
sides.

Availability Local, full, and lightweight clients.

Syntax resetType = detailInfoObject.ResetCause
Element Description

resetType The type of reset. The enumerated
values, which are contained in the
ConstResetCauses constant accessible
through the Visual Basic Object
Browser, are as follows:
0 lcaResetNone
No reset has occurred since the last
time this status was cleared.
256 (0x100) lcaResetPowerup
The last reset was done during a
powerup.
257 (0x101) lcaResetHardware
The last reset was caused by activation
of the reset pin.
258 (0x102) lcaResetWdt
The last reset was caused by a watch
dog timer timeout.
259 (0x103) lcaResetSoftware
The last reset was caused by software.

detailInfoObject The DetailInfo object from which to get
the information.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 264

State
Summary Describes the state of a device, router side, router, or system.

This data is available for application devices and router
sides.
Setting the Device State
You cannot set the state of a device in the same transaction
as an Add, Commission, or Replace method.
The state change may fail if the device has not been
completely updated due to a previous communication
problem or if the device has not been commissioned. If a
failure occurs, use the Commission method to force an update
of the device.
You cannot set the state of a device during the definition
phase of the predefined components installation scenario.
Offline Devices
Offline devices cannot receive network events related to
monitor and control. For example, if the State property of an
application device installed on the network is set to offline,
then that device will not be able to receive incoming network
variable events.
Additionally, devices are set offline while they are being
configured or commissioned. For example, if you add or
remove a connection between an application device and the
Network Service Device, both the application device and
Network Service Device will be set offline while the change is
being made. During that time, the Network Service Device
will not process network variable updates, nor will it poll
network variables because the configuration of the
application device and the configuration of the Network
Service Device are in a state of fluctuation. However, you can
use the OnSessionChangeEvent event to track when the
Network Service Device goes online or offline.

Availability Local, full, and lightweight clients.

Syntax stateValue = object.State
Element Description

stateValue The state of the device. The enumerated
values for this element, which are
contained in the ConstDeviceStates
constant, are as follows:
2 lcaStateUncnfg
The application is loaded but the
configuration is either not loaded, being
reloaded, or deemed corrupted due to a
configuration checksum error.
A Neuron Chip also can make itself
unconfigured by calling the Neuron C

OpenLNS Programmer's Reference 265

function go_unconfigured(). The
device's service LED flashes at a one
second rate in this state.
3 lcaStateNoApplUncnfg
No application is loaded yet, the
application is in the process of being
loaded, or the application has been
deemed corrupted due to an application
checksum error or signature
inconsistency.
The application does not run in this
state. The device's service LED is
steadily on in this state.
4 lcaStateCnfgOnline
Normal device state. The application is
running and the configuration is
considered valid. This is the only state
in which messages addressed to the
application are received. In all other
states, they are discarded.
The device's service LED is off in this
state.
6 lcaStateCnfgOffline
Application loaded but not running.
The configuration is considered valid in
this state; the network management
authentication bit is honored.
The device's service LED is off in this
state.
12 lcaStateSoftOffline
The device has an application, is
configured, and is soft-offline. It will go
online when it is reset or when
requested to go online.
The device's service LED is off in this
state.
140 lcaStateCnfgBypass
The application confirmed the offline
request, but is still running (bypass
mode).
The device's service LED is off in this
state.

object The object to be acted on.

Data Type Long.

OpenLNS Programmer's Reference 266

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

TransactionTimeouts
Summary Contains the number of times an acknowledged or

request/response message failed after all the retries. This
data is available for application devices and router sides.

Availability Local, full, and lightweight clients.

Syntax messageCount = detailInfoObject.TransactionTimeouts
Element Description

messageCount The number of failed messages.

detailInfoObject The DetailInfo object from which to
get the information.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

VersionNumber
Summary Contains the version number of Neuron Chip firmware

contained in a device. This data is available for application
devices and router sides.

Availability Local, full, and lightweight clients.

Syntax versionValue = detailInfoObject.VersionNumber
Element Description

versionValue The firmware version number. This
value is a decimal number from 1 to
255 indicating the version of the
Neuron Chip firmware.

detailInfoObject The DetailInfo object from which to
get the information.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

XmitErrors
Summary Contains the number of times the device either received a

packet with an invalid CRC, received a packet that was too
short, received a packet too long for the device's inpurt
buffer, or saw a timeout. This data is available for application
devices and router sides.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 267

Syntax errorCount = detailInfoObject.XmitErrors
Element Description

errorCount The number of errors.

detailInfoObject The DetailInfo object from which to get
the information.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

DeviceTemplate
A DeviceTemplate object represents generic device type information that can be applied to
multiple LONWORKS application devices.

The deprecated Export and Link methods and the deprecated BuildStatus, ExportFormat
and ProgramTemplate properties apply only if the LCA Field Compiler is used. These
methods and properties will only be used if the ProgramType property is
lcaProgramTypeSource.

Description Device type information that can be applied to application
devices.

Added to API Prior to LNS Release 3.0.

Accessed Through AppDevice object.
DeviceTemplates collection object.

Default Property Name

Methods • Import
• ResyncToResources

Properties • AppDevices
• BitmapFilePath
• ClassId
• ComponentApps
• Description
• DeviceClass
• DeviceSubclass
• DeviceValidation
• DynamicNvSupported
• Extensions
• Format
• Handle
• HostSelect
• IconFilePath
• Interface
• ManufacturerId
• ModelNo
• Name
• Parent
• ProgramId
• ProgramType

OpenLNS Programmer's Reference 268

• RegisteredComponent
• SelfDocConsistency
• SelfDocumentation
• UserTypeFileName
• XifPath

Methods
The DeviceTemplate object contains the following methods:

• Import
• ResyncToResources

Import
Summary Import an external interface from an XIF or XFB file into a

device template. This updates the property values of the
device template with the information from the imported
external interface.
The XFB file must be version 3.0 or later.
If you commission a device without an imported external
interface, which will cause the interface to be uploaded from
the device, you can invoke this method later to refresh the
external interface and incorporate the additional information
provided by the XIF file.

After you use the Import method on a DeviceTemplate , you
should call the ResyncToTemplate method on all of the
AppDevice objects using the DeviceTemplate to resynchronize
those devices with the updated information.

Availability Local, full, and lightweight clients.

Syntax devTemplateObject.Import xifPath

Element Description

devTemplateObject The DeviceTemplate object being
acted upon.

xifPath A String specifying the path of the
XIF and XFB files to be imported.

Added to API LNS Release 3.0.

ResyncToResources
Summary Resychronizes the DeviceTemplate with modified or newly

accessible device resource file information.

You may need to resynchronize a DeviceTemplate if you
imported a device’s XIF, and the resource files for that device
were not available in the resource file catalog at that time. In
this case, some of the information contained in the
DeviceTemplate , including the formatting of its configuration
properties, may be invalid.
You could also use this method if the device resource files

OpenLNS Programmer's Reference 269

have been updated or modified since the device’s XIF was
imported. This method allows you to update the
DeviceTemplate whenever these situations occur, without
having to re-import the XIF.

The LdrfCatalogPath property points to the location of the
device resource file catalog. You can browse the contents of
this catalog with the NodeBuilder Resource Editor included
with the Echelon device development software.

Availability Local, full, and lightweight clients.

Syntax devTemplateObject.ResyncToResources options

Element Description

devTemplateObject The DeviceTemplate object being
acted upon.

options Determines whether the changes to
the DeviceTemplate will be
automatically propagated to the
devices using the template.
The possible values for this element,
which are stored in the
ConstResyncToResourcesOptionFlags
constant, are as follows:
0
lcaResyncToResourcesOptionDefault
Does not automatically propagate
DeviceTemplate changes to the
devices using that DeviceTemplate
If you select this value, you can call
the ResyncToTemplate method later
on any application devices that are
using the DeviceTemplate to
propagate the changes.
16,777,216
lcaResyncToResourcesOption
UpdateDevices
Automatically propagates
DeviceTemplate changes to the
devices using that DeviceTemplate .
If you select this value, you can OR
it with any of the enumerations of
the
ConstResyncToTemplateOptionFlags
constant to determine whether the
names of the configuration
properties, network variables, and
LonMarkObjects on the devices
should be updated as part of the

OpenLNS Programmer's Reference 270

resynchronization.

Added to API LNS Release 3.20.

Properties
The DeviceTemplate object contains the following properties:

• AppDevices
• BitmapFilePath
• ClassId
• ComponentApps
• Description
• DeviceClass
• DeviceSubclass
• DeviceValidation
• DynamicNvSupported
• Extensions
• Format
• Handle
• HostSelect
• IconFilePath
• Interface
• ManufacturerId
• ModelNo
• Name
• Parent
• ProgramId
• ProgramType
• RegisteredComponent
• SelfDocConsistency
• SelfDocumentation
• UserTypeFileName
• XifPath

AppDevices
Summary Contains the AppDevices collection object associated with the

specified Channel object. The AppDevices property represents
all the devices on the channel.

Availability Local, full, and lightweight clients.

Syntax appDevicesCollection = object.AppDevices
Element Description

appDevicesCollection The AppDevices collection returned.

object The Channel object to be acted on.

Data Type AppDevices collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 271

BitmapFilePath
Summary Specify the path and file name of a bitmap (*.BMP file)

representation of the object.
The bitmap files are used to store object images which may
be accessed by a director level LNS component application. A
bitmap may be of any size, although the recommended
dimensions are 40x80 pixels.

See the IconFilePath property for related information.

Availability Local clients.

Syntax bmpFilePath = object.BitmapFilePath
Element Description

bmpFilePath The bitmap path and file name.

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyBMPs\Object.BMP).

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
DataPoint object in the ConstClassIds
constant:
36 lcaClassIdDeviceTemplate

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is

OpenLNS Programmer's Reference 272

added to the API.

ComponentApps
Summary Contains the ComponentApps collection object associated

with the specified DeviceTemplate.

The ComponentApps collection is a list of LNS plug-in
commands that are associated with a particular object type.

Note that all LonMarkObject objects contain a
ComponentApps property; however, the behavior of this
property is unspecified when accessed through a
LonMarkObject object.

Availability Local, full, and lightweight clients.

Syntax appsCollection = object.ComponentApps
Element Description

appsCollection The ComponentApps collection to be
returned.

object The DeviceTemplate object to be acted
on.

Data Type ComponentApps collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Description
Summary Stores description information about the DeviceTemplate

object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the
DeviceTemplate object.

object The DeviceTemplate object to be acted
on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

OpenLNS Programmer's Reference 273

DeviceClass
Summary Stores the device class for a device template.

Availability Local, full, and lightweight clients.

Syntax deviceClassValue = devTemplateObject.DeviceClass
Element Description

deviceClassValue The device class value

devTemplateObject The DeviceTemplate object.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

DeviceSubclass
Summary Returns the device subclass for a device template.

Availability Local, full, and lightweight clients.

Syntax subClassValue = devTemplateObject.DeviceSubclass
Element Description

subClassValue The device sub-class value

devTemplateObject The DeviceTemplate object.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

DeviceValidation
Summary Determines the device validation steps OpenLNS performs

when commissioning, replacing or upgrading devices that use
this device template. This may help reduce the time require
for commissioning a large number of devices if you are
confident that the devices contain the correct program
information and that they are installed on the correct
channel.
This method may also affect the validation performed when
loading a device’s application image with the Load or LoadEx
methods.
By default, OpenLNS performs a device validation procedure
when a device is commissioned with the Commission method
and the network management mode is set to
lcaMgmtModePropagateConfigUpdates (0), or when a
device is commissioned with the CommissionEx method and
the lcaCommissionFlagPropagateUpdates (1) flag is set.
This procedure will validate that the device is on the channel
specified by the user, the program ID in the device matches

OpenLNS Programmer's Reference 274

that specified by the application, and the program interface
in the device matches the previously defined program
interface for that program ID. This validation occurs to
prevent users from configuring a device incorrectly.
This validation, however, does require the transmission of a
large number of messages between OpenLNS and the device.
This can be very time consuming, particularly on slow media,
and can greatly increase the time required to commission the
devices on a network.
You can use this property to determine which validation
steps OpenLNS will perform when you are commissioning,
replacing or upgrading a device.

Availability Local, full, and lightweight clients.

Syntax validationOption = devTemplateObject.DeviceValidation
Element Description

validationOption The validation options used when
commissioning or replacing devices
that use this device template.
The valid settings for this property,
which are contained in the
ConstDeviceValidation constant, are
as follows:
0 lcaDeviceValidationNormal
This is the default value. When this
value is used, all validation steps
will be performed.
In this case, the commission
procedure will validate that the
physical device has the same
external interface and program ID as
defined for the AppDevice object in
the OpenLNS database. It will also
validate that the device is on the
channel assigned to it in the
OpenLNS database.
If the physical device is not using the
same external interface or program
ID as defined for the AppDevice
object in the database, the
commission will fail, and either the
NS, #59
lcaErrNsProgramIntfMismatch
or NS, #38
lcaErrNsProgramidMismatch
exceptions will be thrown.
If the physical device is not on the
channel assigned to it in the

OpenLNS Programmer's Reference 275

database, the commission will fail,
and the NS, #72
lcaErrNsWrongChannel exception
will be thrown.
1
lcaDeviceValidationNoChannelV
alidation
Do not validate the channel if it is
already known because either it has
been specified by the application, or
the device is already registered.
If this option is selected and the
channel is not specified, the channel
isolation process will still be used.
If this option is selected and a device
has been placed on the wrong
channel, OpenLNS will not detect
this. As a result, communication
with the device may not work from
some channels due to routing
constraints. In addition, layer 4
timers may be set incorrectly, which
will cause communication problems
for the device.
Note that if the program ID of a
device is not known, OpenLNS must
read the device’s program ID before
commissioning, upgrading, or
replacing the device. Before reading
the program ID, OpenLNS will
perform channel validation,
regardless of whether this flag is set.
As a result, this value has no effect if
the program ID of the device is not
known.
2
lcaDeviceValidationNoProgramI
nterfaceValidation
Do not validate the program
interface. If the program interface is
not known, it will still be recovered if
this option is set.
When loading the application image
for a device that has already been
commissioned, OpenLNS reads the
program ID from the newly loaded
device, and if it matches the original,
it validates the program interface.
This step will be skipped if this

OpenLNS Programmer's Reference 276

option is set.
Note that the
lcaDeviceValidationNoChannelV
alidation (1) and
lcaDeviceValidationNoProgramI
dValidation (4) flags have no effect
during an application download. If
this option is set and a device is
using a program interface that is
inconsistent with the device
template, the device will be
configured incorrectly, and
unpredictable behavior will occur. In
addition, device corruption may
prevent the device from being loaded
or upgraded in the future.
4
lcaDeviceValidationNoProgramI
dValidation
Do not validate the program ID of
the device if it has been specified by
the application or it is already
known, because the device has
already been registered.
If the program ID is not known, it
will still be recovered from the
device if this option is set. If this
option is set, the program interface
will not be validated either.
If this option is set and a device is
using a program interface that is
inconsistent with the device
template, the device will be
configured incorrectly and
unpredictable behavior will occur. In
addition, device corruption may
prevent the device from being loaded
or upgraded in the future.

devTemplateObject The DeviceTemplate object to be
acted upon.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.20.

DynamicNvSupported
Summary Specifies whether devices created with this device template

support dynamic network variables.

OpenLNS Programmer's Reference 277

Availability Local, full, and lightweight clients.

Syntax dynamicNvSupValue = dtObject.DynamicNvSupported
Element Description

dynamicNvSupValue A value of 0 or 1.
0 Devices based on this device

template do not support
dynamic network variables.

1 Devices based on this device
template support network
variables.

dtObject The DeviceTemplate object to be
acted on.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.0.

Extensions
Summary Contains the Extensions collection object associated with the

specified DeviceTemplate .

This property returns an Extensions collection. The objects
in this collection represent user data reserved for
manufacturers. Each object is identified with a unique
identifier set by the manufacturer.

Availability Local, full, lightweight, and independent clients.

Syntax extensionsColl = object.Extensions
Element Description

extensionsColl The Extensions collection object.

object The object whose Extensions
collection is being returned.

Data Type Extensions collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Format
Summary Stores program ID type information for a device template.

Availability Local, full, and lightweight clients.

Syntax formatValue = devTemplateObject.Format
Element Description

formatValue The program ID descriptor. This
element may be one of the following

OpenLNS Programmer's Reference 278

values:
0 Development program ID.
8 LonMark approved program ID.
9 LonMark prototype program ID.

devTemplateObject The DeviceTemplate object

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Handle
Summary Contains the handle associated with the DeviceTemplate

object. This property enables the DeviceTemplate to be
retrieved by the ItemByHandle method of the
DeviceTemplates object.

Availability Local, full, and lightweight clients.

Syntax returnValue = DeviceTemplate .Handle
Element Description

returnValue The NSS handle of the
DeviceTemplate object.

object The DeviceTemplate object to be acted
on.

Data Type Long.

Read/Write Read only.

Added to API OpenLNS.

HostSelect
Summary Indicates whether the network variable processing on devices

using this device template is managed on the Neuron Chip or
on an attached processor.
The Microprocessor Interface Program (MIP) is firmware for
the Neuron Chip that transforms the Neuron Chip into a
communications co-processor for an attached host processor.
For more information on the MIP firmware, see the
LONWORKS Microprocessor Interface Program (MIP) User’s
Guide. This can be downloaded from Echelon’s website at
www.echelon.com.

Availability Local, full, and lightweight clients.

Syntax hostSelect = dtObject.HostSelect
Element Description

hostSelect A Boolean value.
TRUE. Device is a host-based

OpenLNS Programmer's Reference 279

device.
FALSE. Device is a Neuron hosted

device.

dtObject The DeviceTemplate object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

IconFilePath
Summary Specifies the path and file name of an icon (*.ICO file)

representation of the object.

Availability Local clients.

Syntax IconFilePathFileName = object.IconFilePath
Element Description

IconFilePathFileName Icon file and path name

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyICOs\Object.ICO).
The icon file should contain the following representations:

• Standard (32x32 pixels) with 256 colors
• Small (16x16) with 16 colors
• Monochrome (32x32)
• Large (48x48) with 256 colors

Added to API Prior to LNS Release 3.0.

Interface
Summary Contains the main Interface object associated with the

specified AppDevice object. This includes the static interface
of the device, as well as all custom, virtual interfaces that
have been added to the device dynamically, with the Add
method. The collection of custom interfaces that have been
added to a device is contained in the Interfaces property.

Availability Local, full, and lightweight clients.

Syntax interfaceObject = object.Interface
Element Description

interfaceObject The Interface object retrieved from the
object.

OpenLNS Programmer's Reference 280

object The AppDevice object to be acted on.

Data Type Interface object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ManufacturerID
Summary Reads the manufacturer ID assigned to a device template or

component application. This property is the manufacturer ID
field of the standard program ID. See the LonMark
Application Layer Interoperability Guidelines for more
information.

Availability Local, full, lightweight, and independent clients.

Syntax idValue = object.ManufacturerId
Element Description

idValue The component application or device
template’s manufacturer ID.

object The ComponentApp object to be acted
on.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ModelNo
Summary Reads the model number for a device template.

Availability Local, full, and lightweight clients.

Syntax modelValue = templateObject.ModelNo
Element Description

modelValue The model number, which is the model
number field of the standard program
ID.

templateObject The DeviceTemplate object.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it

OpenLNS Programmer's Reference 281

may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ProgramId
Summary Stores the program ID for the device template. Every LonMark

compliant LONWORKS application device uses a unique, 16 digit,
hexadecimal standard program ID that uses the following format:
FM:MM:MM:CC:CC:UU:TT:NN

See the Devices Interfaces section in the OpenLNS Programmer’s
Guide for a description of the format used to display program IDs.

OpenLNS Programmer's Reference 282

Availability Local, full, and lightweight clients.

Syntax programIdValue = object.ProgramId
Element Description

programIdValue The program ID value of the object.

object The object to be acted on.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ProgramType
Summary Identifies the form or origin of the application program for this

device.
If this property is set to lcaProgramType, the deprecated
ProgramTemplate property of the DeviceTemplate object specifies
a valid ProgramTemplate object.

Availability Local, full, and lightweight clients.

Syntax programTypeValue = devTemplateObject.ProgramType
Element Description

programTypeValue The device template’s program type.
The values for this element, which are
contained in the ConstProgramTypes
constant, are as follows:
0 lcaProgramTypeSource
The application program is defined by a
Neuron C source file.
1 lcaProgramTypeXif
The application program is defined by
an external interface (.XIF extension)
file.
2 lcaProgramTypeFromDevice
This value is not supported.

devTemplateObject The DeviceTemplate object.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

RegisteredComponent
Summary Contains the ActiveX name for the device control used by this

device template.

OpenLNS Programmer's Reference 283

Each DeviceTemplate object in an OpenLNS database may have a
single device control registered for it. A null value in this
property indicates that there is no registered device control for
this DeviceTemplate object.
To support device controls, a director application must follow
these steps when creating a new device:

1. Examine the RegisteredComponent property of the
DeviceTemplate object for the new device. If a device control
is registered, create an instance of the control using the
ActiveX name in the RegisteredComponent property.

2. Assign the instance of the control created to the deprecated
ActiveXComponent property of the new AppDevice object.

3. Invoke the deprecated OpenComponent method of the new
AppDevice object.

Availability Local, full, and lightweight clients.

Syntax regComp = dtObject.RegisteredComponent
Element Description

regComp The registered component for this
device template.

dtObject The DeviceTemplate object to be acted
on.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

SelfDocConsistency
Summary Determines how much OpenLNS will assume about the self

documentation of devices that are using this template. This affects
how OpenLNS will read the self-documentation data of those
devices, and what level of program interface validation OpenLNS
will perform when commissioning those devices.
All Neuron hosted devices and host-based devices contain
self-documentation data. Some of this data appears in a device’s
external interface file. OpenLNS uses a device’s
self-documentation data to communicate with it. The setting of
this property affects how OpenLNS will read the
self-identification data of devices using this template, and what
level of program interface validation OpenLNS will perform when
commissioning those devices.

Availability Local, full, and lightweight clients.

Syntax consistencyValue = devTemplateObject.SelfDocConsistency
Element Description

consistencyValue The self-documentation consistency flag
assigned to devices using this device

OpenLNS Programmer's Reference 284

template.
The valid values for this property,
which are contained in the
ConstSelfDocConsistency constant, are
as follows:
0
lcaSelfDocConsistencyIdenticalOn
AllDevices
The self-documentation on devices
using the device template must be
identical. This is the most efficient, but
least flexible, setting of this property.
It is the default for all devices without a
LonMark standard program ID.
1
lcaSelfDocConsistencyStringsMay
DifferByDevice
The self-documentation on devices of
this type may include different
self-documentation strings, but must
use the same self-information data
format. This is the default for all
devices with a LonMark standard
program ID.
2
lcaSelfDocConsistencyStringsAnd
FormatMayDifferByDevice
The self-documentation on devices of
this type may include different
self-documentation strings, and may
use different self-documentation data
formats.
The more restrictive values
(lcaSelfDocConsistencyIdenticalOn
AllDevices 0 or
lcaSelfDocConsistencyStringsMay
DifferByDevice 1) allow OpenLNS to
assume higher degrees of
self-documentation consistency among
devices using this template, and cause
OpenLNS to operate more efficiently
when validating the program interface
of those devices while commissioning.
However, these settings may cause
problems if the device developer has
produced multiple devices that have the
same program ID, but use different
self-documentation strings or formats.
As a result, do not set this property to a

OpenLNS Programmer's Reference 285

value that conflicts with the
configurations of the devices using a
template. If you set this property to a
setting that violates the configuration
of devices already using the template,
then the NS, #59
lcaErrNsProgramIntfMismatch
exception is thrown.

devTemplateObject The DeviceTemplate object to be acted
upon.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.20.

SelfDocumentation
Summary Stores the self-documentation string of the application device.

The length of the string is not provided as a separate property. To
get the length, get the descriptionString, and calculate the length
from it. Note that this property returns only the user portion
(which follows the LonMark portion, if any) of the
self-documentation string

Availability Local, full, and lightweight clients.

Syntax descriptionString = object.SelfDocumentation
Element Description

programIdValue The program ID value of the object.

object The object to be acted on.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

UserTypeFileName
Summary Contains an alternative base file name for user formatting.

Setting this property to "<my fomat file>" causes the Object
Server to automatically prepend "<my format file>." when
assigning the network variable's type. Otherwise, it will
defer to the default Data Server behavior.

Availability Local, full, and lightweight clients.

Syntax formatString = devTemplateObject.UserTypeFileName
Element Description

formatString The user type format file path.
If you specify this element, the
string value will be used as the

OpenLNS Programmer's Reference 286

base name of the formatting file
(.fmt) instead of the default.

devTemplateObject The DeviceTemplate object to be
acted on.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

XifPath
Summary Contains the path of the external interface file used by this

device template.

Availability Local, full, and lightweight clients.

Syntax xifPathValue = dtObject.XifPath
Element Description

xifPathValue The external interface file path.
If the name is provided without a
path, OpenLNS will look in the
directory specified in the System
object's ImportDirectory property.

dtObject The DeviceTemplate object from
which to get the information.

Data Type String.

Read/Write Read only

Added to API LNS Release 3.0.

DeviceTemplates
The DeviceTemplates object is a collection of DeviceTemplate objects. The instance of this
collection, which is accessed through the TemplateLibrary object, holds all of the
DeviceTemplate objects in the system. The following table summarizes the DeviceTemplates
object.

Description Represents a collection of DeviceTemplate objects.

Added to API Prior to LNS Release 3.0.

Accessed Through TemplateLibrary object.

Default Property Item property.

Methods • Add
• ItemByHandle
• ItemByProgramId
• Remove

Properties • ClassID
• Count
• Item

OpenLNS Programmer's Reference 287

• Parent
• _NewEnum

Methods
The DeviceTemplates object contains the following methods.

• Add
• ItemByHandle
• ItemByProgramId
• Remove

Add
Summary Defines a new DeviceTemplate object. A DeviceTemplate

object needs to be explicitly created with this method only if
that DeviceTemplate is going to be initialized by importing an
external interface file (.XIF and .XFB extensions).

If the DeviceTemplate is to be initialized over the network
from a device, the DeviceTemplate is created automatically by
the Object Server (see the Add method of the AppDevice
object for more information).

Availability Local, full, and lightweight clients.

Syntax devTemplateObject = devTemplatesColl.Add
(devTemplateName, programType)
Element Description

devTemplateObject The newly defined DeviceTemplate
object.

devTemplatesColl The DeviceTemplates collection
object.

devTemplateName A String containing the name of the
device template.

programType The type of program associated
with this device template as an
integer.
The enumerated values for this
value, which are contained in the
ConstProgramTypes constant, are
as follows:
0 lcaProgramTypeSource
The application program is defined
by a Neuron C source file.
1 lcaProgramTypeXif
The application program is defined
by an external interface (.XIF
extension) file.
2 lcaProgramTypeFromDevice

OpenLNS Programmer's Reference 288

This value is not supported.

Added to API Prior to LNS Release 3.0.

ItemByHandle
Summary Retrieves a DeviceTemplate object by its handle property

from the DeviceTemplates collection. This may be
particularly useful when processing events reported by
OnChangeEvent with the objectType of
lcaChangeEventDeviceTemplates.

Availability Local, full, and lightweight clients.

Syntax deviceTemplate = deviceTemplates.ItemByHandle

Element Description

deviceTemplate The DeviceTemplate object.

deviceTemplates The DeviceTemplates collection.

handle The handle of the DeviceTemplate to be
retrieved.

Added to API OpenLNS.

ItemByProgramID
Summary Retrieves a DeviceTemplate object, specified by its

ProgramID property, from a DeviceTemplates collection.

Availability Local, full, and lightweight clients.

Syntax dtObject = dtColl.ItemByProgramId(programId)
Element Description

dtObject The DeviceTemplate object retrieved
from the collection.

dtColl The DeviceTemplates collection object.

programId A String specifying the program ID of
the DeviceTemplate object to be
retrieved.

Added to API Prior to LNS Release 3.0.

Remove
Summary Removes an object from the specified collection.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax objectColl.Remove indexName

Element Description

objectColl The collection containing the object to
be removed.

OpenLNS Programmer's Reference 289

name A Long value specifying the collection
index of the object to remove, or a
String value specifying the name of the
object to remove.

Added to API Prior to LNS Release 3.0.

Properties
The DeviceTemplates object contains the following properties:

• ClassID
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
DeviceTemplates object in the
ConstClassIds constant:
37 lcaClassIdDeviceTemplates

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count

OpenLNS Programmer's Reference 290

Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a DeviceTemplate object from the DeviceTemplates

collection. You can retrieve a DeviceTemplate object from its
DeviceTemplates collection by passing its index (ordinal
position) within that collection as the argument for the Item
property. Index values start at 1. You can also retrieve a
DeviceTemplate object in a DeviceTemplates collections with
the Name property by passing the object’s name as a string
expression.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The DeviceTemplate object retrieved
from the collection.

collObject The DeviceTemplates collection object to
be acted on.

index A Long type specifying the ordinal
index of the object to be retrieved.

stringExpression A string type specifying the name of the
object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is added
to the API.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

OpenLNS Programmer's Reference 291

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

OpenLNS Programmer's Reference 292

Error
An Error object represents the information for a single Object Server error. Errors are
handled by LCA applications via the ActiveX exception mechanism. The Error object
contains the standard code and description properties that are passed back in the last
exception, as well as some additional information. The following table summarizes the Error
object.

Description The data for a single Object Server error.

Added to API Prior to LNS Release 3.0.

Accessed Through System object.

Default Property None

Methods None

Properties • Category
• ClassId
• ConnErrAppDeviceHandle1
• ConnErrAppDeviceHandle2
• ConnErrIndex1
• ConnErrIndex2
• ConnErrIndexType
• ConnErrIndexType2
• Description
• ErrObjClassId
• ErrObjHandle
• Number
• Parent

Methods
The Error object does not contain any methods.

Properties
The Error object contains the following properties:

• Category
• ClassId
• ConnErrAppDeviceHandle1
• ConnErrAppDeviceHandle2
• ConnErrIndex1
• ConnErrIndex2
• ConnErrIndexType
• ConnErrIndexType2
• Description
• ErrObjClassId
• ErrObjHandle
• Number
• Parent

OpenLNS Programmer's Reference 293

Category
Summary Contains the error category represented by the Error object.

Availability Local, full, and lightweight clients.

Syntax errCategory = errorObject.Category
Element Description

errCategory The error category. The valid values for
this property, which are contained in the
ConstErrCategories constant, are as follows:
0 lcaErrCategoryNs
Network Server error.
1 lcaErrCategoryNi
Network Interface error.
2 lcaErrCategoryConn
Connection error.
3 lcaErrCategoryObjServer
Object Server error.
4 lcaErrCategoryDataServer
Data Server error.
5 lcaErrCategoryFormat
Format error.
6 lcaErrCategoryComponent
Component error.
7 lcaErrCategoryVni
VNI error.

object The Error object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

OpenLNS Programmer's Reference 294

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the Error
object in the ConstClassIds constant:
44 lcaClassIdError

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ConnErrAppDeviceHandle1
Summary If the error object represents a connection subsystem error

(lcaErrCategoryConn), this property returns the handle of
the primary device in the error. Otherwise it returns 0.

You can use the AppDevices collection object's ItemByHandle
method to get the AppDevice corresponding to the device
handle.

Availability Local, full, and lightweight clients.

Syntax errorValue = errorObject.ConnErrAppDeviceHandle1
Element Description

deviceHandle The device handle to be returned.

errObject The Error object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ConnErrAppDeviceHandle2
Summary If the Error object represents a connection subsystem error

(lcaErrCategoryConn), this property returns the handle of
the secondary device in the error. Otherwise it returns 0.

You can use the AppDevices collection object's ItemByHandle
method to get the AppDevice corresponding to the device
handle.

Availability Local, full, and lightweight clients.

Syntax errorValue = errorObject.ConnErrAppDeviceHandle2
Element Description

deviceHandle The device handle to be returned.

OpenLNS Programmer's Reference 295

errObject The Error object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ConnErrIndex1
Summary If the Error object represents a connection error

(lcaErrCategoryConn), this property returns the index of
the primary network variable or message tag in the error.
Otherwise it returns 0.

The ConnErrIndexType1 property indicates whether this
index applies to a network variable or message tag, as well as
the type of network variable or message tag.
The value of this property combined with that of
ConnErrAppDeviceHandle1 identifies a specific network
variable or message tag in a specific device

You can use the AppDevices collection object's ItemByHandle
method to get the AppDevice corresponding to the device
handle.

Availability Local, full, and lightweight clients.

Syntax index = errorObject.ConnErrIndex1
Element Description

index The network variable or message tag index
to be returned.

errObject The Error object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ConnErrIndex2
Summary If the Error object represents a connection error

(lcaErrCategoryConn), this property returns the index of
the primary network variable or message tag in the error.
Otherwise it returns 0.

The ConnErrIndexType2 property indicates whether this
index applies to a network variable or message tag, as well as
the type of network variable or message tag.
The value of this property combined with that of
ConnErrAppDeviceHandle2 identifies a specific network
variable or message tag in a specific device

OpenLNS Programmer's Reference 296

You can use the AppDevices collection object's ItemByHandle
method to get the AppDevice corresponding to the device
handle.

Availability Local, full, and lightweight clients.

Syntax index = errorObject.ConnErrIndex2
Element Description

index The network variable or message tag index
to be returned.

errObject The Error object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ConnErrIndexType1
Summary If the Error object represents a connection error

(lcaErrCategoryConn), this property indicates whether a
network variable or message tag index is contained in the
ConnErrIndex1 property.

The ConnErrIndexType1 property indicates whether this
index applies to a network variable or message tag, as well as
the type of network variable or message tag.
The value of this property combined with that of
ConnErrAppDeviceHandle1 identifies a specific network
variable or message tag in a specific device

You can use the AppDevices collection object's ItemByHandle
method to get the AppDevice corresponding to the device
handle.

Availability Local, full, and lightweight clients.

Syntax indexType = errorObject.ConnErrIndexType1
Element Description

indexType The type of network variable or message
tag that caused the error.
The enumerated values for this property,
which are contained in the
ConstLNSIndexType constant, are as
follows:
0 lcaLNSIndexTypeNv
The index in the corresponding
ConnErrIndex1 property is a network
variable index.
1 lcaLNSIndexTypeMessageTag
The index in the corresponding

OpenLNS Programmer's Reference 297

ConnErrIndex1 property is a message tag
index.
2 lcaLNSIndexTypeDynamicMessageTag
The index in the corresponding
ConnErrIndex1 property is a dynamic
message tag index.
-1 lcaLNSIndexTypeInvalid

The corresponding ConnErrIndex property
contais invalid data.

errObject The Error object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ConnErrIndexType2
Summary If the Error object represents a connection error

(lcaErrCategoryConn), this property indicates whether a
network variable or message tag index is contained in the
ConnErrIndex2 property.

The ConnErrIndexType2 property indicates whether this
index applies to a network variable or message tag, as well as
the type of network variable or message tag.
The value of this property combined with that of
ConnErrAppDeviceHandle2 identifies a specific network
variable or message tag in a specific device

You can use the AppDevices collection object's ItemByHandle
method to get the AppDevice corresponding to the device
handle.

Availability Local, full, and lightweight clients.

Syntax indexType = errorObject.ConnErrIndexType2
Element Description

indexType The type of network variable or message
tag that caused the error.
The enumerated values for this property,
which are contained in the
ConstLNSIndexType constant, are as
follows:
0 lcaLNSIndexTypeNv
The index in the corresponding
ConnErrIndex2 property is a network
variable index.
1 lcaLNSIndexTypeMessageTag

OpenLNS Programmer's Reference 298

The index in the corresponding
ConnErrIndex2 property is a message tag
index.
2 lcaLNSIndexTypeDynamicMessageTag
The index in the corresponding
ConnErrIndex2 property is a dynamic
message tag index.
-1 lcaLNSIndexTypeInvalid

The corresponding ConnErrIndex2
property contais invalid data.

errObject The Error object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Description
Summary Stores description information about the Error object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the Error
object.

object The Error object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

ErrObjClassId
Summary Contains the ClassId of the object that caused the error

contained in this Error object.

Availability Local, full, and lightweight clients.

Syntax errorId = errorObject.ErrorObjClassId
Element Description

errorObject The Error object to be acted on.

errorId A short that indicates the ClassId of the
object that caused the error. The possible
values for this property, which are

OpenLNS Programmer's Reference 299

contained in the ConstClassIds constant,
are as follows:
0 lcaClassIdObjectServer
1 lcaClassIdNetwork
2 lcaClassIdNetworks
3 lcaClassIdSyste
4 lcaClassIdSystem
5 lcaClassIdSubsyste
6 lcaClassIdSubsystem
7 lcaClassIdAppDevic
8 lcaClassIdAppDevice
9 lcaClassIdRoute
10 lcaClassIdRouters
11 lcaClassIdRouterSide
12 lcaClassIdChannel
13 lcaClassIdChannels
14 lcaClassIdNetworkInterface
15 lcaClassIdNetworkInterfaces
16 lcaClassIdSubnet
17 lcaClassIdSubnets
18 lcaClassIdConnections
19 lcaClassIdInterface
20 lcaClassIdInterfaces
21 lcaClassIdTemplateLibrary
22 lcaClassIdNetworkVariable
23 lcaClassIdNetworkVariables
24 lcaClassIdMessageTag
25 lcaClassIdMessageTags
26 lcaClassIdConfigProp
27 lcaClassIdConfigProps
28 lcaClassIdLonMarkObject
29 lcaClassIdLonMarkObjects
30 lcaClassIdComponentApp
31 lcaClassIdComponentApps
32 lcaClassIdHardwareTemplate
33 lcaClassIdHardwareTemplates
34 lcaClassIdBuildTemplate
35 lcaClassIdBuildTemplates
36 lcaClassIdDeviceTemplate
37 lcaClassIdDeviceTemplates
38 lcaClassIdProgramTemplate
39 lcaClassIdProgramTemplates
40 lcaClassIdNetworkServiceDevice
41 lcaClassIdNetworkServiceDevices
42 lcaClassIdConnectDescTemplate
43 lcaClassIdConnectDescTemplates
44 lcaClassIdError
45 lcaClassIdLonMarkAlarm
46 lcaClassIdObjectStatus
47 lcaClassIdNetworkVariableField
48 lcaClassIdDetailInfo
49 lcaClassIdDataValue
50 lcaClassIdExtension

OpenLNS Programmer's Reference 300

51 lcaClassIdExtensions
52 lcaClassIdRecoveryStatus
53 lcaClassIdCreditInfo
54 lcaClassIdAccount
55 lcaClassIdAccounts
56 lcaClassIdBufferConfiguration
57 lcaClassIdFileTransfer
58 lcaClassIdAlias
59 lcaClassIdAliases
69 lcaClassIdPingIntervals
70 lcaClassIdApplication
71 lcaClassIdTestInfo
72 lcaClassIdDataPoint
73 lcaClassIdFormatSpec
74 lcaClassIdMonitorSet
75 lcaClassIdMonitorSets
76 lcaClassIdMsgMonitorOptions
77 lcaClassIdMsgMonitorPoint
78 lcaClassIdMsgMonitorPoints
79 lcaClassIdNvMonitorOptions
80 lcaClassIdNvMonitorPoint
81 lcaClassIdNvMonitorPoints
82 lcaClassIdSourceAddress
83 lcaClassIdLdrfLanguage
84 lcaClassIdLdrfLanguages
85 lcaClassIdServiceStatus
86 lcaClassIdUpgradeStatus
87 lcaClassIdUpgradeInfo
88 lcaClassIdUpgradeInfos
89 lcaClassIdDatabaseValidationReport
90 lcaClassIdDatabaseValidationErrorSummary
91
lcaClassIdDatabaseValidationErrorSummaries
92
lcaClassIdDatabaseValidationErrorInstance
93 lcaClassIdNetworkResources
94 lcaClassIdTypeSpec
95 lcaClassIdFormatLocale
96 lcaClassIdFormatLocales

Data Type Short.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ErrObjHandle
Summary Contains the handle of the object that caused the error

contained in this Error object.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 301

Syntax errorId = errorObject.ErrorObjHandle
Element Description

errorObject The Error object to be acted on.

errorId A short which indicates the handle of the
object that caused the error. The class of
object which raised the error is contained
in the ErrObjClassId property.

Data Type Short.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Number
Summary Returns the LNS error number of the error represented by

the Error object.

Availability Local, full, and lightweight clients.

Syntax errorValue = errorObject.Number
Element Description

errorValue The error number to be returned.
The values that can be returned by this
property are stored in the ConstErrors
constant. For descriptions of these
errors, see Object Server Errors.

errObject The Error object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

OpenLNS Programmer's Reference 302

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Extension
An Extension object represents user-defined data. Each manufacturer can define any
number of manufacturer specific data objects for application-specific data. Collections of
these objects can be associated with the object server, channel, device template, program
template, network, device (application device, router, or network service device), subnet,
subsystem, system, or LonMarkObject. The following table summarizes the Extension object.

Description User-defined data objects for application-specific data.

Added to API Prior to LNS Release 3.0.

Accessed Through Extensions collection object.

Default Property None.

Methods None.

Properties • ClassId
• CopyWithParent
• Description
• Extensions
• Handle
• Key
• Owner
• OwnerClassId
• Parent
• Value1
• Value2
• Value3

Methods
The Extension object does not contain any methods.

Properties
The Extension object contains the following properties:

• ClassId
• CopyWithParent
• Description
• Extensions
• Handle
• Key
• Owner
• OwnerClassId
• Parent
• Value1

OpenLNS Programmer's Reference 303

• Value2
• Value3

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the Error
object in the ConstClassIds constant:
50 lcaClassIdExtension

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

CopyWithParent
Summary Indicates whether the Extension object should be copied

when its parent object is copied.
This may be useful if you are writing an application that is
copying an object containing a large Extensions collection,
possibly to move the object to another database. You may not
want the application to copy every extension record stored in
the object you are moving. You can use this flag to mark
which extension records should be copied.

Availability Local, full, and lightweight clients.

Syntax toBeCopied = extension.CopyWithParent
Element Description

toBeCopied A Boolean value indicating whether this
extension record should be copied when
its parent object is copied.

TRUE. Extension object should be
copied.

FALSE. Extension object should not be
copied.

OpenLNS Programmer's Reference 304

extension The Extension object to be acted upon.

Data Type Boolean.

Read/Write Read/write.

Added to API LNS Release 3.20.

Description
Summary Stores description information about the Extension object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the Extension
object.

object The Extension object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

Extensions
The Extensions property can be used to retrieve a child Extensions collection from a
parent Extension object. This property supports the concept of hierarchical Extension
objects.

An Extension object cannot be removed from its parent object if the Extension has any
child Extension objects. All child Extension objects must be removed first. An attempt to
remove a non-empty Extension object will result in an
lcaErrCantRemoveExtensionWithChildren (LCA #173) exception being thrown.

Summary Retrieves a child Extensions collection from a parent
Extension object.

Availability Local, full, and lightweight clients.

Syntax extensions = extension.Extensions()
Element Description

extension The parent Extension object.

object The child Extensions collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

OpenLNS Programmer's Reference 305

Handle
Summary Contains the handle associated with the Extension object.

This property enables the Extension to be retrieved by the
ItemByHandle method of the Extensions object.

Availability Local, full, and lightweight clients.

Syntax returnValue = extension.Handle
Element Description

returnValue The NSS handle of the Extension
object.

object The Extension object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API OpenLNS.

Key
Summary Contains an application-specific unique ID used for keyed

access to extension records.
The key should be set to a unique value such as a globally
unique ID (GUID) generated by many Windows development
tools. Alternatively, the key may be a string starting with
the developer's customer ID followed by a semicolon and an
item identifier set by the developer. For example, the last
program ID used may be identified with the key
"9715A00-23145;LastProgramID". The customer ID is found
on the inside cover of your LNS software CD case, and is
always unique.

You may not use the following characters in the Key
property: forward slash (/), back slash (\), period (.), and
colon (:).

Availability Local, full, and lightweight clients.

Syntax keyValue = extensionObject.Key
Element Description

extensionObject The Extension object to be operated
on.

keyValue The key of the Extension as a string.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Owner
Summary Returns the object that contains the Extension object. This

property can be used to find the object that contains the

OpenLNS Programmer's Reference 306

Extensions collection containing this Extension. To
determine the object type before using this method, use the
OwnerClassId property.

Availability Local, full, and lightweight clients.

Syntax object = extension.Owner
Element Description

extension The Extension object to be acted on.

object The object that contains the
Extension.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

OwnerClassId
Summary Returns a constant identifying the type of object that

contains the Extension object. This property can be used to
determine the object type that contains the Extensions
collection containing this Extension. To access the object that
contains the Extension, use the Owner property. The possible
values for this property are contained in the ConstClassIds
constant.

Availability Local, full, and lightweight clients.

Syntax classId = extension.OwnerClassId
Element Description

extension The Extension object to be acted on.

classID The type of object that “owns” the
Extension object.

Data Type Integer.

Read/Write Read only.

Added to API OpenLNS.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the

OpenLNS Programmer's Reference 307

specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Value1
Summary Stores user-specified object data.

Availability Local, full, and lightweight clients.

Syntax userData = extensionObject.Value1
Element Description

userData The user-specific data. You can store
data of any type supported by the
Variant type in binary large objects
(BLOBs) of up to 65,000 bytes.

Values are tagged with a unique key to
ensure that applications from multiple
manufacturers do not overwrite each
other's data.

The Value1 property supports the
following Variant types:
VT_BOOL
VT_UI1
VT_I2
VT_I4
VT_CY
VT_R4
VT_R8
VT_DATE
VT_BSTR
VT_ERROR
VT_DISPATCH
VT_UNKNOWN
VT_EMPTY
VT_NULL
All single-dimensional Variant arrays,
except for arrays of BSTRs.

extensionObject The Extension object to operate on.

Data Type Variant.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 308

Value2
Summary Stores user-specified object data.

Availability Local, full, and lightweight clients.

Syntax userData = extensionObject.Value2
Element Description

userData The user-specific data. You can store
data of any type supported by the
Variant type in binary large objects
(BLOBs) of up to 65,000 bytes.

Values are tagged with a unique key to
ensure that applications from multiple
manufacturers do not overwrite each
other's data.

The Value2 property supports the
following Variant types:
VT_BOOL
VT_UI1
VT_I2
VT_I4
VT_CY
VT_R4
VT_R8
VT_DATE
VT_BSTR
VT_ERROR
VT_DISPATCH
VT_UNKNOWN
VT_EMPTY
VT_NULL
All single-dimensional Variant arrays,
except for arrays of BSTRs.

extensionObject The Extension object to operate on.

Data Type Variant.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Value3
Summary Stores user-specified object data.

Availability Local, full, and lightweight clients.

Syntax userData = extensionObject.Value3
Element Description

userData The user-specific data. You can store
data of any type supported by the

OpenLNS Programmer's Reference 309

Variant type in binary large objects
(BLOBs) of up to 65,000 bytes.

Values are tagged with a unique key to
ensure that applications from multiple
manufacturers do not overwrite each
other's data.

The Value3 property supports the
following Variant types:
VT_BOOL
VT_UI1
VT_I2
VT_I4
VT_CY
VT_R4
VT_R8
VT_DATE
VT_BSTR
VT_ERROR
VT_DISPATCH
VT_UNKNOWN
VT_EMPTY
VT_NULL
All single-dimensional Variant arrays,
except for arrays of BSTRs.

extensionObject The Extension object to operate on.

Data Type Variant.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Extensions
The Extensions object is a collection of Extension objects. Each manufacturer can define any
number of manufacturer specific data objects for application specific data. Collections of
these objects can be associated with the object server, a channel, a device template, a
hardware template, a network, a device, or a router.

You should note that the Extensions collection for a Network object is stored in the
computer-specific global database, and is not exported with the Network database. As a
result, the collection would be lost in the process of transferring a network database from
one computer to another. The following table summarizes the Extensions object.

Description Represents a collection of Extensions objects.

Added to API Prior to LNS Release 3.0.

Accessed Through AppDevice object
Channel object
DeviceTemplate object
LonMarkObject object
Network object
NetworkServiceDevice object

OpenLNS Programmer's Reference 310

ObjectServer object
Router object
Subnet object
Subsystem object
System object

Default Property Item property.

Methods • Add
• ItemByHandle
• Remove

Properties • ClassID
• Count
• Item
• Parent
• _NewEnum

Methods
The Extensions object contains the following methods.

• Add
• ItemByHandle
• Remove

Add
Summary Define a new Extension object.

Availability Local, full, and lightweight clients.

Syntax extensionObject = extensionsColl.Add(extensionKey)
Element Description

extensionObject The newly defined Extension object.

extensionsColl The Extensions collection object.

extensionKey A String containing the extension's
key value.

Added to API Prior to LNS Release 3.0.

ItemByHandle
You can use the ItemByHandle method to retrieve an Extension object from the
Extensions collection by handle.

Summary Retrieves an Extension object by its handle property.

Availability Local, full, and lightweight clients.

Syntax extension = extensions.ItemByHandle

Element Description

Extension The Extension object.

Extensions The Extensions collection.

OpenLNS Programmer's Reference 311

handle The handle of the Extension to be
retrieved.

Added to API OpenLNS.

Remove
Summary Removes an object from the specified collection.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax objectColl.Remove indexName

Element Description

objectColl The collection containing the object to
be removed.

name A Long value specifying the collection
index of the object to remove, or a
String value specifying the name of the
object to remove.

Added to API Prior to LNS Release 3.0.

Properties
The Extensions object contains the following properties:

• ClassID
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Extensions object in the ConstClassIds
constant:
51 lcaClassIdExtensions

object The object to be acted on.

Data Type Integer.

OpenLNS Programmer's Reference 312

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns an Extension object from an Extensions collection. You

can retrieve an Extension object from its Extensions collection
by passing its index (ordinal position) within that collection as
the argument for the Item property. Index values start at 1.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The Extension object retrieved from the
collection.

collObject The Extensions collection object to be
acted on.

index A Long type specifying the ordinal
index of the Extension object to be
retrieved.

stringExpression A string type specifying the name of the
Extension object to be retrieved.

OpenLNS Programmer's Reference 313

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is added
to the API.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 314

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

FileTransfer
A FileTransfer object represents a LonMark file transfer session involving a group of
application devices. For example, you might set up a file transfer to upload log files from
some of the application devices on your network.
You can identify the target application devices, which store the files that are to be read from
or written to, for a file transfer using the AddTarget method.
You can set the file transfer parameters, such as the index number of the file to be written to
or read from, using the properties of the FileTransfer object. Once you have set these
properties, you can execute file transfers by invoking the ReadFile or WriteFile methods.

The following table summarizes the FileTransfer object.

Description A LonMark file transfer session involving a group of application
devices.

Added to API Prior to LNS Release 3.0.

Accessed Through System object.

Default Property None.

Methods • AddTarget
• ClearTargets
• ReadFile
• WriteFile

Properties • AuthenticationFlag
• ClassId
• FileCount
• FileIndex
• FileInfo
• FileSize
• FileType
• HostTimeOut
• Parent
• PriorityFlag
• ReadBufferLength
• RetryCount
• RxTimeOut
• StartPosition

OpenLNS Programmer's Reference 315

• TxTimeOut

Methods
The FileTransfer object contains the following methods:

• AddTarget
• ClearTargets
• ReadFile
• WriteFile

AddTarget
Summary Adds a target application device to the file transfer target

list.
Currently, you can perform file transfer implicitly without
the use of a previously defined connection by the OpenLNS
Server with only one device at a time. Once you have added
an app device to the FileTransfer object’s target list with this
method, you can write files to the app device with the
WriteFile method, or you can read from the files on the app
device with the ReadFile method.
You can also access information concerning the files stored on
the device such as the number of files on the device, the size
of each file on the device, and the type of each file on the
device, by referencing the index number assigned to the app
device in the target list and reading properties of the
FileTransfer object such as the FileCount, FileSize, and
FileType properties. The target devices are assigned index
numbers in sequential order as they are added to the target
list with this method, starting with index value 1.
You can write to multiple files at a time, but doing so
requires adding network variables to the OpenLNS Server’s
NSD, and connecting them to the target files. For more
information on this, see the online help for the WriteFile
method.

Availability Local, full, and lightweight clients.

Syntax ftObject.AddTarget appDeviceObject

Element Description

ftObject The FileTransfer object.

appDeviceObject The AppDevice object to add as a
target.

Added to API Prior to LNS Release 3.0.

ClearTargets
Summary Clears the file transfer target list.

After clearing all of the targets, the ReadFile and WriteFile
methods will not function until at least one target is added.

OpenLNS Programmer's Reference 316

Availability Local, full, and lightweight clients.

Syntax ftObject.ClearTargets

Element Description

ftObject The FileTransfer object.

Added to API Prior to LNS Release 3.0.

ReadFile
Summary Reads a file from an AppDevice in the file transfer target list.

You must first add the selected application device to the file
transfer target list with the AddTarget method.
You can use this method to read from one device at a time. As
a result, the file transfer target list must contain one only
device when the ReadFile method is invoked. If it contains
more than one device, an exception will be thrown.
You can set the desired file transfer parameters (including
file index of the file to be read on the app device, and the
buffer read count) using the FileIndex and ReadBufferLength
properties of the FileTransfer object.

Availability Local, full, and lightweight clients.

Syntax fileBuffer = ftObject.ReadFile

Element Description

fileBuffer A Variant containing the returned
buffer.
The returned value is a Variant
containing a one dimensional byte
array (MFC type VT_UI1 |
VT_ARRAY).
The number of elements in the array
is equal to the ReadBufferLength
property multiplied by the number of
targets.
In Visual Basic, the individual
elements may be retrieved from the
variable by appending an array index
to the name of the Variant. For
example:
Dim fileBuffer as Variant
Dim byte1 as Byte
fileBuffer = ftObject.ReadFile
byte1 = fileBuffer(1)

ftObject The FileTransfer object.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 317

WriteFile
Summary Writes a file to an AppDevice in the file transfer target list.

You must first add the selected application device to the file
transfer target list with the AddTarget method of the
FileTransfer object. The desired file transfer parameters
(including the index number of the file to be written to on the
app device) are set using the properties of the FileTransfer
object.
You can use this method to write a file buffer to more than
one application device at a time. The file index written to,
and the file buffer to write, must be the same for all target
devices. In order to write to more than one application device
at a time, an output network variable of type SNVT_file_req
on the NetworkServiceDevice object of the OpenLNS Server
(System .NetworkServiceDevice.AppDevice
.Interface.NetworkVariables) must be bound to the file
request input network variable on each of the file transfer
target devices.
In addition, an input network variable of type
SNVT_file_status on the NetworkServiceDevice object of the
OpenLNS Server must be bound to the file status output
network variable on each of the target devices.
If random access is used for the file transfer, then an input
network variable of type SNVT_file_pos on the
NetworkServiceDevice object of the OpenLNS Server must be
bound to the file position input NV on each of the targets.
Random access will be used in the file transfer if the
StartPosition property of the FileTransfer object is set to a
non-zero value. Please note that all of these connections must
use group addressing.

Availability Local, full, and lightweight clients.

Syntax ftObject.WriteFile fileBuffer

Element Description

fileBuffer The file buffer may be specified as either
or a Variant containing a byte array (MF
VT_UI1 | VT_ARRAY).

ftObject The FileTransfer object.

Added to API Prior to LNS Release 3.0.

Properties
The FileTransfer object contains the following properties:

• AuthenticationFlag
• ClassId
• FileCount
• FileIndex
• FileInfo

OpenLNS Programmer's Reference 318

• FileSize
• FileType
• HostTimeOut
• Parent
• PriorityFlag
• ReadBufferLength
• RetryCount
• RxTimeOut
• StartPosition
• TxTimeOut

AuthenticationFlag
Summary Specifies whether authenticated messages are used for the

file transfer.

Availability Local, full, and lightweight clients.

Syntax authFlag = fileTransObject.AuthenticationFlag
Element Description

authFlag A Boolean value.
TRUE. Authenticated messages are

used to perform the file
transfer.
To perfrom an authenticated
file transfer, all participating
devices must have
authentication enabled

FALSE. Authenticated messages are
not used to perform the file
transfer. This is the default.

fileTransOject The FileTransfer object to be acted on.

Data Type Boolean.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

OpenLNS Programmer's Reference 319

classIdValue The object class of the object. The
following value is defined for the
FileTransfer object in the ConstClassIds
constant:
57 lcaClassIdFileTransfer

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

FileCount
Summary Returns the number of files supported by any of the app

devices that have been added to the FileTransfer object’s
target list.
This property is only available when the device is connected
and online.

Availability Local, full, and lightweight clients.

Syntax countValue = fileTransObject.FileCount (nTarget)
Element Description

countValue The file count. The count may include
files implemented using the file
transfer protocol, or files implemented
via direct memory read/write.

fileTransObject The FileTransfer object to be acted on.

nTarget The FileTransfer object index. The
FileTransfer object has a list of
targets, numbered from one to N.
nTarget is an index within that list,
used to get the node handle of the app
device for which the file count is to be
obtained. If the nTarget value is out
of range, an exception will be thrown.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 320

FileIndex
Summary Specifies the file index to be used during operations on the

FileTransfer object.
Note: OpenLNS does not support writing to the template file
or the value file (or value files) because it would corrupt the
configuration properties. Instead, OpenLNS provides the
ConfigProperties object to provide transparent access to
configuration properties implemented via configuration
network variables, file transfer, and direct memory
read/write. OpenLNS applications must use the
ConfigProperties objects in place of direct file transfer when
writing or reading configuration properties.

Availability Local, full, and lightweight clients.

Syntax indexValue = fileTransObject.FileIndex
Element Description

indexValue The file index to read or write.
The file index may have a value
between 0–65,535. The default value
is 2.

• For a write, the value is the index
on the receivers.

• For a read, the value is the index
on the sender.

The file index property should be set
before any of the FileTransfer object
methods are invoked.
LonMark compliant devices may
implement standard configuration
property types (SCPTs) using the
LonMark file transfer protocol. In
this case, file indexes 0 and 1 are
reserved for the SCPT template and
value files. Index 2 may be used for
the constant value file.

fileTransObject The FileTransfer object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 321

FileInfo
Summary Returns a 16-byte string describing any of the files on the

app devices that have been added to the FileTransfer object’s
target list.

The FileTransfer object has a list of targets, numbered from
one to n. The nTarget element is an index within that list,
which is used to get the node handle of the app device for
which a file description is to be obtained. If the nTarget
value is out of range, an exception is thrown.

The app device identified by the nTarget element may have
multiple files. This property will return the file description of
the file that is using the value assigned to the FileIndex
property as its index number.

Availability Local, full, and lightweight clients.

Syntax szFileInfoValue = fileTransObject.FileInfo (nTarget)
Element Description

szFileInfoValue The file description.

fileTransObject The FileTransfer object to be acted on.

nTarget The FileTransfer object index

Data Type String.

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

FileSize
Summary Returns the file size of any of the files on the app devices that

have been added to the FileTransfer object’s target list, in
bytes (up to 4 GB).

Availability Local, full, and lightweight clients.

Syntax nFileSizeValue = ftObject.FileSize (nTarget)
Element Description

nFileSizeValue The file size.

ftObject The FileTransfer object to be acted on.

nTarget The FileTransfer object index.

The FileTransfer object has a list of
targets, numbered from one to N.
nTarget is an index within that list,
used to get the node handle of the app
device for which the file size is to be
obtained. If the nTarget value is out
of range, an exception will be thrown.
The app device identified by the
nTarget element may have multiple

OpenLNS Programmer's Reference 322

files. This property will return the file
size of the file that is using the value
assigned to the FileIndex property as
its index number.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

FileType
Summary Returns the file type of any of the files on the app devices

that have been added to the FileTransfer object’s target list.

Availability Local, full, and lightweight clients.

Syntax nFileTypeValue = ftObject.FileType (nTarget)
Element Description

nFileTypeValue File type.

ftObject The FileTransfer object to be acted on.

nTarget The FileTransfer object index.

The FileTransfer object has a list of
targets, numbered from one to N.
nTarget is an index within that list,
used to get the node handle of the app
device for which the file description is
to be obtained. If the nTarget value is
out of range, an exception will be
thrown.
The app device identified by the
nTarget element may have multiple
files. This property will return the file
type of the file that is using the value
assigned to the FileIndex property as
its index number.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

HostTimeout
Summary Specifies the host timeout value to be used during a file

transfer

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 323

Syntax timeoutValue = fileTransObject.HostTimeOut
Element Description

timeoutValue The timeout value.
The time-out value in seconds (0–
65,535). The number indicates the
maximum number of seconds a file
transfer setup or clearing request
may take if the target is busy. The
attempt will be made once per
second.
The default value is 30 seconds.

fileTransObject The FileTransfer object to be acted
on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

PriorityFlag
Summary Specifies whether priority messaging is to be used during the

file transfer.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 324

Syntax priorityFlag = fileTransObject.PriorityFlag
Element Description

priorityFlag The returned priority flag, which is a
Boolean value.
TRUE. Priority messaging is used.
FALSE. Priority messaging is not

used.

fileTransObject The FileTransfer object to be acted on.

Data Type Boolean.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ReadBufferLength
Summary Specifies the read buffer length for file transfer.

When reading data from a file on a device, this property
allows the application to specify how many bytes to read, and
how large to make the return value from the ReadFile
method. For the ReadFile method, the size of the returned
array, will be the ReadBufferLength multiplied by the
number of target devices

Availability Local, full, and lightweight clients.

Syntax bufferSize = fileTransObject.ReadBufferLength
Element Description

bufferSize The read buffer length.

fileTransObject The FileTransfer object to be acted on.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

RetryCount
Summary Sets the maximum number of retries used by the sender

during the request/response phase of the file transfer
protocol.

Availability Local, full, and lightweight clients.

Syntax retryCountValue = object.RetryCount
Element Description

retryCountValue The retry count value.
This value does not affect the retry
count used by the initiator during
setup.

OpenLNS Programmer's Reference 325

A value of 0 indicates that the number
of retries will be calculated based on
the network topology. The default
value is 0.

object The FileTransfer object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

RxTimeOut
Summary Specifies the receive timeout value used for file transfer

messages.

Availability Local, full, and lightweight clients.

Syntax timeoutValue = fileTransObject.RxTimeOut
Element Description

timeoutValue The returned receive timeout value in
milliseconds (0–65,535).
The file is automatically closed, and
an exception will be thrown, if no file
transfer messages are received during
the specified interval.
The default value is 0, which means
that the timeout is calculated based
on the network topology.

fileTransObject The FileTransfer object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

StartPosition
Summary Specifies the position of the file pointer for a random access

file operation.

Availability Local, full, and lightweight clients.

Syntax positionValue = fileTransObject.StartPosition
Element Description

positionValue The start position value.
A start position of 0 specifies
sequential file access.
A non-zero value causes a seek
operation to be performed before
executing the read or write.

OpenLNS Programmer's Reference 326

This method requires network
communication; however, you can
invoke it while the network
management mode (MgmtMode
property) is set to
lcaMgmtModeDeferConfigUpdate
s (1).

fileTransObject The FileTransfer object to be acted on.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

TxTimeOut
Summary Specifies the transmit timeout value used for file transfer

messages.
During a file transfer, request messages that require responses
are sent as part of the file transfer protocol. The value assigned
to this property represents the transmit time-out for this phase
of the file transfer.

The RetryCount property of the FileTransfer object determines
how many times the request messages are attempted in case of
failure, and the TxTimeOut property determines how much time
is allocated to this phase of the file transfer. As a result, the
values assigned to these properties determine how much time is
allocated to each request message to be sent, and for each
response message to be received.
The time allocated to each request and response message can be
calculated as follows:

transactionTime=
fileTransObject.TxTimeOut/(fileTransferObject.RetryCount+1
)

If you write a value other than the default to the TxTimeOut
property, specify a value that will provide for an adequate
request/response transaction time. Otherwise, your file transfer
may fail.

Availability Local, full, and lightweight clients.

Syntax timeoutValue = fileTransObject.TxTimeOut
Element Description

timeoutValue The returned transmit timeout value
in milliseconds (0–65,535).
If this time-out period expires and no
request messages have been sent, the
file will be closed, and an exception
will be thrown.
The transmit timeout value must be

OpenLNS Programmer's Reference 327

less than or equal to the receive
timeout value.
The default value is 0,which means
that OpenLNS calculates the timeout
period based on the network topology
and channel delays.

fileTransObject The FileTransfer object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

FormatLocale
A FormatLocale object contains a series of properties that reflect a particular geographical
area’s conventions for data display. These conventions affect how data should be displayed in
that area, including factors such as language, measurement system, date formats, time
formats, and decimal number formats. The settings of a FormatLocale object determine how
data stored in the FormattedValue properties of all DataPoint objects will be displayed when
the FormatLocale object is used by an application.

The FormatLocales collection contains 4 pre-defined, read-only FormatLocale objects. For
more information on the pre-defined FormatLocale objects, see the online help for the
FormatLocales collection.

You can create custom FormatLocale objects with the Add method; however, your application
can only use one FormatLocale object at a time. You can determine which FormatLocale
object will be used by your application by writing to the CurrentFormatLocale property of the
ObjectServer object.

Note: You can only write to the CurrentFormatLocale property, or modify the FormatLocale
object acting as the CurrentFormatLocale, before your application has opened any networks
and formatted any data. Operations that will cause your application to format data include
acquiring a DataPoint object, and reading or writing the value of a ConfigProperty or
NetworkVariable object. If you write to the CurrentFormatLocale property (or the
FormatLocale object assigned to the property) after performing any of these operations, the
LCA, #122 lcaErrReadOnlyInContext exception will be thrown.

In addition, the Object Server contains four pre-defined FormatLocale objects using index
values 1, 2, 3 and 4. All attributes of these FormatLocale objects are read-only.

The following table summarizes the FormatLocale object.

Description Contains a series of properties that reflect a particular
geographical area’s conventions for data display.

Added to API LNS Release 3.20.

Accessed Through FormatLocales collection object.

Default Property None.

Methods None.

Properties • CategoryPreferenceList
• ClassId

OpenLNS Programmer's Reference 328

• DateFormatSeparator
• DateFormatSeparatorSource
• DecimalPointCharacter
• DecimalPointCharacterSource
• DoubleFloatPrecision
• FallbackFormat
• FloatPrecision
• LanguageId
• LanguageIdSource
• ListSeparatorCharacter
• ListSeparatorCharacterSource
• MeasurementUnits
• MeasurementUnitsSource
• Name
• Parent
• ShortDateFormat
• ShortDateFormatSource
• ShortTimeFormat
• ShortTimeFormatSource
• TimeFormatSeparator
• TimeFormatSeparatorSource

Methods
The FormatLocale object does not contain any methods.

Properties
The FormatLocale object contains the following properties:

• CategoryPreferenceList
• ClassId
• DateFormatSeparator
• DateFormatSeparatorSource
• DecimalPointCharacter
• DecimalPointCharacterSource
• DoubleFloatPrecision
• FallbackFormat
• FloatPrecision
• LanguageId
• LanguageIdSource
• ListSeparatorCharacter
• ListSeparatorCharacterSource
• MeasurementUnits
• MeasurementUnitsSource
• Name
• Parent
• ShortDateFormat
• ShortDateFormatSource
• ShortTimeFormat
• ShortTimeFormatSource
• TimeFormatSeparator
• TimeFormatSeparatorSource

OpenLNS Programmer's Reference 329

CategoryPreferenceList
Summary Establishes the format to be used when displaying the

formatted value of a data point whose default type contains
several alternate formats, such as SNVT_press.
OpenLNS will initially choose the format to use for data
points like this based on the setting of the MeasurementUnits
property. This allows you to choose between U.S. or SI metric
measurement units.
You can also use localized formats whenever possible by
writing to the CategoryPreferenceList property. In this case,
OpenLNS will first determine whether to use U.S. or SI
metric formatting by reading the MeasurementUnits
property. It will then use the CategoryPreferenceList property
to determine if it should use the localized alternate formats
that are available. If the CategoryPreferenceList property is
not set, OpenLNS will use the first alternate format it finds
that complies with the setting of the MeasurementUnits
property.
For example, consider a case where a data point is using the
SNVT_hvac_overid type. If the MeasurementUnits property
is set to use U.S. units, and the CategoryPreferenceList
property is not set, OpenLNS will use the
SNVT_hvac_overid#US format to display the value of the
data point. However, if the CategoryPreferenceList property is
set to "LO", OpenLNS will use the
SNVT_hvac_overid#US_LO format to display the value.
Consider another case where a data point is using the
SNVT_press type and the MeasurementUnits property is
set to use metric measurement units. If the
CategoryPreferenceList property is not set, OpenLNS will use
the SNVT_press#SI format to display the value of the data
point. If the CategoryPreferenceList property is set to "kPa",
OpenLNS will use the SNVT_press#SI_kPa format to
display the value of the data point.
This feature may also applies types that do not have separate
U.S. or SI metric formats but still have localized alternate
formats, such as SNVT_alarm. For example, if a data point
is using the SNVT_alarm type and the
CategoryPreferenceList is set to "LO", OpenLNS will use the
SNVT_alarm#LO format to display the value of the data
point. If the CategoryPreferenceList is not set to "LO",
OpenLNS will use the SNVT_alarm format.
In many cases, your application may need to display the
values of data points that use different types. As a result, you
can specify multiple alternate formats for a FormatLocale by
passing them to the CategoryPreferenceList property in a
comma-separated list. For example, you could set the
CategoryPreferenceList to "LO,psi" to cause LNS to look for
those alternate formats whenever possible. OpenLNS will

OpenLNS Programmer's Reference 330

search for matches for each alternate format specified
starting with the first entry in the list.
If you specify the same format more than once in the list you
write to the CategoryPreferenceList property, the Formatter,
#40 lcaErrFormatStringDuplicate exception will be
thrown.

You should be aware that the CategoryPreferenceList
property has no effect on data points acquired through
network variables or configuration properties whose format
has been previously modified by an OpenLNS application (for
example, by writing to the DsFormatType property of the
source NetworkVariable object, or by writing to the
FormatName property of the source ConfigProperty object).

Availability Local, full, and lightweight clients.

Syntax formatLocale.CategoryPreferenceList = preference

Element Description

formatLocale The FormatLocale object being acted
upon.

preference Set this property to cause OpenLNS to
use localized formats when displaying
formatted values whenever possible;
otherwise, do not write to the
property.

Data Type Boolean.

Read/Write Read/write.

Added to API LNS Release 3.20.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
FormatLocale object in the
ConstClassIds constant:
95 lcaClassIdFormatLocale

object The object to be acted on.

OpenLNS Programmer's Reference 331

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

DateFormatSeparator
Summary Determines which symbol is used to separate the digits that

represent months, days and years when the formatted value
is displayed as a date.
For example, if this property is set to the backslash (/)
character, dates would be displayed as follows: 11/26/1977,
8/13/83, etc. You can determine the format and order used to
display the month, day and year digits with the
ShortDateFormat property. This applies to format
specifications containing the date() macro in their text
format specification, such as SNVT_data_cal#LO:
text(date(year, month, day))

You can use the DateFormatSeparatorSource property to
determine how the DataFormatSeparator property should be
filled in.

Availability Local, full, and lightweight clients.

Syntax formatLocale.DateFormatSeparator = character

Element Description

formatLocale The FormatLocale object being acted
upon.

character The symbol chosen to to separate
digits representing months, days and
years when a formatted value is
displayed as a date. You can choose
any printable ASCII character.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.20.

DateFormatSeparatorSource
Summary Determines whether OpenLNS should assign the

DataFormatSeparator property a value automatically based
on the Windows control panel Regional Options settings.

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale.DateFormatSeparatorSource = source

Element Description

OpenLNS Programmer's Reference 332

formatLocale The FormatLocale object being acted
upon.

source The value of the
DateFormatSeparatorSource property.
The possible values for this element,
which are contained in the
ConstFormatLocaleSource constant,
are as follows:
0 lcaFormatLocaleSource

UserDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the Windows regional
settings set by the user on the
computer running your application.
A user can change the regional
settings on a computer from the
system defaults using the Windows
control panel Regional Options applet.
This is the default.
1 lcaFormatLocaleSource

SystemDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the system default Windows
regional settings of the computer
running your application.
The default settings may vary
depending on which operating system
is installed on the computer running
the application.

Consult the Microsoft Developer’s
Network documentation for more
information on this.
2 lcaFormatLocaleSource

ManualSetting
This value indicates that the value of
the associated property has been set
manually by your application.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 333

DecimalPointCharacter
Summary Determines which will be used to indicate decimal places

when a formatted value is displayed as a scalar number.
For example, if this property is set to the period character,
scalar values with decimal places would be displayed as
follows: 100.34, 78.4, 99.6, and so on. This applies to format
specifications that use the %f symbol in their text format
specification, such as SNVT_temp#US:
text("%f", *1.8+32(0:855))

You can use the DecimalPointCharacterSource property to
determine how the DecimalPointCharacter property should
be filled in.

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale.DecimalPointCharacter = character

Element Description

formatLocale The FormatLocale object being acted
upon.

character The specified symbol used to indicate
decimal places for this FormatLocale
object. You can choose any printable
ASCII character.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.20.

DecimalPointCharacterSource
Summary Determines whether OpenOpenLNS should assign the

DecimalPointCharacter property a value automatically based
on the Windows control panel Regional Options settings.

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale.DecimalPointCharacterSource = source

Element Description

formatLocale The FormatLocale object being acted
upon.

source The value of the
DecimalPointCharacterSource
property.
The possible values for this element,
which are contained in the
ConstFormatLocaleSource constant,
are as follows:
0 lcaFormatLocaleSource

OpenLNS Programmer's Reference 334

UserDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the Windows regional
settings set by the user on the
computer running your application.
A user can change the regional
settings on a computer from the
system defaults using the Windows
control panel Regional Options applet.
This is the default.
1 lcaFormatLocaleSource

SystemDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the system default Windows
regional settings of the computer
running your application.
The default settings may vary
depending on which operating system
is installed on the computer running
the application.

Consult the Microsoft Developer’s
Network documentation for more
information on this.
2 lcaFormatLocaleSource

ManualSetting
This value indicates that the value of
the associated property has been set
manually by your application.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 335

DoubleFloatPrecision
Summary Determines the precision that will be used when displaying

double-float values.
This property is implemented when the data stored in the
FormattedValue property is formatted as an ASCII
representation of a double precision floating-point value. It
specifies the default number of digits that will be used to
display the value.

Note: The FormatSpec object of each data point contains a
Precision property. This sets the precision that will be used to
display data stored in that data point. The
DoubleFloatPrecision property will only be used for a data
point if its Precision property is not set.

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale.DoubleFloatPrecision = precision

Element Description

formatLocale The FormatLocale object being acted
upon.

precision The double-float precision to use when
displaying data with this
FormatLocale object.
The element has a range between 0–
17. This default value is 15.
You can write –1 to this property at
any time to return it to its default
value.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 336

FallbackFormat
Summary Specifies the default type that should be used to display a

data point’s formatted value if the data point’s actual type
cannot be determined.
This may be necessary if a data point’s type is unknown, or if
it cannot be found in the resource files. Typically, OpenLNS
will automatically assign each data point a type based on the
type of the network variable or configuration property
associated with the data point.
You can also manually set a data point’s type by writing to
the FormatType property of the data point’s FormatSpec
object.
This property only applies to data points accessed through
network variables.

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale.FallbackFormat = type
Element Description

formatLocale The FormatLocale object being acted
upon.

type The fallback type selected for the
FormatLocale object.
The valid settings for this property,
which are contained in the
ConstFallbackFormatTypes constant,
are as follows:
0 lcaFormatRaw
Use "RAW" as the fallback type. This
is a text string format, and is the
default format for user-defined
network variables (UNVTs).
Each byte of the network variable
value (in big-endian format) appears
as a text-formatted integer value from
"0" through "255".
Each value byte is separated by the
TAB character (0x09).
1 lcaFormatRawHex
Use "RAW_HEX" as the fallback type.
This is a text string format.
Each byte of the network variable
value (in big-endian format) appears
as a text-formatted hex integer value
from "0" through "ff".
Each value byte is separated by the

OpenLNS Programmer's Reference 337

TAB character (0x09).
2 lcaFormatRawHexPacked
Use "RAW_HEX_PACKED" as the
fallback type. This is a text string
format, just like the "RAW_HEX"
format.
Each byte of the network variable
value (in big-endian format) appears
as a text-formatted hex integer value
from "0" through "ff".
The value bytes are not separated by
the TAB character when this type is
used.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

FloatPrecision
Summary Determines the precision that will be used when displaying

single-float values.
This property is implemented when the data stored in the
FormattedValue property is formatted as an ASCII
representation of a single precision floating-point value. It
specifies the default number of digits that will be used to
display the value.

Note: The FormatSpec object of each data point contains a
Precision property. This sets the precision that will be used to
display data stored in that data point. The FloatPrecision
property will only be used for a data point if its Precision
property is not set.

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale. FloatPrecision = precision

Element Description

formatLocale The FormatLocale object being acted
upon.

precision The single-float precision to use when
displaying data with this
FormatLocale object.
The element has a range between 0–7.
This default value is 6.
You can write –1 to this property at
any time to return it to its default
value.

OpenLNS Programmer's Reference 338

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

LanguageId
Summary Determines the language that will be used to display

Windows localized settings that are stored in the formatted
values.
For example, if the formatted value contains a date, this
would determine the language used to display the name of
the month in the date.
All language codes are three characters long. For example,
you could enter "ENU" to display the information in U.S.
English, "FRA" for French, or "DEU" for German.

You can use the LanguageIdSource property to determine
how the LanguageId property should be filled in.

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale.LanguageId = code
Element Description

formatLocale The FormatLocale object being acted
upon.

OpenLNS Programmer's Reference 339

code A 3-letter identifier for the language
specified for the FormatLocale object.
The available language codes are as
follows:

Czech CSY
Danish DAN
Dutch (Belgian) NLB
Dutch (default) NLD
English (UK) ENG
English (US) ENU
Finnish FIN
French (Belgian) FRB
French (Canadian) FRC
French (default) FRA
French (Swiss) FRS
German (Austrian) DEA
German (default) DEU
German (Swiss) DES
Greek ELL
Hungarian HUN
Icelandic ISL
Italian (default) ITA
Italian (Swiss) ITS
Norwegian (Bokmal) NOR
Polish PLK
Portuguese (Brazilian) PTB
Portuguese (default) PTG
Russian RUS
Slovak SKY
Spanish (default) ESP
Spanish (Mexican) ESM
Swedish SVE

ldrfObject The LdrfLanguage object to be acted on.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.20

LanguageIdSource
Summary Determines whether OpenLNS should assign the LanguageId

property a value automatically based on the Windows control
panel Regional Options settings

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale.LanguageIdSource = source

Element Description

OpenLNS Programmer's Reference 340

formatLocale The FormatLocale object being acted
upon.

source The value of the LanguageIdSource
property.
The possible values for this element,
which are contained in the
ConstFormatLocaleSource constant,
are as follows:
0 lcaFormatLocaleSource

UserDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the Windows regional
settings set by the user on the
computer running your application.
A user can change the regional
settings on a computer from the
system defaults using the Windows
control panel Regional Options applet.
This is the default.
1 lcaFormatLocaleSource

SystemDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the system default Windows
regional settings of the computer
running your application.
The default settings may vary
depending on which operating system
is installed on the computer running
the application.

Consult the Microsoft Developer’s
Network documentation for more
information on this.
2 lcaFormatLocaleSource

ManualSetting
This value indicates that the value of
the associated property has been set
manually by your application.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 341

ListSeparatorCharacter
Summary Determines which symbol is used to separate items in the

formatted value that are returned as parts of a list.
This applies to format specifications that use the bar
character ("|") to represent a localized list separator
character. A few examples of this are
SNVT_hvac_status#LO and SNVT_magcard#LO.

You can use the ListSeparatorCharacterSource property to
determine how the ListSeparatorCharacter property should
be filled in.

Availability Local, full, and lightweight clients.

Syntax formatLocale.ListSeparatorCharacter = character

Element Description

formatLocale The FormatLocale object being acted
upon.

character The symbol chosen as the list
separator character. You can choose
any printable ASCII character.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.20.

ListSeparatorCharacterSource
Summary Determines whether OpenLNS should assign the

ListSeparatorCharacter property a value automatically based
on the Windows control panel Regional Options settings

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale.ListSeparatorCharacterSource = source

Element Description

formatLocale The FormatLocale object being acted
upon.

source The value of the
ListSeparatorCharacterSource
property.
The possible values for this element,
which are contained in the
ConstFormatLocaleSource constant,
are as follows:
0 lcaFormatLocaleSource

UserDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,

OpenLNS Programmer's Reference 342

based on the Windows regional
settings set by the user on the
computer running your application.
A user can change the regional
settings on a computer from the
system defaults using the Windows
control panel Regional Options applet.
This is the default.
1 lcaFormatLocaleSource

SystemDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the system default Windows
regional settings of the computer
running your application.
The default settings may vary
depending on which operating system
is installed on the computer running
the application.

Consult the Microsoft Developer’s
Network documentation for more
information on this.
2 lcaFormatLocaleSource

ManualSetting
This value indicates that the value of
the associated property has been set
manually by your application.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 343

MeasurementUnits
Summary Determines the measurement units (Systeme Internationale

[SI metric] or U.S.) that will be used to display the formatted
values of data points when this FormatLocale object is used
by an application. This is implemented when a data point is
using a default type that has several alternate formats
associated with it.
For example, consider a case where a data point is using
SNVT_temp as its default type. The formatted value of the
data point would be displayed using the SNVT_temp#US
format if this property is set to lcaMeasurementUnitsUS
(1), or using the SNVT_temp#SI format if this property is
set lcaMeasurementUnitsSI (0).
You can also cause LNS to choose localized formats whenever
possible by writing the value "LO" to the
CategoryPreferenceList property. In this case, OpenLNS will
first determine whether to use U.S. or metric measurement
units by reading the MeasurementUnits property. If the
CategoryPreferenceList is set to "LO", and a localized
alternate type that complies with the measurement units
selected exists for the format used by the data point,
OpenLNS will use the localized type. Otherwise, it will use
the first alternate type it finds that complies with the setting
of the MeasurementUnits property.
For example, consider a case where a data point is using the
SNVT_hvac_overid type. If the MeasurementUnits property
is set to use U.S. units, and the CategoryPreferenceList
property is not set, LNS would use the
SNVT_hvac_overid#US format to display the value of the
data point, as described earlier in this section. However, if
the CategoryPreferenceList property is set to "LO", LNS
would use the SNVT_hvac_overid#US_LO format to
display the value. This may be useful if you want your
application to use localized formats as much as possible.

You can use the MeasurementUnitsSource property to
determine how the MeasurementUnits property should be
filled in.

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale.MeasurementUnits = units

Element Description

formatLocale The FormatLocale object being acted
upon.

units The measurement units being used.
The possible values for this element,
which are stored in the
ConstFormatLocaleMeasurementUnits
constant, are as follows:

OpenLNS Programmer's Reference 344

0 lcaMeasurementUnitsSI
Displays the formatted values using
the metric measurement system.
1 lcaMeasurementUnitsUS
Displays the formatted values using
the U.S. measurement system.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

MeasurementUnitsSource
Summary Determines whether OpenLNS should assign the

MeasurementUnits property a value automatically based on
the Windows control panel Regional Options settings.

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale.MeasurementUnitsSource = source

Element Description

formatLocale The FormatLocale object being acted
upon.

source The value of the
MeasurementUnitsSource property.
The possible values for this element,
which are contained in the
ConstFormatLocaleSource constant,
are as follows:
0 lcaFormatLocaleSource

UserDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the Windows regional
settings set by the user on the
computer running your application.
A user can change the regional
settings on a computer from the
system defaults using the Windows
control panel Regional Options applet.
This is the default.
1 lcaFormatLocaleSource

SystemDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the system default Windows
regional settings of the computer

OpenLNS Programmer's Reference 345

running your application.
The default settings may vary
depending on which operating system
is installed on the computer running
the application.

Consult the Microsoft Developer’s
Network documentation for more
information on this.
2 lcaFormatLocaleSource

ManualSetting
This value indicates that the value of
the associated property has been set
manually by your application.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent

OpenLNS Programmer's Reference 346

clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ShortDateFormat
Summary Determines how a formatted value will be displayed if it

represents a date.
You can display the month, day and year in any order, but
there are certain restrictions to how each part of the date
can be displayed. This applies to format specifications
containing the date() macro in their text format
specification, such as SNVT_date_time#LO:
text(time(hour, minute, second))

• When setting the year format, you can the following
formats:
o "yy" to display the year with 2 digits.
o "yyyy" to display the year with 4 digits.

• When setting the month format, you can the following
formats:
o "M" to display the month with the least possible

number of digits.
o "MM" to always display the month with 2 digits,

with leading zeroes for months 1-9.
o "MMM" to display the month as a 3-letter,

abbreviated name (e.g. "JAN" for January).
o "MMMM" to display the month by its full name, as

a string.

• When setting the day format, you can use the
following formats:
o "dd" to always display the day with 2 digits, with

leading zeroes for days 1-9.
o "d" to display the day with the least possible

nimber of digits.

OpenLNS Programmer's Reference 347

Here are some example strings you could use for this
property, with examples of how the short date would
appear for each one. The following examples assume the
DateFormatSeparator property is set to /.

ShortDateFormat Example
MM/dd/yy 08/26/03
d/M/yyyy 26/8/2003
MMM/dd/yyyy Aug/26/2003
yy/dd/MMMM 03/26/August
If you specify a character other than M, d, y, or the
DateFormatSeparator character when writing to this
property, the LCA, #87 lcaErrStringInvalidChar
exception will be thrown.

If you change the DateFormatSeparator property after
setting the ShortDateFormat property, OpenLNS will
automatically update it with the new separator character
for you.

You can use the ShortDateFormatSource property to
determine how the ShortDateFormat property should be
filled in.

Availability Local, full, and lightweight clients.

Syntax formatLocale.ShortDateFormat = dateFormat

Element Description

formatLocale The FormatLocale object being
acted upon.

dateFormat The format used to display dates.
The allowable characters are M, d,
y, and the character specified as the
DateFormatSeparator property.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.20.

ShortDateFormatSource
Summary Determines whether OpenLNS should assign the

ShortDateFormat property a value automatically based on
the Windows control panel Regional Options settings.

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale. ShortDateFormatSource = source

Element Description

formatLocale The FormatLocale object being acted
upon.

OpenLNS Programmer's Reference 348

source The value of the
ShortDateFormatSource property.
The possible values for this element,
which are contained in the
ConstFormatLocaleSource constant,
are as follows:
0 lcaFormatLocaleSource

UserDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the Windows regional
settings set by the user on the
computer running your application.
A user can change the regional
settings on a computer from the
system defaults using the Windows
control panel Regional Options applet.
This is the default.
1 lcaFormatLocaleSource

SystemDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the system default Windows
regional settings of the computer
running your application.
The default settings may vary
depending on which operating system
is installed on the computer running
the application.

Consult the Microsoft Developer’s
Network documentation for more
information on this.
2 lcaFormatLocaleSource

ManualSetting
This value indicates that the value of
the associated property has been set
manually by your application.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

ShortTimeFormat
Summary Determines how the formatted value of a data point will be

displayed if it represents a time. You can display the hours,
minutes and seconds in any order, but there are certain

OpenLNS Programmer's Reference 349

restrictions to how each part of the time can be displayed.
This applies to format specifications containing the time()
macro in their text format specification, such as
SNVT_Time_time#LO:
text(time(hour, minute, second))

• When setting the format used to display hours, you can
use the following formats:
o "H" to display the hours with as few digits as

possible.
o "HH" to display the always hours with double digits,

with leading zeros for hours 0-9. Note that OpenLNS
will display all times in 24-hour format.

• When setting the format used to display minutes, you can
use the following formats:
o "m" to display the minutes with as few digits as

possible.
o "mm" to always display the minutes with double

digits, with leading zeros for minutes 0-9.

• When setting the format used to display seconds, you can
use the following formats:
o "s" to display the seconds with as few digits as

possible.
o "ss" to always display the seconds with double digits,

with leading zeros for seconds 0-9. Note that time
formats that include milliseconds will append the
three-digit milliseconds to the seconds field,
separated by a decimal point character.

Here are some example strings you could use for this
property, with examples of how a short time would appear for
each one.
ShortTimeFormat Example
H/m/s 3:41:7.111
HH/m/ss 03:41:07.111
H/mm/ss 15:06:33.333

The following examples assume the TimeFormatSeparator
property is set to the colon character (:). If you specify a
character other than M, d, y, or the TimeFormatSeparator
character when writing to this property, the LCA, #87
lcaErrStringInvalidChar exception will be thrown. If you
specify additional characters that would cause LNS to
display times in 12-hour format, the LCA, #160
lcaErr12HourTimeFormatNotSupported exception will
be thrown.

If you change the TimeFormatSeparator property after
setting the ShortTimeFormat property, OpenLNS will

OpenLNS Programmer's Reference 350

automatically update it with the new separator character for
you.

You can use the ShortTimeFormatSource property to
determine how the ShortTimeFormat property should be
filled in.

Availability Local, full, and lightweight clients.

Syntax formatLocale.ShortTimeFormat = timeFormat

Element Description

formatLocale The FormatLocale object being acted
upon.

timeFormat The format used to display dates. The
allowable characters are "H", "m", "s"
and the character specified as the
TimeFormatSeparator property.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.20.

ShortTimeFormatSource
Summary Determines whether OpenLNS should assign the

ShortTimeFormat property a value automatically based on
the Windows control panel Regional Options settings.

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale. ShortTimeFormatSource = source

Element Description

formatLocale The FormatLocale object being acted
upon.

source The value of the
ShortTimeFormatSource property.
The possible values for this element,
which are contained in the
ConstFormatLocaleSource constant,
are as follows:
0 lcaFormatLocaleSource

UserDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the Windows regional
settings set by the user on the
computer running your application.
A user can change the regional
settings on a computer from the
system defaults using the Windows

OpenLNS Programmer's Reference 351

control panel Regional Options applet.
This is the default.
1 lcaFormatLocaleSource

SystemDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the system default Windows
regional settings of the computer
running your application.
The default settings may vary
depending on which operating system
is installed on the computer running
the application.

Consult the Microsoft Developer’s
Network documentation for more
information on this.
2 lcaFormatLocaleSource

ManualSetting
This value indicates that the value of
the associated property has been set
manually by your application.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

TimeFormatSeparator
Summary Determines which symbol will be used to separate digits

representing hours, minutes and seconds when the formatted
value is displayed as a time.
For example, if this property is set to the colon (:) character,
times would be displayed as follows: 1:12:33, 11:22:55, and so
on.
You can determine the format and order used to display the
hour, minute and second digits with the ShortTimeFormat
property. This applies to format specifications containing the
time() macro in their text format specification, such as
SNVT_date_time#LO:
text(time(hour, minute, second))

You can use the TimeFormatSeparatorSource property to
determine how the TimeFormatSeparator property should be
filled in.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 352

Syntax formatLocale.ShortTimeFormat = timeFormat

Element Description

formatLocale The FormatLocale object being acted
upon.

timeFormat The format used to display dates. The
allowable characters are "H", "m", "s"
and the character specified as the
TimeFormatSeparator property.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.20.

TimeFormatSeparatorSource
Summary Determines whether OpenLNS should assign the

TimeFormatSeparator property a value automatically based
on the Windows control panel Regional Options settings.

Availability Local, full, lightweight, and independent clients.

Syntax formatLocale. TimeFormatSeparatorSource = source

Element Description

formatLocale The FormatLocale object being acted
upon.

source The value of the
TimeFormatSeparator property.
The possible values for this element,
which are contained in the
ConstFormatLocaleSource constant,
are as follows:
0 lcaFormatLocaleSource

UserDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,
based on the Windows regional
settings set by the user on the
computer running your application.
A user can change the regional
settings on a computer from the
system defaults using the Windows
control panel Regional Options applet.
This is the default.
1 lcaFormatLocaleSource

SystemDefaultRegionalSetting
Select this value to have OpenLNS set
the associated property automatically,

OpenLNS Programmer's Reference 353

based on the system default Windows
regional settings of the computer
running your application.
The default settings may vary
depending on which operating system
is installed on the computer running
the application.

Consult the Microsoft Developer’s
Network documentation for more
information on this.
2 lcaFormatLocaleSource

ManualSetting
This value indicates that the value of
the associated property has been set
manually by your application.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

FormatLocales
The FormatLocales property contains all the FormatLocale objects that have been added to
the Object Server. It contains four pre-defined FormatLocale objects, which are described
below. The pre-defined FormatLocale objects are read-only, but you can create custom
FormatLocale objects with the Add method.

To retrieve a FormatLocale object from this collection, use the Item property and specify the
object to be retrieved by its index number. The index number will be in the range of 1 to x,
where x represents the value stored in the Count property.

Note that indexes 1, 2, 3 and 4 are assigned to the pre-defined, read-only FormatLocale
objects. The pre-defined FormatLocale objects are listed by index and name, and summarized
as follows:

• Index 1, UserDefaultRegionalSettings. This is the default value for the
CurrentFormatLocale property. When you use this FormatLocale object as the
CurrentFormatLocale, all the properties will be set based on the user-defined Windows
regional settings on the computer running your application. You can change the regional
settings on a computer using the Windows control panel Regional Options applet.
Consult the Microsoft Developer’s Network documentation of the Win32
GetLocaleInfo() function for more information on this.

• Index 2, SystemDefaultRegionalSettings. When you use this FormatLocale object as
the CurrentFormatLocale, all the properties will be set based on the default Windows
regional settings on the computer running the application. The default settings may
vary, depending on which operating system is installed on the computer. Consult the
Microsoft Developer’s Network documentation of the Win32 GetLocaleInfo() function
for more information on this.

• Index 3, LonMarkCompatibility. When you use this FormatLocale object as the
CurrentFormatLocale, all properties will be set so that all formatted data will be
displayed per LonMark standards used prior to LNS 3.0, when localized formatting was

OpenLNS Programmer's Reference 354

not available. In this case, Systeme Internationale measurement units, and U.S. options
for everything else, will be used to display all formatted data.

• Index 4, ISO8601DateAndTime. When you use this FormatLocale object as the
CurrentFormatLocale, all properties will be set to be the same as the LonMark
Compatibility settings, except for the localized time and date formats, which will be
based on the ISO 8601 standard. This standard helps avoid confusion that may be
caused by the many different national notations used for dates and times, and increases
the portability of computer user interfaces.

For more details on these FormatLocale objects, including the settings used for each
property, see the OpenLNS Programmer’s Guide.

You can determine which FormatLocale object will be used by your application by writing to
the CurrentFormatLocale property of the ObjectServer object. Note that you can only write to
the CurrentFormatLocale property and the FormatLocale object acting as the
CurrentFormatLocale before your application has opened any networks and formatted any
data. Operations that will cause your application to format data include acquiring a
DataPoint object, and reading or writing the value of a ConfigProperty or NetworkVariable
object. If you write to the CurrentFormatLocale property (or to the FormatLocale object
assigned to the CurrentFormatLocale property) after performing any of these operations, the
LCA, #122 lcaErrReadOnlyInContext exception will be thrown.

The following table summarizes the FormatLocales object.

Description Contains all the FormatLocale objects that have been added
to the Object Server.

Added to API LNS Release 3.20.

Accessed Through ObjectServer object.

Default Property Item.

Methods • Add
• Remove

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The FormatLocales contains the following methods.

• Add
• Remove

Add
Summary Defines a new FormatLocale object.

A FormatLocale object contains a series of properties that
reflect a geographical area’s conventions. These properties
determine how data stored in the FormattedValue properties
of DataPoint objects will be displayed when that
FormatLocale is used by an application. This includes options

OpenLNS Programmer's Reference 355

such as the format used to display dates and times, and the
unit of measurement associated with the formatted value.
The default values assigned to the properties of the
FormatLocale object match the settings of the pre-defined
"UserDefaultRegionalSettings" FormatLocale object. This
means that the default will be set based on the user-defined
Windows regional settings on the computer running the
application. For more information on these settings, see the
OpenLNS Programmer’s Guide.

After you have created a FormatLocale object, you should set
its properties to meet your application’s requirements. Then,
you can make it the active FormatLocale object on the system
by writing to the CurrentFormatLocale property of the
ObjectServer object.

Note: You can only write to the CurrentFormatLocale
property or to the FormatLocale object acting as the
CurrentFormatLocale before your application has opened any
networks and formatted any data. Operations that will cause
your application to format data include acquiring a
DataPoint object, and reading or writing the value of a
ConfigProperty or NetworkVariable object. If you write to the
CurrentFormatLocale property (or if you write to the
FormatLocale object assigned to the CurrentFormatLocale
property) after performing any of these operations, the LCA,
#122 lcaErrReadOnlyInContext exception will be thrown

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax newFormatLocale = flCollection.Add name

Element Description

newFormatLocale The FormatLocale object returned by
the function. This is the newly
defined FormatLocale object.

flCollection The FormatLocales collection being
acted upon.

name The name of the new FormatLocale
object. This can be a maximum of 85
characters long. The forward slash (/),
back slash (\), period (.), and colon (:)
characters may not be used in the
name.

Added to API LNS Release 3.20.

Remove
Summary Removes a FormatLocale object from the collection.

The indexName element is a Variant type, which allows you
to specify the FormatLocale to be deleted by either its name,
or by the index number assigned to it within the

OpenLNS Programmer's Reference 356

FormatLocales collection. You can determine the name of a
FormatLocale object by reading its Name property.

Note that the FormatLocales collection contains 4 pre-defined
FormatLocale objects, using indices 1–4, that cannot be
deleted. If you attempt to delete these FormatLocale objects
with this method, the LCA, #122
lcaErrReadOnlyInContext exception will be thrown.

If you delete the FormatLocale object acting as the
CurrentFormatLocale, your application will use the
UserDefaultRegionalSettings FormatLocale object (index
1) until you write a new value to the CurrentFormatLocale
property.

You can only use this method to delete the FormatLocale
object acting as the CurrentFormatLocale (and you can only
write to the CurentFormatLocale property) before your
application has opened any networks or formatted any data.
Operations that will cause your application to format data
include acquiring a DataPoint object, and reading or writing
the value of a ConfigProperty or NetworkVariable object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax flCollection.Remove indexName

Element Description

flCollection The FormatLocales collection being
acted upon.

indexName A Long value specifying the collection
index of the FormatLocale object to
remove, or a String value specifying the
name of the FormatLocale object to
remove.

Added to API Prior to LNS Release 3.0.

Properties
The FormatLocales object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

OpenLNS Programmer's Reference 357

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
FormatLocales object in the
ConstClassIds constant:
96 lcaClassIdFormatLocales

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a FormatLocale object from a FormatLocales

collection. You can retrieve a FormatLocale object from its

OpenLNS Programmer's Reference 358

FormatLocales collection by passing its index (ordinal
position) within that collection as the argument for the Item
property. Index values start at 1. You can also retrieve a
FormatLocale object in FormatLocales collections that
contain objects with the Name property by passing the
object’s name as a string expression

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The FormatLocale object retrieved from
the collection.

collObject The FormatLocales collection object to
be acted on.

index A Long type specifying the ordinal
index of the FormatLocale object to be
retrieved.

stringExpression A string type specifying the name of the
FormatLocale object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

OpenLNS Programmer's Reference 359

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

FormatSpec
A FormatSpec object specifies the format to use when reading the formatted value a data
point or monitor point. The information in this object is used to lookup information
OpenLNS uses to format the values in the device resource catalog, such as unit conversion
factors and precision settings.

The FormatSpec object contained within the FormatSpec property of each DataPoint and
NvMonitorPoint object (as well as within the InputFormatSpec and OutputFormatSpec
properties of each MsgMonitorPoint object) is not passed by reference. If you modify the
values assigned to the properties of a local FormatSpec object, you must then explicitly
assign the modified FormatSpec object back to the FormatSpec property of the
NvMonitorPoint or DataPoint object (or to the InputFormatSpec and OutputFormatSpec
properties of each MsgMonitorPoint object) for the changes to take effect. This following code
sample demonstrates this procedure:

OpenLNS Programmer's Reference 360

Set fsObject = dpObject.FormatSpec
fsObject.FormatName = "SNVT_temp_f#SI"
Set dpObject.FormatSpec = fsObject

After the FormatSpec object has been modified and passed back to the data point or monitor
point, you can examine it to determine whether or not OpenLNS has found the specified
format in the resource files. Because of changes to the behavior of the FormatSpec object
since LNS Release 3.0, and because further changes are anticipated, you should use the
AltFormatNamesCount property of the FormatSpec object to make this determination.

• If the AltFormatNamesCount property is set to a value greater than 0, it means that the
specified format (as well as any alternate formats defined in the resource files) has been
found, and is currently assigned to the data point or monitor point.

• If the AltFormatNamesCount property is set to 0, it means that type and format
specification information for the referenced format was not found, and a built-in format
with no associated type information has been assigned to the data point or monitor point.
If this is the case, OpenLNS will use a fallback format, as determined by the
FallbackFormat property of the FormatLocale object the application is using.

The following table summarizes the FormatSpec object.

Description The format to be used when reading the formatted value a
data point or monitor point.

Added to API LNS Release 3.0.

Accessed Through DataPoint object.
MsgMonitorPoint object.
NvMonitorPoint object.

Default Property None.

Methods None.

Properties • AltFormatName
• AltFormatNamesCount
• ClassId
• FormatName
• FormatType
• Index
• Parent
• Precision
• ProgramId
• Scope
• Units
• UnitsAdder
• UnitsMultiplier

Methods
The FormatSpec object does not contain any methods.

Properties
The FormatSpec object contains the following properties:

• AltFormatName
• AltFormatNamesCount

OpenLNS Programmer's Reference 361

• ClassId
• FormatName
• FormatType
• Index
• Parent
• Precision
• ProgramId
• Scope
• Units
• UnitsAdder
• UnitsMultiplier

AltFormatName
Summary Contains an indexed list of all formats that can be applied to

this data type.

This allows you to search for other FormatSpec objects that
contain alternate formats. For example, in a FormatSpec
object representing the SNVT_temp_f#US format (for
example, degrees Fahrenheit), this property would contain
"SNVT_temp_f#US ", "SNVT_temp_f#SI", and
"SNVT_temp_f#US_diff".

The AltFormatNamesCount property indicates how many
alternate formats are available.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax altName= fsObject.AltFormatName index
Element Description

altName The alternate format.

fsObject The FormatSpec object to be acted on.

index If multiple formats for this type exist,
the index number of the format to be
returned. The index number must be
between 1 to x, where x represents the
number of alternate formats available.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

AltFormatNamesCount
Summary Indicates how many alternate formats are contained in the

AltFormatName property.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

OpenLNS Programmer's Reference 362

Syntax altNameCount = fsObject.AltFormatNamesCount
Element Description

altNameCount The number of alternate formats
contained in the AltFormatName
property.

fsObject The FormatSpec object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
FormatSpec object in the ConstClassIds
constant:
73 lcaClassIdFormatSpec

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

FormatName
Summary Sets the name of the type to use when displaying the

FormattedValue property of the DataPoint or
NvMonitorPointDataPoint object using this FormatSpec.

If the FormatSpec object’s FormatType property is set to
lcaFormatTypeNv (1), OpenLNS will use the Index
property to determine the type associated with the
FormatSpec object. In this case, the FormatName property
has no effect.

The FormatName property will only be used if the

OpenLNS Programmer's Reference 363

FormatType property is set to lcaFormatTypeNamed (0).
In that case, the Scope and ProgramId properties are used to
identify the resource file containing the type’s definition.
The way that OpenLNS determines the default value for this
property, and the syntax you can use when writing to this
property, varies depending on the type of object to which the
FormatSpec applies:

• NvMonitorPoint object or a DataPoint object that
represents a network variable using a standard type.

The FormatType property will be initially set to
lcaFormatTypeNv (1), and this property will have no
effect. However, you can still set the FormatType
property to lcaFormatTypeNamed (0) and then write
to the FormatName property using the same syntaxes
you would use when setting a NetworkVariable object’s
DsFormatType property.

• DataPoint object that represents a network variable
using a user-defined type.

The FormatType property will be initially set to
lcaFormatTypeNamed (0), and the FormatName
property will default to the TypeName assigned to the
DataPoint object. In this case, you can also write to the
FormatName property using the same syntaxes you
would use to write to a NetworkVariable object’s
DsFormatType property. See the DsFormatType property
for more information.

• DataPoint object that represents a configuration
property.

The FormatType property will be initially set to
lcaFormatTypeNamed (0), and the FormatName
property will default to the TypeName assigned to the
DataPoint object. You can write to the FormatName
property using the same syntaxes you would use to write
to a ConfigProperty object’s FormatName property.
OpenLNS will determine the default value for the
property in the same manner, as well. Consult the online
help for the FormatName property of the ConfigProperty
object for more information on this.

Note: FormatSpec objects are not passed by reference. If you
modify the values assigned to the properties of a FormatSpec
object, you must then explicitly assign the FormatSpec object
back to the FormatSpec property of the NvMonitorPoint or
DataPoint for the changes to take effect.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax formNameValue = fsObject.FormatName

OpenLNS Programmer's Reference 364

Element Description

fsObject The FormatSpec object to be acted on.

formNameValue The FormatName as a string.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.0.

FormatType
Summary Determines the base type of the data read from and written

to FormattedValue property in the DataPoint or
NvMonitorPoint object using the FormatSpec object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax formatType = fsObject.FormatType
Element Description

formatType The type for the data.
Typically, OpenLNS will automatically
assign each data point a type based on
the type of the network variable or
configuration property associated with
the data point. You can use this
property to override that setting. Also,
you can set options to use when
displaying the formatted value of data
point objects by writing to the
CurrentFormatLocale being used by
your application.
The enumerated values for this
element, which are contained in the
ConstLNSFormatType constant, are as
follows:
0 lcaFormatTypeNamed

The FormatSpec object contains a
format for a user defined network
variable or configuration property type.
If the type is a user-defined network
variable or configuration property type
(UNVT or UCPT), set this property to
lcaFormatTypeNamed(0), set the
FormatName property to the name of
the user type, and set the Scope and
ProgramId properties to the scope and
Program ID of the format file
containing the definition of the type.

OpenLNS Programmer's Reference 365

The lcaFormatTypeNamed(0) value
is the default value for user-defined
network variables.
1 lcaFormatTypeNv

The FormatSpec object contains a
format for a standard network variable
type.
If the type is a Standard Network
Variable Type (SNVT), set this property
to lcaFormatTypeNv (1), and set the
Index property to the SNVT index.
The lcaFormatTypeNv (1) value is
the default value for data points and
monitor points acquired through
standard network variables.
2 lcaFormatTypeCp

The FormatSpec object contains a
format for a standard configuration
property type.
If the type is a Standard Configuration
Property Type (SCPT), set this property
to lcaFormatTypeCp (2), and set the
Index property to the SCPT index.
The lcaFormatTypeCp (2) value is
the default value for data points
acquired through configuration
properties.

fsObject The FormatSpec object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.0.

Index
Summary Contains the SNVT or SCPT index of the type.

• If the FormatType property is set to lcaFormatTypeCp
(2), this property contains the SCPTindex.

• If the FormatType property is set to lcaFormatTypeNv
(1), this property contains the SNVTindex.

• If the FormatType property is set to
lcaFormatTypeNamed (0), this property is not used.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

OpenLNS Programmer's Reference 366

Syntax indexValue = fsObject.Index
Element Description

fsObject The FormatSpec object to be acted on.

indexValue The index of the SNVT or SCPT.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Precision
Summary Determines the precision of the FormatSpec object. This

represents the number of digits that will be used when data
is read and displayed using the format specification.
This information is only used if the data being displayed is a
floating-point type.

If the FormatSpec object represents a single float type, this
property defaults to the value of the FloatPrecision property
of the FormatLocale object your application is using.

If the FormatSpec object represents a double float type, this
property defaults to the value of the DoubleFloatPrecision
property of the FormatLocale object your application is using.
See the FormatLocale object for more information.

Availability Local, full, lightweight, and independent clients. Independent
clients can only access FormatSpec objects through monitor

OpenLNS Programmer's Reference 367

points in permanent monitor sets.

Syntax precisionValue = object.Precision
Element Description

precisionValue The precision of the configuration
property value. This element has a
range between 0–17.

object The FormatSpec or ConfigProperty
object to be acted upon.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ProgramId
Summary Contains the program ID of the FormatSpec object. The

program ID is stored as a unique 16-digit hexadecimal
number in the following format:
FM:MM:MM:CC:CC:UU:TT:NN.
Note: You may not use colons when writing the program ID.
For a device with a program ID of 80:00:01:01:28:80:04:02,
you can write 8000010128800402 in this property.

Each FormatSpec object references a type. OpenLNS uses the
ProgramId property in conjunction with the Scope property of
the applicable FormatSpec object to determine which
resource file contains the type’s definition.

For FormatSpec objects, the Scope property will only be used
to identify the correct type if the FormatType property is set
to lcaFormatTypeNamed (0), which indicates that the
FormatSpec object represents a user-defined type. In this
case, the user-defined type to use within the resource file
referenced by this property is identified by the FormatName
property. If the FormatType property is not set to
lcaFormatTypeNamed (0), OpenLNS will use the Index
property to determine the type associated with the
FormatSpec object.

The data stored in the ProgramId property of the
FormatSpec object varies, depending on the sort of object that
the FormatSpec applies to.

• If the FormatSpec applies to a data point acquired
through a network variable that is using a standard type,
or to a monitor point that is being used to monitor a
standard network variable, the ProgramId property will
be set to 0000000000000000.

• If the FormatSpec applies to a data point acquired
through a network variable that is using a user-defined
type, or to a monitor point that is being used to monitor a
user-defined network variable, the ProgramId property

OpenLNS Programmer's Reference 368

will be set to match the program ID of the device
containing the monitor point or data point.

• If the FormatSpec object applies to a data point obtained
through a ConfigProperty object, the ProgramId property
will be set to match the program ID of the resource file
that defines the configuration property type.

• If the FormatSpec object applies to a message monitor
point, the ProgramId property will be set to
0000000000000000.

Availability Local, full, and lightweight clients.

Syntax programIdValue = formatSpec.ProgramId
Element Description

programIdValu
e

The length of network variables (in
bytes) using the type referenced by this
FormatSpec object.

formatSpec The FormatSpec object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.20.

Scope
Summary Each FormatSpec object references a type defined in a

LonMark resource file. This property indicates the scope of
the resource file that contains that type’s definition. The
scope of a resource file determines which devices will use the
types defined in that resource file.

Availability Local, full, lightweight, and independent clients. Independent
clients can only access FormatSpec objects through monitor
points in permanent monitor sets.

Syntax scopeValue = specObject.Scope
Element Description

scopeValue The scope of the device resource file
containing the definition of this type.
The possible values of this element, which
are stored in the ConstResourceScope
constant, are as follows:
0 lcaResourceScopeStandard
This scope applies to all devices.
1 lcaResourceScopeClass
This scope applies to all devices of a
specified device class from any
manufacturer.

OpenLNS Programmer's Reference 369

2 lcaResourceScopeSubclass
This scope applies to all devices of a
specified device class and device subclass
from any manufacturer.
3 lcaResourceScopeMfg
This scope applies to all devices of a
specified manufacturer.
4 lcaResourceScopeMfgClass
This scope applies to all devices of a
specified manufacturer and device class.
5 lcaResourceScopeMfgSubClass
This scope applies to all devices of a
specified manufacturer, device class and
device subclass.
6 lcaResourceScopeMfgModel
This scope applies to all devices of a
specified manufacturer, device class,
device subclass and model.
-1 lcaResourceScopeUnknown
The scope of the resource file is not
known, or could not be found.
-2
lcaResourceScopeAutoDeterminatio
n

This value applies to the Mode property of
LonMarkObject objects only.
Select this value to have LNS determine
the value of the Mode property for the
LonMarkObject automatically.
If you select this value, OpenLNS will
iterate through all the available resource
files from most specific to most general (
highest scope to lowest scope) until it
finds the functional profile template
resource file containing the
LonMarkObject object’s definition. It will
then assign the proper value to the Mode
property.
If OpenLNS is unable to determine the
proper scope value, it will set the Mode
property to
lcaResourceScopeUnknown (-1).

specObject The FormatSpec object to be acted on.

Data Type Short.

OpenLNS Programmer's Reference 370

Read/Write Read/write.

Added to API LNS Release 3.0.

Units
Summary Indicates the name of the units that apply to values using

this format specification.

Availability Local, full, lightweight, and independent clients. Independent
clients can only access FormatSpec objects through monitor
points in permanent monitor sets.

Syntax units = fsObject.Units
Element Description

units The name of the units.

fsObject The FormatSpec object to be acted on.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

UnitsAdder
Summary Determines how the scaled value of the data point or monitor

point will be unit-converted for display as a formatted value
when your application reads the FormattedValue propery.

When your application reads the FormattedValue property of
a data point or monitor point, the OpenLNS Object Server
converts the scaled value of the data point or monitor point
so that it can be display as a formatted value.
To unit-convert the value, OpenLNS first multiplies it by the
value in the UnitsMultiplier property. It then adds the value
stored in the UnitsAdder property. The resulting value will
be appropriate for the units that apply to this format
specification.
Different data formats for the same data type will be on
different scales. For example, the SNVT_temp_f data type
contains the temperature in degrees Celcius. In order to
display the temperature in Fahrenheit, you would have to
multiply the value by 1.8 (9/5), and then add 32.

Availability Local, full, lightweight, and independent clients. Independent
clients can only access FormatSpec objects through monitor
points in permanent monitor sets.

Syntax units = fsObject.UnitsAdder
Element Description

unitsAdder The value to be added.

fsObject The FormatSpec object to be acted on.

OpenLNS Programmer's Reference 371

Data Type Single.

Read/Write Read only.

Added to API LNS Release 3.0.

UnitsMultiplier
Summary Determines how the scaled value of the data point or monitor

point will be unit-converted for display as a formatted value
when your application reads the FormattedValue propery.

When your application reads the FormattedValue property of
a data point or monitor point, the OpenLNS Object Server
converts the scaled value of the data point or monitor point
so that it can be display as a formatted value.
To unit-convert the value, LNS first multiplies it by the value
in the UnitsMultiplier property. It then adds the value stored
in the UnitsAdder property. The resulting value will be
appropriate for the units that apply to this format
specification.
Different data formats for the same data type will be on
different scales. For example, the SNVT_temp_f data type
contains the temperature in degrees Celcius. In order to
display the temperature in Fahrenheit, you would have to
multiply the value by 1.8 (9/5), and then add 32.

Availability Local, full, lightweight, and independent clients. Independent
clients can only access FormatSpec objects through monitor
points in permanent monitor sets.

Syntax unitsMultiplier = fsObject.UnitsMultiplier
Element Description

unitsMultiplier The value to be multiplied.

fsObject The FormatSpec object to be acted on.

Data Type Single.

Read/Write Read only.

Added to API LNS Release 3.0.

Interface
An Interface object represents an application device’s external interface, which is the logical
interface to a device. A device’s interface specifies the number and types of functional
blocks; number, types, directions, and connection attributes of network variables; and the
number of message tags. The Interface object can be used both in the context of a particular
program (part of the DeviceTemplate object), a particular application device (part of the
AppDevice object), or a particular network services device (contained within an Interfaces
collection).

The Interface objects contained by an application device may be a device’s main interface, or
they may be custom interfaces that have been added to the device. The main interface of a
device can be accessed through the device’s Interface property. Main interfaces are static

OpenLNS Programmer's Reference 372

interfaces that cannot be modified. The custom interfaces that have been added to a device
can be accessed through the device’s Interfaces property. In many cases, you can modify
these interfaces by adding or removing objects from their NetworkVariables,
LonMarkObjects, and MessageTags collections.

Some of the information returned by the properties of each Interface object apply to the
device as a whole, and not to the specific interface represented by the Interface object. For
example, the StaticNvCount property indicates the number of network variables that are
statically defined on the device containing an Interface object, and the MaxNvInUse property
indicates the current maximum network variable index in use on the device containing an
Interface object. In addition, the SupportsDynamicNvsOnStaticLMOs property indicates
whether dynamic network variables can be added to the static LonMarkObjects on the
device. Also, the DynamicLonMarkObjectCapacity property indicates how many dynamic
LonMarkObjects can be added to all the interfaces on the device, not to a single interface on
the device.

The Name property assigned to all custom interfaces on a given device must be unique. For
an Interface object that represents a device’s main interface, the Name property is initialized
as an empty string.

The following table summarizes the Interface object.

Description An application device’s external interface.

Added to API Prior to LNS Release 3.0.

Accessed Through AppDevice object.
DeviceTemplate object.
Interfaces object.

Default Property Name.

Methods • AddCompatibleNv
• AddCompatibleNvEx
• AddComplementaryNv
• AddComplementaryNvEx
• AddNvFromString
• CreateTypeSpec
• DownloadConfigProperties
• RemoveNv
• UploadConfigProperties

Properties • ClassId
• ConfigProperties
• ConfigPropertiesAvailable
• CpByHandle
• DynamicLonMarkObjectCapacity
• DynamicMessageTag
• LonMarkObjects
• MaxNvInUse
• MaxNvSupported
• MessageTags
• Name
• NetworkVariables
• Parent
• StaticNvCount
• SupportsDynamicNvsOnStaticLMOs

OpenLNS Programmer's Reference 373

• Version

Methods
The Interface object contains the following methods:

• AddCompatibleNv
• AddCompatibleNvEx
• AddComplementaryNv
• AddComplementaryNvEx
• AddNvFromString
• CreateTypeSpec
• DownloadConfigProperties
• RemoveNv
• UploadConfigProperties

AddCompatibleNv
Summary Creates a NetworkVariable object that is compatible with a

specified source network variable, and adds the new network
variable to the specified Interface object.

This method should only be called on a custom Interface
object that is contained by a device that supports dynamic
network variables.

Availability Local, full, and lightweight clients.

Syntax nvObject = interfaceObject.AddCompatibleNv(nvName,
sourceNvObj)
Element Description

nvObject The compatible network variable to be
returned.
A compatible network variable is one
that is of the same type and direction
as the source network variable. This
method is used to construct an
interface object for a host application.

interfaceObject The Interface object to be acted on.

nvName A String containing the name of the
added network variable.
The name specified in this parameter
can be a maximum of 16 characters,
and it must not start with a number.
In addition, it cannot include square
brackets ([]), commas (,), or periods (.).

Once the NetworkVariable object has
been created, it may be renamed
subject to the restrictions of the Name
property.
The name specified in this method
may subsequently be retrieved using

OpenLNS Programmer's Reference 374

the ProgrammaticName property.

sourceNvObj The NetworkVariable object which the
new network variable is based upon.

Added to API Prior to LNS Release 3.0.

AddCompatibleNvEx
Summary Creates a NetworkVariable object that is compatible with a

specified source network variable and adds the new network
variable to the specified Interface object.

This method differs from AddCompatibleNv method in that
this method allows you to set options.

Availability Local, full, and lightweight clients.

Syntax nvObject = interfaceObject.AddCompatibleNvEx(nvName,
sourceNvObj, flags)
Element Description

nvObject The compatible network variable to be
returned.
A compatible network variable is one
that is of the same type and direction
as the source network variable. This
method is used to construct an
interface object for a host application.

interfaceObject The Interface object to be acted on.

nvName A String containing the name of the
added network variable.
The name specified in this parameter
can be a maximum of 16 characters,
and it must not start with a number.
In addition, it cannot include square
brackets ([]), commas (,), or periods (.).

Once the NetworkVariable object has
been created, it may be renamed
subject to the restrictions of the Name
property.
The name specified in this method
may subsequently be retrieved using
the ProgrammaticName property.

sourceNvObj The NetworkVariable object which
the new network variable is based
upon.

flags The options which will apply to the
newly created network variable.

The possible values for the flags
parameter, which are contained in the

OpenLNS Programmer's Reference 375

ConstLNSInterfaceCompNvEx
constant, are as follows:
0 lcaLNS_PollPassthrough
The created network variable will
have the same value in IsPolled as the
network variable it was based on.
1 lcaLNS_PollToggle
The created network variable will
have the opposite value in IsPolled as
the network variable it was based on.
2 lcaLNS_PollClear
The created network variable will
have polling disabled.
3 lcaLNS_PollSet
The created network variable will
have polling enable.

Added to API Prior to LNS Release 3.0.

AddComplementaryNv
Summary Creates a NetworkVariable object that is complementary to a

specified target network variable, and adds the
complementary network variable to the specified Interface
object.
A network variable is complementary to another network
variable if it uses the same type and configuration (for
example, service type, authentication setting, default value,
polling attribute) but opposite direction (two network
variables that may be bound together). This method is used
to construct an Interface object for a host application. This
method is typically used to create an input network variable
that is subsequently bound to a target output network
variable that is to be monitored

This method should only be called on a custom Interface
object that is contained by a device that supports dynamic
network variables.

Availability Local, full, and lightweight clients.

Syntax nvObject =
interfaceObject.AddComplementaryNv(nvName,
sourceNvObj)
Element Description

nvObject The compatible network variable to be
returned.
A compatible network variable is one
that is of the same type and direction

OpenLNS Programmer's Reference 376

as the source network variable. This
method is used to construct an
interface object for a host application.

interfaceObject The Interface object to be acted on.

nvName A String containing the name of the
added network variable.
The name specified in this parameter
can be a maximum of 16 characters,
and it must not start with a number.
In addition, it cannot include square
brackets ([]), commas (,), or periods (.).

Once the NetworkVariable object has
been created, it may be renamed
subject to the restrictions of the Name
property.
The name specified in this method
may subsequently be retrieved using
the ProgrammaticName property.

sourceNvObj The NetworkVariable object for which
a complementary network variable is
created.

Added to API Prior to LNS Release 3.0.

AddComplementaryNvEx
Summary Creates a NetworkVariable object that is complementary to a

specified target network variable, and adds the
complementary network variable to the specified Interface
object.

This method differs from AddComplementaryNv method
in that it allows you to set options.
A network variable is complementary to another network
variable if it uses the same type and configuration (for
example, service type, authentication setting, default value,
polling attribute) but opposite direction (two network
variables that may be bound together). This method is used
to construct an Interface object for a host application. This
method is typically used to create an input network variable
that is subsequently bound to a target output network
variable that is to be monitored

This method should only be called on a custom Interface
object that is contained by a device that supports dynamic
network variables.

Availability Local, full, and lightweight clients.

Syntax nvObject =
interfaceObject.AddComplementaryNv(nvName,
sourceNvObj)

OpenLNS Programmer's Reference 377

Element Description

nvObject The compatible network variable to be
returned.
A compatible network variable is one
that is of the same type and direction
as the source network variable. This
method is used to construct an
interface object for a host application.

interfaceObject The Interface object to be acted on.

nvName A String containing the name of the
added network variable.
The name specified in this parameter
can be a maximum of 16 characters,
and it must not start with a number.
In addition, it cannot include square
brackets ([]), commas (,), or periods (.).

Once the NetworkVariable object has
been created, it may be renamed
subject to the restrictions of the Name
property.
The name specified in this method
may subsequently be retrieved using
the ProgrammaticName property.

sourceNvObj The NetworkVariable object for which
a complementary network variable is
created.

flags The options which will apply to the
newly created network variable.

The possible values for the flags
parameter, which are contained in the
ConstLNSInterfaceCompNvEx
constant, are as follows:
0 lcaLNS_PollPassthrough
The created network variable will
have the same value in IsPolled as the
network variable it was based on.
1 lcaLNS_PollToggle
The created network variable will
have the opposite value in IsPolled as
the network variable it was based on.
2 lcaLNS_PollClear
The created network variable will
have polling disabled.
3 lcaLNS_PollSet

OpenLNS Programmer's Reference 378

The created network variable will
have polling enable.

Added to API Prior to LNS Release 3.0.

AddNvFromString
Summary Adds a network variable to the interface using the string

description created by the ToString method.

The NetworkVariable object's ToString method exports the
characteristics of a network variable to a text string. This
string can be used to create a new network variable object
using this method.

Only unaltered strings created using the ToString method of
the NetworkVariable object should be used as an argument to
this method. Creating or editing these strings is not
supported. Attempting to call this method on an invalid
string will result in an error

Availability Local, full, and lightweight clients.

Syntax nvObject = interfaceObject.AddNvFromString nvCsvString
Element Description

nvObject The compatible network variable to be
returned.
A compatible network variable is one
that is of the same type and direction
as the source network variable. This
method is used to construct an
interface object for a host application.

interfaceObject The Interface object to be acted on.

nvCsvString A String describing the network
variable.

Added to API Prior to LNS Release 3.0.

CreateTypeSpec
Summary Creates a new TypeSpec object that can be modified and

passed as a parameter to the following:

• The LonMarkObjects.AddFromTypeSpec method
(when creating a new dynamic LonMarkObject
[functional block]).

• The TypeSpec property of an existing NetworkVariable
object to change its type (if supported). Changing the
type of a LonMarkObject by setting its TypeSpec
property is not supported.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 379

Syntax newTypeSpec = interface.CreateTypeSpec(objectType)
Element Description

newTypeSpec newTypeSpec is the newly created
TypeSpec object.

interface The Interface object to be acted on.

objectType The type of the TypeSpec object to be
created. The possible values for this
element, which are specified in the
ConstTypeSpecObjectType constant,
are as follows:
0 lcaTypeSpecNv
The type applies to network variables.
2 TypeSpecLmo
This type applies to LonMark objects
or functional blocks (SFPTs and
UFPTs).
2 TypeSpecFb
An alias for TypeSpecLmo.
Note: An appropriate exception will
be thrown if the object type is not
valid.
The newly created TypeSpec object
will be initialized with its ProgramId
property set to match the ProgramId
property of the AppDevice or
DeviceTemplate object that contains
the Interface object.
All of the TypeSpec object’s
properties should be changed before
calling the Lookup method.

Added to API OpenLNS.

DownloadConfigProperties
Summary Downloads the configuration property values stored in an

AppDevice object into the physical application device
associated with the AppDevice object.
There is no functional difference between calling the
DownloadConfigProperties method on a specific AppDevice,
and calling the DownloadConfigProperties method on the
Interface property contained by that AppDevice.
This method requires that the device being loaded be in a
configured state. Furthermore, if you are setting the
configuration property values to their default values (the
downloadOptions element sets the

OpenLNS Programmer's Reference 380

lcaConfigPropOptSetDefaults option), this method
requires that the configuration property values be uploaded
from the device (see the UploadConfigProperties method) or
imported from the device’s external interface file (see the
Import method).

Availability Local, full, and lightweight clients.

Syntax object.DownloadConfigProperties(downloadOptions)
Element Description

object The AppDevice object from which
configuration properties are to be
downloaded into a physical device.

downloadOptions An Integer value specifying the
download options.
These values can be ORed together;
however, you must set the
lcaConfigPropOptLoadValues (1)
option for the values to be
downloaded into the physical device.
The values for this element, which are
stored in the ConstConfigPropOptions
constant, are as follows:
0
lcaConfigPropOptLoadDefinitions
This option has no effect during a
download. If this is the only option
set when you call
DownloadConfigProperties,
OpenLNS will use the
lcaConfigPropOptLoadValues
(1) as the download option.
1
lcaConfigPropOptLoadValues
Downloads all known values in the
AppDevice object in the OpenLNS
database to the physical device on
the network. You must select this
value if you want the values to be
downloaded into the physical device,
regardless of which other flags you
set. However, this is the default
option used if
lcaConfigPropOptLoadDefinitio
ns (0) is the only option specified in
the call to
DownloadConfigProperties, or if no
flags are specified.
2

OpenLNS Programmer's Reference 381

lcaConfigPropOptSetDefaults
Sets the configuration property
values in the AppDevice object to
the default configuration property
values stored in the DeviceTemplate,
and downloads any changed values
to the physical device on the
network (if the
lcaConfigPropOptLoadValues
flag is set).
Manufacturing-only configuration
properties are not affected by this
option unless it is ORed with
lcaConfigPropOptIncludeMfgOn
ly (8).
This option should not be ORed with
lcaConfigPropOptLoadUnknow
n (4).
Note that setting SCPTnvType
configuration properties to their
default values may cause the
download operation to fail. To
exclude those configuration
properties from a download, you
should OR this value with the
lcaConfigPropOptExcludeNvTy
peDefaults (512) value.
4
lcaConfigPropOptLoadUnknown
Sets all unknown configuration
property values in the AppDevice
object to the default values stored in
the DeviceTemplate, and then
downloads all known values into the
physical device (if the
lcaConfigPropOptLoadValues
flag is set).
This will not effect manufacturing
only configuration propertys unless
ORed with
lcaConfigPropOptIncludeMfgOn
ly (8).
This option should not be ORed with
lcaConfigPropOptSetDefaults
(2), as that would override this
option by setting all properties to
their defaults.
Note that setting SCPTnvType
configuration properties to their

OpenLNS Programmer's Reference 382

default values may cause the
download operation to fail. To
exclude those configuration
properties from a download, you
should OR this value with the
lcaConfigPropOptExcludeNvTy
peDefaults (512) value.
8
lcaConfigPropOptIncludeMfgOnly
Use this flag to in conjunction with
the
lcaConfigPropOptSetDefaults
(2) and
lcaConfigPropOptLoadUnknow
n (4) options if you want the
download operation to include
manufacturing-only configuration
properties.
Generally, these configuration
properties should only be modified
during the manufacturing process.
However, OpenLNS will not enforce
this requirement during a download
if this flag is set, since LNS may be
the tool used to set the configuration
property values during the
manufacturing process.
16
lcaConfigPropOptSetUnknown
Sets all configuration properties in
the AppDevice object in the
OpenLNS database to unknown.
This has no effect on the values
stored in the physical device on the
network.
32
lcaConfigPropOptSetMfgOnlyUn
known
Sets all manufacturing only
configuration properties to
unknown. The values will not be
downloaded into the physical device.
64
lcaConfigPropOptExcludeDevice
Specific
Downloads only those configuration
properties that do not have the
device-specific attribute set into the
device. For example, if this option is

OpenLNS Programmer's Reference 383

ORed with
lcaConfigPropOptLoadUnknow
n (4) and
lcaConfigPropOptLoadValues
(1), LNS would set all configuration
properties that are not
device-specific, and whose values
are unknown to their default values,
and then download those values into
the device.
This option should not be ORed with
lcaConfigPropOptOnlyDeviceSp
ecific (128).
128
lcaConfigPropOptOnlyDevice
Specific
Downloads only device-specific
configuration properties into the
device. For example, if this option is
ORed with
lcaConfigPropOptLoadUnknow
n (4) and
lcaConfigPropOptLoadValues
(1), OpenLNS would set all
device-specific configuration
properties whose values are
unknown to their defaults, and
download those values into the
device.
This option should not be ORed with
lcaConfigPropOptExcludeDevic
eSpecific (64).
256
lcaConfigPropOptClearUpdate
Pending
Clears the update pending flag on
the device configuration. This value
may be used alone, or ORed with
other values. If used alone, it will
clear the update pending flag of all
configuration property values in the
device. It may be combined with
lcaConfigPropOptOnlyDeviceSp
ecific (128) to clear only the
pending flags of device specific
values.
This value has no effect on the
database operations initiated by
other flags passed to the
DownloadConfigProperties method.

OpenLNS Programmer's Reference 384

However, updates to the device
initiated by the other flags will be
cancelled. For example, when
combining this value with
lcaConfigPropOptSetDefaults
(2), the operation will set the values
in the database to their defaults,
but the pending update flag on the
device will be cleared. As a result,
those values will not be loaded into
the device.
512
lcaConfigPropOptExcludeNvType
Default
You can OR this value with either
the
lcaConfigPropOptSetDefaults
(2) or
lcaConfigPropOptLoadUnknow
n (4) values to prevent setting
SCPTnvType configuration property
values to their defaults during a
download. Setting a SCPTnvType
configuration property to its default
value may not be allowed due to
connection constraints, and
therefore would cause the download
operation to fail.
When ORed with
lcaConfigPropOptSetDefaults
(2), all configuration properties
other than SCPTnvType
configuration properties will be set
to their default values. When ORed
with
lcaConfigPropOptLoadUnknow
n (4), all unknown configuration
properties whose values are
unknown will be set to their default
values, except SCPTnvType
configuration properties.
This option does not affect the
lcaConfigPropOptLoadValues
(1) value. If the
lcaConfigPropOptLoadValues
(1) value is specified, SCPTnvType
configuration properties with known
values will be propagated to the
device, even if setting their values
to the default has been excluded.

OpenLNS Programmer's Reference 385

Added to API Prior to LNS Release 3.0.

RemoveNv
Summary Removes a network variable from the Interface object.

When this method is called, the network variable is removed
from all connections containing it. If any affected connection
then has only one remaining member, the connection is
removed. You can only call this method on custom Interface
objects (Interface objects accessed through the Interfaces
property of an AppDevice or DeviceTemplate object)

Availability Local, full, and lightweight clients.

Syntax interfaceObject.RemoveNv nameIndex
Element Description

interfaceObject The Interface object to be acted on.

indexName A Long value specifying the collection
index of the NetworkVariable object to
remove, or a String value specifying
the name of the NetworkVariable
object to remove.

Added to API Prior to LNS Release 3.0.

UploadConfigProperties
Summary Uploads all configuration property values from a physical

device on the network into the associated AppDevice object in
the OpenLNS database.

A configuration property's value is stored in a DataPoint
object. The ConfigProperties collection containing all the
configuration properties on a device is accessed through the
AppDevice object's Interface property (AppDevice.Interface).
The UploadConfigProperties method can be invoked using
either the AppDevice object or the Interface object.

You cannot call the UploadConfigProperties method on a
device until you commission it with the Commission method.

Availability Local, full, and lightweight clients.

Syntax object.UploadConfigProperties options

Element Description

object The AppDevice object in the OpenLNS
database to which configuration properties are
to be uploaded.

options An Integer value specifying the desired upload
options. The values for this element, which are
stored in the ConstConfigPropOptions
constant, are as follows:

OpenLNS Programmer's Reference 386

0 lcaConfigPropOptLoadDefinitions
Reads the template file and loads the
configuration property definitions for the
device into the OpenLNS database if the
configuration property template file on the
device has not been imported or uploaded into
the OpenLNS database.
1 lcaConfigPropOptLoadValues
Uploads all configuration property values from
the physical device on the network to the
associated AppDevice object in the OpenLNS
database. When combined with
lcaConfigPropOptExcludeDeviceSpecific
(64), configuration properties with the
device-specific attribute set will be excluded
from the upload.
2 lcaConfigPropOptSetDefaults
Sets the values stored for the device in the
OpenLNS database as the default
configuration property values in the AppDevice
object's DeviceTemplate. This operation will
change the default values that could be applied
to any device using the DeviceTemplate. Note
that this option will upload values from the
physical device, regardless of whether or not it
is ORed with lcaConfigPropOptLoadValues
(1). In either case, OpenLNS will upload all
the configuration property values from the
device into the OpenLNS database, and then
set all the values in the database as the
defaults.
You can OR this option with
lcaConfigPropOptLoadUnknown (4). In
this case, only values that are unknown in the
OpenLNS database will be uploaded from the
physical device. Following that, all the values
stored in the OpenLNS database for the device
will be set as the defaults in the
DeviceTemplate object. This includes
the values uploaded by the call to
UploadConfigProperties, as well as all values
that were known in the OpenLNS database
before the operation began.
4 lcaConfigPropOptLoadUnknown
This option must be ORed with the
lcaConfigPropOptLoadValues (1) or the
lcaConfigPropOptSetDefaults (2) values to
have any effect. You can OR this with the
lcaConfigPropOptLoadValues (1) value to

OpenLNS Programmer's Reference 387

upload all unknown values in the OpenLNS
database from the physical device on the
network. Alternatively, you can OR this with
the lcaConfigPropOptSetDefaults (2)
values to upload all the unknown values into
the OpenLNS database, and then set the
uploaded values (as well as all values that
were known in the database before the upload)
as the device’s defaults in the OpenLNS
database. Note that all configuration
properties in an AppDevice object start in the
unknown condition. Values that have been
explicitly set in the database are not affected
by this option.
64
lcaConfigPropOptExcludeDeviceSpecific
Do not upload configuration properties with
the device-specific attribute set into the
OpenLNS database. For example, if this option
is ORed with lcaConfigPropOptLoadValues
(1), OpenLNS would upload all configuration
properties that are not device-specific from the
device into the OpenLNS database. This option
should not be ORed with
lcaConfigPropOptOnlyDeviceSpecific (128).
128
lcaConfigPropOptOnlyDeviceSpecific
Only upload configuration properties with the
device-specific attribute set into the OpenLNS
database. For example, if this option is ORed
with lcaConfigPropOptLoadUValues (1),
LNS would upload all device-specific
configuration properties from the device into
the OpenLNS database. This option should not
be ORed with
lcaConfigPropOptExcludeDeviceSpecific
(64).

Added to API Prior to LNS Release 3.0.

Properties
The Interface object contains the following properties:

• ClassId
• ConfigProperties
• ConfigPropertiesAvailable
• CpByHandle
• DynamicLonMarkObjectCapacity
• DynamicMessageTag
• LonMarkObjects
• MaxNvInUse

OpenLNS Programmer's Reference 388

• MaxNvSupported
• MessageTags
• Name
• NetworkVariables
• Parent
• StaticNvCount
• SupportsDynamicNvsOnStaticLMOs
• Version

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Interface object in the ConstClassIds
constant:
19 lcaClassIdInterface

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ConfigProperties
Summary Contains the ConfigProperties collection object associated

with the specified Interface object.

Availability Local, full, and lightweight clients.

Syntax configPropsCollection = interfaceObject.ConfigProperties
Element Description

configPropsCollection The returned configuration
properties collection.

interfaceObject The Interface object to be acted on

Data Type ConfigProperties collection object.

Read/Write Read only.

OpenLNS Programmer's Reference 389

Added to API Prior to LNS Release 3.0.

ConfigPropertiesAvailable
Summary Indicates whether configuration property definitions are

available for the device containing this Interface object.

Availability Local, full, and lightweight clients.

Syntax configPropsValue = intObject.ConfigPropertiesAvailable
Element Description

configPropsValue Boolean value.
TRUE. Configuration property

definitions for the device
containing this interface
have been either uploaded
from the device, or
imported from an external
interface file.

FALSE. Configuration property
definitions for the device
are not available.

intObject The Interface object to be acted on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 390

CpByHandle
Summary Retrieves the ConfigProperty object contained in the Interface

property of an AppDevice object or in the Interface property of
a DeviceTemplate object selected by its Handle property.

Interface objects (belonging to AppDevice and DeviceTemplate
objects), LonMarkObjects, and NetworkVariable objects each
have a ConfigProperties collection that contains all of the
configuration properties that apply to the object.

Typically a ConfigProperty object is accessed through the
appropriate ConfigProperties collection. However, in some
cases, you might need to access a ConfigProperty without
knowing the object to which it applies. This method can be
used to retrieve a ConfigProperty defined within an Interface
giventhe Handle of a ConfigProperty object, even if the
ConfigProperty applies to one or more LonMarkObjects or
NetworkVariable objects. For example, this method can be
used to retrieve a ConfigProperty when processing a
ConfigProperty change event reported by
OnNodeIntfChangeEvent.
If the configuration property does not belong to the specified
Interface, this method returns an LCA, #6
ObjectNotFound error. To ensure that a device-based
configuration property is always found, use this method on
the main interface of an AppDevice object from the Interface
property, and not on a custom interface from the Interfaces
collection.
To determine all the objects to which the configuration
property applies, use the AppliesTo property of the
ConfigProperty object.

Availability Local, full, and lightweight clients.

Syntax cpObject = interfaceObject.CpByHandle(cpHandle)
Element Description

cpObject The returned ConfigProperty object.

interfaceObject The Interface object containing the
configuration property.

cpHandle The handle of the ConfigProperty
object to be retrieved.

Data Type ConfigProperty object.

Read/Write Read only.

Added to API OpenLNS.

OpenLNS Programmer's Reference 391

DynamicLonMarkObjectCapacity
Summary Indicates the number of dynamic LonMarkObject objects

(functional blocks) that can be added to the device containing
this interface.
A functional block represents a collection of network
variables and configuration properties on a device that
perform a related function. For example, a digital input
device with four switches could contain one functional block
for each switch. In OpenLNS, functional blocks are
represented by LonMarkObject objects.
Some device interfaces support dynamic LonMarkObjects,
which means that you can add them to a device interface
manually with the Add method. In addition, you can add
network variables to a dynamic LonMarkObject after it has
been added to a device. This property returns the number of
dynamic LonMarkObject objects that can be added to the
device containing this interface. The valid range for this
property is 0–4096.

You can check how many total LonMarkObject objects
currently belong to an interface by reading the Count
property of the LonMarkObjects collection contained by the
interface. You can add dynamic LonMarkObjects to the
interface using the Add method of the interfaces
LonMarkObjects collection.

Availability Local, full, and lightweight clients.

Syntax objectCapacity = interface.DynamicLonMarkObjectCapacity
Element Description

objectCapacity The number of dynamic LonMark
objects (functional blocks) that can
be added to the device containing
this interface.

interface The Interface object to be acted
upon.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 392

DynamicMessageTags
Summary Returns the collection of dynamic MessageTag objects

contained by this interface.
Some custom interfaces support dynamic message tags,
meaning that you can add message tags to them with the
Add method.
You cannot add dynamic message tags to a device’s main
interface, and you cannot add them to some custom
interfaces. The Interface objects contained within a device’s
Interfaces property are the device’s custom interfaces, and
the Interface object contained within the device’s Interface
property is the device’s main, static interface.

Typically, dynamic message tags are added to the Network
Service Device. These message tags may be bound, like static
message tags, and can then be monitored by message monitor
points defined on the Network Service Device. The message
monitor point may then be used to send messages to the
device, or to devices connected to the dynamic message tag.

See the Add method of the MessageTags collection for more
information.

Availability Local, full, and lightweight clients.

Syntax mtCollection = object.DynamicMessageTags
Element Description

mtCollection The returned MessageTags
collection.

object The Interface object to be acted on

Data Type MessageTags collection object.

Read/Write Read only.

Added to API LNS Release 3.20.

LonMarkObjects
Summary Contains the LonMarkObjects collection object associated

with the specified Interface object.

Availability Local, full, and lightweight clients.

Syntax lmObjCollection = interfaceObject.LonMarkObjects
Element Description

lmObjCollection The LonMarkObjects collection to
be returned.

interfaceObject The Interface object to be acted on.

Data Type LonMarkObjects collection object.

Read/Write Read only.

OpenLNS Programmer's Reference 393

Added to API Prior to LNS Release 3.0.

MaxNvInUse
Summary Indicates the current maximum network variable index in

use on the device containing this Interface.

This figure applies to all Interfaces on the device, and that
this value reflects both static and dynamic network variables.

The value of the MaxNvInUse property will always be equal
to the value of the StaticNvCount property, minus 1, in
Neuron hosted applications because they do not support
dynamic network variables.

Availability Local, full, and lightweight clients.

Syntax maxIndex = interfaceObject.MaxNvInUse
Element Description

interfaceObject The Interface object to be acted on.

maxIndex The maximum network variable
index in use.

• For Neuron hosted applications,
possible values are between 0 to
61.

• For host-based applications,
possible values are between 0 to
4095.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

MaxNvSupported
Summary Indicates the maximum possible number of network

variables supported by the device containing this Interface.
This property specifies the maximum number of network
variables, whether static or dynamic, that the device
containing this Interface object may have. The number of
static network variables is fixed; therefore, this property
essentially puts a limit on the number of dynamic network
variables (which will be equal to MaxNvSupported minus
StaticNvCount).

MaxNvSupported will always be equal to StaticNvCount in
Neuron Chip-hosted applications, since they do not support
dynamic network variables.
The possible values are 0 to 62 for Neuron Chip-hosted
applications, and 0 to 4096 for host applications.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 394

Syntax maxNvValue = interfaceObject.MaxNvSupported
Element Description

interfaceObject The Interface object to be acted on.

maxNvValue The maximum number of network
variables supported.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

MessageTags
Summary Returns the collection of MessageTags associated with the

object.
This property contains the static message tags that belong to
the interface. The DynamicMessageTags property contains
the collection of dynamic message tags that have been added
to the interface. See the DynamicMessageTags property for
more information.

Availability Local, full, and lightweight clients.

Syntax mtCollection = interfaceObject.MessageTags
Element Description

mtCollection The returned MessageTags collection.

interfaceObject The Interface object to be acted on

Data Type MessageTags collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

OpenLNS Programmer's Reference 395

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

NetworkVariables
Summary Returns the NetworkVariables collection object representing

the network variables in that Interface object.

Availability Local, full, and lightweight clients.

Syntax nvCollection = interfaceObject.NetworkVariables
Element Description

nvCollection The returned NetworkVariables
collection.

interfaceObject The Interface object to be acted on

Data Type NetworkVariables collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 396

StaticNvCount
Summary Indicates the number of network variables that are statically

defined on the device that contains this Interface.
Statically defined network variables have indexes ranging
from 0 through n-1, where n is equal to the StaticNvCount
property. These network variables cannot be removed from
the device.

Availability Local, full, and lightweight clients.

Syntax staticNvCountValue = interfaceObject.StaticNvCount
Element Description

interfaceObject The Interface object to be acted on.

staticNvCountValue The number of static network
variables as an integer.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

SupportsDynamicNvsOnStaticLMOs
Summary Indicates whether static LonMarkObject objects (functional

blocks) on the device containing this interface support the
addition of dynamic network variables.

Availability Local, full, and lightweight clients.

Syntax dynamicNVsFlag =
Interface.SupportsDynamicNvsOnStaticLMOs
Element Description

dynamicNVsFlag A Boolean value.

TRUE. Static LonMarkObject
objects (functional blocks)
on the device containing
this interface support the
addition of dynamic
network variables.
This means that you can
use the
AssignNetworkVariable
method to add network
variables to static
LonMarkObject objects on
this interface.
You can always add
network variables to
dynamic LonMarkObject
objects.

OpenLNS Programmer's Reference 397

You can determine if a
LonMarkObject is static or
dynamic by reading its
IsDynamic property.

FALSE. The static LonMarkObject
objects (functional blocks)
on the device containing
this interface do not
support the dynamic
addition of network
variables.
Note: The only interface
on a device that contains
static LonMarkObjects is
the device’s main interface
(the Interface object is
accessed through the
device’s Interface property).

Interface The Interface object to be acted
upon.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Version
Summary Returns the version of the Interface object that is being used.

The value assigned to an Interface object's Version property is
incremented each time you modify the interface by changing
a network variable's type, or by adding or removing a
dynamic network variable from the interface.

All Interface objects on a device share the same version
number. And so when any Interface on a device is modified in
this fashion, its version number will be incremented, as will
the version number of all the other Interface objects on the
device.

Availability Local, full, and lightweight clients.

Syntax version = intfObject.Version
Element Description

version The returned version number string.

intfObject The Interface object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 398

Interfaces
The Interfaces object is a collection of Interface objects. This collection contains the set of
custom interface objects that have been added to a device. You can use the Add method to
create custom interfaces on any device that supports dynamic network variables, dynamic
message tags, or dynamic LonMarkObjects. The following table summarizes the Interfaces
object.

Description Represents a collection of Interface objects.

Added to API Prior to LNS Release 3.0.

Accessed Through AppDevice object
NetworkServiceDevice object

Default Property Item property.

Methods • Add
• Remove

Properties • ClassID
• Count
• Item
• Parent
• _NewEnum

Methods
The Intefaces object contains the following methods.

• Add
• Remove

Add
Summary Adds a new custom Interface to the device containing this

collection. You can create custom interfaces on any device
that supports dynamic network variables, dynamic message
tags, or dynamic LonMarkObjects.

Availability Local, full, and lightweight clients.

Syntax interfaceObject = interfaceColl.Add(interfaceName,
sourceInterfaceObj)
Element Description

interfaceObject The newly defined Interface object.

interfacesColl The Interfaces collection object.

interfaceName A String containing the name of the
interface.

The name of each custom Interface
object on a device must be unique. If
you specify a name that is already
being used on the device containing
this collection when you call this
method, the LCA, #3

OpenLNS Programmer's Reference 399

lcaErrDuplicateKey exception will
be thrown.

sourceInterfaceObj The existing Interface object used to
create the new Interface object.

If the sourceInterfaceObj element is
specified, the new Interface object
will be created with the same
NetworkVariables collection as the
Interface object referenced as the
sourceInterfaceObj. If the
sourceInterfaceObj is null, a new,
empty Interface object will be
created.

Added to API Prior to LNS Release 3.0.

Remove
Summary Removes an Interface object from the system. Removing an

Interface object from the Interfaces collection also deletes
their (dynamic) LonMarkObject objects and their associated
NetworkVariable and (dynamic) MessageTag objects.

Availability Local, full, and lightweight clients.

Syntax interfacesColl.Remove indexName

Element Description

interfacesColl The Interfaces collection object
containing the interface to be removed.

indexName A Long value specifying the collection
index of the Interface object to remove,
or a String value specifying the name of
the Interface object to remove.

Added to API Prior to LNS Release 3.0.

Properties
The Intefaces object contains the following properties:

• ClassID
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that

OpenLNS Programmer's Reference 400

some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Intefaces object in the ConstClassIds
constant:
20 lcaClassIdInterfaces

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns an Interface object from an Interfaces collection. You

can retrieve an Interface object from its Interfaces collection
by passing its index (ordinal position) within that collection
as the argument for the Item property. Index values start at
1. You can also retrieve an Interface object in Interfaces
collections with the Name property by passing the Interface
object’s name as a string expression

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to

OpenLNS Programmer's Reference 401

Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The Interface object retrieved from the
collection.

collObject The Interfaces collection object to be
acted on.

index A Long type specifying the ordinal
index of the Interface object to be
retrieved.

stringExpression A string type specifying the name of the
Interface object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,

OpenLNS Programmer's Reference 402

you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

LdrfLanguage
The LdrfLanguage object represents the information OpenLNS has about a supported
language. All properties in this object are read only. The following table summarizes the
LdrfLanguage object.

Description The information OpenLNS has about a supported language.

Added to API LNS Release 3.0.

Accessed Through LdrfLanguages.

Default Property Name property.

Methods None.

Properties • ClassId
• Extension
• LanguageCode
• LanguageId
• LdrfId
• Name
• Parent

Methods
The LdrfLanguage object does not contain any methods.

OpenLNS Programmer's Reference 403

Properties
The LdrfLanguage object contains the following properties:

• ClassId
• Extension
• LanguageCode
• LanguageId
• LdrfId
• Name
• Parent

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
LdrfLanguage object in the
ConstClassIds constant:
83 lcaClassIdLdrfLanguage

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Extension
Summary Contains the three character string indicating the language

that this LdrfLanguage object represents. This three letter
sting is is identical to the string entered in the
ResourceLanguageId property.

Availability Local, full, lightweight, and independent clients.

Syntax extension = ldrfObject.Extension
Element Description

extension The three character string identifying
the language.
Network variable types, configuration

OpenLNS Programmer's Reference 404

property types, functional profiles, and
enumeration types can all reference
text information used to describe their
name, units, and function. This text
information is contained in separate
language files.
There is one language file for every
language supported by a resource file
set. When a language file is translated,
the references contained in the network
variable types, configuration property
types, and functional profiles still point
to the appropriate strings.
The file extension of each language file
depends on the language, and is one of
the following:

Czech csy
Danish dan
Dutch (Belgian) nlb
Dutch (default) nld
English (UK) eng
English (US) enu
Finnish fin
French (Belgian) frb
French (Canadian) frc
French (default) fra
French (Swiss) frs
German (Austrian) dea
German (default) deu
German (Swiss) des
Greek ell
Hungarian hun
Icelandic isl
Italian (default) ita
Italian (Swiss) its
Norwegian (Bokmal) nor
Polish plk
Portuguese (Brazilian) ptb
Portuguese (default) ptg
Russian rus
Slovak sky
Spanish (default) esp
Spanish (Mexican) esm
Swedish sve

object The object whose Extensions collection
is being returned.

OpenLNS Programmer's Reference 405

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

LanguageCode
Summary Contains the 3-letter language code for the language to which

the LdrfLanguage object applies.
Each LdrfLanguage object contains information about a
language. For example, "ENU" is used for U.S. English.

Availability Local, full, lightweight, and independent clients.

Syntax ldrfCode = ldrfObject.LanguageCode
Element Description

OpenLNS Programmer's Reference 406

ldrfCode A 3-letter identifier for the language
that the LdrfLanguage object applies to.
The available language codes are as
follows:

Czech CSY
Danish DAN
Dutch (Belgian) NLB
Dutch (default) NLD
English (UK) ENG
English (US) ENU
Finnish FIN
French (Belgian) FRB
French (Canadian) FRC
French (default) FRA
French (Swiss) FRS
German (Austrian) DEA
German (default) DEU
German (Swiss) DES
Greek ELL
Hungarian HUN
Icelandic ISL
Italian (default) ITA
Italian (Swiss) ITS
Norwegian (Bokmal) NOR
Polish PLK
Portuguese (Brazilian) PTB
Portuguese (default) PTG
Russian RUS
Slovak SKY
Spanish (default) ESP
Spanish (Mexican) ESM
Swedish SVE

ldrfObject The LdrfLanguage object to be acted on.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.20

LdrfId
Summary Contains the 32-bit language device resource file ID for the

language represented by this LdrfLanguage object.

Availability Local, full, lightweight, and independent clients.

Syntax ldrfId = ldrfObject.LdrfId
Element Description

OpenLNS Programmer's Reference 407

ldrfId The 32-bit ID representing this
language.
This value is not normally used by
OpenLNS clients unless they directly
access the Language Device Resource
File API.

ldrfObject The LdrfLanguage object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

OpenLNS Programmer's Reference 408

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

LdrfLanguages
The LdrfLanguages object is a collection of LdrfLanguage objects. This collection represents
all the languages known by OpenLNS and the Language Device Resource File API. This list
can be used in conjunction with the ResourceLanguageId to select a language. The following
table summarizes the LdrfLanguages object.

Description Represents a collection of LdrfLanguage objects.

Added to API LNS Release 3.0.

Accessed Through ObjectServer object

Default Property Item property.

Methods None.

Properties • ClassID
• Count
• Item
• Parent
• _NewEnum

Methods
The LdrfLanguages object does not contain any methods.

Properties
The LdrfLanguages object contains the following properties:

• ClassID
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to

OpenLNS Programmer's Reference 409

Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
LdrfLanguages object in the
ConstClassIds constant:
84 lcaClassIdLdrfLanguages

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a LdrfLanguage object from a LdrfLanguages

collection. You can retrieve a LdrfLanguage object from its
LdrfLanguages collection by passing its index (ordinal
position) within that collection as the argument for the Item
property. Index values start at 1. You can also retrieve a
LdrfLanguage object in LdrfLanguages collections with the
Name property by passing the object’s name as a string
expression

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to

OpenLNS Programmer's Reference 410

Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The LdrfLanguage object retrieved from
the collection.

collObject The LdrfLanguages collection object to
be acted on.

index A Long type specifying the ordinal
index of the LdrfLanguage object to be
retrieved.

stringExpression A string type specifying the name of the
LdrfLanguage object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,

OpenLNS Programmer's Reference 411

you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

LonMarkAlarm
The LonMarkAlarm object contains the alarm status information for a LonMarkObject
(functional block). The following table summarizes the LonMarkAlarm object.

Description Contains the alarm status information for a LonMarkObject
(functional block).

Added to API Prior to LNS Release 3.0.

Accessed Through LonMarkObject object.

Default Property None.

Methods None.

Properties • AlarmType
• ClassId
• IndexToSNVT
• LimitValue
• Location
• ObjectId
• Parent
• PriorityLevel
• TimeStamp
• Value

OpenLNS Programmer's Reference 412

Methods
The LonMarkAlarm object does not contain any methods.

Properties
The LonMarkObject object contains the following properties:

• AlarmType
• ClassId
• IndexToSNVT
• LimitValue
• Location
• ObjectId
• Parent
• PriorityLevel
• TimeStamp
• Value

AlarmType
Summary Identifies the alarm condition represented by the

LonMarkAlarm object.

Availability Local, full, and lightweight clients.

Syntax typeValue = lmAlarm.AlarmType
Element Description

lmAlarm The LonMarkAlarm object to be acted
on.

typeValue The type of alarm condition represented
by the LonMarkAlarm object.
The possible values for this element,
which are contained in the
ConstAlarmTypes constant, are as
follows:
0 lcaAlarmTypeNoCondition
1 lcaAlarmTypeAlarmCondition
2
lcaAlarmTypeTotalServiceAlarm1
3
lcaAlarmTypeTotalServiceAlarm2
4
lcaAlarmTypeTotalServiceAlarm3
5 lcaAlarmTypeLowLimitClear1
6 lcaAlarmTypeLowLimitClear2
7 lcaAlarmTypeHighLimitClear1
8 lcaAlarmTypeHighLimitClear2
9 lcaAlarmTypeLowLimitAlarm1
10 lcaAlarmTypeLowLimitAlarm2
11 lcaAlarmTypeHighLimitAlarm1
12 lcaAlarmTypeHighLimitAlarm2

OpenLNS Programmer's Reference 413

255 lcaAlarmTypeNull

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
LonMarkAlarm object in the
ConstClassIds constant:
45 lcaClassIdLonMarkAlarm

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

IndexToSNVT
Summary Contains the device index number of the network variable on

the LonMarkObject (functional block) that caused the current
alarm condition.

You can update the LonMarkObject with current information
by writing the lcaLonMarkObjectRequestUpdateAlarm
(4) value to the Request property of the LonMarkObject that
contains the LonMarkAlarm.
You can determine the device index number of a
NetworkVariable by reading its Index property.

Availability Local, full, and lightweight clients.

Syntax deviceIndex = LonMarkAlarm.IndexToSNVT
Element Description

deviceIndex The device index number of the
network variable on the

OpenLNS Programmer's Reference 414

LonMarkObject that caused the
current alarm condition.

LonMarkAlarm The LonMarkAlarm object being acted
upon.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

LimitValue
Summary Represents the data limit that the DataValue object was

compared against in determining that an alarm condition
exists.
The format for this property is determined by the
AlarmFormat property contained in the LonMarkObject
object which contains the specified LonMarkAlarm object.

Availability Local, full, and lightweight clients.

Syntax limitValue = lmaObject.LimitValue
Element Description

limitValue The limit that was exceeded

lmaObject The LonMarkAlarm object to be acted
on.

Data Type Variant.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Location
Summary Contains the value of the specified LonMarkAlarm object's

6-byte location as a string.

Availability Local, full, and lightweight clients.

Syntax locationValue = lmaObject.Location
Element Description

locationValue The location as a string.

lmaObject The LonMarkAlarm object to be acted
on.

Data Type String (6 bytes).

Read/Write Read only.

Added to API See the LonMark Application Layer Interoperability
Guidelines for more information on the location field stored
in LonMark devices.

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

OpenLNS Programmer's Reference 415

ObjectId
Summary Returns the ID of the LonMarkObject to which this

LonMarkAlarm applies.

On static interfaces, objects are numbered from 0 to n-1,
where n is the number of objects in an AppDevice. On
dynamic interfaces, the object index may be greater than or
equal to the value n (the number of objects on the device). See
the LonMark Application Layer Interoperability Guidelines
for more information.

You can use the LonMarkObjects collection’s ItemByIndex
method to access the LonMarkObject containing the network
variable. You can use the value stored in this property as the
memNumVal element when you call the ItemByIndex
method.

Availability Local, full, and lightweight clients.

Syntax objectIdValue = lmaObject.ObjectId
Element Description

lmaObject The LonMarkAlarm object to be acted
on.

objectIdValue The object ID of the LonMarkObject
object to which this LonMarkAlarm
applies.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

OpenLNS Programmer's Reference 416

this property exists for an object as soon as the object is
added to the API.

PriorityLevel
Summary Returns the priority level of the Alarm.

Availability Local, full, and lightweight clients.

Syntax priorityLevelValue = lmaObject.PriorityLevel
Element Description

lmaObject The LonMarkAlarm object to be
acted on.

priorityLevelValue The priority level of the alarm as an
integer. The priority level may be
returned as one of the following
enumerations:
0 PR_LEVEL_0
1 PR_LEVEL_1
2 PR_LEVEL_2
3 PR_LEVEL_3
4 PR_1
5 PR_2
6 PR_3
7 PR_4
8 PR_6
9 PR_8
10 PR_10
11 PR_16
-1 PR_NUL = -1

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

TimeStamp
Summary Returns a formatted string that represents the time that the

alarm occurred.

Availability Local, full, and lightweight clients.

Syntax timeStampValue = lmaObject.TimeStamp
Element Description

lmaObject The LonMarkAlarm object to be acted
on.

timeStampValue The time at which the alarm occured
as a string. This element uses the
following format:
YYYY/MM/DD HH:MM:SS:MSS

OpenLNS Programmer's Reference 417

For example, the millisecond before
the end of this millennium would be:
2999/12/31 23:59:59:999.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Value
Summary Represents the data value that caused the alarm condition.

The format of this property depends upon the AlarmFormat
of the LonMarkObject object containing this LonMarkAlarm
object. By default, it returns a string of 4 hex byte values.

Availability Local, full, and lightweight clients.

Syntax alarmValue = lmaObject.Value
Element Description

alarmValue The value which caused the alarm.

lmaObject The LonMarkAlarm object to be acted
on.

Data Type Variant.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

LonMarkObject (Functional Block)
A functional block represents a collection of network variables and configuration properties
on a device that perform a related function. For example, a digital input device with four
switches could contain one function block for each switch. In OpenLNS, functional blocks are
represented by LonMarkObject objects.
Functional profiles defining standard LonMarkObjects (SFPTs) are published by the
LonMark Interoperability Association. Custom LonMarkObjects can be defined with
user-defined functional profile templates (UFPTs).

The following table summarizes the LonMarkObject object.

Description A set of network variables and configuration properties on a
device that perform a related function.

Added to API Prior to LNS Release 3.0.

Accessed Through LonMarkObjects collection object.

Default Property Name

Methods • AssignNetworkVariable
• MoveToInterface
• UnassignNetworkVariable

Properties • AlarmFormat

OpenLNS Programmer's Reference 418

• ClassId
• ComponentApps
• ConfigProperties
• Description
• Extensions
• FuncProfileDescription
• FuncProfileIsDerived
• FuncProfileName
• FuncProfileProgrammaticName
• Index
• IsDynamic
• LonMarkAlarm
• Mode
• Name
• NetworkVariables
• Parent
• ParentInterface
• PrincipalNv
• ProgrammaticName
• ReportMask
• Request
• SelfTestResults
• Status
• TypeIndex
• TypeSpec

Methods
The LonMarkObject contains the following methods.

• AssignNetworkVariable
• MoveToInterface
• UnassignNetworkVariable

AssignNetworkVariable
Summary Assigns a dynamic network variable to a LonMarkObject

object.

You can assign a dynamic NetworkVariable to any dynamic
LonMarkObject on the same interface. A network variable or
LonMarkObject is considered dynamic if it was added to the
device interface, and is not part of the DeviceTemplate used
by that device. You can check if a LonMarkObject or network
variable is dynamic by reading the object’s IsDynamic
property.

If a LonMarkObject is static, you can still assign dynamic
network variables to it if the
SupportsDynamicNvsOnStaticLMOs property of the Interface
containing the LonMarkObject is set to True. If you attempt
to assign a network variable to a static LonMarkObject that
does not support dynamic network variables, the NS, #285
lcaErrNsLmobjNotDynamic exception will be thrown.

OpenLNS Programmer's Reference 419

The network variable and LonMarkObject must belong to the
same device interface for this method to succeed. If they do
not belong to the same interface, the LCA, #4
lcaErrInvalidOleObject exception will be thrown. You can
move a LonMarkObject or network variable from one
interface to another with the MoveToInterface method.
Notes: If you use this method to assign a static network
variable to a dynamic LonMarkObject, the NS, #286
lcaErrNsLmobjNvNotDynamic exception will be thrown.
In addition, a network variable can only be assigned to one
LonMarkObject at a time.
If you attempt to assign a network variable to more than one
LonMarkObject, the NS, #164 lcaErrNsNvmtInuse
exception will be thrown.

You can use the UnassignNetworkVariable method to remove
a network variable from a LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax LonMarkObject.AssignNetworkVariable networkVariable,
memberNumber, manufacturerAssigned

Element Description

LonMarkObject The LonMarkObject to be acted
upon.

networkVariable The NetworkVariable object
being assigned to the
LonMarkObject object.

memberNumber A Long value indicating the
member number that will be
used by the network variable.
The member number must be a
unique value between 1–4096.

manufacturerAssigned A Boolean value indicating
whether the member number
assigned to the network variable
is a manufacturer-assigned
member number (True), or a
LonMark-assigned member
number (False).

Added to API LNS Release 3.20.

MoveToInterface
Summary Moves a dynamic LonMarkObject from one custom interface

on a device to another.

Each AppDevice on a network includes an Interface property
that contains the device’s main interface, and an Interfaces
collection that contains the custom interfaces that have been
added to the device dynamically. The interfaces each contain

OpenLNS Programmer's Reference 420

network variables and LonMarkObjects that reflect the
device’s functionality on the network.

You can use the MoveToInterface method to move a dynamic
network variable or LonMarkObject from one custom
interface on a device to another. An advantage of this is that
you do not have to delete the network variable or
LonMarkObject from the first custom interface, and then add
it back to the second one.
Another advantage of this method is that you can use it to
remove a dynamic network variable from a device’s main
interface. You cannot use the Remove method to remove a
network variable from NetworkVariables collection on a
device's main interface, even if it is a dynamic network
variable. However, you can use the MoveToInterface method
to move a dynamic network variable from the main interface
to a custom interface. Once you have done so, you can remove
the network variable from the custom interface, and its
removal will be propagated to the main interface.
The ability to move a dynamic network variable or
LonMarkObject from one interface to another may also be
useful after you have upgraded a device’s interface with the
Upgrade method. Some static network variables and
LonMarkObjects that existed on the old interface, but not the
new one, will be converted to dynamic and stored in a custom
Interface object created during the upgrade. You can use this
method to move those objects back to their correct interface.
For more information on this, see the online help for the
Upgrade method.
If either the main interface, or an interface from another
device, is specified as the new interface for the network
variable or LonMarkObject, then the LCA, #4
lcaErrInvalidOleObject exception will be thrown.

If you call this method on a static LonMarkObject or network
variable, then the LCA, #119
lcaErrInterfaceNotModifyable exception will be thrown.
You can determine if a NetworkVariable or LonMarkObject
is dynamic by reading the object’s IsDynamic property.
If you attempt to call this method on a network variable that
has been previously assigned to a LonMarkObject with the
AssignNetworkVariable method, then the operation will fail,
and the NS, #164 lcaErrNsNvmtInUse exception will be
thrown, unless the LonMarkObject object the network
variable has been assigned to is a member of the target
interface specified as the newInterface element.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 421

Syntax object.MoveToInterface newInterface

Element Description

object The LonMarkObject to be acted
upon.

newInterface The Interface object to which the
object should be moved.

Added to API LNS Release 3.20.

UnassignNetworkVariable
Summary Removes a dynamic network variable from a LonMarkObject

object. The network variable to be removed must have first
been added to the LonMarkObject with the
AssignNetworkVariable method.
If you attempt to remove a network variable that has not
previously been added to the LonMarkObject, the NS, #108
lcaErrNsLmobjMemNotFound exception will be thrown.
If you attempt to remove a static network variable from a
LonMarkObject, the NS, #286
lcaErrNsLmobjNvNotDynamic exception will be thrown.

You can check if a LonMarkObject or network variable is
dynamic by reading the object’s IsDynamic property.

Availability Local, full, and lightweight clients.

Syntax LonMarkObject.UnassignNetworkVariable networkVariable

Element Description

LonMarkObject The LonMarkObject to be acted
upon.

networkVariable The NetworkVariable object being
assigned to the LonMarkObject
object.

Added to API LNS Release 3.20.

Properties
The LonMarkObject contains the following properties:

• AlarmFormat
• ClassId
• ComponentApps
• ConfigProperties
• Description
• Extensions
• FuncProfileDescription
• FuncProfileIsDerived
• FuncProfileName
• FuncProfileProgrammaticName

OpenLNS Programmer's Reference 422

• Index
• IsDynamic
• LonMarkAlarm
• Mode
• Name
• NetworkVariables
• Parent
• ParentInterface
• PrincipalNv
• ProgrammaticName
• ReportMask
• Request
• SelfTestResults
• Status
• TypeIndex
• TypeSpec

AlarmFormat
Summary Determines the format of the LonMarkAlarm object

contained by this LonMarkObject.

A LonMarkAlarm object contains two properties that
determine the reading that caused the alarm (Value) and the
limit it exceeded (LimitValue). Both propeties are 4-byte
fields, but there is no standard format for them. This
property allows you to determine how those properties will be
formatted for the LonMarkAlarm object associated with this
LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax formatValue = lmObject.AlarmFormat
Element Description

formatValue A Long value identifying the format the
LonMarkAlarm object will have.
The possible values for this element,
which are stored in the
ConstAlarmFormats constant, are as
follows:
0 lcaAlarmFormatBinaryHexStr
Hexadecimal binary format. This is the
default value.
1 lcaAlarmFormatShort
1-byte integer.
2 lcaAlarmFormatShortStr
1-byte decimal string.
3 lcaAlarmFormatUshort
1-byte unsigned integer.

OpenLNS Programmer's Reference 423

4 lcaAlarmFormatUShortStr
1-byte unsigned decimal string.
5 lcaAlarmFormatLong
2-byte integer.
6 lcaAlarmFormatLongStr
2-byte decimal string.
7 lcaAlarmFormatUlong
2-byte unsigned integer.
8 lcaAlarmFormatULongStr
2-byte unsigned decimal string.
9 lcaAlarmFormatS32
4-byte integer.
10 lcaAlarmFormatS32Str
4-byte decimal string.
11 lcaAlarmFormatFloat
4-byte real.
12 lcaAlarmFormatFloatStr
4-byte real format string.
13 lcaAlarmFormatBinary
4 binary bytes.

lmObject The LonMarkObject to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
LonMarkObject object in the
ConstClassIds constant:
28 lcaClassIdLonMarkObject

OpenLNS Programmer's Reference 424

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ComponentApps
Summary Contains the ComponentApps collection object associated

with the specified LonMarkObject.

The ComponentApps collection is a list of LNS plug-in
commands that are associated with a particular object type.

Note that all LonMarkObject objects contain a
ComponentApps property; however, the behavior of this
property is unspecified when accessed through a
LonMarkObject object.

Availability Local, full, and lightweight clients.

Syntax appsCollection = object.ComponentApps
Element Description

appsCollection The ComponentApps collection to be
returned.

object The LonMarkObject to be acted on.

Data Type ComponentApps collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ConfigProperties
Summary Contains the ConfigProperties collection object associated

with the specified LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax configPropsCollection = LonMarkObject.ConfigProperties
Element Description

configPropsCollection The returned ConfigProperties
collection.

LonMarkObject The LonMarkObject to be acted on

Data Type ConfigProperties collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 425

Description
Summary Stores description information about the LonMarkObject

object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the
LonMarkObject.

object The LonMarkObject to be acted on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

Extensions
Summary Contains the Extensions collection object associated with the

specified LonMarkObject.

This property returns an Extensions collection. The objects
in this collection represent user data reserved for
manufacturers. Each object is identified with a unique
identifier set by the manufacturer.

Availability Local, full, lightweight, and independent clients.

Syntax extensionsColl = object.Extensions
Element Description

extensionsColl The Extensions collection object.

object The object whose Extensions
collection is being returned.

Data Type Extensions collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 426

FuncProfileDescription
Summary Provides a desciptive comment of the functional profile

associated with the LonMarkObject.
This property is accessed from the functional profile template
file associated with the object.

This property is language dependent. Set the System object's
ResourceLanguageId to control the language.

Availability Local, full, and lightweight clients.

Syntax description = object.FuncProfileDescription
Element Description

object The LonMarkObject to be acted on.

description The returned functional profile
description string.

Data Type String.

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

FuncProfileIsDerived
Summary Indicates whether the user-defined functional profile

template (UFPT) associated with the LonMarkObject inherits
from a standard functional profile template (SFPT).

Availability Local, full, and lightweight clients.

Syntax isFuncProfileDerivedFlag = object.FuncProfileIsDerived
Element Description

isFuncProfileDerivedFla
g

A True of False value
indicating whether the
functional profile associated
with the functional block is
derived from an SFPT.

object The LonMarkObject to be acted
on.

Data Type Boolean.

Read/Write Read-only.

Added to API OpenLNS.

OpenLNS Programmer's Reference 427

FuncProfileName
Summary Returns the functional profile name associated with the

LonMarkObject.
This property is accessed from the functional profile template
file associated with the object. The name returned by this
property is accessed from the functional profile template file
associated with this object.

This property is language dependent. Set the System object's
ResourceLanguageId to control the language.

Availability Local, full, and lightweight clients.

Syntax typeNameValue = object.FuncProfileName
Element Description

object The LonMarkObject to be acted on.

typeNameValue The functional profile name to be
returned.

Data Type String.

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

FuncProfileProgrammaticName
Summary Returns the functional profile programmatic name associated

with the LonMarkObject.
This name is accessed from the functional profile template
file associated with the object. The programmatic name is
the base name stored for the object; it is not language
dependent like the FuncProfileName property.

Availability Local, full, and lightweight clients.

Syntax progNameValue = Object.FuncProfileProgrammaticName
Element Description

progName The functional profile programmatic
name of the object.

Object The LonMarkObject to be acted on.

Data Type String.

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

Index
Summary Stores the device index number of the LonMarkObject. This

is the index number assigned to the LonMarkObject on the
device containing the object.

OpenLNS Programmer's Reference 428

Availability Local, full, and lightweight clients.

Syntax indexValue = lmObject.Index
Element Description

lmObject The LonMarkObject to be acted on.

indexValue The device index number of the
LonMarkObject.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

IsDynamic
Summary Indicates whether the LonMarkObject is dynamic. A

LonMark object is considered to be dynamic if it was
manually added to the interface it belongs to, rather than
being part of the static interface defined by a device
template.

Availability Local, full, and lightweight clients.

Syntax isDynamicFlag = object.IsDynamic
Element Description

isDynamicFlag A True of False value indicating
whether the object is dynamic.

TRUE. The LonMarkObject object is
dynamic.

FALSE. The LonMarkObject object is
static.

object The MessageTag object to be acted on.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

LonMarkAlarm
Summary Contains the current alarm condition for the LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax lmAlarm = lmObject.LonMarkAlarm
Element Description

lmAlarm The LonMarkAlarm object to be
returned.

lmObject The LonMarkObject to be acted upon.

Data Type LonMarkAlarm object.

OpenLNS Programmer's Reference 429

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Mode
Summary Returns the scope of the functional profile template resource

file that defines the LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax classMode = lmObject.Mode
Element Description

classMode The scope of the functional profile
template resource file that defines the
LonMarkObject.
The possible values for this property,
which are stored in the
ConstResourceScope constant (and in
the ConstConfigPropertyModes constant
for LNS versions prior to LNS Release
3.20), are as follows:
0 lcaResourceScopeStandard
Applies to all devices.
1 lcaResourceScopeClass
Applies to all devices of a specified
device class from any manufacturer.
2 lcaResourceScopeSubclass
Applies to all devices of a specified
device class and device subclass from
any manufacturer.
3 lcaResourceScopeMfg
Applies to all devices of a specified
manufacturer.
4 lcaResourceScopeMfgClass
Applies to all devices of a specified
manufacturer and device class.
5 lcaResourceScopeMfgSubClass
Applies to all devices of a specified
manufacturer, device class and device
subclass.
6 lcaResourceScopeMfgModel
Applies to all devices of a specified
manufacturer, device class, device
subclass and model.

OpenLNS Programmer's Reference 430

-1 lcaResourceScopeUnknown
The scope of the resource file is not
known, or could not be found.
-2 lcaResourceScopeAutoDetermination
Select this value to have LNS determine
the value of the Mode property for the
LonMarkObject automatically. If you
select this value, OpenLNS will iterate
through all the available resource files
from most specific to most general (i.e.
highest scope to lowest scope) until it
finds the functional profile template
resource file containing the
LonMarkObject object’s definition.
It will then assign the proper value to
the Mode property. If OpenLNS is
unable to determine the proper scope
value, it will set the Mode property to
lcaResourceScopeUnknown (-1).
When importing a device interface from
an external interface file, previous
versions of LNS would set the Mode
property of all LonMarkObject objects
defined in the device interface to one of
two values.

• It would set the Mode property to 0
if the LonMarkObject object’s
TypeIndex property was in the
range of standard Functional Profile
Template (FPT) indices.

• It would set the Mode property to 3
if the TypeIndex property was in the
range of user-defined FPT indices.

LNS Release 3.20 features automatic
scope determination, which means
OpenLNS will now search the set of
installed and cataloged resource files to
find the most device-specific match for
the FPT, and set the Mode property
based on this determination when the
device interface is imported. If no match
is found, OpenLNS will set the Mode
property to
lcaResourceScopeUnknown (-1).

lmObject The LonMarkObject to be acted on.

Data Type Integer.

Read/Write Read/write.

OpenLNS Programmer's Reference 431

Added to API Prior to LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

NetworkVariables
Summary Returns the NetworkVariables collection object representing

the network variables in that LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax nvCollection = lmObject.NetworkVariables
Element Description

nvCollection The returned NetworkVariables
collection.

lmObject The LonMarkObject object to be acted
on

Data Type NetworkVariables collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

OpenLNS Programmer's Reference 432

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

ParentInterface
Summary Returns the Interface object to which the LonMarkObject

belongs.

Each AppDevice on a network contains an Interface property
containing the device’s main interface, and an Interfaces
collection containing the custom interfaces that have been
added to the device dynamically. The interfaces each contain
network variables and LonMarkObjects that reflect the
device’s functionality on the network.

The ParentInterface property returns the Interface object to
which the LonMarkObject belongs. In the case of static
LonMarkObjects and network variables, this property
returns the main device interface or device template the
object is associated with. In the case of a dynamic
LonMarkObject and network variables, it returns the custom
interface to which the object belongs.

The ParentInterface property is read-only. However, you can
move a dynamic network variable or LonMarkObject from
one custom interface to another with the MoveToInterface
method.

Availability Local, full, and lightweight clients.

Syntax interface = object.ParentInterface
Element Description

interface The Interface object returned by the
property.

object The LonMarkObject to be acted upon.

Data Type Interface object.

Read/Write Read only.

OpenLNS Programmer's Reference 433

Added to API LNS Release 3.20.

PrincipalNv
Summary Returns the principal NetworkVariable object associated with

this LonMarkObject object.
This information is accessed from the functional profile
template file associated with this LonMarkObject object.

Availability Local, full, and lightweight clients.

Syntax nvObject = lmObject.PrincipalNv
Element Description

lmObject The LonMarkObject object to be acted
on.

nvObject The principal network variable of the
LonMarkObject object.

Data Type NetworkVariable object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ProgrammaticName
Summary Returns the programmatic name of the LonMarkObject.

This property contains the orignal base name of the
LonMarkObject or network variable as "programmed" in the
device containing the object.

• For static LonMarkObject objects, LNS initially acquires
the name from the functional profile template file or
external interface associated with the device.

• For dynamic LonMarkObject objects, you will specify the
name to use when you create the object with the
appropriate Add method.

Initially, the Name property, which represents the user name
of the LonMarkObject, will also be set to the same value as
the ProgrammaticName property. The Name property can be
subsequently changed for all LonMarkObject objects,
allowing OpenLNS applications to create their own
identifying names for those objects.
This property can be a maximum of 16 characters long, and
must conform to the character restrictions defined in version
3.3 and later of the LonMark Application Layer
Interoperability Guidelines. You may not use the following
characters in the ProgrammaticName property: the forward
slash (/), back slash (\), period (.), and colon (:).

Availability Local, full, and lightweight clients.

Syntax progName = Object.ProgrammaticName

OpenLNS Programmer's Reference 434

Element Description

progName The programmatic name of the object.

Object The LonMarkObject to be acted on.

Data Type String.

Read/Write Read-only for static LonMarkObject objects. Read/write for
dynamic LonMarkObject objects. You can check if a
LonMarkObject is dynamic or static by reading the
IsDynamic property.
When writing to this property, you should note that some
devices, such as the SmartServer, require that all network
variables within the device have a unique programmatic
name. In addition, all network variables contained within a
custom Interface object must have unique programmatic
names. If you attempt to assign a duplicate programmatic
name to a network variable on such a device, the operation
will fail, and the LCA, #132
lcaErrUniqueNvNameRequired exception will be thrown.

Added to API Prior to LNS Release 3.0.

ReportMask
Summary Returns an ObjectStatus object which reports which

LonMark status attributes are supported by this
LonMarkObject.

Some LonMarkObject objects do not support all of the status
attributes contained in an ObjectStatus object. You can use
the ReportMask property to determine which ones are not
supported. If you access an ObjectStatus object through the
ReportMask property, the object represents a report mask. In
this case, the values of each property of the ObjectStatus
object reflect whether or not the LonMarkObject supports the
related status attribute. Use the Status property to retrieve
an ObjectStatus object you can use to read the actual values
of the supported attributes.

For example, consider the AlarmNotifyDisabled property of
the ObjectStatus object. The AlarmNotifyDisabled property
contained in an ObjectStatus object accessed through the
Status property of a LonMarkObject indicates whether alarm
notification has been disabled on the LonMarkObject. The
AlarmNotifyDisabled property contained in an ObjectStatus
object accessed through the ReportMark property of a
LonMarkObject indicates whether or not you can disable
alarm notification on the LonMarkObject.

You can upate the information contained in the ObjectStatus
report mask object by writing the value
lcaLonMarkObjectRequestReportMask (5) to the
Request property of the LonMarkObject.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 435

Syntax statusObject = lmObject.ReportMask
Element Description

statusObject The ObjectStatus object returned.

lmObject The LonMarkObject object to be acted
on.

Data Type ObjectStatus object.

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

Request
Summary Requests a change to the functionality of a LonMarkObject,

or requests an update of the information contained in the
LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax lmoObject.Request requestValue
Element Description

lmoObject The LonMarkObject to be acted on.

requestValue A Long value identifying the request being
made. This element identifies the action
that is to be made to the LonMarkObject.
The values for this element, which are
contained in the
ConstLonMarkObjectRequest constant, are
as follows:
0 lcaLonMarkObjectRequestNormal

Returns the LonMarkObject to normal
status after you have disabled or overridden
it by writing the
lcaLonMarkObjectRequestDisable (1)
or lcaLonMarkObjectRequestOverride
(6) values to this property.
1 lcaLonMarkObjectRequestDisabled

Disables the LonMarkObject. You can
return the LonMarkObject to normal
condition by writing the
lcaLonMarkObjectRequestNormal
2
lcaLonMarkObjectRequestUpdateStatus

Requests the status of the LonMarkObject.
In this case, the Status property of the
object will be updated to reflect its current
state.

OpenLNS Programmer's Reference 436

3 lcaLonMarkObjectRequestSelfTest
Performs a self-test on the object. The
SelfTestResults property of the
LonMarkObject will be updated to reflect
the results of the test.
4
lcaLonMarkObjectRequestUpdateAlarm
Updates the alarm status of the
LonMarkObject. In this case, the
LonMarkAlarm property of the
LonMarkObject will be updated to reflect
the current alarm status of the
LonMarkObject on the network.
5
lcaLonMarkObjectRequestReportMask
Reports the status bit mask of the
LonMarkObject. In this case, the
ReportMask property of the LonMarkObject
will be updated with current information.
6 lcaLonMarkObjectRequestOverride

Overrides the LonMarkObject.
7 lcaLonMarkObjectRequestEnable

Enables the LonMarkObject.
8
lcaLonMarkObjectRequestRemoveOve
rride

Cancels an override of the LonMarkObject,
without changing the enabled/disabled state
of the LonMarkObject. You can initiate an
override by writing the
lcaLonMarkObjectRequestOverride (6)
value to the Request property. You can
cancel an override, and re-enable the
LonMarkObject, by writing the
lcaLonMarkObjectRequestNormal (0)
value to this property.
9
lcaLonMarkObjectRequestClearStatus

Clears the status of the LonMarkObject. In
this case, the information contained in the
Status property of the LonMarkObject will
be cleared.
10
lcaLonMarkObjectRequestClearAlarm
Clears the alarm state of the
LonMarkObject. The information contained

OpenLNS Programmer's Reference 437

in the LonMarkAlarm property of the
LonMarkObject will be cleared until the
next alarm condition occurs.
11
lcaLonMarkObjectRequestAlarmNotify
Enabled
Enables alarm notification for the
LonMarkObject.
12
lcaLonMarkObjectRequestAlarmNotify
Disabled
Disables alarm notification for the
LonMarkObject.
13 lcaLonMarkObjectRequestManual
Control

Places the LonMarkObject under manual
control.
14 lcaLonMarkObjectRequestRemote
Control

Places the LonMarkObject under remote
control.
15 lcaLonMarkObjectRequestProgram
Reserved.
16
lcaLonMarkObjectRequestClearReset

Cancels the reset of the LonMarkObject.
You can initiate a reset by writing the
lcaLonMarkObjectRequestReset (17)
property to the Request property.
17 lcaLonMarkObjectRequestReset

Resets the LonMarkObject. You can check
whether or not the reset is complete by
reading the object’s ResetComplete property.

Data Type Long.

Read/Write Write-only.

Added to API Prior to LNS Release 3.0.

SelfTestResults
Summary Returns an ObjectStatus object that reports the results of a

self-test request of this object.
Getting the value of this object automatically runs the
object’s self-test. However, if the self-test takes more than 20
seconds, an exception will be raised.

OpenLNS Programmer's Reference 438

To run a self-test on an object where the result may take
more than 20 seconds to complete, follow these steps:

1. Request a self-test of the LonMarkObject by writing the
lcaLonMarkObjectRequestSelfTest (3) value to the
object’s Request property.

2. After the exception is raised, poll the SelfTestInProgress
property of the ObjectStatus object until it returns False.

3. Check the FailSelfTest property of the ObjectStatus
object to determine why the test failed.

Note: All devices that do not comply with version 3.0 or later
of the LonMark Application-Layer Interoperability Guidelines
do not support self-tests. Some devices that comply with
version 3.0 or later of the LonMark Application-Layer
Interoperability Guidelines may not support self-tests.

You can use the ReportMask property to determine if a device
supports self-tests. If you attempt to read this property and
perform a self-test on a device that does not support
self-tests, an exception will be thrown.

Availability Local, full, and lightweight clients.

Syntax statusObject = lmoObject.SelfTestResults
Element Description

lmoObject The LonMarkObject object to be acted on.

statusObject The ObjectStatus object to be returned.

Data Type ObjectStatus object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 439

Status
Summary Stores an ObjectStatus object which contains information

reflecting the current status of the LonMarkObject object.
Some LonMarkObjects do not support all of the status
attributes reflected in an ObjectStatus object, and so some of
the information contained in this object may not be useful.

You can use the ReportMask property of the LonMarkObject
to determine which status attributes are supported. The
ReportMask property also contains an ObjectStatus object.
However, if you access an ObjectStatus object through the
ReportMask property, the object represents a report mask. In
this case, the values of most properties of the ObjectStatus
object reflect whether or not the LonMarkObject supports the
related status attribute.

For example, consider the ResetComplete property of the
ObjectStatus object.

• The ResetComplete property contained in an ObjectStatus
object accessed through the Status property of a
LonMarkObject indicates whether the most recent reset
of the LonMarkObject has completed.

• The ResetComplete property contained in an ObjectStatus
object accessed through the ReportMask property of a
LonMarkObject indicates whether the LonMarkObject
can be reset.

Note: Some properties contain the same information,
whether the LonMarkObject represents a report mask or a
status report. These properties include the ClassId property,
the InvalidId property, the InvalidRequest property, the
ObjectId property, the Parent property and the Summary
property.

You can upate the information contained in the ObjectStatus
object accessed through the Status property by writing the
value lcaLonMarkObjectRequestUpdateStatus (2) to the
Request property of the LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax statusValue = lmObject.Status
Element Description

lmObject The LonMarkObject to be acted on.

statusValue The ObjectStatus object returned.

Data Type ObjectStatus object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 440

TypeIndex
Summary Returns the type index of the LonMark object.

Each LonMarkObject object uses a type defined in the
functional profile template resource files. This property
returns the index assigned to that type in the functional
profile template resource file containing its definition.

See the LonMark Application Layer Interoperability
Guidelines for more information on the different types of
functional profile templates you can associate with a
LonMarkObject.

Availability Local, full, lightweight, and independent clients.

Syntax typeIndexValue = lmoObject.TypeIndex
Element Description

lmoObject The LonMarkObject object to be acted
on.

typeIndexValue The type index for the specified
ConfigProperty object.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

TypeSpec
Summary Reurns the TypeSpec object associated with the

LonMarkObject. The TypeSpec property of a dynamic
LonMarkObject can only be specified when the functional
block is created.

The TypeSpec property cannot be modified once the
LonMarkObject has been created; however, the existing
TypeSpec object from a LonMarkObject can be modified and
used as a template for other NetworkVariable objects and for
creating additional dynamic LonMarkObject objects. The
TypeSpec object cannot be assigned back to the TypeSpec
property of an existing LonMarkObject.

The TypeSpec property for a static LonMarkObject including
a LonMarkObject belonging to a device template will be
inherited from the corresponding device external interface.

Availability Local, full, and lightweight clients.

Syntax typeSpecObject = lmoObject.TypeSpec
Element Description

lmoObject The LonMarkObject to be acted on.

typeSpec The TypeSpec object associated with
the LonMarkObject.

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

OpenLNS Programmer's Reference 441

Data Type TypeSpec object.

Read/Write Read only.

Added to API OpenLNS.

LonMarkObjects
A LonMarkObjects object is a collection of LonMarkObject objects. An instance of this
collection that is accessed through an Interface object contains the LonMarkObject
(functional block) objects that define that interface. You can use the ItemByIndex method,
the Item property, or the ItemByProgrammaticName method to retrieve a LonMarkObject
from the collection. The following table summarizes the LonMarkObjects collection object.

Description A collection of LonMarkObject objects.

Added to API Prior to LNS Release 3.0.

Accessed Through Interface object.

Default Property Item

Methods • Add
• AddEx
• AddFromTypeSpec
• ItemByIndex
• ItemByProgrammaticName
• Remove
• RemoveByIndex

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The LonMarkObjects object contains the following methods.

• Add
• AddEx
• AddFromTypeSpec
• ItemByIndex
• ItemByProgrammaticName
• Remove
• RemoveByIndex

Add
Summary Adds a dynamic LonMarkObject object to the custom

interface containing this collection.
A function block represents a collection of network variables
and configuration properties on a device that perform a
related function. For example, a digital input device with
four switches could contain one function block for each

OpenLNS Programmer's Reference 442

switch. In OpenLNS, function blocks are represented by
LonMarkObject objects.
Some custom device interfaces support dynamic
LonMarkObject objects, which means that you can add them
to the interface manually. You can determine if an interface
supports dynamic LonMarkObject objects by reading the
interface’s DynamicLonMarkObjectCapacity property. If the
device interface does not support dynamic function blocks,
this property will be set to 0, and use of the Add method will
cause the LCA, #119 lcaErrInterfaceNotModifyable
exception to be thrown.
If the device interface supports dynamic function blocks, the
DynamicLonMarkObjectCapacity property will be set to a
value greater than 0, and you can add function blocks to the
interface with this method.
Note that you cannot add LonMarkObjects to a device’s main
interface, although the DynamicLonMarkObjectCapacity
property of that Interface may be set to a non-zero value. The
main interface of a device is stored in its Interface property.
The custom interfaces of a devices are stored in its Interfaces
property.

The Name and ProgrammaticName properties of the new
LonMarkObject object will be set to match the name specified
as the fbName element.

The name assigned to the LonMarkObject objects on each
device must be unique. If you attempt to use a name that is
already used on a device when adding a new LonMarkObject
object, the operation will fail, and the LCA, #151
lcaErrUniqueNameRequired exception will be thrown.
Echelon recommends that you make sure all LonMarkObject
objects in the OpenLNS database have unique names.

Availability newLonMarkObject = LonMarkObjects.Add fbName, fbType

Syntax objectColl.Add name

Element Description

newLonMarkObjec
t

The LonMarkObject returned by the
function. This is the newly defined
LonMarkObject.

LonMarkObjects

The LonMarkObject collection to be
acted upon.

fbName The name of the function block to be
created. This can be a maximum of
16 characters long, and must conform
to the character restrictions defined
in version 3.3 the LonMark
Application Layer Interoperability
Guidelines. These restrictions are
that the name must not begin with a
number, and it cannot include square

OpenLNS Programmer's Reference 443

brackets ([]), periods (.) or commas
(,).

fbType Enter a value between 0-25,000. You
can use this value to identify the
functional profile template associated
with the new LonMarkObject.

See the LonMark Application Layer
Interoperability Guidelines for more
information on the different types of
functional profile templates you can
associate with a LonMarkObject.

Added to API Prior to LNS Release 3.0.

AddEx
Summary Adds a dynamic LonMarkObject object to a custom interface

containing this collection.

Availability Local, full, and lightweight clients.

Syntax newLonmarkObject = lonMarkObjects.AddEx(lmoName,
lmoType, programId, scope)
Element Description

newLonMarkObjec
t

The new LonMarkObject object to be
created.

lonMarkObjects The collection of LonMarkObjects
objects to be added to the custom
interface.

lmoName A String containing the name of the
LonMarkObject.

lmoType The FPT key of the LonMarkObject
to be created.

programId The program ID of the resource file
set in which the FPT is defined.

scope The scope of the resource file set
containing the FPT definition. An
appropriate exception will be thrown
if the type is not found in the
resource file set specified

Added to API OpenLNS.

AddFromTypeSpec
Summary Creates a new LonMarkObject using an existing TypeSpec

object. Validation is performed on the TypeSpec object
through a call to the Lookup method of the TypeSpec object.
An appropriate exception will be thrown if the FPT is not
found, if the type of the TypeSpec object object is not set to

OpenLNS Programmer's Reference 444

lcaTypeSpecLmo, or it is invalid in any other way.

Availability Local, full, and lightweight clients.

Syntax newLonmarkObject =
lonMarkObjects.AddFromTypeSpec(fbName, lmoTypeSpec)
Element Description

newLonMarkObjec
t

The new LonMarkObject object to be
created.

lonMarkObjects The collection of LonMarkObjects
objects to be added.

lmoName A String containing the name of the
LonMarkObject.

lmoTypeSpec The TypeSpec object to be used as
the source for the new
LonMarkObject.

Added to API OpenLNS.

ItemByIndex
Summary Retrieves a LonMarkObject object from a LonMarkObjects

collection. The LonMarkObject object to be retrieved must be
specified by its index value.

Availability Local, full, and lightweight clients.

Syntax itemObject = itemsColl.ItemByIndex index

Element Description

itemObject The LonMarkObject retrieved from the
collection.

itemsColl The LonMarkObjects collection to be
acted on.

index An Integer value specifying the Index
property of the LonMarkObject to be
retrieved.

Added to API LNS Release 3.0.

ItemByProgrammaticName
Summary Retrieves a LonMarkObject object from a LonMarkObjects

collection by its programmatic name.
You can determine the programmatic name of a
LonMarkObject by reading its ProgrammaticName property.
Alternatively, you can retrieve a LonMarkObject from these
collections by their user names using the Item property.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 445

Syntax retrievedObject = collection.ItemByProgrammaticName
progName

Element Description

retrievedObject The LonMarkObject to be retrieved
from the collection.

collection The LonMarkObjects collection being
acted upon.

progName The programmatic name of the
LonMarkObject to be retrieved.

Data Type LonMarkObject object.

Added to API LNS Release 3.20.

Remove
Summary Removes a LonMarkObject object from the specified

LonMarkObjects collection.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax objectColl.Remove indexName

Element Description

objectColl The LonMarkObjects collection
containing the object to be removed.

name A Long value specifying the collection
index of the LonMarkObject object to be
removed, or a String value specifying
the name of the LonMarkObject object
to be removed.

Added to API Prior to LNS Release 3.0.

RemoveByIndex
Summary Removes a dynamic LonMarkObject (functional block) from the

custom interface containing this collection. You can specify the
LonMarkObject to be deleted by its device index number.

You can determine the device index of a LonMarkObject by
reading its Index property.

Note: You cannot remove LonMarkObjects from a device’s main
interface. The main interface of a device is stored in its
Interface property.

Availability Local, full, and lightweight clients.

Syntax LonMarkObjects.RemoveByIndex deviceIndex, removalFlags

Element Description

LonMarkObjects The LonMarkObjects collection to be

OpenLNS Programmer's Reference 446

acted upon.

deviceIndex A Long value indicating the device index
number of the LonMarkObject to be
deleted.

removalFlags The removal options to be used when
deleting the LonMarkObject. These
options determine whether or not
network variables assigned to the
LonMarkObject will be deleted.
The valid options for the removalFlags
element, which are contained in the
ConstLonMarkObjectRemoveFlags
constant, are as follows:
0 lcaLonMarkObjectRemoveObjectOnly
Leaves all member network variables
assigned to the LonMarkObject on the
interface containing the collection.
OpenLNS will mark these network
variables as not being assigned to a
LonMarkObject.
1 lcaLonMarkObjectRemoveNVs
Deletes all member network variables
assigned to the LonMarkObject.
However, if you select this option and
any of the network variables assigned to
the LonMark object are bound, the
operation will fail, and the NS, #287
lcaErrNsLmobjInUse exception is
thrown.
3 lcaLonMarkObjectRemoveAnd
DisconnectNVs
Deletes all member network variables
assigned to the LonMarkObject. If any of
the network variables are bound, they
will be disconnected before they are
deleted.

Added to API LNS Release 3.20.

Properties
The LonMarkObjects object contains the following properties:

• ClassId
• Count
• Item
• Parent

OpenLNS Programmer's Reference 447

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
LonMarkObjects object in the
ConstClassIds constant:
29 lcaClassIdLonMarkObjects

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a LonMarkObject object from a LonMarkObjects

collection. You can retrieve a LonMarkObject object from its

OpenLNS Programmer's Reference 448

LonMarkObjects collection by passing its index (ordinal
position) within that collection as the argument for the Item
property. Index values start at 1. You can also retrieve a
LonMarkObject object in LonMarkObjects collections that
contain objects with the Name property by passing the
object’s name as a string expression

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The LonMarkObject object retrieved
from the collection.

collObject The LonMarkObjects collection object to
be acted on.

index A Long type specifying the ordinal
index of the LonMarkObject object to be
retrieved.

stringExpression A string type specifying the name of the
LonMarkObject object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 449

Comments The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

MessageTag
A MessageTag object represents a single message tag. Message tags are used for defining
application message connections. The following table summarizes the MessageTag object.

Description A single message tag.

Added to API Prior to LNS Release 3.0.

Accessed Through MessageTags collection object.

Default Property Name

Methods • AddTarget
• Connect
• Disconnect

Properties • AddressTableIndex
• AppDevice

OpenLNS Programmer's Reference 450

• AppDeviceName
• ClassId
• ConnectDescTemplate
• Direction
• Index
• IsDynamic
• MtHubs
• MtTargets
• Name
• Parent

Methods
The MessageTag object contains the following methods.

• AddTarget
• Connect
• Disconnect

AddTarget
Summary Adds a single MessageTag to a hub's pending target list.

This method defines a hub message tag's pending target list.
This list is used when the Connect or Disconnect method is
invoked to create or remove a message tag connection.
Connections, as defined within OpenLNS, always consist of a
single hub and one or more complementary targets.
To create a message tag connection, follow these steps:
1. Select a single hub object and a set of one or more target

objects to connect to the hub.
2. Add the targets to the pending target list by invoking the

hub's AddTarget method for each target object (up to a
maximum of 25, see below).

3. When the list is complete, invoke the hub's Connect
method.

To remove a connection, invoke the Disconnect method,
instead.
The pending target list will only hold 25 targets at a time,
but it is cleared upon completion of the Connect or Disconnect
method. You can therefore create larger connections by
iterating through the process outlined above.

For example, upon completion of the Connect method, you
can add additional targets by invoking the AddTarget
method on the original hub object. You can then invoke the
Connect method to append the new targets to the previously
defined connection.
For message tags, different restrictions on multiple
connections apply depending on whether a message tag is a
static tag, dynamic tag, or the predefined msg_in tag.

OpenLNS Programmer's Reference 451

• A static or dynamic message tag may only appear in one
connection (it may be a hub or target, but not both). A
msg_in tag may appear in multiple connections.

• If a static or dynamic tag is a hub, its targets may be a
mix of declared tags, dynamic tags and msg_in tags.

• When a msg_in tag is a hub, its targets must all be static
tags or dynamic tags because the msg_in tag may only be
used to receive messages.

Note: These requirements prevent the creation of mirrored
connections. In addition, neither type of message tag may be
used for turnaround connections, connections where the hub
and target both lie on the same application device.

Availability Local, full, and lightweight clients.

Syntax nvMtObject.AddTarget targetObject

Element Description

nvMtObject The hub MessageTag object.

targetObject The MessageTag object to be added to
the target list.

Added to API Prior to LNS Release 3.0.

Connect
Summary Connects a hub message tag to the message tags contained in

the hub's pending target list.
This method creates a new connection or adds to an existing
one. The connection consists of the hub and its targets. The
hub is the message tag object upon which the method is
invoked.

Before invoking the Connect method, one or more targets
must be added to the hub's pending target list using the
AddTarget method. When the method is invoked, the
OpenLNS Server defines the connection (using the
parameters specified in the hub's ConnectDescTemplate
object) and, if the MgmtMode property is set to
lcaMgmtModePropagateConfigUpdates (0), it connects
the objects on the network, then clears the hub's pending
target list.
As part of the connection process, the OpenLNS Server
updates the hub object's MtTargets property, as appropriate.
If a new connection is created, the hub object is also added to
the appropriate MessageTags property of the system's
Connections object.
When you create large or complex connections that require
calling the Connect method more than once, you should use
the StartTransaction and CommitTransaction methods to
group the calls into a single transaction.

OpenLNS Programmer's Reference 452

You can use the OnNodeConnChangeEvent to track when
connections are created or modified with this method.

Availability Local, full, and lightweight clients.

Syntax MtObject.Connect

Element Description

MtObject The hub MessageTag object to be
connected.

Added to API Prior to LNS Release 3.0.

Disconnect
Summary Removes a hub or message tag's entire connection or

disconnects the message tags contained in the hub's pending
target list.
The behavior of this method is dependent upon the state of
the hub's pending target list, which was created by the
AddTarget method.

• If the pending target list is empty, the method
disconnects all members of the connection (all message
tags contained within the hub's MtTargets property).

• If elements have been added to the pending target list,
the method disconnects those particular elements and
clears the pending target list.

When all targets have been disconnected from a hub message
tag, the connection ceases to exist. The hub is subsequently
deleted from the appropriate MessageTags property of the
system's Connections object.

You can use the OnNodeConnChangeEvent to track when
connections are removed with this method.

Availability Local, full, and lightweight clients.

Syntax object.Disconnect

Element Description

object The MessageTag object to be acted on.

Added to API Prior to LNS Release 3.0.

Properties
The MessageTag object contains the following properties:

• AddressTableIndex
• AppDevice
• AppDeviceName
• ClassId
• ConnectDescTemplate
• Direction

OpenLNS Programmer's Reference 453

• Index
• IsDynamic
• MtHubs
• MtTargets
• Name
• Parent

AddressTableIndex
Summary Contains the address table index value assigned to the

message tag.
Some devices communicate with one another by sending
explicit messages on a message tag. When an OpenLNS
application requests that a device should share information
with another device via a dynamic message tag, an address
table entry is created on the device sending the information.
Note that address table entries for static message tags is
pre-defined.
The address table entry associates the message tag with the
domain/subnet/node address of the device that is to receive
the information, or with a group address that identifies the
set of devices to receive the information.
This property contains the index value of the address table
entry created for the message tag.

• For static message tags, the address table index is always
the same as the message tag’s index value, which is
stored in the message tag’s Index property and is used to
identify the message tag.

• For dynamic message tags, the address table index may
be different than the message tag’s index value. For
unbound, dynamic message tags, this property will
return the value 65,535.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax index = messageTag.AddressTableIndex
Element Description

index The address table index associated with
the message tag.

messageTag The MessageTag object being acted
upon.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 454

AppDevice
Summary Identifies the AppDevice object containing this message tag.

Availability Local, full, and lightweight clients.

Syntax appDevObject = object.AppDevice
Element Description

appDevObject The AppDevice object to be returned.

object The MessageTag object to be acted on.

Data Type AppDevice object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

AppDeviceName
Summary Returns the name of an application device that contains the

message tag.

Availability Local, full, and lightweight clients.

Syntax nvMtName = nvMtObject.AppDeviceName
Element Description

nvMtObject The MessageTag object to be acted
upon.

nvMtName The name of the message tag.

Data Type String

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
MessageTag object in the ConstClassIds
constant:
22 lcaClassIdMessageTag

object The object to be acted on.

Data Type Integer.

OpenLNS Programmer's Reference 455

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ConnectDescTemplate
Summary Contains the ConnectDescTemplate object associated with the

specified MessageTag object. This template contains
parameters used when creating connections.

Setting the ConnectDescTemplate property with a modified
ConnectDescTemplate object will cause the attributes of a
connection to be updated, if the message tag the property
belongs to is the hub for that connection.
If the message tag is not yet added to a connection, it is
assumed that you will call the Connect method to create the
connection immediately after setting this property. If you do
not, reading the ConnectDescTemplate property will return
the old (default) ConnectDescTemplate object.
To modify the attributes of an existing connection
description, modify its ConnectDescTemplate properties as if
it were a new object. Setting the ConnectDescTemplate
property with a modified ConnectDescTemplate object will
cause the attributes of a connection to be updated, if the
message tag the ConnectDescTemplate object belongs to is the
hub for that connection.

Availability Local, full, and lightweight clients.

Syntax cdTemplateObject = object.ConnectDescTemplate
Element Description

cdTemplateObject The ConnectDescTemplate object.

object The MessageTag object.

Data Type ConfigProperties collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Direction
Summary Specifies whether the message tag is an input or output

message tag.

Availability Local, full, and lightweight clients.

Syntax directionValue = object.Direction
Element Description

directionValue The direction of the message tag. The
vallid values for this element, which are
contained in the ConstMtDirections

OpenLNS Programmer's Reference 456

constant, are as follows:
0 lcaMtDirectionInput
The message tag is an input message
tag.
2 lcaMtDirectionOutput
The message tag is an output message
tag.

object The MessageTag object.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Index
Summary Returns the index within an application device of the

message tag.

Availability Local, full, and lightweight clients.

Syntax index = object.Index
Element Description

object The object to be acted on.

index Index of the message tag. The valid
values for this element are 0–14.
The special message tag, msg_in, is
represented by MSG_IN_TAG (-2).

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

IsDynamic
Summary Indicates whether the message tag is dynamic. A message

tag is considered to be dynamic if it was manually added to
the interface it belongs to, rather than being part of the static
interface defined by a device template.

Availability Local, full, and lightweight clients.

Syntax isDynamicFlag = object.IsDynamic
Element Description

isDynamicFlag A True of False value indicating
whether the object is dynamic.
TRUE. The message tag is dynamic.
FALSE. The message tag is static.

OpenLNS Programmer's Reference 457

object The MessageTag object to be acted on.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

MtHubs
Summary Returns a collection containing all message tag hubs for

which the message tag is a target, including the message tag
if it is the hub for a connection.

Along with the MtTargets property, this property enables you
to manage complex network connections involving multiple
hubs and sets of targets.
When a new hub is added, it will not neccessarily be added to
the end of the list of hubs; therefore, you should update the
cached copy of the complete hub list when you add or delete a
hub.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax mtCollection = mtObject.MTHubs
Element Description

mtCollection The returned MessageTags collection.

mtObject The specified MessageTag object.

Data Type MessageTags collection object.

Read/Write Read only.

Added to API LNS Release 3.0.

MtTargets
Summary Returns the MessageTags collection object containing the

message tag targets for the specified hub MessageTag object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax mtCollection = mtObject.MtTargets
Element Description

mtCollection The returned MessageTags collection.

mtObject The specified MessageTag object.

Data Type MessageTags collection object.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 458

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 459

MessageTags
A MessageTags object is a collection of MessageTag objects. Note that the Interface object
contains two MessageTags collections:

1. The MessageTags collections accessed through the MessageTags property, which contains
the interface’s static message tags.

2. The MessageTags collections accessed through the DynamicMessageTags property, which
contains the interface’s dynamic message tags.

The following table summarizes the MessageTags object.

Description A collection of MessageTag objects.

Added to API Prior to LNS Release 3.0.

Accessed Through Connections object.
Interface object.

Default Property Item

Methods • Add
• Remove

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The MessageTags object contains the following methods.

• Add
• Remove

Add
Summary This method allows you to add message tags to any device

that supports monitor sets, and use those message tags to
send explicit messages from that device to a group of devices,
as with static message tags. For example, consider the case of
a NetworkServiceDevice. Network Service Devices do not
contain static message tags. However, you can use this
method to add dynamic message tags to the AppDevice object
that represents a NetworkServiceDevice. Once you have done
so, you could connect the message tag to the devices you want
to send messages to. Following that, you could create a
permanent message monitor point on the
NetworkServiceDevice that specifies the new dynamic
message tag as the monitor target. You could then open the
monitor set, and use the message monitor point to send
explicit messages from the NetworkServiceDevice to any
number of devices on your network.
The procedure to follow when connecting message tags and

OpenLNS Programmer's Reference 460

devices is described in the OpenLNS Programmer’s Guide.
The name of the new message tag (as specified with the name
element) must be unique on the Interface object containing
the MessageTags collection. If you attempt to add a message
tag to a message tag collection on a static interface or a
custom interface that does not support dynamic message
tags, the LCA, #119 lcaErrInterfaceNotModifyable
exception will be thrown. The Interface objects contained
within a device’s Interfaces property are the device’s custom
interfaces, and the Interface object contained within the
device’s Interface property is the device’s main, static
interface.
The newly created message tags will be stored in the
MessageTags collection accessed through the
DynamicMessageTags property of the Interface object
involved. The static message tags contained by the Interface
are stored in its MessageTags property. Note that you can
only call this method on the collection accessed through the
DynamicMessageTags property. In addition, each device
supports a total of 65,533 dynamic message tags.

Availability Local, full, and lightweight clients.

Syntax tag = messageTags.Add name

Element Description

messageTags The MessageTags collection object being
acted upon.

name A String representing the name of the
new message tag.
The name can be a maximum of 85
characters long, and it cannot include
the forward slash (/), back slash (\),
period (.), and colon (:) characters.

tag The MessageTag object returned by the
method. This is the newly defined
message tag.

Added to API LNS Release 3.20.

Remove
Summary Removes an object from the specified collection.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax objectColl.Remove indexName

Element Description

objectColl The collection containing the object to
be removed.

OpenLNS Programmer's Reference 461

name A Long value specifying the collection
index of the object to remove, or a
String value specifying the name of the
object to remove.

Added to API Prior to LNS Release 3.0.

Properties
The MessageTags object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
MessageTags object in the
ConstClassIds constant:
25 lcaClassIdMessageTags

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count

OpenLNS Programmer's Reference 462

Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary A MessageTags object is a collection of MessageTag objects.

You can retrieve a MessageTag object from its MessageTags
collection by passing its index (ordinal position) within that
collection as the argument for the Item property. Index
values start at 1. You can also retrieve a MessageTag object
in MessageTags collections with the Name property by
passing the MessageTag object’s name as a string expression

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The MessageTag object retrieved from
the collection.

collObject The MessageTags collection object to be
acted on.

index A Long type specifying the ordinal
index of the MessageTag object to be
retrieved.

stringExpression A string type specifying the name of the
MessageTag object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 463

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

OpenLNS Programmer's Reference 464

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

MonitorSet
A MonitorSet object represents a set of network variable and message tag monitor points.
You can use this object to maintain and monitor all of the monitor points it contains as a
group (points can also be controlled individually). This object also contains the default
settings that are applied to all monitor points as they are added to the set.

There are two separate types of MonitorSet objects: permanent MonitorSet objects, which can
be used in multiple client sessions, and temporary MonitorSet objects, which can only be
used in a single client session. The rest of this section describes how you can access each type
of MonitorSet object, and when you will want to use each type.

Each Network object contains a MyVNI property, which returns an AppDevice object
representing the network service device (NSD) of a client computer on the network. You can
use this AppDevice object to access all the MonitorSet objects that are stored in the OpenLNS
database for your client computer’s NSD. Echelon recommends that you only use the MyVNI
property to access MonitorSet objects when you need to create MonitorSet objects, or when
you need to modify the configuration of those MonitorSet objects. For actual monitor and
control operations, you should use the CurrentMonitorSets property of the Network object.

The CurrentMonitorSets property returns a collection of all the MonitorSet objects on a
network that are currently stored in your client’s NSD. This may be useful if you have
created monitor sets while the network management mode is set to
lcaMgmtModeDeferConfigUpdates (1). Although those monitor sets exist in the
OpenLNS database and can be accessed through the MyVNI property mentioned in the
previous paragraph, they will not be commissioned into the NSD, and cannot be enabled or
used for monitor and control operations, until the network management mode is set to
lcaMgmtModePropagateConfigUpdates (0) and the NSD is updated. The collection
accessed through the CurrentMonitorSets property allows access to all the monitor sets you
can currently use on a network (the collection accessed through the MyVNI property allows
access to these monitor sets, as well as those that have not yet been commissioned into your
client computer’s NSD). You can use all the monitor sets obtained through the
CurrentMonitorSets property as runtime monitor sets, meaning that you can enable them
and use them for monitoring operations. However, changes to their configuration are not
allowed when accessed through this collection. As noted previously, you should use the
collection obtained through the MyVNI property when you need to write to the configuration
of your client’s local MonitorSet objects.

You should use the permanent MonitorSet objects accessed through the MyVNI and
CurrentMonitorSets properties when you need to create monitor points that will be used in
multiple client sessions.
If you need monitor points that will only be used in a single client session, you should use
temporary MonitorSet objects. You can create a temporary monitor sets with the
CreateTemporaryMonitorSet method. Temporary monitor sets are opened automatically by
OpenLNS as they are created, and they can only be accessed from the client that created
them. They cannot be accessed from the permanent MonitorSets collections described above.
When a client releases a temporary monitor set, or when the client session in which a
temporary monitor set was created ends, the temporary monitor set and all the monitor
points it contains are deleted. If you need to create a group of monitor points that you can

OpenLNS Programmer's Reference 465

use in multiple client sessions or that you intend to use multiple times, you should use the
permanent MonitorSet objects described earlier in this section. However, if you do not need
to re-use a monitor set, you should use temporary monitor sets, as it takes less time and
network resources to create them.

The properties and methods that can be used on a temporary MonitorSet object and its
monitor points it contains are generally the same as those that can be used on permanent
MonitorSet object and its monitor points. However, if you have been using MonitorSet objects
with OpenLNS versions prior to LNS Release 3.20, you should note the following exceptions
to this rule:

1. Temporary MonitorSet objects cannot be created or used while in independent mode. And
the Open and Close methods have no effect on temporary MonitorSet objects, because
temporary MonitorSet objects are opened as soon as they are created, and closed as soon
as the client session in which they were created ends. You should also note that
temporary monitor sets are not enabled as they are opened. You must explicitly enable
temporary monitor sets and temporary monitor points with your application using the
applicable Enable method.

2. In addition, the DefaultOptions properties stored in MsgMonitorPoint and
NvMonitorPoint objects in temporary monitor sets are not accessible. The values applied
to these properties are taken from the temporary monitor set’s MsgOptions or NvOptions
properties. For more information, see the DefaultOptions property.

3. Monitor points in temporary monitor sets do not support the use of connection
description templates to set certain monitoring options, as monitor points in permanent
monitor sets do. As a result, you must set the connDesc element to NULL when you add
a monitor point to a temporary monitor set. See the online help for the Add method for
the MsgMonitorPoints and NvMonitorPoints collections for more information on this.

4. Network variable monitor points in temporary monitor sets cannot be automatically
bound to the monitoring node. This means that the UseBoundUpdates property of all
temporary monitor sets and monitor points should be set to False. For more information
on this, see the online help for the UseBoundUpdates property.

The following table summarizes the MonitorSet object.

Description A set of network variable and message tag monitor points.

Added to API Prior to LNS Release 3.0.

Accessed Through MonitorSets object.

Default Property Name.

Methods • Close
• Disable
• Enable
• Open

Properties • ClassId
• IsEnabled
• IsOpen
• IsPollingEnabled
• MsgMonitorPoints
• MsgOptions
• Name
• NvMonitorPoints
• NvOptions

OpenLNS Programmer's Reference 466

• Parent
• Tag

Methods
The object contains the following methods.

• Close
• Disable
• Enable
• Open

Close
Summary Closes a MonitorSet object.

For permanent MonitorSet objects, this method causes the
monitor set to be closed, and all the monitor points
(MsgMonitorPoint and NvMonitorPoint objects) in the set to
be disabled. You can re-open and re-enable the monitor set
later with the Open method. Note that it is more efficient to
disable and re-enable a monitor set than to close and re-open
a monitor set later in a given client session.
When this method is invoked on a monitor set, the client
application will be notified of the disabling of each monitor
point in the set via the Object Server's
OnNvMonitorPointEvent and OnMsgMonitorPointEvent
events.

This method does not apply to MonitorSet objects that were
created as temporary monitor sets because all temporary
MonitorSet objects are deleted permanently as soon as the
client session in which they were created ends. You can
create temporary MonitorSet objects with the
CreateTemporaryMonitorSet method.

Availability Local, full, lightweight, and independent clients. Note that
temporary monitor sets are not available on Independent
clients.

Syntax monSetObject.Close

Element Description

monSetObject The MonitorSet object to be closed.

Added to API LNS Release 3.0.

Disable
Summary Disables monitoring of a monitor set. If monitoring is

disabled for an entire monitor set, then all the monitor points
in the set will be disabled. You will not be able to re-enable
those monitor points until the Enable method is called on the
monitor set.

You can also disable an individual message monitor point or

OpenLNS Programmer's Reference 467

network variable monitor point. If you explicitly disable
monitoring of a single monitor point, you can only re-enable
monitoring of that monitor point by calling the Enable
method on the monitor point.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax object.Disable

Element Description

object The MonitorSet object to be disabled.

Added to API LNS Release 3. 0.

Enable
Summary Enables monitoring of a monitor set. You can use this method

to enable monitoring of all network variable and message
monitor points in the monitor set. If you set the doPoll
parameter to True, all network variable monitor points in the
set will be polled, unless they had polling explicitly disabled
with the Disable method.

If a message monitor point or network variable monitor point
has been explicitly disabled with the Disable method, it will
not be re-enabled when the Enable method is called on the
monitor set. You can only re-enable that monitor point by
calling the Enable method on it.

For example, if you call the Disable method on a monitor
point named Point A, and then call the Enable method on the
monitor set containing Point A, Point A would not be
enabled. However, all other monitor points in the monitor set
would be enabled. You would need to call the Enable method
on Point A to re-enable it.
If a monitor point is disabled, and its value changes before it
is re-enabled, the point will not be updated with the new
value until it has been re-enabled and a monitor point update
is received.
You can, however, configure the network variable monitor
points in your network to fetch the values of the network
variables they are monitoring as soon as they are enabled.

• To do this for all network variable monitor points in a
monitor set, set the GenerateInitialFetch property of the
monitor set’s NvMonitorOptions object to True.

• To do this for a single network variable monitor point, set
the GenerateInitialFetch property of the network variable
monitor point’s CurrentOptions to True.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points

OpenLNS Programmer's Reference 468

are not available on Independent clients.

Syntax object.Enable doPoll

Element Description

object The MonitorSet object to be enabled.

doPoll A Boolean value.
TRUE. Turn on polled monitoring for

the network variable monitor
points in the monitor set.

FALSE. Leave polled monitoring of
this monitor set turned off.

Added to API LNS Release 3. 0.

Open
Summary Opens a MonitorSet object, which causes all the monitor

points in the monitor set to be instantiated.
You should not open a monitor set in the same explicit
transaction in which it was created, or in which monitor
points were added to it. For more information on using
transactions with LNS, see Programming an OpenLNS
Application in the OpenLNS Programmer’s Guide.

You can enable monitoring with the Enable method after
opening a monitor set, if the doEnable element was set to
False. You can disable monitoring using the Disable method.

If you set the doEnable element to True when you invoke this
method, the client application will be notified of the enabling
of each monitor point in the set via the Object Server's
OnNvMonitorPointEvent and OnMsgMonitorPointEvent
events. This applies to both temporary and permanent
monitor sets.
If you create a permanent monitor set while the network
management mode is set to
lcaMgmtModeDeferConfigUpdates (1), you must change
the management mode to
lcaMgmtModePropagateConfigUpdates (0) before
opening the monitor set. You can change the network
management mode by writing to the value of the MgmtMode
property of the System object.
Note: You cannot open a monitor set while in engineered
mode. In addition, this method does not apply to MonitorSet
objects that were created as temporary monitor sets. All
temporary MonitorSet objects are opened automatically as
soon they are created. You can create temporary MonitorSet
objects with the CreateTemporaryMonitorSet method.

Availability Local, full, lightweight, and independent clients. Note that
temporary monitor sets are not available on Independent

OpenLNS Programmer's Reference 469

clients.

Syntax monSetObject.Open doEnable, doPoll
Element Description

monSetObject The MonitorSet object to be closed.

doEnable A Boolean value.
TRUE. Automatically invokes the

Enable method on the monitor
set as it is opened.
This enables monitoring on all
of the network variable and
message monitor points in the
monitor set that have not been
explicitly disabled with the
Disable method.

If you set the doEnable
element to True when you
invoke this method, the client
application will be notified of
the enabling of each monitor
point in the set via the Object
Server's
OnNvMonitorPointEvent and
OnMsgMonitorPointEvent
events. This applies to both
temporary and permanent
monitor sets

FALSE. If this element was set to
False, you can enable
monitoring with the Enable
method after opening a
monitor set.

You can use the Disable
method to turn off monitoring.

doPoll A Boolean value. If the doEnable
property is set to False, this value is
ignored.
TRUE. Use polled monitoring to

monitor the monitor points in
the monitor set.
You can set the rate at which
the monitor points in the set
will be polled by writing to the
PollInterval property of the
NvMonitorOptions object
accessed through the monitor
set’s NvOptions property.

FALSE. Use bound monitoring to

OpenLNS Programmer's Reference 470

monitor the monitor points in
the monitor set.

Added to API LNS Release 3.0.

Properties
The MonitorSet object contains the following properties:

• ClassId
• IsEnabled
• IsOpen
• IsPollingEnabled
• MsgMonitorPoints
• MsgOptions
• Name
• NvMonitorPoints
• NvOptions
• Parent
• Tag

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
MonitorSet object in the ConstClassIds
constant:
74 lcaClassIdMonitorSet

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 471

IsEnabled
Summary Indicates whether the monitor set is enabled.

A monitor point must be enabled before polling, implicit
bound monitoring, or explicit bound monitoring and control
of the monitor point can be perfromed.
You can enable all the monitor points in a monitor set at once
using the MonitorSet object's Enable method. Alternatively,
you can enable an individual network variable monitor point
using the NvMonitorPoint object's Enable method. Message
monitor points cannot be individually enabled.
You can disable monitoring of a monitor set or a network
variable monitor point with the Disable ethod. If a network
variable monitor point has been explicitly disabled with the
Disable method, it will not be re-enabled when the Enable
method is called on the monitor set. You can only re-enable
that monitor point by calling the Enable method on it.
Similarly, if you call the Enable method on an
NvMonitorPoint object, it will enable monitoring for that
point only if monitoring has already been enabled for the
entire monitor set.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects are not available on
Independent clients.

Syntax isEnabledFlag = msObject.IsEnabled
Element Description

isEnabledFlag A Boolean value indicating whether the
monitor set is currently enabled.
TRUE. The monitor set has been

enabled.
FALSE. The monitor set has not been

enabled.

msObject The MonitorSet object to be acted on.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 472

IsOpen
Summary Indicates whether the specified object is currently open.

You can open the MonitorSet object with the Open method,
and you can close it with the Close method.

When you create a MonitorSet as a temporary monitor set,
OpenLNS automatically opens it. Once a temporary monitor
set is closed, it will be deleted

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects are not available on
Independent clients.

Syntax isOpenFlag = Object.IsOpe
Element Description

isOpenFlag Boolean value.

Object A Boolean value indicating whether the
MonitorSet object is currently open.

TRUE. The MonitorSet object is
currently open.

FALSE. The MonitorSet object is
currently closed.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

IsPollingEnabled
Summary Indicates whether polled monitoring is enabled for the

monitor set.
When polling is enabled for a monitor point, OpenLNS will
periodically read the value of the monitor point and report
the value using the OnNvMonitorPointEvent. This is most
efficient when the value must be checked regularly, but the
application does not need to know immediately if the value
changes (for example, outside air temperature).
You can automatically start polled monitoring of a monitor
set by setting the doEnable and doPoll elements to True
when you open the set with the Open method. You can also
start polled monitoring of a monitor set by setting the doPoll
element to true when you enable the monitor set with the
Enable method.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects are not available on
Independent clients.

Syntax isPollingEnabledFlag = msObject.IsPollingEnabled

OpenLNS Programmer's Reference 473

Element Description

isPollingEnabledFlag A Boolean value indicating
whether polled monitoring is
enabled.
TRUE. Polled monitoring is

enabled.
FALSE. Polled monitoring is not

enabled.

msObject The MonitorSet object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

MsgMonitorPoints
Summary Contains the collection of all message tag monitor points

(MsgMonitorPoint objects) that have been added to the
monitor set.

See the Monitor and Control chapter in the OpenLNS
Programmer’s Guide for more information on message
monitor points.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects are not available on
Independent clients.

Syntax msgMonSetColl = monSetObject.MsgMonitorPoints
Element Description

msgMonSetColl The MsgMonitorPoints collection
object returned.

monSetObject The MonitorSet object to be acted
on.

Data Type MsgMonitorPoints collection object.

Read/Write Read only.

Added to API LNS Release 3.0.

MsgOptions
Summary Contains the default monitoring options that are initially

applied to the MsgMonitorPoint objects in this monitor set.

This property stores the monitor set’s MsgMonitorOptions
object. This contains the default monitoring options that are
applied to all MsgMonitorPoint objects as they are added to
the monitor set. These options will be used to monitor these
points when they are enabled.

OpenLNS Programmer's Reference 474

The MsgMonitorOptions object contained within this
property is not passed by reference. If you acquire a
MsgMonitorOptions object through the MsgOptions property
and modify it, you must then explicitly assign the modified
MsgMonitorOptions object back to the MsgOptions property
for the changes to take effect. This following code sample
demonstrates this procedure:
 Set msgOptions = monSet.MsgOptions
 msgOptions.Name = "Device 003"
 Set monSet.MsgOptions = msgOptions

You should note that each MsgMonitorPoint object in a
monitor set contains a CurrentOptions property and a
CurrentOptions property. Once the monitor set containing a
MsgMonitorPoint has been opened, you can use the monitor
point’s CurrentOptions property to set the monitoring options
that will be used for the MsgMonitorPoint during that
particular session.
You can use a permanent message monitor point’s
DefaultOptions property to change the default monitoring
options that will be applied to that particular message
monitor point in future monitoring sessions. This may be
useful if you want a message monitor point in a permanent
monitor set to use a different set of default monitoring
options than those defined for the entire monitor set. The
DefaultOptions properties of message monitor points in
temporary monitor sets are not accessible because temporary
monitor sets are only used in a single client session.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects are not available on
Independent clients.

Syntax msgOptions = monSetObject.MsgOptions
Element Description

msgMonSetColl The MsgMonitorPoints collection
object returned.

monSetObject The MonitorSet object to be acted
on.

Data Type MsgMonitorOptions object.

Read/Write Read/write.

Added to API LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period

OpenLNS Programmer's Reference 475

(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

NvMonitorPoints
Summary Contains the collection of all network variable monitor points

(NvMonitorPoint objects) that have been added to the
monitor set.

See the Monitor and Control chapter of the OpenLNS
Programmer’s Guide for more information on message
monitor points.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects are not available on
Independent clients.

Syntax nvMonSetColl = monSetObject.NvMonitorPoints
Element Description

nvMonSetColl The NvMonitorPoints collection
object returned.

monSetObject The MonitorSet object to be acted
on.

Data Type MsgMonitorPoints collection object.

Read/Write Read only.

Added to API LNS Release 3.0.

NvOptions
Summary Contains the default monitoring options that are initially

applied to the NvMonitorPoint objects in the monitor set.

This property stores the monitor set’s NvMonitorOptions
object. This contains the default monitoring options that are
applied to all NvMonitorPoint objects as they are added to
the monitor set. These options will be used to monitor these
points when they are enabled.

OpenLNS Programmer's Reference 476

The NvMonitorOptions object contained within this property
is not passed by reference. If you acquire a NvMonitorOptions
object through the NvOptions property and modify it, you
must then explicitly assign the modified NvMonitorOptions
object back to the NvOptions property for the changes to take
effect. This following code sample demonstrates this
procedure:

Set nvOptions = monSet.NvOptions
nvOptions.Name = "Device 003"
Set monSet.NvOptions = nvOptions

Each NvMonitorPoint object in a monitor set contains a
CurrentOptions property and a DefaultOptions property.
Once the monitor set containing an NvMonitorPoint has been
opened, you can use the monitor point’s CurrentOptions
property to set the monitoring options that will be used for
the NvMonitorPoint during that particular session.
You can use a permanent network variable monitor point’s
DefaultOptions property to change the default monitoring
options that will be applied to that particular network
variable monitor point in future monitoring sessions. This
may be useful if you want a network variable monitor point
in a permanent monitor set to use a different set of default
monitoring options than those defined for the entire monitor
set. The DefaultOptions properties of network variable
monitor points in temporary monitor sets are not accessible
because temporary monitor sets are only used in a single
client session.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects are not available on
Independent clients.

Syntax nvOptions = monSetObject.NvOptions
Element Description

nvOptions The NvMonitorOptions object
containing the default network
variable monitoring options.

monSetObject The MonitorSet object to be acted
on.

Data Type NvMonitorOptions object.

Read/Write Read/write.

Added to API LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent

OpenLNS Programmer's Reference 477

clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Tag
Summary Stores any extra data associated with the monitor point or

monitor set.
The data stored in this property is not used by OpenLNS, and
is available as soon as the data point or monitor set is created
in a monitor and control session. You can use this property to
store any data your application may need when using the
monitor set or monitor point. For example, you could store
the name of the monitor set that a message or network
variable monitor point belongs to, or the name of the
application device that a monitor set belongs to.

The Tag properties for all NvMonitorPoint and
MsgMonitorPoint objects in permanent monitor sets are
cached when the monitor set is opened. As a result, any
changes made the Tag properties of these monitor points
while the permanent monitor set is open will not be
accessible until the monitor set is closed and re-opened.
When initially created, monitor points and monitor sets will
have a null Tag value. However, if you add a monitor point to
an open monitor set and set its Tag value in the same
transaction, you will be able to access the Tag value during
that monitor and control session, as all data would be written
to the device as soon as the transaction is committed. You
should note that this behavior does not apply to monitor
points in temporary monitor sets. Temporary monitor sets
support "live" updates to the value of the Tag property.
A well-defined monitoring application will include any
information necessary to quickly and efficiently identify the
monitor point in this property. This will eliminate the need to
gather such information from the database, or to perform
other time-consuming activities, during the monitoring
process.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects are not available on

OpenLNS Programmer's Reference 478

Independent clients.

Syntax tagValue = Object.Tag
Element Description

Object The monitor point or monitor set
object to be acted on.

tagValue The tag associated with the object.

Data Type Variant.

Read/Write Read/write.

Added to API LNS Release 3.0.

MonitorSets
The MonitorSets object contains a collection of MonitorSet objects representing all the
monitor sets on a device. If a device does not support monitor sets, an empty collection will
be returned when you attempt to access this collection. In general, only
NetworkServiceDevices (NSDs) support monitor sets. The following table summarizes the
MonitorSets object.

Description A collection of MonitorSet objects.

Added to API LNS Release 3.0.

Accessed Through AppDevice object.
Network object.

Default Property Item

Methods • Add
• Remove

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The MonitorSets object contains the following methods.

• Add
• Remove

Add
Summary Adds a permanent MonitorSet object to the collection.

This method can only be called when connected to the
OpenLNS Server (after the Network object's Open method
has been called).

You should not add and open a monitor set in the same
explicit transaction. If you create a monitor set while the
network management mode is set to

OpenLNS Programmer's Reference 479

lcaMgmtModeDeferConfigUpdates (1), you must change
the management mode to
lcaMgmtModePropagateConfigUpdates (0) before
opening the monitor set. You can do so by setting the
MgmtMode property of the System object to
lcaMgmtModePropagateConfigUpdates (0).

You can access the MonitorSets collection through the MyVNI
and CurrentMonitorSets properties of the Network object.
You should use the MyVNI property when you are going to
add new MonitorSet objects to the collection. For more
information, see the MonitorSet object.

Note: You can create MonitorSet objects while running in
engineered mode, but you cannot open them. If you attempt
to do so, the LCA, #143
lcaErrNotAllowedWithoutNetworkInterface exceptions
will be thrown.

Availability Local, full, lightweight, and independent clients.

Syntax monSetObject = monSetColl.Add monSetName

Element Description

monSetObject The newly defined MonitorSet object.

monSetColl The MonitorSets collection object to be
acted upon.

monSetName The Name of the new MonitorSet object.

Added to API LNS Release 3.0.

Remove
Summary Removes a MonitorSet object from the collection.

This method can only be called when connected to the
network database (after the Network object's Open method
has been called).

This method only affects MonitorSet objects that were
created as permanent MonitorSet objects becuase OpenLNS
deletes temporary MonitorSet objects automatically as soon
as the client session in which they were created ends. See the
MonitorSet object for more information on the differences
between temporary and permanent MonitorSet objects.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects, and temporary monitor points,
are not available on Independent clients.

Syntax monSetColl.Remove indexName

Element Description

monSetColl The MonitorSets collection object to be
acted upon.

indexName A Long value specifying the collection

OpenLNS Programmer's Reference 480

index of the MonitorSet object to be
removed, or a String value specifying
the name of the MonitorSet object to be
removed.

Added to API LNS Release 3.0.

Properties
The MonitorSets object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
MonitorSets object in the ConstClassIds
constant:
75 lcaClassIdMonitorSets

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count

OpenLNS Programmer's Reference 481

Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a MonitorSet object from a MonitorSets collection.

You can retrieve a MonitorSet object from its MonitorSets
collection by passing its index (ordinal position) within that
collection as the argument for the Item property. Index
values start at 1. You can also retrieve a MonitorSet object in
MonitorSets collections with the Name property by passing
the object’s name as a string expression.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The MonitorSet object retrieved from
the collection.

collObject The MonitorSets collection object to be
acted on.

index A Long type specifying the ordinal
index of the MonitorSet object to be
retrieved.

stringExpression A string type specifying the name of the
MonitorSet object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 482

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

OpenLNS Programmer's Reference 483

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

MsgMonitorOptions
The MsgMonitorOptions object contains a set of monitoring options that can be applied to the
message monitor points that OpenLNS is monitoring. Depending on how this object is
accessed, writing to this it may affect the monitoring options used for an entire monitor set,
or for an individual message tag monitor point.

The MsgMonitorOptions object accessed through the MsgOptions property of a MonitorSet
object contains the default monitoring options for the monitor set. These are the default
options applied to all MsgMonitorPoint objects as they are added to the monitor set.

You can change the defaults an individual MsgMonitorPoint uses by writing to the
MsgMonitorOptions object accessed through the DefaultOptions property of that
MsgMonitorPoint object. This object contains the default options that will be used each time
the monitor set containing that particular MsgMonitorPoint object is opened. Note that this
only applies to message monitor points in permanent monitor sets. The CurrentOptions
properties of message monitor points in temporary monitor sets are not accessible, as
temporary monitor sets are only used in a singe client session.

You can change the monitoring options a MsgMonitorPoint object will use for an active
monitoring session by writing to the MsgMonitorOptions object accessed through the
MsgMonitorPoint object’s CurrentOptions property. Changes made to the current options
take effect for the current session only, and are not stored persistently in memory.

Note that the MsgMonitorOptions object contained within the MsgOptions property of a
monitor set (or the CurrentOptions properties of a monitor point) is not passed by reference.
If you acquire a MsgMonitorOptions object through any of these properties and modify it, you
must then explicitly assign the modified object back to the source property for the changes to
take effect.

The following table summarizes the MsgMonitorOptions object.

Description A set of monitoring options that can be applied to the
message monitor points being monitored by OpenLNS.

Added to API LNS Release 3.0.

Accessed Through MonitorSets object.
MsgMonitorPoint object.

Default Property None.

Methods None.

Properties • Authentication
• ClassId
• FilterByCode
• FilterBySource
• FilterCode
• Parent
• Priority
• Retries
• ServiceType

OpenLNS Programmer's Reference 484

• UseAsyncSend

Methods
The MsgMonitorOptions object does not contain any methods.

Properties
The MsgMonitorOptions object contains the following properties:

• Authentication
• ClassId
• FilterByCode
• FilterBySource
• FilterCode
• Parent
• Priority
• Retries
• ServiceType
• UseAsyncSend

Authentication
Summary Determines whether the authenticated service will be used

when sending a message monitor point updates using the
Value property.

See the Monitor and Control chapter in the OpenLNS
Programmer’s Guide for more information on message
monitor points.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax authValue = monOptsObject.Authentication
Element Description

authValue Boolean value.

monOptsObject The MsgMonitorOptions object to be
acted on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to

OpenLNS Programmer's Reference 485

Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
MsgMonitorOptions object in the
ConstClassIds constant:
76 lcaClassIdMsgMonitorOptions

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

FilterByCode
Summary Indicates whether the FilterCode property will be used to

filter message tag values.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax filterByCode =msgMonOpts.FilterByCode
Element Description

filterByCode TRUE. Message tag values are filtered
by the FilterCode property
before being passed to the
client.

FALSE. The FilterCode property is
ignored.

msgMonOpts The MsgMonitorOptions object.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 486

FilterBySource
Summary Indicates whether message tag values will be filtered by the

source device.

This property can be combined with the FilterByCode
property to allow only message tags with certain codes from
certain sources to be passed to your client application via a
MsgMonitorPoint object.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax filterBySource =msgMonOpts.FilterBySource
Element Description

filterBySource A Boolean value.
TRUE. Message tag values are filtered

by the target AppDevice object
that was specified when the
monitored message tag point
was created (using the Add
method).

FALSE. The message tag source is
ignored.

msgMonOpts The MsgMonitorOptions object.

Data Type Boolean.

Read/Write Read/write.

Added to API LNS Release 3.0.

FilterCode
Summary Contains the filter code that will be used if the FilterByCode

property is set to True.
Each explicit message contains a 1-byte message code along
with the message data. If the FilterByCode property is set to
True and this property is set, only messages with a message
code matching the value of this property will be passed to the
client via the MsgMonitorPoint objects using this
MsgMonitorOptions obect.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax filterCode =msgMonOpts.FilterCode
Element Description

filterCode The filter code.
This element may be set to a value
between 0–255; however, messages with

OpenLNS Programmer's Reference 487

codes in the range 80–126 and 128–255
cannot be received by an OpenLNS
application. This is because these codes
are used for network management,
diagnostic, and network variable
messages, and they are processed
directly by the NSD.

msgMonOpts The MsgMonitorOptions object.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Priority
Summary Determines whether priority is used when polling or

explicitly updating a message monitor point using the Value
property.

See the Monitor and Control chapter of the OpenLNS
Programmer’s Guide for more information

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax priorityValue = monOptsObject.Priority
Element Description

OpenLNS Programmer's Reference 488

priorityValue A Boolean value.
TRUE. Priority is used when

polling or explicitly
updating a message
monitor point using the
Value property.

FALSE. Priority is not used.

monOptsObject The MsgMonitorOptions to be acted
on.

Data Type Boolean.

Read/Write Read/write.

Added to API LNS Release 3.0.

Retries
Summary Specifies the number of retries to use for acknowledged,

request/response, or repeated service messages. This applies
to network management messages only.

Setting this property through the NvOptions or MsgOptions
properties of a permananent monitor set, or through the
CurrentOptions property of a permanent monitor point, does
not have an effect. The default retry count to use for all
permanent network variable and message monitor points is
established by the RetryCount property of the
ConnectDescTemplate specified when the monitor point was
created.

You cannot set this property through the DefaultOptions
property of a temporary monitor point, as the CurrentOptions
properties of all temporary monitor points are not accessible.
However, you can set this property through the NvOptions or
MsgOptions property of a temporary monitor set to determine
the default retry count that will be applied to all temporary
monitor points as they are added to the set.

You can also set this property through the CurrentOptions
property of a permanent or temporary monitor point to
determine what retry count for the current monitoring
session.

See the Monitor and Control chapter of the OpenLNS
Programmer’s Guide for more information.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax retryValue = monOptsObject.Retries
Element Description

retryValue The number of retries. The valid
range of values for this property is

OpenLNS Programmer's Reference 489

1–15. This property applies to
network management messages
only.

monOptsObject The MsgMonitorOptions object to be
acted on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

ServiceType
Summary Determines the service type used when sending explicit

messages with a message monitor point.

You cannot set this property through the CurrentOptions
property of a temporary monitor point, as the CurrentOptions
properties of all temporary monitor points are not accessible.
However, you can set this property through the NvOptions or
MsgOptions property of a temporary monitor set to determine
the default messaging service that will be applied to all
monitor points as they are added to the set.

See the Monitor and Control chapter of the OpenLNS
Programmer’s Guide for more information.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax retryValue = monOptsObject.Retries
Element Description

retryValue The valid values for this property,
which are enumerated in the
ConstServiceTypes constant, are as
follows:
0 lcaSvcAckd
Acknowledged messaging service.
The device sends an
acknowledgment message after it
has received the message.
If your application will be sending
messages to large numbers of
devices at once, one of the
unacknowledged messaging services
may be desirable, as the
acknowledgment messages may
generate a significant amount of
network traffic.
1 lcaSvcUnackdRpt
Unacknowledged repeat messaging

OpenLNS Programmer's Reference 490

service. The device does not send
acknowledgment messages;
however, repeat messages are sent
to the device after the initial
message is sent to it to ensure that it
reaches its destination.
You can set the number of repeat
messages to send, and the interval
at which they will be sent, by
writing to the RepeatCount and
RepeatTimer properties.
2 lcaSvcUnackd
Unacknowledged messaging service.
The device does not send
acknowledgment messages.
Do not use this service type on
channels that support altnerate
frequencies because the message
will only be sent using the primary
path. See the AltPathType property
for more information.
3 lcaSvcRequest
Request/Response messaging
service. You can use this value
when sending explicit messages if
the device receiving the message is
designed to send a response message
for the specified message code.

monOptsObject The MsgMonitorOptions object to be
acted on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

UseAsyncSend
Summary Determines whether OpenLNS will wait for a completion

code to return after updating the value of a monitor point
before sending its next update message.
When sending the values of network variable and message
monitor points prior to LNS 3.20, LNS would wait for the
completion code for each message sent to be returned before
returning to the user, regardless of the messaging service
type being used. You can use this property to determine
whether OpenLNS should wait for the completion code.

Note: The UseAsyncSend property can be used to confirm
when the values of the monitor points on your network have

OpenLNS Programmer's Reference 491

been successfully sent, as described earlier. However, you can
also use the OnMsgMonitorPointErrorEvent and
OnNvMonitorPointErrorEvent events to determine when
values are not successfully sent. These events are generated
whenever there is a write failure on a monitor point.

See the Monitor and Control chapter in the OpenLNS
Programmer’s Guide for more information.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax monOptsObject.UseAsyncSend = asyncFlag
Element Description

monOptsObject The MsgMonitorOptions object being
acted upon.

asyncFlag A Boolean value indicating whether
OpenLNS waits for a completion code
to return after updating the value of
the monitor point before sending its
next update message.
TRUE. OpenLNS does not wait for

the completion code to return
after sending the values of
the monitor points before
returning to the user.
In this case, OpenLNS will
generate an
OnMsgMonitorPointEvent or
OnNvMonitorPointEvent
event as soon as the
completion code has been
returned, and the value of
the monitor point has been
updated. You can use these
events to confirm that the
values of your monitor points
have been successfully sent.
This approach may be useful
if you are updating a large
number of monitor points at
once, and do not want to wait
for a completion code to
return after each update
before moving to the next
one.
Setting this property to True
therefore may be useful
when writing to the values of
large numbers of data points

OpenLNS Programmer's Reference 492

with the Write method
because it reduces the time
required to update the
values on the network.

FALSE. OpenLNS waits for the
completion code to return
after it sends each value
before returning from the
method, as with LNS
versions prior to LNS 3.20.
Other client applications will
be able to successfully
update the monitor point
while your application is
waiting for the completion
code.
If this property is set to
False and no completion code
is returned after a message
is sent, this indicates that
OpenLNS failed to update
the monitor point. In this
case, the DS, #411
lcaErrLnsDsWriteFailed
exception will be thrown
before OpenLNS proceeds to
the next update message.
OpenLNS will not return
any events confirming that
the value has been updated
when the property is set to
False.
This is the default.

Data Type Boolean.

Read/Write Read/write.
Note: OpenLNS sets this property automatically for message
monitor points. For example, if you are sending a message
via the SendMsgWait method, a response from the device is
expected. Therefore, OpenLNS will set the UseAsyncSend
property to False.
Also, if you are writing to a message monitor point via the
SendMsgWait property, no response is expected; therefore,
OpenLNS sets the property to True. As a result, you should
not write to this property when you access it through a
MsgMonitorOptions object.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 493

MsgMonitorPoint
A MsgMonitorPoint represents a single monitored or controlled message tag. You can use
message monitor points to monitor LONWORKS messages from application devices on your
network with your application. For an overview of message monitor points and how they
work, see the Monitor and Control chapter in the OpenLNS Programmer’s Guide.

In general, the MsgMonitorPoint objects contained in MonitorSet objects created as
temporary or permanent monitor sets behave the same way except that the DefaultOptions
properties of the MsgMonitorPoint objects in temporary monitor sets are not accessible. For
more information on this, see the CurrentOptions property of this object.
Temporary monitor sets, and all the monitor points they contain, can only be used in a single
client session. They are deleted by OpenLNS as soon as the session in which they were
created ends. For more information on the differences between temporary and permanent
monitor sets, see the MonitorSet object.

The following table summarizes the MsgMonitorPoint object.

Description A single monitored or controlled message tag.

Added to API LNS Release 3.0.

Accessed Through MsgMonitorPoints collection object.

Default Property Name.

Methods • Advise
• Disable
• Enable
• SendMsgWait
• Unadvise

Properties • ClassId
• CurrentOptions
• DefaultOptions
• InputFormatSpec
• Name
• OutputDataPoint
• OutputFormatSpec
• Parent
• RequestDataPoint
• Tag

Events • UpdateErrorEvent
• UpdateEvent

Methods
The MsgMonitorPoint contains the following methods.

• Advise
• Disable
• Enable
• SendMsgWait
• Unadvise

OpenLNS Programmer's Reference 494

Advise
Summary Enables update and error events for an object that

implements the ILcaMsgMonitorPointListener or
ILcaNvMonitorPointListener interface.
This method should only be used if the development
environment supports multi-threading (such as Visual C++).
When you call this method, OpenLNS will provide event
notification of updates and update errors using callbacks,
instead of Windows messaging. The callback is made to the
UpdateEvent or UpdateErrorEvent method of the object
specified as the object parameter when the Advise method is
called.

When you call the Advise method, the client thread will stop
generating OnMsgMonitorPointErrorEvent and
OnMsgMonitorPointUpdateEvent events for the
MsgMonitorPoint object specified as the mpObject element.

The object specified as the object element will then start
receiving UpdateErrorEvent events and message
UpdateEvent events for that monitor point.

Note: The Advise method must be called from the event
handler that is managing the MsgMonitorPoint events listed
above.
You should determine how these updates are handled by
defining the UpdateErrorEvent method and the UpdateEvent
method for the ILcaMsgMonitorPointListener interface.

The returned tag should be supplied to the Unadvise method
to return update notification to the client thread.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax tag = mpObject.Advise object

Element Description

tag An Integer type

mpObject The MsgMonitorPoint object to be acted
on.

object An object that implements the
ILcaMsgMonitorPointListener interface.

Added to API LNS Release 3.0.

Disable
Summary Disables monitoring of a message monitor point.

When you disable monitoring of a message monitor point, you
should note that this overrides subsequent calls to the
MonitorSet object's Enable method.

OpenLNS Programmer's Reference 495

For example, if you call the Disable method on a
MsgMonitorPoint object named Point A, and then call the
Disable method on the monitor set containing Point A, Point
A would not be enabled. All other monitor points in the
monitor set, however, would be enabled.

Once you have explicitly disabled a MsgMonitorPoint with
the Disable method, you can only re-enable that monitor
point by calling the Enable method on it, or by closing and
re-opening the monitor set it belongs to.
You can also disable an entire monitor set by calling the
Disable method on the MonitorSet object. When you do this,
polled and bound monitoring for all monitor points on the
monitor set will be disabled. After this, none of the monitor
points in the set can be enabled for monitoring until the
Disable method has been called on the MonitorSet object
again.
For more details on opening and enabling monior sets and
monitor points, see the Monitor and Control chapter in the
OpenLNS Programmer’s Guide.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax object.Disable

Element Description

object The MsgMonitorPoint object to be
disabled.

Added to API LNS Release 3.20.

Enable
Summary Enables monitoring of a message monitor point.

You can enable monitoring of all the monitor points in a
permanent or temporary monitor set at once by setting the
doEnable element to True when you open the monitor set. If
the doEnable element is set to False, you can also enable the
entire monitor set later by calling the Enable method on the
MonitorSet object.
You can disable monitoring of an individual message monitor
point by calling the Disable method on it.
For more details on opening and enabling monior sets and
monitor points, see the Monitor and Control chapter in the
OpenLNS Programmer’s Guide.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

OpenLNS Programmer's Reference 496

Syntax object.Ensable

Element Description

object The MsgMonitorPoint object to be
enabled.

Added to API LNS Release 3.20.

SendMsgWait
Summary Sends a message that requires a synchronous response on a

MsgMonitorPoint object created using the GetMessagePoint
method.

The AppDevice object's GetMessagePoint method creates an
MsgMonitorPoint object which can be used to send messages
to the device. The MsgMonitorPoint object's
RequestDataPoint property can be used to send a request
response message to the device. To send the message to the
device, set the RequestDataPoint object's Value, RawValue ,
or FormattedValue property then call this method or the
Write method.
If this method is used, the request and response datapoints
will be sent in the same call (synchronously). If the Write
method is used, the response will be sent as an
OnMsgMonitorPointUpdateEvent event.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax responseDpObject =
msgMpObject.SendMsgWait(requestDpObject)

Element Description

responseDpObject The DataPoint object generated by
the device in response to the
requestDpObject.

msgMpObject The MsgMonitorPoint object to be
acted on.

requestDpObject The DataPoint object to be sent to the
device.

Added to API LNS Release 3.0.

Unadvise
Summary Returns event generation to the client thread if it was

changed to another thread using the Advise method.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

OpenLNS Programmer's Reference 497

Syntax mpObject.Unadvise tag

Element Description

tag An Integer type. This tag parameter
should use the tag that was returned
when the Advise method was called.

mpObject The MsgMonitorPoint object to be acted
on.

Added to API LNS Release 3.0.

Properties
The MsgMonitorPoint object contains the following properties:

• ClassId
• CurrentOptions
• DefaultOptions
• InputFormatSpec
• Name
• SendMsgWait
• OutputFormatSpec
• Parent
• RequestDataPoint
• Tag

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
MsgMonitorPoint object in the
ConstClassIds constant:
77 lcaClassIdMsgMonitorPoint

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 498

CurrentOptions
Summary Contains the current monitoring options for this message

monitor point. Once the monitor set containing a monitor
point has been opened, you can use this property to set the
monitoring options that will be used for the monitor point
during that particular session.

For monitor points in MonitorSet objects created as
permanent monitor sets, the options contained in this
property default to the options set in the DefaultOptions
property of the MsgMonitorPoint. If the options are not set
there, they default to the options set in the MsgOptions and
NvOptions properties in the MonitorSet object.

Each time a permanent MonitorSet object’s Open method is
called, the current options for each of the monitor points in
the set are reset to the options contained in their
CurrentOptions properties. The CurrentOptions property can
only be written to when the monitor set is open.

The MsgMonitorOptions object contained within this
property is not passed by reference. If you acquire a
MsgMonitorOptions object through the CurrentOptions
property and modify it, you must then explicitly assign the
modified object back to the CurrentOptions property for the
changes to take effect. This following code sample
demonstrates this procedure:
 Set curOptions = monPoint.CurrentOptions
 curOptions.Authentication = True
 curOptions.Retries = 5
 Set monPoint.CurrentOptions = curOptions

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax curOptions = monPoint.CurrentOptions
Element Description

curOptions The MsgMonitorOptions object
containing the current options for this
monitor point.

monPoint The MsgMonitorPoint object to be acted
on.

Data Type MsgMonitorOptions object.

Read/Write Read/write.

Added to API LNS Release 3.0.

DefaultOptions
Summary Contains the default monitoring options that are applied

each time the monitor set containing this network variable or

OpenLNS Programmer's Reference 499

message monitor point is opened.
These options are read when the monitor set containing the
monitor point is opened. Changes to these options will not
take effect until the next time the monitor set is opened. Use
the CurrentOptions property to change the active monitoring
options to use for a monitor point that is currently enabled.
For message monitor points, the options contained in the
DefaultOptions property default to the options set in the
permanent monitor set’s MsgOptions property.
The default options cannot be accessed in server-independent
mode; therefore, Independent clients cannot read or write to
the DefaultOptions property.

The MsgMonitorOptions object contained within this
property is not passed by reference. If you acquire a
MsgMonitorOptions object through the DefaultOptions
property and modify it, you must then explicitly assign the
modified object back to the DefaultOptions property for the
changes to take effect. This following code sample
demonstrates this procedure:
Set defOptions = monPoint.DefaultOptions
defOptions.Authentication = True
Set monPoint.DefaultOptions = defOptions

Availability Local, full, and lightweight clients.

Syntax defOptions = monPoint.CurrentOptions
Element Description

defOptions The MsgMonitorOptions object
containing the default options for this
monitor point.

monPoint The MsgMonitorPoint object to be acted
on.

Data Type MsgMonitorOptions object.

Read/Write Read/write.

Note: The DefaultOptions properties of monitor points in
MonitorSet objects created as temporary monitor sets are not
accessible. If you attempt to acquire the DefaultOptions
property through a temporary monitor point, the LCA, #161
lcaErrNotAllowedOnTemporaryObject exception is
thrown. This is because these monitor points can only be
used in a singe client session.
If you want a temporary monitor point to use options other
than the defaults for the monitor set, you can change them
with the DefaultOptions property.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 500

InputFormatSpec
Summary Contains the FormatSpec object used to determine the format

for incoming messages for this MsgMonitorPoint object.

The FormatSpec object contained within this property is not
passed by reference. If you modify the values assigned to the
properties of a local FormatSpec object, you must then
explicitly assign the modified FormatSpec object back to the
InputFormatSpec property of the MsgMonitorPoint for the
changes to take effect. This following code sample
demonstrates this procedure:
Set fsObject =
msgMonitorPointObject.InputFormatSpec

fsObject.AltFormatName = "SNVT_temp_f#SI"

Set msgMonitorPointObject.InputFormatSpec =
fsObject

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax fsObject = msgMpObject.InputFormatSpec
Element Description

fsObject The FormatSpec object used to interpret
incoming messages.

msgMpObject The MsgMonitorPoint object to be acted
on.

Data Type FormatSpec.

Read/Write Read/write.

Added to API LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

OpenLNS Programmer's Reference 501

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

OutputDataPoint
Summary Contains an OutputDataPoint object that can be used to send

a message to the device monitored by the MsgMonitorPoint
object, as long as the message does not require a response.

When the AppDevice object's GetMessagePoint method is
called, the DataPoint object that is created can read this
property to send a non-request message to that device.

The DataPoint contained in this property has its AutoWrite
property set to True by default; therefore, you do not need to
call the Write method after setting this DataPoint object's
Value property. The monitor set containing the
MsgMonitorPoint must be open in order for you to access this
data point

Use the RequestDataPoint property to send a message that
requires a response.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax dpObject = msgMpObject.OutputDataPoint
Element Description

dpObject The DataPoint object to be returned.

msgMpObject The MsgMonitorPoint object to be acted
on.

Data Type DataPoint object.

Read/Write Read only.

Added to API LNS Release 3.0.

OutputFromatSpec
Summary Contains the FormatSpec object used to determine the format

for outgoing messages for this MsgMonitorPoint object.

The FormatSpec object contained within this property is not
passed by reference. If you modify the values assigned to the
properties of a local FormatSpec object, you must then
explicitly assign the modified FormatSpec object back to the
OutputFormatSpec property of the MsgMonitorPoint for the
changes to take effect. This following code sample
demonstrates this procedure:
Set fsObject =

OpenLNS Programmer's Reference 502

msgMonitorPointObject.OutputFormatSpec

fsObject.AltFormatName = "SNVT_temp_f#SI"

Set msgMonitorPointObject.OutputFormatSpec =
fsObject

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax fsObject = msgMpObject.OutputFormatSpec
Element Description

fsObject The FormatSpec object used to format
outgoing messages.

msgMpObject The MsgMonitorPoint object to be acted
on.

Data Type FormatSpec object.

Read/Write Read/write.

Added to API LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

RequestDataPoint
Summary Returns a DataPoint object that you can use to send a

request message to the device monitored by this
MsgMonitorPoint object. The device should send a response
to this message.

The monitor set containing the MsgMonitorPoint must be

OpenLNS Programmer's Reference 503

open in order for you to access this property. When the
AppDevice object's GetMessagePoint method is called, the
DataPoint object that is created can set this property to send
a request message to the device monitored by this
MsgMonitorPoint object.

The AutoWrite property of this DataPoint object is set to
False; therefore, you need to explicitly propagate the message
to the network after the DataPoint object's Value, RawValue ,
or FormattedValue property is set. You can do this in two
ways:

• Call the DataPoint object's Write method to receive a
response via the OnMsgMonitorPointUpdateEvent event
(i.e. asynchronous response).

• Call the MsgMonitorPoint object's SendMsgWait method
with this DataPoint as the object to receive a response as
the return of the SendMsgWait method (i.e. synchronus
response).

You can use the OutputDataPoint property to send a message
that does not require a response.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax dpObject = msgMpObject.RequestDataPoint
Element Description

dpObject The DataPoint object returned.

msgMpObject The MsgMonitorPoint object to be acted
on.

Data Type DataPoint object.

Read/Write Read/write.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 504

Tag
Summary Stores any extra data associated with the monitor point or

monitor set.
The data stored in this property is not used by OpenLNS, and
is available as soon as the data point or monitor set is created
in a monitor and control session. You can use this property to
store any data your application may need when using the
monitor set or monitor point. For example, you could store
the name of the monitor set that a message or network
variable monitor point belongs to, or the name of the
application device that a monitor set belongs to.

The Tag properties for all MsgMonitorPoint objects in
permanent monitor sets are cached when the monitor set is
opened. As a result, any changes made the Tag properties of
these monitor points while the permanent monitor set is open
will not be accessible until the monitor set is closed and
re-opened. When initially created, monitor points and
monitor sets will have a null Tag value. However, if you add
a monitor point to an open monitor set and set its Tag value
in the same transaction, you will be able to access the Tag
value during that monitor and control session, as all data
would be written to the device as soon as the transaction is
committed. You should note that this behavior does not apply
to monitor points in temporary monitor sets. Temporary
monitor sets support "live" updates to the value of the Tag
property.
A well-defined monitoring application will include any
information necessary to quickly and efficiently identify the
monitor point in this property. This will eliminate the need to
gather such information from the database, or to perform
other time-consuming activities, during the monitoring
process.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects are not available on
Independent clients.

Syntax tagValue = Object.Tag
Element Description

Object The monitor point or monitor set
object to be acted on.

tagValue The tag associated with the object.

Data Type Variant.

Read/Write Read/write.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 505

Events
The MsgMonitorPoint object contains the following events:

• UpdateErrorEvent
• UpdateEvent

UpdateErrorEvent
Summary Indicates that a write failure or a poll failure has occurred on

the message monitor point that generated the event.
This event can only be used in development environments
that support events being generated on threads other than
the client thread (such as Visual C++). In these
environments, it is usually more efficient to generate events
from a non-client thread.
To cause events to be generated in this manner, create an
object which implements the ILcaNvMonitorPointListener or
ILcaMsgMonitorPointListener interface and call a
MsgMonitorPoint object's Advise method with the created
object as the argument. The object will now receive these
events directly. The behavior of the object depends on how
the user implements the UpdateEvent method.

Syntax UpdateErrorEvent(UpdateType as Integer)
Element Description

updateType This element always returns the value
1.

Data Type Integer.

Added to API LNS Release 3.0.

UpdateEvent
Summary Indicates that a message monitor point update has arrived.

This event can only be used in development environments
that support events being generated on threads other than
the client thread (such as Visual C++). In these
environments, it is usually more efficient to generate events
from a non-client thread.
To cause events to be generated in this manner, create an
object which implements the ILcaNvMonitorPointListener or
ILcaMsgMonitorPointListener interface and call a
MsgMonitorPoint object's Advise method with the created
object as the argument. The object will now receive these
events directly. The behavior of the object depends on how
the user implements the UpdateEvent method.

For completion code messages, the InputDp, OutputDp, and
Src parameters are NULL.

Syntax UpdateErrorEvent(UpdateType as Integer)

OpenLNS Programmer's Reference 506

Element Description

UpdateType This element always returns the value
0.
The possible values for this parameter,
which are contained in the
ConstMonitorEventType constant, are
as follows:
0 lcaMonitorEventTypeNull
This value is not used.
1 lcaMonitorEventTypeQuit
This value is not used.
2 lcaMonitorEventTypeAdd
This value is not used.
3 lcaMonitorEventTypeRemove
This value is not used.
4 lcaMonitorEventTypeMsCreate
This value is not used.
5 lcaMonitorEventTypeMsDelete
This value is not used.
6 lcaMonitorEventTypeMsChange
This value is not used.
7 lcaMonitorEventTypeMsError
This value is not used.
8 lcaMonitorEventTypeNvCreate
A network variable monitor point has
been created.
9 lcaMonitorEventTypeNvDelete
A network variable monitor point has
been removed.
10 lcaMonitorEventTypeNvChange
This value is not used.
11 lcaMonitorEventTypeNvError
A network variable monitor point has
returned an error. See the
OnNvMonitorPointErrorEvent.
12 lcaMonitorEventTypeNvUpdate
A network variable monitor point has
received an update. See the
OnNvMonitorPointUpdateEvent.

OpenLNS Programmer's Reference 507

13 lcaMonitorEventTypeNvComplete
A completion code has returned for the
monitor point.
14 lcaMonitorEventTypeMsgCreate
A message monitor point has been
created.
15 lcaMonitorEventTypeMsgDelete
A message monitor point has been
removed.
16 lcaMonitorEventTypeMsgChange
This value is not used.
17 lcaMonitorEventTypeMsgError
A message monitor point has returned
an error. See the
OnMsgMonitorPointErrorEvent.
18 lcaMonitorEventTypeMsgUpdate
A message monitor point has received
an update. See the
OnMsgMonitorPointUpdateEvent.
19 lcaMonitorEventTypeMsgRequest
A message monitor point has received a
request message.
20 lcaMonitorEventTypeMsgResponse
A message monitor point has received a
reponse message.
21 lcaMonitorEventTypeMsgComplete
This value is not used.

InputDp A DataPoint object containing the
received value.

The InputDp parameter's AutoRead and
AutoWrite properties are set to False.

OutputDp A DataPoint object that allows a
response to be sent if the UpdateType is
Request.

The OutputDp parameter's AutoWrite
property is set to True; therefore, it will
be sent as a response when you write to
this DataPoint object.

Src A SourceAddress object indicating the
source device of the update.

Data Type Integer.

OpenLNS Programmer's Reference 508

Added to API LNS Release 3.0.

MsgMonitorPoints
The MsgMonitorPoints object contains a collection of MsgMonitorPoint objects. This
collection object contains all of the MsgMonitorPoint objects that have been added to a
monitor set. Message monitor point objects represent message tags that may be used to
monitor application LONWORKS messages from the device. For more information on monitor
points, see the Monitor and Control chapter in the OpenLNS Programmer’s Guide.

In general, the MsgMonitorPoint collections contained in MonitorSet objects created as
temporary and permanent monitor sets behave the same way except that the DefaultOptions
properties of the MsgMonitorPoint objects in temporary monitor sets are not accessible. For
more information, see the CurrentOptions property of the MsgMonitorPoint object.

The following table summarizes the MsgMonitorPoints object.

Description A collection of MsgMonitorPoint objects.

Added to API LNS Release 3.0.

Accessed Through MonitorSet object.

Default Property Item

Methods • Add
• Remove

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The MsgMonitorPoints object contains the following methods.

• Add
• Remove

Add
Summary Defines a new MsgMonitorPoint object. You can use message

monitor points to send LONWORKS messages to the devices
on your network.

When creating a MsgMonitorPoint object in a permanent
monitor set, you can specify either an AppDevice object or a
dynamic MessageTag object as the targetDevice element.

• If you specify an AppDevice object, you will be able to use
the new MsgMonitorPoint object to send messages to that
device, or to receive messages from the device. This
cannot be the Network Service Device containing the
monitor set you are adding the message point to (the
AppDevice containing the monitor set).

• If you specify a dynamic MessageTag object, you will be

OpenLNS Programmer's Reference 509

able to use the MsgMonitorPoint to send messages to all
the devices that the MessageTag object is bound to at
once. You will not be able to use the MsgMonitorPoint to
receive messages from those devices. The dynamic
MessageTag object must exist on the Network Service
Device containing the monitor set you are adding the
message point to.

When you are adding MsgMonitorPoint objects to temporary
monitor sets, you can only specify an AppDevice object as the
targetDevice element. You will be able to use the new
MsgMonitorPoint object to send messages to that device, or to
receive messages from the device.
As with permanent monitor sets, you cannot specify the
Network Service Device containing the monitor set as the
targetDevice element.

If you are adding a MsgMonitorPoint object to a temporary
monitor set, and specify a MessageTag object as the
targetDevice element, the LCA, #161
lcaErrNotAllowedOnTemporaryObject exception will be
thrown.

Note: If you create a MsgMonitorPoint object and specify an
AppDevice as the targetDevice element, and that device is
removed, then the MsgMonitorPoint object will be deleted as
well.

The FilterBySource property of the MsgMonitorOptions object
must be set to True to restrict the MsgMonitorPoint object to
monitoring messages from the device set specified by the
targetDevice element.
You should use transactions when creating large numbers of
message monitor points in permanent monitor sets, as this
will reduce the overall time required to create them. For
more information on using transactions with LNS, see
Chapter 4, Programming an OpenLNS application, of the
OpenLNS Programmer’s Guide.
Monitor points in permanent monitor sets are not
automatically removed when the application shuts down. If a
monitor point is not going to be used again, you can remove it
with the Remove method before closing your application. This
does not apply to monitor points in temporary monitor sets,
as temporary monitor sets are deleted as soon as the
application that created them shuts down. As a result, you
should use temporary monitor points for monitor points you
will only need to use once.
For more information on creating and using message monitor
points, see the Adding Message Monitor Points to a Monitor
Set section in Chapter 9 of the OpenLNS Programmer’s
Guide.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects, and temporary monitor points,

OpenLNS Programmer's Reference 510

are not available on Independent clients.

Syntax msgMpObject = msgMpColl.Add msgMpName targetDevice
connDesc

Element Description

msgMpObject The newly defined MsgMonitorPoint
object.

msgMpColl The MsgMonitorPoints collection object.

msgMpName The Name of the new MsgMonitorPoint
object.

targetDevice The AppDevice or dynamic MessageTag
object that the MsgMonitorPoint will
monitor.

connDesc A ConnectDescTemplate object which
determines how messages will be sent
out through this monitor point.
You can set this element to NULL to
use the default LNS connection
description template.
Note: Message monitor points in
temporary monitor sets do not support
the use of connection description
templates, and so you must set this
element to NULL when adding a
message monitor point to a temporary
monitor set.

Added to API LNS Release 3.0.

Remove
Summary Removes a MsgMonitorPoint object from the system.

This method can only be called when connected to the
network database (after the Network object's Open method
has been called). This method only applies to message
monitor points in permanent monitor sets. When an
OpenLNS application is closed, all temporary monitor sets
and temporary message monitor points created by that
application are deleted automatically.

Availability Local, full, lightweight, and independent clients. Note that
temporary monitor sets and temporary monitor points are
not available on Independent clients.

Syntax msgMpColl.Remove indexName

Element Description

msgMpColl The MsgMonitorPoints collection object
containing the MsgMonitorPoint object
to be removed.

OpenLNS Programmer's Reference 511

indexName A Long value specifying the collection
index of the MsgMonitorPoint object to
remove, or a String value specifying the
name of the MsgMonitorPoint object to
remove.

Added to API Prior to LNS Release 3.0.

Properties
The MsgMonitorPoints object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
MsgMonitorPoints object in the
ConstClassIds constant:
78 lcaClassIdMsgMonitorPoints

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

OpenLNS Programmer's Reference 512

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a MsgMonitorPoint object from a MsgMonitorPoints

collection. You can retrieve a MsgMonitorPoint object from
its MsgMonitorPoints collection by passing its index (ordinal
position) within that collection as the argument for the Item
property. Index values start at 1. You can also retrieve a
MsgMonitorPoint object in MsgMonitorPoints collections with
the Name property by passing the object’s name as a string
expression.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The MsgMonitorPoint object retrieved
from the collection.

collObject The MsgMonitorPoints collection object
to be acted on.

index A Long type specifying the ordinal
index of the MsgMonitorPoint object to
be retrieved.

stringExpression A string type specifying the name of the
MsgMonitorPoint object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 513

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

OpenLNS Programmer's Reference 514

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

Network
The Network object represents a single LONWORKS network. A network is a set of devices
that interoperate via network variable and message tag connections. Network objects may
be used to represent physically separate networks, or they may be used to represent multiple
projects on the same physical network.

The following table summarizes the Network object.

Description A single LONWORKS network.

Added to API Prior to LNS Release 3.0.

Accessed Through Networks collection object.
ObjectServer object.

Default Property Name.

Methods • Backup
• CancelValidation
• Close
• CloseIndependent
• CompactDb
• CreateTemporaryMonitorSet
• Open
• OpenIndependent
• PreReplace
• Replace
• Validate

Properties • AllowPropagateModeDuringRemote
• BitmapFilePath
• Channels
• ClassId
• CurrentMonitorSets
• DatabasePath
• Description
• EventInterval
• Extensions
• Handle
• IconFilePath
• IsOpen
• IsOpenIndependent
• MyVNI
• Name
• NetworkServiceDevices
• NsiTimeout
• OriginalName
• Parent
• RemoteNetworkName

OpenLNS Programmer's Reference 515

• ServerIdentifier
• System

Methods
The Network object contains the following methods.

• Backup
• CancelValidation
• Close
• CloseIndependent
• CompactDb
• CreateTemporaryMonitorSet
• Open
• OpenIndependent
• PreReplace
• Replace
• Validate

Backup
Summary Make a backup copy of the network database, and exports it

to a specified directory.

The System object must be open when you invoke this
method. If the System object is not open, the LCA #67
lcaErrSystemNotOpen exception will be thrown.
You can backup the network database with this method at
any time while the network is open and while clients are
attached to it. However, if a remote Full client accesses the
Networks collection while the database is being backed up,
and that remote Fulll client does not already have open the
network being backed-up, that network will not appear in the
network collection.
In addition, if a remote Full client attempts to open a
network while it is being backed-up, the open may fail,
whereas Local and Lightweight clients will simply wait for
the backup to complete in this case. OpenLNS calls made by
clients already connected to the database when a backup is
initiated may not return until the backup is complete, and
requests to modify the database will be suspended until the
backup is complete.
You should use this method to backup the network database
before validating the database with the Validate method. You
can then archive the backed-up database before performing
any repairs that are discovered by the database validation
procedure.

Availability Local clients.

Syntax network.Backup systemPath
Element Description

OpenLNS Programmer's Reference 516

network The Network object to be acted upon.

systemPath The directory to which the backup is to
be copied.

The systemPath element must contain a
valid system path. If the destination
directory specified by this path does not
exist, that directory will be created, as
long as the first parent directory in the
path exists.
The directory permissions for this new
folder will be the default permissions
for the operating system on the
computer you are using. If the directory
specified by the systemPath element
already exists, it must be empty.
If there is any error during copying, or
if an invalid system path is supplied,
then the LCA#159
lcaErrUnableToCreateBackup
exception is thrown. Before returning
the error, all files copied by OpenLNS
up to that point will be deleted from the
destination directory, and the
destination directory will be deleted if it
was created by OpenLNS.

Added to API LNS Release 3.20.

CancelValidation
Summary Cancels a database validation that is in progress.

You can initiate a database validation by invoking the
Validate method on the Network object. The
CancelValidation method must be called from the same
process that called the Validate method. Typically, it would
be called from a ProgressUpdate method callback. If this
method is called, and a database validation has not been
previously initiated with the Validate method, it will fail
silently.
It may take several minutes to stop the validation process
after you call the CancelValidation method. You can use the
ProgressUpdate method to check the status of the process
during this time period. When the validation has been
stopped, the LCA, #153 lcaErrDbValidationCancelled
exception will be thrown to notify the application.

Availability Local clients.

OpenLNS Programmer's Reference 517

Syntax network.CancelValidation
Element Description

network The Network object to be acted upon.

Added to API LNS Release 3.20.

Close
Summary Closes the OpenLNS network database and terminates

monitor set monitoring.

You should close the network’s System object before invoking
this method.

Availability Local, full, and lightweight clients.

Syntax network.Close
Element Description

network The Network object to be closed.

Added to API Prior to LNS Release 3.0.

CloseIndependent
Summary Closes the network database if the network database was

opened using the OpenIndependent method.
If this method is called when the network was opened using
the Open method, an error will be returned.

Availability Independent clients.

Syntax network.CloseIndependent
Element Description

network The Network object to be closed.

Added to API Prior to LNS Release 3.0.

CompactDb
Summary Defragments and re-indexes the OpenLNS network database.

The method may not be called on a database that is open and
in use by any client application.
You should backup all databases before calling this method.
Also, your computer should have at least twice as much free
disc space as the size of the database when you call this
method.

Availability Local, full, lightweight, and independent clients.

OpenLNS Programmer's Reference 518

Syntax network.CompactDb
Element Description

network The Network object to be acted on.

Added to API Prior to LNS Release 3.0.

CreateTemporaryMonitorSet
Summary Creates a temporary MonitorSet object.

If you need monitor points that will only be used in a single
client session, you should use temporary MonitorSet objects.
Temporary monitor sets are opened automatically by
OpenLNS as they are created, and can only be accessed from
the client that created them.
When a client releases a temporary monitor set, or when the
client session in which a temporary monitor set was created
ends, the temporary monitor set and all its monitor points
are deleted.
If you need to create a group of monitor points that you can
use in multiple client sessions or that you intend to use
multiple times, you should use the permanent MonitorSet
objects described earlier in this section. However, if you do
not need to re-use a monitor set, you should use temporary
monitor sets because it takes less time and network resources
to create them.
This method is not available to Independent client
applications.

This method returns a MonitorSet object that is opened
automatically upon creation, and closed as soon as the client
session in which it was created ends. There are several other
differences between temporary and permanent MonitorSet
objects. For more information on these differences, see the
MonitorSet object.

Availability Local, full, and lightweight clients.

Syntax tempMonitorSet = network.CreateTemporaryMonitorSet
Element Description

tempMonitorSet The newly defined temporary
MonitorSet object.

network The Network object to be acted upon.

Added to API LNS Release 3.20.

Open
Summary Opens the OpenLNS network database. Before this method

can be used, the Network object must have been previously
added using the Add method of the ObjectServer’s Networks

OpenLNS Programmer's Reference 519

collection.
If this method is being invoked by a remote client, the
application program must set the remote NetworkInterface
for the ObjectServer (ObjectServer.ActiveRemoteNI) before
invoking this method. Additionally, the OpenLNS Server
must be running on the computer containing the OpenLNS
Network Database.

A network obtained from the VNINetworks collection cannot
be opened with this method. It must instead be opened using
the OpenIndependent method. Opening a network in
server-independent allows the network to be monitored and
controlled using MonitorSet objects without communicating
with the OpenLNS Server.
If you will be opening any networks with an OpenLNS
application that is running as a Windows service, then the
first application to open the OpenLNS Object Server must
also be running as a Windows service. In addition, if a
network is to be opened by an OpenLNS application that is
running as Windows service, then that network and system
must be opened by an OpenLNS application that is running
as Windows service before it is opened with an OpenLNS
application running as a user process.
If you open the OpenLNS Object Server or a network with a
user process before opening it with a service, you must first
close the network and OpenLNS Object Server before
opening them with an OpenLNS application that is running
as Windows service.
To avoid these problems, Echelon recommends that if an
OpenLNS network is to be opened by a service, that service
should be started automatically, and should open the
network and systems that it will be accessing on startup,
thus ensuring that the network is opened by the service
before a user process.

Availability Local, full, and lightweight clients.

Syntax network.Open
Element Description

network The Network object to be opened.

Added to API Prior to LNS Release 3.0.

OpenIndependent
Summary Opens the OpenLNS network database in server-independent

mode.
You may only call this method from networks fetched from
the VNINetworks collection. When a network is opened in
server-independent mode, you can monitor and control
monitor sets which have previously been defined on this

OpenLNS Programmer's Reference 520

computer without the OpenLNS Server running on the host.
You may not access the network database.
The same network should not be simultaneously opened in
server-dependent and server-independent mode (with this
method as well as the Open method). Doing this may cause
unpredictable results.

See the ObjectServer object's Open method for information on
how to initialize the Object Server.

Availability Independent clients.

Syntax network.OpenIndependent
Element Description

network The Network object to be opened.

Added to API LNS Release 3.0.

PreReplace
Summary Allows a remote Full client to reattach to a network. In some

situations, this may be necessary if the client’s network
interface was not made a permanent device on the Server
computer.
Under normal circumstances, when a remote full client
re-opens a network, any network variables, connections and
monitor sets created previously will still be available to the
client, so long as the original NSD still exists in the database.
To ensure that the NSD is never deleted from the OpenLNS
database, the NSD must be configured as a permanent device
on the network. You can do so by setting the lcaNsdType
property of the NetworkServiceDevice object to
lcaNsdTypePermanent (1). However, under some
circumstances, the correlation between the client and the
NSD configuration may be lost, and this method may be used
to re-associate the client with the correct NSD.
For example, you will need to use this method if you open a
network remotely from a new computer, and want that client
to use the NSD information which was previously associated
with another remote client computer (effectively moving the
remote application and NSD configuration from one
computer to another). An exception to this is if the original
remote client used a layer 5 network interface, and you move
the network interface to the new computer as well. In this
case, OpenLNS will automatically associate the NSD in the
database with the client based on the layer 5 network
interface’s neuron ID.
You will also need to follow the procedure described below to
reattach an NSD to a network if the network has been
removed from the RemoteNetworks collection for the
computer, and you are using a Layer 2 network interface (or

OpenLNS Programmer's Reference 521

if you install a new network interface on the computer). In all
other scenarios (e.g. when operating as a Local client and
upgrading the computer or network interface card, or when
moving a layer 5 network interface card from one computer
to another) you will not need to perform this procedure.
To re-associate a remote Full client with the correct network
service device and re-attach the client to the network, follow
these steps:
1. Get the network service device to be attached to from the

NetworkServiceDevices collection.

2. Call the PreReplace method with the selected network
service device as an argument.

3. Close the network and release all references to the
network.

4. Get the network and call the Network object's Replace
method.

5. Call the Network object's Open method to open the
network with all previously created monitor sets present.

Availability Full clients.

Syntax networkObject.PreReplace sourceNSD
Element Description

networkObject The Network object to be acted on.

sourceNSD The name of the NetworkServiceDevice
object associated with the remote Full
client that is to reattach to the network.

Added to API LNS Release 3.0.

Replace
Summary Completes the network service device replacement started by

the PreReplace method.
Under normal circumstances, when a remote full client
re-opens a network, any network variables, connections and
monitor sets created previously will still be available to the
client, so long as original NSD still exists in the database.
However, under some circumstances, the correlation between
the client and the NSD configuration may be lost, and this
method may be used in conjunction with the procedure
described below to re-associate the client with the correct
NSD. To ensure that the NSD is not deleted from the
OpenLNS database, the NSD must be configured as a
permanent device on the network. You can do so by setting
the lcaNsdType property of the NetworkServiceDevice object
to lcaNsdTypePermanent (1).
For example, you will need to use this method if you open a
network remotely from a new computer, and want that client

OpenLNS Programmer's Reference 522

to use the NSD information which was previously associated
with a remote client running on another computer (effectively
moving the remote application and NSD configuration from
one computer to another). An exception to this is if the
original remote client used a layer 5 network interface, and
you move the network interface to the new computer as well.
In this case, OpenLNS will automatically associate the NSD
in the database with the client based on the layer 5 network
interface’s neuron ID.
You will also need to follow the procedure described below to
reattach an NSD to a network if the network has been
removed from the RemoteNetworks collection for the
computer, and you are using a Layer 2 network interface (or
if you install a new network interface on the computer). In
all other scenarios (e.g. when operating as a Local client and
upgrading the computer or network interface card, or when
moving a layer 5 network interface card from one computer
to another) you will not need to perform this procedure.
To re-associate a client with the correct network service
device and re-attach the client to the network, follow these
steps:
1. Get the network service device to be attached to from the

NetworkServiceDevices collection.

2. Call the PreReplace method with the selected network
service device as an argument.

3. Close the network and release all references to the
network.

4. Get the network and call the Network object's Replace
method.

5. Call the Network object's Open method to open the
network with all previously created monitor sets present.

Availability Full clients.

Syntax networkObject.Replace
Element Description

networkObject The Network object to be acted on.

Added to API LNS Release 3.0.

Validate
Summary Initiates a database validation on a network. When you

invoke this method, OpenLNS will perform a consistency
check on the network database, and report any
inconsistencies or errors it finds. Inconsistencies that may be
discovered during the database validation include orphan
objects (objects that cannot be accessed through their parent
object), broken interfaces, or duplicate objects.

The System object must be open when you call this method. If

OpenLNS Programmer's Reference 523

it is not open, the LCA, #67 lcaErrSystemNotOpen
exception will be thrown.

You should consider using the Validate method to repair your
network database a last resort. You should backup the
database with the Backup method before performing a
validation with repairs. For more information on this
procedure, see the Backup method. It is safer for the client
application to remove invalid objects from the database
(delete and recreate a device) than for the database
validation method to attempt to do so.
Depending on the size of the network database, it may take a
considerable amount of time to complete the database
validation. You can use the OnDbValidationEvent or the
ProgressUpdate method to check the status of an ongoing
database validation.

You can cancel a validation by invoking the CancelValidation
method on the Network object. In this case, the method will
not return a DatabaseValidationReport object.
The database validation must be initiated locally. While the
database validation is in progress, clients will be unable to
modify or write to the database. As a result, you should
perform the database validation while a minimal number of
client applications are connected to the database. One
suggested approach is to backup the database and restore it
with a different name and location, and perform the
validation on this restored database. This approach will
minimize the disruption caused by the validation, and has
the benefit of producing in a backup whose validity is known.

Availability Local clients.

Syntax networkObject.Replace
Element Description

validationReport The DatabaseValidationReport
object returned by the method. This
object contains information
describing the results of the
database validation.

network The Network object to be acted
upon.

validationFlags Specifies whether inconsistencies
discovered during the database
validation will be repaired.
The valid options for this element,
which are contained in the
ConstDbValidationFlags constant,
are as follows:
0 lcaDbValidateOnly
OpenLNS performs the database

OpenLNS Programmer's Reference 524

validation without attempting to
repair any of the errors it discovers.
In this case, the Validate method
returns a
DatabaseValidationReport object
summarizing the results of the
database validation.
1 lcaDbValidateAndRepair
OpenLNS performs repairs on the
errors and inconsistencies it
discovers during the database
validation. In this case, the
Validate method returns a
DatabaseValidationReport object
summarizing the results of the
database validation, and attempts
to repair the problems it discovered
during the validation.
Not all error types can be repaired
as part of the database validation
process. You can use the
DatabaseValidationReport object
returned by the process to
determine whether any errors
remain in the database after the
validation has completed.

progressCallback Optional callback interface to
receive database validation
progress events directly, rather
than through the Object Server’s
OnDbValidationEvent event.
This element will only take
references to objects that are
implemented as
ILcaProgressListener or
_DLcaProgressListener interface
objects.

validationReport The DatabaseValidationReport
object returned by the method. This
object contains information
describing the results of the
database validation.

Added to API LNS Release 3.20.

Properties
The Network object contains the following properties:

• AllowPropagateModeDuringRemote
• BitmapFilePath

OpenLNS Programmer's Reference 525

• Channels
• ClassId
• CurrentMonitorSets
• DatabasePath
• Description
• EventInterval
• Extensions
• Handle
• IconFilePath
• IsOpen
• IsOpenIndependent
• MyVNI
• Name
• NetworkServiceDevices
• NsiTimeout
• OriginalName
• Parent
• RemoteNetworkName
• ServerIdentifier
• Systems

AllowPropagateModeDuringRemote
Summary Determines whether OpenLNS should change the network

management mode to lcaMgmtModePropagateConfigUpdates
(0) if it is necessary to open this network.
This property applies to remote Full Client applications only. In
some cases, OpenLNS cannot open remote networks when the
network management mode is set to
lcaMgmtModeDeferConfigUpdates (1). This may be the case if
the remote Full Client has not previously connected to the Object
Server, if the remote Full Client has changed channels, or if
changes have been made to the database such that commissioning
the Network Service Device may cause inconsitencies in the
configuration of physical devices on the network.

This property must be set before you open the System object. If
OpenLNS is unable to open a network due to the network
management mode settings, the NS, #31
lcaErrNsDeferConfigUpdatesMgmntMode exception will be
thrown.
For more information on the network management mode, see the
MgmtMode property.

Availability Full clients.

Syntax network.AllowPropagateModeDuringRemoteOpen = flag
Elemen
t

Description

network The Network object being acted upon.

flag A Boolean value indicating whether OpenLNS
should change the network management mode in

OpenLNS Programmer's Reference 526

order to successfully open this remote network.
TRUE. OpenLNS changes the network

management mode when necessary.
Set this property to True if it is acceptable
for OpenLNS to temporarily change the
network management mode from
lcaMgmtModeDeferConfigUpdates (1)
to
lcaMgmtModePropagateConfigUpdate
s (0) when opening a network from such a
client application in these situations.
When the network management mode is
changed, all pending configuration updates
will applied to the physical devices on the
network. This may result in unwanted
changes being propagated to the network.
Once this has completed and the network
has been opened, the management mode
will be restored to
lcaMgmtModeDeferConfigUpdates (1).

FALSE. OpenLNS does not change the network
management mode.

Data Type Boolean.

Read/Write Read/write.

Added to API LNS Release 3.20.

BitmapFilePath
Summary Specify the path and file name of a bitmap (*.BMP file)

representation of the object.
The bitmap files are used to store object images which may
be accessed by a director level LNS component application. A
bitmap may be of any size, although the recommended
dimensions are 40x80 pixels.

See the IconFilePath property for related information.

Availability Local clients.

Syntax bmpFilePath = object.BitmapFilePath
Element Description

bmpFilePath The bitmap path and file name.

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,

OpenLNS Programmer's Reference 527

C:\MyBMPs\Object.BMP).

Added to API Prior to LNS Release 3.0.

Channels
Summary Contains the Channels collection object associated with the

specified Network object.

Availability Local, full, and lightweight clients.

Syntax channelsColl = networkObject.Channels
Element Description

channelsColl The Channels collection object to be
returned.

networkObject The Network object.

Data Type Channels collection object.

Read/Write Read only

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Network object in the ConstClassIds
constant:
1 lcaClassIdNetwork

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

CurrentMonitorSets
Summary Contains a collection of all of the MonitorSet objects that are

OpenLNS Programmer's Reference 528

commissioned into your client’s NSD for a given network.

The CurrentMonitorSets property returns a MonitorSets
object that contains all the MonitorSet objects on that
network that are currently stored in your client’s NSD. This
may be useful if you have created monitor sets while the
network management mode is set to
lcaMgmtModeDeferConfigUpdates (1). Although those
monitor sets exist in the OpenLNS database and can also be
accessed through the MyVNI property, they will not be
commissioned into the NSD. As a result, they cannot be
enabled or used for monitoring operations until the network
management mode is set to
lcaMgmtModePropagateConfigUpdates (0).

The collection accessed through the CurrentMonitorSets
property only allows access to the monitor sets you can
currently use on a network (the collection accessed through
the MyVNI property allows access to these monitor sets, as
well as those that have not yet been commissioned into your
client’s NSD). You can use all the monitor sets obtained
through the CurrentMonitorSets property as runtime
monitor sets, meaning that you can enable them and use
them for monitoring operations. However, changes to their
configuration are not allowed when accessed through this
collection. You should the MyVNI property when you need to
write to the configuration of your client’s local MonitorSet
objects.

Availability Local, full, and lightweight clients.

Syntax monitorSets = network.CurrentMonitorSets
Element Description

monitorSets The collection of MonitorSet objects on a
network that are currently stored in your
client’s NSD.

network The Network object being acted upon.

Data Type MonitorSets collection object.

Read/Write Read only

Added to API LNS Release 3.20.

DatabasePath
Summary Contains the full path of the OpenLNS network database.

Typically the full path for each OpenLNS network database
is set when you add the network to the Networks collection.
The database path is a parameter of the Add method, and
can be a maximum of 230 characters long. See the Add
method for the Networks object for more information.

Availability Local, full, lightweight, and independent clients.

OpenLNS Programmer's Reference 529

Syntax dbPath = object.DatabasePath
Element Description

dbPath The full path of the global OpenLNS
database.

object The Network object.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Description
Summary Stores description information about the Network object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the Network
object.

object The Network to be acted on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

EventInterval
Summary The interval between event requests.

This property sets the interval at which OpenLNS will call
the GetNextEvent service for your Lightweight Client
application. Each time LNS calls the GetNextEvent service,
your Lightweight Client application will receive a TCP
messag containing all the events it has registered for that
have occurred since the last time the service was called.
Consider a case where this property is set to the default
value of 1 second. OpenLNS will call the GetNextEvent
service every second. The application will receive the events
it has registered for immediately after the service has been
called, or as soon as the events occur after the service has
been called. For example, say LNS calls the GetNextEvent
service, but no events occur for another 750 ms. The
application will receive those events at 750 ms, and will
make the next GetNextEvent request 250 ms later.
If no events occur before the interval defined by the

OpenLNS Programmer's Reference 530

EventInterval property expires, OpenLNS will not call the
GetNextEvent service right away. Instead, it will wait until
the next event (or set of events) occurs, deliver that event to
the client, and then immediately call GetNextEvent (because
the interval has already expired). Following that, OpenLNS
will call the GetNextEvent service at the interval defined by
this property.
Note that as you set this property to lower and lower values,
more and more request-response messages will be sent to the
server. You should keep this in mind when setting this
property, as it may cause more network traffic than you
desire.
This property is not applicable to Local Client and Full Client
applications because the OpenLNS Server delivers events to
those clients as soon as they occur. However, you can change
the default value used by all of the Lightweight Clients on
the network by changing the value of this property on a Local
Client. By changing the value of this property on a
Lightweight Client application, you change the value used by
that client only.

Availability Local, full, and lightweight clients.

Syntax eventInterval = networkObject.EventInterval
Element Description

eventInterval The period of time that has passed
since the last event request.

networkObject The Network object to be acted on.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Extensions
Summary Contains the Extensions collection object associated with the

specified Network object.

This property returns an Extensions collection. The objects
in this collection represent user data reserved for
manufacturers. Each object is identified with a unique
identifier set by the manufacturer.

Note: The Extensions collection for a Network object is stored
in the specific OpenLNS global database computer, and it is
not exported with the Network database. As a result, the
collection would be lost in the process of transferring a
network database from one computer to another.

Availability Local, full, lightweight, and independent clients.

Syntax extensionsColl = object.Extensions

OpenLNS Programmer's Reference 531

Element Description

extensionsColl The Extensions collection object.

object The object whose Extensions
collection is being returned.

Data Type Extensions collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Handle
Summary Contains the handle associated with the Network object.

An OpenLNS Object that is part of a collection is assigned an
index corresponding to its position within that collection.
This index may be used when invoking the Item property.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.Handle
Element Description

returnValue The NSS handle of the object.

object The object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

IconFilePath
Summary Specifies the path and file name of an icon (*.ICO file)

representation of the object.

Availability Local clients.

Syntax IconFilePathFileName = object.IconFilePath
Element Description

IconFilePathFileName Icon file and path name

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyICOs\Object.ICO).
The icon file should contain the following representations:

• Standard (32x32 pixels) with 256 colors
• Small (16x16) with 16 colors
• Monochrome (32x32)

OpenLNS Programmer's Reference 532

• Large (48x48) with 256 colors

Added to API Prior to LNS Release 3.0.

IsOpen
Summary Indicates whether the specified Network object is currently

open. You can open the Network object with the Open
method, and you can close it with the Close method.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects are not available on
Independent clients.

Syntax isOpenFlag = Object.IsOpe
Element Description

isOpenFlag Boolean value.

Object A Boolean value indicating whether the
Network object is currently open.

TRUE. The Network object is
currently open.

FALSE. The Network object is
currently closed.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

IsOpenIndependent
Summary Indicates whether the specified Network object is currently

open in server-independent mode.

Successfully invoking the OpenIndependent method on a
Network object will set its IsOpen property to True. Invoking
the CloseIndependent method sets its IsOpen property to
False.

Availability Local, full, lightweight, and independent clients.

Syntax isOpenFlag = networkObject.IsOpenIndependent
Element Description

isOpenFlag Boolean value.

Object A Boolean value indicating whether the
Network object is currently open.

TRUE. The Network object is
currently open.

FALSE. The Network object is
currently closed.

Data Type Boolean.

OpenLNS Programmer's Reference 533

Read/Write Read only.

Added to API LNS Release 3.0.

MyVNI
Summary Contains the AppDevice object which is used to create

MonitorSets on this network.

This AppDevice object is the only one that supports the
MonitorSets property. You should access your monitor sets
through this property when you plan to create new monitor
sets, or when you plan to modify the configuration of an
existing monitor set. For actual monitor and control
operations, you should use the CurrentMonitorSets property.

Availability Local, full, lightweight, and independent clients.

Syntax adObject= networkObject.MyVNI
Element Description

adObject The AppDevice returned by the
property. This AppDevice object
represents the virtual network interface
for this network.

network Object The Network object.

Data Type AppDevice object.

Read/Write Read only.

Added to API LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as

OpenLNS Programmer's Reference 534

they are added to the API.

NetworkServiceDevices
Summary Contains the NetworkServiceDevices collection object

associated with the specified Network object. This is the
collection of all NetworkServiceDevice objects (the NSS and
all NSIs) on the network.

Availability Local, full, lightweight, and independent clients.

Syntax nsdColl = networkObject.NetworkServiceDevices
Element Description

adObject The AppDevice returned by the
property. This AppDevice object
represents the virtual network interface
for this network.

network Object The Network object.

Data Type NetworkServiceDevices collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

NsiTimeout
Summary Indicates how long the OpenLNS Object Server will wait for

a client application to disconnect from the network before
shutting down.
Your application should close all networks before this
interval expires when closing the Object Server.

Availability Local, full, and lightweight clients.

Syntax timeoutValue = networkObject.NsiTimeout
Element Description

timeoutValue The NSI’s timeout value in seconds.
A value of 0 indicates that the system
will not time out.
The maximum value for this property is
32,767.
The default value for this property is 10
seconds.

networkObject The Network to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 535

OriginalName
Summary Contains the network's original name as defined on the

OpenLNS Server.
The property may only be accessed after the remote client
has connected to the OpenLNS Server using the system's
Open method.

Availability Local, full, and lightweight clients.

Syntax networkName = networkObject.OriginalName
Element Description

networkName The returned network name.

networkObject The Network to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 536

RemoteNetworkName
Summary Allows the name of the network as seen in the

RemoteNetworks and VNINetworks to be changed.
When a Full client network is opened for the first time on a
computer, an entry is made in the RemoteNetworks and
VNINetworks collections which identifies the network as
r_<Network Name> (i.e. if the network name is HVAC, the
name in the RemoteNetworks and VNINetworks collections
will be r_HVAC). It is possible to change this name before
opening the network for the first time(and thus creating the
RemoteNetworks and VNINetworks entries) by setting this
property immediately before the Network object's Open
method is called. The new network name will be available in
the RemoteNetworks and VNINetworks collections as soon as
the Open method is called.
If multiple Full client networks that use the same name will
be opened from a computer, this allows them to be uniquely
identified. Additionally, this allows the same network to have
multiple RemoteNetworks and VNINetworks entries, each
with a different name (and each containing its own collection
of monitor sets).

Availability Local, full, and lightweight clients.

Syntax networkObject.RemoteNetworkName = networkName
Element Description

networkObject The Network object to be acted on.

networkName The new name of the network.
This can be a maximum of 85
characters long.
The network name may not include
the following characxters: forward
slash (/), back slash (\), period (.),
and colon.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 537

ServerIdentifier
Summary Provides an identification string for the OpenLNS Server

that has opened this network, which enables networks with
the same name on different servers to be differentiated.

When the ObjectServer object's RemoteFlag property is set to
True before the ObjectServer is opened, the Networks
collection will contain all of the remote full or lightweight
client networks (see the Flags property) which have been
opened by an OpenLNS Server application. It is possible that
two or more of these networks opened with different
OpenLNS Server applications will have the same name
(multiple networks opened on a single OpenLNS Server must
have unique names). This property allows these networks to
be differentiated by provided a string representing a 4-byte
hexadecimal value that uniquely identifies the LNS Sever.

Availability Local, full, and lightweight clients.

Syntax serverId = networkObject.ServerIdentifier
Element Description

serverId The unique 4-byte identifyer of the
OpenLNS Server application which
has opened this network.

• If this Network object is
accessed from the
RemoteNetworks or
VNINetworks collections, this
property will contain "0000".

• If this Network object is
accessed from the Networks
collection with the RemoteFlag
property having been set to
False, this property will contain
"000".

Once this value has been set, it is
persistent through the OpenLNS
Server and/or the application
exiting and restarting.

networkObject The Network object to be acted on.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 538

Systems
Summary Returns the Systems collection containing the System object.

Only one System is allowed for each network (the Systems
collection will always contain only one object).

Availability Local, full, and lightweight clients.

Syntax systemsCollection = networkObject.Systems
Element Description

systemsCollection Returned collection of System
objects.

networkObject Network object to be acted upon.

Data Type Systems collection object.

Read/Write Read only.

Added to API LNS Release 3.0.

Networks
The Networks object contains a collection of Network objects. This collection represents all of
the networks known to the ObjectServer. The ObjectServer supports multiple active
networks simultaneously, depending on the system resources available. The resources and
memory required to support any number of open networks depends on the sizes of the
networks, and the activities of the client application(s) operating on those networks. You
should monitor the performance of your system when using large networks or multiple
networks to ensure that you have the proper amount of memory available.

The following table summarizes the Networks object.

Description A collection of Network objects.

Added to API LNS Release 3.0.

Accessed Through ObjectServer object.

Default Property Item

Methods • Add
• RemoveEx

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The Networks object contains the following methods.

• Add
• RemoveEx

OpenLNS Programmer's Reference 539

Add
Summary Defines a new Network object. You can create a new

network, or import an existing network.

Availability Local, full, and lightweight clients.

Syntax networkObject = networksColl.Add(networkName,
databasePath, createDatabase)
Element Description

networkObject The newly defined Network object.

networksColl The Networks collection object.

networkName A String representing the name of the
new network. This name is also
applied to the network’s System
object, and can be no longer than 16
characters. If you enter a name that is
longer than 16 characters, the LCA,
#23 lcaErrDatabasePathTooLong
exception will be thrown.

databasePath A String containing the path for the
network database. You can enter an
absolute path or a relative path here.
Full clients may not invoke this
method. Lightweight clients may
invoke the method, but no network is
actually created. Instead, an entry is
added within the client computer’s
server list. In this case, the
databasePath parameter specifies the
IP address and port for the server, e.g.
"lns://myServer:2540", and the
createDatabase parameter is ignored.
Entries may be removed using the
Networks collection object’s RemoveEx
method.

You can specify the dataBasePath
parameter as an absolute path or as a
relative path. If you specify the
databasePath parameter as a relative
path, OpenLNS will automatically
make it an absolute path by
prepending the current working
directory to it.
For example, if you enter "Network01"
as the databasePath element, and the
current working directory is "C:\LM,"
the new database would be located in
C:\LM\Network01" folder.
Note: The complete database path

OpenLNS Programmer's Reference 540

can be no more than 230 characters
long, including any characters
OpenLNS adds to create an absolute
path. Otherwise the LCA, #23
lcaErrDatabasePathTooLong
exception will be thrown.

createDatabase A Boolean value indicating whether a
new Network and a new OpenLNS
database are to be created, or a new
network is to be created based on an
existing OpenLNS database.

TRUE. Creates a new Network and a
new OpenLNS network
database.

FALSE. Creates a new network
based upon the existing
database specified in the
databasePath element. You
can use this option to import
a network from another
computer, or restore a
backed up network database.

Added to API Prior to LNS Release 3.0.

RemoveEx
Summary Removes a Network object from the local Networks collection,

and may delete the OpenLNS network database, removing
all files that were associated with the network.
This method includes an option for specifying whether the
OpenLNS network database is to be deleted. If you do not
delete the network database, you can restore the network
later, without having to re-create the database. This may be
useful if you want to store network databases on a central file
server and add them to (or remove them from) any OpenLNS
Server computer when needed.

Availability Local clients.

Syntax networksObject.RemoveEx indexName, databaseOption

Element Description

networksObject The Networks collection object to be
acted upon.

indexName A Long value specifying the collection
index of the Network object to remove,
or a String value specifying the name
of the Network object to remove.

The indexName element used to
identify the network to be deleted is a
Variant type. This allows you to

OpenLNS Programmer's Reference 541

identify the network to be deleted by
its name, which is stored in the Name
property of the Network object, or by
its index number within the Networks
collection.

databaseOption Determines whether the network
database is preserved or deleted.
The possible values for this element,
which are contained in the
ConstNetworkRemovalFlags constant,
are as follows:
1 lcaNetworkRemovalFlagLeaveFiles
Removes the entry for the selected
network from the local Networks
collection, but leave the network
database files intact. This enables you
to restore the network later, without
having to re-create the network
database.

You can do so by calling the Add
method on the network, with the
createDatabase flag set to False to
re-add the network, and the
databasePath parameter set to point to
the saved database. This may be
useful in a system with a large number
of networks, if you want to minimize
the number of entries in the local
Networks collection.
2
lcaNetworkRemovalFlagLeaveRegistry
Removes the entry for the selected
network from the local Networks
collection, but leaves the registry
entries associated with the network
database intact.
Note: You can also specify 0 for this
element to delete the network
database, and all of its files and
registry entries. In this case, the
RemoveEx method works exactly as
the deprecated Remove method.

Added to API LNS Release 3.20.

Properties
The Networks object contains the following properties:

• ClassId

OpenLNS Programmer's Reference 542

• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Networks object in the ConstClassIds
constant:
2 lcaClassIdNetworks

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is

OpenLNS Programmer's Reference 543

added to the API.

Item
Summary Returns a Network object from a Networks collection. You can

retrieve a Network object from its Networks collection by
passing its index (ordinal position) within that Networks
collection as the argument for the Item property. Index
values start at 1. You can also retrieve a Network object in
Networks collections with the Name property by passing the
object’s name as a string expression.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The Network object retrieved from the
collection.

collObject The Networks collection object to be
acted on.

index A Long type specifying the ordinal
index of the Network object to be
retrieved.

stringExpression A string type specifying the name of the
Network object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

OpenLNS Programmer's Reference 544

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

NetworkInterface
A NetworkInterface object represents a single instance of a LONWORKS Network Interface or
Network Services Interface (for example, a U10/U20 USB network interface, or a PCLTA-21,
PCLTA-20, or PCC-10 network interface card). The Name property contains the device name
of the NetworkInterface (for example, LON1), which is set from the LonWorks Interfaces
Control Panel application. The following table summarizes the NetworkInterface object.

Description An instance of a LONWORKS network
interface or network services interface.

OpenLNS Programmer's Reference 545

Added to API Prior to LNS Release 3.0.

Accessed Through NetworkInterfaces collection object.
NetworkServiceDevice object.

Default Property Name.

Methods None.

Properties • ClassId
• Name
• Parent

Methods
The NetworkInterface object does not contain any methods.

Properties
The NetworkInterface object contains the following properties:

• ClassId
• Name
• Parent

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
NetworkInterface object in the
ConstClassIds constant:
14 lcaClassIdNetworkInterface

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 546

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 547

NetworkInterfaces
A NetworkInterfaces object represents a collection of NetworkInterface objects. This
collection contains all of the network interfaces on the local computer that are available to
the Object Server. This collection is constructed from entries in the Windows registry.

Use the Item property to access a NetworkInterface object from this collection. For more
network interface types, you can specify the network interface to be retrieved by its name, or
by its index number within the NetworkInterfaces collection. However, remote network
interfaces (RNIs) that connect to your application through the OpenLDV xDriver do not
appear in the NetworkInterfaces collection until a session with that RNI has been fully
established. This is not true if you are using the Default xDriver Profile, which uses the
Windows Registry to ensure that all configured RNIs will be added to the NetworkInterfaces
collection. For other Profiles, you can still create and access the appropriate
NetworkInterface object by name from the collection using the Item property.
To do so, pass a string type specifying the name of the RNI to retrieve as the
stringExpression element when you read the Item property. For xDriver network interfaces,
the network interface name of the RNI device can be a maximum of 128 characters long, and
must be specified using the following naming convention: x.ProfileName.Downlink Lookup
Key.

• ProfileName represents the name of the xDriver Profile that will manage the connection
to the RNI.

• Downlink Lookup Key represents the downlink lookup key assigned to the RNI in the
xDriver database.

If you used the LonWorks Interfaces Control Panel application to configure the RNI, this is
the name you assigned the RNI when you first created it with the application. For example,
if the xDriver Profile name is myProfile and the downlink lookup key is RNI-0001, the
network interface name would be “x.myProfile.RNI-0001”.

The following table summarizes the NetworkInterfaces object.

Description A collection of NetworkInterface objects.

Added to API Prior to LNS Release 3.0.

Accessed Through ObjectServer object.

Default Property Item.

Methods None.

Properties • ClassId
• Count
• Item
• _NewEnum

Methods
The NetworkInterfaces object does not contain any methods.

Properties
The NetworkInterfaces object contains the following properties:

• ClassId

OpenLNS Programmer's Reference 548

• Count
• Item
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
NetworkInterfaces object in the
ConstClassIds constant:
15 lcaClassIdNetworkInterfaces

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 549

Item
Summary Returns a NetworkInterface object from a NetworkInterfaces

collection. You can retrieve a NetworkInterface object from its
NetworkInterfaces collection by passing its index (ordinal
position) within that collection as the argument for the Item
property. Index values start at 1. You can also retrieve a
NetworkInterface object in NetworkInterfaces collections with
the Name property by passing the object’s name as a string
expression.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The NetworkInterface object retrieved
from the collection.

collObject The NetworkInterfaces collection object
to be acted on.

index A Long type specifying the ordinal
index of the NetworkInterface object to
be retrieved.

stringExpression A string type specifying the name of the
NetworkInterface object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of

OpenLNS Programmer's Reference 550

foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

NetworkResources
A NetworkResources contains information related to the network resources allocated on the
system. The properties of the NetworkResources object indicate how many exclusive and
sharable pool selectors are available on the system, how many group IDs and subnets have
been allocated on the system, and how many AppDevices and Routers have been installed on
the system.
This information may be especially useful if you are managing a large system. For example,
if you are writing an application that creates large numbers of multicast connections on a
system, you will need to know how many exclusive selectors are available on the system.
Another example would be if you are merging two OpenLNS databases, you will need to
know how many subnets and exclusive selectors have been assigned in each database, to
make sure that the merged database will not exceed the limits for each property.

Description Contains information related to the network
resources allocated on the system.

Added to API LNS Release 3.20.

Accessed Through System object.

Default Property None.

Methods None.

Properties • AppDeviceCount
• ClassId
• ExclusiveSelectorPoolSize
• ExclusiveSelectorsAvailable
• GroupIdsAllocated
• Parent
• RouterCount
• SharableSelectorPoolSize
• SubnetsAllocated

Methods
The NetworkResources object does not contain any methods.

OpenLNS Programmer's Reference 551

Properties
The NetworkResources object contains the following properties:

• AppDeviceCount
• ClassId
• ExclusiveSelectorPoolSize
• ExclusiveSelectorsAvailable
• GroupIdsAllocated
• Parent
• RouterCount
• SharableSelectorPoolSize
• SubnetsAllocated

AppDeviceCount
Summary Indicates the number of AppDevice objects that have been

installed on the system. This includes all devices that are
installed in the OpenLNS database, and managed by
OpenLNS. This does not include AppDevices contained in the
Discovered.Uninstalled subsystem.
This count does not include routers. You can determine how
many routers have been installed on the system by reading
the RouterCount property.

Availability Local, full, and lightweight clients.

Syntax count = networkResources.AppDeviceCount
Element Description

count The number of AppDevices installed
on the System. The valid range for
this property is 1–32,385.

networkResources The NetworkResources object being
acted upon.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

OpenLNS Programmer's Reference 552

classIdValue The object class of the object. The
following value is defined for the
NetworkResources object in the
ConstClassIds constant:
93 lcaClassIdNetworkResources

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ExclusiveSelectorPoolSize
Summary Indicates the total number of exclusive selectors in the

system, including those that are already being used by
connections. Typically, this value will be set to 11,264.
A network variable selector is a 14-bit number used to
identify connected network variables. Each connection in the
system is assigned a selector value, and all network variables
in a given connection must use the same selector.
Intersecting connections must also use the same network
variable selector. OpenLNS can also share network variable
selectors among unicast connections if those connections are
between disjoint devices. Network variable selectors that are
shared between unrelated connections come from the pool of
sharable selectors available on the system.
OpenLNS assigns exclusive network variable selectors to sets
of intersecting connections, and to each connection that
contains multiple targets. The selectors used to form this
type of connection are called exclusive selectors.
You can determine exactly how many exclusive selectors
have not been assigned, and are still available, by reading
the ExclusiveSelectorsAvailable property.

Availability Local, full, and lightweight clients.

Syntax count = networkResources.ExclusiveSelectorPoolSize
Element Description

count The total number of exclusive
selectors in the system, including
those that are already being used by
connections.

networkResources The NetworkResources object being
acted upon.

Data Type Long.

Read/Write Read only.

OpenLNS Programmer's Reference 553

Added to API LNS Release 3.20.

ExclusiveSelectorsAvailable
Summary Indicates the total number of exclusive selectors that are

currently available in the system.
A network variable selector is a 14-bit number used to
identify connected network variables. Each connection in the
system is assigned a selector value, and all network variables
in a given connection must use the same selector.
Intersecting connections must also use the same network
variable selector. OpenLNS can also share network variable
selectors among unicast connections if those connections are
between disjoint devices. Network variable selectors that are
shared between unrelated connections come from the pool of
sharable selectors available on the system.
LNS assigns exclusive network variable selectors to sets of
intersecting connections, and to each connection that
contains multiple targets. The selectors used to form this
type of connection are called exclusive selectors.
You can find out how many exclusive selectors exist on the
system (including those that are already in use) by reading
the ExclusiveSelectorPoolSize property.

Availability Local, full, and lightweight clients.

Syntax count = networkResources.ExclusiveSelectorsAvailable
Element Description

count The number of exclusive selectors
available in the system.

networkResources The NetworkResources object being
acted upon.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 554

GroupIdsAllocated
Summary Indicates the number of LonTalk group IDs that have been

allocated on the system.
Each set of connections in the system that use multicast
addressing must have a unique group ID. As a result, the
number of group IDs that have been allocated is critical to
networks with large numbers of connections and devices.
This property could be used by a network management
application to determine if the multicast connections that it’s
creating are efficiently using available network resources.
You can also use this property when merging two OpenLNS
databases to determine if they have more than a combined
total of 256 group IDs allocated (in which case, the merge
would fail).
You can limit the use of multicast addressing with your
applications using the AliasOptions and BroadcastOptions
properties of the ConnectDescTemplate object used by the
connection.

Availability Local, full, and lightweight clients.

Syntax count = networkResources. GroupIdsAllocated
Element Description

count The number of group IDs allocated on
the system. This property has a
range of 0–256, as each system
supports a total of 256 group IDs for
multicast addressing.

networkResources The NetworkResources object being
acted upon.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

OpenLNS Programmer's Reference 555

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

RouterCount
Summary Indicates the number of Router objects that have been

installed on the system. This includes all routers that are
installed in the OpenLNS database, and managed by
OpenLNS. This does not include Routers contained in the
Discovered.Uninstalled subsystem.

Availability Local, full, and lightweight clients.

Syntax count = networkResources.RouterCount
Element Description

count The number of routers installed on
the System. The valid range for this
property is 1–16,192.

networkResources The NetworkResources object being
acted upon.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

SharableSelectorPoolSize
Summary Indicates the total number of selectors in the system that can

be used by more than one non-intersecting connection.
Typically, this property will be set to 1,024.
A network variable selector is a 14-bit number used to
identify connected network variables. Each connection in the
system is assigned a selector value, and all network variables
in a given connection must use the same selector.
Intersecting connections must also use the same network
variable selector. OpenLNS can also share network variable
selectors among unicast connections if those connections are
between disjoint devices. Network variable selectors that are
shared between unrelated connections come from the pool of
sharable selectors available on the system.

Availability Local, full, and lightweight clients.

Syntax count = networkResources.SharableSelectorPoolSize
Element Description

OpenLNS Programmer's Reference 556

count The number of selectors that can be
used by more than one connection in
the system.

networkResources The NetworkResources object being
acted upon.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

SubnetsAllocated
Summary Indicates the number of subnets that have been allocated on

the system.
Subnets are the second component of the three-component
LonTalk domain/subnet/device addressing hierarchy used by
devices on LONWORKS networks. The subnet address is the
level at which routers decide whether to forward a packet;
therefore, the same subnet cannot appear on both sides of a
configured or learning router. Subnets are typically added to
the system automatically as routers or devices are added.
This property has a range of 1–255, as there can be a
maximum of 255 subnets per system. Knowing how many
subnets have been allocated may be useful if you are
managing large systems. For example, if you plan to merge
two OpenLNS databases, you can use this property to
determine if they have more than a combined total of 255
subnets (in which case, the merge would fail).

Availability Local, full, and lightweight clients.

Syntax count = networkResources.SubnetsAllocated
Element Description

count The number of subnets that have
been allocated on the system.

networkResources The NetworkResources object being
acted upon.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

NetworkServiceDevice
A NetworkServiceDevice (NSD) object represents a single instance of an OpenLNS Server or
a Network Services Interface (NSI). The following table summarizes the
NetworkServiceDevice object.

Description A single OpenLNS Server or NSI.

OpenLNS Programmer's Reference 557

Added to API Prior to LNS Release 3.0.

Accessed Through AppDevice object.
NetworkServiceDevices object.
System object.

Default Property Name.

Methods • BeginResetEvent
• EndResetEvent

Properties • AppDevice
• BitmapFilePath
• ClassId
• DefaultApplication
• Description
• Dialup
• Extensions
• IconFilePath
• Interfaces
• LcaNsdType
• MipIsLayer2
• Name
• NetworkInterface
• NetworkInterfaceFlag
• NodeHandle
• NsiHandle
• NsiNodeId
• NsiSubnetId
• NssFlag
• Parent
• PingClass

Methods
The NetworkServiceDevice object contains the following methods:

• BeginResetEvent
• EndResetEvent

BeginResetEvent
Summary Enables the OnNetworkServiceDeviceResetNew event for a

network service device.

Availability Local, full, and lightweight clients.

Syntax nsdObject.BeginResetEvent
Element Description

nsdObject The NetworkServiceDevice object.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 558

EndResetEvent
Summary Disables the OnNetworkServiceDeviceResetNew event.

Availability Local, full, and lightweight clients.

Syntax nsdObject.EndResetEvent
Element Description

nsdObject The NetworkServiceDevice object.

Added to API Prior to LNS Release 3.0.

Properties
The NetworkServiceDevice object contains the following methods:

• AppDevice
• BitmapFilePath
• ClassId
• DefaultApplication
• Description
• Dialup
• Extensions
• IconFilePath
• Interfaces
• LcaNsdType
• MipIsLayer2
• Name
• NetworkInterface
• NetworkInterfaceFlag
• NodeHandle
• NsiHandle
• NsiNodeId
• NsiSubnetId
• NssFlag
• Parent
• PingClass

AppDevice
Summary Identifies a host application using the NetworkServiceDevice

as a network interface.

An AppDevice object is automatically created and assigned to
this property when the NetworkServiceDevice object is
created. One NetworkServiceDevice is created when the
OpenLNS database is created, and additional Network
Service Devices are created to support remote full clients
(usually one per remote computer that accesses the OpenLNS
database).

Availability Local, full, and lightweight clients.

Syntax appDevObject = nsdObject.AppDevice

OpenLNS Programmer's Reference 559

Element Description

appDevObject The AppDevice object to be returned.

nsdObject The NetworkServiceDevice object to be
acted on.

Data Type AppDevice object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

BitmapFilePath
Summary Specify the path and file name of a bitmap (*.BMP file)

representation of the object.
The bitmap files are used to store object images which may
be accessed by a director level LNS component application. A
bitmap may be of any size, although the recommended
dimensions are 40x80 pixels.

See the IconFilePath property for related information.

Availability Local clients.

Syntax bmpFilePath = object.BitmapFilePath
Element Description

bmpFilePath The bitmap path and file name.

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyBMPs\Object.BMP).

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
NetworkServiceDevice object in the

OpenLNS Programmer's Reference 560

ConstClassIds constant:
40 lcaClassIdNetworkServiceDevice

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

DefaultApplication
Summary Contains the default application information for this

NetworkServiceDevice object.

The Application object gives the application's name, state,
version number, and the version of the API that compiled the
application.

Availability Local, full, and lightweight clients.

Syntax defaultApp = nsdObject.DefaultApplication
Element Description

defaultApp The Application object to be returned.

nsdObject The NetworkServiceDevice object to be
acted on.

Data Type Application.

Read/Write Read only.

Added to API LNS Release 3.0.

Description
Summary Stores description information about the

NetworkServiceDevice object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the
NetworkServiceDevice object.

object The NetworkServiceDevice object to be
acted on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as

OpenLNS Programmer's Reference 561

soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

Dialup
Summary Specifies whether the NetworkServiceDevice is

communicating through a modem.
This property allows applications to be designed such that
they can check to see if communication with a device is
taking place over a modem before making permanent
connections or other communications decisions.

Availability Local, full, and lightweight clients.

Syntax dialupValue = nsdObject.Dialup
Element Description

dialupValue A Boolean value.

TRUE. The NetworkServiceDevice is
communicating through a
dialup modem.

FALSE. The NetworkServiceDevice is
not communicating through a
dialup modem.

nsdObject The NetworkServiceDevice object to be
acted on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Extensions
Summary Contains the Extensions collection object associated with the

specified NetworkServiceDevice object.

This property returns an Extensions collection. The objects
in this collection represent user data reserved for
manufacturers. Each object is identified with a unique
identifier set by the manufacturer.

Availability Local, full, lightweight, and independent clients.

Syntax extensionsColl = object.Extensions
Element Description

extensionsColl The Extensions collection object.

object The object whose Extensions
collection is being returned.

Data Type Extensions collection object.

Read/Write Read only.

OpenLNS Programmer's Reference 562

Added to API Prior to LNS Release 3.0.

IconFilePath
Summary Specifies the path and file name of an icon (*.ICO file)

representation of the object.

Availability Local clients.

Syntax IconFilePathFileName = object.IconFilePath
Element Description

IconFilePathFileName Icon file and path name

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyICOs\Object.ICO).
The icon file should contain the following representations:

• Standard (32x32 pixels) with 256 colors
• Small (16x16) with 16 colors
• Monochrome (32x32)
• Large (48x48) with 256 colors

Added to API Prior to LNS Release 3.0.

Interfaces
Summary Contains the Interfaces collection object associated with the

specified NetworkServiceDevice object. This is the collection
of virtual and custom interfaces associated with the device.

The Interfaces collection allows virtual and custom interfaces
to be added to any device that supports dynamic network
variables, dynamic message tags, or dynamic
LonMarkObjects. You add custom interfaces to a device with
the Add method.

Availability Local, full, and lightweight clients.

Syntax interfaceColl = object.Interfaces
Element Description

interfaceColl The Interfaces collection to be
returned.

object The NetworkServiceDevice object to be
acted on.

Data Type Interfaces collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 563

LcaNsdType
Summary Specifies the type of network service device, which

determines whether its NSI is removed when the NSI client
closes.

Availability Local, full, and lightweight clients.

Syntax interfaceColl = object.Interfaces
Element Description

nsdType A Long value indicating the NSD type.
The valid values for this constant,
which are contained in the
ConstLcaNsdType constant, are as
follows:
0 lcaNsdTypeStandard
The NSI is removed unless it is a
dial-up interface or it is involved in
connections.
1 lcaNsdTypePermanent
The NSI is not removed.
2 lcaNsdTypeTransient
The NSI is always removed. Any
existing connections will be
disconnected.

nsdObject The NetworkServiceDevice to be acted
on.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

MipIsLayer2
Summary Indicates whether this network service device object

represents a device with an OpenLNS high-performance
network interface.

Availability Local, full, and lightweight clients.

Syntax isLayer2Flag = nsdObject.MipIsLayer2
Element Description

isLayer2Flag A Boolean value.

TRUE. The NetworkServiceDevice is
using an OpenLNS
high-performace network
interface.

FALSE. The NetworkServiceDevice is

OpenLNS Programmer's Reference 564

not using an OpenLNS
high-performace network
interface.

nsdObject The NetworkServiceDevice object from
which to get the information.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.),colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

NetworkInterface
Summary Contains the NetworkInterface object associated with the

specified NetworkServiceDevice object.

Availability Local, full, and lightweight clients.

Syntax niObject = nsdObject.NetworkInterface
Element Description

niObject The NetworkInterface object
associated with the network service
device.

nsdObject The NetworkServiceDevice object to
be acted upon.

Data Type NetworkInterface object.

OpenLNS Programmer's Reference 565

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

NetworkInterfaceFlag
Summary Specifies whether the NetworkInterface has been set.

Availability Local, full, and lightweight clients.

Syntax netInterfaceFlag = nsdObject.NetworkInterfaceFlag
Element Description

netInterfaceFlag A Boolean value.

TRUE. The NetworkInterface
property in the specified
NetworkServiceDevice has
been set to a valid
interface object.

FALSE. The NetworkInterface
property is not valid and
should not be used.

nsdObject The NetworkServiceDevice object to
be acted on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

NodeHandle
Summary The unique ID assigned to the NetworkServiceDevice by the

NSS.

This property is equivalent to the Handle property of an
AppDevice object. If this NetworkServiceDevice has an
AppDevice associated with it, the Handle of that AppDevice
will be equal to the NodeHandle of the
NetworkServiceDevice.

An OpenLNS application would only use the NodeHandle to
directly invoke services of the LNS Host API.

Availability Local, full, and lightweight clients.

Syntax handleValue = nsdObject.NodeHandle
Element Description

handleValue The handle of the node as a long.

nsdObject The NetworkServiceDevice object to
be acted on.

Data Type Long.

Read/Write Read only.

OpenLNS Programmer's Reference 566

Added to API Prior to LNS Release 3.0.

NsiHandle
Summary Returns the unique identifier assigned to an NSI by the OpenLNS

Server. This handle is different than the NodeHandle and Handle
properties.

Availability Local, full, and lightweight clients.

Syntax handleValue = nsdObject.NsiHandle
Element Description

handleValue The NSI’s handle.

nsdObject The NetworkServiceDevice to be
acted on

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

NsiNodeId
Summary Contains the node ID associated with the network services

interface (NSI).

The NsiNodeId and NsiSubnetId omprise the logical network
subnet/node address the NSD will use to send subnet node and
group addressed messages, if the NSD is using a
high-performance network interface. This address is assigned to
the network services interface when the Open method is invoked
on the System object. The System object must be open for these
properties to contain a valid value.

The SubnetId and NodeId properties of the AppDevice object
contained by the NetworkServiceDevice return the subnet/node
address the NSD will use for broadcast and neuron ID addressing.
Standard network interfaces use the NsiSubentId and NsiNodeId
only for server/remote full client communication.

Availability Local, full, and lightweight clients.

Syntax idValue = nsdObject.NsiNodeId
Element Description

idValue The NSI’s node ID.

nsdObject The NetworkServiceDevice to be
acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 567

NsiSubnetId
Summary Contains the subnet ID associated with the network services

interface (NSI).

The NsiNodeId and NsiSubnetId comprise the logical network
subnet/node address the NSD will use to send subnet node and
group addressed messages, if the NSD is using a
high-performance network interface. This address is assigned to
the network services interface when the Open ethod is invoked on
the System object. The System object must be open for these
properties to contain a valid value.

The SubnetId and NodeId properties of the AppDevice object
contained by the NetworkServiceDevice return the subnet/node
address the NSD will use for broadcast and neuron ID addressing.
Standard network interfaces use the NsiSubentId and NsiNodeId
only for server/remote full client communication.

Availability Local, full, and lightweight clients.

Syntax idValue = nsdObject.NsiSubnetId
Element Description

idValue The NSI’s node ID.

nsdObject The NetworkServiceDevice to be
acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

NssFlag
Summary Indicates whether this NetworkServiceDevice is the NSD for

the NSS engine.

Availability Local, full, and lightweight clients.

Syntax nssFlag = nsdObject.NssFlag
Element Description

nsdObject The NetworkServiceDevice object to
be acted on.

nssFlag A Boolean value.
TRUE. The NSD is used by the

NSS engine.
FALSE. This NSD is used by an

OpenLNS Remote Client.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 568

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

PingClass
Summary Determines the frequency with which a device is tested

(pinged) to determine if it is still attached to the network.
This property classifies devices based on the probability that
the device may be detached. The higher the probability, the
more frequently the device will be pinged. The Object Server
assumes a device to be detached if it cannot communicate
with that device three consecutive times.

Availability Local, full, and lightweight clients.

Syntax pingClassValue = Object.PingClass
Element Description

Object The device object to be acted on.

pingClassValue The ping class of this object.
The valid values for this element,
which are provided in the
ConstPingClass constant, are as
follows:
0 lcaPingClassDefault
If this value is written to the
PingClass property, OpenLNS will
use the default
lcaPingClassStationary (3) value.
1 lcaPingClassMobile

OpenLNS Programmer's Reference 569

Class for nodes which move
frequently.
2 lcaPingClassTemporary
Class for temporary nodes.
3 lcaPingClassStationary
Class for nodes which rarely move.
This is the default value.
4 lcaPingClassPermanent
Class for nodes which never move.
Note: You change the ping interval
that applies to each class with the
System object's PingIntervals
property.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

NetworkServiceDevices
The NetworkServiceDevices object represents a collection of NetworkServiceDevice objects.
The instance of this collection accessed through a Network object contains all of the network
service devices attached to the network both locally (in this computer) and remotely. These
objects are managed by the Object Server; therefore, you do not have to explicitly add or
delete items from this collection.

The following table summarizes the NetworkServiceDevices object.

Description A collection of NetworkServiceDevice objects.

Added to API Prior to LNS Release 3.0.

Accessed Through Network object.

Default Property Item.

Methods • Remove

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The NetworkServiceDevices object contains the following method.

• Remove

OpenLNS Programmer's Reference 570

Remove
Summary Removes an object from the specified collection.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax objectColl.Remove indexName

Element Description

objectColl The collection containing the object to
be removed.

name A Long value specifying the collection
index of the object to remove, or a
String value specifying the name of the
object to remove.

Added to API Prior to LNS Release 3.0.

Properties
The NetworkServiceDevices object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
NetworkServiceDevices object in the
ConstClassIds constant:
41 lcaClassIdNetworkServiceDevices

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is

OpenLNS Programmer's Reference 571

added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a NetworkServiceDevice object from a

NetworkServiceDevices collection.

You can retrieve a NetworkServiceDevice object from its
NetworkServiceDevices collection by passing its index
(ordinal position) within that collection as the argument for
the Item property. Index values start at 1.

You can also retrieve a NetworkServiceDevice object in
NetworkServiceDevices collections with the Name property by
passing the object’s name as a string expression.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The NetworkServiceDevice object
retrieved from the collection.

collObject The NetworkServiceDevices collection
object to be acted on.

index A Long type specifying the ordinal
index of the NetworkServiceDevice
object to be retrieved.

OpenLNS Programmer's Reference 572

stringExpression A string type specifying the name of the
NetworkServiceDevice object to be
retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

OpenLNS Programmer's Reference 573

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

NetworkVariable
A NetworkVariable object represents a single instance of a network variable.

This object is used to represent a network variable that actually appears in an AppDevice
object's interface, or that is part of a DeviceTemplate program interface definition.

• If a NetworkVariable object is accessed through a DeviceTemplate object, it represents a
network variable that is part of a program interface definition. In this case, some of the
methods and properties do not apply to the object. For example, it is not possible to read
the value of a network variable that is accessed through a DeviceTemplate .

• If a NetworkVariable object is accessed through the Interface property of an AppDevice
object, it represents a network variable defined on that device’s interface. It may also
represent a connection hub, depending on how you have used the network variable in
connections. The NetworkVariable objects that are being used as connection hubs can be
accessed through the NetworkVariables collection contained by the NVHubs property of
an AppDevice object. You can use this collection to determine which network variables on
a device are being used as connection hub.

The following table summarizes the NetworkVariable object.

Description A single network variable.

Added to API Prior to LNS Release 3.0.

Accessed Through NetworkVariables collection object.

Default Property Name

Methods • AddTarget
• Connect
• Disconnect
• DsRestoreOptions
• DsSaveOption
• GetDataPoint
• MoveToInterface
• ToString

Properties • Aliases
• AppDevice
• AppDeviceName
• AuthenticationConfigFlag

OpenLNS Programmer's Reference 574

• AuthenticationFlag
• ChangeableTypeSupport
• ClassId
• ConfigClassFlag
• ConfigProperties
• ConnectDescTemplate
• Description
• Direction
• DsFormatType
• DsIsDefaultFormat
• DsPollInterval
• DsPriority
• EstimatedMaxRate
• EstimatedRate
• Extensions
• FuncProfileDescription
• FuncProfileName
• FuncProfileProgrammaticName
• ImplementsCp
• Index
• IsConfigProperty
• IsDynamic
• IsPolled
• Length
• LmNumberManufacturerAssigned
• LonMarkMemberIndex
• LonMarkMemberNumber
• LonMarkObjectNumber
• MaxLength
• Name
• NVHubs
• NVTargets
• OfflineFlag
• Parent
• ParentInterface
• Priority
• PriorityConfigFlag
• ProgrammaticName
• Selector
• SelfDocumentation
• ServiceType
• ServiceTypeConfigFlag
• SnvtId
• SnvtTypeIsModifiable
• SyncFlag
• TypeSpec

Methods
The NetworkVariable object contains the following methods.

• AddTarget
• Connect

OpenLNS Programmer's Reference 575

• Disconnect
• DsRestoreOptions
• DsSaveOption
• GetDataPoint
• MoveToInterface
• ToString

AddTarget
Summary Adds a single NetworkVariable to a hub's pending target list.

This method defines a hub network variable's pending target
list. This list is used when the Connect or Disconnect method
is invoked to create or remove a network variable connection.
Connections, as defined within OpenLNS, always consist of a
single hub and one or more complementary targets.
To create a network variable connection, follow these steps:
1. Select a single hub object and a set of one or more target

objects to connect to the hub.
2. Add the targets to the pending target list by invoking the

hub's AddTarget method for each target object (up to a
maximum of 25, see below).

3. When the list is complete, invoke the hub's Connect
method.

To remove a connection, invoke the Disconnect method,
instead.
The pending target list will only hold 25 targets at a time,
but it is cleared upon completion of the Connect or Disconnect
method. You can therefore create larger connections by
iterating through the process outlined above.

For example, upon completion of the Connect method, you
can add additional targets by invoking the AddTarget
method on the original hub object. You can then invoke the
Connect method to append the new targets to the previously
defined connection.
For network variable connections, the hub and target
variables must be complementary. A complementary
network variable is one that has a matching type/length but
the opposite direction. For example, if the hub is an output
network variable, all the targets must be input network
variables. The type or length restriction is applied depending
on the category of network variable used. When connecting
standard network variable types (SNVTs), all members of
must be the same type. When connecting user-defined
network variable types (UNVTs), all members must be the
same length.
While its basic connection model is fairly simple, LNS allows
network variables to participate in multiple connections. As
a result, it is possible to create arbitrarily complex network

OpenLNS Programmer's Reference 576

variable connections on a LonWorks network (subject to the
constraints of the LonTalk protocol). This is accomplished by
calling the AddTarget and Connect method with multiple
hubs and overlapping targets.
A consequence of the superposition of connections is that a
network variable may find itself in a "mirrored" connection.
This situation occurs when a network variable A is the hub of
a connection containing target network variable B., and B is
the hub of a connection containing A. (Connection segment
AB is mirrored by BA). When removing connections, you
must consider that the network variables will remain bound
until both connections are removed.

Availability Local, full, and lightweight clients.

Syntax nvMtObject.AddTarget targetObject

Element Description

nvMtObject The hub NetworkVariable object.

targetObject The NetworkVariable object to be added
to the target list.

Added to API Prior to LNS Release 3.0.

Connect
Summary Connects a hub network variable to the network variables

contained in the hub's pending target list.
This method creates a new connection or adds to an existing
one. The connection consists of the hub and its targets. The
hub is the network variable object upon which the method is
invoked.

Before invoking the Connect method, one or more targets
must be added to the hub's pending target list using the
AddTarget method. When the method is invoked, the
OpenLNS Server defines the connection (using the
parameters specified in the hub's ConnectDescTemplate
object) and, if the MgmtMode property is set to
lcaMgmtModePropagateConfigUpdates (0), it connects
the objects on the network, then clears the hub's pending
target list.
As part of the connection process, the OpenLNS Server
updates the hub object's NVTargets property, as appropriate.
If a new connection is created, the hub object is also added to
the appropriate NetworkVariables property of the system's
Connections object.
When you create large or complex connections that require
calling the Connect method more than once, you should use
the StartTransaction and StartTransaction methods to group
the calls into a single transaction.
You can use the OnNodeConnChangeEvent to track when

OpenLNS Programmer's Reference 577

connections are created or modified with this method.

Availability Local, full, and lightweight clients.

Syntax nvObject.Connect

Element Description

nvObject The hub NetworkVariable object to be
connected.

Added to API Prior to LNS Release 3.0.

Disconnect
Summary Removes a hub or network variable's entire connection or

disconnects the network variables contained in the hub's
pending target list.
The behavior of this method is dependent upon the state of
the hub's pending target list, which was created by the
AddTarget method.

• If the pending target list is empty, the method
disconnects all members of the connection (all network
variables contained within the hub's NVTargets
property).

• If elements have been added to the pending target list,
the method disconnects those particular elements and
clears the pending target list.

When all targets have been disconnected from a hub network
variable, the connection ceases to exist. The hub is
subsequently deleted from the appropriate NetworkVariables
property of the system's Connections object.

You can use the OnNodeConnChangeEvent to track when
connections are removed with this method.

Availability Local, full, and lightweight clients.

Syntax object.Disconnect

Element Description

object The NetworkVariable object to be acted
on.

Added to API Prior to LNS Release 3.0.

DsRestoreOptions
Summary Restores the data server options saved in the persistent

database using the DsSaveOptions method, overwriting any
values which had been set during the current session.
Options that were modified by this method will not take
affect until the data server is paused and restarted, although
they can be read by fetching the appropriate property.

This method will restore all NetworkVariable data server

OpenLNS Programmer's Reference 578

options.

Availability Local, full, and lightweight clients.

Syntax object.DsRestoreOptions

Element Description

object The NetworkVariable object to be acted
on.

Added to API Prior to LNS Release 3.0.

DsSaveOptions
Summary Saves the current set of data server options to the persistent

database.

Data server options are not persistent for NetworkVariable
objects. For new option values to persist across data object
instantiations, you must invoke the DsSaveOptions method.
This method saves the values which were most recently set,
not the values currently in use. This distinction arises
because the data server must be paused and restarted before
modified options can take affect.

This method will save all NetworkVariable data server
options.

Availability Local, full, and lightweight clients.

Syntax object.DsSaveOptions

Element Description

object The NetworkVariable object to be acted
on.

Added to API Prior to LNS Release 3.0.

GetDataPoint
Summary Returns a DataPoint object that you can use to read or write

to the value of the network variable.
You should use data points to read and write to the values of
your network variables. The reason for this is that when you
create a data point with the GetDataPoint method, your
application will have sole access to that data point, and it will
manage the format of the data contained in the network
variable locally. As a result, it will avoid misinterpreting any
formatting changes that may be made to a network variable’s
value by other client applications.

Note: The Value property, which was used previously to read
and write network variables, was deprecated in LNS Release
3.20.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 579

Syntax dpObject=networkVariable.DataPoint options

Element Description

dpObject The DataPoint object returned.

networkVariable The NetworkVariable object being
acted upon.

options This field is fixed at 0, and it is
reserved for future use.

Added to API LNS Release 3.20.

MoveToInterface
Summary Moves a dynamic network variable from one custom interface

on a device to another.

Each AppDevice on a network includes an Interface property
that contains the device’s main interface, and an Interfaces
collection that contains the custom interfaces that have been
added to the device dynamically. The interfaces each contain
LonMarkObjects and network variables that reflect the
device’s functionality on the network.

You can use the MoveToInterface method to move a dynamic
network variable or LonMarkObject from one custom
interface on a device to another. An advantage of this is that
you do not have to delete the network variable or
LonMarkObject from the first custom interface, and then add
it back to the second one.
Another advantage of this method is that you can use it to
remove a dynamic network variable from a device’s main
interface. You cannot use the Remove method to remove a
network variable from NetworkVariables collection on a
device's main interface, even if it is a dynamic network
variable. However, you can use the MoveToInterface method
to move a dynamic network variable from the main interface
to a custom interface. Once you have done so, you can remove
the network variable from the custom interface, and its
removal will be propagated to the main interface.

The ability to move a dynamic LonMarkObject or network
variable from one interface to another may also be useful
after you have upgraded a device’s interface with the
Upgrade method. Some static network variables and network
variables that existed on the old interface, but not the new
one, will be converted to dynamic and stored in a custom
Interface object created during the upgrade. You can use this
method to move those objects back to their correct interface.
If either the main interface, or an interface from another
device, is specified as the new interface for the
LonMarkObject or network variable, then the LCA, #4
lcaErrInvalidOleObject exception will be thrown.
If you call this method on a static LonMarkObject or network

OpenLNS Programmer's Reference 580

variable, then the LCA, #119
lcaErrInterfaceNotModifyable exception will be thrown.
You can determine if a LonMarkObject or network variable is
dynamic by reading the object’s IsDynamic property.
If you attempt to call this method on a network variable that
has been previously assigned to a network variable with the
AssignNetworkVariable method, then the operation will fail,
and the NS, #164 lcaErrNsNvmtInUse exception will be
thrown, unless the network variable object the network
variable has been assigned to is a member of the target
interface specified as the newInterface element.

Availability Local, full, and lightweight clients.

Syntax object.MoveToInterface newInterface

Element Description

object The network variable to be acted
upon.

newInterface The Interface object to which the
object should be moved.

Added to API LNS Release 3.20.

ToString
Summary Creates a string description containing the identifying

characteristics for a NetworkVariable object.
You can use this method on a model network variable to
create a string descriptor, which may be used to create a new
network variable using the AddNvFromString method.
Editing the string created from this method is not supported.

Availability Local, full, and lightweight clients.

Syntax descString = nvObject.ToString(options)

Element Description

descString A String containing the network
variable description.

nvObject The NetworkVariable object to be
acted on.

options This field is fixed at 0, and it is
reserved for future use.

Added to API LNS Release 3.0.

Properties
The NetworkVariable object contains the following properties:

• Aliases
• AppDevice

OpenLNS Programmer's Reference 581

• AppDeviceName
• AuthenticationConfigFlag
• AuthenticationFlag
• ChangeableTypeSupport
• ClassId
• ConfigClassFlag
• ConfigProperties
• ConnectDescTemplate
• Description
• Direction
• DsFormatType
• DsIsDefaultFormat
• DsPollInterval
• DsPriority
• EstimatedMaxRate
• EstimatedRate
• Extensions
• FuncProfileDescription
• FuncProfileName
• FuncProfileProgrammaticName
• ImplementsCp
• Index
• IsConfigProperty
• IsDynamic
• IsPolled
• Length
• LmNumberManufacturerAssigned
• LonMarkMemberIndex
• LonMarkMemberNumber
• LonMarkObjectNumber
• MaxLength
• Name
• NVHubs
• NVTargets
• OfflineFlag
• Parent
• ParentInterface
• Priority
• PriorityConfigFlag
• ProgrammaticName
• Selector
• SelfDocumentation
• ServiceType
• ServiceTypeConfigFlag
• SnvtId
• SnvtTypeIsModifiable
• SyncFlag
• TypeSpec

OpenLNS Programmer's Reference 582

Aliases
Summary Contains the Aliases collection object associated with the

specified NetworkVariable object. The Aliases collection
contains a collection of Alias objects, each one representing
an alias used by the network variable. If the network
variable is not using any aliases, the collection will be empty.

If you try to access this property from a NetworkVariable
object that is not associated with a device (for example, a
NetworkVariable object fetched from a DeviceTemplate
object), a LCA, #38 LCA_APP_DEVICE_REQUIRED
exception will be generated.

However, if you read the Aliases property from a
NetworkVariable object whose parent AppDevice object was
defined while in engineered mode (a DeviceTemplate was
provided when the AppDevice was added), a valid Aliases
collection object will be returned.

Availability Local, full, and lightweight clients.

Syntax aliasesColl = nvObject.Aliases
Element Description

aliasesColl The returned Aliases collection object.

nvObject The NetworkVariable object to be acted
on.

Data Type Aliases collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

AppDevice
Summary Identifies the AppDevice object containing this network

variable.

Availability Local, full, and lightweight clients.

Syntax appDevObject = object.AppDevice
Element Description

appDevObject The AppDevice object to be returned.

object The NetworkVariable object to be acted
on.

Data Type AppDevice object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 583

AppDeviceName
Summary Returns the name of an application device that contains the

network variable.

Availability Local, full, and lightweight clients.

Syntax nvMtName = nvMtObject.AppDeviceName
Element Description

nvMtObject The NetworkVariable object to be acted
upon.

nvMtName The name of the network variable.

Data Type String

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

AuthenticationConfigFlag
Summary Defines whether the network variable’s use of authentication

may be changed in a connection.

Availability Local, full, and lightweight clients.

Syntax authConfigFlag = nvObject.AuthenticationConfigFlag
Element Description

authConfigFlag A Boolean value.
TRUE. The use of authentication

may be changed in a
connection containing this
network variable using the
ConnectDescTemplate object.

FALSE. The network variable’s use of
authentication may not be
changed.

nvObject The NetworkVariable object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 584

AuthenticationFlag
Summary Returns the network variable’s default authentication

setting, which is specified by the device developer. If this
property is set to True, the network variable uses
authentication by default.
You can override the default setting by writing to the
UseAuthenticationFlag of the ConnectDescTemplate object
used by the connections involving the network variable.

Note: If you set the UseAuthenticationFlag property to True,
then all devices participating in the authenticated connection
must also have authentication enabled. This means that the
AuthenticationEnabled property of each AppDevice involved
in the connection must be set to True.

Availability Local, full, and lightweight clients.

Syntax authFlag = nvObject.AuthenticationFlag
Element Description

authFlag A Boolean value indicating whether
the network variable uses
authentication by default.
TRUE. The network variable uses

authentication by default.
FALSE. The network variable does

not use authentication by
default.

nvObject The NetworkVariable object being
queried.

Data Type Boolean

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ChangeableTypeSupport
Summary Indicates whether you can change the type that this network

variable uses.

Availability Local, full, and lightweight clients.

Syntax changeable = networkVariable.ChangeableTypeSupport
Element Description

changeable A Long value indicating whether the
network variable’s type can be
changed.
The possible values for this element,
which are stored in the
ConstNvChangeableTypeSupport

OpenLNS Programmer's Reference 585

constant, are as follows:
0 lcaNvChangeableTypeNone
The network variable’s type cannot be
changed.
1 lcaNvChangeableTypeSdOnly
You can change the network variable’s
type by writing to its TypeSpec or
SnvtId property. When you write to
this property, OpenLNS will change
the type by modifying the
self-documentation information of the
device associated with the network
variable. This is the value that will be
returned by all dynamic network
variables. You can determine if a
network variable is dynamic by
reading its IsDynamic property.
2 lcaNvChangeableTypeSCPT
You can change the network variable’s
type by writing to its TypeSpec or
SnvtId property. When you write to
this property, OpenLNS will change
the type by modifying the
SCPTnvType configuration property
stored on the device associated with
the network variable. The device’s
self-documentation information will
remain unchanged.
Note: If the value of the
SCPTnvType configuration property
used to modify the network variable
type is unknown, or if the value of the
configuration property is invalid (i.e.
the type category is set to
NVT_CAT_NUL [-1]), OpenLNS will
set the self-documentation information
of the device associated with the
network variable to match the network
variable’s SnvtId stored in the
OpenLNS database.

You can set the TypeSpec property to
the appropriate value to fix the
following problems with the value of
the SCPTnvType configuration
property:

• The configuration property’s value
is unknown because it was never
set, or because its status was

OpenLNS Programmer's Reference 586

cleared,

• The configuration property has
been set to an invalid value
explicitly by your application, or
when your application downloaded
or uploaded the default
configuration property values with
the DownloadConfigProperties or
UploadConfigProperties methods.

networkVariable The NetworkVariable object to be acted
upon.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
NetworkVariable object in the
ConstClassIds constant:
22 lcaClassIdNetworkVariable

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 587

ConfigClassFlag
Summary Indicates whether the network variable is a configuration

network variable (CPNV).
A CPNV is used for application configuration. This should
not be confused with a configuration property that is
implemented as a network variable, and the related
IsConfigProperty property.
Network variables that implement configuration properties
are always CPNVs, and the ConfigClassFlag and
IsConfigProperty properties for these network variables are
set to True. However, as described below, a network variable
can be a CPNV without implementing a LonMark compliant
configuration property. In this case, the IsConfigProperty is
set to False.
Device developers can create config network variables to
implement configuration properties using the "config_prop"
or "cp" keywords. This implements a configuration property
by creating a CPNV with LONMARK compliant network
variable strings. See the NodeBuilder User’s Guide for more
information on the "config_prop" or "cp" keywords.
A CPNV may also be implemented using the "config"
keyword. Typically these network variables will not
implement configuration properties. However, legacy
applications may also implement a configuration property by
declaring a network variable with the "config" keyword, and
hard-coding the appropriate LonMark compliant
self-documentation string. See the NodeBuilder User’s Guide
for more information on the the "config" keyword.

Availability Local, full, and lightweight clients.

Syntax configClassFlag = nvObject.ConfigClassFlag
Element Description

configClassFlag A Boolean value indicating whether
the network variable uses
authentication by default.
TRUE. The network variable is

declared as a CPNV.
FALSE. The network variable is not

declared as a CPNV.

nvObject The NetworkVariable object being
queried.

Data Type Boolean

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 588

ConfigProperties
Summary Contains the ConfigProperties collection object associated

with the specified NetworkVariable object.

Availability Local, full, and lightweight clients.

Syntax configPropsCollection = NetworkVariable.ConfigProperties
Element Description

configPropsCollection The returned ConfigProperties
collection.

NetworkVariable The NetworkVariable object to be
acted on

Data Type ConfigProperties collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ConnectDescTemplate
Summary Contains the ConnectDescTemplate object associated with the

specified NetworkVariable object. This template contains
parameters used when creating connections.

Setting the ConnectDescTemplate property with a modified
ConnectDescTemplate object will cause the attributes of a
connection to be updated, if the network variable the
property belongs to is the hub for that connection.
If the network variable is not yet added to a connection, it is
assumed that you will call the Connect method to create the
connection immediately after setting this property. If you do
not, reading the ConnectDescTemplate property will return
the old (default) ConnectDescTemplate object.
To modify the attributes of an existing connection
description, modify its ConnectDescTemplate properties as if
it were a new object. Setting the ConnectDescTemplate
property with a modified ConnectDescTemplate object will
cause the attributes of a connection to be updated, if the
network variable the ConnectDescTemplate object belongs to
is the hub for that connection.

Availability Local, full, and lightweight clients.

Syntax cdTemplateObject = object.ConnectDescTemplate
Element Description

cdTemplateObject The ConnectDescTemplate object.

object The NetworkVariable object.

Data Type ConnectDescTemplate object.

Read/Write Read only.

OpenLNS Programmer's Reference 589

Added to API Prior to LNS Release 3.0.

Description
Summary Stores description information about the NetworkVariable

object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the
NetworkVariable object .

object The NetworkVariable object to be
acted on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

Direction
Summary Specifies whether the network variable is an input or output

network variable.

Availability Local, full, and lightweight clients.

Syntax directionValue = object.Direction
Element Description

directionValue The direction of the network variable.
The vallid values for this element,
which are contained in the
ConstNvDirections constant, are as
follows:
0 lcaNvDirectionInput
The network variable is an input
network variable.
1 lcaNvDirectionOutput
The network variable is an output
network variable.

object The NetworkVariable object.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 590

DsFormatType
Summary Specifies the type the OpenLNS Server will use in

interpreting the value of the network variable.

Availability Local, full, and lightweight clients.

Syntax formatType = nvObject.DsFormatType
Element Description

formatType The type the OpenLNS Server will use
in interpreting the value of the network
variable.

The DsFormatType parameter is a
string defining the type that will be
used to interpret the value of the
network variable. The DsFormatType
string has several possible syntaxes:
1. A format name beginning with

"SNVT" for standard network
variable type formats, or "UNVT"
for user-defined network variable
type formats. For example,
"SNVT_switch". The OpenLNS
Server will use the resource file
catalog specified using the
LdrfCatalogPath property to search
for SNVT and UNVT formats.
There may be several different
formats for the same network
variable type. For example, the
LonMark standard device resource
file set has two alternate formats
for the type SNVT_temp_f, and
those formats are named
SNVT_temp_f#SI and
SNVT_temp_f#US. In this case, you
could specify SNVT_temp_f to get
the current default format for that
type.
The default formats for types such
as SNVT_temp_f are determined
using the Windows regional settings
of the PC where the data is
formatted (on the PC housing the
OpenLNS Server for local and
lightweight clients, or on the PC
running the application for full
clients). To determine the settings
being used on a computer, open the
Windows Control Panel and
double-click the Regional Options
icon. Select the Numbers tab.

OpenLNS Programmer's Reference 591

OpenLNS uses the value of the
Measurement System field (either
U.S. or metric) on this tab to
determine the default format to use
for types such as SNVT_temp_f.
You can also specify a full format
name (i.e. SNVT_temp_f#SI for or
SNVT_temp_f#US) to select a
specific format for that type. For
UNVTs, you must always specify a
fully-qualified format name.

2. In some cases, a format exists for a
given SNVT or UNVT that has the
same name as the underlying type.
This is called the root format for the
type, and it may be different from
the default format for that type. In
order to explicitly use the root
format, you will need to append a ‘#’
character to the format name you
write to this property to indicate
that you are specifying the format
name (and not the type name) for
this type.
For example, if you read the value
of a network variable of type
SNVT_time_stamp when the
CategoryPreferenceList property of
the FormatLocale object your
application is using is set to LO,
and you set the DsFormatType
property to SNVT_time_stamp, then
the data stored in the Value
property will be formatted using the
SNVT_time_stamp #LO format.
However, if you set the
DsFormatType property to
SNVT_time_stamp#, the data
stored in the Value property will be
formatted using the root
SNVT_time_stamp format.

3. A fully-qualified format name,
expressed in the following syntax:
"#<progID>[<scope>].<format
name>"

In this syntax, the "#", "[", "]" and
"." characters are literal characters.
A hex byte string represents the
program ID. The scope is a
one-digit string. It represents a
filter that indicates relevant parts

OpenLNS Programmer's Reference 592

of the program ID, and may be one
of the following:
0 - Standard
1 - Device Class
2 - Device Class and Usage
3 - Manufacturer
4 - Manufacturer and Device Class
5 - Manufacturer, Device Class, and
Device Subclass
6 - Manufacturer, Device Class,
Device Subclass, and Device Model

For example:
#800001128000000[4].UNVT_date_event
4. The name of one of the built-in

types used by the OpenLNS Server,
which include "INT", "REAL",
"DISCRETE", "BINARY", "RAW"
and "RAW_HEX".
Alternatively, you can use the
values defined in the
ConstDsFormatTypes constant,
which are as follows:
"BINARY"
lcaDsFormatTypeBinary
"DISCRETE"
lcaDsFormatTypeDiscrete
"REAL"
lcaDsFormatTypeFloat
"INT"
lcaDsFormatTypeInteger
"RAW"
lcaDsFormatTypeRaw
"RAW_HEX"
lcaDsFormatTypeRawHex
"RAW_HEX_PACKED
"lcaDsFormatTypeRawHexPacked
"STRING"
lcaDsFormatTypeString
If you attempt to write to this
property and the setting fails for
any reason, the network variable
will retain the last type assigned to
it. The setting may fail if you assign
an invalid type string to this
property, or if the LdrfCatalogPath
property does not contain the

OpenLNS Programmer's Reference 593

correct path to the LonMark Device
Resource File catalog.
After you write to this property, you
need to invoke the DsSaveOptions
method to save the new value into
the OpenLNS database. You can
revert this property to the network
variable's default type by writing an
empty string to this property. You
can check if the network variable is
currently using its default type by
reading the DsIsDefaultFormat
property.
If you modify the value of the
DsFormatType property and the
resource file defining the network
variable’s new type becomes
unavailable to the OpenLNS Object
Server, the value of the
DsFormatType property will not
change. However, when you attempt
to read the value of the network
variable, the DS, #60
lcaErrDsTypeFileNotFound
exception will be thrown. If you
then create a data point to read or
write to the value of the network
variable, the data point’s
DsIsDefaultFormat property will be
displayed using the type assigned to
the FallbackFormat property of the
FormatLocale object your
application is using.
Note that for Local and Full client
applications, the value of a network
variable is formatted on the client
computer. For Lightweight client
applications, the value is formatted
on the OpenLNS Server computer.
In either case, the DsFormatType
property indicates which type the
OpenLNS Server will use to format
the value of the network variable.
This property applies only to points
monitored and controlled using
single-point monitoring. If you are
using monitor set monitoring, use
the FormatSpec property.

Note: The old syntax of <file
name>.<type name> for DsFormatType
is no longer supported. This notation

OpenLNS Programmer's Reference 594

was used for pre-LonMark resource
files.

nvObject The NetworkVariable object to be acted
on.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

DsIsDefaultFormat
Summary Indicates whether the network variable is using its default

format.
OpenLNS determines the default format to use for SNVT
network variables by reading the SNVT ID of the network
variable, and using it to locate the applicable entry for that
SNVT type in the standard resource files. OpenLNS then
reads the default type from the resource file.
OpenLNS determines the default type to use for UNVT
network variables on LonMark objects by reading the
Functional Profile Template of the LonMark object and
locating the applicable entry for the UNVT type in the
user-defined resource files, based on the NV members
contained within the FPT. Once this is done, it reads the
default type for the UNVT from the resource file entry.
UNVT network variables that are not on LonMark objects
default to the type "RAW."
If OpenLNS cannot read the format files, or if it is unable to
determine a network variable’s default format for any reason,
the format assigned to the network variable will be "RAW."

The LdrfCatalogPath of the System object must point to the
actual location of the LonMark Device Resource File catalog
for OpenLNS to read the format files.
You can change the format assigned to a network variable by
writing to its DsFormatType property. You can restore the
default format to a network variable at any time by writing
an empty string to the DsFormatType property. Once you
have done so, the DsIsDefaultFormat property will return
True.

Availability Local, full, and lightweight clients.

Syntax isDefault = nvObject.DsIsDefaultFormat
Element Description

isDefault A Boolean value, which depends on the
value returned by the DsFormatType
property.

TRUE. The DsFormatType property is
the same as the network

OpenLNS Programmer's Reference 595

variable’s type, or it is set to
the default format for the
network variable given the
locale settings currently in
effect.

FALSE. The DsFormatType property is
not the same as the network
variable’s type.

For example, if the current locale
settings are set to use US measurement
units, then for a network variable of
type SNVT_temp_f, the
DsIsDefaultFormat property will return
True if the DsFormatType property is
set to SNVT_temp_f or
SNVT_temp_f#US.

nvObject The NetworkVariable object to be acted
on.

Data Type Boolean.

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

DsPollInterval
Summary Specifies the poll or throttle interval (in tenths of a second)

used by the Data Server. For remote clients using the shared
Data Server mode, this property specifies the batch update
rate.

The DsPollInterval property specifies either a poll or throttle
interval, depending on the context in which it is used.

• For polled network variables, the property specifies the
interval between polls. Setting the value to 0 disables
polling.

• For bound network variables, the property specifies the
minimum interval which must elapse before the Data
Server will generate an update event. The throttling
interval may be used to regulate the rate in which
OnNetworkVariableUpdate events occur.

Remote client applications that use shared access mode
receive batched data updates. Instead of receiving individual
network variable value updates over the IP network, the
client receives a regular update containing the updated
values for the monitored network variables. In this scenario,
the System object's DsPollInterval property specifies the
batch update rate for each network variable. If you are
developing a remote application that uses shared access
mode (meaning that the DsMode property is set to
lcaDsModeShared), you cannot set the NetworkVariable

OpenLNS Programmer's Reference 596

object’s DsPollInterval property. An exception will be raised
if you attempt to do so.

The System object's DsPollInterval property sets the default
value which is applied when a NetworkVariable object's
DsPollInterval property is left unspecified. Once an
application has explicitly set the value of the DsPollInterval
property of the System object, it will not be reverted back to
the default value by OpenLNS, and must be maintained
manually from that point on.

Invoke the DsSaveOptions to save the property value into the
persistent database.
This property applies only to points monitored and controlled
using single-point monitoring. If you are using monitor set
monitoring, use the PollInterval property.

Availability Local, full, and lightweight clients.

Syntax intervalValue = object.DsPollInterval
Element Description

intervalValue Poll or throttle interval, in tenths of a
second. The allowed range is 0 to
33554431 (0x01FFFFFF). This
maximum value corresponds to a time of
approximately 38.8 days. The default
value is 10 (one second) for System
.DsPollInterval.

The system's current DsPollInterval
value establishes the default that will be
used by newly created NetworkVariable
objects whose DsPollInterval value is
left unspecified.

object The NetworkVariable object to be acted
on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 597

DsPriority
Summary Specifies whether the Data Server polls or updates a network

variable using priority messages.
Note: This property is deprecated because it was only useful
with single-point monitoring. You should use temporary
monitor sets instead of single-point monitoring. When doing
so, you can use the Priority property to determine the priority
assigned to each message. For more information on
temporary monitor sets, see the OpenLNS Programmer’s
Guide.

Availability Local, full, and lightweight clients.

Syntax priorityFlag = object.DsPriority
Element Description

priorityFlag The priority flag value.
TRUE. The Data Server uses priority

messaging to update a network
variable.

FALSE. The Data Server polls a
network variable. This is the
default.

object The NetworkVariable object to be acted
on.

Data Type Boolean.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

EstimatedMaxRate
Summary The estimated maximum message rate (in tenths of messages

per second) declared for the network variable.

Availability Local, full, and lightweight clients.

Syntax estMaxRateValue = nvObject.EstimatedMaxRate
Element Description

estMaxRateValue Estimated sustained message rate.
The valid values for this property are
integers from 0 to 18780 (0 to 1878.0
messages per second).

nvObject The NetworkVariable object to be
acted on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 598

EstimatedRate
Summary The estimated sustained message rate (in tenths of messages

per second) declared for the network variable.

Availability Local, full, and lightweight clients.

Syntax estimatedRateValue = nvObject.EstimatedRate
Element Description

estimatedRateValue Estimated sustained message rate.
The valid values for this property
are integers from 0 to 18780 (0 to
1878.0 messages per second).

nvObject The NetworkVariable object to be
acted on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Extensions
Summary Retrieves a child Extensions collection from a parent

NetworkVariable object.

Availability Local, full, and lightweight clients.

Syntax extensions = networkVariable.Extensions()
Element Description

networkVariable The parent NetworkVariable object.

extensions The child Extensions collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

FuncProfileDescription
Summary Provides a desciptive comment of the functional profile

associated with the NetworkVariable object.
This property is accessed from the functional profile template
file associated with the object.

This property is language dependent. Set the System object's
ResourceLanguageId to control the language.

Availability Local, full, and lightweight clients.

Syntax description = object.FuncProfileDescription
Element Description

OpenLNS Programmer's Reference 599

object The NetworkVariable object to be acted
on.

description The returned functional profile
description string.

Data Type String.

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

FuncProfileName
Summary Returns the functional profile name associated with the

NetworkVariable object.
This property is accessed from the functional profile template
file associated with the object. The name returned by this
property is accessed from the functional profile template file
associated with this object.

This property is language dependent. Set the System object's
ResourceLanguageId to control the language.

Availability Local, full, and lightweight clients.

Syntax typeNameValue = object.FuncProfileName
Element Description

object The NetworkVariable object to be acted
on.

typeNameValue The functional profile name to be
returned.

Data Type String.

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

FuncProfileProgrammaticName
Summary Returns the functional profile programmatic name associated

with the NetworkVariable object.
This name is accessed from the functional profile template
file associated with the object. The programmatic name is
the base name stored for the object; it is not language
dependent like the FuncProfileName property.

Availability Local, full, and lightweight clients.

Syntax progNameValue = Object.FuncProfileProgrammaticName
Element Description

progName The functional profile programmatic
name of the object.

Object The NetworkVariable object to be acted

OpenLNS Programmer's Reference 600

on.

Data Type String.

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

ImplementsCp
Summary If the network variable is a configuration network variable,

returns the configuration property object (possibly a shared
instance) implemented by this network variable.
If this network variable is not a configuration network
variable, then accessing this property throws an LCA, #166
error (“network variable does not implement a configuration
property”).
To determine whether this network variable is a
configuration network variable, read the IsConfigProperty
property.
A configuration network variable implements a single
configuration property, but each configuration property can
apply to multiple objects at the same level (device/template,
LonMark object, or network variable). To determine which
objects this configuration network variable affects, read the
AppliesTo property of the ConfigProperty object.
The network variable-based configuration property returned
by this property will refer back to this implementing
configuration network variable through the ConfigNv
property of the ConfigProperty object.

Availability Local, full, and lightweight clients.

Syntax cpObject = nvObject.ImplementsCp
Element Description

cpObject The ConfigProperty object
implemented by this network
variable.

nvObject The configuration network variable to
be acted on.

Data Type ConfigProperty object.

Read/Write Read only.

Added to API OpenLNS.

Index
Summary Returns the index within an application device of the

network variable.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 601

Syntax index = object.Index
Element Description

object The object to be acted on.

index Index of the network variable. The
valid values for this element are 0–14.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

IsConfigProperty
Summary Indicates whether the network variable implements a

configuration property that conforms to the LonMark
interoperability guidelines.
A True value indicates that the network variable implements
a configuration property conforming to LonMark
interoperability guidelines. The related ConfigClassFlag
property will be set to True whenever the IsConfigProperty
property is set to True. However, as described below, some
network variables may have the ConfigClassFlag property
set to True, and still have the IsConfigProperty property set
to False.
Currently, there are two ways in which a device developer
can implement a configuration property as a network
variable:
1. Use the "config_prop" or "cp" keywords, which is the

recommended, newer method. This method automatically
creates a configuration network variable (CPNV) with an
appropriate SelfDocumentation string that specifies the
configuration property attributes. See the NodeBuilder
User’s Guide for more information on the "config_prop"
or "cp" keywords.

2. Use the "config" keyword. Any network variable
declared with the "config" keyword will have a
ConfigClassFlag value of True. However, in order to
implement a configuration property (and therefore have
the IsConfigProperty set to True), you must manually
provide a LonMark compliant SelfDocumentation string
that specify the attributes of the configuration property.
See the NodeBuilder User’s Guide for more information
on the "config" keyword.

Availability Local, full, and lightweight clients.

Syntax cpFlagValue = nvObject.IsConfigProperty
Element Description

cpFlagValue A Boolean value.
TRUE. The network variable

OpenLNS Programmer's Reference 602

implements a configuration
property conforming to
LonMark interoperability
guidelines.

FALSE. The network variable does not
implement a configuration
property.

nvObject The NetworkVariable object to be acted
on

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

IsDynamic
Summary Indicates whether the network variable is dynamic. A

network variable is considered to be dynamic if it was
manually added to the interface it belongs to, rather than
being part of the static interface defined by a device
template.

Availability Local, full, and lightweight clients.

Syntax isDynamicFlag = object.IsDynamic
Element Description

isDynamicFlag A True of False value indicating
whether the object is dynamic.
TRUE. The network variable is
dynamic.
FALSE. The network variable is static.

object The NetworkVariable object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

IsPolled
Summary Indicates whether the network variable has the poll attribute

enabled.

Availability Local, full, and lightweight clients.

Syntax isPolledFlag = nvObject.IsPolled
Element Description

isPolledFlag A Boolean value. This element may be
one of the following values:

OpenLNS Programmer's Reference 603

1 The network variable’s poll
attribute on. If the Direction
property is set to
lcaNvDirectionOutput, this
network variable will not send
network variable update messages
automatically; otherwise, this
network variable may poll other
network variables.

0 The network variable’s poll
attribute off. If the Direction
property is set to
lcaNvDirectionOutput, this
network variable sends update
messages automatically; otherwise,
this network variable does not poll
other network variables.

nvObject The NetworkVariable object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

Length
Summary Contains the length (in bytes) of the network variable.

Availability Local, full, and lightweight clients.

Syntax lengthValue = nvObject.Length
Element Description

lengthValue The length of the network variable in
bytes.
A value of 0 indicates that the length
cannot be determined by the Object
Server. If the network variable supports
changeable types, you can use its
TypeSpec property to change its type. In
doing so, you can alter the length of the
network variable

nvObject The NetworkVariable object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 604

LmNumberManufacturerAssigned
Summary Indicates whether the member number within a LonMark

object was assigned by the device manufacturer instead of
being specified in the LonMark Application Layer
Interoperability Guidelines or in a LonMark approved
functional profile.

Availability Local, full, and lightweight clients.

Syntax lmNumberFlag = nvObject.LmNumberManufacturerAssigned

Element Description

lmNumberFlag A Boolean value indicating whether the
member number is manufacturer
assigned.
TRUE. The member number was

assigned by the device
manufacturer.

FALSE. The member number was
specified in the LonMark
Application Layer
Interoperability Guidelines or
in a LonMark approved
functional profile.

nvObject The NetworkVariable object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

LonMarkMemberIndex
Summary Contains the ordinal index of the network variable within a

LonMarkObject object.

Each LonMarkObject object contains some number of
network variables. Each of those network variables is
assigned a member index within that LonMarkObject based
on its position within the object.

This property differs from the LonMarkMemberNumber
property, which contains the member number assigned to the
network variable by the LonMark Application Layer
Interoperability guidelines or by the user (in the case of a
network variable member not specified in those guidelines).

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 605

Syntax indexValue = nvObject.LonMarkMemberIndex

Element Description

indexValue The index value of the network variable
as a long.
On static interfaces, indexes are
numbered from 0 to n-1, where n equals
the number of network variables in the
object.
If dynamic network variables have been
assigned and subsequently removed
from a LonMarkObject, the member
indexes may not be contigious, and
some member indexes may be equal to
or greater than the number of network
variables in the object.
If the network variable does not belong
to a LonMarkObject, this property will
contain the value –1.

nvObject The NetworkVariable object to be acted
on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

LonMarkMemberNumber
Summary Contains the member number assigned to this

NetworkVariable within a LonMarkObject.

Each network variable contained within a LonMarkObject is
assigned a member number which, when combined with the
LmNumberManufacturerAssigned property, is unique within
the object. Member numbers are assigned by the LonMark
Application Layer Interoperability Guidelines, a LonMark
approved functional profile, or by the user (in the case of a
network variable not specified in those guidelines.

If the network variable does not belong to a LonMarkObject,
this property will contain the value –1.

This property differs from the LonMarkMemberIndex
property, which contains the index number assigned to the
network variable within the LonMarkObject. This generally
ranges from 0 to n-1 (on a static interface, it always reanges
from 0..n-1), where n represents the number of network
variables assigned to the LonMarkObject.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 606

Syntax memNumValue = nvObject.LonMarkMemberNumber

Element Description

memNumValue The member number of the network
variable as a Long.

nvObject The NetworkVariable object to be acted
on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

LonMarkObjectNumber
Summary Contains the object number of the LonMarkObject to which

this network variable is assigned.

Objects on a device are generally numbered from 0 to n-1,
where n is the number of objects on the device. This is always
the case on devices with static interfaces.
If a device supports dynamic function blocks, some
LonMarkObject objects may be assigned an object number
greater than or equal to the value n (the number of objects on
the device).

If the network variable does not belong to a LonMarkObject,
this property will return –1.

You can use the LonMarkObjects collection’s ItemByIndex
method to access the LonMarkObject containing the network
variable. You will need to reference the LonMarkObject by its
device index when you call the method.

Availability Local, full, and lightweight clients.

Syntax objNumValue = nvObject.LonMarkObjectNumber

Element Description

objNumValue The object number of the network
variable as a Long.

nvObject The NetworkVariable object to be acted
on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

MaxLength
Summary Contains the maximum length (in bytes) of the network

variable.
You can determine the actual length of a network variable by
reading the Length property. If the network variable does not

OpenLNS Programmer's Reference 607

support changeable types, then the value of the MaxLength
property will always match the value of the Length property.
You can determine if a network variable supports changeable
types by reading the network variable’s
ChangeableTypeSupport property.
If the device supports changeable types, and the
configuration properties are avaliable, then this property will
be set to the maximum network variable length as defined by
SCPTmaxNvLength configuration property reported by the
device for that network variable. In this case, reading this
property is the same as reading that configuration property
directly. It may result in an attempt to read the value from
the device, if the configuration property value is unknown to
OpenLNS.
You can determine if the configuration properties for a device
are available by reading the ConfigPropertiesAvailable
property of the Interface object used by the device. If the
network variable supports changeable types and the
configuration properties are not available, or the device does
not contain a SCPTmaxNvLength configuration property
for the network variable, this property will be set to –1.

Availability Local, full, and lightweight clients.

Syntax maximum = networkVariable.MaxLength
Element Description

maximum The maximum length of the network
variable, in bytes.

networkVariable The NetworkVariable object to be
acted upon.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

Added to API LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name

OpenLNS Programmer's Reference 608

Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

NvHubs
Summary Returns a collection containing all network variable hubs for

which the network variable is a target, including the network
variable if it is the hub for a connection. In conjunction with
the NVTargets property, this property enables you to manage
complex network connections involving multiple hubs and
sets of targets.
When a new hub is added, it will not neccessarily be added to
the end of the list of hubs; therefore, you should update the
cached copy of the complete hub list when you add or delete a
hub.

Availability Local, full, and lightweight clients.

Syntax nvCollection = nvObject.NvHubs
Element Description

nvCollection The returned NetworkVariables
collection.

nvObject The specified NetworkVariable object.

Data Type NetworkVariables collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

NvTargets
Summary Contains the target network variables for a hub. If the

network variable is not the hub for a connection, the
NVTargets property will return an empty collection object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax targetCollection = nvObject.NVTargets
Element Description

targetCollection The collection of target
NetworkVariable objects.

OpenLNS Programmer's Reference 609

nvObject The specified NetworkVariable
object.

Data Type NetworkVariables collection object.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OfflineFlag
Summary Indicates whether the network variable should be updated

only while the device’s State is set to lcaStateSoftOffline.

Availability Local, full, and lightweight clients.

Syntax offlineFlagValue = nvObject.OfflineFlag

Element Description

offlineFlagValue A Boolean value indicating whether the
member number is manufacturer
assigned.
TRUE. The network variable should

be updated only while the
device’s State is set to
lcaStateSoftOffline.

FALSE. The network variable may be
updated while the device’s
State is set to other states.

nvObject The NetworkVariable object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is

OpenLNS Programmer's Reference 610

desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ParentInterface
Summary Returns the Interface object to which the NetworkVariable

Object belongs.

Each AppDevice on a network contains an Interface property
containing the device’s main interface, and an Interfaces
collection containing the custom interfaces that have been
added to the device dynamically. The interfaces each contain
network variables and LonMarkObjects that reflect the
device’s functionality on the network.

The ParentInterface property returns the Interface object to
which the NetworkVariable Object belongs. In the case of
static LonMarkObjects and network variables, this property
returns the main device interface or device template the
object is associated with. In the case of a dynamic
LonMarkObject and network variables, it returns the custom
interface to which the object belongs.

The ParentInterface property is read-only. However, you can
move a dynamic network variable or LonMarkObject from
one custom interface to another with the method.

Availability Local, full, and lightweight clients.

Syntax interface = object.ParentInterface
Element Description

interface The Interface object returned by the
property.

object The NetworkVariable object to be acted
upon.

Data Type Interface object.

Read/Write Read only.

Priority
Summary Contains the default priority setting for the network

variable, as specified by the device developer.
If the network variable is a connected output network
variable, or a polling input network variable, then this flag
will be used to determine whether messages sent by the
network variable use priority. This value may be overridden
by the UsePriorityFlag property of the network variable’s

OpenLNS Programmer's Reference 611

ConnectDescTemplate object.

Availability Local, full, and lightweight clients.

Syntax priorityValue = object.Priority
Element Description

priorityValue The default priority setting assigned
to the network variable.

object The AppDevice object to be acted on.

Data Type Integer.

Read/Write Read only

Added to API Prior to LNS Release 3.0.

PriorityConfigFlag
Summary Indicates whether priority is configurable for the network

variable.

Availability Local, full, and lightweight clients.

Syntax pcFlagValue = nvObject.PriorityConfigFlag
Element Description

pcFlagValue A True of False value indicating
whether the object is dynamic.
TRUE. The network variable’s use of

priority may be changed in a
connection via the
ConnectDescTemplate object.

FALSE. The network variable’s use of
priority may not be changed.

nvObject The Network variable object.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 612

ProgrammaticName
Summary Returns the programmatic name of the network variable.

This property contains the orignal base name of the network
variable as "programmed" in the device containing the object.

• For static network variables, OpenLNS initially acquires
the name from the functional profile template file or
external interface associated with the device.

• For dynamic network variables, you will specify the name
to use when you create the object with the appropriate
Add method.

Initially, the Name property, which represents the user name
of the network variable or network variable, will also be set
to the same value as the ProgrammaticName property. The
Name property can be subsequently changed for all network
variables, allowing OpenLNS applications to create their own
identifying names for those objects.
This property can be a maximum of 16 characters long, and
must conform to the character restrictions defined in version
3.3 and later of the LonMark Application Layer
Interoperability Guidelines. You may not use the following
characters in the ProgrammaticName property: the forward
slash (/), back slash (\), period (.), and colon (:).

Availability Local, full, and lightweight clients.

Syntax progName = Object.ProgrammaticName
Element Description

progName The ProgrammaticName of the object.

Object The network variable to be acted on.

Data Type String.

Read/Write Read-only for static network variables. Read/write for
dynamic network variables. You can check if a network
variable is dynamic or static by reading the IsDynamic
property.
When writing to this property, you should note that some
devices, such as the SmartServer, require that all network
variables within the device have a unique programmatic
name. In addition, all network variables contained within a
custom Interface object must have unique programmatic
names. If you attempt to assign a duplicate programmatic
name to a network variable on such a device, the operation
will fail, and the LCA, #132
lcaErrUniqueNvNameRequired exception will be thrown.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 613

Selector
Summary The network variable selector value assigned to this network

variable alias.
When a device is installed, selector values that represent
unbound network variables are assigned to the network
variables in that device. When placing the network variable
in a connection, the OpenLNS Object Server assigns a value
representing that connection.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax selectorValue = object.Selector
Element Description

object The NetworkVariable object to be acted
on.

selectorValue The network variable selector value

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

SelfDocumentation
Summary Stores the self-documentation string of the network variable.

The length of the string is not provided as a separate
property. To get the length, get the descriptionString, and
calculate the length from it. Note that this property returns
only the user portion (which follows the LonMark portion, if
any) of the self-documentation string

Availability Local, full, and lightweight clients.

Syntax descriptionString = object.SelfDocumentation
Element Description

programIdValue The program ID value of the object.

object The NetworkVariable object to be
acted on.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 614

ServiceType
Summary Stores the messaging service to be used for the connection.

Note: This property will only be read by the OpenLNS Object
Server if the lcaConnPropsServiceType option is set in
the ConnectDescTemplate object’s PropertyOptions property.
If the lcaConnPropServiceType option is not set, then
OpenLNS Object Server will determine the service type for
connections using the ConnectDescTemplate object by reading
the ServiceType property of the connection’s hub network
variable.

Availability Local, full, and lightweight clients.

Syntax serviceTypeValue = object.ServiceType
Element Description

serviceTypeValue The service type to be used. The
enumerated values for this element,
which are contained in the
ConstServiceTypes constant, are as
follows:
0 lcaSvcAckd
Acknowledged messaging service.
The device sends an acknowledgment
message after it has received the
message.
If your application will be sending
messages to large numbers of devices
at once, one of the unacknowledged
messaging services may be desirable,
as the acknowledgment messages may
generate a significant amount of
network traffic.
1 lcaSvcUnackdRpt
Unacknowledged repeat messaging
service. The device does not send
acknowledgment messages; however,
repeat messages are sent to the device
after the initial message is sent to it
to ensure that it reaches its
destination.
You can set the number of repeat
messages to send, and the interval at
which they will be sent, by writing to
the RepeatCount and RepeatTimer
properties.
2 lcaSvcUnackd
Unacknowledged messaging service.
The device does not send

OpenLNS Programmer's Reference 615

acknowledgment messages.
Do not use this service type on
channels that support altnerate
frequencies because the message will
only be sent using the primary path.
See the AltPathType property for
more information.
3 lcaSvcRequest
Request/Response messaging service.
You can use this value when sending
explicit messages if the device
receiving the message is designed to
send a response message for the
specified message code.

object The NetworkVariable object to be
acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ServiceTypeConfigFlag
Summary Indicates whether the ServiceType is configurable.

Availability Local, full, and lightweight clients.

Syntax flagValue = nvObject.ServiceTypeConfigFlag
Element Description

flagValue A Boolean value indicating whether
the ServiceType property can be
changed using the
ConnectDescTemplate object.

TRUE. The ServiceType property
may be changed using
ConnectDescTemplate object.

FALSE. The ServiceType property
may not be changed using
ConnectDescTemplate object.

nvObject The NetworkVariable object to be
acted on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 616

SnvtId
Summary Contains the ID of the standard network variable type

(SNVT) used by the network variable. If the network variable
is using a user-defined type (UNVT), this property returns
the value 0.
For more information on SNVTs and their IDs, go to the
LONMARK Web site at www.lonmark.org.
If the device supports modifiable types, this property may be
modified. This is useful for devices that support flexible
hardware options, and must have their network variable
types modified to match the attached hardware. You can
determine if the network variable supports modifiable types
by reading the ChangeableTypeSupport or
SnvtTypeIsModifiable properties.

Note: Use the TypeSpec property to change the type and
format used by a network variable.

Availability Local, full, and lightweight clients.

Syntax snvtType = nvObject.SnvtId
Element Description

snvtType The SNVT ID of the network variable,
or 0 if the network variable is a UNVT

nvObject The NetworkVariable object to be
acted upon.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

SnvtTypeIsModifiable
Summary Indicates whether the Standard Network Variable Type

(SNVT) ID of the network variable can be changed.
Changing a network variables’s type is useful for devices that
support flexible hardware options, and must have their
network variable types modified to match the attached
hardware.

You can use the network variable’s TypeSpec property to
change the type and format used by a network variable. Note
that if a network variable is not using a SNVT type, you can
determine if its type can be modified by reading the
ChangeableTypeSupport property.

The ChangeableTypeSupport property also returns
information indicating whether or not you can change and
network variable’s type, and how OpenLNS would change the
type (by modifying the self-documentation information of the
device associated with the network variable, or by modifying
the SCPTnvType configuration property stored on the

http://www.lonmark.org/

OpenLNS Programmer's Reference 617

device associated with the network variable).

Availability Local, full, and lightweight clients.

Syntax snvtFlag = nvObject.SnvtTypeIsModifiable
Element Description

snvtFlag A Boolean value indicating whether
the network variable’s type can be
changed.

TRUE. The SNVT type assigned to
the network variable can be
changed.

FALSE. The SNVT type property
may not be changed.

nvObject NetworkVariable object.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

SyncFlag
Summary Indicates whether the network variable is a synchronous

network variable.
For synchronous network variables, all updates are delivered
to the application program, not just the most recently
received update (when earlier updates have been queued for
but not delivered to the application program).

Availability Local, full, and lightweight clients.

Syntax flagValue = nvObject.SyncFlag
Element Description

flagValue A Boolean value indicating whether
the network variable is a synchronous
network variable.
TRUE. The network variable is a

synchronous network
variable.

FALSE. The network variable is not
synchronous.

nvObject NetworkVariable object.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 618

TypeSpec
Summary Contains an object that defines the type used by the network

variable. This includes the name of the network variable
type, and the scope and program ID of the resource file that
contains the definition of the type. OpenLNS uses this
information to identify the type a network variable should
use. In some cases, you can write to the properties of this
object to change the network variable’s type.

If the ChangeableTypeSupport property of the network
variable is set to lcaNvChangeableTypeSdOnly (1) or
lcaNvChangeableTypeSCPT (2), you can modify the
network variable’s type by writing new values to the
properties of the TypeSpec object. For more information on
this, see the TypeSpec object.

If the ChangeableTypeSupport property is set to
lcaNvChangeableTypeNone (0), then you cannot modify
the network variable’s type. If you attempt to write to this
property, the LCA#:157 lcaErrTypeNotChangeable
exception will be thrown.

The TypeSpec object contained within this property is not
passed by reference. If you modify the values assigned to the
properties of a local TypeSpec object, you must then explicitly
assign the modified TypeSpec object back to the TypeSpec
property of the NetworkVariable for the changes to take
effect. See the TypeSpec object for more information.

Availability Local, full, and lightweight clients.

Syntax typeSpecObject = networkVariable.TypeSpec
Element Description

typeSpecObject The TypeSpec object returned by the
property.

networkVariable The NetworkVariable object to be
acted upon.

Data Type TypeSpec object.

Read/Write Read/write.

Added to API LNS Release 3.20.

NetworkVariables
A NetworkVariables object is a collection of NetworkVariable objects. You can use the Item
property, the ItemByProgrammaticName method, or the ItemByIndex method to retrieve a
network variable from the collection. The following table summarizes the NetworkVariables
object.

Description A collection of NetworkVariable objects.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 619

Accessed Through Connections object.
Interface object.
LonMarkObject object.

Default Property Item

Methods • Add
• ItemByIndex
• ItemByProgammaticName
• Remove
• RemoveByIndex

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The NetworkVariables object contains the following methods.

• Add
• ItemByIndex
• ItemByProgammaticName
• Remove
• RemoveByIndex

Add
Summary Adds a network variable to the collection. You can use this on

NetworkVariables collections that are contained by dynamic
LonMarkObjects, or by custom Interface objects.

The Name and ProgrammaticName properties of the
NetworkVariable object will be set to match the specified
nvName element when this method is called. The name can be a
maximum of 16 characters, and it must not start with a number.
In addition, it cannot include square brackets ([]), commas (,), or
periods (.).
Network variables contained within the same custom Interface
object must have unique user names (Name property). In
addition, some devices, such as the SmartServer, require that
all network variables within the device have a unique
programmatic name (ProgrammaticName property). If you
attempt to assign a duplicate user name or programmatic name
to a network variable on such a device or interface, the
operation will fail, and the LCA, #132
lcaErrUniqueNvNameRequired exception will be thrown.
Note that OpenLNS does not check for duplicate network
variable user names when you use the MoveToInterface method
to move a LonMarkObject or NetworkVariable to a custom
interface. You would then only be able to retrieve the first
network variable using the duplicated name from interface. As a
result, make sure all network variables on your network have

OpenLNS Programmer's Reference 620

unique user names.
If you use this method to add a network variable to a collection
on a static LonMarkObject or a device’s main interface, then the
LCA#119 lcaErrInterfaceNotModifyable exception will be
thrown, unless the device supports the addition of dynamic
network variables to static LonMarkObject objects. You can
check if a LonMarkObject is static or dynamic by reading the
object’s IsDynamic property.

Availability Local, full, and lightweight clients.

Syntax newNV = networkVariables.Add nvName, nvType, nvDirection,
nvOptions, memberNumber, manufacturerAssigned

Element Description

newNV The NetworkVariable object
returned by the function. This is
the newly defined network
variable.

networkVariables The NetworkVariables collection
object being acted upon.

nvName The name of the network variable
you are adding. The name can be a
maximum of 16 characters, and it
must not start with a number. In
addition, it cannot include square
brackets ([]), commas (,), or periods
(.).

nvType A TypeSpec object identifying the
type of the network variable being
added.

nvDirection The direction of the network
variable being added (input or
output). The valid values for this
element, which are contained in the
ConstNvDirections constant, are as
follows:
0 lcaNvDirectionInput
This value indicates that a network
variable is an input network
variable.
1 lcaNvDirectionOutput
This value indicates that a network
variable is an output network
variable.

nvOptions The options to use when adding the
network variable to the collection.
These options determine the
default messaging service to be

OpenLNS Programmer's Reference 621

used for updates to the network
variable, as well as the network
variable’s default polling,
synchronization, priority and
authentication settings.
The valid values for this element,
which are contained in the
ConstNvOptionsFlags constant, are
as follows (these options can be
ORed together):
Note: Values 0,1 and 2 in this
constant are mutually exclusive.
Selecting more than one of them
will cause the LCA, #152
lcaErrInvalidServiceType
exception to be thrown.
0 lcaNvOptionsServiceAckd
Select this option to use the
acknowledged messaging service as
the default messaging service for
updates to the network variable.
When the network variable is part
of a connection, the value of the
ServiceType property in the
connection’s ConnectDescTemplate
may override this setting.
1
lcaNvOptionsServiceUnackdRpt
Select this option to use the
unacknowledged, repeat messaging
service as the default messaging
service for updates to the network
variable. When the network
variable is part of a connection, the
value of the ServiceType property
in the connection’s
ConnectDescTemplate may override
this setting.
2 lcaNvOptionsUnackd
Select this option to use the
unacknowledged messaging service
as the default messaging service for
updates to the network variable.
When the network variable is part
of a connection, the value of the
ServiceType property in the
connection’s ConnectDescTemplate
may override this setting.

OpenLNS Programmer's Reference 622

4 lcaNvOptionsPolled
Select this option to enable the
network variable’s polling
attribute.
8 lcaNvOptionsSynchronized
Select this option to create the
network variable as a synchronous
network variable, meaning that all
all updates to the network variable
will be delivered to the application,
not just the most recently received
update (when earlier updates have
been queued, but have not yet not
delivered to the application).
16 lcaNvOptionsPriority
Select this option to use priority
messaging when sending updates
and polling messages to this
network variable by default. When
the network variable is part of a
connection, the value of the
UsePriorityFlag property in the
connection’s ConnectDescTemplate
may override this setting.
32 lcaNvOptionsAuthentication
Select this option to use
authenticated messaging when
sending update and polling
messages for this network variable
by default. When the network
variable is part of a connection, the
value of the UseAuthenticationFlag
property in the connection’s
ConnectDescTemplate may override
this setting.

memberNumber A Long value indicating the
member number that will be used
by the network variable. The
member number must be a unique
value in the range of 1–4096.

manufacturerAssigned A Boolean value indicating whether
the member number assigned to
the network variable is a
manufacturer-assigned member
number (TRUE), or a LonMark-
assigned member number (FALSE).
This parameter only applies if the
NetworkVariables collection being

OpenLNS Programmer's Reference 623

acted upon was obtained from a
LonMarkObject; otherwise, it is
ignored.

Added to API LNS Release 3.20.

ItemByIndex
Summary Retrieves a NetworkVariable object from a NetworkVariables

collection. The object to be retrieved must be specified by its
index value.

This property is only supported by NetworkVariables
collections that belong to Interface or LonMarkObject objects.
If this method is invoked on a different type of network
variable collection (one accessed through the NVHubs or
NVTargets property), an invalid type exception (LCA #2) is
raised. If this exception is encountered, it indicates that the
specified collection does not support the ItemByIndex method.
You can use this method when working with a dynamic
network variable, which has an OLE collection index and
name that may change because of the addition or removal of
other dynamic network variables within its collection.

Availability Local, full, and lightweight clients.

Syntax itemObject = itemsColl.ItemByIndex index

Element Description

itemObject The NetworkVariable object retrieved
from the collection.

itemsColl The NetworkVariables collection to be
acted on.

index An Integer value specifying the Index
property of the NetworkVariable object
to be retrieved.

Added to API LNS Release 3.0.

ItemByProgrammaticName
Summary Retrieves a NetworkVariable object from a NetworkVariables

collection by its programmatic name.
You can determine the programmatic name of a
NetworkVariable object by reading its ProgrammaticName
property. Alternatively, you can retrieve a NetworkVariable
object from this collection by their user names using the Item
property.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 624

Syntax retrievedObject = collection.ItemByProgrammaticName
progName

Element Description

retrievedObject The NetworkVariable object to be
retrieved from the collection.

collection The NetworkVariables collection being
acted upon.

progName The ProgrammaticName of the
NetworkVariable object to be retrieved.

Added to API LNS Release 3.20.

Remove
Summary Removes a NetworkVariable object from the

NetworkVariables collection. You must specify the network
variable to be removed by its name, or by its index number
within the collection.
You can use this method to remove network variables from
collections that are contained by dynamic LonMarkObject
objects, or by custom Interface objects.

The indexName element is a Variant type that allows you to
specify the network variable to be deleted by its user name or
by the index value assigned to it within the
NetworkVariables collection.

Note: The index value assigned within the NetworkVariables
collection is not the same as the Index property, which stores
the device index value of the network.
You can determine the user name of a network variable by
reading its Name property. If you use the user name to
identify the network variable, it is important to make certain
that you do not specify a user name that is shared by more
than one network variable.

You should use the RemoveByIndex method to remove a
network variable. This method allows you to specify the
NetworkVariable to be removed by its device index number,
which is guaranteed to be a static, unique value.

If the network variable is a member of a LonMarkObject , it
will be unassigned from the LonMarkObject as it is deleted. If
the network variable is part of a connection, it will not be
deleted, and the NS, #164 lcaErrNsNvmtInUse exception
will be thrown.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax networkVariables.Remove indexName

Element Description

OpenLNS Programmer's Reference 625

networkVariables The NetworkVariables collection to be
acted upon.

indexName A Long value specifying the collection
index of the NetworkVariable object
to remove, or a String value
specifying the name of the
NetworkVariable object to remove.

Added to API LNS Release 3.20.

RemoveByIndex
Summary Removes a NetworkVariable from the collection. You can

specify the network variable to be deleted by its index
number within the collection.
You can use this method to remove network variables from
collections that are contained by dynamic LonMarkObject
objects, or by custom Interface objects.
You can determine the device index number assigned to a
network variable by reading its Index property.
If the network variable being removed is a member of a
LonMarkObject, it will be unassigned from the
LonMarkObject as it is removed from the collection. You can
assign network variables to LonMarkObject objects using the
AssignNetworkVariable method.
If the network variable is part of a connection, it will not be
deleted, and the NS, #164 lcaErrNsNvmtInUse exception
will be thrown.

Availability Local, full, and lightweight clients.

Syntax networkVariables.RemoveByIndex deviceIndex

Element Description

networkVariables The NetworkVariables collection to
be acted upon.

deviceIndex The device index number assigned
to the network variable being
removed.

Added to API LNS Release 3.20.

Properties
The NetworkVariables object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

OpenLNS Programmer's Reference 626

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
NetworkVariables object in the
ConstClassIds constant:
23 lcaClassIdNetworkVariables

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a NetworkVariable object from a NetworkVariables

collection. You can retrieve a NetworkVariable object from its

OpenLNS Programmer's Reference 627

NetworkVariables collection by passing its index (ordinal
position) within that collection as the argument for the Item
property. Index values start at 1.

You can also retrieve a NetworkVariable object in
NetworkVariables collections with the Name property by
passing the object’s name as a string expression.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The NetworkVariable object retrieved
from the collection.

collObject The NetworkVariables collection object
to be acted on.

index A Long type specifying the ordinal
index of the NetworkVariable object to
be retrieved.

stringExpression A string type specifying the name of the
NetworkVariable object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

OpenLNS Programmer's Reference 628

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

NvMonitorOptions
The NvMonitorOptions object contains a set of monitoring options that can be applied to the
network variable monitor points that LNS is monitoring. Depending on how this object is
accessed, writing to it may affect the monitoring options used for an entire monitor set, or for
an individual network variable monitor point.

The NvMonitorOptions object accessed through a MonitorSet object's NvOptions property
contains the defaults options for the monitor set. These are the default options applied to all
NvMonitorPoint objects as they are added to the monitor set.

You can change the defaults an individual NvMonitorPoint uses by writing to the
NvMonitorOptions object accessed through the DefaultOptions property of that
NvMonitorPoint object. This object contains the default options that will be used each time
the monitor set containing that particular NvMonitorPoint object is opened. Note that this
only applies to network variable monitor points in permanent monitor sets. The

OpenLNS Programmer's Reference 629

CurrentOptions properties of network variable monitor points in temporary monitor sets are
not accessible, as temporary monitor sets are only used in a singe client session.

You can change the monitoring options a NvMonitorPoint will use for an active monitoring
session by writing to the NvMonitorOptions object accessed through the NvMonitorPoint
object’s CurrentOptions property. Changes made to the current options take effect for the
current session only, and are not stored persistently in memory.

Note that the NvMonitorOptions object contained within the NvOptions property of a
monitor set (or the DefaultOptions or CurrentOptions properties of a monitor point) is not
passed by reference. If you acquire an NvMonitorOptions object through any of these
properties and modify it, you must then explicitly assign the modified object back to the
source property for the changes to take effect.

The following table summarizes the NvMonitorOptions object.

Description A set of monitoring options that can be applied to the
network variable points being monitored by OpenLNS.

Added to API LNS Release 3.0.

Accessed Through MonitorSet object.
NvMonitorPoint object.

Default Property None.

Methods None.

Properties • Authentication
• ClassId
• GenerateInitialFetch
• Parent
• PollInterval
• Priority
• ReportByException
• ResetPollingIfUpdated
• Retries
• ServiceType
• SuppressPollingIfBound
• ThrottleInterval
• UseAsyncSend
• UseBoundUpdates

Methods
The NvMonitorOptions object does not contain any methods.

Properties
The NvMonitorOptions object contains the following properties:

• Authentication
• ClassId
• GenerateInitialFetch
• Parent
• PollInterval
• Priority
• ReportByException

OpenLNS Programmer's Reference 630

• ResetPollingIfUpdated
• Retries
• ServiceType
• SuppressPollingIfBound
• ThrottleInterval
• UseAsyncSend
• UseBoundUpdates

Authentication
Summary Determines whether the authenticated service will be used

when sending a network variable monitor point updates
using the Value property.

See the Monitor and Control chapter in the OpenLNS
Programmer’s Guide for more information on network
variable monitor points.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax authValue = monOptsObject.Authentication
Element Description

authValue Boolean value.

monOptsObject The NvMonitorOptions object to be
acted on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
MsgMonitorOptions object in the
ConstClassIds constant:
79 lcaClassIdNvMonitorOptions

object The object to be acted on.

OpenLNS Programmer's Reference 631

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

GenerateInitialFetch
Summary Determines if the network variable value is fetched

automatically when the network variable monitor point is
enabled.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax initialFetchValue = nvMonOptObject.GenerateInitialFetch
Element Description

initialFetchValue An Integer value indicating whether
the network variable value is fetched
automatically when the network
variable monitor point is enabled.

1 The NvMonitorPoint object
automatically gets the value of
the network variable it monitors
when it is enabled using the
Enable method, implicitly enabled
when it is opened, and the
doEnable element is set to True.

0 The value will not be updated
until an update is received, either
due to normal polling activity or
via bound updates. This is the
default.

-1 The value is set to the value
currently stored in the NvOptions
property of the MonitorSet object.
This may be useful if you want
the value of the property used by
a network variable monitor point
to always match the default value
stored in the MonitorSet object.
This feature, however, is not
available in server-independent
mode.

nvMonOptObject The NvMonitorOptions object to be
acted on.

Data Type Integer.

OpenLNS Programmer's Reference 632

Read/Write Read/write.

Added to API LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

PollInterval
Summary Determines the length between polls for polled network

variable monitoring.
When polling is enabled for a monitor point, OpenLNS will
periodically read the value of the monitor point and report
the value using the OnNvMonitorPointUpdateEvent. This is
most efficient when the value must be checked regularly, but
the application does not need to know immediately if the
value changes (for example, outside air temperature). You
can enable polling for a monitor set or monitor point with the
Enable method.

• If this property is contained in the NvMonitorOptions
object accessed through a MonitorSet object, this property
sets the default poll interval for al monitor points
contained in the set.

• If this property is contained in the NvMonitorOptions
object accessed through the DefaultOptions or
CurrentOptions property of a NvMonitorPoint object, this
property sets the default or current poll interval for that
monitor point. Set the value to
lcaDefaultMcpInterval(-1) (from the
ConstLNSMonitorSetIntervalDefault constant) to have
the poll interval default to the value contained in the

OpenLNS Programmer's Reference 633

NvOptions property of the MonitorSet object. This may
be useful if you want the poll interval for the monitor
point to always match the default value stored in the
MonitorSet object. However, this feature is not available
in server-independent mode.

When writing to this property, the amount of polling you can
do on a network depends on the speed of the communication
channels being used by the network, and the amount of
traffic on those channels. The poll interval you select
combined with the number of network variables being polled
by the OpenLNS Server may significantly increase the
amount of traffic on your network. When you write to this
property, ensure that the poll interval you specify does not
cause your network resources to be exceeded.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax pollIntValue = nvMonOptsObject.PollInterval
Element Description

pollIntValue The poll interval in milliseconds.

nvMonOptsObject The NvMonitorOptions object to be
acted on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

Priority
Summary Determines whether priority is used when polling or

explicitly updating a network variable monitor point using
the Value property.

Setting this property through the NvOptions property of a
permananent monitor set, or through the DefaultOptions
property of a permanent network variable monitor point,
does not have an effect. The default priority setting for each
permanent network variable monitor point is established by
the UsePriorityFlag property of the ConnectDescTemplate
specified when the network variable monitor point was
created.

You cannot set this property through the DefaultOptions
property of a temporary network variable monitor point, as
the DefaultOptions properties of all temporary monitor points
are not accessible. However, you can set this property
through the NvOptions property of a temporary monitor set
to determine the default priority setting that will be applied
to all network variable monitor points as they are added to
the set.

OpenLNS Programmer's Reference 634

You can set this property through the CurrentOptions
property of a permanent or temporary network variable
monitor point to determine the priority setting to use when
sending network variable updates during the current
monitoring session.

See the Monitor and Control section of the OpenLNS
Programmer’s Guide for more information.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax priorityValue = monOptsObject.Priority
Element Description

priorityValue A Boolean value.
TRUE. Priority is used when

polling or explicitly
updating a message
monitor point using the
Value property.

FALSE. Priority is not used.

monOptsObject The NvMonitorOptions to be acted
on.

Data Type Boolean.

Read/Write Read/write.

Added to API LNS Release 3.0.

ReportByException
Summary Determines whether update events will only be reported

when the value changes.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax byExceptionValue = nvMonOptsObject.ReportByException
Element Description

byExceptionValue An Integer value indicating whether
update events will only be reported
when the value changes.
1 OpenLNS will only report update

events to the client if the data
has changed from what was last
reported.

0 The value will not be updated
until an update is received,
either due to normal polling
activity or via bound updates.

OpenLNS Programmer's Reference 635

This is the default.
-1 The value is set to the value

currently stored in the
NvOptions property of the
MonitorSet object. This occurs if
this property is contained in the
NvMonitorOptions object
accessed through the
DefaultOptions or
CurrentOptions property of a
NvMonitorPoint object.
This value is stored in the
ConstLNSMonitorSetOptionDefault
constant.
This may be useful if you want
the value of the property used by
a network variable monitor point
to always match the default
value stored in the MonitorSet
object. This feature, however, is
not available in
server-independent mode.

nvMonOptsObject The NvMonitorOptions object to be
acted on.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.0.

ResetPollingIfUpdated
Summary Determines whether the poll interval will be reset whenever

a new value for the monitor point using this options set is
received, either via a bound update or a read operation.

The SuppressPollingIfBound property turns off polling if
there is a bound monitoring connection.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax resetPollValue = nvMonOptsObject.ResetPollingIfUpdated
Element Description

resetPollValue An Integer value indicating whether
the poll interval is reset when a new
value for the monitor point using
this options set is received.
1 The polling interval will be reset

if an update for the monitor
point is received through a bound

OpenLNS Programmer's Reference 636

connection, or via a read
operation.

0 The polling of the monitor point
will continue at the prescribed
interval, even if the value of the
point is received between polling
periods. This is the default.

-1 The value is set to the value
currently stored in the
NvOptions property of the
MonitorSet object. This occurs if
this property is contained in the
NvMonitorOptions object
accessed through the
DefaultOptions or
CurrentOptions property of a
NvMonitorPoint object.
This value is stored in the
ConstLNSMonitorSetOptionDefault
constant.
This may be useful if you want
the value of the property used by
a network variable monitor point
to always match the default
value stored in the MonitorSet
object. This feature, however, is
not available in
server-independent mode.

nvMonOptsObject The NvMonitorOptions object to be
acted on.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.0.

Retries
Summary Specifies the number of retries to use for acknowledged,

request/response, or repeated service messages. This applies
to network management messages only.

Setting this property through the NvOptions properties of a
permananent monitor set, or through the DefaultOptions
property of a permanent monitor point, does not have an
effect. The default retry count to use for all permanent
network variable and message monitor points is established
by the RetryCount property of the ConnectDescTemplate
specified when the monitor point was created.

You cannot set this property through the DefaultOptions
property of a temporary monitor point because the

OpenLNS Programmer's Reference 637

DefaultOptions properties of all temporary monitor points are
not accessible. However, you can set this property through
the NvOptions property of a temporary monitor set to
determine the default retry count that will be applied to all
temporary monitor points as they are added to the set.

You can also set this property through the CurrentOptions
property of a permanent or temporary monitor point to
determine what retry count for the current monitoring
session.

See the Monitor and Control chapter of the OpenLNS
Programmer’s Guide for more information

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax retryValue = monOptsObject.Retries
Element Description

retryValue The number of retries. The valid
range of values for this property is
1–15. This property applies to
network management messages
only.

monOptsObject The NvMonitorOptions object to be
acted on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

ServiceType
Summary Determines the service type used when sending explicit

messages with a message monitor point.

You cannot set this property through the CurrentOptions
property of a temporary monitor point, as the CurrentOptions
properties of all temporary monitor points are not accessible.
However, you can set this property through the NvOptions
property of a temporary monitor set to determine the default
messaging service that will be applied to all monitor points
as they are added to the set.

See the Monitor and Control chapter of the OpenLNS
Programmer’s Guide for more information.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax retryValue = monOptsObject.Retries
Element Description

OpenLNS Programmer's Reference 638

retryValue The valid values for this property,
which are enumerated in the
ConstServiceTypes constant, are as
follows:
0 lcaSvcAckd
Acknowledged messaging service.
The device sends an
acknowledgment message after it
has received the message.
If your application will be sending
messages to large numbers of
devices at once, one of the
unacknowledged messaging services
may be desirable, as the
acknowledgment messages may
generate a significant amount of
network traffic.
1 lcaSvcUnackdRpt
Unacknowledged repeat messaging
service. The device does not send
acknowledgment messages;
however, repeat messages are sent
to the device after the initial
message is sent to it to ensure that it
reaches its destination.
You can set the number of repeat
messages to send, and the interval
at which they will be sent, by
writing to the RepeatCount and
RepeatTimer properties.
2 lcaSvcUnackd
Unacknowledged messaging service.
The device does not send
acknowledgment messages.
Do not use this service type on
channels that support altnerate
frequencies because the message
will only be sent using the primary
path. See the AltPathType property
for more information.
3 lcaSvcRequest
Request/Response messaging
service. You can use this value
when sending explicit messages if
the device receiving the message is
designed to send a response message
for the specified message code.

OpenLNS Programmer's Reference 639

monOptsObject The NvMonitorOptions object to be
acted on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

SuppressPollingIfBound
Summary Determines whether polling will be turned of if the network

variable is bound to the host.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax suppressValue =
nvMonOptsObject.SuppressPollingIfBound
Element Description

suppressValue The MsgMonitorOptions object being
acted upon.

asyncFlag An Integer value indicating whether
polling will be turned of if the
network variable is bound to the host.
1 Polling will be suppressed if the

network variable is bound to the
host.

0 Polling will not be suppressed.
-1 The value is set to the value

currently stored in the NvOptions
property of the MonitorSet object.
This occurs if this property is
contained in the
NvMonitorOptions object accessed
through the DefaultOptions or
CurrentOptions property of a
NvMonitorPoint object.
This value is stored in the
ConstLNSMonitorSetOptionDefault
constant.
This may be useful if you want
the value of the property used by
a network variable monitor point
to always match the default value
stored in the MonitorSet object.
This feature, however, is not
available in server-independent
mode.

Data Type Boolean.

OpenLNS Programmer's Reference 640

Read/Write Read/write.
Note: OpenLNS sets this property automatically for message
monitor points. For example, if you are sending a message
via the SendMsgWait method, a response from the device is
expected. Therefore, OpenLNS will set the UseAsyncSend
property to False.
Also, if you are writing to a message monitor point via the
OutputDataPoint property, no response is expected;
therefore, OpenLNS sets the property to True. As a result,
you should not write to this property when you access it
through a MsgMonitorOptions object.

Added to API LNS Release 3.0.

ThrottleInterval
Summary Determines the throttle for network variable updates. The

throttle is the minimum interval between updates to the
client. This is independent of the poll interval (see the
PollInterval property).

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax throttleValue = nvMonOptsObject.ThrottleInterval
Element Description

throttleValue The throttle value in milliseconds.
If this property is contained in the
NvMonitorOptions object accessed
through the DefaultOptions or
CurrentOptions property of a
NvMonitorPoint object, you can set
the value to lcaDefaultMcpInterval
(-1) (from the
ConstLNSMonitorSetIntervalDefault
constant) to have the throttle interval
default to the value contained in the
NvOptions property of the MonitorSet
object.
This may be useful if you want the
throttle interval for the monitor point
to always match the default value
stored in the MonitorSet object.
However, this feature is not available
in server-independent mode.

nvMonOptsObject The NvMonitorOptions object to be
acted on.

Data Type Long.

Read/Write Read/write.

OpenLNS Programmer's Reference 641

Added to API LNS Release 3.0.

UseAsyncSend
Summary Determines whether OpenLNS will wait for a completion

code to return after updating the value of a monitor point
before sending its next update message.
When sending the values of network variable and message
monitor points prior to LNS 3.20, LNS would wait for the
completion code for each message sent to be returned before
returning to the user, regardless of the messaging service
type being used. You can use this property to determine
whether OpenLNS should wait for the completion code.

Note: The UseAsyncSend property can be used to confirm
when the values of the monitor points on your network have
been successfully sent, as described earlier. However, you can
also use the OnMsgMonitorPointErrorEvent and
OnNvMonitorPointErrorEvent events to determine when
values are not successfully sent. These events are generated
whenever there is a write failure on a monitor point.

See the Monitor and Control chapter in the OpenLNS
Programmer’s Guide for more information.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax monOptsObject.UseAsyncSend = asyncFlag
Element Description

monOptsObject The NvMonitorOptions object being
acted upon.

asyncFlag A Boolean value indicating whether
OpenLNS waits for a completion code
to return after updating the value of
the monitor point before sending its
next update message.
TRUE. OpenLNS does not wait for

the completion code to return
after sending the values of
the monitor points before
returning to the user.
In this case, OpenLNS will
generate an
OnMsgMonitorPointEvent or
OnNvMonitorPointEvent
event as soon as the
completion code has been
returned, and the value of
the monitor point has been
updated. You can use these

OpenLNS Programmer's Reference 642

events to confirm that the
values of your monitor points
have been successfully sent.
This approach may be useful
if you are updating a large
number of monitor points at
once, and do not want to wait
for a completion code to
return after each update
before moving to the next
one.
Setting this property to True
therefore may be useful
when writing to the values of
large numbers of data points
with the Write method
because it reduces the time
required to update the
values on the network.

FALSE. OpenLNS waits for the
completion code to return
after it sends each value
before returning from the
method, as with LNS
versions prior to LNS 3.20.
Other client applications will
be able to successfully
update the monitor point
while your application is
waiting for the completion
code.
If this property is set to
False and no completion code
is returned after a message
is sent, this indicates that
LNS failed to update the
monitor point. In this case,
the DS, #411
lcaErrLnsDsWriteFailed
exception will be thrown
before LNS proceeds to the
next update message.
OpenLNS will not return
any events confirming that
the value has been updated
when the property is set to
False.
This is the default.

Data Type Boolean.

OpenLNS Programmer's Reference 643

Read/Write Read/write.
Note: OpenLNS sets this property automatically for message
monitor points. For example, if you are sending a message
via the SendMsgWait method, a response from the device is
expected. Therefore, OpenLNS will set the UseAsyncSend
property to False.
Also, if you are writing to a message monitor point via the
SendMsgWait property, no response is expected; therefore,
OpenLNS sets the property to True. As a result, you should
not write to this property when you access it through a
MsgMonitorOptions object

Added to API LNS Release 3.20.

UseBoundUpdates
Summary Indicates whether NvMonitorPoint objects should use bound

updates for monitor and control.
Enabling bound monitoring and control will not disable
polling unless the SuppressPollingIfBound is set to true.
This property enables implicit binding. With implicit binding
enabled, OpenLNS attempts to create connections without
user intervention.

Attempting to set this property in the CurrentOptions object
will fail silently for both permanent and temporary monitor
points. To use bound updates for a permanent monitor point,
you must set this property in the DefaultOptions object. If
you are in communication with the OpenLNS Server (not in
server-independent mode), this option will be automatically
enabled as soon as you set the property to True. In this case,
you don't have to close and re-open the monitor set, as with
other options in the DefaultOptions object. You cannot set the
properties of the DefaultOptions object in server-independent
mode.
OpenLNS does not support the automatic connection of
monitor points in temporary monitor sets; therefore, this
property should be set to False for NvMonitorOptions objects
that are accessed through the NvOptions property of
MonitorSet objects created as temporary monitor sets.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax useBoundFlag = nvMonOptsObject.UseBoundUpdates
Element Description

useBoundFlag A Boolean value indicating whether
the monitor points using this set of
options should use bound updates.
TRUE. The monitor points using

OpenLNS Programmer's Reference 644

this set of options should
use bound updates.

FALSE. The monitor points using
this set of options should
not use bound updates.

nvMonOptsObject The NvMonitorOptions object to be
acted on.

Data Type Boolean.

Read/Write Read/write.

Added to API LNS Release 3.0.

NvMonitorPoint
A NvMonitorPoint object represents a single monitored or controlled network variable. You
can use network variable monitor points to perform explicit reading and writing, polled
monitoring, or implicit bound monitoring of network variables on devices in your network
with your application. For more information on network variable monitor points, see the
Monitor and Control chapter in the OpenLNS Programmer’s Guide.
In general, the NvMonitorPoint objects contained in MonitorSet objects created as temporary
or permanent monitor sets behave the same way except that the DefaultOptions properties of
the NvMonitorPoint objects in temporary monitor sets are not accessible. For more
information on this, see the DefaultOptions property of this object.
In addition, network variable monitor points in temporary monitor sets cannot be
automatically bound to the monitoring node. This means that the UseBoundUpdates
property stored in the NvMonitorOptions objects used by all temporary monitor points must
be set to False. For more information on this, see the online help for the UseBoundUpdates
property.
Temporary monitor sets, and all the monitor points they contain, can only be used in a single
client session. They are deleted by OpenLNS as soon as the session in which they were
created ends. For more information on the differences between temporary and permanent
monitor sets, see the MonitorSet object.

The following table summarizes the NvMonitorPoint object.

Description A single monitored or controlled network variable.

Added to API LNS Release 3.0.

Accessed Through NvMonitorPoints object.

Default Property Name.

Methods • Advise
• Disable
• Enable
• Unadvise

Properties • ClassId
• CurrentOptions
• DataPoint
• DefaultOptions
• FormatSpec

OpenLNS Programmer's Reference 645

• Name
• Parent
• Tag

Events • UpdateErrorEvent
• UpdateEvent

Methods
The NvMonitorPoint contains the following methods.

• Advise
• Disable
• Enable
• Unadvise

Advise
Summary Enables update and error events for an object that

implements the ILcaMsgMonitorPointListener or
ILcaNvMonitorPointListener interface.
This method should only be used if the development
environment supports multi-threading (such as Visual C++).
When you call this method, OpenLNS will provide event
notification of updates and update errors using callbacks,
instead of Windows messaging. The callback is made to the
UpdateEvent or UpdateErrorEvent method of the object
specified as the object parameter when the Advise method is
called.

When you call the Advise method, the client thread will stop
generating OnNvMonitorPointErrorEvent and
OnNvMonitorPointUpdateEvent events for the
NvMonitorPoint object specified as the mpObject element.

The object specified as the object element will then start
receiving UpdateErrorEvent events and message
UpdateEvent events for that monitor point.

Note: The Advise method must be called from the event
handler that is managing the NvMonitorPoint events listed
above.
You should determine how these updates are handled by
defining the UpdateErrorEvent and the UpdateEvent for the
ILcaNvMonitorPointListener interface.

The returned tag should be supplied to the Unadvise method
to return update notification to the client thread.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax tag = mpObject.Advise object

Element Description

OpenLNS Programmer's Reference 646

tag An Integer type

mpObject The NvMonitorPoint object to be acted
on.

object An object that implements the
ILcaNvMonitorPointListener interface.

Added to API LNS Release 3.0.

Disable
Summary Disables monitoring of a network variable monitor point.

When you disable monitoring of a network variable monitor
point, you should note that this overrides subsequent calls to
the MonitorSet object's Enable method.

For example, if you call the Disable method on a
NvMonitorPoint object named Point A, and then call the
Disable method on the monitor set containing Point A, Point
A would not be enabled. All other monitor points in the
monitor set, however, would be enabled.

Once you have explicitly disabled an NvMonitorPoint with
the Disable method, you can only re-enable that monitor
point by calling the Enable method on it, or by closing and
re-opening the monitor set it belongs to.
You can also disable an entire monitor set by calling the
Disable method on the MonitorSet object. When you do this,
polled and bound monitoring for all monitor points on the
monitor set will be disabled. After this, none of the monitor
points in the set can be enabled for monitoring until the
Disable method has been called on the MonitorSet object
again.
For more details on opening and enabling monior sets and
monitor points, see Chapter 9 of the OpenLNS Programmer’s
Guide.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax object.Disable

Element Description

object The NvMonitorPoint object to be
disabled.

Added to API LNS Release 3.20.

Enable
Summary Enables monitoring of a network variable monitor point.

You can enable monitoring of all the monitor points in a
permanent or temporary monitor set at once by setting the

OpenLNS Programmer's Reference 647

doEnable element to True when you open the monitor set. If
the doEnable element is set to False, you can also enable the
entire monitor set later by calling the Enable method on the
MonitorSet object.
You can disable monitoring of an individual network variable
monitor point by calling the Disable method on it.
For more details on opening and enabling monior sets and
monitor points, see Chapter 9 of the OpenLNS Programmer’s
Guide.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax object.Ensable

Element Description

object The NvMonitorPoint object to be
enabled.

Added to API LNS Release 3.20.

Unadvise
Summary Returns event generation to the client thread if it was

changed to another thread using the Advise method.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax mpObject.Unadvise tag

Element Description

tag An Integer type. This tag parameter
should use the tag that was returned
when the Advise method was called.

mpObject The NvMonitorPoint object to be acted
on.

Added to API LNS Release 3.0.

Properties
The NvMonitorPoint object contains the following properties:

• ClassId
• CurrentOptions
• DataPoint
• DefaultOptions
• FormatSpec
• Name
• Parent
• Tag

OpenLNS Programmer's Reference 648

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
NvMonitorPoint object in the
ConstClassIds constant:
80 lcaClassIdNvMonitorPoint

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

CurrentOptions
Summary Contains the current monitoring options for this network

variable monitor point. Once the monitor set containing a
monitor point has been opened, you can use this property to
set the monitoring options that will be used for the monitor
point during that particular session.

For monitor points in MonitorSet objects created as
permanent monitor sets, the options contained in this
property default to the options set in the DefaultOptions
property of the NvMonitorPoint. If the options are not set
there, they default to the options set in the NvOptions
properties in the MonitorSet object.

Each time a permanent MonitorSet object’s Open method is
called, the current options for each of the monitor points in
the set are reset to the options contained in their
CurrentOptions properties. The CurrentOptions property can
only be written to when the monitor set is open.

The NvMonitorOptions object contained within this property
is not passed by reference. If you acquire an
NvMonitorOptions object through the CurrentOptions
property and modify it, you must then explicitly assign the
modified object back to the CurrentOptions property for the
changes to take effect. This following code sample

OpenLNS Programmer's Reference 649

demonstrates this procedure:
Set curOptions = monPoint.CurrentOptions
curOptions.Authentication = True
curOptions.Retries = 5
Set monPoint.CurrentOptions = curOptions

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax curOptions = monPoint.CurrentOptions
Element Description

curOptions The NvMonitorOptions object
containing the current options for this
monitor point.

monPoint The NvMonitorPoint object to be acted
on.

Data Type NvMonitorOptions object.

Read/Write Read/write.

Added to API LNS Release 3.0.

DataPoint
Summary Contains a DataPoint object that can be used to read or write

to the network variable monitor point.

The monitor set containing the NvMonitorPoint must be open
in order for you to access this property. The DataPoint
object's FormatSpec property will be initialized to contain the
same FormatSpec object as the NvMonitorPoint object's
FormatSpec property.
Note: This property does not persistently contain the same
DataPoint object. Each time you access this property, a new
DataPoint object will be created

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax dpObject = mpObject.DataPoint
Element Description

dpObject A DataPoint object which provides
access to the monitor point value.

systemObject The NvMonitorPoint object to be acted
on.

Data Type DataPoint object.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 650

DefaultOptions
Summary Contains the default monitoring options that are applied

each time the monitor set containing this network variable or
network variable monitor point is opened.
These options are read when the monitor set containing the
monitor point is opened. Changes to these options will not
take effect until the next time the monitor set is opened. Use
the CurrentOptions property to change the active monitoring
options to use for a monitor point that is currently enabled.
For network variable monitor points, the options contained in
the DefaultOptions property default to the options set in the
permanent monitor set’s NvOptions property.
The default options cannot be accessed in server-independent
mode; therefore, Independent clients cannot read or write to
the DefaultOptions property.

The NvMonitorOptions object contained within this property
is not passed by reference. If you acquire an
NvMonitorOptions object through the DefaultOptions
property and modify it, you must then explicitly assign the
modified object back to the DefaultOptions property for the
changes to take effect. This following code sample
demonstrates this procedure:
Set defOptions = monPoint.DefaultOptions
defOptions.Authentication = True
Set monPoint.DefaultOptions = defOptions

Availability Local, full, and lightweight clients.

Syntax defOptions = monPoint. DefaultOptions
Element Description

defOptions The NvMonitorOptions object
containing the default options for this
monitor point.

monPoint The NvMonitorPoint object to be acted
on.

Data Type NvMonitorOptions object.

Read/Write Read/write.

Note: The CurrentOptions properties of monitor points in
MonitorSet objects created as temporary monitor sets are not
accessible. If you attempt to acquire the CurrentOptions
property through a temporary monitor point, the LCA, #161
lcaErrNotAllowedOnTemporaryObject exception is
thrown. This is because these monitor points can only be
used in a singe client session.
If you want a temporary monitor point to use options other
than the defaults for the monitor set, you can change them
with the CurrentOptions property.

OpenLNS Programmer's Reference 651

Added to API LNS Release 3.0.

FormatSpec
Summary Contains the format specification information for data read

from the FormattedValue property in the DataPoint or
NvMonitorPoint object.

This property contains a FormatSpec object that determines
the base type to use when reading the formatted values of the
data point or monitor point. For data points acquired through
NetworkVariable objects, the default settings for the
FormatSpec object are determined based on the network
variable’s TypeSpec property.

For data points, you can also use the CurrentFormatLocale
property to determine which options OpenLNS will use when
displaying the data stored in the DsIsDefaultFormat
property.

The FormatSpec object contained within this property is not
passed by reference. If you modify the values assigned to the
properties of a local FormatSpec object, you must then
explicitly assign the modified FormatSpec object back to the
FormatSpec property of the NvMonitorPoint or DataPoint for
the changes to take effect. This following code sample
demonstrates this procedure:
Set fsObject = dpObject.FormatSpec
fsObject.FormatName = "SNVT_temp_f#SI"
Set dpObject.FormatSpec = fsObject

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects and temporary monitor points
are not available on Independent clients.

Syntax fsObject= dpObject.FormatSpec
Element Description

fsObject The FormatSpec object containing the
format information.

dpObject The NvMonitorPoint object to be acted
on.

Data Type FormatSpec object.

Read/Write Read/write.

Added to API LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period

OpenLNS Programmer's Reference 652

(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child
object is accessed, not by the OpenLNS Object hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Tag
Summary Stores any extra data associated with the monitor point or

monitor set.
The data stored in this property is not used by OpenLNS, and
is available as soon as the data point or monitor set is created
in a monitor and control session. You can use this property to
store any data your application may need when using the
monitor set or monitor point. For example, you could store
the name of the monitor set that a message or network
variable monitor point belongs to, or the name of the

OpenLNS Programmer's Reference 653

application device that a monitor set belongs to.

The Tag properties for all NvMonitorPoint objects in
permanent monitor sets are cached when the monitor set is
opened. As a result, any changes made the Tag properties of
these monitor points while the permanent monitor set is open
will not be accessible until the monitor set is closed and
re-opened. When initially created, monitor points and
monitor sets will have a null Tag value. However, if you add
a monitor point to an open monitor set and set its Tag value
in the same transaction, you will be able to access the Tag
value during that monitor and control session, as all data
would be written to the device as soon as the transaction is
committed. You should note that this behavior does not apply
to monitor points in temporary monitor sets. Temporary
monitor sets support "live" updates to the value of the Tag
property.
A well-defined monitoring application will include any
information necessary to quickly and efficiently identify the
monitor point in this property. This will eliminate the need to
gather such information from the database, or to perform
other time-consuming activities, during the monitoring
process.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects are not available on
Independent clients.

Syntax tagValue = Object.Tag
Element Description

Object The monitor point or monitor set
object to be acted on.

tagValue The tag associated with the object.

Data Type Variant.

Read/Write Read/write.

Added to API LNS Release 3.0.

Events
The NvMonitorPoint object contains the following events:

• UpdateErrorEvent
• UpdateEvent

OpenLNS Programmer's Reference 654

UpdateErrorEvent
Summary Indicates that a write failure or a poll failure has occurred on

the network variable monitor point that generated the event.
This event can only be used in development environments
that support events being generated on threads other than
the client thread (such as Visual C++). In these
environments, it is usually more efficient to generate events
from a non-client thread.
To cause events to be generated in this manner, create an
object which implements the ILcaNvMonitorPointListener
interface and calls an NvMonitorPoint object's Advise method
with the created object as the argument. The object will now
receive these events directly. The behavior of the object
depends on how the user implements the UpdateEvent
method.

Syntax UpdateErrorEvent(UpdateType as Integer)
Element Description

updateType This element always returns the value
1.

Data Type Integer.

Added to API LNS Release 3.0.

UpdateEvent
Summary Indicates that a network variable monitor point update has

arrived.
This event can only be used in development environments
that support events being generated on threads other than
the client thread (such as Visual C++). In these
environments, it is usually more efficient to generate events
from a non-client thread.
To cause events to be generated in this manner, create an
object which implements the ILcaNvMonitorPointListener
interface and calls an NvMonitorPoint object's Advise method
with the created object as the argument. The object will now
receive these events directly. The behavior of the object
depends on how the user implements the UpdateEvent
method.

For completion code messages, the InputDp, OutputDp, and
Src parameters are NULL.

Syntax UpdateErrorEvent(UpdateType as Integer)
Element Description

UpdateType This element always returns the value
0.
The possible values for this parameter,

OpenLNS Programmer's Reference 655

which are contained in the
ConstMonitorEventType constant, are
as follows:
0 lcaMonitorEventTypeNull
This value is not used.
1 lcaMonitorEventTypeQuit
This value is not used.
2 lcaMonitorEventTypeAdd
This value is not used.
3 lcaMonitorEventTypeRemove
This value is not used.
4 lcaMonitorEventTypeMsCreate
This value is not used.
5 lcaMonitorEventTypeMsDelete
This value is not used.
6 lcaMonitorEventTypeMsChange
This value is not used.
7 lcaMonitorEventTypeMsError
This value is not used.
8 lcaMonitorEventTypeNvCreate
A network variable monitor point has
been created.
9 lcaMonitorEventTypeNvDelete
A network variable monitor point has
been removed.
10 lcaMonitorEventTypeNvChange
This value is not used.
11 lcaMonitorEventTypeNvError
A network variable monitor point has
returned an error. See the
OnNvMonitorPointErrorEvent.
12 lcaMonitorEventTypeNvUpdate
A network variable monitor point has
received an update. See the
OnNvMonitorPointUpdateEvent.
13 lcaMonitorEventTypeNvComplete
A completion code has returned for the
monitor point.

OpenLNS Programmer's Reference 656

14 lcaMonitorEventTypeMsgCreate
A message monitor point has been
created.
15 lcaMonitorEventTypeMsgDelete
A message monitor point has been
removed.
16 lcaMonitorEventTypeMsgChange
This value is not used.
17 lcaMonitorEventTypeMsgError
A message monitor point has returned
an error. See the
OnMsgMonitorPointErrorEvent.
18 lcaMonitorEventTypeMsgUpdate
A message monitor point has received
an update. See the
OnMsgMonitorPointUpdateEvent.
19 lcaMonitorEventTypeMsgRequest
A message monitor point has received a
request message.
20 lcaMonitorEventTypeMsgResponse
A message monitor point has received a
reponse message.
21 lcaMonitorEventTypeMsgComplete
This value is not used.

InputDp A DataPoint object containing the
received value.

The InputDp parameter's AutoRead and
AutoWrite properties are set to False.

OutputDp A DataPoint object that allows a
response to be sent if the UpdateType is
Request.

The OutputDp parameter's AutoWrite
property is set to True; therefore, it will
be sent as a response when you write to
this DataPoint object.

Src A SourceAddress object indicating the
source device of the update.

Data Type Integer.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 657

NvMonitorPoints
The NvMonitorPoints object contains a collection of NvMonitorPoint objects. This collection
object contains all of the NvMonitorPoint objects that have been added to a monitor set.
Network variable monitor points can be used for explicit reading and writing, polled
monitoring, or implicit bound monitoring of network variables on devices in your network.
For more information on network variable monitor points, see the Monitor and Control
chapter of the OpenLNS Programmer’s Guide.

In general, the NvMonitorPoint collections contained in MonitorSet objects that were created
as permanent monitor sets, or as temporary monitor sets, behave the same way. However,
there are several variances in the behavior of individual network variable monitor points you
should note when using temporary monitor sets. The DefaultOptions properties of network
variable monitor points in temporary monitor sets are not accessible. For more information
on this, see the online help for the DefaultOptions property.
In addition, network variable monitor points in temporary monitor sets cannot be
automatically bound to the monitoring node. This means that the UseBoundUpdates
property stored in the NvMonitorOptions objects used by all temporary monitor points must
be set to False.

The following table summarizes the NvMonitorPoints object.

Description A collection of NvMonitorPoint objects.

Added to API LNS Release 3.0.

Accessed Through MonitorSet object.

Default Property Item

Methods • Add
• Remove

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The NvMonitorPoints object contains the following methods.

• Add
• Remove

Add
Summary Adds a new NvMonitorPoint object to the collection.

You should use transactions when creating large numbers of
network variable monitor points in permanent monitor sets.
This is because it will reduce the time required to create the
monitor points. For more information on using transactions
with OpenLNS, see the Programming an OpenLNS
Application chapter of the OpenLNS Programmer’s Guide.
Monitor points in permanent monitor sets are not

OpenLNS Programmer's Reference 658

automatically removed when the application shuts down. If a
monitor point is not going to be used again, remove it with
the Remove method before closing your application. This does
not apply to monitor points in temporary monitor sets, as
temporary monitor sets are deleted as soon as the application
that created them shuts down. As a result, you should use
temporary monitor points for monitor points you will only
need to use once.
Unlike temporary monitor sets, you can add network variable
monitor points to a permanent monitor set while the monitor
set is closed, and while your application is operating in
engineered mode. Monitor points added to a permanent set
are not available for monitoring until the transaction is
committed, and if they are added while the MgmtMode
property is set to lcaMgmtModeDeferConfigUpdates,
they are not available until it is set to
lcaMgmtModePropagateConfigUpdates.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects, and temporary monitor points,
are not available on Independent clients.

Syntax nvMpObject = nvMpColl.Add nvMpName, nv_target,
connDesc

Element Description

nvMpObject The newly defined NvMonitorPoint
object.

nvMpColl The NvMonitorPoints collection object.

nvMpName The Name of the new NvMonitorPoint
object.

nv_target A NetworkVariable object containing
the network variable to be monitored.

connDesc A ConnectDescTemplate object that
determines how network variables will
be sent out through this monitor point.
You can set this parameter to NULL to
use the default OpenLNS connection
description template.
Note: Network variable monitor points
in temporary monitor sets do not
support the use of connection
description templates, and so you must
set this element to NULL when adding
a network variable monitor point to a
temporary monitor set.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 659

Remove
Summary Removes an NvMonitorPoint object from the collection.

This method can only be called when connected to the
network database (after the Network object's Open method
has been called). This method only applies to network
variable monitor points in permanent monitor sets. When an
OpenLNS application is closed, all temporary monitor sets
and temporary network variable monitor points created by
that application are deleted automatically.

Availability Local, full, lightweight, and independent clients. Note that
temporary MonitorSet objects, and temporary monitor points,
are not available on Independent clients.

Syntax nvMpColl.Remove indexName

Element Description

nvMpColl The NvMonitorPoints collection object
containing the NvMonitorPoint object to
be removed.

indexName A Long value specifying the collection
index of the NvMonitorPoint object to
remove, or a String value specifying the
name of the NvMonitorPoint object to
remove.

Added to API LNS Release 3.0.

Properties
The NvMonitorPoints object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the

OpenLNS Programmer's Reference 660

NvMonitorPoints object in the
ConstClassIds constant:
81 lcaClassIdNvMonitorPoints

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a NvMonitorPoint object from a NvMonitorPoints

collection. You can retrieve a NvMonitorPoint object from its
NvMonitorPoints collection by passing its index (ordinal
position) within that collection as the argument for the Item
property. Index values start at 1.

You can also retrieve a NvMonitorPoint object in
NvMonitorPoints collections with the Name property by
passing the object’s name as a string expression.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

OpenLNS Programmer's Reference 661

retrievedObject The object retrieved from the collection.

collObject The collection object to be acted on.

index A Long type specifying the ordinal
index of the object to retrieve.

stringExpression A string type specifying the name of the
object to retrieve.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For

OpenLNS Programmer's Reference 662

Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

ObjectServer
An ObjectServer object represents a single instance of the OpenLNS ActiveX Control. The
default name is LcaObjectServer1, but this may be changed using the Name property.
There may be only one instance per process, but multiple processes may be run, each with a
different instance. As of Release 2.00, the OpenLNS ActiveX control allows apartment model
threading.

The following table summarizes the ObjectServer object.

Description An instance of the OpenLNS ActiveX Control.

Added to API Prior to LNS Release 3.0.

Methods • AboutBox
• AcceptIcomingSession
• BeginIncomingSessionEvents
• Close
• CompactDb
• Drag
• EndIncomingSessionEvents
• ExtensionByHandle
• Move
• Open
• RebuildLdrfCatalog
• SetCustomerInfo
• SetFocus
• SetLicenseInfo
• SetLicenseInfoEx
• ShowWhatsThis
• ZOrder

Properties • ActiveNetwork
• ActiveRemoteNI

OpenLNS Programmer's Reference 663

• CausesValidation
• ClassId
• ComponentApps
• Container
• CurrentFormatLocale
• DatabasePath
• DragIcon
• DragMode
• Extensions
• Flags
• FormatLocales
• Height
• HelpContextID
• Index
• IsOpen
• LdrfLanguages
• LdrfCatalogPath
• Left
• Name
• NetworkInterfaces
• Networks
• Object
• Parent
• RemoteFlag
• RemoteNetworks
• ResourceLanguageId
• TabIndex
• TabStop
• Tag
• ToolTipText
• Top
• Version
• Visible
• VNINetworks
• WhatsThisHelpID
• Width

Events • DragDrop
• DragOver
• GotFocus
• LostFocus
• OnAttachment
• OnChangeEvent
• OnCommissionEvent
• OnDbConversionEvent
• OnDbValidationEvent
• OnIncomingSessionEvent
• OnLonMarkObjectStatusChangeEvent
• OnMissedEvent
• OnMsgMonitorPointErrorEvent
• OnMsgMonitorPointEvent
• OnMsgMonitorPointUpdateEvent
• OnNetworkServiceDeviceResetNew

OpenLNS Programmer's Reference 664

• OnNetworkVariableStringUpdate
• OnNetworkVariableUpdate
• OnNodeConnChangeEvent
• OnNodeIntfChangeEvent
• OnNvMonitorPointErrorEvent
• OnNvMonitorPointEvent
• OnNvMonitorPointUpdateEvent
• OnNVUpdateError
• OnSessionChangeEvent
• OnSystemMgmtModeChangeEvent
• OnSystemNssIdle
• OnSystemServicePin
• Validate

Methods
The ObjectServer object contains the following methods.

• AboutBox
• AcceptIcomingSession
• BeginIncomingSessionEvents
• Close
• CompactDb
• Drag
• EndIncomingSessionEvents
• ExtensionByHandle
• Move
• Open
• RebuildLdrfCatalog
• SetCustomerInfo
• SetFocus
• SetLicenseInfo
• SetLicenseInfoEx
• ShowWhatsThis
• ZOrder

AboutBox
Summary Raises an About Box accessible in design mode that contains

copyright information.
Typically, in a development environment, a button or field
can be selected on the property page to show the about box
with the current information.

Availability Local, full, lightweight, and independent clients.

Syntax osObject.AboutBox

Element Description

osObject The ObjectServer object to be acted on.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 665

AcceptIncomingSession
Summary Accepts or rejects an incoming uplink session request after

you have registered your application for uplink session
handling.
You can use this method to accept or reject an uplink session
request after a request has been received, and the
OnIncomingSessionEvent event has been fired. If an uplink
session request is rejected, the session will be terminated. If
the uplink session request is neither accepted nor rejected
before the session establishment time-out period for the
xDriver Profile handling the session expires, the request will
be rejected automatically.
The session establishment time for a Profile can be
configured using the xDriver Profile Editor. For more
information on this, see Chapter 3 of the OpenLDV
Programmer’s Guide, xDriver Supplement.
Note that your application must register to receive uplink
session requests by invoking the
BeginIncomingSessionEvents method.
Once you have accepted a session, you can open the network
containing the RNI device involved in the session, and use
the OnSessionChangeEvent event to monitor the state of the
xDriver session. These methods and events only apply to
clients that are using the OpenLDV xDriver to connect to
remote network interface (RNI) devices. For an overview of
the OpenLDV xDriver, see the OpenLNS Network Interface
Drivers chapter in the OpenLNS Programmer’s Guide.

Availability Local, full, lightweight, and independent clients.

Syntax objServer.AcceptIncomingSession tag, acceptUplink,
postponeUpdates

Element Description

osObject The ObjectServer object to be acted on.

tag A Long value identifying the session
being accepted or rejected. This value
is passed to the
OnIncomingSessionEvent event as the
tag element when the uplink session
request is received.

acceptUplink A Boolean value indicating whether the
session is to be accepted.
TRUE. Accepts the incoming uplink

session request.
FALSE. Rejects the session.

postponeUpdates A Boolean value indicating whether
monitor point update events are to be
suspended while the uplink session is

OpenLNS Programmer's Reference 666

being opened.
TRUE. Suspends all monitor point

update events while the
uplink session is being
opened.
In this case, withheld monitor
point updates must be
released by calling the
ReleasePendingUpdates
method.

FALSE. Deletes all monitor point
update events that occur
while the session is being
initialized.

Added to API LNS Release 3.06.

BeginIncomingSessionEvents
Summary Registers your application for incoming session event

handling. Once you have invoked this method, your
application will be notified of incoming uplink session
requests to the OpenLNS Server via the
OnIncomingSessionEvent event.
You can invoke this method multiple times per application if
you want to use multiple Profiles to listen for incoming
session requests in a single application. However, multiple
applications cannot register for uplink session event
handling with the same Profile simultaneously.
After you have registered your application for incoming
session handling with this method, the
OnIncomingSessionEvent event will be fired each time a
request for connection is received. You must then accept or
reject each incoming uplink session with the
AcceptIncomingSessionEvent method.
These methods and events only apply to clients that are
using the OpenLDV xDriver to connect to remote network
interface (RNI) devices. For an overview of the OpenLDV
xDriver, see Chapter 11, OpenLNS network interface Drivers,
of the OpenLNS Programmer’s Guide.

Availability Local, full, lightweight, and independent clients.

OpenLNS Programmer's Reference 667

Syntax objServer.AcceptIncomingSession tag, acceptUplink,
postponeUpdates

Element Description

objServer The Object Server object being
acted upon.

xDriverProfileName An xDriver Profile name as a
String.
Your application will be informed of
incoming session requests that
come in on the TCP listener port
assigned to the selected Profile.
You can use the OpenLDV xDriver
Profile Editor to create an xDriver
Profile, enable it for incoming
session handling, and assign it a
listener port.
For more information on this, see
Chapter 3, Extending the Default
xDriver Profile, of the OpenLDV
Programmer’s Guide, xDriver
Supplement.

acceptUplink A Boolean value indicating whether
the session is to be accepted.
TRUE. Accepts the incoming

uplink session request.
FALSE. Rejects the session.

Added to API LNS Release 3.06.

Close
Summary Closes the OpenLNS global database.

Availability Local, full, lightweight, and independent clients.

Syntax objServObject.Close

Element Description

objServObject The ObjectServer object to be closed.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 668

CompactDb
Summary Defragments and re-indexes OpenLNS global database. You

may not call this method on an OpenLNS database that is
open and in use by any client application.
You should backup all OpenLNS databases before calling this
method. Also, your computer should have at least twice as
much free disc space as the size of the database when you call
this method.

Availability Local, full, lightweight, and independent clients.

Syntax objServObject.CompactDb

Element Description

objServObject The ObjectServer object to be closed.

Added to API Prior to LNS Release 3.0.

Drag
Summary A standard ActiveX control method used for visual controls.

This method is not applicable for the Object Server.

EndIncomingSessionEvents
Summary Disables uplink session event handling for your application.

You should call this method before closing an application
that has registered for uplink session handling with the
BeginIncomingSessionEvents method, or when you no longer
want the application to be responsible for handling incoming
sessions.

When you call the BeginIncomingSessionEvents method to
register for uplink session handling, you will select an
xDriver Profile to receive the uplink session requests with.
You should call the EndIncomingSessionEvents method for
each xDriver Profile used to receive uplink session requests
before closing an application.
These methods only apply to clients that are using the
OpenLDV xDriver to connect to remote network interface
(RNI) devices. For an overview of the OpenLDV xDriver, see
the OpenLNS Network Interface Drivers chapter of the
OpenLNS Programmer’s Guide.

Availability Local, full, lightweight, and independent clients.

Syntax objServer.EndIncomingSessionEvents xDriverProfileName

Element Description

objServObject String containing the name of the
xDriver Profile used in the call to
BeginIncomingSessionEvents method.

Added to API LNS Release 3.06.

OpenLNS Programmer's Reference 669

ExtensionByHandle
Summary Retrieves an Extension object by its Handle property. This

method can be used to retrieve an extension record in the
global database—regardless of the collection containing the
Extension object. This may be particularly useful when
processing events reported by OnChangeEvent with
objectType of lcaChangeEventExtensions, and
networkHandle equal to 0.

Availability Local, full, and lightweight clients.

Syntax extension = objectServer.ExtensionByHandle
Element Description

Extension The Extension object.

system The ObjectServer object.

handle The handle of the Extension object to be
retrieved.

Added to API OpenLNS.

Move
Summary This is a standard ActiveX control property used for visual

controls. This property is not applicable for the Object Server

Open
Summary Opens the OpenLNS global object server database. To

initialize the ObjectServer, an application must do the
following (see the OpenLNS Programmer’s Guide for more
detailed information):

1. Open the global database using the Open method of the
ObjectServer.

2. Select or create a Network object.

3. Open the network database using the Open method of the
Network object.

4. Select or create a System object.

5. Initialize the System object by using the Open method of
the System object.

Invoking the Open method of the ObjectServer opens the
global database. The database path name is read from the
Windows System Registry which may be set using the
DatabasePath property of the ObjectServer.
Before invoking this method, the application needs to specify
whether it is a remote client by setting the RemoteFlag
property. In addition, you can use the Flags property of the
ObjectServer to specify a series of global flags that determine
how LNS will behave with the client application’s processes,
including the type of network variable update used, post-

OpenLNS Programmer's Reference 670

connection update state, remote application transfer state
and the Data Server remote-IP mode used by the LNS
Server. However, if you plan to modify the current value of
the Flags property, you must do so before opening the
ObjectServer with this method.

If you will be opening any networks with an OpenLNS
application that is running as a Windows service, then the
first application to open the OpenLNS Object Server must
also be running as a Windows service. In addition, if a
network is to be opened by an OpenLNS application that is
running as Windows service, then that network and system
must be opened by an OpenLNS application that is running
as Windows service before it is opened with an OpenLNS
application running as a user process.
If you open the OpenLNS Object Server or a network with a
user process before opening it with a service, you must first
close the network and OpenLNS Object Server before
opening them with an OpenLNS application that is running
as Windows service. To avoid these problems, you should
automatically start services that open an OpenLNS network,
and the services should open the network and systems is
accessing upon startup. This ensures that the network is
opened by the service before a user process.

Availability Local, full, and lightweight clients.

Syntax objServObject.Open
Element Description

objServObject The ObjectServer object to be opened.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 671

RebuildLdrfCatalog
Summary The LonMark Device Resource Files catalog is used to keep

track of all sets of LonMark Device Resource Files that are to
be referenced by OpenLNS.

Prior to OpenLNS, the catalog would be found at <LonWorks
Path>\Types folder. With OpenLNS and the introduction of
the LonWorks Data Path, the catalog is now found at
<LonWorks Data Path>\Types.
When the catalog is refreshed using this method, any new
LDRF file sets that have been added in sub-directories of
either LonWorks\Types or <LonWorks Data Path>\Types
will be automatically added to the catalog. New file sets can
therefore be copied in to the appropriate place in the Types
sub-directories, and found and cataloged when this method is
called. The recommended sub-directory structure for file sets
is Types\User\<Manufacturer Name>. Some large
companies have added hierarchies under the manufacturer
name as well.

Availability Local clients only.

Syntax objServer.RebuildLdrfCatalog DeleteOldCatalog

Element Description

objServer The ObjectServer object to be acted on.

DeleteOldCatalo
g

A Boolean value indicating whether
the current LDRF catalog should be
deleted before rebuilding the contents.
If this method fails to rebuild the
catalog, you can recover it by setting
this parameter TRUE, as the catalog
may be permanently corrupted.

• TRUE. Delete the current LDRF
catalog before rebuilding.

• FALSE. Update the current
catalog.

Added to API OpenLNS.

SetCustomerInfo
Summary Sets the customer ID and key. By default, the OpenLNS

Server allows the installation of up to four devices to a
system. This does not include routers, or the NSI. To add
additional devices, invoke this method with a valid
customerId and customerKey. The customerId and
customerKey values are printed on the back cover of the
OpenLNS Standard Development Kit CD-ROM jewel case.
Note that the customerKey parameter is case sensitive and
may not contain spaces.
For Local and Full client applications, you should call this

OpenLNS Programmer's Reference 672

method before opening the Object Server if you plan on
running your application in the standard licensing mode
(Standard Mode). For Lightweight client applications, you
must always call this method prior to opening the Object
Server, as Lightweight client applications can only operate in
Standard Mode. Note that this is the last step a Local,
Lightweight or Full client application should take before
opening the Object Server.
For more information on the steps you should take when
initializing the Object Server, see the OpenLNS
Programmer’s Guide.

Availability Local, full, lightweight, and independent clients.

Syntax objServerObject.SetCustomerInfo customerId, customerKey

Element Description

objServerObjec
t

The ObjectServer object to be acted on.

customerId A String containing the customer id.

customerKey A String containing the customer key.

Added to API Prior to LNS Release 3.0.

SetFocus
Summary This is a standard ActiveX control method used for visual

controls. This method is not applicable for the Object Server.

SetLicenseInfo
Summary This method is reserved for future use. Use the

SetCustomerInfo method to set the licensing mode for your
application.

SetLicenseInfoEx
Summary This method is reserved for future use. Use the

SetCustomerInfo method to set the licensing mode for your
application.

ShowWhatsThis
Summary This is a standard ActiveX control method which displays a

selected topic in a help file. This method is not supported by
the Object Server.

ZOrder
Summary This is a standard ActiveX control method used for visual

controls. This method is not applicable for the Object Server.

OpenLNS Programmer's Reference 673

Properties
The ObjectServer object contains the following properties.

• ActiveNetwork
• ActiveRemoteNI
• CausesValidation
• ClassId
• ComponentApps
• Container
• CurrentFormatLocale
• DatabasePath
• DragIcon
• DragMode
• Extensions
• Flags
• FormatLocales
• Height
• HelpContextID
• Index
• IsOpen
• LdrfLanguages
• LdrfCatalogPath
• Left
• Name
• NetworkInterfaces
• Networks
• Object
• Parent
• RemoteFlag
• RemoteNetworks
• ResourceLanguageId
• TabIndex
• TabStop
• Tag
• ToolTipText
• Top
• Version
• Visible
• VNINetworks
• WhatsThisHelpID
• Width

ActiveNetwork
Summary Contains the Network object currently being managed by the

Object Server.
When an Object Server is instantiated or initialized, it is
assigned a network to manage; this is that Object Server’s
ActiveNetwork.

Availability Local, full, lightweight, and independent clients.

Syntax networkObject = objServerObject.ActiveNetwork

OpenLNS Programmer's Reference 674

Element Description

networkObject The Network object designated as
active.

objServerObject The ObjectServer object to be acted on.

Data Type Network object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ActiveRemoteNI
Summary Specifies the network interface your remote Full client

application will use to communicate with the OpenLNS
Server.

You must set this property before accessing the Networks
collection object if you are using a remote Full client
application. This property will only return a valid value after
it has been explicitly set by an application.
Remote Lightweight client applications do not need to set
this property. When running as a Lightweight client, the
Object Server's NetworkInterfaces collection object will
contain only one NetworkInterface object, with the name
"Internet". This "virtual" network interface is provided for
backwards compatibility. The application may set the
ActiveRemoteNI property to this NetworkInterface object.
For more information on initializing remote OpenLNS
applications, see the OpenLNS Programmer’s Guide.

Availability Full clients.

Syntax objServerObject.ActiveRemoteNI = niObject
Element Description

niObject The NetworkInterface object to be
designated as active.

objServerObjec
t

The ObjectServer object to be acted on.

Data Type Network object.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 675

CausesValidation
Summary This is a standard ActiveX control event used for visual

controls. This event is not applicable for the Object Server.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
ObjectServer object in the
ConstClassIds constant:
0 lcaClassIdObjectServer

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ComponentApps
Summary Contains the ComponentApps collection object associated

with the specified ObjectServer object.

The ComponentApps collection is a list of OpenLNS plug-in
commands that are associated with a particular object type.

Note that all LonMarkObject objects contain a
ComponentApps property. However, the behavior of this
property is unspecified when accessed through a
LonMarkObject object.

Availability Local, full, and lightweight clients.

Syntax appsCollection = object.ComponentApps
Element Description

appsCollection The ComponentApps collection to be
returned.

object The ObjectServer object to be acted on.

Data Type ComponentApps collection object.

OpenLNS Programmer's Reference 676

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Container
Summary This is a standard ActiveX control property used for visual

controls. This property is not applicable for the Object
Server.

CurrentFormatLocale
Summary Determines which FormatLocale object will be used by your

application as the active FormatLocale.

Each FormatLocale object contains a group of properties that
reflect a particular geographical area’s conventions for data
display. These properties determine how data stored in the
FormattedValue properties of DataPoint objects will be
displayed when that FormatLocale is used by an application.
The CurrentFormatLocale property determines which
FormatLocale object will be used by your application as the
active FormatLocale.

The FormatLocales collection object contains all the
FormatLocale objects that have been added to the Object
Server. This includes four pre-defined FormatLocale objects.
The default setting for this property is the
"UserDefaultRegionalSettings" FormatLocale object, which
uses collection index number 1. For a description of this and
the other pre-defined Format Locales, see the FormatLocales
collection object.
Note: You can not write to this property, or write to the
FormatLocale object assigned to this property after you have
opened a network and formatted data with your application.
Operations that will cause your application to format data
include acquiring a DataPoint object, and reading or writing
the value of a ConfigProperty or NetworkVariable object. If
you write to the CurrentFormatLocale property after
performing any of these operations, the LCA, #122
lcaErrReadOnlyInContext exception will be thrown. In
addition, you can only access this property after you have
opened the Object Server.

Availability Local, full, lightweight, and independent clients.

Syntax objectServer.CurrentFormatLocale = formatLocale
Element Description

objectServer The ObjectServer object being acted
upon.

formatLocale The FormatLocale object to be used by
the application.

OpenLNS Programmer's Reference 677

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.20.

DatabasePath
Summary Contains the path of the global OpenLNS database.

You can only set the global database path before invoking the
Open method for the ObjectServer object. The default location
of the global database is
C:\LONWORKS\ObjectServer\GlobalDb. OpenLNS does
not apply a length restriction to the global database path.

Availability Local, full, lightweight, and independent clients.

Syntax dbPath = object.DatabasePath
Element Description

dbPath The full path of the global OpenLNS
database.

object The ObjectServer object.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

DragIcon
Summary This is a standard ActiveX control property used for visual

controls. This property is not applicable for the Object
Server.

DragMode
Summary This is a standard ActiveX control property used for visual

controls. This property is not applicable for the Object
Server.

Extensions
Summary Contains the Extensions collection object associated with the

specified LonMarkObject.

This property returns an Extensions collection. The objects
in this collection represent user data reserved for
manufacturers. Each object is identified with a unique
identifier set by the manufacturer.

Availability Local, full, lightweight, and independent clients.

Syntax extensionsColl = object.Extensions
Element Description

OpenLNS Programmer's Reference 678

extensionsColl The Extensions collection object.

object The object whose Extensions
collection is being returned.

Data Type Extensions collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Flags
Summary Specifies a series of global flags that determine how

OpenLNS will behave with the client application’s processes,
including the type of network variable update used,
post-connection update state, remote application transfer
state and the remote-IP mode used by the OpenLNS Server.

Availability Local, full, lightweight, and independent clients.

Syntax flagsValue = osObject.Flags
Element Description

osObject The ObjectServer object to be acted on.

flagsValue The Flags value as an integer. The
valid flag options for this element,
which are specified in the
ConstGlobalFlags constant, are as
follows:
1 lcaFlagsStringUpdate
Causes the OpenLNS Server to use the
OnNetworkVariableStringUpdate
event, which passes a String type
where OnNetworkVariableUpdate
passes a Variant. This flag is not
required for Visual Basic or Visual
C++.
Some development environments do
not handle Object types in event
parameters. If you are programming
in such an environment, use this flag.
2
lcaFlagsConnectionUpdatesOnLine
Specifies whether devices will
normally be left online while their
connections are updated. This
behavior can be explicitly set for an
individual device using the
ConnectionUpdateType property.
The default OpenLNS Server behavior
is to take devices off line while

OpenLNS Programmer's Reference 679

connections are updated.
You should not set this value to True
because your application may then
process or send network variable
updates using inconsitent network
variable configuration. This could lead
to misinterpretation of network
variable updates on this or another
device.
16 lcaFlagsUseTCP
Indicates that a remote client (see
RemoteFlag) will access the OpenLNS
Server via TCP/IP. This flag should
not be ORed with the
lcaFlagsUseNSI (32) flag.
32 lcaFlagsUseNSI
Indicates that a remote client (see
RemoteFlag) will access the OpenLNS
Server via an NSI over a LONWORKS
network. This flag should not be ORed
with the lcaFlagsUseTCP (16) flag.
1024 lcaFlagsDirectCallback
Enables callback routines (event
handlers) to be executed from an
internal LNS thread, as opposed to the
thread that instantiated the Object
Server. This essentially turns your
application into a multi-threaded
application. Executing event handlers
from non-client threads in this fashion
is often more efficient.
By default, this flag is not set.
However, the ability to execute
handler routines is not supported by
all development tools. It is supported
by Visual C++ and Microsoft Visual
Studio .NET, but not by Visual Basic.
In addition, there are several
important programming
considerations you need to be aware of
when using multiple threads within an
OpenLNS application. For more
information on multi-threading with
OpenLNS applications, see the
OpenLNS Programmer's Guide.
2048 lcaFlagsManualNsdUpgrade
Indicates whether client’s Network

OpenLNS Programmer's Reference 680

Service Device will be automatically
upgraded whenever an upgrade is
required. If this flag is not set,
OpenLNS will perform the upgrades
automatically. The flag is not set by
default.
If you set this flag, you will need to
upgrade your client’s
NetworkServiceDevices manually when
any of the following situations occur:

• A new version of OpenLNS is
installed which changes the
Network Service Device’s program
interface. For example, OpenLNS
3.0 added monitor sets to the
program interface, and therefore
required a Network Service Device
upgrade.

• Switching from a layer 2 MIP, or
engineered mode, to a Layer 5
MIP.

• Switching between certain layer 5
MIPs with different capabilities.

For more information on this, see the
Upgrading a Network Service Device
section in the OpenLNS Programmer’s
Guide.
Multiple options may be specified by
logically OR'ing the individual flag
values together. You should only write
to this property before you have
opened the ObjectServer.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

FormatLocales
Summary Contains a series of properties that reflect a particular

geographical area’s conventions for data display. These
properties determine how data stored in the FormattedValue
properties of DataPoint objects will be displayed when that
FormatLocale is used by an application.

The FormatLocales property contains the collection of
FormatLocale objects that have been added to the Object
Server.

You can use this property to access the FormatLocales
collection. The FormatLocales collection contains four

OpenLNS Programmer's Reference 681

pre-defined FormatLocale objects, and you can create custom
FormatLocale objects with the Add method. For more
information, see the FormatLocales collection object.
Note: You can only access this property after you have
opened the Object Server.

Availability Local, full, lightweight, and independent clients.

Syntax flCollection = objectServer.FormatLocales
Element Description

flCollection The FormatLocales collection object
returned.

objectServer The ObjectServer object being acted
upon.

Data Type FormatLocales collection object.

Read/Write Read only.

Added to API LNS Release 3.20.

Height
Summary A standard ActiveX control property used for visual controls.

This property is not applicable for the Object Server.

HelpContextId
Summary This is a standard ActiveX control property used for context

help. This property is not applicable for the Object Server.

Index
Summary Contains a number identifying an Object Server control in a

control array.

Availability Local, full, lightweight, and independent clients.

Syntax indexValue = osObject.Index
Element Description

osObject Te ObjectServer object to be acted on.

indexValue The identifier of the item in the array.

Data Type Integer.

Read/Write Read only

IsOpen
Summary Indicates whether the specified ObjectServer object is

currently open.

Availability Local, full, lightweight, and independent clients.

Syntax isOpenFlag = Object.IsOpe

OpenLNS Programmer's Reference 682

Element Description

isOpenFlag Boolean value.

Object A Boolean value indicating whether the
ObjectServer object is currently open.

TRUE. The ObjectServer object is
currently open.

FALSE. The ObjectServer object is
currently closed.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

LdrfLanguages
Summary Contains the LdrfLanguages collection representing the

languages known by OpenLNS.

You can only access this property after you have opened the
Object Server.

Availability Local, full, lightweight, and independent clients.

Syntax ldrfLang = osObject.LdrfLanguages
Element Description

ldrfLang The LdrfLanguages collection.

osObject The ObjectServer object to be acted on.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 683

LdrfCatalogPath
Summary Obtains the full path for the location of the LonMark device

resource file catalog (ldrf.cat). You should not modify this
path because the resource file catalog should always be
stored in the LonWorks/Types folder. The LdrfCatalogPath
property points this path by default; therefore, you should
not write to this property under any circumstances.

See the LonMark Resource File Catalog Help and the Device
Resource File Developers Guide

Setting this property in the ObjectServer object overrides the
value in the System object. This must be done by a Local
client application before you call the ObjectServer object's
Open method. However, you should not write to this
property. If you do write to the LdrfCatalogPath property,
leave the standard resource files in the LonWorks/Types
folder, and then create a copy of the standard resource files
in the new folder referenced by the LdrfCatalogPath property

Availability Local, full, lightweight, and independent clients.

Syntax pathName = object.LdrfCatalogPath
Element Description

object The ObjectServer object to be acted on.

pathName The location of the LDRF catalog, which
contains the locations of the standard
and user-defined resource files, and the
associated files that are required for
data formatting.

The pathName cannot include the
semi-colon character (;).

Data Type String.

Read/Write Read and write for Local client applications. Read only for
Full and Lightweight client applications.

Added to API LNS Release 3.0.

Left
Summary A standard ActiveX control property used for visual controls.

This property is not applicable for the Object Server.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

OpenLNS Programmer's Reference 684

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

NetworkInterfaces
Summary Returns the NetworkInterfaces collection object representing

all of the network interfaces in the system registered on the
Object Server's computer.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax niCollection = objectServerObject.NetworkInterfaces
Element Description

niCollection The returned NetworkInterfaces
collection object.

objectServerObject The ObjectServer object to be acted
upon.

Data Type NetworkInterfaces collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Networks
Summary A collection of all the local networks.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax networksCollection = objectServerObject.Networks
Element Description

networksCollection The returned Networks collection.

objectServerObject The ObjectServer object to be acted
on.

OpenLNS Programmer's Reference 685

Data Type Networks collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Object
Summary Allows invocation of a control's method or property that has

the same name as a method or property automatically
extended by the control container.
See your development tool's help for more information on this
property.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax propValue = osObject.Object.property
osObject.Object.method
Element Description

propValue The returned property value.

osObject The ObjectServer object to be acted on.

property The property to be accessed.

method The method to be invoked

Data Type Object.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

OpenLNS Programmer's Reference 686

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

RemoteFlag
Summary Specifies whether the network will be opened locally or

remotely.
This property must be set prior to opening the OpenLNS
Server. See the Open method for more information.

The RemoteFlag property must be set to True for applications
that are to be distributed as LNS Remote distributables.
Otherwise, the LCA, #72 lcaErrWrongServerDll exception
will be thrown when you open the OpenLNS Object Server.
You will establish whether an application is to be distributed
as an OpenLNS Remote or an OpenLNS Complete
redistributable when you create the redistributable with the
OpenLNS SDK.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

remoteFlag A Boolean value indicating whether the
network will be opened locally or
remotely.
TRUE. The network will be opened

remotely.
When this property is True,
the Object Server's Flags
property may be used to
specify the transport protocol
to be used by the OpenLNS
application. The relevant
flags are lcaFlagsUseTCP or
lcaFlagsUseNSI.

FALSE. The network will be opened
locally.

osObject The ObjectServer control.

Data Type Boolean.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 687

RemoteNetworks
Summary Contains a collection of all remote full client networks that

have been opened by an application running on this client's
computer.
The OpenLNS Object Server views the networks in this
collection as local networks. To view this collection, you must
set the RemoteFlag property to False.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

remNetworksColl The Networks collection to be
returned.

osObject The ObjectServer object to be acted
on.

Data Type Networks collection object.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 688

ResourceLanguageId
Summary Controls which language should be used when displaying

descriptive type information stored in device resource files.
This property can contain one or more language codes that
identify the language that should be used when displaying
type information stored in resource files. When you pass
multiple language codes to this property, they must be
comma-separated, as in the following example: "frc, enz, rus."
The language files will be searched for in the order that the
codes are supplied. For example, if this property is set to
"frc,enz,rus", OpenLNS will first look for the .frc (French
Canadian) language files, and then the .enz and .rus
language files when it searches the resource files. If none of
the values in the list are found, the default of "enu" (U.S.
English) will be used.
All language codes are three characters long. See the
LonMark Device Resource File Developer's Guide for
information on resource language IDs and a partial list of the
language codes you can pass to this property.

Setting this property in the ObjectServer object overrides the
value in the System object. It also allows this property to be
set when the System object is not available (i.e. when
performing standalone monitor and control).
The default value for this property is "enu" (U.S. English).

You can only access this property after you have opened the
Object Server.

Note: The FormatLocale object contains a LanguageId
property. This property determines what language file
OpenLNS will use to display data stored in the
FormattedValue properties of DataPoint objects when the
FormatLocale is being used by an application. See the
FormatLocale object for more information on this.

Availability Local, full, lightweight, and independent clients.

Syntax languageId = systemObject.ResourceLanguageId
Element Description

languageId A comma-separated list of one or more
language codes identifying the
languages that should be used when
displaying type information.

systemObject The System object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 689

TabIndex
Summary A standard ActiveX control property used for visual controls.

This property is not applicable for the Object Server.

TabStop
Summary A standard ActiveX control property used for visual controls.

This property is not applicable for the Object Server.

Tag
Summary Contains any extra data needed for your program. The data

stored in this property is not used by the Object Server, and
can be used for any purpose by the OpenLNS application.

Availability Local, full, lightweight, and independent clients.

Syntax tagValue = Object.Tag
Element Description

Object The ObjectServer object to be acted
on.

tagValue The tag associated with the
ObjectServer object.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ToolTipText
Summary A standard ActiveX control property used for visual controls.

This property is not applicable for the Object Server.

Top
Summary A standard ActiveX control property used for visual controls.

This property is not applicable for the Object Server.

Version
Summary Returns the version of the OpenLNS Object Server ActiveX

control that is being used.

Availability Local, full, lightweight, and independent clients.

Syntax version = osObject.Version
Element Description

version The returned version number as a
string with the format M.NN,
where M is the major version
number and NN is the minor
version number (for example,

OpenLNS Programmer's Reference 690

"4.00"). The version number is the
same value as that returned in the
About Box

osObject The ObjectServer object to be acted
on.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Visible
Summary A standard ActiveX control property used for visual controls.

This property is not applicable for the Object Server.

VNINetworks
Summary Contains the Networks collection containing all the Network

objects which can be opened in server-independent mode.
This property contains all networks which can be opened in
server-independent mode. Only local clients and remote full
clients can be opened in this manner.

You should only use the OpenIndependent method to open a
Network object fetched from this collection. If you want to
open the network in server-dependent mode (with the
Network object's Open method), fetch the Network object from
the Networks collection (if using a local client or a remote full
client for the first time from this computer) or the
RemoteNetworks collection (if reopening the network as a
remote full client).

Availability Local, full, and independent clients.

Syntax vniColl = osObject.VNINetworks
Element Description

vniColl The Networks collection object to be
returned.

detailInfoObject The ObjectServer object to be acted
on.

Data Type Networks collection object.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 691

WhatsThisHelpID
Summary This property returns or sets an associated context number

for an object. You can use this property to provide
context-sensitive help for your application for 32-bit Windows
operating systems. This property is not supported by the
Object Server.

Width
Summary A standard ActiveX control property used for visual controls.

This property is not applicable for the Object Server.

Events
The ObjectServer object contains the following events:

• DragDrop
• DragOver
• GotFocus
• LostFocus
• OnAttachment
• OnChangeEvent
• OnCommission
• OnDbConversionEvent
• OnDbValidationEvent
• OnIncomingSessionEvent
• OnLonMarkObjectStatusChangeEvent
• OnMissedEvent
• OnMsgMonitorPointErrorEvent
• OnMsgMonitorPointEvent
• OnMsgMonitorPointUpdateEvent
• OnNetworkServiceDeviceResetNew
• OnNetworkVariableStringUpdate
• OnNetworkVariableUpdate
• OnNodeConnChangeEvent
• OnNodeIntfChangeEvent
• OnNvMonitorPointErrorEvent
• OnNvMonitorPointEvent
• OnNvMonitorPointUpdateEvent
• OnNVUpdateError
• OnSessionChangeEvent
• OnSystemMgmtModeChangeEvent
• OnSystemNssIdle
• OnSystemServicePin
• Validate

OpenLNS Programmer's Reference 692

DragDrop
Summary A standard ActiveX control event used for visual controls.

This event is not applicable for the Object Server.

DragOver
Summary A standard ActiveX control event used for visual controls.

This event is not applicable for the Object Server.

GotFocus
Summary A standard ActiveX control event used for visual controls.

This event is not applicable for the Object Server.

LostFocus
Summary A standard ActiveX control event used for visual controls.

This event is not applicable for the Object Server.

OnAttachmentEvent
Summary Indicates that the attachment status has changed for an

AppDevice or Router.
This event is generated whenever a device or router is
attached to the network. Once an AppDevice or Router has
been attached, it is monitored via periodic pinging to ensure
that it remains attached. If the ping fails, indicating that the
device or router is no longer attached, this event will be
generated to indicate this.
Note: OpenLNS will check to make sure that the ping failure
is due to a failure on the device or router being pinged, and
not because of a failure on another router on the
communications path between the OpenLNS Object Server
and the router or device in question. The rate at which a
device or router is pinged is determined by its PingClass
property.
This event is fired when changes are made to the physical
network. The OnChangeEvent is fired when those changes
are made to the OpenLNS database. You can subscribe or
unsubscribe your application to these events using the
System object’s BeginAttachmentEvent and
EndAttachmentEvent methods.

For more information on the OnAttachment event, see the
Testing Devices and Detecting Device Failures section in the
OpenLNS Programmer’s Guide.

OpenLNS Programmer's Reference 693

Syntax OnAttachment(networkHandle As Long, systemHandle As
Long, objectType as Integer, isAttached As Boolean,
stateFailure as Boolean, objectHandle As Long)
Element Description

networkHandle Handle of the network in which the
attached or unattached device or
router resides.

systemHandle The Handle of the system in which
the attached or unattached device or
router resides.

objectType The type of object that was attached
or unattached.
The valid values for this element,
which are contained in the
ConstDeviceEventTypes constant, are
as follows:
0 lcaAppDeviceEvent
1 lcaRouterEvent

isAttached A Boolean value that indicates
whether the device or router is being
attached or unattached.
TRUE. The device or router is

currently attached to the
network, and in the proper
state.

FALSE. The device or router is not
attached to the network, or
there is a state failure on
the device or router.

You can use the stateFailure element
to determine if there is a state failure
on the device.

stateFailure Indicates whether there is a state
failure on the object. A state failure
may occur when a device or router
has been installed, and the state of
the device or router (reported by the
State property) is anything other
than lcaStateCnfgOnline,
lcaStateSoftOffline, or
lcaStateOfflineBypass.
A state failure may also occur if the
subnet/node address assigned to a
device or router in the OpenLNS
database is incorrect. You can check
the subnet/node address of a device
or router by reading the SubnetId

OpenLNS Programmer's Reference 694

and NodeId properties.
If the state is lcaStateUncnfg or
lcaStateCnfgOffline, you can
resolve this by recomissioning the
device or router with the Commission
method.
If the state of an application device is
lcaStateNoApplUncnfg, and that
device is a Neuron hosted device, you
must reload the application with the
Load method. After either operation,
the state of the device or router will
be lcaStateSoftOffline.

You may want to change the State
property of the device or router to
lcaStateSoftOnline after the load
or commission succeeds.

ObjectHandle The Handle of the attached or
unattached object.

Added to API LNS Release 3.0.

OnChangeEvent
Summary Indicates that an object has been modified in the OpenLNS

database. This event may be used by applications to maintain
lists of objects, such as those that might appear on a user
interface.

You can use the System object’s BeginChangeEvent and
EndChangeEvent methods to subscribe and unsubscribe your
application to this event. When you register for the event with the
BeginChangeEvent method, you will select an object type(s) to
receive events for. The OnChangeEvent event will then be fired
whenever changes are made to objects of that type(s) in the
OpenLNS database.

You can use the OnAttachmentEvent to be notified of attachments
to or detachments from the physical network.

Syntax OnChangeEvent(networkHandle As Long, systemHandle As
Long, objectType as Integer, changeType As Integer, objectHandle
As Long)
Element Description

networkHandl
e

Handle of the network in which the changed
object resides.

systemHandle Handle of the system in which the changed
object resides.

objectType The type of object that changed. The
enumerated values for this element, which are
contained in the ConstChangeEventTypes

OpenLNS Programmer's Reference 695

constant, are as follows:
0 lcaChangeEventAppDevices
1 lcaChangeEventChannels
2 lcaChangeEventRouters
3 lcaChangeEventSubnets
4 lcaChangeEventNsis
5 lcaChangeEventSubsystems
6 lcaChangeEventDeviceTemplates
7 lcaChangeEventDomains
8 lcaChangeEventConnectDescTemplates
9 lcaChangeEventExtensions

changeType Indicates how the object changed. The
enumerated values for this element, which are
contained in the ConstObjectChangeTypes
constant, are as follows:
0 lcaObjectCreate
An object was created.
1 lcaObjectDelete
An object was deleted.
4 lcaObjectRegistered
An object was registered.
5 lcaObjectDeregistered
An object was deregistered.
6 lcaObjectReplaced
An object was replaced.
7 lcaObjectUpgraded
An object was upgraded.
8 lcaObjectRenamed
An object was renamed.
10 lcaObjectDescriptionModified
Reserved for future use.
11
lcaObjectSubsystemMemebershipModife
d

An AppDevice or Router was added or removed
from a subsystem.

objectHandle The handle of the changed object. This value
will be 0 when the objectType is
lcaChangeEventDeviceTemplates.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 696

OnCommission
Summary Indicates that a device’s commission status has changed.

You can register your application for the OnCommission
event by invoking the BeginCommissionEvents method.
You can subscribe or unsubscribe your application to this
event by calling the System object’s BeginCommissionEvent
and EndCommissionEvent methods.
When you create a network, and then change the network
management mode of the OpenLNS Object Server from
lcaMgmtModeDeferConfigUpdates (1) to
lcaMgmtModePropagateConfigUpdates (0), the NSI is
commissioned automatically. However, if you registered for
OnCommissionEvent while the network management mode is
set to lcaMgmtModeDeferConfigUpdates (1), your
application will not receive an event indicating this. In this
case, you can check the commission status of the NSI after
the network management mode has been set to
lcaMgmtModePropagateConfigUpdates (0 by reading
the CommissionStatus of the System object’s
NetworkServiceDevice. You can change the Object Server’s
network management mode by writing to the MgmtMode
property.

Syntax OnCommission(networkHandle As Long, systemHandle As
Long, objectType as Integer, commissionStatus As Integer,
channelHandle as Long, objectHandle As Long)
Element Description

networkHandle Handle of the network in which the
commissioned object resides.

systemHandle Handle of the system in which the
commissioned object resides.

objectType The type of object that was
commissioned. The enumerated
values for this element, which are
contained in the
ConstDeviceEventTypes constant, are
as follows:
0 lcaAppDeviceEvent
1 lcaRouterEvent

commissionStatus The status of the commissioning
updates.
The commission status changes to
lcaCommissionUpdatesPending
(1) when database changes are made
that affect a device’s configuration.
, or they change to
lcaCommissionUpdatesFailed (2)
when there is a failure to propagate

OpenLNS Programmer's Reference 697

changes.
The enumerated values for this
element, which are contained in the
ConstCommissionStatus constant,
are as follows:
0 lcaCommissionUpdatesCurrent
No outstanding commission updates
are pending.
The commission status changes
lcaCommissionUpdatesCurrent
(0) when database changes have been
successfully propagated to the device
1 lcaCommissionUpdatesPending
Commission updates are currently
pending, or in progress. When
database changes are made that
affect a device’s configuration, this
value represents the commission
status of the device.
The commission status changes to
lcaCommissionUpdatesPending
(1) when database changes that
affect a device’s configuration are
made.
2 lcaCommissionUpdatesFailed
Commission updates are currently
pending or in progress, and the most
recent update attempt failed.
The commission status will be
changed to
lcaCommissionUpdatesFailed (2)
when database changes fail to be
propagated.

channelHandle The channel on which the object
resides

objectHandle The Handle of the commissioned
object

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 698

OnDbConversionEvent
Summary Provides a client application the progress of an OpenLNS

database conversion.
When an OpenLNS database is opened using an application
written with a newer version of OpenLNS, the database will
be automatically upgraded to the new version of OpenLNS.
For example, if an application running on OpenLNS calls the
Open method to open a network using an LNS 3.20 database,
the database would be upgraded automatically.

If an application running on OpenLNS calls the Add method
to create a network and specifies an existing LNS 4.0
database as the new network’s database, the LNS 3.20
database would also be upgraded automatically.
The OpenLNS database conversion is a three-step process
that upgrades the system database, the network database,
and the global database. This event is triggered once for each
stage of the conversion, and once when the conversion is
complete. After a database has been upgraded, it cannot be
opened with an older version of LNS (an application running
on LNS 3.20 cannot open an OpenLNS database).

Syntax OnDbConversionEvent(dbName As String, stage as
Integer)
Element Description

dbName The name of the OpenLNS database
being upgraded.

stage The stage of the database conversion.
The possible values for this element,
which are contained in the
ConstDbConversionStage constant,
are as follows:
0 lcaConversionDone
The conversion is complete.
1 lcaGlobalDb
The global network database is being
converted.
2 lcaNetworkDb
The network database is being
converted.
3 lcaSystemDb
The system database is being
converted.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 699

OnDbValidationEvent
Summary Provides a client application the progress of database

validation. A database validation can be initiated with the
Validate method.
Depending on the size of a network database, a database
validation can take a considerable amount of time to
complete. You can use the information returned by this event
to develop an idea of how long the database validation being
performed will take. This event will be fired many times
throughout the database validation, including each time the
validation progresses to a new phase, and each time the
validation progresses to a new step within that phase.
Alternatively, you can also receive updates for a database
validation directly through an ILcaProgressListener interface
object. In order to do so, you must specify the
progressCallback element when you call the Validate method.
The number of phases and the names of the steps and phases
involved in a database validation may differ from datatabase
to database, and from release to release. You can use them to
display a progress bar with your application, but you should
not expect this event to return for the same number of phases
or steps each time you perform a database validation.

Syntax OnDbValidationEvent (totalPercentage as Long,
thisPhasePercentage as Long, thisPhaseNumber as Long,
totalPhases as Long, thisPhaseName as String, thisStepName
as String)
Element Description

totalPercentage The percentage of the database
validation that has been
completed. This element has a
range of 0–100.

thisPhasePercentage The percentage of the current
phase of the database validation
that has been completed.

You can use the thisPhaseName
element to determine which phase
of the database validation is
currently being performed. This
element has a range of 0–100.

thisPhaseNumber The number of the current phase.
This element has a range of 0–
2,147,483,647.

totalPhases The total number of phases to be
performed during the database
validation. This element has a
range of 0–4,292,967,296.

thisPhaseName The name of the phase of the

OpenLNS Programmer's Reference 700

database validation that is
currently being performed. The
phase name will be returned as a
string of up to 230 characters.

thisStepName The step that is currently being
performed. The step name will be
returned as a string of up to 230
characters. Generally, this will be
the name of the object in the
database that is currently being
validated.

Added to API LNS Release 3.20.

OnIncomingSessionEvent
Summary An event that is generated whenever a request for connection

to the OpenLNS Server is received, as long as the application
has registered for uplink session event handling with the
BeginIncomingSessionEvents method.
After an uplink session request has been received and this
event has been fired, you can use the AcceptIncomingSession
method to accept or reject the request. When you call the
AcceptIncomingSession method, you use the tag element
passed to this event to identify the xDriver session. The other
elements can be used to open the network after the incoming
session is accepted. Do not open the network within the event
handler. Instead, signal your main thread to open the
network by posting a message, or by using a timer.
Once you have accepted a session, you can open the network
identified by the netName element and perform whatever
tasks are required. You can also use the
OnSessionChangeEvent event to monitor the state of the
xDriver session.

You can disable the OnIncomingSessionEvent event with the
EndIncomingSessionEvents method.
These events only apply to clients that are using the
OpenLDV xDriver to connect to remote network interface
(RNI) devices. For an overview of the OpenLDV xDriver, see
the OpenLNS Network Interface Drivers section, of the
OpenLNS Programmer’s Guide.

OpenLNS Programmer's Reference 701

Syntax OnIncomingSessionEvent(xDriverProfileName, netName,
intfName, tag)
Element Description

xDriverProfileName A String identifying the Profile that
is using the TCP listener port this
session came in on. This may be
useful in an application that
registers for uplink session event
handling with multiple xDriver
Profiles.

netName A String that represents the
OpenLNS network name of the
network that has requested the
uplink session.

intfName A String that represents the
network interface name of the
network that has requested the
uplink session.

tag This value must be used when the
AcceptIncomingSession method is
called to accept or reject the uplink
session.

Added to API LNS Release 3.06.

OnLonMarkObjectStatusChange
Summary Once an application registers for this event, it will be fired

each time an OpenLNS application changes the status of a
LonMarkObject by writing to the object’s Request property.
You can enable this event for your application by invoking
the BeginLonMarkObjectStatusChangeEvent method. You
can disable the event by invoking the
EndLonMarkObjectStatusChangeEvent method.

You can write to the Request property of the LonMarkObject
object to change the current functionality of a LonMark
object, or to update the information contained in the
LonMarkObject. These changes would cause the
OnLonMarkObjectStatusChangeEvent event to be fired. You
can read the Status property to determine the current status
of a LonMarkObject.
Note that this event will only be fired when an LNS
application changes the status of a LonMarkObject. It will
not be fired if the status is changed directly by the device, or
if you explicitly write to the device’s SNVT_object_request
network variable.

OpenLNS Programmer's Reference 702

Syntax OnLonMarkObjectStatusChangeEvent(networkHandle,
systemHandle, deviceHandle, LonMarkObjectIndex)
Element Description

networkHandle The handle of the Network
containing the modified
LonMarkObject.

systemHandle The handle of the System
containing the modified
LonMarkObject.

deviceHandle The handle of the AppDevice using
the Interface that contains the
modified LonMarkObject.

LonMarkObjectInde
x

The device index number of the
modified LonMarkObject. This
value index is stored in the
modified LonMarkObject’s Index
property.

Added to API LNS Release 3.20.

OnMissedEvent
Summary Indicates that one or more generated events were not

received by the applications that subscribed to them.

You can enable this event with the BeginMissedEvent
method. You can disable this event with the EndMissedEvent
method.

Syntax OnMissedEvent(networkHandle As Long, systemHandle As
Long, isUnrecoverable as Boolean, numMissedEvents As
Long)
Element Description

networkHandle Handle of the network in which the
object resides.

systemHandle Handle of the system in which the
object resides.

isUnrecoverable Indicates whether the event is
recoverable.

numMissedEvents Indicates how many events were
missed.

Added to API Prior to LNS Release 3.0.

OnMsgMonitorPointErrorEvent
Summary An event that is generated whenever there is a write failure

on a message monitor point. This event is also used to signify
asynchronous unsuccessful completion code events.
If you are using a programming environment which supports

OpenLNS Programmer's Reference 703

multi-threading (such as Visual C++), you can receive update
events on a separate thread by creating an object which
implements the ILcaNvMonitorPointListener .

Syntax OnMsgMonitorPointErrorEvent(msgMonitorPoint As Object,
ErrorType as Integer)
Element Description

msgMonitorPoint The MsgMonitorPoint object that
reported an error.

ErrorType The error type for the event. The
possible values for this element,
which are contained in the
ConstMonitorEventType constant,
are as follows:
0 lcaMonitorEventTypeNull
This value is not used.
1 lcaMonitorEventTypeQuit
This value is not used.
2 lcaMonitorEventTypeAdd
This value is not used.
3 lcaMonitorEventTypeRemove
This value is not used.
4 lcaMonitorEventTypeMsCreate
This value is not used.
5 lcaMonitorEventTypeMsDelete
This value is not used.
6 lcaMonitorEventTypeMsChange
This value is not used.
7 lcaMonitorEventTypeMsError
This value is not used.
8 lcaMonitorEventTypeNvCreate
A network variable monitor point
has been created.
9 lcaMonitorEventTypeNvDelete
A network variable monitor point
has been removed.
10 lcaMonitorEventTypeNvChange
This value is not used.
11 lcaMonitorEventTypeNvError
A network variable monitor point

OpenLNS Programmer's Reference 704

has returned an error. See the
OnNvMonitorPointErrorEvent
event.
12 lcaMonitorEventTypeNvUpdate
A network variable monitor point
has received an update. See the
OnNvMonitorPointUpdateEvent
event.
13 lcaMonitorEventTypeNvComplete
A completion code has returned for
the monitor point.
14 lcaMonitorEventTypeMsgCreate
A message monitor point has been
created.
15 lcaMonitorEventTypeMsgDelete
A message monitor point has been
removed.
16 lcaMonitorEventTypeMsgChange
This value is not used.
17 lcaMonitorEventTypeMsgError
A message monitor point has
returned an error. See the
OnMsgMonitorPointErrorEvent
event.
18 lcaMonitorEventTypeMsgUpdate
A message monitor point has
received an update. See the
OnMsgMonitorPointUpdateEvent
event.
19 lcaMonitorEventTypeMsgRequest
A message monitor point has
received a request message.
20
lcaMonitorEventTypeMsgResponse
A message monitor point has
received a reponse message.
21
lcaMonitorEventTypeMsgComplete
This value is not used.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 705

OnMsgMonitorPointEvent
Summary An event that is generated whenever a message monitor

point is created or removed from a permanent monitor set.
The events are only fired in this case if the monitor set is
open. In addition, when you close or open a permanent
monitor set, this event will be fired for each message monitor
point in the set, indicating that the monitor points have been
removed from or created in memory.

This event is also fired the first time you enable a message
monitor point in a temporary monitor set after creating the
temporary monitor set. It will also be fired when you remove
a message monitor point from a temporary monitor set, as
long as that monitor point had been enabled.
This event is also used to signify asynchronous successful
completion code events for a message monitor point.

Syntax OnMsgMonitorPointEvent(msgMonitorPoint As Object,
EventType as Integer)
Element Description

msgMonitorPoint The MsgMonitorPoint object that
was created or shut down.

EventType The event code for the event. The
possible values for this element,
which are contained in the
ConstMonitorEventType constant,
are as follows:
0 lcaMonitorEventTypeNull
This value is not used.
1 lcaMonitorEventTypeQuit
This value is not used.
2 lcaMonitorEventTypeAdd
This value is not used.
3 lcaMonitorEventTypeRemove
This value is not used.
4 lcaMonitorEventTypeMsCreate
This value is not used.
5 lcaMonitorEventTypeMsDelete
This value is not used.
6 lcaMonitorEventTypeMsChange
This value is not used.
7 lcaMonitorEventTypeMsError
This value is not used.

OpenLNS Programmer's Reference 706

8 lcaMonitorEventTypeNvCreate
A network variable monitor point
has been created.
9 lcaMonitorEventTypeNvDelete
A network variable monitor point
has been removed.
10 lcaMonitorEventTypeNvChange
This value is not used.
11 lcaMonitorEventTypeNvError
A network variable monitor point
has returned an error. See the
OnNvMonitorPointErrorEvent
event.
12 lcaMonitorEventTypeNvUpdate
A network variable monitor point
has received an update. See the
OnNvMonitorPointUpdateEvent
event.
13 lcaMonitorEventTypeNvComplete
A completion code has returned for
the monitor point.
14 lcaMonitorEventTypeMsgCreate
A message monitor point has been
created.
15 lcaMonitorEventTypeMsgDelete
A message monitor point has been
removed.
16 lcaMonitorEventTypeMsgChange
This value is not used.
17 lcaMonitorEventTypeMsgError
A message monitor point has
returned an error. See the
OnMsgMonitorPointErrorEvent
event.
18 lcaMonitorEventTypeMsgUpdate
A message monitor point has
received an update. See the
OnMsgMonitorPointUpdateEvent
event.
19 lcaMonitorEventTypeMsgRequest
A message monitor point has

OpenLNS Programmer's Reference 707

received a request message.
20
lcaMonitorEventTypeMsgResponse
A message monitor point has
received a reponse message.
21
lcaMonitorEventTypeMsgComplete
This value is not used.

Added to API LNS Release 3.0.

OnMsgMonitorPointUpdateEvent
Summary An event that is generated whenever a message tag monitor

point update is received.

The OnMsgMonitorPointEvent event is used to signify
asynchronous successful completion code events for a
message monitor point. The OnMsgMonitorPointErrorEvent
is used to signify asynchronous unsuccessful completion code
events.
If you are using a programming environment which supports
multi-threading (such as Visual C++), you can receive update
events on a separate thread by creating an object which
implements the ILcaMsgMonitorPointListener interface.

Syntax OnMsgMonitorPointUpdateEvent(msgMonitorPoint As
Object, UpdateType as Integer, InputDp as Object, OutputDp
as Object, Src as Object)
Element Description

msgMonitorPoint The MsgMonitorPoint object that
received an update.

UpdateType The update type.

InputDp A DataPoint object containing the
received value.

The AutoRead and AutoWrite
properties of this element are set to
FALSE.

OutputDp A DataPoint object which allows a
response to be sent if the
UpdateType is Request.

The AutoWrite of this element is set
to TRUE; therefore, this DataPoint
object will be sent as a response
when it is updated.

Src A SourceAddress object indicating
the source device of the update.

OpenLNS Programmer's Reference 708

Added to API LNS Release 3.0.

OnNetworkServiceDeviceResetNew
Summary Indicates that the local network interface has reset.

This event is identical to the old
OnNetworkServiceDeviceReset event, but it includes
information regarding the network service device’s network,
system, and object handles.
Lightweight Client applications cannot receive the
OnNetworkServiceDeviceResetNew event.
You can enable this event for your application by calling the
BeginResetEvent method. You can disable this event by
calling the EndResetEvent method.

Syntax OnNetworkServiceDeviceResetNew(nsdObject As Object,
networkHandle as Long, systemHandle as Long, objectHandle
as Long)
Element Description

nsdObject The NetworkServiceDevice object
that reset.

networkhandle The handle of the network in which
the NetworkServiceDevice object
resides.

systemHandle The handle of the system in which
the NetworkServiceDevice object
resides.

objectHandle The object handle of the
NetworkServiceDevice object being
reset.

Added to API Prior to LNS Release 3.0.

OnNetworkVariableStringUpdate
Summary Indicates that a network variable value has been updated.

You can register for this event by setting the DsMonitorTag
property to a non-zero value.
This event was created for use with programming
environments that do not support passing Object types to
event parameters. It is identical to the
OnNetworkVariableUpdate event except that the value
parameter returns a String rather than a Variant.
If you want to use this event rather than the
OnNetworkVariableUpdate event, set the
lcaFlagsStringUpdate flag in the ObjectServer object's Flags
property to 1.
If you are using Visual C++, the
OnNetworkVariableStringUpdate event will not be fired in

OpenLNS Programmer's Reference 709

your application's main thread. Instead, a separate thread
will be used for this event.
When using the separate thread for these events, you should
perform as little processing as possible within your event
handler. However, you can use the PostMessage() or
PostMessageThread() functions of the Win API to defer these
events to the application's main thread. Consult the Windows
documentation for more information on these functions.
For more information on multi-threading and OpenLNS, see
the Multi-Threading and OpenLNS Applications section in
the OpenLNS Programmer's Guide.

Syntax OnNetworkVariableStringUpdate(monitorTag As Long,
value as String, dataUpdateInfo As Object)
Element Description

monitortag The monitor tag value assigned to
the network variable.

value Current data value of the network
variable.

dataUpdateInfo The DataValue object for this
update.

Added to API Prior to LNS Release 3.0.

OnNetworkVariableUpdate
Summary Indicates that a network variable value has been updated.

You can register for this event by setting the DsMonitorTag
property to a non-zero value.
If you are using a programming environment that cannot
handle Object types being passed as an event parameter, you
should use the OnNetworkVariableStringUpdate event
instead of this one. To use that event, set the ObjectServer
object's Flags property to 1.
Note that if you are using Visual C++, the
OnNetworkVariableUpdate event will not be fired in your
application's main thread. A separate thread will be used for
this event. When using the separate thread for these events,
Echelon recommends that you perform as little processing as
possible within your event handler. However, you can use the
PostMessage() or PostMessageThread() functions of the Win
API to defer these events to the application's main thread.
Consult the Windows documentation for more information on
these functions.
For more information on multi-threading and OpenLNS, see
the Multi-Threading and OpenLNS Applications section in
the OpenLNS Programmer's Guide.

OpenLNS Programmer's Reference 710

Syntax OnNetworkVariableUpdate (monitorTag As Long, value as
Variant, dataUpdateInfo As Object)
Element Description

monitortag The monitor tag value assigned to
the network variable.

value Current data value of the network
variable.

dataUpdateInfo The DataValue object for this
update.

Added to API Prior to LNS Release 3.0.

OnNodeConnChangeEvent
Summary This event is generated whenever a connection is created or

modified, or whenever the ConnectDescTemplate used by a
connection is modified.
You can enable this event with the
BeginNodeConnChangeEvent method. You can disable this
event with the EndNodeConnChangeEvent method.
Once you have enabled this event, it will be fired whenever
an application invokes the Connect method to create or
modify a connection, or whenever an application invokes the
Disconnect method to remove a connection. It will also be
fired whenever the ConnectDescTemplate used by a
connection is modified.
When adding a new connection or removing a connection,
this event will be genereated once for the connection’s hub,
and once for each target that has been added to the
connection. When adding or removing a subset of targets
from a connection, this event will be generated once for each
of the affected targets. When this event is generated for a
connection hub, the value of the TargetDeviceHandle element
will match the value of the hubDeviceHandle element, and
the value of the TargetNvMtIndex element will match the
value of the HubNvMtIndex element.

Syntax OnNodeConnChangeEvent(NetworkHandle as Long, System
Handle as Long, EventTag as Integer, TargetDeviceHandle as
Long, Version as Integer, ObjectChangeType as Integer,
TargetNvMtIndex as Integer, HubDeviceHandle as Long,
HubNvMtIndex as Long)
Element Description

NetworkHandle The Handle of the Network object
containing the modified connection.

System Handle The Handle of the System object
containing the modified connection.

EventTag Obsolete.

OpenLNS Programmer's Reference 711

TargetDeviceHandle The Handle of the AppDevice object
whose connection changed.

Version The version of the device's
connection information. This is
incremented by 1 whenever the
device is added to or removed from a
connection.

ObjectChangeType Indicates how the connection was
modified.
The values that can be returned in
this element, which are stored in the
ConstNodeConnChangeTypes
constant, are as follows:
0 lcaConnectionTargetAdded
A new target has been added to the
connection’s hub NetworkVariable
or MessageTag.
This value maps to the
lcaObjectCreate (0) value of the
ConstObjectChangeTypes constant,
which pre-LNS 3.20 applications
used for the
OnNodeConnChangeEvent event.
1
lcaConnectionTargetRemoved
A target has been removed from the
connection’s hub NetworkVariable
or MessageTag.
This value maps to the
lcaObjectDelete (1) value of the
ConstObjectChangeTypes constant,
which pre-LNS 3.20 applications
used for the
OnNodeConnChangeEvent event.
2 lcaConnectionDescChanged

The ConnectDescTemplate used by
the connection’s hub
NetworkVariable or MessageTag
was modified.

TargetNvMtIndex The Index of the MessageTag or
NetworkVariable object that was
added to or removed from a
connection, or the index of the
connection hub whose
DeviceTemplate was modified.

HubDeviceHandle The Handle property of the
connection's hub NetworkVariable

OpenLNS Programmer's Reference 712

or MessageTag.

HubNvMtIndex The Index of the connection’s hub
NetworkVariable or MessageTag.

Added to API LNS Release 3.0.

OnNodeIntfChangeEvent
Summary This event is generated whenever a device's external

interface is changed.
You can enable this event with the
BeginNodeIntfChangeEvent method. You can disable this
event with the EndNodeIntfChangeEvent method.

The ObjectChangeType element contains the descriptions of
the information will be contained in the Name and
ObjectIndex elements returned by the event for each
ObjectChangeType value. In addition, the value of the
ObjectChangeType element determines when the event will
be fired.
Note: Some interface changes will cause this event to be
fired as soon as the change is made in the OpenLNS
database. In other cases, the event will not be fired until the
physical device on the network is updated with the change.
The timing of this depends on the system management mode.

Syntax OnNodeIntfChangeEvent(NetworkHandle as Long, System
Handle as Long, EventTag as Integer, DeviceHandle as Long,
Version as Integer, ObjectChangeType as Integer,
ObjectIndex as Integer, Name as String)
Element Description

NetworkHandle The Handle of the Network object
containing the modified connection.

System Handle The Handle of the System object
containing the modified connection.

EventTag Obsolete.

DeviceHandle The Handle of the AppDevice object
whose connection changed.

Version The version of the device's interface
information as a signed 16-bit value.
This is incremented by one
whenever the device's external
interface changes.
This is a signed value; therefore, the
version may be reported as a
positive or negative number,
following this pattern: 0, 1, 2,
3….32766, 32767, -32768, -32767,
-32766…-1, 0, 1, 2….32766, etc.

OpenLNS Programmer's Reference 713

You can also determine the version
of an Interface object by reading the
Version property.

ObjectChangeType Indicates how the interface changed.
Changes that may be reported by
the event include the addition,
removal, or modification of a
NetworkVariable, MessageTag, or
LonMarkObject object on the
interface.
The possible values for this element,
which are contained in the
ConstNodeIntfChangeTypes
constant, are as follows:
0 lcaNodeInterfaceNvAdded

A NetworkVariable was added to the
interface.

The Name element will contain the
added network variable’s
ProgrammaticName.

The ObjectIndex element will
contain the added network
variable’s device index number.
1 lcaNodeInterfaceNvRemoved
A network variable was removed
from the interface.

The Name element will contain an
empty string.

The ObjectIndex element will
contain the removed network
variable’s device index number.
2 lcaNodeInterfaceNvModified
The type or programmatic name of a
network variable on the interface
was modified.

The Name element will contain an
empty string.

The ObjectIndex element will
contain the modified network
variable’s device index number.
3 lcaNodeInterfaceNvRenamed
The user name of a network
variable on the interface was
modified.
The Name element will contain the

OpenLNS Programmer's Reference 714

affected network variable’s new user
name. The user name is stored in
the network variable’s Name
property.

The ObjectIndex element will
contain the renamed network
variable’s device index number.
4
lcaNodeInterfaceLonMarkObjec
tAdded

A LonMarkObject obect (dynamic
function block) was added to the
interface.

The Name element will contain the
added LonMarkObject’s
ProgrammaticName.

The ObjectIndex element will
contain the new LonMarkObject
object’s device index number.
5
lcaNodeInterfaceLonMarkObjec
tRemoved

A LonMarkObject (dynamic function
block) was removed from the
interface.

The Name element will contain an
empty string.

The ObjectIndex element will
contain the removed LonMarkObject
object’s device index number.
6
lcaNodeInterfaceLonMarkObjec
tNvMemberAssigned
A network variable was assigned to
a LonMarkObject on the interface.

The Name element will contain an
empty string.

The ObjectIndex element will
contain the device index number of
the network variable that has been
added to the LonMarkObject.
7
lcaNodeInterfaceLonMarkObjec
tNvMemberRemoved
A network variable was removed
from a LonMarkObject on the

OpenLNS Programmer's Reference 715

interface.

The Name element will contain an
empty string.

The ObjectIndex element will
contain the affected LonMarkObject
object’s device index number.
8
lcaNodeInterfaceLonMarkObjec
tRenamed

The user name of a LonMarkObject
on the interface was changed.

The Name element will contain the
LonMarkObject’s new user name.
The user name is stored in the
LonMarkObject’s Name property.

The ObjectIndex element will
contain the renamed
LonMarkObject object’s device index
number.
9
lcaNodeInterfaceLonMarkObjec
tRenamedProgrammaticName
The programmatic name of a
LonMarkObject on the interface was
changed.

The Name element will contain the
LonMarkObject’s new
ProgrammaticName.

The ObjectIndex element will
contain the renamed
LonMarkObject object’s device index
number.
10
lcaNodeInterfaceMessageTagAd
ded

A MessageTag was added to the
interface.

The Name element will contain the
new message tag’s user name. The
user name is stored in the message
tag’s Name property.

The ObjectIndex element will
contain the new MessageTag object’s
device index number.
11
lcaNodeInterfaceMessageTagRe

OpenLNS Programmer's Reference 716

moved
A message tag was removed from
the interface.

The Name element will contain an
empty string.

The ObjectIndex element will
contain the removed MessageTag
object’s device index number.
12 lcaNodeInterface
MessageTagRenamed
Reserved for future use.
13 lcaNodeInterface
CpRenamed
The user name of a configuration
property on the interface was
modified.

The Name element will contain the
affected configuration property’s
new user name. The user name is
stored in the configuration
property’s Name property.

The ObjectIndex element will
contain the renamed configuration
property’s device index number
14 lcaNodeInterface
NvDescriptionChanged
Reserved for future use.
15 lcaNodeInterface
LonMarkObject
DescriptionChanged
Reserved for future use.
16 lcaNodeInterface
MessageTag
DescriptionChanged
Reserved for future use.
17 lcaNodeInterface
CpDescriptionChanged
Reserved for future use.

ObjectIndex The Index of the message tag,
network variable, or LonMarkObject
that was modified. This represents
the device index of the modified
object. For more information on this,
see the Remarks section.

OpenLNS Programmer's Reference 717

Name The name of the object that was
modified. This may be the user
name or the programmatic name of
the object, depending on the
ObjectChangeType that caused the
event. In some cases, the Name
element will contain an empty
string.

Added to API LNS Release 3.0.

OnNvMonitorPointErrorEvent
Summary This event is generated whenever there is a write or poll

failure on a network variable monitor point.
If you are using a programming environment which supports
multi-threading (such as Visual C++), you can receive update
events on a separate thread by creating an object which
implements the ILcaNvMonitorPointListener interface.

Syntax OnNvMonitorPointErrorEvent (nvMonitorPoint As Object,
errorType as Integer)
Element Description

nvMonitorPoint The NvMonitorPoint object that had
an error.

errorType The error type for the event. The
possible values for this element,
which are contained in the
ConstMonitorEventType constant,
are as follows:
0 lcaMonitorEventTypeNull
This value is not used.
1 lcaMonitorEventTypeQuit
This value is not used.
2 lcaMonitorEventTypeAdd
This value is not used.
3 lcaMonitorEventTypeRemove
This value is not used.
4 lcaMonitorEventTypeMsCreate
This value is not used.
5 lcaMonitorEventTypeMsDelete
This value is not used.
6 lcaMonitorEventTypeMsChange
This value is not used.

OpenLNS Programmer's Reference 718

7 lcaMonitorEventTypeMsError
This value is not used.
8 lcaMonitorEventTypeNvCreate
A network variable monitor point
has been created.
9 lcaMonitorEventTypeNvDelete
A network variable monitor point
has been removed.
10 lcaMonitorEventTypeNvChange
This value is not used.
11 lcaMonitorEventTypeNvError
A network variable monitor point
has returned an error. See the
OnNvMonitorPointErrorEvent
event.
12 lcaMonitorEventTypeNvUpdate
A network variable monitor point
has received an update. See the
OnNvMonitorPointUpdateEvent
event.
13 lcaMonitorEventTypeNvComplete
A completion code has returned for
the monitor point.
14 lcaMonitorEventTypeMsgCreate
A message monitor point has been
created.
15 lcaMonitorEventTypeMsgDelete
A message monitor point has been
removed.
16 lcaMonitorEventTypeMsgChange
This value is not used.
17 lcaMonitorEventTypeMsgError
A message monitor point has
returned an error. See the
OnMsgMonitorPointErrorEvent
event.
18 lcaMonitorEventTypeMsgUpdate
A message monitor point has
received an update. See the
OnMsgMonitorPointUpdateEvent
event.

OpenLNS Programmer's Reference 719

19 lcaMonitorEventTypeMsgRequest
A message monitor point has
received a request message.
20
lcaMonitorEventTypeMsgResponse
A message monitor point has
received a reponse message.
21
lcaMonitorEventTypeMsgComplete
This value is not used.

Added to API LNS Release 3.0.

OnNvMonitorPointEvent
Summary This event is generated whenever a network variable monitor

point is created, removed, enabled or disabled.
This event is fired whenever a network variable monitor
point is created or removed from a permanent monitor set.
The events are only fired in this case if the monitor set is
open. In addition, when you close or open a permanent
monitor set, this event will be fired for each network variable
monitor point in the set, indicating that the monitor points
have been removed from or created in memory.

This event is also fired the first time you enable a network
variable monitor point in a temporary monitor set after
creating the temporary monitor set. It will also be fired when
you remove a network variable monitor point from a
temporary monitor set, as long as that monitor point had
been enabled.

Syntax OnNvMonitorPointEvent(nvMonitorPoint As Object,
EventType as Integer)
Element Description

nvMonitorPoint The NvMonitorPoint object that was
created or shut down.

EventType The event code for the event. The
possible values for this element,
which are contained in the
ConstMonitorEventType constant,
are as follows:
0 lcaMonitorEventTypeNull
This value is not used.
1 lcaMonitorEventTypeQuit
This value is not used.
2 lcaMonitorEventTypeAdd

OpenLNS Programmer's Reference 720

This value is not used.
3 lcaMonitorEventTypeRemove
This value is not used.
4 lcaMonitorEventTypeMsCreate
This value is not used.
5 lcaMonitorEventTypeMsDelete
This value is not used.
6 lcaMonitorEventTypeMsChange
This value is not used.
7 lcaMonitorEventTypeMsError
This value is not used.
8 lcaMonitorEventTypeNvCreate
A network variable monitor point
has been created.
9 lcaMonitorEventTypeNvDelete
A network variable monitor point
has been removed.
10 lcaMonitorEventTypeNvChange
This value is not used.
11 lcaMonitorEventTypeNvError
A network variable monitor point
has returned an error. See the
OnNvMonitorPointErrorEvent
event.
12 lcaMonitorEventTypeNvUpdate
A network variable monitor point
has received an update. See the
OnNvMonitorPointUpdateEvent
event.
13 lcaMonitorEventTypeNvComplete
A completion code has returned for
the monitor point.
14 lcaMonitorEventTypeMsgCreate
A message monitor point has been
created.
15 lcaMonitorEventTypeMsgDelete
A message monitor point has been
removed.
16 lcaMonitorEventTypeMsgChange

OpenLNS Programmer's Reference 721

This value is not used.
17 lcaMonitorEventTypeMsgError
A message monitor point has
returned an error. See the
OnMsgMonitorPointErrorEvent
event.
18 lcaMonitorEventTypeMsgUpdate
A message monitor point has
received an update. See the
OnMsgMonitorPointUpdateEvent
event.
19 lcaMonitorEventTypeMsgRequest
A message monitor point has
received a request message.
20
lcaMonitorEventTypeMsgResponse
A message monitor point has
received a reponse message.
21
lcaMonitorEventTypeMsgComplete
This value is not used.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 722

OnNvMonitorPointUpdateEvent
Summary This event is generated whenever a network variable monitor

point update is received.
If you are using a programming environment which supports
multi-threading (such as Visual C++), you can receive update
events on a separate thread by creating an object which
implements the ILcaMsgMonitorPointListener interface.

Syntax OnNvMonitorPointUpdateEvent (nvMonitorPoint As Object,
DataPoint as Object, Src as Object)
Element Description

nvMonitorPoint The NvMonitorPoint object that
received an update.

DataPoint A DataPoint object containing the
received value.

The DataPoint parameter's
AutoRead property is set to TRUE.

Src A SourceAddress object indicating
the source device of the update.

Added to API LNS Release 3.0.

OnNVUpdateError
Summary This event is generated whenever a monitored network

variable update fails. This error occurs when the Data Server
gets a network error when it attempts the get the value of a
network variable which is being monitored.

Syntax OnNvUpdateError(monitorTag As Long, dsError as Long)
Element Description

monitorTag The monitor tag of the network
variable which had an update
failure.

dsError The type of update failure. This
element will always have a value of
200 (network error).

Added to API LNS Release 3.0.

OnSessionChangeEvent
Summary This event is generated whenever the state of an xDriver

session changes, or whenever the state of your client’s
NetworkServiceDevice changes.
This event will then be fired each time the state of an xDriver
session your client application is handling changes, including
when the session is disconnected for any reason.

OpenLNS Programmer's Reference 723

This event is also fired each time the state of your client’s
NetworkServiceDevice changes from the online state to the
offline state, or vice versa. You could use this event to keep
track of when the NetworkServiceDevice is offline, as polling
is suspended, and monitor and control events will not be
delivered to your application, while the NetworkServiceDevice
is in the offline state. You can also check the state of the
NetworkServiceDevice by reading the State property of the
AppDevice object that represents the NetworkServiceDevice.

Syntax OnSessionChangeEvent(networkName, sessionState)
Element Description

networkName A String containing the name of the
network involved in the session.

sessionState The current status of the xDriver
session, or of the Network Service
Device.
The values that can be returned as
this element are as follows (these
values are stored in the
ConstSessionStates constant):
0 lcaSessionStateClosed
The xDriver session has been closed.
1 lcaSessionStateConnecting
The connection to the RNI device
involved in the session has been
lost, and xDriver is attempting to
reconnect to the RNI.
If xDriver is able to reestablish the
connection, the event will be fired
again with the
lcaSessionStateEstablished (2)
value as the sessionState element.
If xDriver is not able to reestablish
the connection, the event will be
fired again with the
lcaSessionStateFailed (3) value
as the sessionState element.
2 lcaSessionStateEstablished
xDriver has successfully
reestablished connection to the RNI
device in the connection, after
communication with the device was
lost.
3 lcaSessionStateFailed
Connection between your
application and the RNI device has

OpenLNS Programmer's Reference 724

been lost, and recovery is either
disabled, or it has timed out. Your
application will no longer be able to
communicate with the remote
network.
4 lcaSessionStateOffline

The NetworkServiceDevice has been
taken offline, possibly because the
device is being commissioned.
Polling is suspended and monitor
and control events will not be
delivered to your application while
the NetworkServiceDevice is offline.
5 lcaSessionStateOnline

The NetworkServiceDevice has
returned to the online state.

Added to API LNS Release 3.20.

OnSystemMgmtModeChangeEvent
Summary Once an application registers for this event, it is generated

each time the system management mode changes. The
current system management mode for a system is stored in
the MgmtMode property of the System object.
You can register your application for this event with the
BeginSystemMgmtModeChangeEvent method. You can
disable the event with the
EndSystemMgmtModeChangeEvent method.
You can read or write to the system management mode with
the MgmtMode property of the System object.

Syntax OnSystemMgmtModeChangeEvent(networkHandle,
systemHandle, mgmtMode)
Element Description

networkHandle The handle of the Network where the system
management mode changed.

systemHandle The handle of the System where the
management mode changed.

mgmtMode The current system management mode.
The values that can be returned for this
element, which are contained in the
ConstMgmtModes constant, are as
follows:
0
lcaMgmtModePropagateConfigUpdat
es
Network configuration changes are

OpenLNS Programmer's Reference 725

applied to both the OpenLNS database
and the physical devices.
1 lcaMgmtModeDeferConfigUpdates
Network configuration changes are applied
only to the OpenLNS network database.

Added to API LNS Release 3.20.

OnSystemNssIdle
Summary Indicates that an OpenLNS Server idle message was raised.

When you call the BeginNssIdleEvent method to enable this
event, you will specify an interval. This event will then be
fired at that interval while your application is waiting for
lengthy network operations to complete. Instances of this
event will be returned synchronously, and if your application
does not handle the event in a timely manner, then your
application may hang.
This event allows your application to execute code while
OpenLNS is busy with an operation. This may be the case
when you change the value of the MgmtMode property from
lcaMgmtModeDeferConfigUpdates (1) to
lcaMgmtModePropagateConfigUpdates (0), or if you are
commissioning a device. The main thread of your application
will need to wait for these operations to complete, so you
could use this event to refresh the display of your client
application, so that the user knows it is not stuck.
You can only make the following OpenLNS calls from within
the this event’s handler:

• You can access the ServiceStatus property to determine
the status of the service OpenLNS is trying to perform.

• If an operation is taking too long for OpenLNS to execute,
you can cancel it with the CancelTransaction method
from the event handler.

• If you are performing a network recovery, you can access
the RecoveryStatus property from the event handler, and
then determine the status of the network recovery.

You can disable this event with the EndNssIdleEvent
method.

OpenLNS Programmer's Reference 726

Syntax OnSystemNssIdle()

Added to API Prior to LNS Release 3.0.

OnSystemServicePin
Summary Indicates that a qualifying service pin message has been

received.

You must call the System object’s BeginServicePinEvent
method to enable service pin events. The appDeviceObject
parameter contains the application device that originated the
service pin event. The eventTag parameter contains the
corresponding event tag. You can call the
EndServicePinEvent method to disable the service pin
events.

If the service pin was pressed on a router, the auxClassId
parameter will contain lcaClassIdRouter; otherwise it will
contain lcaClassIdObjectServer.

Syntax OnSystemServicePin(networkHandle as Long,
systemHandle as Long, eventTag as Integer, neuronId as
String, programId as String, location as String,
channelHandle as Long, auxClassId as Integer, objectHandle
as Long)
Element Description

networkHandle The Handle of the Network object
containing the modified connection.

systemHandle The Handle of the System object
containing the modified connection.

eventTag The Event tag value corresponding to
this event, set by the
BeginServicePinEvent method.

neuronId The Neuron ID returned by the service
pin event.

programId The Program ID returned by the service
pin event.

location The location string of the device that
caused the event.

channelHandle The handle of the channel in which the
service pin event occured.

auxClassId Indicates the type of device whose
service pin was pressed.

objectHandle The handle of the object whose service
pin was grounded. If the device that
caused the event has not been
registered, this will return 0.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 727

Validate
Summary This is a standard ActiveX control event used for visual

controls. This event is not applicable for the Object Server.

ObjectStatus
An ObjectStatus object can be accessed through the Status property or the ReportMask
property of a LonMarkObject.

If the object was accessed through the Status property, the object represents a status report.
In this case, the properties of the ObjectStatus object reflect the current status of the
LonMarkObject. Some LonMarkObjects, however, do not support all of the status attributes
contained in an ObjectStatus object; therefore, some of the information contained in this
object may not be useful.

You can use the ReportMask property to determine which status attributes are supported. If
you access an ObjectStatus object through the ReportMask property, the object represents a
report mask. In this case, the values of each property of the ObjectStatus object reflect
whether the LonMarkObject supports the related status attribute.

For example, consider the ResetComplete property of the ObjectStatus object. The
ResetComplete property contained in an ObjectStatus object accessed through the Status
property indicates whether the most recent reset of the LonMarkObject has completed. The
ResetComplete property contained in an ObjectStatus object accessed through the
ReportMark property indicates whether or not the LonMarkObject can be reset. If the
LonMarkObject cannot be reset, then the ResetComplete property in the ObjectStatus object
accessed through the Status property would not contain useful information.

Note: Some properties contain the same information, whether the LonMarkObject
represents a report mask or a status report. These properties include the ClassId, InvalidId,
InvalidRequest, ObjectId, Parent, and the Summary properties.

The device containing the LonMarkObject must be in the configured/online state
(lcaStateCnfgOnline) to successfully read the properties in this object. The
LonMarkObject’s Request property can be used to refresh or clear the information contained
in the Status and ReportMask properties. See the LonMark Application Layer
Interoperability Guidelines for more information on LonMarkObjects.

The following table summarizes the ObjectStatus object.

Description A status report for a LonMarkObject or a report of applicable
status attributes.

Added to API Prior to LNS Release 3.0.

Accessed Through LonMarkObject object.

Default Property None.

Methods None.

Properties • AlarmNotifyDisabled
• ClassId
• CommFailure
• Disabled
• ElectricalFault
• FailSelfTest
• FeedbackFailure

OpenLNS Programmer's Reference 728

• InAlarm
• InOverride
• InvalidId
• InvalidRequest
• LockedOut
• ManualControl
• MechanicalFault
• ObjectId
• OpenCircuit
• OutOfLimits
• OutOfService
• OverRange
• Parent
• ProgrammingFail
• ProgrammingMode
• ReportMask
• ResetComplete
• SelfTestInProgress
• Summary
• UnableToMeasure
• UnderRange

Methods
The ObjectStatus object does contain any methods.

Properties
The ObjectStatus object contains the following properties.

• AlarmNotifyDisabled
• ClassId
• CommFailure
• Disabled
• ElectricalFault
• FailSelfTest
• FeedbackFailure
• InAlarm
• InOverride
• InvalidId
• InvalidRequest
• LockedOut
• ManualControl
• MechanicalFault
• ObjectId
• OpenCircuit
• OutOfLimits
• OutOfService
• OverRange
• Parent
• ProgrammingFail
• ProgrammingMode
• ReportMask

OpenLNS Programmer's Reference 729

• ResetComplete
• SelfTestInProgress
• Summary
• UnableToMeasure
• UnderRange

AlarmNotifyDisabled
Summary Indicates whether alarm notification is disabled on the

LonMarkObject, or whether alarm notification can be
disabled on the LonMarkObject.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether alarm notification on
the LonMarkObject is currently disabled. If this property
is True, alarm notification has been disabled.

• ReportMask property. Indicates whether alarm
notification can be disabled on the LonMarkObject. If this
property is True, then alarm notification can be disabled.

If alarm notification on the LonMarkObject can be
disabled, you can disable it by writing to the
lcaLonMarkObjectRequestAlarmNotifyDisabled
(12) value to the Request property of the LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax notifyDisabledFlag= statusObject.AlarmNotifyDisabled
Element Description

notifyDisabledFlag A Boolean value indicating whether
alarm notification on the
LonMarkObject has been disabled, or
whether alarm notification on the
LonMarkObject can be disabled.
Status Property
TRUE. Alarm notification on the

LonMarkObject has been
disabled.

FALSE. Alarm notification has not
been disabled.

ReportMask Property
TRUE. Alarm notification on the

LonMarkObject can be
disabled.

FALSE. Alarm notification can not
be disabled.

statusObject The ObjectStatus object to be acted

OpenLNS Programmer's Reference 730

on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
ObjectStatus object in the
ConstClassIds constant:
46 lcaClassIdObjectStatus

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 731

CommFailure
Summary Indicates whether there has been a communication failure on

the LonMarkObject object, or whether the LonMarkObject
could report such a failure.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether a communication
failure on the LonMarkObject has occurred. If this
property is True, then there has been a communication
failure.

• ReportMask property. Indicates whether the
LonMarkObject can report a communications failure
through the ObjectStatus object when it is accessed as a
status report. If this property is True, then it can report a
failure.

Availability Local, full, and lightweight clients.

Syntax commFailFlag = statusObject.CommFailure

Element Description

commFailFlag A Boolean value indicating whether a
communication failure on the
LonMarkObject has occurred, or
whether the LonMarkObject can
report a communications failure.
Status Property
TRUE. A communication failure on

the LonMarkObject has
occurred.

FALSE. A communication failure
has not occurred.

ReportMask Property

TRUE. The LonMarkObject can
report a communications
failure.

FALSE. The LonMarkObject can not
report a communications
failure.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 732

Disabled
Summary Indicates whether the LonMarkObject is currently disabled,

or whether the LonMarkObject can be disabled.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the LonMarkObject is
currently disabled. If this property is True, then the
LonMarkObject is currently disabled.

• ReportMask property. Indicates whether the
LonMarkObject can be disabled. If this property is True,
then the LonMarkObject can be disabled.

If the LonMarkObject can be disabled, you can do so by
writing the lcaLonMarkObjectRequestDisabled (1)
value to the Request property of the LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax disableFlag = statusObject.Disabled
Element Description

disableFlag A Boolean value indicating whether
whether the LonMarkObject is
currently disabled, or whether the
LonMarkObject can be disabled.
Status Property

TRUE. The LonMarkObject is
disabled.

FALSE. The LonMarkObject is not
disabled.

ReportMask Property

TRUE. The LonMarkObject can be
disabled.

FALSE. The LonMarkObject can not
be disabled.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 733

ElectricalFault
Summary Indicates whether an electrical fault has been detected in the

LonMarkObject object, or whether the LonMarkObject could
report an electrical fault.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether an electrical fault
has been detected in the LonMarkObject. If this property
is True, then an electrical fault has been detected in the
LonMarkObject.

• ReportMask property. Indicates whether the
LonMarkObject could report an electrical fault. If this
property is True, then the LonMarkObject could report an
electrical fault.

Availability Local, full, and lightweight clients.

Syntax eFaultFlag = statusObject. ElectricFault
Element Description

eFaultFlag A Boolean value indicating whether
an electrical fault has been detected
in the LonMarkObject object, or
whether the LonMarkObject could
report an electrical fault.
Status Property
TRUE. An electrical fault has been

detected in the
LonMarkObject object.

FALSE. An electrical fault has not
been detected.

ReportMask Property

TRUE. The LonMarkObject can
report an electrical fault.

FALSE. The LonMarkObject can not
report an electrical fault.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 734

FailSelfTest
Summary Indicates whether the LonMarkObject passed its most recent

self-test, or whether the LonMarkObject can perform a
self-test.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the LonMarkObject
failed its most recent self-test. If this property is True,
then the LonMarkObject failed the self-test.

• ReportMask property. Indicates whether the
LonMarkObject can perform a self-test.

Availability Local, full, and lightweight clients.

Syntax failTestFlag = statusObject. FailSelfTest
Element Description

eFaultFlag A Boolean value indicating whether
the LonMarkObject passed its most
recent self-test, or whether the
LonMarkObject can perform a
self-test.
Status Property

TRUE. The LonMarkObject failed
its most recent self-test.

FALSE. The LonMarkObject passed
its most recent self-test.

ReportStatus Property

TRUE. The LonMarkObject can
perform a self-test.

FALSE. The LonMarkObject can not
perform a self-test.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 735

FeedbackFailure
Summary Indicates whether the feedback signal of the LonMarkObject

is being received, or whether the LonMarkObject is capable of
reporting this information.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the feedback signal
of the LonMarkObject is being received.

• ReportMask property. Indicates whether the
LonMarkObject can report a feedback failure through the
ObjectStatus object when it is is accessed as a status
report.

Availability Local, full, and lightweight clients.

Syntax failTestFlag = statusObject. FailSelfTest
Element Description

eFaultFlag A Boolean value indicating whether
the feedback signal of the
LonMarkObject is being received, or
whether the LonMarkObject is
capable of reporting this information.
Status Property
TRUE. The feedback signal of the

LonMarkObject is being
received.

FALSE. The feedback signal of the
LonMarkObject is not being
received.

ReportMask Property

TRUE. The LonMarkObject can
report a feedback failure
through the ObjectStatus
object.

FALSE. The LonMarkObject cannot
report a feedback failure
through the ObjectStatus
object.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 736

InAlarm
Summary Indicates whether the LonMarkObject is currently in an

alarm condition, or whether the LonMarkObject is capable of
reporting an alarm condition.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the LonMarkObject
is an alarm condition. If this property is True, then the
LonMarkObject is an alarm condition.

• ReportMask property. Indicates whether the
LonMarkObject can report an an alarm condition. If this
property is True, then the LonMarkObject can report an
alarm condition.

You can get more information about the alarm status of a
LonMarkObject by reading its LonMarkAlarm property.

Availability Local, full, and lightweight clients.

Syntax inAlarmFlag = statusObject. InAlarm
Element Description

inAlarmFlag A Boolean value indicating whether
whether the LonMarkObject is
currently in an alarm condition, or
whether the LonMarkObject can
report an alarm condition.
Status Property

TRUE. The LonMarkObject is in an
alarm condition.

FALSE. The LonMarkObject is not
in an alarm condition.

ReportMask Property

TRUE. The LonMarkObject can
report an alarm condition
disabled.

FALSE. The LonMarkObject can not
report an alarm condition.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 737

InOverride
Summary Indicates whether the LonMarkObject is currently in an

override state, or whether the LonMarkObject can be
overridden.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the LonMarkObject
is an override state. If this property is True, then the
LonMarkObject is an override state.

• ReportMask property. Indicates whether the
LonMarkObject can be overridden. If this property is
True, then the LonMarkObject can be overridden.

If the LonMarkObject can be overridden, you can initiate
an override by writing the
lcaLonMarkObjectRequestOverride (6) value to the
Request property of the LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax overrideFlag = statusObject. InOverride
Element Description

overrideFlag A Boolean value indicating whether
the LonMarkObject is currently in an
override state, or whether the
LonMarkObject can be overridden.
Status Property

TRUE. The LonMarkObject is in an
override state.

FALSE. The LonMarkObject is not
in an override state.

ReportMask Property

TRUE. The LonMarkObject can be
overridden.

FALSE. The LonMarkObject can not
be overridden.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 738

InvalidId
Summary Indicates that the requested LonMarkObject does not exist.

Availability Local, full, and lightweight clients.

Syntax invalidIdFlag = statusObject.InvalidId
Element Description

invalidIdFlag A Boolean value indicating whether
the LonMarkObject exists.
TRUE. The ID used to reference the

LonMarkObject is invalid;
therefore, the
LonMarkObject does not
exist.

FALSE. The LonMarkObject exists.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

InvalidRequest
Summary Indicates whether a request that is not supported by this

LonMarkObject object has been made.

You can send a request to a LonMarkObject by writing to its
Request property. See the LonMarkObject’s Request property
for more information.

Availability Local, full, and lightweight clients.

Syntax invalReqFlag = statusObject.InvalidRequest
Element Description

invalReqFlag A Boolean value indicating whether a
request that is not supported by this
LonMarkObject object has been made.
TRUE. An invalid request has been

made.
You can determine which
set of requests a
LonMarkObject supports by
reading the other properties
of the ObjectStatus object
returned through the
LonMarkObject’s
ReportMask property.

FALSE. An invalid request has not

OpenLNS Programmer's Reference 739

been made.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

LockedOut
Summary Indicates whether the LonMarkObject is in an operable state,

or whether the LonMarkObject can report this information.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the LonMarkObject is
an operable state. If this property is True, then the
LonMarkObject is online, but is not in an operable state.

• ReportMask property. Indicates whether the
LonMarkObject can report that it is locked out and
inoperable.

Availability Local, full, and lightweight clients.

Syntax lockedOutFlag = statusObject. LockedOut
Element Description

lockedOutFlag A Boolean value indicating whether
the LonMarkObject is in an operable
state, or whether the LonMarkObject
can report that it is locked out and
inoperable.
Status Property

TRUE. The LonMarkObject is
online, but is not in an
operable state.

FALSE. The LonMarkObject is
online, and it is an operable
state.

ReportMask Property

TRUE. The LonMarkObject can
report that it is locked out
and inoperable.

FALSE. The LonMarkObject can not
report that it is locked out
and inoperable.

statusObject The ObjectStatus object to be acted
on.

OpenLNS Programmer's Reference 740

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ManualControl
Summary Indicates whether the LonMarkObject is under manual

control, or whether the LonMarkObject can be placed under
manual control.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the LonMarkObject is
under manual control. If this property is True, then the
LonMarkObject is under manual control.

• ReportMask property. Indicates whether the
LonMarkObject can be placed under manual control.

Availability Local, full, and lightweight clients.

Syntax manControlFlag = statusObject. ManualControl
Element Description

manControlFlag A Boolean value indicating whether
the LonMarkObject is in under
manual control, or whether the
LonMarkObject can be manually
controlled.
Status Property

TRUE. The LonMarkObject is under
manual control.

FALSE. The LonMarkObject is not
under manual control.

ReportMask Property

TRUE. The LonMarkObject can be
manually controlled.

FALSE. The LonMarkObject can not
be manually controlled.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 741

MechanicalFault
Summary Indicates whether a mechanical fault has been detected in

the LonMarkObject object, or whether the LonMarkObject
could report a mechanical fault.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether a mechanical fault
has been detected in the LonMarkObject. If this property
is True, then a mechanical fault has been detected in the
LonMarkObject.

• ReportMask property. Indicates whether the
LonMarkObject could report a mechanical fault. If this
property is True, then the LonMarkObject could report a
mechanical fault.

Availability Local, full, and lightweight clients.

Syntax mechFaultFlag = statusObject. MechanicalFault
Element Description

mechFaultFlag A Boolean value indicating whether a
mechanical fault has been detected in
the LonMarkObject object, or whether
the LonMarkObject could report a
mechanical fault.
Status Property
TRUE. A mechanical fault has been

detected in the
LonMarkObject object.

FALSE. A mechanical fault has not
been detected.

ReportMask Property

TRUE. The LonMarkObject can
report a mechanical fault.

FALSE. The LonMarkObject can not
report a mechanical fault.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 742

ObjectId
Summary Contains the ID of the LonMarkObject to which this

ObjectStatus object applies.

Objects are numbered from 0 to n-1, where n is the number of
objects in an AppDevice. See the LonMark Application Layer
Interoperability Guidelines for more information.

Availability Local, full, and lightweight clients.

Syntax objectIdValue = statusObject.ObjectId
Element Description

objectIdValue The ID of the LonMarkObject to
which this ObjectStatus object applies

statusObject The ObjectStatus object to be acted
on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenCircuit
Summary Indicates whether an open circuit has been discovered in the

LonMarkObject object, or whether the LonMarkObject could
report an open circuit.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether an open circuit has
been discovered in the LonMarkObject object. If this
property is True, then open circuit has been discovered.

• ReportMask property. Indicates whether the
LonMarkObject could report that an open circuit has
been discovered. If this property is True, then the
LonMarkObject could report an open circuit.

Availability Local, full, and lightweight clients.

Syntax openCircuitFlag = statusObject.OpenCircuit
Element Description

openCircuitFlag A Boolean value indicating whether
an open circuit has been discovered in
the LonMarkObject object, or whether
the LonMarkObject could report an
open circuit.
Status Property
TRUE. An open circuit has been

discovered in the

OpenLNS Programmer's Reference 743

LonMarkObject object.
FALSE. An open circuit has not

been discovered.
ReportMask Property

TRUE. The LonMarkObject can
report an open circuit.

FALSE. The LonMarkObject can not
report an open circuit.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OutOfLimits
Summary Indicates whether the LonMarkObject has exceeded its alarm

limits, or whether the LonMarkObject is capable of reporting
this information.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the LonMarkObject
has exceeded its alarm limits. If this property is True,
then the alarm limits have been exceeded.

• ReportMask property. Indicates whether the
LonMarkObject could report that it has exceeded its
alarm limits. If this property is True, then the
LonMarkObject could report such information.

Availability Local, full, and lightweight clients.

Syntax limitsFlag = statusObject.OutOfLimits
Element Description

limitsFlag A Boolean value indicating whether
the LonMarkObject has exceeded its
alarm limits, or whether the
LonMarkObject could report that it
has exceeded its alarm limits.
Status Property

TRUE. The LonMarkObject has
exceeded its alarm limits.

FALSE. The LonMarkObject has not
exceeded its alarm limits.

ReportMaskProperty

OpenLNS Programmer's Reference 744

TRUE. The LonMarkObject can
report that it has exceeded
its alarm limits.

FALSE. The LonMarkObject can not
report that it has exceeded
its alarm limits.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OutOfService
Summary Indicates whether the LonMarkObject is currently

operational, or whether the LonMarkObject is capable of
reporting this information.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the LonMarkObject is
currently operational. If this property is True, then the
LonMarkObject is currently inoperable.

• ReportMask property. Indicates whether the
LonMarkObject could report that is inoperable. If this
property is True, then the LonMarkObject could report
such information.

Availability Local, full, and lightweight clients.

Syntax serviceFlag = statusObject. OutOfService
Element Description

serviceFlag A Boolean value indicating whether
the LonMarkObject is currently
operational, or whether the
LonMarkObject could report that it is
operational.
Status Property

TRUE. The LonMarkObject is
currently inoperable.

FALSE. The LonMarkObject is
currently operational.

ReportMask Property

TRUE. The LonMarkObject can
report that it is inoperable.

FALSE. The LonMarkObject can not

OpenLNS Programmer's Reference 745

report that it is inoperable.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OverRange
Summary Indicates whether the value associated with the

LonMarkObject is greater than its acceptable range, or
whether the LonMarkObject is capable of reporting this
information.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the the value
associated with the LonMarkObject is greater than its
acceptable range. If this property is True, then the value
is over its range.

• ReportMask property. Indicates whether the
LonMarkObject could report that the value associated
with it is over its range. If this property is True, then the
LonMarkObject could report such information.

Availability Local, full, and lightweight clients.

Syntax rangeFlag = statusObject.OverRange
Element Description

rangeFlag A Boolean value indicating whether
the value associated with the
LonMarkObject is greater than its
acceptable range, or whether the
LonMarkObject could report that its
value is over the acceptable range.
Status Property
TRUE. The value associated with

the LonMarkObject is
greater than its acceptable
range.

FALSE. The value is within the
acceptable range.

ReportMaskProperty

TRUE. The LonMarkObject can
report that its value is over
the acceptable range.

FALSE. The LonMarkObject can not

OpenLNS Programmer's Reference 746

report that its value is over
the acceptable range.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ProgrammingFail
Summary Indicates whether there has been a programming failure on

the LonMarkObject object, or whether the LonMarkObject
could report such a failure.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether a programming
failure on the LonMarkObject has occurred. If this
property is True, then there has been a programming
failure.

• ReportMask property. Indicates whether the
LonMarkObject can report a programmings failure
through the ObjectStatus object when it is accessed as a
status report. If this property is True, then it can report a

OpenLNS Programmer's Reference 747

failure.

Availability Local, full, and lightweight clients.

Syntax progFailFlag= statusObject.ProgrammingFail
Element Description

progFailFlag A Boolean value indicating whether a
programming failure on the
LonMarkObject has occurred, or
whether the LonMarkObject can
report a programmings failure.
Status Property
TRUE. A programming failure on

the LonMarkObject has
occurred.

FALSE. A programming failure has
not occurred.

ReportMaskProperty

TRUE. The LonMarkObject can
report a programmings
failure.

FALSE. The LonMarkObject can not
report a programmings
failure.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ProgrammingMode
Summary Indicates whether the LonMarkObject is currently in

programming mode, or whether the LonMarkObject can be
placed in programming mode.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the LonMarkObject is
programming mode. If this property is True, then the
LonMarkObject is programming mode.

• ReportMask property. Indicates whether the
LonMarkObject can be overridden. If this property is
True, then the LonMarkObject can be overridden.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 748

Syntax progModeFlag= statusObject.ProgrammingMode
Element Description

progModeFlag A Boolean value indicating whether
the LonMarkObject is currently in
programming mode, or whether the
LonMarkObject can placed in
programming mode.
Status Property

TRUE. The LonMarkObject is in
programming mode.

FALSE. The LonMarkObject is not
in programming mode.

ReportMask Property

TRUE. The LonMarkObject can be
placed in programming
mode.

FALSE. The LonMarkObject can not
be placed in programming
mode.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ReportMask
Summary Indicates whether this ObjectStatus object represents a

report mask, or a status report.

Availability Local, full, and lightweight clients.

Syntax reportMaskFlag = objStatusObject.ReportMask

Element Description

reportMaskFlag A Boolean value indicating whether
the ObjectStatus object represents a
report mask or a status report.

TRUE. The ObjectStatus object
represents a report mask.

The ObjectStatus object
identifies which status
attributes are supported by
the LonMarkObject object
that owns this ObjectStatus
object.

These ObjectStatus objects

OpenLNS Programmer's Reference 749

can be accessed through the
ReportMask property of the
LonMarkObject

FALSE. The ObjectStatus object
represents a status report.

The ObjectStatus object
reflects the current status of
the LonMarkObject.

These ObjectStatus objects
can be accessed through the
Status property of the
LonMarkObject.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ResetComplete
Summary Indicates whether the most recent reset of the

LonMarkObject has been completed, or whether the
LonMarkObject can be reset.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the most recent reset
of the LonMarkObject has completed. If this property is
True, then the most recent reset has been completed.

• ReportMask property. Indicates whether the
LonMarkObject can be reset. If this property is True,
then the LonMarkObject can be reset.

If the LonMarkObject can be reset, you can reset it by
writing the lcaLonMarkObjectRequestReset (17)
value to the Request property of the LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax completed = objectStatus.ResetComplete
Element Description

completed A Boolean value indicating whether
the most recent reset of the
LonMarkObject has been completed,
or whether the LonMarkObject can be
reset.
Status Property
TRUE. The most recent reset of the

OpenLNS Programmer's Reference 750

LonMarkObject has been
completed.

FALSE. The reset has not been
completed.

ReportMask Property

TRUE. The LonMarkObject can be
reset.

FALSE. The LonMarkObject can not
be reset.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

SelfTestInProgress
Summary Indicates whether the most recent self-test of the

LonMarkObject is still in progress, or whether a self-test can
be performed on the LonMarkObject.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the most recent
self-test of the LonMarkObject is still in progress. If this
property is True, then the most recent self-test is still in
progress.

• ReportMask property. Indicates whether a self-test can
be performed on the LonMarkObject. If this property is
True, then a self-test can be performed on the
LonMarkObject.

If the LonMarkObject can perform a self-test, you can
initiate one by writing the
lcaLonMarkObjectRequestSelfTest (3) value to the
Request property of the LonMarkObject.

Availability Local, full, and lightweight clients.

Syntax selfTestFlag = statusObject.SelfTestInProgress
Element Description

selfTestFlag A Boolean value indicating whether
the most recent self-test of the
LonMarkObject is still in progress, or
whether a self-test can be performed
on the LonMarkObject.
Status Property

OpenLNS Programmer's Reference 751

TRUE. The most recent self-test of
the LonMarkObject is still
in progress.

FALSE. The self-test has been
completed.

ReportMask Property
TRUE. A self-test can be performed

on the LonMarkObject.
FALSE. A self-test can not be

performed on the
LonMarkObject.

statusObject The ObjectStatus object to be acted on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Summary
Summary A Long that encompasses all of the status bits in the

ObjectStatus object.
This property returns 0 if all the status bits are set to 0.
Otherwise it returns the value of all of the status bits ORed
together. This provides a quick way to determine whether
there are any problems without having to check every bit.
You can read each bit separately by reading the other
properties of the ObjectStatus object.

Availability Local, full, and lightweight clients.

Syntax summaryValue = statusObject.Summary
Element Description

summaryValue The status bits from the specified
ObjectStatus object

statusObject The ObjectStatus object to be acted
on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 752

UnableToMeasure
Summary Indicates whether an input/output line failure has been

detected in the LonMarkObject object, or whether the
LonMarkObject could report an input/output line failure.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether an input/output line
failure has been detected in the LonMarkObject. If this
property is True, then an input/output line failure has
been detected in the LonMarkObject.

• ReportMask property. Indicates whether the
LonMarkObject could report an input/output line failure.
If this property is True, then the LonMarkObject could
report an input/output line failure.

Availability Local, full, and lightweight clients.

Syntax measureFlag = statusObject.UnableToMeasure
Element Description

measureFlag A Boolean value indicating whether
an input/output line failure has been
detected in the LonMarkObject object,
or whether the LonMarkObject could
report an input/output line failure.
Status Property
TRUE. An input/output line failure

has been detected in the
LonMarkObject object.

FALSE. An input/output line failure
has not been detected.

ReportMask Property

TRUE. The LonMarkObject can
report an input/output line
failure.

FALSE. The LonMarkObject can not
report an input/output line
failure.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 753

UnderRange
Summary Indicates whether the value associated with the

LonMarkObject is less than its acceptable range, or whether
the LonMarkObject is capable of reporting this information.
This description of this property depends on whether it was
accessed through the Status or ReportMask properties of a
LonMarkObject.

• Status property. Indicates whether the value associated
with the LonMarkObject is lower than its acceptable
range.

• ReportMask property. Indicates whether the
LonMarkObject can report if it is under the range of its
acceptable values through the ObjectStatus object.

Availability Local, full, and lightweight clients.

Syntax measureFlag = statusObject.UnableToMeasure
Element Description

measureFlag A Boolean value indicating whether
the value associated with the
LonMarkObject is less than its
acceptable range, or whether the
LonMarkObject is capable of
reporting this information.
Status Property
TRUE. The value associated with

the LonMarkObject is lower
than its acceptable range.

FALSE. The value associated with
the LonMarkObject is not
lower than its acceptable
range.

ReportMask Property

TRUE. The LonMarkObject can
report if it is under the
range of its acceptable
values.

FALSE. The LonMarkObject can not
report if it is under the
range of its acceptable
values.

statusObject The ObjectStatus object to be acted
on.

Data Type Boolean.

Read/Write Read only.

OpenLNS Programmer's Reference 754

Added to API Prior to LNS Release 3.0.

PingIntervals
The PingIntervals object defines the duration of the ping interval for each of the four ping
classes. Each device and router defines its ping class using the PingClass property. Setting
these values appropriately allows you to reduce network traffic. The following table
summarizes the PingIntervals object.

Description The ping interval defined for the four ping classes.

Added to API Prior to LNS Release 3.0.

Accessed Through System object.

Default Property None

Methods None.

Properties • ClassId
• MobileClsPingInterval
• Parent
• PermanentClsPingInterval
• StationaryClsPingInterval
• TemporaryClsPingInterval

Methods
The PingIntervals object does not contain any methods.

Properties
The PingIntervals object contains the following properties:

• ClassId
• MobileClsPingInterval
• Parent
• PermanentClsPingInterval
• StationaryClsPingInterval
• TemporaryClsPingInterval

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The

OpenLNS Programmer's Reference 755

following value is defined for the
PingInterval object in the ConstClassIds
constant:
69 lcaClassIdPingIntervals

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

MobileClassPingInterval
Summary The cycle time (in seconds) for pinging devices that may

move. This value will be used for all devices and routers that
have their PingClass property set to lcaPingClassMobile.
All uninstalled devices are in this category because they are
more likely to be removed by the user without informing the
network management tool.

Availability Local, full, and lightweight clients.

Syntax permPing = piObject.MobileClsPingInterval
Element Description

mobilePing The ping interval (in seconds) for the
mobile ping class.
This value must be at least 30
seconds, and may not exceed any
non-zero value for the stationary
class. In addition, the following must
be true (excluding 0 values, which
means pinging is disabled):
MobileClsPingInterval <=
TemporaryClsPingInterval <=
StationaryClsPingInterval <=
PermanentClsPingInterval

You must change each of these
properties individually; therefore,
when you start a transaction, you can
set each of these properties to 0, set
the properties to the desired values,
and then commit the transaction.
Set this property to 0 to disable
pinging.
The minimum value is 30 seconds.
65535 (-1) means "do not change."

OpenLNS Programmer's Reference 756

The default value is 60 seconds for
private media, and 0 seconds for
shared media.

piObject The PingIntervals object to be acted
on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

PermanentClassPingInterval
Summary The cycle time (in seconds) for pinging devices that are

expected to never move. This value will be used for all
devices and routers that have their PingClass property set to
lcaPingClassPermanent.

Availability Local, full, and lightweight clients.

Syntax permPing = piObject.PermanentClsPingInterval
Element Description

permPing The ping interval (in seconds) for the
permanent ping class.
Set this property to 0 to disable
pinging. The default value is 0
seconds.

OpenLNS Programmer's Reference 757

The minimum value is 900 seconds.
65535 (-1) means "do not change".

piObject The PingIntervals object to be acted
on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

StationaryClassPingInterval
The cycle time in seconds for pinging devices which are expected to move rarely. This
value will be used for all devices and routers that have their PingClass property set to
lcaPingClassStationary

Summary The cycle time (in seconds) for pinging devices that are
expected to move rarely. This value will be used for all
devices and routers that have their PingClass property set to
lcaPingClassStationary.

Availability Local, full, and lightweight clients.

Syntax stationPing = piObject.PermanentClsPingStationary

Element Description

stationPing The ping interval (in seconds) for the
stationary ping class.
0 seconds means disabled.
The minimum value is 300 seconds.
65535 (-1) means "do not change".
The default value is 900 seconds.

piObject The PingInterval object to be acted
on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

TemporaryClassPingInterval
Summary The cycle time (in seconds) for pinging devices that are

expected to move frequently. This value will be used for all
devices and routers that have their PingClass property set to
lcaPingClassTemporary.
All devices default to this class after installation.

Availability Local, full, and lightweight clients.

Syntax tempPing = piObject.TemporaryClsPingInterval
Element Description

OpenLNS Programmer's Reference 758

tempPing The ping interval (in seconds) for the
temporary ping class.
Set this property to 0 seconds to
disable pinging.
The minimum value is 60 seconds.
65535 (-1) means "do not change".
The default value is 120 seconds.

piObject The PingIntervals object to be acted
on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.0.

RecoveryStatus
A RecoveryStatus object reports status information about the current phase of OpenLNS
database recovery. You can initiate a network recovery with the
PrepareToRecoverFromNetwork and RecoverFromNetwork methods. The process that
initiated the network recovery will be blocked until recovery is complete. The
RecoveryStatus object, unlike most objects, can be accessed during an OnSystem NssIdle
callback, which allows the client that started the recovery to access the recovery status while
recovery is still in progress.

The following table summarizes the RecoveryStatus object.

Description Reports the status of the current phase in an OpenLNS
database recovery.

Added to API Prior to LNS Release 3.0.

Accessed Through System object.

Default Property None

Methods None.

Properties • ClassId
• CurrentPhaseNumber
• ItemsInPhase
• NumberPhases
• Parent
• PhaseType
• ProgressIndicator
• ProgressIndicatorType
• Status
• TotalAppDevices
• TotalChannels
• TotalConnections
• TotalNvMts
• TotalRouters

OpenLNS Programmer's Reference 759

Methods
The RecoveryStatus object does not contain any methods.

Properties
The RecoveryStatus object contains the following properties:

• ClassId
• CurrentPhaseNumber
• ItemsInPhase
• NumberPhases
• Parent
• PhaseType
• ProgressIndicator
• ProgressIndicatorType
• Status
• TotalAppDevices
• TotalChannels
• TotalConnections
• TotalNvMts
• TotalRouters

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
RecoveryStatus object in the
ConstClassIds constant:
69 lcaClassIdPingIntervals

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 760

CurrentPhaseNumber
Summary An Integer indicating the current phase of the database

recovery process.

Availability Local, full, and lightweight clients.

Syntax phaseNumValue = rsObject.CurrentPhaseNumber

Element Description

phaseNumValue The current phase number as an
integer.
Valid values from this property are 0
to the value in the NumberPhases
property. This value can be used in
conjunction with the NumberPhases
property to provide a rough estimate
of progress in the database recovery
operation.

rsObject The RecoveryStatus object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ItemsInPhase
Summary A Long indicating the total items to be processed in this

phase.

Availability Local, full, and lightweight clients.

Syntax itemsValue = rsObject.ItemsInPhase

Element Description

itemsValue The number of items to be processed.
The class of object that an 'item'
represents is determined by the
ProgressIndicatorType property.

rsObject The RecoveryStatus object to be acted
on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 761

NumbersPhases
Summary The number of phases in the database recovery operation.

This value can be used in conjunction with the
CurrentPhaseNumber property to provide a rough estimate in
the progress of a database recovery operation.

Availability Local, full, and lightweight clients.

Syntax itemsValue = rsObject.ItemsInPhase

Element Description

numPhaseValue The number of phases in the
database recovery operation.

rsObject The RecoveryStatus object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

PhaseType
Summary Indicates the current phase of the database recovery process.

Availability Local, full, and lightweight clients.

Syntax phaseTypeValue = rsObject.PhaseType

OpenLNS Programmer's Reference 762

Element Description

phaseTypeValue The current phase. The phase values,
which are contained in the
ConstRecoveryPhaseTypes constant,
are as follows:
0 lcaRecoveryPhasePreparation
1 lcaRecoveryPhaseTopology
2 lcaRecoveryPhasePhysNode
3 lcaRecoveryPhaseLogTopology
4 lcaRecoveryPhaseDeviceAddress
5 lcaRecoveryPhaseNvSubgroup
6 lcaRecoveryPhaseNvSubgoupMember
7 lcaRecoveryPhaseMtSubgroup
8 lcaRecoveryPhaseSubgroupCleanup
9 lcaRecoveryPhaseGroupCleanup
10 lcaRecoveryPhaseCleanupAddrs
11 lcaRecoveryPhaseGrpOverloading
12 lcaRecoveryPhaseSystemDevice
13 lcaRecoveryPhaseConnections
14 lcaRecoveryPhaseAliasConns
15 lcaRecoveryPhaseNvSelectorPools
16 lcaRecoveryPhaseMonitorPoints
17 lcaRecoveryPhaseCpValues

rsObject The RecoveryStatus object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ProgressIndicator
Summary Indicates how much of the database has been processed in

this phase.
The value in this property is the number of items of the type
specified in the ProgressIndicatorType property that have
been completed during this phase of database recovery.

Comparing this value to that of the ItemsInPhase property,
generates an estimate of phase completion.

Availability Local, full, and lightweight clients.

Syntax progIndicValue = rsObject.ProgressIndicator

Element Description

progIndicValue The progress indicator value. The
values for this element are contained
in the ConstClassIds constant.
This property will be one of the
following values:

OpenLNS Programmer's Reference 763

7 lcaClassIdAppDevice
9 lcaClassIdRouter
18 lcaClassIdConnections
22 lcaClassIdMessageTag
24 lcaClassIdNetworkVariable

rsObject The RecoveryStatus object to be acted
on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ProgressIndicatorType
Summary Indicates the object type by which the status of a database

recovery process will be measured.

This property determines the units for the ItemsInPhase and
ProgressIndicator properties. The status of a phase in a
recovery may be determined by the number of AppDevices,
Routers, Connections, Network Variables, or Message Tags
processed.

Availability Local, full, and lightweight clients.

Syntax progIndicTypeValue = rsObject.ProgressIndicatorType

Element Description

progIndicTypeValue The measured object type.

rsObject The RecoveryStatus object to be
acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Status
Summary Indicates the status of the database recovery process.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 764

Syntax progIndicTypeValue = rsObject.ProgressIndicatorType

Element Description

rsObject The RecoveryStatus object to be acted on.

statusValue The status of the database recovery
process.
The values for this element, which are
contained in the ConstRecoveryStatus
constant, are as follows:
0 lcaRecoveryStatusNone
1 lcaRecoveryStatusActive
2 lcaRecoveryStatusPending
3 lcaRecoveryStatusComplete

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

TotalAppDevices
Summary The total number of AppDevices discovered during the

recovery.

Availability Local, full, and lightweight clients.

Syntax totalDevicesValue = rsObject.TotalAppDevices

Element Description

rsObject The RecoveryStatus object to be
acted on.

totalDevicesValue The total number of application
devices discovered as a long.
A value of -1 indicates that the
number is unknown.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

TotalChannels
Summary The total number of Channels discovered during the

recovery.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 765

Syntax totalChannelsValue = rsObject.TotalChannels

Element Description

rsObject The RecoveryStatus object to be
acted on.

totalChannelsValue The total number of channels
discovered as a long.
A value of -1 indicates that the
number is unknown.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

TotalConnections
Summary The total number of Connections reconstructed during the

recovery.

Availability Local, full, and lightweight clients.

Syntax totalConnectionsValue = rsObject.TotalConnections

Element Description

rsObject The RecoveryStatus object to be
acted on.

totalConnectionsValue The total number of connections
reconstructed as a long.
A value of -1 indicates that the
number is unknown.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

TotalNvMts
Summary The total number of Network Variables and Message Tags

discovered during the recovery.

Availability Local, full, and lightweight clients.

Syntax totalNvMtsValue = rsObject.TotalNvMts

Element Description

rsObject The RecoveryStatus object to be acted
on.

totalNvMtsValue The total number of application
devices discovered as a long.
A value of -1 indicates that the number
is unknown.

OpenLNS Programmer's Reference 766

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

TotalRouters
Summary The total number of Routers discovered during the recovery.

Availability Local, full, and lightweight clients.

Syntax totalRoutersValue = rsObject.TotalRouters

Element Description

rsObject The RecoveryStatus object to be acted
on.

totalRoutersValue The total number of routers
discovered as a long.
A value of -1 indicates that the
number is unknown.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Router
A Router object represents a LONWORKS router. The following table summarizes the Router
object.

Description Represents a LONWORKS router.

Added to API Prior to LNS Release 3.0.

Accessed Through Routers collection object.

Default Property Name property.

Methods • Commission
• CommissionEx
• Decommission
• MoveEx
• PostMove
• PreMove
• Reboot
• Replace
• ReplaceEx
• Reset
• Test

Properties • AttachmentStatus
• AuthenticationEnabled
• BitmapFilePath
• Class
• ClassId

OpenLNS Programmer's Reference 767

• CommissionStatus
• Description
• Extensions
• FarSide
• Handle
• IconFilePath
• InitialAuthenticationKey
• Location
• Name
• NearSide
• Parent
• PingClass
• State
• Subsystems

Methods
The Router object contains the following methods.

• Commission
• CommissionEx
• Decommission
• MoveEx
• PostMove
• PreMove
• Reboot
• Replace
• ReplaceEx
• Reset
• Test

Commission
Summary Associates a Router object with a physical router, and loads

the router’s network image.
When commissioning a router while in communication with
the near side of the router, the Neuron ID of the near side
must be set. If not connected to the network, or not in
communication with the network, the Neuron ID must be set
for the near side and the far side of the router.
When commissioning is complete, a router is placed in the
lcaStateCnfgOnline state.

Do not read or write to the State property of a Router in the
same explicit transaction with this method.

In addition, you must set the InitialAuthenticationKey
property to the proper value before commissioning an
application device or router that has network management
authentication enabled, and has been previously
commissioned outside of OpenLNS, or commissioned on a
different OpenLNS network. In these circumstances,
OpenLNS will not be able to communicate with the device or
router without knowing its authentication key, since the

OpenLNS Programmer's Reference 768

device has authentication enabled. If the
InitialAuthenticationKey is set prior to commissioning the
device or router, OpenLNS will use this key to authenticate
messages sent to the device or router during the
commissioning process.

See the OpenLNS Programmer’s Guide for more information
on the steps you should take when installing devices on a
network and commissioning those devices.

Availability Local, full, and lightweight clients.

Syntax object.Commission

Element Description

object The Router object to be commissioned.

Added to API Prior to LNS Release 3.0.

CommissionEx
Summary Associates a Router object with a physical router, and loads

the router’s network image. This method is the same as the
Commission method except that it provides additional
options that you can choose from when commissioning the
router (see the description of the options element for more
information).

Availability Local, full, and lightweight clients.

Syntax object.CommissionEx options

Element Description

object The Router object to be commissioned.

options A Long value indicating the options to be
used when commissioning the router. This
determines whether the changes caused by
the commission process will be applied to
the physical router if the network
management mode is set to
lcaMgmtModeDeferConfigUpdates (1).
The values for this element, which are
stored in the ConstCommissionFlags
constant, are as follows:
0 lcaCommissionFlagNone
Updates the device as soon as the
network management mode is set to
lcaMgmtModePropagateConfigUpd
ates (0).
Use this option if you do not want the
device to be updated if the network
management mode property is set to
lcaMgmtModeDeferConfigUpdates

OpenLNS Programmer's Reference 769

(1).
1 lcaCommissionFlagPropagate
Propagates the device’s network image
in the OpenLNS database to the
physical device when the network
management mode is set to
lcaMgmtModeDeferConfigUpdates
(1). If this will cause network
inconsistencies, OpenLNS will defer the
updates, and the NS, #4039
lcaErrNsUpdatesDeferred exception
will be thrown.
If the network management mode is set
to
lcaMgmtModePropagateConfigUpd
ates (0), the device’s network image in
the OpenLNS database will be
propagated to the physical device,
regardless of whether this option is set.

Added to API Prior to LNS Release 3.0.

Decommission
Summary Sets the NeuronId property of the Router to "000000000000"

(none) and deconfigures the device.

Availability Local, full, and lightweight clients.

Syntax object.Decommission

Element Description

object The Router object to be
decommissioned.

Added to API Prior to LNS Release 3.0.

MoveEx
Summary Performs the steps required to move a router to a new

channel.
This method combines the functions performed by the
PreMove method and PostMove methods, and adds a flag
parameter to specify advanced options required for a small
set of move operations. Applications should use the PreMove
and PostMove methods whenever possible.

You must invoke the MoveEx method twice during a move.
You first need to invoke it with the lcaMovePrePhysical
flag (analogous to the PreMove call), and then once the router
ha sbeen moved, you need to invoke it again with the
lcaMovePostPhysical flag.

You should invoke the BeginSession method to begin a

OpenLNS Programmer's Reference 770

session before using the MoveEx method. This will allow your
application to avoid some failure scenarios that may occur
when routers are moved.

Availability Local, full, and lightweight clients.

Syntax routerObject.MoveEx newChannelObject, newSubnetObject,
flags

Element Description

routerObject The router to be moved from channel
to channel.

oldNearChannel The old near side channel for the
router.

oldFarChannel The old far side channel for the
router.

newNearChannel The new near side channel for the
router.

newFarChannel The new far side channel for the
router.

routerType An Integer value specifying the type
of router.

flags A Long value specifying the
movement flags. Multiple options
may be specified by logically OR'ing
individual flag values. The flag
values, which are provided in the
ConstMoveExFlags constants, are as
follows:
1 lcaMovePrePhysical

Specified when invoking the MoveEx
method prior to the physical move
2 lcaMovePostPhysical

Specified when invoking the MoveEx
method following the physical move.
8 lcaMoveOnline
Indicates that moved routers are to
be left online (default for routers).
16 lcaMoveOffline
Indicates that moved routers are to
be left offline (default for routers).
32 lcaMoveRestore
Indicates that moved routers will be
restored to their original
online/offline state. If a router is
power cycled or reset as part of the

OpenLNS Programmer's Reference 771

move, this information is lost, and
the router will be put online.

Added to API Prior to LNS Release 3.0.

PostMove
Summary Completes the move of a router from one channel to another.

As part of the move, the router’s network address may
change; however, the router’s Handle property cannot
change.
To move a router from one channel to another, follow these
steps:

1. Invoke the BeginSession method to begin a session. This
will allow your application to avoid some failure
scenarios that may occur when routers are moved.

2. Invoke the PreMove method. The target channel is
validated and the router is deconfigured. However, the
router still appears in the database as residing on the
original channel.

3. Physically move the router from one channel to another.
4. If the router being moved uses authentication, the

PostMove method should be called in a different session
than the PreMove method. This means you should call
the EndSession method to end the session begun in step
1, and then call BeginSession to begin a new session.

5. Invoke the PostMove method. This method changes the
router’s channel assignment, does any necessary
rebinding, and updates the router’s configuration.

If you use explicit transactions during this procedure, make
sure that there are separate ones for the PreMove and
PostMove steps.

Availability Local, full, and lightweight clients.

Syntax object.PostMove

Element Description

object The Router object to be moved from one
channel to another.

Added to API Prior to LNS Release 3.0.

PreMove
Summary Prepares a router for movement from one channel (or subnet)

to another. When you call this method, you must specify the
new channels (newNearChannel and newFarChannel
elements).
If this method is called while not attached to the network,
this message will throw an exception. Ignore it and call the

OpenLNS Programmer's Reference 772

PostMove method to move a router while in engineered mode.

See the PostMove method for more information on the steps
required to move a router.

Availability Local, full, and lightweight clients.

Syntax routerObject.PreMove newNearChannel, newFarChannel

Element Description

routerObject The router to be moved from channel to
channel.

newNearChannel The new near side channel for the
router.

newFarChannel The new far side channel for the router.

Added to API Prior to LNS Release 3.0.

Reboot
Summary You can use this method to reboot a router.

Rebooting a router may destroy its communication
parameters or otherwise make the router unrecoverable. The
result of rebooting a router depends on the firmware state
and reboot options specified at the time of manufacture.

Availability Local, full, and lightweight clients.

Syntax object.Reboot

Element Description

object The Router object to be rebooted.

Added to API Prior to LNS Release 3.0.

Replace
Summary Replaces one router with another. This method is typically

used to effect repair operations. The new router receives the
same network address and routing configuration as the old
router.
To automatically load the old router’s configuration into the
new router, use the ReplaceEx method. The ReplaceEx
method performs the same function as the Replace method;
however, it provides options you can use to determine how
the configuration on the old router will be managed during
the replacement.

To specify the new router, you only need to set the NeuronId
property of the RouterSide object that corresponds to the near
side of the new router.
When the replace method is complete, a new router router is
placed in the online state (lcaCnfgOnline).

Note: Do not read or write the State property of the router in

OpenLNS Programmer's Reference 773

the same explicit transaction as the invocation of this
method.

Availability Local, full, and lightweight clients.

Syntax object.Replace

Element Description

object The Router to be replaced.

Added to API Prior to LNS Release 3.0.

ReplaceEx
Summary Replaces one router with another. This method is typically

used to effect repair operations. The new router receives the
same network address and routing configuration as the old
router.

This method is similar to the Replace method except that it
provides additional options you can use. See the description
of the options element for more information.

See the Replace method for more general information on
replacing routers.

Availability Local, full, and lightweight clients.

Syntax object.ReplaceEx flags

Element Description

object The Router object to be replaced.

flags The options which apply to this Replace
operation. The possible values for this
element, which are contained in the
ConstReplaceFlags constant, are as follows:
0 No options
Enter this value if do not want to use any
options.
8 lcaReplaceFlagPropagateUpdates
Propagates the network image contained in
the database to the new router, and
deconfigures the old router, even if the
network management mode is set to
lcaMgmtModeDeferConfigUpdates (1)
when you call the ReplaceEx method.
If any of these changes will cause network
inconsistencies, OpenLNS will defer the
updates, and the NS, #4039
lcaErrNsUpdatesDeferred exception will be
thrown. Those updates will not be
propagated until the network management
mode is set back to

OpenLNS Programmer's Reference 774

lcaMgmtModePropagateConfigUpdate
s (0).
If the network management mode is set to
lcaMgmtModePropagateConfigUpdate
s (0) when you call the ReplaceEx method,
the network image contained in the
database will be propagated to the new
router and the old router will be
deconfigured, regardless if this option has
been set.

Added to API Prior to LNS Release 3.0.

Reset
Summary Sends a reset command to the router.

Availability Local, full, and lightweight clients.

Syntax object.Reset

Element Description

object The Router object to be reset.

Added to API Prior to LNS Release 3.0.

Test
Summary Tests a router. You must set the router’s Neuron ID before

invoking this method.
You can use this method to verify that a router is able to
communicate on the network, and that a subset of its
configuration matches the information contained in the
OpenLNS database. To pass the test, a router with the
expected Neuron ID must exist on the network, and respond
to queries. If the router is installed, it must contain the
expected domain/subnet/node address, and respond to
subnet/node messages on that address. It must also contain
the expected program ID, and the expected network
management authentication setting (enabled or disabled). If
network management authentication is enabled on the
router, it must contain the correct system authentication key.
Furthermore, the test verifies that there are no other nodes
that respond with the tested nodes subnet/node address.
The results of the test are contained in the Router object's
LastTestInfo property.
This service analyzes the result with the assumption that the
node's network image is up-to-date; therefore, ensure that
the node is up-to-date by invoking this service only while the
MgmtMode property is set to
lcaMgmtModePropagateConfigUpdates (0). This is
because discrepancies between the OpenLNS database and
the current configuration of the router on the network are

OpenLNS Programmer's Reference 775

normal, and can be expected while the management mode is
lcaMgmtModeDeferConfigUpdates (1). These
discrepancies will typically be resolved automatically when
the system manage mode has been changed to
lcaMgmtModePropagateConfigUpdates (0).

For more information on the Test method, see the Detecting
Devices and Detecting Device Failures section in the
OpenLNS Programmer’s Guide.

Availability Local, full, and lightweight clients.

Syntax testStatus = routerToTest.Test

Element Description

testStatus An Integer value with the results
returned by the test.

The enumerated values for testStatus,
which are contained in the
ConstTestResults constant, are as follows:
0 lcaTestResultGood
The router passed all applicable tests.
1 lcaTestResultComm
The OpenLNS Server was unable to
communicate with the router using either
Neuron ID or its subnet/node addressing.
The NetworkServiceDevice might not be
attached to the network, the
NetworkServiceDevice might be
unconfigured, the target router might not
be attached to the network, the target
router may be powered off, or the target
router may be faulty.
2 lcaTestResultCommNeuronId
The OpenLNS Server was unable to
communicate with the router using
Neuron ID addressing. Because the
router has not been added or defined, the
OpenLNS Server could not test the router
using subnet/node ID addressing. The
OpenLNS Server might not be attached to
the network, the NetworkServiceDevice
might be unconfigured, the target router
might not be attached to the network, the
target router may be powered off, or the
target router may be faulty.

3 lcaTestResultCommNeuronId
Verified
The OpenLNS Server was able to
communicate with the router using

OpenLNS Programmer's Reference 776

subnet/node addressing, but could not
communicate with the router using
Neuron ID addressing. However, through
the use of subnet/node addressed
messages, the OpenLNS Server has
verified that the router contains the
expected Neuron ID. This might be
caused by intermittent router or channel
failures. You may want to retry this
method to see if the error persists.
4 lcaTestResultCommSnode
The OpenLNS Server was able to
communicate with the router using
Neuron ID addressing, but could not
communicate with the router using
subnet/node addressing. The OpenLNS
Server was unable to verify whether the
router has been configured with the
proper domain/subnet/node address. The
router may have reconfigured itself, the
router may have been reconfigured by
another network management tool, or the
router may be faulty. The router may be
restored using the Commission method.
5 lcaTestResultSnodeVerified
The OpenLNS Server was able to
communicate with the router using
Neuron ID addressing, but could not
communicate with the router using
subnet/node addressing. However,
through the use of Neuron ID addressed
messages, The OpenLNS Server has
verified that the router contains the
expected subnet/node address. This error
can occur if the target router is in an
unconfigured state. The router may need
to be recomissioned or it may be in the
middle of a two-phase move. It also might
be caused by intermittent router or
channel failures. You may want to retry
this method to see if the error persists.
6 lcaTestResultDuplicateSnode
The OpenLNS Server was able to
communicate with the router using
Neuron ID addressing. However, when
using subnet/node addressing, the
responding router contains a different
Neuron ID. This failure indicates that
multiple routers are configured with the
same domain/subnet/node address. This

OpenLNS Programmer's Reference 777

could be caused by attaching a new router
to the network which was previously
configured as part of another network or
by two networks sharing the same media
and domain ID. This condition could also
occur if the unexpected router was
supposed to be removed from the system,
but the OpenLNS Server was unable to
update the router’s network image during
a Remove method; meanwhile, the
removed subnet/node address has been
reused for the router being tested.
7 lcaTestResultMismatchDomain
The OpenLNS Server was able to
communicate with the router using
Neuron ID addressing but could not
communicate with the router using
subnet/node addressing. Using Neuron
ID addressing, the OpenLNS Server
found that the domain ID configured in
the router does not match the database.
This result will be returned if the router’s
domain address has not be configured or
the router has become unconfigured due
to a checksum error.
8 lcaTestResultMismatchNeuronId
The OpenLNS Server was unable to
communicate with the router using
Neuron ID addressing. However, the
router that responded to the subnet/node
addressed test message contains a
different Neuron ID. It appears that the
subnet/node address is configured in the
responding router but not the tested
router. One possible cause is that the
tested router is supposed to replace the
responding router, but the network
images in both routers have not been
updated yet. You can resolve this problem
by physically removing the obsolete
router.
9 lcaTestResultMismatchSnode
The OpenLNS Server was able to
communicate with the router using
Neuron ID addressing, but could not
communicate with the router using its
subnet/node addressing. Through the use
of Neuron ID addressed messages, the
NSS has found that the subnet/node
address configured in the router does not

OpenLNS Programmer's Reference 778

match the database. This result will be
returned if the router’s domain address
has not been configured.
10 lcaTestResultNoNeuronId
The router has not been assigned a
Neuron ID.
11
lcaTestResultMismatchProgramId
The OpenLNS Server was able to
communicate with the router using both
Neuron ID and subnet/node addressing.
However, the router does not contain the
expected program ID. The router’s
program ID may have been changed by its
application program. Host routers can
modify the program ID of their attached
network interface. The router should be
Removed and Added.
12
lcaTestResultCommSnodeNotVerifie
d
The OpenLNS Server was able to
communicate with the router using
Neuron ID addressing, but could not
communicate with the router using
subnet/node addressing. The OpenLNS
Server did not attempt to verify that the
router has been configured with the
proper domain/subnet/node address
because the router is currently
authenticated, and reading the address
would result in transmitting the key over
the network. The router may have
reconfigured itself, the router may have
been reconfigured by another network
management tool, or the router may be
faulty. The router may be restored using
the Commission method.
13 lcaTestResultAuthEnabled
The OpenLNS Server was able to
communicate with the router using both
Neuron ID addressing and subnet/node
addressing. However, the router has
network management authentication
enabled despite the fact that the router’s
AuthenticationEnabled property is set to
FALSE. The router may have enabled
network management authentication
itself, the router may have been

OpenLNS Programmer's Reference 779

reconfigured by another network
management tool, or the router may be
faulty. It may be possible to restore the
router using the Commission method.
14 lcaTestResultAuthDisabled
The OpenLNS Server was able to
communicate with the router using both
Neuron ID addressing and subnet/node
addressing. However, the router has
network management authentication
disabled despite the fact that the router's
AuthenticationEnabled property is set to
TRUE. The router may have disabled
network management authentication
itself, the router may have been
reconfigured by another network
management tool, or the router may be
faulty. The router may be restored using
the Commission method.
15 lcaTestResultKeyMismatch
The OpenLNS Server was able to
communicate with the router using both
Neuron ID addressing and subnet/node
addressing. The router has network
management authentication enabled and
the node's AuthentictionEnabled property
is set to TRUE. However, the router does
not contain the current system
authentication key. The router may have
changed its authentication key itself, the
router may have been reconfigured by
another network management tool, or the
router may be faulty. It may be possible
to restore the router using the
Commission method.
16 lcaTestResultInterfaceFailure
The OpenLNS Server was unable to
communicate with the OpenLNS network
interface. The OpenLNS network
interface may have become disconnected
or faulty. Exit all OpenLNS applications
and perform diagnostics on the OpenLNS
network interface using the LONWORKS
Interfaces Control Panel application.
17 lcaTestResultInterfaceNotOnline
The OpenLNS network interface that the
OpenLNS Server is attempting to use is
not Online. Recommission the
NetworkServiceRouter of the System

OpenLNS Programmer's Reference 780

object by calling the
System.NetworkServiceRouter.Rout
er.Commission method, and make sure
that the State property of the
NetworkServiceDevice object
(NetworkServiceDevice.Router.State) is set
to lcaOnline.
18
lcaTestResultInterfaceConfigError
The OpenLNS network interface that the
OpenLNS Server is attempting to use is
not property configured. Recommission
the NetworkServiceDevice of the System
object by calling the System.
NetworkServiceDevice.Router.Comm
ission method.

routerToTest The Router to be tested.

Added to API Prior to LNS Release 3.0.

Properties
The Router object contains the following properties:

• AttachmentStatus
• AuthenticationEnabled
• BitmapFilePath
• Class
• ClassId
• CommissionStatus
• Description
• Extensions
• FarSide
• Handle
• IconFilePath
• InitialAuthenticationKey
• Location
• Name
• NearSide
• Parent
• PingClass
• State
• Subsystems

AttachmentStatus
Summary Indicates whether the device is attached and in the proper

state.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 781

Syntax returnValue = object.Count
Element Description

attachmentStatu
s

The attachment status of the router.
The values for this element, which are
stored in the
ConstDeviceAttachmentStatus
constant, are as follows:
0 lcaDeviceAttached
Indicates that the router that triggered
the event is now attached and in the
proper state.
1 lcaDeviceInImproperState
Indicates that the router that triggered
the event is now attached but not in
the proper state.
2 lcaDeviceNotAttached
Indicates that the router that triggered
the event is now not attached.

Object The Router object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.0.

AuthenticationEnabled
Summary Indicates whether a router uses network management

authentication. The following sections describe how to enable
and disable authentication.
Enabling Authentication
To enable authentication for any of the devices in a system,
follow these steps:

1. Set the system’s authentication key using the System
object’s AuthenticationKey property.

2. Set the AuthenticationEnabled property of the AppDevice
object that represents the System object’s
NetworkServiceDevice object to True. This enables
authentication for all Network Service Devices on the
system. As a result, the authentication key used by each
Full and Lightweight client application must match the
authentication key established in Step 1 the next time any
of those applications opens the network. Note that if you
have set the authentication key used by a Full client's
network interface to match the authentication key
established in step 1, then other clients can use that
connection without re-specifying the key, as long the first

OpenLNS Programmer's Reference 782

Full client remains connected to the server.

3. Set the AuthenticationEnabled property to True the
AppDevice objects that will use authentication.

Disabling Authentication
To disable authentication for all the devices in a system, follow
these steps:

1. Set the AuthenticationEnabled property to False on the
AppDevice object that represents the System object’s
NetworkServiceDevice. This disables authentication for all
application devices, routers and Network Service Devices
operating on the system.

2. Set the System object’s AuthenticationKey property to ffff
ffff ffff to indicate that authentication is disabled.

Availability Local, full, and lightweight clients.

Syntax authEnabled = Object.AuthenticationEnabled
Element Description

authEnable
d

Boolean value indicating whether a router
uses network management authentication.

If the SecurityLevel property of the System
object is set to
lcaSecurityLevelKeyDistributionEnabled
, setting this property to True enables network
management authentication and installs the
system key in the router.

If the SecurityLevel is not
lcaSecurityLevelKeyDistributionEnabled
, setting this property to True implies that
network management authentication will be
enabled by the ObjectServer, but the system
key will be installed in the router side by some
external means.
Setting this property to False results in
removing the system key from the router side
and disabling network management
authentication on the router side.
Only application devices whose
AuthenticationEnabled property is set to
True are permitted to participate in
authenticated connections. If an application
device participates in authenticated
connections, you cannot set this property to
False.

Object The object to be acted on.

Data Type Boolean.

Read/Write Read/write.

OpenLNS Programmer's Reference 783

Added to API Prior to LNS Release 3.0.

BitmapFilePath
Summary Specify the path and file name of a bitmap (*.BMP file)

representation of the object.
The bitmap files are used to store object images which may
be accessed by a director level LNS component application. A
bitmap may be of any size, although the recommended
dimensions are 40x80 pixels.

See the IconFilePath property for related information.

Availability Local clients.

Syntax bmpFilePath = object.BitmapFilePath
Element Description

bmpFilePat
h

The bitmap path and file name.

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyBMPs\Object.BMP).

Added to API Prior to LNS Release 3.0.

Class
Summary Identifies the router class (repeater, bridge, learning router

or configured router).

Availability Local, full, and lightweight clients.

Syntax classValue = routerObject.Class
Element Description

classValue The class of the router. The valid class
values, which are contained in the
ConstRouterClasses constant, are as
follows:
0 lcaConfiguredRouter
1 lcaLearningRouter (*see notes)
2 lcaRepeater
3 lcaBridge
4 lcaPermanentRepeater
5 lcaPermanentBridge
Notes:
The lcaLearningRouter (1) value is not
supported by OpenLNS. If you write the

OpenLNS Programmer's Reference 784

lcaLearningRouter (1) value to this
property, it will automatically be
converted to lcaConfiguredRouter (0).
A permanent repeater or bridge cannot be
changed to a non-permanent class.
Similarly, a non-permanent class cannot
be changed to a permanent repeater or
bridge.

routerObject The Router object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the Router
object in the ConstClassIds constant:
9 lcaClassIdRouter

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

CommissionStatus
Summary Stores the commission status of a router.

After adding a new router and setting the NeuronId property,
but before the Commission method is called, this property
will be set to lcaCommissionUpdatesPending (1). After a
successful commission, this property will be
lcaCommissionUpdatesCurrent (0).

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 785

Syntax commStatusValue = object.CommissionStatus
Element Description

object The router object to be acted on.

commStatusValu
e

The commission status of this router.
The values for this element, which are
stored in the commStatusValue
constant, are as follows:
0 lcaCommissionUpdatesCurrent
No outstanding commission updates
are pending.
1 lcaCommissionUpdatesPending
Commission updates are currently
pending, or in progress. When
database changes are made that affect
a device’s configuration, this value
represents the commission status of
the device.
The commission status will be
changed to
lcaCommissionUpdatesCurrent (0)
when the changes are successfully
propogated to the device, or to
lcaCommissionUpdatesFailed (2) if
there is a failure to propogate the
changes.
2 lcaCommissionUpdatesFailed
Commission updates are currently
pending or in progress, and the most
recent update attempt failed.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Description
Summary Stores description information about the Router object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the Router
object.

object The Router object to be acted on.

OpenLNS Programmer's Reference 786

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

Extensions
Summary Contains the Extensions collection object associated with the

specified Router.

This property returns an Extensions collection. The objects
in this collection represent user data reserved for
manufacturers. Each object is identified with a unique
identifier set by the manufacturer

Availability Local, full, lightweight, and independent clients.

Syntax extensionsColl = object.Extensions
Element Description

extensionsColl The Extensions collection object.

object The object whose Extensions
collection is being returned.

Data Type Extensions collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

FarSide
Summary Returns the far side RouterSide object for the Router device,

relative to the system’s NetworkServiceDevice that is used by the
OpenLNS Server computer. The NetworkServiceDevice can be
accessed through the NetworkServiceDevice property of the
System object.

Note: The FarSide and NearSide properties are adjusted by
OpenLNS automatically whenever the system’s
NetworkServiceDevice is moved. For more information on moving
Network Service Devices, see the Network Management:
Advanced Topics chapter in the OpenLNS Programmer’s Guide.

Availability Local, full, and lightweight clients.

Syntax routerSideObj = routerObj.NearSide
Element Description

routerSideObj The router's near side.

routerObject The Router object to be acted upon.

Data Type RouterSide object.

OpenLNS Programmer's Reference 787

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

Handle
Summary Contains the handle associated with the Router object.

An OpenLNS Object that is part of a collection is assigned an
index corresponding to its position within that collection.
This index may be used when invoking the Item property and
may also be read using the Index property.

You can also use the ItemByHandle method to retrive Router
objects.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.Handle
Element Description

returnValue The NSS handle of the object.

object The Router object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

IconFilePath
Summary Specifies the path and file name of an icon (*.ICO file)

representation of the object.

Availability Local clients.

Syntax IconFilePathFileName = object.IconFilePath
Element Description

IconFilePathFileNam
e

Icon file and path name

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyICOs\Object.ICO).
The icon file should contain the following representations:

• Standard (32x32 pixels) with 256 colors
• Small (16x16) with 16 colors
• Monochrome (32x32)
• Large (48x48) with 256 colors

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 788

InitialAuthenticationKey
Summary Contains the initial authentication key to be used when

commissioning a router.
This property must be set prior to commissioning a router that
has network management authentication enabled, and has
been previously commissioned outside of OpenLNS, or
commissioned on a different OpenLNS network. In these
circumstances, OpenLNS will not be able to communicate with
the router without knowing its authentication key because the
router has authentication enabled. If the
InitialAuthenticationKey is set prior to commissioning the
router or router, OpenLNS will use this key to authenticate
messages sent to the router during the commissioning process.
This property does not affect the key stored in the router after
a successful commission. Once the router has been
commissioned, its authentication key will either be set to
FFFFFFFFFFFF or the OpenLNS system authentication key,
as determined by the router’s AuthenticationEnabled property.

Availability Local, full, and lightweight clients.

Syntax authenticationKey = object.InitialAuthenticationKey
Element Description

authenticationKey The authentication key to be used
when commissioning the router.

object The Router object being acted upon.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.20.

Location
Summary Contains the value of the specified Router’s six byte location

as a hex string. This property must contain a 12 digit hex
string that is a valid hexadecimal value. The only valid
characters are 0-9 and A-F. For example, "0000AC43F1B6"
is a valid value.

The Location property allows you to read the Router’s
location from the OpenLNS database.

Availability Local, full, and lightweight clients.

Syntax locationValue = object.Location
object.Location = locationValue
Element Description

locationValue The location as read from the router
as a hex string.

object The Router object to be acted on.

OpenLNS Programmer's Reference 789

Data Type String (6 bytes).

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

NearSide
Summary Returns the near side RouterSide object for the Router device,

relative to the system’s NetworkServiceDevice that is used by the
OpenLNS Server computer. The NetworkServiceDevice can be
accessed through the NetworkServiceDevice property of the
System object.

Note: The FarSide and NearSide properties are adjusted by
OpenLNS automatically whenever the system’s
NetworkServiceDevice is moved. For more information on moving
Network Service Devices, see the Network Management:
Advanced Topics chapter in the OpenLNS Programmer’s Guide.

Availability Local, full, and lightweight clients.

Syntax routerSideObj = routerObj.NearSide
Element Description

routerSideObj The router's near side.

routerObject The Router object to be acted upon.

Data Type RouterSide object.

OpenLNS Programmer's Reference 790

Read/Write Read-only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object. The

parent object is determined by the means in which a child object is
accessed, not by the OpenLNS Object hierarchy. For example, an
AppDevice object's parent can be a NetworkServiceDevice object or
a AppDevices collection object

Availability Local, full, lightweight, and independent clients. Note that not all
objects that contain this property are available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally, this
property exists for the objects listed above as soon as they are
added to the API.

PingClass
Summary Determines the frequency with which a router is tested (pinged)

to determine if it is still attached to the network.
This property classifies routers based on the probability that the
router may be detached. The higher the probability, the more
frequently the router will be pinged. The Object Server assumes a
router to be detached if it cannot communicate with that router
three consecutive times.

Availability Local, full, and lightweight clients.

Syntax pingClassValue = Object.PingClass
Element Description

Object The router object to be acted on.

pingClassValue The ping class of this object.
The valid values for this element, which
are provided in the ConstPingClass
constant, are as follows:
0 lcaPingClassDefault

If this value is written to the PingClass

OpenLNS Programmer's Reference 791

property, OpenLNS will use the default
lcaPingClassStationary (3) value.
1 lcaPingClassMobile
Class for nodes which move frequently.
2 lcaPingClassTemporary
Class for temporary nodes.
3 lcaPingClassStationary
Class for nodes which rarely move. This
is the default value.
4 lcaPingClassPermanent
Class for nodes which never move.
Note: You change the ping interval
that applies to each class with the
System object's PingIntervals property.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

State
Summary Describes the state of a router.

You cannot set the state of a router in the same transaction as an
Add, Commission, or Replace method. You cannot set the state of
a router during the definition phase of the predefined components
installation scenario.
The state change may fail if the router has not been completely
updated due to a previous communication problem or if the router
has not been commissioned. If a failure occurs, use the
Commission method to force an update of the router.

Routers are taken offline while they are being configured or
commissioned.

Availability Local, full, and lightweight clients.

Syntax stateValue = object.State
Element Description

stateValue The state of the router (online or
offline). The enumerated values for
this property, which are stored in the
ConstRouterStates constant, are as
follows:
Note: The only two values that may be
written to this property are
lcaStateCnfgOnline(4) and
lcaStateSoftOffline(12). All other

OpenLNS Programmer's Reference 792

properties are read-only.
2 lcaStateUncnfg
The application is loaded but the
configuration is either not loaded, being
reloaded, or deemed corrupted due to a
configuration checksum error. A
Neuron Chip also can make itself
unconfigured by calling the Neuron C
function go_unconfigured(). The
router's service LED flashes at a one
second rate in this state.
3 lcaStateNoApplUncnfg
No application is loaded yet, the
application is in the process of being
loaded, or the application has been
deemed corrupted due to an application
checksum error or signature
inconsistency. The application does not
run in this state. The router's service
LED is steadily on in this state.
4 lcaStateCnfgOnline
Normal router state. The application is
running and the configuration is
considered valid. This is the only state
in which messages addressed to the
application are received. In all other
states, they are discarded. The router's
service LED is off in this state.
6 lcaStateCnfgOffline
Application loaded but not running.
The configuration is considered valid in
this state; the network management
authentication bit is honored. The
router's service LED is off in this state.
12 lcaStateSoftOffline
The router has an application, is
configured, and is soft-offline. It will go
online when it is reset or when
requested to go online. The router's
service LED is off in this state.
140 lcaStateCnfgBypass
The application confirmed the offline
request, but is still running (bypass
mode). The router's service LED is off
in this state.

object The router to be acted on.

OpenLNS Programmer's Reference 793

Data Type Integer.

Read/Write Read /write.

Added to API Prior to LNS Release 3.0.

Subsystems
Summary Contains the Subsystems collection object associated with the

specified Router. A Subsystem object can in turn contain a
collection of Subsystems.

Subsystems collection objects accessed through Router objects
represent the Subsystems that contain the specified Router.

Availability Local, full, and lightweight clients.

Syntax subsystemCollection = object.Subsystems
Element Description

subsystemCollection Subsystems collection associated with
the object.

object The Router object.

Data Type Subsystems collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Routers
The Routers object contains a collection of Router objects. The following table summarizes
the Routers object.

Description A collection of Router objects.

Added to API LNS Release 3.0.

Accessed Through Channel object.
Subsystem object.

Default Property Item

Methods • Add
• AddEx
• AddReference
• ItemByHandle
• ItemByNeuronID
• Remove
• RemoveEx

Properties • ClassId
• Count
• Item
• _NewEnum

OpenLNS Programmer's Reference 794

Methods
The Routers object contains the following methods.

• Add
• AddEx
• AddReference
• ItemByHandle
• ItemByNeuronID
• Remove
• RemoveEx

Add
Summary Defines a new Router object. A router consists of two halves,

NearSide and FarSide.
This method adds a router to the system, but does not install
the physical router. The Commission method is used to
install the physical router after that router is defined using
this method.
Adding a router to the system is a two-step operation:
definition and commissioning.

1. The Add method is used to define the router.

2. The Commission method is used to write the network
image on the physical router, including its network
addresses (one for each side).

The Add method can be used whether OpenLNS is physically
attached to the network or not, and while the network
management mode (MgmtMode property) is set to
lcaMgmtModePropagateConfigUpdates (0) or
lcaMgmtModeDeferConfigUpdates (1).
To modify router buffers, the router should be added using
the AddEx method. See the BufferConfiguration object for
more information.

Availability Local, full, and lightweight clients.

Syntax routerObject = routersColl.Add(routerName, nearChannel,
farChannel, routerType)
Element Description

routerObject The newly defined Router object.

routersColl The Routers collection object.

routerName A String containing the name of
the new Router.

nearChannel The Channel object for the router's
near channel.

farChannel The Channel object for the router's
far channel.

OpenLNS Programmer's Reference 795

routerType An Integer value indicating the
router type.
The valid class values, which are
contained in the
ConstRouterClasses constant, are
as follows:
0 lcaConfiguredRouter
1 lcaLearningRouter (*see
notes)
2 lcaRepeater
3 lcaBridge
4 lcaPermanentRepeater
5 lcaPermanentBridge
Notes:
The lcaLearningRouter (1) value
is not supported by OpenLNS. If
you write the lcaLearningRouter
(1) value to this property, it will
automatically be converted to
lcaConfiguredRouter (0).
A permanent repeater or bridge
cannot be changed to a
non-permanent class. Similarly, a
non-permanent class cannot be
changed to a permanent repeater
or bridge.

Added to API Prior to LNS Release 3.0.

AddEx
Summary This method is identical to the Add method of the Routers

collection, but it allows you to set additional options when
adding a router to the collection.

You must set the Neuron ID of the Router immediately after
adding it with this method, but before you perform any other
router operations. You can this by writing to the NeuronId
property of the router’s near side RouterSide object, which is
accessed through the router’s NearSide property.

Availability Local, full, and lightweight clients.

Syntax routerObject = routersColl.AddEx(routerName, nearChannel,
farChannel, routerType, flags)
Element Description

routerObject The newly defined Router object.

routersColl The Routers collection object.

routerName A String containing the name of the new
Router.

OpenLNS Programmer's Reference 796

nearChannel The Channel object for the router's near
channel.

farChannel The Channel object for the router's far
channel.

routerType An Integer value indicating the router type.
The valid class values, which are contained
in the ConstRouterClasses constant, are as
follows:
0 lcaConfiguredRouter
1 lcaLearningRouter (*see notes)
2 lcaRepeater
3 lcaBridge
4 lcaPermanentRepeater
5 lcaPermanentBridge
Notes:
The lcaLearningRouter (1) value is not
supported by OpenLNS. If you write the
lcaLearningRouter (1) value to this
property, it will automatically be converted
to lcaConfiguredRouter (0).
A permanent repeater or bridge cannot be
changed to a non-permanent class.
Similarly, a non-permanent class cannot be
changed to a permanent repeater or bridge.

flags A Long value specifying the add options for
this router.
The possible values of this element, which
are defined in the ConstRouterFlags
constant, are as follows:
0 lcaRouterFlagNoSplit
The router should be added normally.
This method behaves identically to the
Routers collection’s Add method if the flags
parameter is set to 0.
1 lcaRouterFlagSplit
The router being added splits a previously
defined channel into two pieces. When this
option is specified, the NSS splits the
channel and automatically relocates nodes
which are to end up on the far side of the
router.
A permanent bridge or permanent repeater
cannot be used to split a channel. A router
cannot perform a split if it would result in a
subnet broadcast connection spanning the
router. This option only applies if the

OpenLNS Programmer's Reference 797

network management mode is set to
lcaMgmtModePropagateConfigUpdate
s (0).

Added to API Prior to LNS Release 3.0.

AddReference
Summary Adds a Router object reference to a Routers collection.

This method can be used to add an existing Router to
multiple Subsystem objects (by invoking this method on the
Routers collection in those Subsystem objects). For example,
an application might contain both a logical hierarchy for the
system (where each subsystem represents a function, such as
lighting control or the first stage of a batch process) and a
physical hierarchy for the system (where each subsystem
represents a physical place such as a room or cell). This
method allows Routers to be placed within both hierarchies in
the appropriate subsystems.
When initially defining a router, it is first added to a single
subsystem. References to the router may then be added to
other subsystems. The router is not deleted from the
OpenLNS database or decommissioned until all references
have been deleted. The router’s association with the first
subsystem is also treated as a reference, so it may be
removed from its initial subsystem at any time.

If AddReference is used to "add" a router discovered in one of
the Discovered.<xxx> subsystems, invoking this method will
cause the router to be removed from its original discovered
subsystem.

Availability Local, full, and lightweight clients.

Syntax collection.AddReference object

Element Description

collection The Routers collection to gain the
reference.

object The Router object to be added.

Added to API Prior to LNS Release 3.0.

ItemByHandle
Summary Retrieves a Router object, specified by its handle, from a

Routers collection. The Router object to be retrieved must be
specified by its handle.

Availability Local, full, and lightweight clients.

Syntax object = coll.ItemByHandle(handle)
Element Description

object The Router object retrieved from the

OpenLNS Programmer's Reference 798

Routers collection.

coll The Routers collection object.

handle A Long value specifying the handle of
the Router object to be retrieved.

Added to API LNS Release 3.0.

ItemByNeuronID
Summary Retrieves a Router object, specified by its NeuronID property,

from a Routers collection.

Availability Local, full, and lightweight clients.

Syntax object = coll.ItemByNeuronId(neuronId)
Element Description

object The Router retrieved from the
collection.

coll The Routers collection object.

neuronId A String specifying the Neuron ID of
the Router object to be retrieved.

Added to API LNS Release 3.0.

Remove
Summary Removes a router from a subsystem. If the router is not a

member of any other subsystems, then it is removed from the
system and the network.
A router is removed from a subsystem by removing the
corresponding Router object from the Routers collection object
owned by that Subsystem object. If the router is in any other
subsystems, then nothing further is done.
If the router in not a member of any other subsystem, then
the router is completely removed from the system. The
router is removed from all connections, removed from the
system domain, and placed in the unconfigured state; the
router’s channel ID is set to 0. No other changes are made in
the router’s network image. The NSS Handle is also freed
and is available for use by the Object Server.

A Router object can only be removed from a "regular"
subsystem. The Routers collection object’s Remove method
cannot be used on the All, Discovered.Installed, or
Discovered.Uninstalled subsystems.

Availability Local, full, and lightweight clients.

Syntax RoutersColl.Remove indexName

Element Description

RoutersColl The Router collection object containing

OpenLNS Programmer's Reference 799

the router to be removed.

indexName A Long value specifying the collection
index of the Router object to remove, or
a String value specifying the name of
the Router object to remove.

Added to API Prior to LNS Release 3.0.

RemoveEx
Summary This method is identical to the Remove method of the Routers

collection, but it allows you to set additional options when
removing a router from the collection.

Availability Local, full, and lightweight clients.

Syntax routersColl.RemoveEx index, flags

Element Description

routersColl The Routers collection object.

index A Long value specifying the collection index
of the router to remove.

flags A Long value specifying the removal
options for this router.
The possible values of this element, which
are defined in the ConstRouterFlags
constant, are as follows:
0 lcaRouterFlagNoMerge
The router should be removed normally.
1 lcaRouterFlagMerge
Allows a router to be removed even though
the far side channel has nodes attached. If
this option is specified, the near side
channel will be removed. All devices on the
near side channel will be moved to the far
side channel. The application is responsible
for applying the appropriate label to the
resulting channel.
You can apply this option to any two
routers, even if they do not use the same
transceiver type. However, devices using
the remaining channel after the merge will
be unable to communicate due to the
incompatibility between the two routers. As
a result, before merging two routers with
this option, you should make sure the
routers use the same transceiver type.

This option only applies if the network
management mode property is set to
lcaMgmtModePropagateConfigUpdate

OpenLNS Programmer's Reference 800

s (0).

Added to API Prior to LNS Release 3.0.

Properties
The Routers object contains the following properties:

• ClassId
• Count
• Item
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Routers object in the ConstClassIds
constant:
10 lcaClassIdRouters

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

OpenLNS Programmer's Reference 801

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a Router object from a Routers collection. You can

retrieve a Router object from its Routers collection by passing
its index (ordinal position) within that collection as the
argument for the Item property. Index values start at 1. You
can also retrieve a Router object in Routers collections with
the Name property by passing the object’s name as a string
expression.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The Router object retrieved from the
collection.

collObject The Routers collection object to be acted
on.

index A Long type specifying the ordinal
index of the Router object to be
retrieved.

stringExpression A string type specifying the name of the
Router object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,

OpenLNS Programmer's Reference 802

you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

RouterSide
A RouterSide object represents one channel side of a Router. The FarSide and NearSide
properties of a Router object each contain a RouterSide object. The following table
summarizes the RouterSide object.

Description Represents one channel side of a Router .

Added to API Prior to LNS Release 3.0.

Accessed Through Router object.

Default Property None.

Methods • ClearStatus

Properties • BufferConfiguration
• Channel
• ClassId
• DetailInfo
• LastTestInfo
• NeuronId
• NodeId
• Parent
• PendingNeuronId
• Priority
• ProgramId
• State
• SubnetId
• Subnets

OpenLNS Programmer's Reference 803

Methods
The RouterSide object contains the following method.

• ClearStatus

ClearStatus
Summary Clears the status information stored in the router side.

The clear status method causes a LonTalk Clear Status
network diagnostic message to be sent to the specified router
side. This clears the error log, last reset cause, and
communication counters, which are generally accessed by
reading the router side's DetailInfo object.

Availability Local, full, and lightweight clients.

Syntax object.ClearStatus

Element Description

object The RouterSide object.

Added to API Prior to LNS Release 3.0.

Properties
The RouterSide object contains the following properties.

• BufferConfiguration
• Channel
• ClassId
• DetailInfo
• LastTestInfo
• NeuronId
• NodeId
• Parent
• PendingNeuronId
• Priority
• ProgramId
• State
• SubnetId
• Subnets

BufferConfiguration
Summary Contains the BufferConfiguration object associated with the

specified RouterSide object.
The property values contained within the
BufferConfiguration object are not propagated to the network
when individually set. To have the OpenLNS Server update
the new values on the network, the BufferConfiguration
property must be set with the modified BufferConfiguration
object.

OpenLNS Programmer's Reference 804

The maximum buffer size for a router side is determined
when the router's external interface file is imported. No
changes may be made to a RouterSide object's
BufferConfiguration property, which would cause the total
memory usage value to be exceeded.
If the router was defined without specifying an external
interface, OpenLNS will not be able to determine much
memory the router has, and will not allow any changes to the
BufferConfiguration property.
To change the maximum buffer size, you can specify a
different external interface file that allows for greater
memory for a router. For more information on this procedure,
see the BufferConfiguration object.

Availability Local, full, and lightweight clients.

Syntax bcObject = rsObject.BufferConfiguration
Element Description

bcObject The BufferConfiguration object
retrieved from the object.

rsObject The RouterSide object to be acted on.

Data Type BufferConfiguration Object.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Channel
Summary Contains the Channel object associated with the specified

RouterSide object. The channel assigned to a RouterSide
object is determined when you add the router to the Routers
collection.

Availability Local, full, and lightweight clients.

Syntax channelObject = object.Channel
Element Description

channelObjec
t

The Channel object.

object The RouterSide object.

Data Type Channel object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 805

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Routers object in the ConstClassIds
constant:
11 lcaClassIdRouterSide

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

DetailInfo
Summary Contains the DetailInfo object associated with the specified

RouterSide object. The DetailInfo object contains an error log
and communications status information for the RouterSide
object.

When you read this property from a RouterSide, OpenLNS
will send a query to the device to obtain this information.

Availability Local, full, and lightweight clients.

Syntax detailInfoObject = object.DetailInfo
Element Description

detailInfoObject The DetailInfo object associated with
the application device.

object The RouterSide object from which to
get status information.

Data Type DetailInfo object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 806

LastTestInfo
Summary Contains the TestInfo object containing the results of the last

time the Test method was called for this router side.

The AuxResultData property indicates which properties of
the LastTestInfo object contain useful information.

Availability Local, full, and lightweight clients.

Syntax lastTestInfo = adObject.LastTestInfo
Element Description

lastTestInfo The TestInfo object containing the last
test results.

adObject The RouterSide object to be acted on

Data Type TestInfo object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

NeuronId
Summary Contains the Neuron ID associated with the router side.

Neuron IDs are stored as 12-digit hexadecimal strings (for
example, "a327ff27ba44").

Availability Local, full, and lightweight clients.

Syntax neuronIdValue = object.NeuronId
Element Description

neuronIdValue The NeuronId of the object.

object The RouterSide object to be acted
on.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

NodeId
Summary Contains the node ID associated with a router side.

The NodeId and SubnetId comprise the logical network
address assigned to a RouterSide when the Add method is
invoked on the Router that contains the RouterSide object.

Each RouterSide is allocated a single node ID.
Note: As of OpenLNS, you can write to this property.

Availability Local, full, and lightweight clients.

Syntax nodeIdValue = object.NodeId

OpenLNS Programmer's Reference 807

Element Description

nodeIdValue The NodeId of the object.

object The RouterSide object to be acted
on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

PendingNeuronId
Summary Contains the neuron ID that will be set when the router side

is commissioned.
If a router side is commissioned with one Neuron ID, then
replaced, then the new Neuron ID is set, the NeuronId
property will still show the old Neuron ID until the
Commission method is called. This property allows the new
Neuron ID to be read before commissioning.

Availability Local, full, and lightweight clients.

Syntax neuronId = adObject.PendingNeuronId
Element Description

neuronId The pending neuron ID.

adObject The RouterSide object to be acted on.

OpenLNS Programmer's Reference 808

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

Priority
Summary Determines the router side’s priority assignment on its

channel.
An assignment of 0 indicates that the object is not assigned a
priority slot. If the object is not assigned a priority slot,
messages with priority will still use priority buffers, and will
still be sent before messages without priority. In addition,
messages with priority have the priority bit set, so that
routers will send them out using priority buffers. If a router
has a priority slot defined, the message will be forwarded on
that slot.

Availability Local, full, and lightweight clients.

Syntax priorityValue = object.Priority
Element Description

priorityValue The priority value assigned to the
object. The enumerated values that
you can set for this property, which
are stored in the
ConstLNSNodePriority constant, are
as follows:
127 lcaLNSNodePriorityMax
Represents the maximum number of
priorty slots on any LonTalk channel.
Do not set the MaxPriority property
to a value greater than this.
255 lcaLNSNodePriorityAny
The Object Server will assign the
RouterSide object the next available,
or least used, priority slot on the
channel.

object The RouterSide object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ProgramId
Summary Stores the program ID for the router side.

Every LonMark compliant LONWORKS device uses a
unique, 16-digit, hexadecimal standard program ID that uses

OpenLNS Programmer's Reference 809

the following format:
FM:MM:MM:CC:CC:UU:TT:NN
Note: You may not use colons when writing the program ID.
For a device with a program ID of 80:00:01:01:28:80:04:02,
you can write 8000010128800402 in this property.

See the Devices Interfaces section in the OpenLNS
Programmer’s Guide for a description of the format used to
display program IDs.

Availability Local, full, and lightweight clients.

Syntax programIdValue = object.ProgramId
Element Description

programIdValue The program ID value of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

State
Summary Describes the state of a router side.

You cannot set the state of a router side in the same
transaction as an Add, Commission, or Replace method. You
cannot set the state of a router side during the definition
phase of the predefined components installation scenario.
The state change may fail if the router side has not been
completely updated due to a previous communication
problem or if the router side has not been commissioned. If a
failure occurs, use the Commission method to force an update
of the router side.
Router sides are placed offline while they are being
configured or commissioned.

Availability Local, full, and lightweight clients.

Syntax stateValue = object.State
Element Description

stateValue The state of the router side (online or
offline). The enumerated values for
this property, which are stored in the
ConstDeviceStates constant, are as
follows:
Note: The only two values that may
be written to this property are
lcaStateCnfgOnline(4) and
lcaStateSoftOffline(12). All other

OpenLNS Programmer's Reference 810

properties are read-only.
2 lcaStateUncnfg
The application is loaded but the
configuration is either not loaded,
being reloaded, or deemed corrupted
due to a configuration checksum
error. A Neuron Chip also can make
itself unconfigured by calling the
Neuron C function
go_unconfigured(). The device's
service LED flashes at a one second
rate in this state.
3 lcaStateNoApplUncnfg
No application is loaded yet, the
application is in the process of being
loaded, or the application has been
deemed corrupted due to an
application checksum error or
signature inconsistency. The
application does not run in this state.
The device's service LED is steadily
on in this state.
4 lcaStateCnfgOnline
Normal device state. The application
is running and the configuration is
considered valid. This is the only
state in which messages addressed to
the application are received. In all
other states, they are discarded. The
device's service LED is off in this
state.
6 lcaStateCnfgOffline
Application loaded but not running.
The configuration is considered valid
in this state; the network
management authentication bit is
honored. The device's service LED is
off in this state.
12 lcaStateSoftOffline
The device has an application, is
configured, and is soft-offline. It will
go online when it is reset or when
requested to go online. The device's
service LED is off in this state.
140 lcaStateCnfgBypass
The application confirmed the offline
request, but is still running (bypass

OpenLNS Programmer's Reference 811

mode). The device's service LED is
off in this state.

object The RouterSide object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

SubnetId
Summary Contains the ID of the subnet. The RouterSide object's

SubnetId property identifies the subnet the device is part of.
This property can be used in conjunction with the NodeId
property to uniquely identify a device.
Note: As of OpenLNS, you can write to this property.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.SubnetId
Element Description

returnValue The subnet ID of the device.

object The RouterSide to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

Subnets
Summary Contains the Subnets collection object associated with the

specified RouterSide. The Subnets collection contains
subnets that are associated with object. For example, the
RouterSide object’s Subnets property returns a Subnets
collection object corresponding to the subnet for the device's
index 0 domain entry.

Availability Local, full, and lightweight clients.

Syntax subnetCollection = object.Subnets
Element Description

subnetCollection The returned Subnets collection

object The RouterSide object to be acted
upon.

Data Type Subnets collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 812

ServiceStatus
A ServiceStatus object contains the status of the current service request for the System
object. This object contains information regarding whether a service is waiting for a resource
such as a transaction, (if so, which resource and how many other services are ahead of this
one) or if a service is proceeding. This object, unlike most others, can be accessed during an
OnSystemNssIdle callback, which allows an OpenLNS client to check on the status of a
service while it is blocked waiting for the method or property involved in the service to
return.

The following table summarizes the ServiceStatus object.

Description Contains the status of the current service request for the
System object.

Added to API LNS Release 3.0.

Accessed Through System object.

Default Property None.

Methods None.

Properties • ClassId
• Parent
• QueuePosition
• ResourceType
• Status

Methods
The ServiceStatus object does not contain any methods.

Properties
The ServiceStatus object contains the following properties.

• ClassId
• Parent
• QueuePosition
• ResourceType
• Status

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

OpenLNS Programmer's Reference 813

classIdValue The object class of the object. The
following value is defined for the
ServiceStatus object in the
ConstClassIds constant:
85 lcaClassIdServiceStatus

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 814

QueuePosition
Summary Indicates the numbed of transactions that must be started

and completed before this service can be executed.

If the ServiceStatus object's Status property is set to
lcaSrvcQueued, this property will indicate the number of
unstarted transactions that need to be completed before this
one. For example, if this property is set to 0, the service will
start as soon as the current transaction is completed.

If the ServiceStatus object's Status property is set to a
non-zero value, this property has no meaning.

Availability Local, full, and lightweight clients.

Syntax queuePos = serviceStatusObject.QueuePosition
Element Description

queuePos The queue position of this service.

serviceStatusObject The ServiceStatus object to be
acted on.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.0.

ResourceType
Summary Indicates the resource for which the service is waiting.

If the ServiceStatus object's Status property is set to
lcaSrvcQueued, this property will indicate the number of
unstarted transactions that need to be completed before this
one. For example, if this property is set to 0, the service will
start as soon as the current transaction is completed.

If the ServiceStatus object's Status property is set to a
non-zero value, this property has no meaning.

Availability Local, full, and lightweight clients.

Syntax resType = serviceStatusObject.ResourceType
Element Description

resType The enumerated value indicating
the resource type. The possible
values for this property, which are
contained in the ConstResourceType
constant, are as follows:
0 lcaResTransactions
Indicates that the service is waiting
for one or more transactions to
complete before it can execute.

The QueuePosition property

OpenLNS Programmer's Reference 815

indicates the number of unstarted
transactions that must be
completed before the service can
execute.
1 lcaResServicePin
Reserved for future use.

serviceStatusObject The ServiceStatus object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.0.

Status
Summary Indicates the status of the service that the System is

currently executing.

Availability Local, full, and lightweight clients.

Syntax statusValue = ssObject.Status
Element Description

ssObject The ServiceStatus object to be acted
on. The possible values for this
element, which are contained in the
ConstServiceStatus constant, are as
follows:
0 lcaSrvcInactive
There is no service currently being
executed by this client.
1 lcaSrvcProgress
The service is currently being
executed by this client.
2 lcaSrvcQueued
The service is currently waiting for
transactions to complete before it can
be executed.
The number of transactions that
must be started and completed before
this service can be executed is
contained in the QueuePosition
property.

See Transactions in the OpenLNS
Programmer's Guide for more
information.
3 lcaSrvcCommFailure

OpenLNS Programmer's Reference 816

The service is unable to execute do to
a communications failure.

statusValue The status of this service.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.0.

SourceAddress
The SourceAddress object is used to indicate the source device of an update reported by the
OnMsgMonitorPointUpdateEvent or OnNvMonitorPointUpdateEvent events. You should not
use the source address to determine the data source of an update while performing runtime
monitor and control operations is not recommended because it may impact network
performance. Instead, your monitoring application should create unique tag values for each
monitor point, and these values should be used to uniquely identify the source of the update.
For more information on tag values, see the Tag property of the ObjectServer.

The following table summarizes the SourceAddress object.

Description Indicates the source device that generated a network variable
or message monitor point update.

Added to API LNS Release 3.0.

Accessed Through None.

Default Property None.

Methods None.

Properties • ClassId
• DomainId
• NodeId
• Parent
• SubnetId

Methods
The SourceAddress object does not contain any methods.

Properties
The SourceAddress object contains the following properties.

• ClassId
• DomainId
• NodeId
• Parent
• SubnetId

OpenLNS Programmer's Reference 817

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
SourceAddress object in the
ConstClassIds constant:
82 lcaClassIdSourceAddress

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

DomainId
Summary Contains the domain ID of the device which generated the

network variable or message monitor point update.
The domain ID is stored as a string of hexadecimal digits.
For example, a 3-byte domain ID would be represented as
follows: "32a0cf". Domain IDs can be 1, 3, or 6 bytes in
length.
If the network variable of message monitor point update
came from a device using Neuron ID addressing that is on a
different domain than the OpenLNS database, this property
contains an empty string.

Availability Local and full clients.

Syntax domainIdValue = srcAddrObject.DomainId
Element Description

domainIdValue The domain ID for the subnet.

srcAddrObject The SourceAddress object to be
acted on.

Data Type String.

Read/Write Read only.

OpenLNS Programmer's Reference 818

Added to API LNS Release 3.0.

NodeId
Summary Contains the node ID of the device that generated the

network variable or message monitor point update.

Availability Local, full, and lightweight clients.

Syntax nodeIdValue = object.NodeId
Element Description

nodeIdValue The NodeId of the object.

object The SourceAddress object to be
acted on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

SubnetId

OpenLNS Programmer's Reference 819

Summary Contains the subnet ID of the device that generated the
network variable or message monitor point update.

A device's SubnetId property identifies the subnet on which
the device resides. This property can be used in conjunction
with the NodeId property to uniquely identify a device.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.SubnetId
Element Description

returnValue The subnet ID of the device.

object The SourceAddress to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Subnet
The Subnet object represents a single instance of a subnet. Subnets are the second
component of the three-component LonTalk addressing hierarchy of domain/subnet/node ID.
The subnet address is the level at which routers decide whether to forward a packet;
therefore, the same subnet cannot appear on both sides of a configured or learning router.
Subnets are typically added automatically when routers or devices are added. In most cases
there is no reason for your application to manually allocate subnets. Subnets can be
explicitly added using the Add method of the System object's Subnets collection. This allows
an OpenLNS application to force a given set of devices onto the same subnet by specifying
that subnet when adding the device, or by subsequently moving the device to another subnet
with the MoveEx method. This will allow your application to take advantage of subnet
broadcast messaging.

The following table summarizes the Subnet object.

Description Represents a single instance of a subnet.

Added to API Prior to LNS Release 3.0.

Accessed Through Subnets collection object.

Default Property Name.

Methods None.

Properties • BitmapFilePath
• ClassId
• Description
• DomainId
• Extensions
• IconFilePath
• Name
• Parent
• SubnetId

OpenLNS Programmer's Reference 820

Methods
The Subnet object does not contain any methods.

Properties
The Subnet object contains the following properties.

• BitmapFilePath
• ClassId
• Description
• DomainId
• Extensions
• IconFilePath
• Name
• Parent
• SubnetId

BitmapFilePath
Summary Specify the path and file name of a bitmap (*.BMP file)

representation of the object.
The bitmap files are used to store object images which may
be accessed by a director level LNS component application. A
bitmap may be of any size, although the recommended
dimensions are 40x80 pixels.

See the IconFilePath property for related information.

Availability Local clients.

Syntax bmpFilePath = object.BitmapFilePath
Element Description

bmpFilePath The bitmap path and file name.

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyBMPs\Object.BMP).

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to

OpenLNS Programmer's Reference 821

Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the Subnet
object in the ConstClassIds constant:
16 lcaClassIdSubnet

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Description
Summary Stores description information about the Subnet object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the Subnet
object.

object The Subnet object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

DomainId
Summary Contains the domain ID for a subnet.

The domain ID is stored as a string of hexadecimal digits.
For example, a 3-byte domain ID would be represented as
follows: "32a0cf". Domain IDs can be 1, 3, or 6 bytes in
length.

Availability Local, full, and lightweight clients.

Syntax domainIdValue = subnetObject.DomainId
Element Description

domainIdValue The domain ID for the subnet.

OpenLNS Programmer's Reference 822

subnetObject The Subnet object.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Extensions
Summary Contains the Extensions collection object associated with the

specified Subnet.

This property returns an Extensions collection. The objects
in this collection represent user data reserved for
manufacturers. Each object is identified with a unique
identifier set by the manufacturer

Availability Local, full, lightweight, and independent clients.

Syntax extensionsColl = object.Extensions
Element Description

extensionsColl The Extensions collection object.

object The object whose Extensions
collection is being returned.

Data Type Extensions collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

IconFilePath
Summary Specifies the path and file name of an icon (*.ICO file)

representation of the object.

Availability Local clients.

Syntax IconFilePathFileName = object.IconFilePath
Element Description

IconFilePathFileName Icon file and path name

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyICOs\Object.ICO).
The icon file should contain the following representations:

• Standard (32x32 pixels) with 256 colors

OpenLNS Programmer's Reference 823

• Small (16x16) with 16 colors
• Monochrome (32x32)
• Large (48x48) with 256 colors

Added to API Prior to LNS Release 3.0.

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

OpenLNS Programmer's Reference 824

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

SubnetId
Summary Contains the ID of the subnet.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.SubnetId
Element Description

returnValue The subnet ID of the device.

object The Subnet to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Subnets
The Subnets object represents a collection of Subnet objects. Subnets are typically added
automatically when routers or devices are added. In most cases there is no reason for your
application to manually allocate subnets. Subnets can be explicitly added using the Add
method of the System object's Subnets collection. This allows an LCA application to force a
given set of devices onto the same subnet to be able to take advantage of subnet broadcast
messaging.

• The Subnets collection accessed through the AppDevice or RouterSide objects always
returns a collection containing the single subnet associated with the device's primary
domain.

• The Subnets collection accessed through the System object represents all of the subnets
in a system.

The following table summarizes the Subnets object.

Description A collection of Subnet objects.

Added to API LNS Release 3.0.

Accessed Through AppDevice object.
RouterSide object.
System object.

Default Property Item

Methods • Add
• Remove

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

OpenLNS Programmer's Reference 825

Methods
The Subnets object contains the following methods.

• Add
• Remove

Add
Summary Defines a new Subnet object.

Subnets are typically added automatically when routers or
devices are added. In most cases there is no reason for your
application to manually allocate subnets. Subnets can be
explicitly added using this method. You can then force a
given set of devices onto the same subnet with the MoveEx
method take advantage of subnet broadcast messaging.

Availability Local, full, and lightweight clients.

Syntax subnetObject = subnetsColl.Add(subnetName, subnetId)
Element Description

subnetObject The newly defined subnet object.

subnetsColl The Subnets collection object.

subnetName A String containing the name of
the subnet.

subnetId An Integer value indicating the
subnet ID.
This element may be a value from
0–255.
A value of 0 indicates that the
Object Server should assign the
subnet ID.

Added to API Prior to LNS Release 3.0.

Remove
Summary Removes a subnet from the system. A subnet may only be

removed if there are no devices assigned to it.

Availability Local, full, and lightweight clients.

Syntax subnetsColl.Remove indexName

Element Description

subnetsColl The Subnets collection object containing
the subnet to be removed.

indexName A Long value specifying the collection
index of the Subnet object to be
removed, or a String value specifying
the name of the Subnet object to be
removed.

OpenLNS Programmer's Reference 826

Added to API Prior to LNS Release 3.0.

Properties
The Subnets object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Subnets object in the ConstClassIds
constant:
17 lcaClassIdSubnets

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

OpenLNS Programmer's Reference 827

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a Subnet object from a Subnets collection. You can

retrieve a Subnet object from its Subnets collection by
passing its index (ordinal position) within that collection as
the argument for the Item property. Index values start at 1.

You can also retrieve a Subnet object in Subnets collections
with the Name property by passing the Subnet object’s name
as a string expression.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The Subnet object retrieved from the
collection.

collObject The Subnets collection object to be acted
on.

index A Long type specifying the ordinal
index of the Subnet object to be
retrieved.

stringExpression A string type specifying the name of the
Subnet object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent

OpenLNS Programmer's Reference 828

clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

OpenLNS Programmer's Reference 829

Subsystem
The Subsystem object represents a logical grouping of devices and routers. Subsystems may
be hierarchical. Each user-defined subsystem may itself contain additional user-defined
subsystems.

The System object's Subsystems collection contains the top-level subsystems in the user's
subsystem hierarchy plus two pre-defined subsystems: the ALL and the Discovered
subsystem. These predefined Subsystem objects are described as follows:

• The ALL subsystem is always given index 1 within the System object’s Subsystems
collection. This subsystem contains all objects in the network database, including the
subsystems in the system that are managed by the LNS client applications. However,
this also includes transient objects that OpenLNS uses that should not be accessed by
client applications. In general, you should not use the ALL subsystem, and you should
not iterate through this subsystem to get a list of devices or routers on a network.
The ALL subsystem, however, may be useful if you are not sure to which subsystem a
device or router belongs, but you know the handle or Neuron ID of the device or router.
In that case, you can locate the device by accessing AppDevices or Routers collection of
the ALL subsystem, and invoking the ItemByHandle or ItemByNeuronId methods.
A newly discovered uninstalled router (by service pin, or device discovery) will not
appear in the ALL subsystem's RouterDevices collection until the
Discovered.Uninstalled.RouterDevices collection is accessed.

• The Discovered subsystem is always given index 2 in the System object's Subsystems
collection. The AppDevices and RouterDevices properties in the Discovered subsystem
are empty collections; however, this pre-defined subsystem contains two special-purpose
subsystems: the Installed and Uninstalled subsystems. These two special-purpose
subsystems are described as follows:
o The Discovered.Installed subsystem is always at Index 1 in the Discovered

subsystem. It contains all devices that were not explicitly added to a subsystem by an
OpenLNS client. For example, all NSDs will initially be in this subsystem because
they are created implicitly by OpenLNS. If you use the Move or MoveEx method to
move an NSD or application device in the Disovered.Installed subsystem to a user
subsystem manually, or if you use the AddReference method to add a reference to a
device in the Discovered.Uninstalled subsystem to a user subsystem, the device
will be removed from the Discovered.Installed subsystem. Devices discovered by
network recovery operations are also stored in this subsystem, until they are moved
by an application to a user subsystem.

o The Discovered.Uninstalled subsystem is always at Index 2 in the Discovered
subsystem. It contains unconfigured devices that have been automatically
discovered on the network or devices that have been discovered by the System
object's DiscoverDevices method.

Write access to the application devices and routers contained within these
subsystems is limited. Devices may not be added to or deleted from these
subsystems; however, they may be moved to other subsystems, effectively installing
them using the AddReference method of the AppDevices or Routers collections. You
can rename the application devices and routers stored in these subsystems by
writing to their Name property, but you cannot commission them or modify their
Neuron IDs until you move them to another subsystem.

OpenLNS Programmer's Reference 830

Note: The name of a top-level Subsystem can not be the same as the System object's name.
See the Path property for more information.

The following table summarizes the Subsystem object.

Description Represents a logical grouping of devices and routers.

Added to API Prior to LNS Release 3.0.

Accessed Through Subsystems property.

Default Property Name.

Methods None.

Properties • AppDevices
• BitmapFilePath
• ClassId
• Description
• Extensions
• Handle
• IconFilePath
• Name
• Parent
• Path
• RouterDevices
• Subsystems

Methods
The Subsystem object does not contain any methods.

Properties
The Subsystem object contains the following properties.

• AppDevices
• BitmapFilePath
• ClassId
• Description
• Extensions
• Handle
• IconFilePath
• Name
• Parent
• Path
• RouterDevices
• Subsystems

AppDevices
Summary Contains the AppDevices collection object associated with the

specified Subsystem object. The AppDevices property
represents all the devices on the channel.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 831

Syntax appDevicesCollection = object.AppDevices
Element Description

appDevicesCollection The AppDevices collection returned.

object The Subsystem object to be acted on.

Data Type AppDevices collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

BitmapFilePath
Summary Specify the path and file name of a bitmap (*.BMP file)

representation of the object.
The bitmap files are used to store object images which may
be accessed by a director level LNS component application. A
bitmap may be of any size, although the recommended
dimensions are 40x80 pixels.

See the IconFilePath property for related information.

Availability Local clients.

Syntax bmpFilePath = object.BitmapFilePath
Element Description

bmpFilePath The bitmap path and file name.

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyBMPs\Object.BMP).

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the

OpenLNS Programmer's Reference 832

Subsystem object in the ConstClassIds
constant:
5 lcaClassIdSubsystem

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Description
Summary Stores description information about the Subsystem object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the Subsystem
object.

object The Subsystem object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

Extensions
Summary Contains the Extensions collection object associated with the

specified Subsystem.

This property returns an Extensions collection. The objects
in this collection represent user data reserved for
manufacturers. Each object is identified with a unique
identifier set by the manufacturer

Availability Local, full, lightweight, and independent clients.

Syntax extensionsColl = object.Extensions
Element Description

extensionsColl The Extensions collection object.

object The object whose Extensions
collection is being returned.

Data Type Extensions collection object.

OpenLNS Programmer's Reference 833

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Handle
Summary Contains the handle associated with the Subsystem object.

An OpenLNS Object that is part of a collection is assigned an
index corresponding to its position within that collection.
This index may be used when invoking the Item property.
Some OpenLNS Objects are tracked internally by the
OpenLNS Server using a unique handle. You can fetch
objects using the ItemByHandle method.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.Handle
Element Description

returnValue The NSS handle of the object.

object The object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

IconFilePath
Summary Specifies the path and file name of an icon (*.ICO file)

representation of the object.

Availability Local clients.

Syntax IconFilePathFileName = object.IconFilePath
Element Description

IconFilePathFileNam
e

Icon file and path name

object The object to be acted on.

Data Type String.

Read/Write Read/write.
If you write to this property, you must specify the bitmap’s
full path and file name (for example,
C:\MyICOs\Object.ICO).
The icon file should contain the following representations:

• Standard (32x32 pixels) with 256 colors
• Small (16x16) with 16 colors
• Monochrome (32x32)
• Large (48x48) with 256 colors

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 834

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

OpenLNS Programmer's Reference 835

Path
Summary Contains the full system and subsystem pathname for this

subsystem.
Pathnames may be used in place of names when fetching
Subsystem objects from the System's Subsystems collection
via the Item property.
The pathname for a subsystem is the system name and the
subsystem hierarchy leading to that subsystem, with all
names separated by periods. The system name is optional. An
example pathname is MySystem.Discovered.Installed.
None of the top-level subsystems can have the same name as
the system because the resulting subsystem path name
would be ambiguous (for example, if a top-level subsystem in
the My System system was named My System, a pathname
of "My System" could represent either the system name or a
top-level subsystem name).
If this pathname is to be passed remotely, it may be up to 170
characters in length.
If this pathname is only to be used locally, there is no defined
limit. Pathnames greater that 170 characters must not be
used if remote OpenLNS clients will be used that need to
access the subsystems with long path names.

Availability Local, full, and lightweight clients.

Syntax subsystemPath = subsystemObject.Path
Element Description

subsystemPath The full pathname of the subsystem.

subsystemObject The Subsystem object to be acted on.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

RouterDevices
Summary Returns the Routers collection for the specified Subsystem.

This collection contains all the Router objects installed in the
specified Subsystem.
Note: A newly discovered uninstalled router (by service pin,
or device discovery) will not appear in the ALL subsystem's
RouterDevices collection until the
Discovered.Uninstalled.RouterDevices collection is
accessed.

Availability Local, full, and lightweight clients.

Syntax routersCollection = object.RouterDevices

OpenLNS Programmer's Reference 836

Element Description

object The Subsystem object to be acted on.

routersCollection The Routers collection returned.

Data Type Routers collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Subsystems
Summary Contains the Subsystems collection object associated with the

specified Subsystem object.

A Subsystems collection accessed through a Subsystem object
can be used to represent and define subsystem hierarchy.
For example, you could define a subsystem representing a
building. The building subsystem could consist of separate
subsystems for each floor, and each floor subsystem could
contain a set of subsystems for each room on the floor. The
room subsystem could then contain separate subsystems for
HVAC, security, and lighting subsystems. Defining
subsystem hierarchies in this way should allow you to keep
the application devices and routers in your network
organized by location.

Availability Local, full, and lightweight clients.

Syntax subsystemCollection = object.Subsystems
Element Description

subsystemCollection The Subsystems collection
associated with the object.

object The Subsystem object.

Data Type Subsystems collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Subsystems
The Subsystems object represents a collection of Subsystem objects. A Subsystems collection
accessed through an AppDevice or Router object represents all of the subsystems which
contain that AppDevice or Router object.

A Subsystems collection accessed through a Subsystem object can be used to represent and
define subsystem hierarchy. For example, you could define a subsystem representing a
building. The building subsystem could consist of separate subsystems for each floor, and
each floor subsystem could contain a set of subsystems for each room on the floor. The room
subsystem could then contain separate subsystems for HVAC, security, and lighting
subsystems. Defining subsystem hierarchies in this way should allow you to keep the
application devices and routers in your network organized by location.

OpenLNS Programmer's Reference 837

The Subsystems collection accessed through the ALL subsystem contains all objects in the
network database, including the subsystems in the system that are managed by the LNS
client applications. This includes transient objects that OpenLNS uses that should not be
accessed by client applications. In general, you should not use the ALL subsystem.

The following table summarizes the Subsystems object.

Description A collection of Subsystem objects.

Added to API Prior to LNS Release 3.0.

Accessed Through AppDevice object.
Router object.
Subsystem object.
System object.

Default Property Item

Methods • Add
• ItemByHandle
• Remove

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The Subsystems object contains the following methods.

• Add
• ItemByHandle
• Remove

Add
Summary Defines a new Subsystem object. A subsystem is an object

that contains other subsystems, application devices, and
routers.
A subsystem is an object that contains other subsystems,
application devices, and routers. Subsystems can be used to
organize devices just as directories can be used to organize
files. For example, each subsystem could represent
groupings of devices in a room, or on a single floor of a
building.
For more detailed information about subsystems and how
they fit into the OpenLNS Object Hierarchy, see the
OpenLNS Object Server Hierarchy section in the OpenLNS
Programmer’s Guide.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 838

Syntax subsystemObject = subsystemsColl.Add(subsystemName)
Element Description

subsystemObject The newly defined Subsystem
object.

subsystemsColl The Subsystems collection object.

subsystemName A String containing the name of
the Subsystem.

Added to API Prior to LNS Release 3.0.

ItemByHandle
Summary Retrieves a Subsystem object, specified by its handle, from a

Subsystems collection.

Availability Local, full, and lightweight clients.

Syntax object = coll.ItemByHandle(handle)
Element Description

object The Subsystem object retrieved from the
Subsystems collection.

coll The Subsystems collection object.

handle A Long value specifying the handle of
the Subsystem object to be retrieved.

Added to API LNS Release 3.0.

Remove
Summary Removes a Subsystem object from the Subsystems collection.

Availability Local, full, and lightweight clients.

Syntax objectColl.Remove indexName

Element Description

objectColl The Subsystems collection object
containing the Subsystem object to be
removed.

indexName A Long value specifying the collection
index of the Subsystem object to be
removed, or a String value specifying
the name of the Subsystem object to be
removed.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 839

Properties
The Subsystems object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

ClassID
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Subsystems object in the ConstClassIds
constant:
6 lcaClassIdSubsystems

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

OpenLNS Programmer's Reference 840

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a Subsystem object from a Subsystems collection.

You can retrieve a Subsystem object from its Subsystems
collection by passing its index (ordinal position) within that
collection as the argument for the Item property. Index
values start at 1.

You can also retrieve a Subsystem object in Subsystems
collections with the Name property by passing the Subsystem
object’s name as a string expression.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The object retrieved from the collection.

collObject The collection object to be acted on.

index A Long type specifying the ordinal
index of the object to retrieve.

stringExpression A string type specifying the name of the
object to retrieve.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent

OpenLNS Programmer's Reference 841

Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

System
A System object represents a system managed by a single OpenLNS Server. There is one
System per Network object. The following table summarizes the System object.

Description A system managed by a single OpenLNS Server.

OpenLNS Programmer's Reference 842

Added to API Prior to LNS Release 3.0.

Accessed Through Systems collection object.

Default Property Name.

Methods • BeginAttachmentEvent
• BeginChangeEvent
• BeginCommissionEvent
• BeginLicenseEvent
• BeginLonMarkObjectStatusChangeEvent
• BeginMissedEvent
• BeginNodeConnChangeEvent
• BeginNodeIntfChangeEvent
• BeginNssIdleEvent
• BeginServicePinEvent
• BeginSession
• BeginSystemMgmtModeChangeEvent
• CancelTransaction
• Close
• CommittTransaction
• DeconfigNetwork
• DiscoverDevices
• DoEventSync
• DsRestoreOptions
• DsSaveOptions
• EndAttachmentEvent
• EndChangeEvent
• EndCommissionEvent
• EndLonMarkObjectStatusChangeEvent
• EndMissedEvent
• EndNodeConnChangeEvent
• EndNodeIntfChangeEvent
• EndNssIdleEventEnd
• EndServicePinEvent
• EndSession
• EndSystemMgmtModeChangeEvent
• ExtensionByHandle
• GetPermission
• GetProgramId
• Open
• PrepareToRecoverFromNetwork
• RecoverFromNetwork
• RetryUpdates
• RestoreLicense
• SetEventSyncMode
• StartTransaction
• WinkByNeuronId

Properties • Accounts
• ActivationLicense
• ApplicationHandle
• ApplicationName
• AuthenticationKey

OpenLNS Programmer's Reference 843

• ClassId
• ClientId
• CommissionedDeviceCount
• ComponentApps
• Connections
• CurrentAccount
• CurrentDeviceCount
• CustomerId
• DebugTraceFlag
• Description
• DiscoveryInterval
• DiscoveryLimitedFlag
• DomainId
• DsPollInterval
• DsPriority
• DsRepeatTimer
• DsRetries
• DsRetryCount
• DsTxTimer
• Extensions
• FileTransfer
• Handle
• HostTimer
• ImportDirectory
• InstallOptions
• IsOpen
• LastError
• LaunchLcaServerFlag
• LdrfCatalogPath
• LdrfLanguages
• MgmtMode
• Name
• NetworkResources
• NetworkServiceDevice
• NssDbVersion
• Parent
• PermissionString
• PingIntervals
• RecoveryStatus
• RegisterServicePin
• RemoteChannel
• RepeatTimer
• ResourceLanguageId
• RetryCount
• SecurityLevel
• ServiceStatus
• State
• Subnets
• Subsystems
• TemplateLibrary
• TxTimer
• UncommissionedDeviceCount

OpenLNS Programmer's Reference 844

• UninstalledDeviceCount
• UpdateInterval

Methods
The System object contains the following methods:

• BeginAttachmentEvent
• BeginChangeEvent
• BeginCommissionEvent
• BeginLicenseEvent
• BeginLonMarkObjectStatusChangeEvent
• BeginMissedEvent
• BeginNodeConnChangeEvent
• BeginNodeIntfChangeEvent
• BeginNssIdleEvent
• BeginServicePinEvent
• BeginSession
• BeginSystemMgmtModeChangeEvent
• CancelTransaction
• Close
• CommittTransaction
• DeconfigNetwork
• DiscoverDevices
• DoEventSync
• DsRestoreOptions
• DsSaveOptions
• EndAttachmentEvent
• EndChangeEvent
• EndCommissionEvent
• EndLonMarkObjectStatusChangeEvent
• EndMissedEvent
• EndNodeConnChangeEvent
• EndNodeIntfChangeEvent
• EndNssIdleEventEnd
• EndServicePinEvent
• EndSession
• EndSystemMgmtModeChangeEvent
• ExtensionByHandle
• GetPermission
• GetProgramId
• Open
• PrepareToRecoverFromNetwork
• RecoverFromNetwork
• RetryUpdates
• RestoreLicense
• SetEventSyncMode
• StartTransaction
• WinkByNeuronId

BeginAttachmentEvent
Summary Enables the OnAttachmentEvent for a system for a given

OpenLNS Programmer's Reference 845

object type.
To begin events for device and router attachments, you must
call this method twice: once with the lcaAppDeviceEvent
parameter, and once with the lcaRouter parameter.

Availability Local, full, and lightweight clients.

Syntax systemObject.BeginAttachmentEvent objectType

Element Description

systemObject The System object to be acted on.

objectType An integer determining the object
type for which to begin attachment
events.
The possible values for this
element, which are contained in
the ConstDeviceEventTypes
constant, are as follows:
0 lcaAppDeviceEvent
1 lcaRouterEvent

Added to API Prior to LNS Release 3.0.

BeginChangeEvent
Summary Enables the OnChangeEvent for a system for a given object

type.
You must call this method once for every type of object for
which change events are to be received.

Availability Local, full, and lightweight clients.

Syntax systemObject.BeginChangeEvent objectType

Element Description

systemObject The System object to be acted on.

objectType An integer determining the object
type for which to begin change
events.
The possible values for this
element, which are contained in
the ConstDeviceEventTypes
constant, are as follows:
0 lcaAppDeviceEvent
1 lcaRouterEvent

Added to API Prior to LNS Release 3.0.

BeginCommissionEvent
Summary Enables the OnCommission event for a system for a given

OpenLNS Programmer's Reference 846

object type.

Availability Local, full, and lightweight clients.

Syntax systemObject.BeginCommissionEvent objectType

Element Description

systemObject The System object to be acted on.

objectType An integer determining the object
type for which commission events
will be enabled.
The possible values for this
element, which are contained in
the ConstDeviceEventTypes
constant, are as follows:
0 lcaAppDeviceEvent
1 lcaRouterEvent

Added to API Prior to LNS Release 3.0.

BeginLonMarkObjectStatusChangeEvent
Summary Registers your application for the

OnLonMarkObjectStatusChange event. The
OnLonMarkObjectStatusChange event will then be fired each
time an OpenLNS client application changes the status of a
LonMarkObject on the System .
OpenLNS applications are required to respond to license
expiration events as specified in the OpenLNS license
agreement. You can use this method to begin monitoring for
these events.

Availability Local, full, and lightweight clients.

Syntax systemObject. BeginLonMarkObjectStatusChangeEvent

Element Description

systemObject The System object to be acted on.

Added to API Prior to LNS Release 3.0.

BeginMissedEvent
Summary Enables the OnMissedEvent for a system.

You should call this method at initialization if missed events
will be used. In addition, to enable missed events, this
method also causes a ping event to be sent to the NSI every
60 to 90 seconds to ensure that it is still there to receive
events.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 847

Syntax systemObject.BeginMissedEvent

Element Description

systemObject The System object to be acted on.

Added to API Prior to LNS Release 3.0.

BeginNodeConnChangeEvent
Summary Enables the OnNodeConnChangeEvent for a system.

Availability Local, full, and lightweight clients.

Syntax systemObject.BeginNodeConnChangeEvent

Element Description

systemObject The System object to be acted on.

Added to API Prior to LNS Release 3.0.

BeginNodeIntfChangeEvent
Summary Enables the OnNodeIntfChange event for a system.

Availability Local, full, and lightweight clients.

Syntax systemObject. BeginNodeIntfChangeEvent

Element Description

systemObject The System object to be acted on.

Added to API Prior to LNS Release 3.0.

BeginNssIdleEvent
Summary Enables the OnSystemNssIdle event for a system.

You must call the EndNssIdleEvent method before doing
anything that may render your handler incapable of
responding to the OnSystemNssIdle event.

The OnSystemNssIdle event will be fired while your
application is waiting for lengthy network operations to
complete. Instances of this event will be returned
synchronously, and if your application does not handle the
event in a timely manner, your application may hang.

Availability Local, full, and lightweight clients.

Syntax systemObject. BeginNssIdleEvent maxIntervalTime

Element Description

systemObject The System object to be acted on.

maxIntervalTime A Long value specifying the
maximum time between idle events
in milliseconds. The valid range for

OpenLNS Programmer's Reference 848

this element is 0–65,535.

Added to API Prior to LNS Release 3.0.

BeginServicePinEvent
Summary Enables the OnSystemServicePin event for a system.

An event tag is returned from the method. Multiple service
pin events can be enabled at one time, each having a
different tag. When the service pin event is fired, the event
tag is returned as one of the parameters.

Availability Local, full, and lightweight clients.

Syntax eventTag = systemObject.BeginServicePinEvent

Element Description

systemObject The System object to be acted on.

eventTag An Integer representing an
allocated event tag.

Added to API Prior to LNS Release 3.0.

BeginSession
Summary Begins a session for methods and properties that must be

grouped to avoid intermediate error conditions. Currently,
this only applies to operations that affect the physical
topology of a network. All methods invoked and properties
written between the BeginSession and EndSession methods
are considered atomic.
This method allows your application to create connections
more efficiently, and avoid failure scenarios that can occur
when devices or routers are moved or changed one-by-one.

This method differs from the StartTransaction method in
that services in a transaction include validation and update
the OpenLNS database as they are invoked, although this
update will not be committed until the transaction is
committed. Sessions allow methods to be invoked and
properties to be written that would individually cause an
error.
For example, consider moving a large number of devices with
subnet broadcast connections and unacknowledged repeat
service from one channel to another. If only some of these
devices are moved, the OpenLNS Object Server would detect
that not all of the devices are on the same subnet and the
move would fail (since unacknowledged repeat service for
domain wide broadcast is not allowed). By grouping the
moves in a session the devices are not actually connected and

OpenLNS Programmer's Reference 849

validated until the session is ended.
The only network operations you can perform within sessions
are those related to changes in the physical topology of your
network. These operations include moving devices and
routers, adding and removing routers, and setting the class of
routers.
As a result, the methods you can use within a session include
the following: PreMove, MoveEx, PostMove, Add, and Remove.
You can also write to the Class property of a router.
If you attempt to access any other properties, or invoke any
other methods, within a session, then the NS, #294
lcaErrNsNotAllowedInASession exception will be thrown.
A given client can have at most one session in progress at a
time. A session must be part of an explicit transaction. A
transaction may contain more than one session. Changes
made in a session will not be committed until the transaction
that contains that session is committed.

Availability Local, full, and lightweight clients.

Syntax systemObject.BeginSession sessionClass

Element Description

systemObject The System object to be acted on.

sessionClass The session class.
Currently, the only valid value is
lcaSessionMove, which is
contained in the ConstSessionClass
constant.

Added to API Prior to LNS Release 3.0.

BeginSystemMgmtModeChangeEvent
Summary Registers your application for the

OnSystemMgmtModeChangeEvent. The
OnSystemMgmtModeChangeEvent will then be fired each
time the system’s management mode changes.

You can disable the OnSystemMgmtModeChangeEvent by
invoking the EndSystemMgmtModeChangeEvent
method. You can use the MgmtMode property to read or
write to the system management mode.

Availability Local, full, and lightweight clients.

Syntax system.BeginSystemMgmtModeChangeEvent

Element Description

systemObject The System object to be acted on.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 850

CancelTransaction
Summary Cancels an active transaction.

When a transaction is canceled, either explicitly because of a
reset, all network and database updates made since the call
to the StartTransaction method are reversed.
Once a transaction has been committed, it can no longer be
cancelled.

If you use the CancelTransaction method to end a transaction
that was initiated as part of a new application program
download and the download has already started, the device
receiving the program download will be left in an
applicationless state. However, this is not true if the
transaction was canceled before the transaction actually
started the download process.

The CancelTransaction method may return an "update type
error" indicating that the cancel has successfully reversed the
modifications to the database, but has been unable to update
one or more application devices. This will be an error in the
NS error range, but will be without the
lcaErrRangeNsStart (1000) value. To compare the update
error types returned by the CancelTransaction method to the
constant error values used in other OpenLNS operations, you
will need to add the lcaErrRangeNsStart (1000) value to
the returned error value.

For example, consider a case where the CancelTransaction
method returns error 63. To compare the returned exception
to the constant error values for the NS error range, you
would need to add lcaErrRangeNsStart (1000) to the
returned value. In this case, the returned error maps to the
lcaErrNsNothingToCancel exception.

Unlike most other methods, the CancelTransaction method
may be called in an OnSystemNssIdleSystem event callback,
which allows you to cancel the current method or property,
and the transaction explicitly or implicitly containing it.

Availability Local, full, and lightweight clients.

Syntax returnCode = systemObject.CancelTransaction

Element Description

returnCode An Integer value which is assigned
the return status code.

systemObject The System object whose
transaction will be canceled.

Added to API Prior to LNS Release 3.0.

Close
Summary Closes the system, ends events, shuts down the NSS, and

detaches the NSI from the network (if not opened in

OpenLNS Programmer's Reference 851

engineered system mode).
Closing the system does not turn off monitor set monitoring
and control. Monitor set monitoring and control continues
until the Network object calls its Close method.

Availability Local, full, and lightweight clients.

Syntax systemObject.Close

Element Description

systemObject The System object to be closed.

Added to API Prior to LNS Release 3.0.

CommittTransaction
Summary Commits the current transaction. All database updates

made since the transaction started will be marked as
complete when you call this method.

If the MgmtMode property is set to
lcaMgmtModePropagateConfigUpdates (0) when you
call this method, all database updates will be propogated to
the devices on the network as part of the commit process.

See the CancelTransaction method for information on
canceling a transaction. If there is no active transaction, an
error is returned.

The StartTransaction method will fail and return an
exception if any operation that modified the database failed
during the transaction. If an "update type error" occurs, then
the committed transaction has successfully modified the
database, but has been unable to update one or more
application devices. An "update type error" will cause a
Network Service exception in the range 4030-4089 to be
thrown. For more information on Network Service
exceptions, see Network Service Errors in Chapter 4.

Availability Local, full, and lightweight clients.

Syntax systemObject.StartTransaction

Element Description

systemObject The System object to be acted on.

Added to API Prior to LNS Release 3.0.

DeconfigNetwork
Summary Deconfigures the devices and routers associated with a

system in a group of user-specified domains.
This method is only available on Local client applications. It
is typically used to reset devices in a development
environment to a common state, or to prepare devices in a
network for new installations that utilize the background

OpenLNS Programmer's Reference 852

discovery process (see the DiscoveryInterval property).
Devices do not have to be installed by the OpenLNS Server to
be deconfigured; however the following must be true:

• The devices’ domain IDs must match the domain IDs
referenced by the domainTypes or explicitDomain
elements passed to this method.

• The devices must be in the configured online or soft
offline state.

• The devices must not be authenticated.
The method's parameters specify the domains to deconfigure
and the types of special-purpose devices to exclude. The
possible uses of this method include:

• To re-use devices from another network. You can invoke
this service to ensure that devices are deconfigured, so
that they do not interfere with traffic on the new
network. In this case, you must specify the domain ID of
the devices to deconfigure. Deconfiguring the devices
also ensures that the OpenLNS Server can discover and
query them using background discovery.

• To deconfigure all devices. Before commissioning a new
network using the predefined components installation
scenario, you can invoke this method to deconfigure all
devices. This ensures that after commissioning, any
AppDevice object that was not defined with the Add
method is unconfigured.

• To refresh the entire network installation. You can
invoke this method to deconfigure all devices, and then
reload the network images for installed devices by
invoking the Commission method, once for each device.

This method does not use or affect device configuration
information in the database. As a result, if devices are
specified to be excluded from deconfiguration, the OpenLNS
Server must individually discover and deconfigure each
device. This process is very time consuming.
Additionally, when deconfiguring a multi-channel network, if
any device type is excluded, routers must also be excluded
(using lcaExcludedDevTypeRouters). Otherwise, routers
will be deconfigured along with the other devices, isolating
remote channels and preventing all devices on those channels
from being deconfigured reliably.
When no devices are excluded (using
lcaExcludedDevTypeNone), the OpenLNS Server
deconfigures the devices using domain-wide broadcast
messaging. All devices configured on the specified domain
that can receive the broadcast will be deconfigured. Devices
residing on channels other than the OpenLNS Server's will
only be deconfigured if the intervening routers are also
configured on the specified domain. When the domain

OpenLNS Programmer's Reference 853

broadcast is used, all deconfigured devices will log a
configuration checksum error (CNFG_CS_ERROR = 153) in
their Neuron error log (see the DetailInfo object).
This method does not deconfigure the OpenLNS Server's
NetworkServiceDevice. In fact, the OpenLNS Server is not
required to be configured on the domain whose devices will
be deconfigured. During execution of the DeconfigNetwork
method, the OpenLNS Server's local NSI will be configured
on the specified domain. When execution completes, the NSI
is restored to its original domain.
Remote NSIs will be deconfigured, provided the NSI device
type is not specified as an excluded device types (using
lcaExcludedDevTypeNsMgrs). If a remote client's NSI is
deconfigured, the client application must be shut down and
restarted to regain access to the network.

Availability Local clients.

Syntax sysObject.DeconfigNetwork excludedDeviceTypes,
domainTypes, explicitDomain

Element Description

sysObject The System object to be acted on.

excludedDeviceTypes An Integer value indicating the
devices to be excluded from
deconfiguration.
The valid values for this element,
which are contained in the
ConstExcludedDevTypes constant,
are as follows:
0 lcaExcludedDevTypeNone
All device types will be
deconfigured.
1 lcaExcludedDevTypeLbMgrs
Devices with the MICRO_SM
program ID (LonBuilder Network
Manager device types), will not be
deconfigured. Specify this program
ID when your network includes the
LonBuilder tool.
2 lcaExcludedDevTypeNsMgrs
Devices containing an OpenLNS
Server will not be deconfigured.
This option is recommended.
4
lcaExcludedDevTypeRouters
Routers will not be deconfigured.

OpenLNS Programmer's Reference 854

255 lcaExcludedDevTypeAll
None of the above devices will be
deconfigured.
You can logically OR these
constants to combine their effects.

domainTypes An Integer value indicating the
types of domains to be
deconfigured.
The valid values for this element,
which are contained in the
ConstDeconfigDomainTypes
constant, are as follows:
1 lcaDeconfigDomainCommon
Reserved for future use.
2 lcaDeconfigDomainAppl

Use the DomainId property of the
System object to execute this
method. Deconfigure all devices
with that domain ID.
4 lcaDeconfigDomainExplicit
Use the specified domain to
execute this method.
You can logically OR these
constants to combine their effects.

explicitDomain A String specifying a domain ID to
use if the domainTypes element
specifies the explicit domain option
(see below).
This allows a domain that is not
part of the OpenLNS database to
be used by this method

Added to API Prior to LNS Release 3.0.

DiscoverDevices
Summary Discovers all configured devices on a specified domain, as

well as all unconfigured devices on the network, and places
them in the Discovered.Uninstalled subsystem.
This method may be used to find packages of pre-installed
nodes, or to discover nodes that were previously installed by
another network management tool. This discovery operation
overrides the system’s default discovery operation, which
only discovers unconfigured nodes. For more information on
the system's default discovery operation, see the
DiscoveryInterval property.

OpenLNS Programmer's Reference 855

If a host-based device whose application is not running is
installed on the network, OpenLNS may or may not be able
to discover it. Whether OpenLNS can discover and register
the device depends on how much of the device's LonTalk
protocol stack is running at the time of the discovery.
Discovering a device involves first the actual discovery of the
device and then the registration of that device in the
database. The discovery service is always performed in the
foreground and the registration service may be performed
either as a background or foreground task. Select the type of
operation by setting the backgroundReg parameter to True or
False, as desired.

If backgroundReg is set to False, devices are registered in the
foreground as part of the discovery transaction, so the
method will not return until discovery is completed or
terminated. When the method completes, it returns the
number of discovered devices in the numDevicesDiscovered
parameter, and the newly registered devices may be accessed
in the Discovered.Uninstalled subsystem. If an error occurs
while registering a device, the method will return when one
of the following conditions is met: all discovered devices have
been registered, or 50 devices have been registered.

If backgroundReg is set to True, discovered devices are
registered in separate background transactions. In this case,
any error that occurs during the registration of one device
has no effect on the registration of any others. When the
method completes, numDevicesDiscovered again returns the
number devices discovered. Registration of those devices
proceeds asynchronously. As each device completes
registration, it appears in the Discovered.Uninstalled
subsystem. To limit resource usage during background
discovery, the Object Server limits the number of devices that
may be registered to 50. You can use the OnChangeEvent
event to track when the devices have been registered. The
event will be fired once for each device that is registered, so
you can assume the registration process has not completed
until the number of events fired matches the value of the
numDevDiscovered element.

When the DiscoverDevices method is halted by an error or its
background registration limit, and additional devices remain
to be registered, the Object Server's DiscoveryLimitedFlag
property is set to True. To ensure that all discovered devices
have been registered, the DiscoverDevices method must be
reinvoked. In particular, when registering devices in the
background (backgroundReg = True), this method must be
invoked repetitively until no further devices are discovered.
The repeat interval must be sufficiently long to allow the
server time to register all devices discovered during the
previous DiscoverDevices invocation.

When the DiscoverDevices call is made within an explicit
transaction (see StartTransaction) and foreground

OpenLNS Programmer's Reference 856

registration is used, an error will cause all device
registrations to fail. If registration is done in the
background, the background registration tasks are performed
outside of the scope of the explicit transaction, so a
registration failure will only impact the effected device. The
other registration tasks will continue to completion (provided
no additional errors occur).

If the specified domainId string is an empty string, the
OpenLNS Server will perform the discovery on the
zero-length domain. When discovery is performed on a
domain other than the application domain, it may not be
possible to discover all devices on the network. For example,
in a multiple channel system, devices which reside on the far
side of a configured router will not be detected because the
router will only forward messages addressed on the
application domain. In addition, any device using the same
addressing information (domain, subnet and Node ID) as the
NetworkServiceDevice for the System will not be discovered.
By necessity, discovery messages are addressed on the
domain whose devices are to be discovered.

Availability Local, full, and lightweight clients.

Syntax numDevDiscovered =
systemObject.DiscoverDevices(backgroundReg, domainId)
Element Description

numDevDiscovered An Integer value set to the number
of devices discovered.

systemObject The System object to be acted on.

backgroundReg A Boolean type specifying whether
discovered devices are registered in
the background.
TRUE. Devices are registered in

the background as part of
the discovery transaction.

FALSE. Devices are registered in
the foreground as part of
the discovery transaction.

domainId A String specifying the domain on
which to discover devices.

If the specified domainId string is
an empty string, the OpenLNS
Server will perform the discovery
on the zero-length domain.

Added to API Prior to LNS Release 3.0.

DoEventSync
Summary Sustains network synchronization.

OpenLNS Programmer's Reference 857

This method resynchronizes the network. It should be called
every 3 to 5 seconds. This method must be used for event
synchronization and missed events to work. If the
SetEventSyncMode method has been used to turn off event
synchronization and missed events are not being used, this
method need not be called.

Availability Local, full, and lightweight clients.

Syntax object.DoEventSync
Element Description

systemObject The System object which is to be
synchronized.

Added to API Prior to LNS Release 3.0.

DoRestoreOptions
Summary Restores the current data server options from the persistent

database. This method uses the DsSaveOptions method to
overwrite any values which had been set during the current
session. Any options that you modified with this method will
not be implemented until you pause and restart the data
server.

This method will restore all NetworkVariable data server
options except DsMonitorTag, which is not persistent

Availability Local, full, and lightweight clients.

Syntax object.DsRestoreOptions
Element Description

systemObject The System object to be acted on.

Added to API Prior to LNS Release 3.0.

DsSaveOptions
Summary Saves the current set of data server options to the persistent

database.

Data server options are not persistent for System objects. For
new option values to persist across LNS sessions, you must
invoke the DsSaveOptions method.
This method saves the values which were most recently set,
not the values currently in use. This distinction arises
because you must pause and restart the data server using the
before modified options can be implemented.

Availability Local, full, and lightweight clients.

Syntax object.DsSaveOptions

Element Description

object The System object to be acted on.

OpenLNS Programmer's Reference 858

Added to API Prior to LNS Release 3.0.

EndAttachmentEvent
Summary Disables the OnAttachmentEvent for a system for a given

object type.
To end events for device and router attachments, you must
call this method twice: once with the lcaAppDeviceEvent
parameter, and once with the lcaRouter parameter.

Availability Local, full, and lightweight clients.

Syntax systemObject.EndAttachmentEvent objectType

Element Description

systemObject The System object to be acted on.

objectType An integer determining the object
type for which to end attachment
events.
The possible values for this
element, which are contained in
the ConstDeviceEventTypes
constant, are as follows:
0 lcaAppDeviceEvent
1 lcaRouterEvent

Added to API Prior to LNS Release 3.0.

EndChangeEvent
Summary Disables the OnChangeEvent for a system for a given object

type.
You must call this method once for every type of object for
which change events are to be received.

Availability Local, full, and lightweight clients.

Syntax systemObject.EndChangeEvent objectType

Element Description

systemObject The System object to be acted on.

objectType An integer determining the object
type for which to end change
events.
The possible values for this
element, which are contained in
the ConstDeviceEventTypes
constant, are as follows:
0 lcaAppDeviceEvent
1 lcaRouterEvent

OpenLNS Programmer's Reference 859

Added to API Prior to LNS Release 3.0.

EndCommissionEvent
Summary Disables the OnCommission event for a system for a given

object type.

Availability Local, full, and lightweight clients.

Syntax systemObject.EndCommissionEvent objectType

Element Description

systemObject The System object to be acted on.

objectType An integer determining the object
type for which commission events
will be disabled.
The possible values for this
element, which are contained in
the ConstDeviceEventTypes
constant, are as follows:
0 lcaAppDeviceEvent
1 lcaRouterEvent

Added to API Prior to LNS Release 3.0.

EndLonMarkObjectStatusChangeEvent
Summary Disables the OnLonMarkObjectStatusChange event.

You can enable the OnLonMarkObjectStatusChange event by
invoking the BeginLonMarkObjectStatusChangeEvent
method. The OnLonMarkObjectStatusChange event will then
be fired each time an OpenLNS client application changes
the status of a LonMarkObject on the system.

Availability Local, full, and lightweight clients.

Syntax systemObject. EndLonMarkObjectStatusChangeEvent

Element Description

systemObject The System object to be acted on.

Added to API Prior to LNS Release 3.0.

EndMissedEvent
Summary Disables the OnMissedEvent for a system.

Availability Local, full, and lightweight clients.

Syntax systemObject. EndMissedEvent

Element Description

systemObject The System object to be acted on.

OpenLNS Programmer's Reference 860

Added to API Prior to LNS Release 3.0.

EndNodeConnChangeEvent
Summary Disables the OnNodeConnChangeEvent for a system.

Availability Local, full, and lightweight clients.

Syntax systemObject. EndNodeConnChangeEvent

Element Description

systemObject The System object to be acted on.

Added to API Prior to LNS Release 3.0.

EndNodeIntfChangeEvent
Summary Disables the OnNodeIntfChangeEvent for a system.

Availability Local, full, and lightweight clients.

Syntax systemObject. EndNodeIntfChangeEvent

Element Description

systemObject The System object to be acted on.

Added to API Prior to LNS Release 3.0.

EndNssIdleEvent
Summary Disables the OnSystemNssIdleSystem a system.

Availability Local, full, and lightweight clients.

Syntax systemObject. EndNssIdleEvent maxIntervalTime

Element Description

systemObject The System object to be acted on.

maxIntervalTime A Long value specifying the
maximum time between idle events
in milliseconds. The valid range for
this element is 0–65,535.

Added to API Prior to LNS Release 3.0.

EndServicePinEvent
Summary Disables the OnSystemServicePin event for a system.

Availability Local, full, and lightweight clients.

Syntax eventTag = systemObject.EndServicePinEvent

Element Description

systemObject The System object to be acted on.

eventTag An Integer representing an
allocated event tag.

OpenLNS Programmer's Reference 861

This event tag must be the one
returned by the
BeginServicePinEvent method.

Added to API Prior to LNS Release 3.0.

EndSession
Summary Ends a session for methods and properties that must be

grouped to avoid intermediate error conditions.
All methods invoked and properties written between the
BeginSession and EndSession methods are considered
atomic. This method allows your application to create
connections more efficiently, and avoid failure scenarios that
can occur when devices or routers are moved or changed
one-by-one.
A given client can have at most one session in progress at a
time. A session must be part of an explicit transaction.

Availability Local, full, and lightweight clients.

Syntax systemObject.EndSession sessionClass

Element Description

systemObject The System object to be acted on.

sessionClass The session class.
Currently, the only valid value is
lcaSessionMove, which is
contained in the ConstSessionClass
constant.

Added to API Prior to LNS Release 3.0.

EndSystemMgmtModeChangeEvent
Summary Disables the OnSystemMgmtModeChangeEvent.

The OnSystemMgmtModeChangeEvent is fired every time
the system’s management mode changes. You can enable the
OnSystemMgmtModeChangeEvent for your application by
invoking the BeginSystemMgmtModeChangeEvent method.

You can use the MgmtMode property to read or write to the
system management mode.

Availability Local, full, and lightweight clients.

Syntax system.EndSystemMgmtModeChangeEvent

Element Description

systemObject The System object to be acted on.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 862

ExtensionByHandle
Summary Retrieves an Extension object by its handle property.

Extension records are defined for OpenLNS objects such as
the Channel, DeviceTemplate, AppDevice, Subnet, Subsystem,
LonMarkObject, and Router objects.

You can use the ExtensionByHandle method of the System
object to get an Extension object in the network database
through its handle property—regardless of the collection
containing the Extension object. This may be particularly
useful when processing events reported by OnChangeEvent
with an objectType of lcaChangeEventExtensions, and a non-
zero networkHandle.

If the networkHandle in the OnChangeEvent is 0, use the
ExtensionByHandle method of the ObjectServer instead.

Availability Local, full, and lightweight clients.

Syntax extension = system.ExtensionByHandle
Element Description

Extension The Extension object.

system The System object.

handle The handle of the Extension to be
retrieved.

Added to API OpenLNS.

GetPermission
Summary Returns the permission value for a specified client.

This method is provided to facilitate the testing of permission
strings by a local OpenLNS application. Lightweight clients
cannot use this method to determine access permission
because they will be unable to access the Network and
System objects unless they already have permission to
operate on the network.

Availability Local, full, and lightweight clients.

Syntax permValue = systemObject.GetPermission(clientId)
Element Description

permValue A Long value containing the
permission level.
A return value of 0 indicates that
permission is denied.
A return value of 1 indicates that
permission is given.

systemObject The System object to be acted on.

clientId A String containing an IP address

OpenLNS Programmer's Reference 863

of the local client (for example
"192.168.0.3").

Added to API Prior to LNS Release 3.0.

GetProgramId
Summary Returns the program ID contained within a specified external

interface (XIF) file.
You can only use this method with a text-based XIF (.XIF
extension). You can not use it with a binary XIF (.XFB
extension).

Availability Local, full, and lightweight clients.

Syntax programID = systemObject.GetProgId(XifPath)
Element Description

programID A String containing the program
ID.

systemObject The System object to be acted on.

XifPath A String containing the path to the
XIF file.

Added to API Prior to LNS Release 3.0.

Open
Summary Opens the system object for use by attaching the system's

network interface and setting up the system's OpenLNS
Server.

This method initializes the System object, starts up the
underlying OpenLNS Server, and attaches to the LONWORKS
network. See the Open method of the ObjectServer for
information on how to initialize the ObjectServer.
If the application program is not a remote client, the
NetworkInterface for the System needs to be selected before
invoking this method (System
.NetworkServiceDevice.NetworkInterface).
When opening a system for the first time, you can set several
properties of the System object that control the configuration
and operation of OpenLNS prior to invoking this method. If
you do not set these properties, they will be assigned the
following default values by this method:
Property Default

DomainId If lcaSharedMedia is specified for
the InstallOptions property
(below), then a unique 6-byte
DomainId based on the Neuron ID

OpenLNS Programmer's Reference 864

of the network interface is created.
The value of the DomainId
property cannot be changed if any
devices have been commissioned.

InstallOptions lcaPrivateMedia

If this method is being invoked by a remote client, the
application program needs to manage several additional
properties. If the remote connection uses network
management authentication, you must set the
AuthenticationKey property before invoking this method. In
addition, this method will set the Ping class for this client to
Permanent. Anytime after the Open method is completed,
the application may change the Ping class if desired.
The presence of repeater and permanent bridge routers in
the network path between a remote Full client application
host and the Object Server make it impossible for the Object
Server to automatically determine the channel on which the
remote host resides. In this case, the Full client application
must explicitly set a channel by selecting the appropriate
channel from the Channels property of the Network object,
and then setting the RemoteChannel property to this channel
prior to opening the system.
This method cannot be invoked as part of an explicit
transaction.

Availability Local, full, and lightweight clients.

Syntax systemObject.Open

Element Description

systemObject The System object to be acted on.

Added to API Prior to LNS Release 3.0.

PrepareToRecoverFromNetwork
Summary Prepares the system for recovery of the OpenLNS database

from the physical network.

The System object uses two methods to support network
recovery: the PrepareToRecoverFromNetwork method sets up
for recovery and the RecoverFromNetwork method performs
the actual recovery. The RecoveryStatus property allows
users to view the state of recovery by returning a
RecoveryStatus object with recovery information.
To recover from the network, follow these steps. Consult the
OpenLNS Programmer’s Guide for more detailed information:

1. Invoke the Add method of the Network object to create a
new Network.

2. Set the NetworkInterface object contained in the System

OpenLNS Programmer's Reference 865

object’s NetworkServiceDevice object to identify the
network interface for the new network.

3. Call the PrepareToRecoverFromNetwork method. Note
that the Network object must be newly created; if objects
have been added after creation, an error will result.

4. Call the Open method of the System object. Note that if
the recoverNetInterface parameter of the
PrepareToRecoverFromNetwork method was set to True,
the domain signature will be taken from the network
interface device, and not from the System object’s
DomainId property.

5. Optionally add objects, set properties, and call methods.
This includes defining DeviceTemplate objects and setting
network timers or other properties of the System object.

6. Call the RecoverFromNetwork method of the System
object.

If the recovery operation is aborted (by the computer being
turned off, for example), it is possible to resume recovery. To
do this, follow these steps:

7. Call the Open method of the Network object on the
appropriate network.

8. Call the Open method of the System object.

9. Call the RecoverFromNetwork method of the System
object with the resumeRecovery parameter set to True.

Availability Local, full, and lightweight clients.

Syntax systemObject.PrepareToRecoverFromNetwork
recoverNetInterface

Element Description

systemObject The System object to be prepared.

recoverNetInterface A Boolean type specifying whether
OpenLNS will try to recover the
network image from the network
interface.
TRUE. The domain signature

and authentication key
are to be recovered from
the network interface.
This option is only valid
for Layer 5 network
interfaces with
configurations that are
consistent with the
network.
If you set this element to
True and you are using a

OpenLNS Programmer's Reference 866

Layer 2 network
interface, an exception
will be thrown.

FALSE. OpenLNS will read the
domain signature from
the DomainId property.
In this case, you should
make sure the DomainId
property is set to a valid
value.

Added to API Prior to LNS Release 3.0.

RecoverFromNetwork
Summary Recovers the OpenLNS database from the physical network.

The System object uses two methods to support network
recovery: the PrepareToRecoverFromNetwork method sets up
for recovery and the RecoverFromNetwork method performs
the actual recovery. The RecoveryStatus property allows
users to view the state of recovery by returning a
RecoveryStatus object with recovery information.
To recover from the network, follow these steps. Consult the
OpenLNS Programmer’s Guide for more detailed information:

1. Call the Add method of the Network object to create a
new Network.

2. Set the NetworkInterface object contained in the System
object’s NetworkServiceDevice object to identify the
network interface for the new network.

3. Call the PrepareToRecoverFromNetwork method. Note
that the Network object must be initialized; if objects
have been added after creation, an error will result.

4. Call the Open method of the System object. Note that if
the recoverNetInterface parameter of the
PrepareToRecoverFromNetwork method was set to True,
the domain signature will be taken from the network
interface device, and not from the System object’s
DomainId property.

5. Optionally add objects, set properties, and call methods.
This includes defining DeviceTemplate objects and setting
network timers or other properties of the System object.

6. Call the RecoverFromNetwork method of the System
object. If you have modified the attributes of the network
image of any of the devices in your network outside of
OpenLNS, including the channel ID of any of the devices,
the OpenLNS Server may be unable locate that device on
the network during recovery. This may cause recovery to
fail.

7. After the network recovery has completed, the

OpenLNS Programmer's Reference 867

MgmtMode property will be set to
lcaMgmtModeDeferConfigUpdates (1). You will need
to set the property to
lcaMgmtModePropagateConfigUpdates (0) before
resuming normal operations.

If the recovery operation is aborted (by the computer being
turned off, for example), it is possible to resume recovery. To
do this, follow these steps:

1. Call the Open method of the Network object on the
appropriate network.

2. Call the Open method of the System object.

3. Call the RecoverFromNetwork method of the System
object with the resumeRecovery parameter set to True.

Note: The network recovery process should not be considered
a replacement for backing up your network database.
Although the network recovery process initiated by the
RecoverFromNetwork method can recover an entire network,
you may discover inconsistencies in the network database
depending on the network configuration and the size of the
database being recovered.
There are also many parts of an OpenLNS database that are
not recoverable, including most object names, connection
templates, hub/target relationships, and connections
involving Network Service Devices. As a result, you should
examine the recovered database before setting the
MgmtMode property to
lcaMgmtModePropagateConfigUpdates (0) once a
recovery has completed.

For more information on this, see the OpenLNS
Programmer’s Guide.

Availability Local, full, and lightweight clients.

Syntax systemObject.RecoverFromNetwork resumeRecovery, options

Element Description

systemObject The System object for the recovered
network.

resumeRecover A Boolean value specifying
whether the process is resuming
from a previously started recovery.

options A Long indicating the recovery
options.
The valid values for this element,
which are contained in the
ConstRecoveryOptions constant,
are as follows:
1

OpenLNS Programmer's Reference 868

lcaRecoveryOptSmallNetwork
Assume that the network is a small
or medium sized network. This
causes database recovery to use
domain wide broadcast when
discovering application nodes.
This may not work if the system is
very large, as the number of
responses from the devices would
overwhelm the network. If not set,
the recovery process uses subnet
broadcast on each of the 255
subnets, each of which must time
out before going on to the next.
2 lcaRecoveryOptForceOffline
This option is used to force all
devices off-line during the
discovery process. This may be
useful when recovering networks
with high levels of traffic, or when
recovering devices that have
limited receive transactions and
are receiving messages from
application devices.

Note: Setting this value to 0 will
cause neither of the recovery
options to be selected.

Added to API Prior to LNS Release 3.0.

RetryUpdates
Summary Retries device updates.

If a device update failure occurs, you can use this method to
retry the updates. A device update failure occurs when
OpenLNS is unable to load the information into the physical
device when the OpenLNS database has been updated.
Many circumstances can cause a device update failure, which
is indicated by an exception in the range starting with the
NS, #4030 lcaErrNsWarningFirst exception, and ending
with the NS, #4089 lcaErrNsWarningLast exception. For
example, an update failure may occur if you make changes to
a connection, and one of the devices involved in the
connection is not connected to the network or not responding
to network management messages.
You can set up automatic retries in case of device update
failure by setting the UpdateInterval property to a non-zero
value. If you are receiving persistent update failures for a
device, you may need to re-commission the device with the
Commission method.

OpenLNS Programmer's Reference 869

This method cannot be part of an explicit transaction. For
more information on explicit transactions, see the
StartTransaction method.
Normally, updates are only attempted while the network
management mode (MgmtMode property) is set to
lcaMgmtModePropagateConfigUpdates (0). You can try
some updates, however, even while the network management
mode is set to lcaMgmtModeDeferConfigUpdates (1).
You can therefore call this method while the network
management mode (MgmtMode property) is set to either
lcaMgmtModePropagateConfigUpdates (0) or
lcaMgmtModeDeferConfigUpdates (1).

See the PropagateDeviceConfigUpdates, CommissionEx, and
ReplaceEx methods for the AppDevice and Router objects
more information.

Note: If you invoke this method while the network
management mode is set to
lcaMgmtModeDeferConfigUpdates (1), only failed
updates that occurred while the network management mode
was set to lcaMgmtModeDeferConfigUpdates (1) will be
retried.
Failed updates that occurred while the network management
mode was set to lcaMgmtModePropagateConfigUpdates
(0) will not be retried, unless the network management mode
is still set to (or has been restored to) the
lcaMgmtModePropagateConfigUpdates (0) value when
you call the RetryUpdates method.

Availability Local, full, and lightweight clients.

Syntax systemObject.RetryUpdates

Element Description

systemObject The System object for the recovered
network.

Added to API LNS Release 3.0.

SetEventSyncMode
Summary Sets up resychronization parameters.

You should call this method to set up the resynchronization
parameters. This includes the setting of automatic
resynchronization as well as the setting of the service delay.

Availability Local, full, and lightweight clients.

Syntax systemObject.SetEventSyncMode mode, delay
Element Description

systemObject The System object to be acted on.

mode The synchronization mode.

OpenLNS Programmer's Reference 870

The possible values for this
parameter, which is contained in
the ConstEventSyncModes
constant, are as follows:
0 lcaEventNoSyncMode
Disables automatic event
synchronization.
If missed events are enabled, an
OnMissedEvent will be sent for
every missed event, including the
periodic ping event.
Missing a ping event will cause an
OnMissedEvent to be sent with the
isUnrecoverable parameter set to
TRUE, and the numMissedEvents
parameter set to 0.
1 lcaEventAutoSyncMode
Enables automatic event
synchronization.
Recovery will be done
automatically within calls to the
DoEventSync method.

An OnMissedEvent will only be
sent if the Server's "previously sent
events" buffer overflows. This
buffer can hold up to 20 events. If
the remote is out of contact while
more than 20 events were
generated for it, an OnMissedEvent
will be generated with the
isUnrecoverable parameter set to
TRUE and the numMissedEvents
parameter equal to some positive
integer. This lets the remote
device know that it should flush
out any caches it maintains via
event updates.
2 lcaEventHostSyncMode
This is not currently supported.

delay The delay (in milliseconds) prior to
delivering a resynchronization
request. The default value is 0.

You shoud set the delay parameter
when there are more than a few
remote event subscribers to
prevent the network from being
flooded with resynchronization

OpenLNS Programmer's Reference 871

requests.
You only use this parameter if the
mode parameter is set to
lcaEventAutoSyncMode.

Added to API LNS Release 3.0.

StartTransaction
Summary Starts a transaction for the System object. You should call

this method in combination with CommittTransaction to
group method invocations and property modifications as part
of the same transaction.
If a transaction initiated by your client is already in progress
for the System when you call this method, an exception will
be thrown. You can complete the transaction by calling the
CommittTransaction method, or you can cancel the
transaction by calling the CancelTransaction method.
When a transaction is canceled, either explicitly or due to a
reset, all LONWORKS network and database changes made
since the call to StartTransaction are reversed.
If a transaction is aborted after this method is called, all
future services will return an error until the client cancels
the transaction using the CancelTransaction method.
Using transactions can increase performance dramatically in
some cases. There is a constant overhead for starting and
committing transactions, but no updates are propagated on
the network and no changes are written to disk until the
transaction is committed. This greatly increases performance
when performing multiple coordinated changes to your
database. Transactions, however, consume memory, and if an
excessive number of changes are made during a single
transaction, the resulting overhead may slow down the
overall process.
You should use transactions to synchronize changes so that
only one client can have a transaction open at a time. While
one client is making a change in a transaction, other clients
will be paused while waiting to gain the transaction lock.
Some database operations will implicitly create a
transaction, and they will therefore wait for the other client
to complete its transaction before that operation will
continue.
Transactions can also be used to perform "atomic" sets of
changes, which are changes that require a series of calls to
LNS to be made. For example, moving an application device
or router is an operation that could be performed within a
transaction. If any of the calls made during such a
transaction fails, all of the changes made up to that point can
be undone by simply cancelling the transaction.
For more detailed information on when you should use

OpenLNS Programmer's Reference 872

transactions, see the Using Transactions and Sessions
section in the OpenLNS Programmer’s Guide.

You can use the OnSystemNssIdle event to allow your
application to execute code while lengthy transactions are
being performed. For example, you can use the ServiceStatus
property to find out if this client is waiting on a transaction
started by another client, or you can call CancelTransaction
to cancel the operation. For more information on this, see the
OnSystemNssIdle event.

Availability Local, full, lightweight, and independent clients.

Syntax systemObject. StartTransaction

Element Description

systemObject The System object whose
transaction will be canceled.

Added to API Prior to LNS Release 3.0.

WinkByNeuronId
Summary Enables a device to be winked by Neuron ID, which lets you

physically identify the device.

Availability Local, full, and independent clients.

Syntax systemObject.WinkByNeuronId NeuronId

Element Description

systemObject The System object containing the
AppDevice to be winked.

NeuronId A string containing the Neuron ID
of the device to be winked.

Added to API LNS Release 3.0.

Properties
The System object contains the following properties:

• Accounts
• ActivationLicense
• ApplicationHandle
• ApplicationName
• AuthenticationKey
• ClassId
• ClientId
• CommissionedDeviceCount
• ComponentApps
• Connections
• CurrentAccount
• CurrentDeviceCount
• CustomerId
• DebugTraceFlag

OpenLNS Programmer's Reference 873

• Description
• DiscoveryInterval
• DiscoveryLimitedFlag
• DomainId
• DsPollInterval
• DsPriority
• DsRepeatTimer
• DsRetries
• DsRetryCount
• DsTxTimer
• Extensions
• FileTransfer
• Handle
• HostTimer
• ImportDirectory
• InstallOptions
• IsOpen
• LastError
• LaunchLcaServerFlag
• LdrfCatalogPath
• LdrfLanguages
• MgmtMode
• Name
• NetworkResources
• NetworkServiceDevice
• NssDbVersion
• Parent
• PermissionString
• PingIntervals
• RecoveryStatus
• RegisterServicePin
• RemoteChannel
• RepeatTimer
• ResourceLanguageId
• RetryCount
• SecurityLevel
• ServiceStatus
• State
• Subnets
• Subsystems
• TemplateLibrary
• TxTimer
• UncommissionedDeviceCount
• UninstalledDeviceCount
• UpdateInterval

Accounts
Summary Contains the Accounts object associated with the System

object.

This property and the associated Account and Accounts
objects are reserved for future use.

OpenLNS Programmer's Reference 874

Availability Local, full, and lightweight clients.

Syntax acctsCollection = sysObject.Accounts
Element Description

acctsCollection The Accounts collection to be returned.

sysObject The System object to be acted on.

Data Type Accounts collection object.

Read/Write Read only.

Added to API LNS Release 3.0.

ActivationLicense
Summary Returns an ActivationLicense object that contains a snapshot

of the activation license on the OpenLNS Server at the time
it was first accessed.

The properties of the ActivationLicense object will not change
if you re-read them, even if the license becomes invalid in the
meantime. To get an updated snapshot of the license
information, call the Refresh method or release this object
and acquire a new one by re-reading this property.
You can only read this after you open the system; however,
you can access it even if the system is in “licensing failure
mode”.
This object will be returned regardless if the license is valid
for this computer or not.

Availability Local, full, and lightweight clients.

Syntax activationLicense = systemObject.ActivationLicense
Element Description

activationLicense An ActivationLicense object
representing a snapshot of the
activation license on the OpenLNS
Server.

systemObject The System object to be acted on.

Data Type ActivationLicense object.

Read/Write Read only.

Added to API OpenLNS.

ApplicationHandle
Summary The unique identifier assigned to this instance of the Object

Server by the NSS Engine.

The ApplicationHandle property is used internally by the
Object Server to register service requests and event handles
with the NSS.

OpenLNS Programmer's Reference 875

Availability Local, full, and lightweight clients.

Syntax returnValue = sysObject.ApplicationHandle
Element Description

returnValue The handle of the application.

sysObject The System object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.0.

ApplicationName
Summary The application name used by the Object Server when

registering for an application handle with the NSS.
If a name is not provided by the application using the Object
Server, a default name is used. The default is LCAx where x
= 1, 2, 3, and so on, and it is assigned by the NSS. If the
application sets this property, it must be set before you call
the System.Open method.

Availability Local, full, and lightweight clients.

Syntax nameValue = sysObject.ApplicationName
Element Description

nameValue The name of the application.

sysObject The System object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.0.

AuthenticationKey
Summary Identifies the authentication key associated with the system,

if any.
All devices and router sides that have the
AuthenticationEnabled property set to True will have this
key installed by the Object Server or should have it installed
by some external means (see the System object’s
SecurityLevel property).
When this property is changed, all devices with
AuthenticationEnabled set to True are incrementally
updated to contain the new key.
Authentication keys may be stored as hexadecimal values of
12 characters for 48-bit authentication (for example
"a327ff27ba24"), or 24 characters for 96-bit authentication
(Open Media Authentication [OMA]); for example
"a327ff27ba24 a327ff27ba24". Each character represents one

OpenLNS Programmer's Reference 876

hexadecimal digit of the key.
A key of ffff ffff ffff or ffff ffff ffff ffff ffff ffff indicates that
authentication is disabled.
Remote Full and Lightweight client applications that are
connecting to an authenticated network must set this
property before opening the system. If the application uses
the wrong authentication key, the client must close the
System, Network, and ObjectServer objects, re-acquire and
re-open the ObjectServer and Network objects, and the
re-acquire the System object. The application then must set
the AuthenticationKey property to the correct authentication
key, and re-open the system with the Open method.
For more information on opening systems and setting system
parameters, see the OpenLNS Programmer’s Guide.

Availability Local, full, and lightweight clients.

Syntax keyValue = systemObject.AuthenticationKey
Element Description

keyValue The authentication key.

systemObject The System object.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the System
object in the ConstClassIds constant:
3 lcaClassIdSystem

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is

OpenLNS Programmer's Reference 877

added to the API.

ClientId
Summary Contains the ClientId associated with the System object by

the Object Server engine.
If the OpenLNS application needs to directly invoke the
services of the Object Server engine, the ClientId property
may be needed depending upon the nature of the service
invoked.

Availability Local, full, and lightweight clients.

Syntax clientIdValue = systemObject.ClientId
Element Description

clientIdValue The client Id assigned to the System
object as a Long.

systemObject The System object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

CommissionedDeviceCount
Summary Returns the number of commissioned devices restored by

network recovery. At the completion of network recovery,
devices are grouped into three categories.

• Installed devices that were recovered are counted by the
CommissionedDeviceCount property.

• Installed devices that could not be recovered, and had to
be uninstalled, are counted by the
UninstalledDeviceCount property.

• Devices that were discovered by network recovery but
had not previously been installed are counted by the
UncommissionedDeviceCount property.

If the OpenLNS application needs to directly invoke the
services of the Object Server engine, you may need the
ClientId property depending upon the service you invoked.

Availability Local, full, and lightweight clients.

Syntax numDevices = systemObject.CommissionedDeviceCount
Element Description

numDevices The number of restored devices.

systemObject The System object to be acted on.

Data Type Long.

Read/Write Read only.

OpenLNS Programmer's Reference 878

Added to API Prior to LNS Release 3.0.

ComponentApps
Summary Contains the ComponentApps collection object associated

with the specified System object.

The ComponentApps collection is a list of LNS plug-in
commands that are associated with a particular object type.

Availability Local, full, and lightweight clients.

Syntax appsCollection = object.ComponentApps
Element Description

appsCollection The ComponentApps collection to be
returned.

object The System object to be acted on.

Data Type ComponentApps collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Connections
Summary Returns the Connections object associated with the specified

System object.

Use this property to get the Connections object associated
with the System, which in turn contains the
NetworkVariables and MessageTags collection objects that
represent all of the connections in the system.

Availability Local, full, and lightweight clients.

Syntax connectionsObject = systemObject.Connections
Element Description

connectionsObject The returned Connections object.

systemObject The System object to be acted on.

Data Type Connections collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

CurrentAccount
Summary Contains the Account object representing the active licensing

account.

This property and the associated Account and Accounts
objects are reserved for future use.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 879

Syntax acctObject = systemObject.CurrentAccount
Element Description

acctObject The current Account object.

systemObject The System object to be acted on.

Data Type Account object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

CurrentDeviceCount
Summary Returns the number of AppDevice objects currently defined,

including network service devices.

Availability Local, full, and lightweight clients.

Syntax deviceCountValue = systemObject.CurrentDeviceCount
Element Description

deviceCountValue The number of devices currently
defined.

systemObject The System object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

CustomerId
Summary Returns the current CustomerId, as set in the

SetCustomerInfo method of the ObjectServer.

Availability Local, full, and lightweight clients.

Syntax custIdValue = systemObject.CustomerId
Element Description

custIdValue The customer ID to be returned

systemObject The System object to be acted on.

Data Type String.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

DebugTraceFlag
Summary Enables the trace debugging tool.

Availability Local, full, and lightweight clients.

Syntax debugFlag = systemObject.DebugTraceFlag

OpenLNS Programmer's Reference 880

Element Description

systemObject The System object to be acted on.

debugFlag A Boolean value that indicates
whether trace should be turned on.
TRUE. The trace should be turned

on. Trace messages will be
stored in the file
"lcatrace.txt".

FALSE. Trace should not be turned
on.

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Description
Summary Stores description information about the System object.

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the System
object.

object The System object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

DiscoveryInterval
Summary Indicates the rate at which the Object Server scans the

network for newly attached, unconfigured devices.
A device must be unconfigured to be discovered by the
background discovery mechanism. Setting the interval value
to 0 disables the automatic discovery of unconfigured devices.
The default value for this property is based on the value of
the InstallOptions property when the system is first opened:

• Setting the InstallOptions property to lcaSharedMedia
(2) disables background discovery by setting this
property to 0.

• Setting the InstallOptions property to lcaPrivateMedia

OpenLNS Programmer's Reference 881

(4) sets this property to 180 seconds.

Availability Local, full, and lightweight clients.

Syntax intervalValue = systemObject.DiscoveryInterval
systemObject.DiscoveryInterval = intervalValue
Element Description

intervalValue The new device discovery interval (in
seconds). An interval of 0 turns off
background discovery process. Valid
values are 1 to 65,534.

systemObject The System object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

DiscoveryLimitedFlag
Summary Indicates that device discovery was halted due to resource

limitations. The DiscoverDevices method must be reinvoked.
You can perform device discovery in the foreground by
invoking the DiscoverDevices method. If you invoke this
method with the backgroundReg parameter set to True,
discovered devices will be queued for registration in
background transactions.
The OpenLNS Server limits the number of background
registation tasks to 50 to prevent a significant resource
drain.
This property is unaffected by background discovery.

Availability Local, full, and lightweight clients.

Syntax discoveryStopped = systemObject.DiscoveryLimitedFlag
Element Description

discoveryStopped A Boolean value that indicates
whether device discovery was halted
due to the registration limit.

The DiscoveryLimitedFlag is
application exclusive. This means
that every OpenLNS application has
its own independent flag
TRUE. Device discovery was halted

due to the registration limit.
You must re-invoke the
DiscoverDevices method to
ensure that no undiscovered
devices remain on the
network.

OpenLNS Programmer's Reference 882

FALSE. Device discovery has
completed execution without
being halted or the
application has exited.

systemObject The System object to be acted on

Data Type Boolean.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

DomainId
Summary Identifies the domain ID.

The domain ID is stored as a string of hexadecimal digits.
For example, a 3-byte domain ID would be represented like
this: "32a0cf". Domain IDs can be 1, 3, or 6 bytes in length.
When setting the DomainId property, any characters beyond
those required are ignored. Changes to the domain ID will
automatically be propagated to all application devices and
routers unless one or more devices is using authentication.
In that case, an exception will be returned.
The ability to set this property may be useful in the
predefined components installation scenario involving many
similarly configured sites. In such a scenario, it is more
efficient to load an OpenLNS database containing basic
configuration into every site, and change the domain ID of
the site immediately prior to commissioning, than to create
each database separately.
The following is an example sequence:
1. Create a basic configuration database by initializing the

Object Server, setting the System object’s MgmtMode
property to lcaMgmtModeDeferConfigUpdates (1),
creating program templates by importing binary external
interface files, defining devices (without Neuron Ids), and
adding connections. Save the database by copying the
network database directory.

2. During commissioning, load the database by coping the
database above and adding it to the global database.

3. Set the DomainId property to the domain ID for the site.
This must be a unique value. One way to ensure that the
DomainId property is assigned a unique value is to set
the InstallOptions property to lcaSharedMedia before
creating the network. This will result in the OpenLNS
Object Server assigning a value equivalent to the Neuron
ID of the OpenLNS Server computer to the DomainId
property, which is guaranteed to be a unique value.

4. Set the System object’s MgmtMode property to
lcaMgmtModePropagateConfigUpdates (0).

OpenLNS Programmer's Reference 883

5. Use service pin, find, or other manual means of obtaining
the actual Neuron ID of each device.

6. Iterate through the Discovered.Uninstalled
Subsystem object to get the list of devices in the system
that require their network images to be updated. If the
device’s Neuron ID has not been specified, acquire it
using the service pin, find/wink, or manual entry
methods. Commission the device using the Commission
method.

7. Add and connect any additional devices that are not
defined by the basic configuration.

Attempting to read the DomainId of a newly created system
will result in an exception. Once the system has been closed
and re-opened, the DomainId can be read normally..

Availability Local, full, and lightweight clients.

Syntax domainIdValue = systemObject.DomainId

Element Description

domainIdValue The system's domain ID.

systemObject The System object.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

DsPollInterval
Summary Specifies the poll or throttle interval (in tenths of a second)

used by the Data Server. For remote clients using the shared
Data Server mode, this property specifies the batch update
rate.

The DsPollInterval property specifies either a poll or throttle
interval, depending on the context in which it is used.

• For polled network variables, the property specifies the
interval between polls. Setting the value to 0 disables
polling.

• For bound network variables, the property specifies the
minimum interval which must elapse before the Data
Server will generate an update event. The throttling
interval may be used to regulate the rate in which
OnNetworkVariableUpdate events occur.

Remote client applications that use shared access mode
receive batched data updates. Instead of receiving individual
network variable value updates over the IP network, the
client receives a regular update containing the updated
values for the monitored network variables. In this scenario,
the System object's DsPollInterval property specifies the
batch update rate for each network variable. If you are

OpenLNS Programmer's Reference 884

developing a remote application that uses shared access
mode (meaning that the DsMode property is set to
lcaDsModeShared), you cannot set the NetworkVariable
object’s DsPollInterval property. An exception will be raised
if you attempt to do so.

The System object's DsPollInterval property sets the default
value, which is applied when a NetworkVariable object's
DsPollInterval property is left unspecified. Once an
application has explicitly set the value of the DsPollInterval
property of the System object, it will not be reverted back to
the default value by OpenLNS, and must be maintained
manually from that point on.

Availability Local, full, and lightweight clients.

Syntax intervalValue = object.DsPollInterval
Element Description

intervalValue Poll or throttle interval, in tenths of a
second. The allowed range is 0 to
33554431 (0x01FFFFFF). This
maximum value corresponds to a time of
approximately 38.8 days. The default
value is 10 (one second) for the
DsPollInterval property.

The system's current DsPollInterval
value establishes the default that will be
used by newly created NetworkVariable
objects whose DsPollInterval value is
left unspecified.

object The System object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

DsPriority
Summary Specifies whether the Data Server polls or updates a network

variable using priority messages.
Note: This property is deprecated because it was only useful
with single-point monitoring. You should use temporary
monitor sets instead of single-point monitoring. When doing
so, you can use the Priority property to determine the priority
assigned to each message. For more information on
temporary monitor sets, see the OpenLNS Programmer’s
Guide.

Availability Local, full, and lightweight clients.

Syntax priorityFlag = object.DsPriority
Element Description

OpenLNS Programmer's Reference 885

priorityFlag The priority flag value.
TRUE. The Data Server uses priority

messaging to update a network
variable.

FALSE. The Data Server polls a
network variable. This is the
default.

object The System object to be acted on.

Data Type Boolean.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

DsRepeatTimer
Summary Sets the interval between repeated transmissions for

messages sent using the unacknowledged/repeat message
service. This only applies to messages sent during monitor
and control operations for temporary monitor sets.
To set this value for network management messages and
permanent monitor and control operations, use the
RepeatTimer property.
The default value for this property is determined based on
the network topology. You should not modify this default
value. If the default value is not suitable for your application,
it is recommended that you use the Delay property of each
Channel object on the network to ensure that each message is
sent at the correct interval.

Availability Local, full, and lightweight clients.

Syntax repeatTimerValue = systemObject.DsRepeatTimer
Element Description

retryCountValue The encoded value of the repeat
timer.
This property accepts a range of
encoded values of 0–15. The encoded
values are for this property are as
follows:
Encoded Value Seconds
0 0.016
1 0.024
2 0.032
3 0.048
4 0.064
5 0.096
6 0.128
7 0.192

OpenLNS Programmer's Reference 886

8 0.256
9 0.384
10 0.512
11 0.768
12 1.024
13 1.536
14 2.048
15 3.072

You can write the value 254 to the
property at any time to restore it to
the default.
To set the number of repeats that will
be sent, write to the RetryCount
property of the System object.

systemObject The System object to be acted upon.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.20.

DsRetries
Summary Specifies the retry count to use for messages sent using the

acknowledged, request/response, or repeated message
services.

Availability Local, full, and lightweight clients.

Syntax retryValue = object.DsRetries
Element Description

retryValue The number of retries. The default
value is 4.
This parameter sets the default retry
count that is applied to message
monitor points in temporary monitor
sets.

Invoke the DsSaveOptions method to
save the property value into the
persistent database. You can use the
RetryCount property to set the retry
count for network management
messages.

object The System object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 887

DsRetryCount
Summary Sets the maximum number of times to retry messages sent

using the request/response, unacknowledged/repeat, or
acknowledged message services. This applies to messages
sent during monitor and control operations for temporary
monitor sets only.

Availability Local, full, and lightweight clients.

Syntax retryCountValue = systemObject.DsRetryCount
Element Description

retryCountValue The retry count value.
The value of this property sets the
retry count used by the Object Server
(and connections that use the default
System value) for temporary monitor
set operations that use the service
types listed above. This value must be
between 0 and 15.

• You can set the interval for retry
messages sent using the
acknowledged or request messages
for temporary monitor set
operations by writing to the
DsTxTimer property.

• You can set the interval for repeat
messages sent using the
unacknowledged/repeat message
service for temporary monitor set
operations by writing to the
DsRepeatTimer property.

Note: This property applies to
monitor and control messages for
temporary monitor set operations only.

• To set this value for network
management messages, use the
SystemRetryCount property of the
object.

To set this value for monitor set
operations involving permanent
monitor sets, use the RetryCount
property of the ConnectDescTemplate
object that is used by connections
involving your permanent monitor
sets.

systemObject The System object to be acted upon.

Data Type Integer.

OpenLNS Programmer's Reference 888

Read/Write Read/write.

Added to API LNS Release 3.20.

DsTxTimer
Summary Sets the interval between retries for acknowledged

(lcaSvcAckd) and request (lcaSvcRequest) messages sent
during monitor set operations involving temporary monitor
sets.
To set this value for network management messages, use the
TxTimer property.
To set this value for monitor set operations involving
permanent monitor sets, use the TransmitTimer property of
the ConnectDescTemplate object used by connections
involving your permanent monitor sets.

The default value for the DsTxTimer property is determined
based on the network topology. You should not modify this
default value. If the default value is not suitable for your
application, you should use the Delay property of each
Channel object on the network to ensure that each message is
sent at the correct interval.

Availability Local, full, and lightweight clients.

Syntax timerValue = systemObject.DsTxTimer
Element Description

timerValue The encoded value of the transmit
timer.
This property accepts a range of
encoded values of 0–15. The encoded
values are for this property are as
follows:

Encoded Value Seconds
0 0.016
1 0.024
2 0.032
3 0.048
4 0.064
5 0.096
6 0.128
7 0.192
8 0.256
9 0.384
10 0.512
11 0.768
12 1.024
13 1.536
14 2.048

OpenLNS Programmer's Reference 889

15 3.072
You can write the value 254 to the
property at any time to restore it to the
default.
To set the number of retries that will be
sent for these message types, write to
the DsRetryCount property.

systemObject The System object to be acted upon.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.20.

Extensions
Summary Contains the Extensions collection object associated with the

specified System object.

This property returns an Extensions collection. The objects
in this collection represent user data reserved for
manufacturers. Each object is identified with a unique
identifier set by the manufacturer

Availability Local, full, lightweight, and independent clients.

Syntax extensionsColl = object.Extensions
Element Description

extensionsColl The Extensions collection object.

object The object whose Extensions
collection is being returned.

Data Type Extensions collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

FileTransfer
Summary Returns a new FileTransfer object for use in establishing a

file transfer session.

Every call to get the FileTransfer object returns a fresh
FileTransfer object whose properties are set equal to the
defaults. As a result, OpenLNS must retain references to the
FileTransfer objects with which it intends to perform
multiple operations.
An application may still create multiple references to a given
FileTransfer object. Additionally, an application may
maintain multiple unique FileTransfer objects at any given
time.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 890

Syntax fileTransObject = systemObject.FileTransfer
Element Description

fileTransObject The FileTransfer object.

systemObject The System object to be acted on.

Data Type FileTransfer object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Handle
Summary Contains the handle associated with the System object.

An OpenLNS Object that is part of a collection is assigned an
index corresponding to its position within that collection.
This index may be used when invoking the Item property.
Some OpenLNS Objects are tracked internally by the
OpenLNS Server using a unique handle.

Availability Local, full, and lightweight clients.

Syntax returnValue = object.Handle
Element Description

returnValue The NSS handle of the System object.

object The System object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

HostTimer
Summary The maximum number of seconds the system will wait for a

response message from the host application after a
management request has been sent.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 891

Syntax hostTimerValue = systemObject.HostTimer
Element Description

hostTimerValue The host timer value in seconds. This
property applies to network
management messages only.
This property accepts a range of values
from 0 to 65,534 seconds. The default
value is 15 seconds.
You can write the value 65535 to this
property without an exception being
thrown. The value of the property,
however, will not be changed from its
current value.

systemObject The System object to be acted upon.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ImportDirectory
Summary The default directory in which the Import method expects to

find external interface (XIF) files (.XIF and .XFB
extensions).

Availability Local, full, and lightweight clients.

Syntax pathName = systemObject.ImportDirectory
Element Description

pathName The path name of the Import directory
as a string.
If you only specify a filename without a
pathname as a parameter to the Import
method, that file is expected to be found
in the directory specified by this
property.

systemObject The System object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

InstallOptions
Summary Specifies the system install options, and indicates whether

the system uses private or shared media.
Disable automatic discovery and pinging by setting the

OpenLNS Programmer's Reference 892

Disable and PingIntervals properties to 0.
Disable automatic service pin registration by setting the
system’s RegisterServicePin property to False.

Availability Local, full, and lightweight clients.

Syntax pathName = systemObject.ImportDirectory
Element Description

optionValue The value of the selected option.
The valid values for this property,
which are contained in the
ConstInstallOptions constant, are as
follows:
2 lcaSharedMedia
Indicates that the system may
potentially share the media with other
independently managed systems. This is
typically the case with power line or RF.
If the value is set to lcaSharedMedia,
the DomainIdSystem property will
automatically be set to the same value
as the NeuronId property of the
NetworkServiceDevice. This ensures
that no two networks operating in
shared media will have the same
domain.

It also sets the discovery interval to 0,
sets all the ping intervals to 0, and sets
the RegisterServicePin property to
False.
4 lcaPrivateMedia
This is the default value. Indicates that
no other systems share the media. This
is typically the case with a twisted pair
network in which you do not intend by
design to allow other independently
managed systems onto the same
physical media.
When this option is specified, LNS
enables background discovery by
initializing the DiscoveryInterval
property to 180 seconds. Similarly,
background node pinging is enabled for
mobile nodes by setting the interval to
60 seconds and service pin registration
is enabled.
Setting this property after the system
has been initially opened has no effect;

OpenLNS Programmer's Reference 893

therefore, your application should set
this property before calling the Open
method of the System object for the first
time.
If you open a system with this property
set to lcaPrivateMedia (4) and later
decide you want the system to use
shared media, you can accomplish this
by setting the DomainIdSystem
property of the System object to match
the NetworkServiceDevice.NeuronId
property of the OpenLNS Server
computer.

systemObject The System object for which the options
apply.

Data Type Integer.

Read/Write Read/write for Local clients. Read-only for Remote and
Lightweight clients.

Added to API Prior to LNS Release 3.0.

IsOpen
Summary Indicates whether the specified System object is currently

open.

Availability Local, full, lightweight, and independent clients.

Syntax isOpenFlag = Object.IsOpe
Element Description

isOpenFlag Boolean value.

Object A Boolean value indicating whether the
System object is currently open.

TRUE. The System object is currently
open.

FALSE. The System object is currently
closed.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

LastError
Summary Returns the last error generated in an Error object.

The LastError property is transient, meaning that the error
data is not stored in the OpenLNS database. When a
particular application is closed, the LastError information is
lost. Error information does not persist across program

OpenLNS Programmer's Reference 894

invocations.

Availability Local, full, and lightweight clients.

Syntax lastErrorObject = systemObject.LastError
Element Description

errorObject The last error generated by the system

systemObject The System object to be acted upon.

Data Type Error object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

LaunchLcaServerFlag
Summary Indicates whether the OpenLNS Server should be launched

when the Open method of the System object is called.

Availability Local, full, and lightweight clients.

Syntax debugFlag = systemObject.LaunchLcaServerFlag
Element Description

systemObject The System object to be acted on.

debugFlag A Boolean value that indicates whether
the OpenLNS Server should be
launched when the System.Open
method is called.
TRUE. The OpenLNS Server should

be launched when the system
is opened.
The OpenLNS Server will
automatically be shut down
when the last client using the
server is closed.

FALSE. The OpenLNS Server should
not be launched when the
system is opened
The OpenLNS Server process
is required to allow OpenLNS
Remote Clients of all types to
connect. If you do not want
remote clients to connect, set
this property to False (before
invoking the System object's
Open method) to conserve
computer resources.
The OpenLNS Server can also
be manually launched by
starting the OpenLNS Server

OpenLNS Programmer's Reference 895

Application available from the
Echelon OpenLNS Utilities
program folder.

Data Type Boolean.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

LdrfCatalogPath
Summary Obtains the full path for the location of the LonMark device

resource file catalog (ldrf.cat). You should not modify this
path because the resource file catalog should always be
stored in the LonWorks/Types folder. The LdrfCatalogPath
property points this path by default; therefore, you should
not write to this property under any circumstances.

See the LonMark Resource File Catalog Help and the Device
Resource File Developers Guide

Setting this property in the ObjectServer object overrides the
value in the System object. This must be done by a Local
client application before you call the ObjectServer object's
Open method. However, you should not write to this
property. If you do write to the LdrfCatalogPath property,
leave the standard resource files in the LonWorks/Types
folder, and then create a copy of the standard resource files
in the new folder referenced by the LdrfCatalogPath property

Availability Local, full, lightweight, and independent clients.

Syntax pathName = object.LdrfCatalogPath
Element Description

object The System object to be acted on.

pathName The location of the LDRF catalog, which
contains the locations of the standard
and user-defined resource files, and the
associated files that are required for
data formatting.

The pathName cannot include the
semi-colon character (;).

Data Type String.

Read/Write Read and write for Local client applications. Read only for
Full and Lightweight client applications.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 896

LdrfLanguages
Summary Contains the LdrfLanguages collection representing the

languages known by OpenLNS. You can only access this
property after you have opened the Object Server.

Availability Local, full, lightweight, and independent clients.

Syntax ldrfLang = osObject.LdrfLanguages
Element Description

ldrfLang The LdrfLanguages collection.

osObject The System object to be acted on.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

MgmtMode
Summary Determine’s the OpenLNS Object Server’s network

management mode.
When a remote full client connects to a network, the
configuration of its NetworkServiceDevice must be updated in
order for the connection to succeed. If the
NetworkServiceDevice had been previously added to the
system, and no subsequent changes to its configuration were
that need to be coordinated with the other devices on the
network, the configuration of the NetworkServiceDevice will
be updated and the client will open the network. This will
happen regardless of the setting of the MgmtMode property.

However, if the NetworkServiceDevice had not been
previously added to the system, or its configuration has
changed in a way that is not consistent with the other
physical devices on the network, then the network
management mode will be briefly set to
lcaMgmtModePropagateConfigUpdates (0) while the
connection takes place. In order for this to happen, the
AllowPropagateModeDuringRemoteOpen property must be
set to True. Afterwards, the network management mode will
be restored to lcaMgmtModeDeferConfigUpdates (1). If
the AllowPropagateModeDuringRemoteOpen property is set
to False in this case, the connection will fail, and the NS, #31
lcaErrNsDeferConfigUpdatesMgmntMode exception will
be generated.

You can use the OnSystemMgmtModeChangeEvent event to
track changes to the value of this property.

Availability Local, full, and lightweight clients.

Syntax modeType = systemObject.MgmtMode
Element Description

OpenLNS Programmer's Reference 897

modeType The Object Server management mode.
The enumerated values for this parameter,
which are contained in the
ConstMgmtModes constant, are as follows:
0
lcaMgmtModePropagateConfigUpdates
Network configuration changes are applied
to both the OpenLNS database and the
physical devices.
Setting the management mode to this
value also starts the background device
discovery processes. This causes the Object
Server to update the network image of any
device which was modified while the
network management mode was set to
lcaMgmtModeDeferConfigUpdates (1).
1 lcaMgmtModeDeferConfigUpdates
All network configuration changes are
applied only to the OpenLNS database, not
to the physical devices. In addition,
discovery and background updates are
turned off.
In this mode, device configuration changes
are queued for later processing.
Notes: You can use the
PropagateDeviceConfigUpdates method to
apply device-only configuration changes to
a physical device while the network
management mode is set to
lcaMgmtModeDeferConfigUpdates (1).
For more information, see the
PropagateDeviceConfigUpdates method.

The ReplaceEx and CommissionEx
methods provide options to propagate
changes to a physical device when
commissioning or replacing a device while
the network management mode is set to
lcaMgmtModeDeferConfigUpdates (1).
For more information, see the ReplaceEx
and methods.

systemObject The System object to be acted on

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 898

Name
Summary Specifies the name of an object as a character string. This

property is case sensitive. Searches by name must match
case.
This property can be a maximum of 85 characters long, but it
may not contain the forward slash (/), back slash (\), period
(.), and colon (:) characters.

Availability Local, full, lightweight, and independent clients. Note that
some objects that contain this property are not available to
Independent clients.

Syntax stringValue = object.Name
Element Description

stringValue The name of the object.

object The object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Depends on the object used to access the property. Generally,
this property exists for the objects listed above as soon as
they are added to the API.

NetworkResources
Summary Provides access to important network resource information

for the system, including the number of exclusive and
sharable selectors available on the sytem, the number of
subnets and group IDs allocated on the system, and the
number of AppDevices and Routers that have been installed
on the system.

The System must be open when you read this property. If it is
not open, the LCA#67 lcaErrSystemNotOpen exception
will be thrown.

This property returns a NetworkResources object, which
contains a group of read-only properties that contain
information you may find useful when determining the
network resources that are available on your LONWORKS
system. For more information, see the NetworkResources
object.

Availability Local, full, and lightweight clients.

Syntax modeType = systemObject.MgmtMode
Element Description

resourcesObject The NetworkResources object returned
by the property.

systemObject The System object to be acted on

OpenLNS Programmer's Reference 899

Data Type NetworkResources object.

Read/Write Read only.

Added to API LNS Release 3.20.

NetworkServiceDevice
Summary Returns the network service device, either an OpenLNS

Server or NSI, attaching the OpenLNS ActiveX control to the
network. The NetworkServiceDevice.NetworkInterface
property of this object must be set before network
communications are possible.

Availability Local, full, and lightweight clients.

Syntax nsdObject = systemObject.NetworkServiceDevice
Element Description

systemObject The System object to be acted on.

nsdObject The NetworkServiceDevice object.

Data Type NetworkServiceDevice object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

NssDbVersion
Summary Indicates the version number of the NSS database.

Availability Local, full, and lightweight clients.

Syntax dbVersion = systemObject.NssDbVersion
Element Description

dbVersion The version number of the NSS
database.
The value of this parameter is
incremented when the database is
modified.
A database modification followed by
a backout will not result in the
version number being restored,
rather it will be bumped twice. In
other words, a backout constitutes a
new version rather than a return to
a previous version.
Version numbers are 16-bits and
thus may wrap around.

systemObject The System object to be acted on.

Data Type Integer.

Read/Write Read only.

OpenLNS Programmer's Reference 900

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

PermissionString
Summary Contains the permission string which controls system access

for Lightweight clients.
The permission string specifies the access permission for
Lightweight clients. It consists of a concatenated list of
permission specifications (spec) separated by commas or line
feeds. Each permission spec defines a rule which grants or
denies access to one or more IP addresses. An individual
spec has the form <IP Address> <IP Mask>,
<Permission>, where permission has the value 0 (deny) or 1
(allow). For example:
192.168.0.5 255.255.255.255, 1

A permission spec applies to all Lightweight clients with an
IP address that satisfies the rule (<Remote Client IP
Address> & <IP Mask>) == <IP Address>. In other
words, the client's IP address is logically AND'ed with the IP
mask, and the result is compared to the IP Address in the
permission spec. If they match, the specified permission
value is applied to the client. Thus, the example above only
provides permission to a client on a computer with the IP
address 192.168.0.5.
The Object Server evaluates permission specs in the order
that they appear within the permission string, returning the

OpenLNS Programmer's Reference 901

permission value given by the first matching spec. This
feature may be used to implement sophisticated permission
scenarios. Some examples follow below.
This spec gives permission to all IP address starting with
192.168:
192.168.0.0 255.255.0.0, 1

This spec denies access to IP 192.168.0.3:
192.168.0.3 255.255.255.255, 0

The following spec has no IP address which satisfies its rule,
so an error will be generated upon assignment:
192.168.1.2 255.255.0.0, 1

The following two specs provide access to all IP address
beginning with 192.168, except those starting with 192.168.5:
192.168.5.0 255.255.255.0, 0

192.168.0.0 255.255.0.0, 1

Availability Local clients.

Syntax permString = systemObject.PermissionString
Element Description

permString The returned permission string.

systemObject The System object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

PingIntervals
Summary Allows the ping intervals for the system to be changed using

the PingIntervals object.

Availability Local, full, and lightweight clients.

Syntax pingIntervals = sysObject.PingIntervals
Element Description

sysObject The System object to be acted on.

pingIntervals The PingIntervals object to be
returned.

Data Type PingIntervals object.

Read/Write Read only.

Added to API LNS Release 3.0.

RecoveryStatus
Summary Contains the RecoveryStatus object associated with the

OpenLNS Programmer's Reference 902

specified System object.

The RecoveryStatus object provides status information on
how a database recovery is proceeding. You can only access
this property from a local client.

You can read this property from an OnSystemNssIdle
callback while the process that initiated the recovery is
waiting for it to complete. Alternatively, another client, such
as a plug-in application, can read it because plug-in
applications always run as separate processes.

Availability Local clients.

Syntax rsObject = systemObject.RecoveryStatus
Element Description

rsObject The RecoveryStatus object to be
returned.

systemObject The System object to be acted on.

Data Type RecoveryStatus object.

Read/Write Read only.

Added to API LNS Release 3.0.

RegisterServicePin
Summary Specifies whether registration occurs automatically when a

service pin message is received. Registration causes the
device to appear in the Discovered.Uninstalled subsystem.

Availability Local, full, and lightweight clients.

Syntax regServPinFlag = systemObject.RegisterServicePin
Element Description

regServPinFlag A Boolean value indicating whether
whether registration occurs
automatically when a service pin
message is received.
TRUE. Unregistered devices will

automatically be
registered and placed in
the
Discovered.Uninstalled
Subsystem when a
service pin message is
received.

FALSE. Devices will not
automatically be
registered.
Devices will only be
registered when their
Commission method is

OpenLNS Programmer's Reference 903

invoked.
This property defaults to True if the
InstallOptions property was set to
lcaSharedMedia (2) before the
System was opened for the first
time. Otherwise, it defaults to
False.

systemObject The System object to be acted on.

Data Type Boolean.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

RemoteChannel
Summary If you are developing a Full client application, you can use

this property to specify the Channel to which your
application’s NetworkServiceDevice is attached.
When a Full client application opens a system, OpenLNS
automatically determines the channel to which the
application’s NetworkServiceDevice is attached. However,
OpenLNS cannot determine the correct channel if the
channel is one of several channels connected by routers that
are configured as repeaters or permanent bridges (the Class
property is set to lcaRepeater, lcaPermanentRepeater or
lcaPermanentBridge).

In this scenario, you can set the RemoteChannel property to
specify the channel to which the NetworkServiceDevice is
attached. You must set this property before you open the
System object. For more information on opening the System
object, see the OpenLNS Programmer’s Guide.
You must explicity set this property before it can be read. If
you attempt to read this property before it has been set, the
LCA, #150 lcaErrNotYetSet exception will be thrown.

Availability Full client.

Syntax channelObject= systemObject.RemoteChannel
Element Description

channelObject The Channel on which the remote
application resides.

systemObject The System object to be acted on.

Data Type Channel object.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 904

RepeatTimer
Summary Sets the repeat timer value that will be used on the system

for network management messages only. You can set the
number of repeat messages that will be sent by writing to the
RetryCount property.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 905

Syntax repeatTimerValue = object.RepeatTimer
Element Description

repeatTimerValue The encoded value of the repeat timer.
The default value for this property is
determined based on the network
topology. It is recommended that you
do not change this from the default
value. If the default value is not
suitable for your application, it is
recommended that you use the Delay
property of each Channel object on the
network to ensure that each message
is sent at the correct interval.
However, this property does accept a
range of encoded values from 0 to 15.
The encoded repeat timer values are
as follows:
Encoded Value Seconds
0 0.016
1 0.024
2 0.032
3 0.048
4 0.064
5 0.096
6 0.128
7 0.192
8 0.256
9 0.384
10 0.512
11 0.768
12 1.024
13 1.536
14 2.048
15 3.072

You can also write the value 254 to
the property at any time to restore it
to the default.
If you assign this property a value
outside the acceptable range, the NS,
#29 lcaErrNsOutOfRange exception
will be thrown.

object The System object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 906

ResourceLanguageId
Summary Controls which language should be used when displaying

descriptive type information stored in device resource files.
This property can contain one or more language codes that
identify the language that should be used when displaying
type information stored in resource files. When you pass
multiple language codes to this property, they must be
comma-separated, as in the following example: "frc, enz, rus."
The language files will be searched for in the order that the
codes are supplied. For example, if this property is set to
"frc,enz,rus", OpenLNS will first look for the .frc (French
Canadian) language files, and then the .enz and .rus
language files when it searches the resource files. If none of
the values in the list are found, the default of "enu" (U.S.
English) will be used.
All language codes are three characters long. See the
LonMark Device Resource File Developer's Guide for
information on resource language IDs and a partial list of the
language codes you can pass to this property.

Setting this property in the ObjectServer object overrides the
value in the System object. It also allows this property to be
set when the System object is not available (i.e. when
performing standalone monitor and control).
The default value for this property is "enu" (U.S. English).

You can only access this property after you have opened the
Object Server.

Note: The FormatLocale object contains a LanguageId
property. This property determines what language file
OpenLNS will use to display data stored in the
FormattedValue properties of DataPoint objects when the
FormatLocale is being used by an application. See the
FormatLocale object for more information on this.

Availability Local, full, lightweight, and independent clients.

Syntax languageId = systemObject.ResourceLanguageId
Element Description

languageId A comma-separated list of one or more
language codes identifying the
languages that should be used when
displaying type information.

systemObject The System object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 907

RetryCount
Summary Sets the retry count used by the Object Server (and

connections that use the default System value) for all
network management messages that use the
request/response, unacknowledged/repeat, or acknowledged
message service types.
You can set the interval for retry messages sent using the
acknowledged or request messages by writing to the TxTimer
property.
You can set the interval for repeat messages sent using the
unacknowledged/repeat message service by writing to the
RepeatTimer property.

Availability Local, full, and lightweight clients.

Syntax retryCountValue = object.RetryCount
Element Description

retryCountValue The retry count value. This property
has a range of 0–15.

object The System object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

SecurityLevel
Summary Controls the level of system key security. Specifically, this

property controls the behavior of the Object Server when
installing and updating devices with the
AuthenticationEnabled property is set to True.

Availability Local, full, and lightweight clients.

Syntax securityLevelValue = systemObject.SecurityLevel
Element Description

securityLevelValue The level of security in the system.
The valid values for this property,
which are contained in the
ConstSecurityLevels constant, are as
follows:
0
lcaSecurityLevelKeyDistribution
Enabled
Keys are distributed over the network
whenever the AuthenticationEnabled
property of a device is set to TRUE or
a device with its
AuthenticationEnabled property set to

OpenLNS Programmer's Reference 908

TRUE is commissioned or replaced.
1
lcaSecurityLevelKeyDistribution
Disabled
Keys are never distributed over the
network. For all devices that have
their AuthenticationEnabled property
set to TRUE, the installer is
responsible for installing the
authentication key. The key installed
must match the value of the System
object’s AuthenticationKey property.
OpenLNS will report the NS, #4031
lcaErrNsUpdateFuncError
whenver it tries to update the device,
and the CommissionStatus of the
device will be set to
lcaCommissionUpdatesFailed (2),
until the key has been successfully
installed into the device.

systemObject The System object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

ServiceStatus
Summary Contains the ServiceStatus object for this System object.

The ServiceStatus object contains information regarding the
service that the client is currently peforming (in progress,
queued, and so on) on the system.
If your client application is taking a long period of time to
access a property or invoke a method, you can access this
property from an OnSystemNssIdle callback to check on the
operation’s status.

Availability Local, full, and lightweight clients.

Syntax serviceStatusObject = systemObject.ServiceStatus
Element Description

serviceStatusObject The ServiceStatus object to be
returned.

systemObject The System object to be acted on.

Data Type ServiceStatus object.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 909

State
Summary Describes the state of the system.

Availability Local, full, and lightweight clients.

Syntax stateValue = object.State
Element Description

stateValue The state of the system. The
enumerated values for this property,
which are stored in the
ConstDeviceStates constant, are as
follows:
Note: The only two values that may
be written to this property are
lcaStateCnfgOnline(4) and
lcaStateSoftOffline(12). All other
properties are read-only.
2 lcaStateUncnfg
The application is loaded but the
configuration is either not loaded,
being reloaded, or deemed corrupted
due to a configuration checksum
error. A Neuron Chip also can make
itself unconfigured by calling the
Neuron C function
go_unconfigured(). The device's
service LED flashes at a one second
rate in this state.
3 lcaStateNoApplUncnfg
No application is loaded yet, the
application is in the process of being
loaded, or the application has been
deemed corrupted due to an
application checksum error or
signature inconsistency. The
application does not run in this state.
The device's service LED is steadily
on in this state.
4 lcaStateCnfgOnline
Normal device state. The application
is running and the configuration is
considered valid. This is the only
state in which messages addressed to
the application are received. In all
other states, they are discarded. The
device's service LED is off in this
state.
6 lcaStateCnfgOffline

OpenLNS Programmer's Reference 910

Application loaded but not running.
The configuration is considered valid
in this state; the network
management authentication bit is
honored. The device's service LED is
off in this state.
12 lcaStateSoftOffline
The device has an application, is
configured, and is soft-offline. It will
go online when it is reset or when
requested to go online. The device's
service LED is off in this state.
140 lcaStateCnfgBypass
The application confirmed the offline
request, but is still running (bypass
mode). The device's service LED is
off in this state.

object The router to be acted on.

Data Type Integer.

Read/Write Read /write.

Added to API Prior to LNS Release 3.0.

Subnets
Summary Contains the Subnets collection object associated with the

specified System. The Subnets collection contains subnets
that are associated with object. For example, the Subnets
property returns a collection of all the Subnet objects in the
system.

Availability Local, full, and lightweight clients.

Syntax subnetCollection = object.Subnets
Element Description

subnetCollection The returned Subnets collection

object The System object to be acted upon.

Data Type Subnets collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 911

Subsystems
Summary Contains the Subsystems collection object associated with the

specified System. A Subsystem object can in turn contain a
collection of Subsystems.

A System object’s Subsystems collection contains two default
Subsystems upon creation. These Subsystems are named
"ALL", which lists all of the devices in the system and
"Discovered", which lists all devices discovered by the object
server that have not yet been associated with a subsystem.
This includes both unconfigured devices discovered by the
NSS and configured devices that were added by some other
network management application that does not use the
Object Server.

The System object's Subsystems collection contains the
top-level subsystems in the user's subsystem hierarchy plus
two pre-defined subsystems: the ALL and the Discovered
subsystem.

• The ALL subsystem lists all of the devices in the system.

• The Discovered subsystem lists all devices discovered
by the object server that have not yet been associated
with a subsystem. This includes both unconfigured
devices discovered by the NSS and configured devices
that were added by some other network management
application that does not use the Object Server.

Availability Local, full, and lightweight clients.

Syntax subsystemCollection = object.Subsystems
Element Description

subsystemCollection Subsystems collection associated
with the object.

object The System object.

Data Type Subsystems collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

TemplateLibrary
Summary Contains the TemplateLibrary object associated with the

specified System object. The TemplateLibrary object contains
all of the collections of the various templates known to the
ObjectServer.

Availability Local, full, and lightweight clients.

Syntax libraryObject = systemObject.TemplateLibrary
Element Description

libraryObject Returned TemplateLibrary object.

OpenLNS Programmer's Reference 912

systemObject The System object to be acted on.

Data Type TemplateLibrary object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

TxTimer
Summary Sets the value of the transmit timer used for network

management messages.
You can use this property to specify the interval between
between retries for acknowledged (lcaSvcAckd) and request
(lcaSvcRequest) messages sent during network
management operations. LNS retries message transmissions
when no acknowledgment of (or response to) an original
message is received
This interval applies to network management messages only.
To set this interval for monitor and control messages for
temporary monitor points, use the DsTxTimer property.
To set this interval for monitor and control messages for
permanent monitor points, use the ConnectDescTemplate
object’s TransmitTimer property for connections involving
those monitor points.

Availability Local, full, and lightweight clients.

Syntax timerValue = systemObject.TxTimer
Element Description

repeatTimerValue The encoded value of the repeat timer.
The default value for this property is
determined based on the network
topology. It is recommended that you
do not change this from the default
value. If the default value is not
suitable for your application, it is
recommended that you use the Delay
property of each Channel object on the
network to ensure that each message
is sent at the correct interval.
However, this property does accept a
range of encoded values from 0 to 15.
The encoded repeat timer values are
as follows:
Encoded Value Seconds
0 0.016
1 0.024
2 0.032
3 0.048
4 0.064

OpenLNS Programmer's Reference 913

5 0.096
6 0.128
7 0.192
8 0.256
9 0.384
10 0.512
11 0.768
12 1.024
13 1.536
14 2.048
15 3.072

You can also write the value 254 to
the property at any time to restore it
to the default.

timerValue The encoded value of the transmit
timer.

systemObject The System object to be acted on.

Data Type Integer.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

UncommissionedDeviceCount
Summary Returns the number of uncommissioned devices discovered

by network recovery. At the completion of network recovery,
devices are grouped into three categories.

• Installed devices that were recovered are counted by the
CommissionedDeviceCount property.

• Installed devices that could not be recovered, and had to
be uninstalled, are counted by the
UninstalledDeviceCount property.

• Devices that were discovered by network recovery but
had not previously been installed are counted by the
UncommissionedDeviceCount property.

Availability Local, full, and lightweight clients.

Syntax numDevices = systemObject.UncommissionedDeviceCount

Element Description

numDevices The number of uncommissioned
devices discovered by the network
recovery process.

systemObject The System object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 914

UninstalledDeviceCount
Summary Returns the number of devices uninstalled by network

recovery. At the completion of network recovery, devices are
grouped into three categories.

• Installed devices that were recovered are counted by the
CommissionedDeviceCount property.

• Installed devices that could not be recovered, and had to
be uninstalled, are counted by the
UninstalledDeviceCount property.

• Devices that were discovered by network recovery but
had not previously been installed are counted by the
UncommissionedDeviceCount property.

Availability Local, full, and lightweight clients.

Syntax numDevices = systemObject.UninstalledDeviceCount

Element Description

numDevices The number of devices uninstalled by
network recovery.

systemObject The System object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 915

UpdateInterval
Summary The rate (in seconds) at which the background database

device image reconciliation process runs after a device update
failure occurs on the network. A device update failure occurs
when a transaction has been completed and committed to the
OpenLNS database, but OpenLNS is unable to load the
information into the physical device because of some error.
When OpenLNS is unable to update a device upon
committing a transaction, it retries updating the devices at
the interval defined by this property. The specified interval
is dependent on the setting of the network management
mode:

• If the network management mode is set to
lcaMgmtModeDeferConfigUpdates (1), only update
failures that occurred while the network management
mode was set to lcaMgmtModeDeferConfigUpdates
(1) will be retried.
Update failures that occurred while the network
management mode was set to
lcaMgmtModePropagateConfigUpdates (0) will not
be retried until the network management mode has been
restored to the
lcaMgmtModePropagateConfigUpdates (0) value.

• If the network management mode is set to
lcaMgmtModePropagateConfigUpdates (0), all
update failures will be retried at this interval.

Device update failures are indicated by NS exceptions in the
4030–4089 range.

You can force a retry of failed updates with the RetryUpdates
method. If you are receiving persistent update failures for a
device, you may need to re-commission the device. You can do
this with the method.

Availability Local, full, and lightweight clients.

Syntax updateIntervalValue = object.UpdateInterval
Element Description

updateIntervalValue The update interval rate in
seconds.
A value of 0 indicates that the
backround process is turned off.

systemObject The System object to be acted on.

Data Type Long.

Read/Write Read/write.

Added to API Prior to LNS Release 3.0.

OpenLNS Programmer's Reference 916

Systems
The Systems object represents a collection of System objects. Each Systems collection
contains a single System object. The System object associated with a network has the same
name as the network. The Systems object is automatically added when you add a new
Network object.

The following table summarizes the Systems object.

Description A collection of System objects.

Added to API Prior to LNS Release 3.0.

Accessed Through Network object.

Default Property Item.

Methods None.

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The Systems object does not contain any methods.

Properties
The Systems object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Systems object in the ConstClassIds
constant:

OpenLNS Programmer's Reference 917

3 lcaClassIdSystem

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns a System object from a Systems collection. You can

retrieve a System object from its Systems collection by
passing its index (ordinal position) within that collection as
the argument for the Item property. Index values start at 1.

You can also retrieve a System object from a Systems
collection with the Name property by passing the System
object’s name as a string expression.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The System object retrieved from the
collection.

collObject The Systems collection object to be acted

OpenLNS Programmer's Reference 918

on.

index A Long type specifying the ordinal
index of the System object to be
retrieved.

stringExpression A string type specifying the name of the
System object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

OpenLNS Programmer's Reference 919

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

TemplateLibrary
The TemplateLibrary object contains all of the templates in a System object and represents a
catalog where definitions that apply to multiple objects are stored. The following table
summarizes the TemplateLibrary object.

Description Contains all of the templates in a System object.

Added to API Prior to LNS Release 3.0.

Accessed Through System object.

Default Property None.

Methods None.

Properties • ClassId
• ConnectDescTemplates
• Description
• DeviceTemplates
• Parent

Methods
The TemplateLibrary object does not contain any methods.

Properties
The TemplateLibrary object contains the following properties:

• ClassId
• ConnectDescTemplates
• Description
• DeviceTemplates
• Parent

OpenLNS Programmer's Reference 920

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
TemplateLibrary object in the
ConstClassIds constant:
21 lcaClassIdTemplateLibrary

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ConnectDescTemplates
Summary Contains the ConnectDescTemplates collection object

associated with the specified TemplateLibrary object. This is
a collection of all ConnectDescTemplate objects known to the
system.

Availability Local, full, and lightweight clients.

Syntax cdtColl = tlObject.ConnectDescTemplates
Element Description

cdtColl The ConnectDescTemplates collection to
be returned.

tlObject The TemplateLibrary object to be acted
on.

Data Type ConnectDescTemplates collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Description
Summary Stores description information about the TemplateLibrary

object.

OpenLNS Programmer's Reference 921

Availability Local, full, lightweight, and independent clients. Note that
some collections are not available to Independent clients.

Syntax stringValue = object.Description
Element Description

stringValue A string description of the
TemplateLibrary object.

object The TemplateLibrary object to be
acted on.

Data Type String.

Read/Write Read/write.

Added to API This depends on the object used to access the property.
Generally, this property exists for the objects listed above as
soon as they are added to the API. See the applicable object
to determine what release it was introduced in.

DeviceTemplates
Summary Contains the DeviceTemplates collection object associated

with the specified TemplateLibrary object. This is a
collection of all DeviceTemplate objects known to the system.

Availability Local, full, and lightweight clients.

Syntax devTempColl = tlObject.DeviceTemplates
Element Description

devTempColl The DeviceTemplates collection to be
returned.

tlObject The TemplateLibrary object to be
acted on.

Data Type DeviceTemplates collection object.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the

OpenLNS Programmer's Reference 922

specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

TestInfo
The TestInfo object contains information describing the results of the last test on the
AppDevice or RoutersSide object. You can initiate a test on an AppDevice or Router by
calling the Test method on it. The following table summarizes the TestInfo object.

Description Contains information on device and router tests.

Added to API LNS Release 3.0.

Accessed Through AppDevice object.
Router object.

Default Property None.

Methods None.

Properties • ActualDomainId
• ActualNeuronId
• ActualNodeId
• ActualProgramId
• ActualSubnetId
• AuxResultData
• ClassId
• DetailInfo
• ExpectedDomainId
• ExpectedNeuronId
• ExpectedNodeId
• ExpectedProgramId
• ExpectedSubnetId
• IsDetailInfoValid
• Parent
• Status

Methods
The TestInfo object does not contain any methods.

Properties
The TestInfo object contains the following properties:

• ActualDomainId
• ActualNeuronId
• ActualNodeId

OpenLNS Programmer's Reference 923

• ActualProgramId
• ActualSubnetId
• AuxResultData
• ClassId
• DetailInfo
• ExpectedDomainId
• ExpectedNeuronId
• ExpectedNodeId
• ExpectedProgramId
• ExpectedSubnetId
• IsDetailInfoValid
• Parent
• Status

ActualDomainId
Summary Contains the actual Domain ID of the tested device or router

side if the AuxResultData is set to LcaDomainIdData.
This property can be used in conjunction with the
AuxResultData to analyze Domain ID discrepancies.

If the AuxResultData property is set to some other value, this
property contains no useful information
The domain ID is stored as a string of hexadecimal digits.
For example, a 3-byte domain ID would be represented as
follows: "32a0cf". Domain IDs can be 1, 3, or 6 bytes in
length.

Availability Local, full, and lightweight clients.

Syntax domainIdValue = toObject.ActualDomainId
Element Description

toObject The TestInfo object to be acted on.

domainIdValue The actual domain ID of the tested
device or router side.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

ActualNeuronId
Summary Contains the actual Neuron ID of the tested device or router

side if the AuxResultData is set to LcaNeuronIdData.
This property can be used in conjunction with the
ExpectedNeuronId to analyze NeuronID discrepancies.

If the AuxResultData property is set to some other value, this
property contains no useful information.
Neuron IDs are stored as 12-digit hexadecimal strings (for
example, "a327ff27ba44").

OpenLNS Programmer's Reference 924

Availability Local, full, and lightweight clients.

Syntax neuronIdValue = toObject.ActualNeuronId
Element Description

toObject The TestInfo object to be acted on.

neuronIdValue The actual Neuron ID of the tested
device or router side.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

ActualNodeId
Summary Contains the actual node ID of the tested device or router

side if the AuxResultData is set to LcaNodeData.
This property can be used in conjunction with the
ExpectedNodeId to analyze node ID discrepancies.

If the AuxResultData property is set to some other value, this
property contains no useful information.

The NodeId and SubnetId comprise the logical network
address assigned to a device.

Availability Local, full, and lightweight clients.

Syntax nodeIdValue = toObject.ActualNodeId
Element Description

toObject The TestInfo object to be acted on.

nodeIdValue The actual node ID of the tested
device or router side.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

ActualProgramId
Summary Contains the actual program ID of the tested device or router

side if the AuxResultData is set to LcaProgramIdData.
This property can be used in conjunction with the
ExpectedProgramId to analyze Program ID discrepancies.

If the AuxResultData property is set to some other value, this
property contains no useful information.
Every LonMark compliant LONWORKS device uses a
unique, 16 digit, hexadecimal standard program ID that uses
the following format:
FM:MM:MM:CC:CC:UU:TT:NN

OpenLNS Programmer's Reference 925

Availability Local, full, and lightweight clients.

Syntax progIdValue = toObject.ActualProgramId
Element Description

toObject The TestInfo object to be acted on.

progIdValue The actual program ID of the tested
device or router side.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

ActualSubnetId
Summary Contains the actual subnet ID of the tested device or router

side if the AuxResultData is set to LcaSubnetData.
This property can be used in conjunction with the
ExpectedSubnetId to analyze Subnet ID discrepancies.

If the AuxResultData property is set to some other value, this
property contains no useful information.

The NodeId and SubnetId comprise the logical network
address assigned to a device.

Availability Local, full, and lightweight clients.

Syntax subnetIdValue = toObject.ActualSubnetId
Element Description

toObject The TestInfo object to be acted on.

nodeIdValue The actual subnet ID of the tested
device or router side.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

AuxResultData
Summary Contains auxiliary information about the TestInfo object.

Availability Local, full, and lightweight clients.

Syntax auxResultValue = toObject.AuxResultData
Element Description

toObject The TestInfo object to be acted on.

auxResultValue The auxiliary information.
The possible values for this
element, which are contained in the
ConstTestResultAuxData constant,

OpenLNS Programmer's Reference 926

are as follows:
0 lcaNoAuxData
There is no useful information in
the Actual/Expected properties of
the LastTestInfo object.
1 lcaNeuronIdData

The ActualNeuronId and
ExpectedNeuronId properties
contain information about a Neuron
ID discrepancy.
2 lcaDomainIdData

The ActualDomainId and
ExpectedDomainId properties
contain information about a
Domain ID discrepancy.
3 lcaSubnetNodeData

The ActualNodeId,
ExpectedNodeId, ActualSubnetId,
and ExpectedSubnetId properties
contain information about a
Subnet/Node ID discrepancy.
4 lcaProgramIdData

The ActualProgramId and
ExpectedProgramId properties
contain information about a
Program ID discrepancy.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
TestInfo object in the ConstClassIds

OpenLNS Programmer's Reference 927

constant:
71 lcaClassIdTestInfo

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

DetailInfo
Summary Contains the DetailInfo object associated with the specified

AppDevice, RouterSide, or TestInfo object.

The DetailInfo object contains an error log and
communications status information for an AppDevice or
RouterSide object.

If the DetailInfo property is accessed through a TestInfo
object, the property will only contain valid information if the
IsDetailInfoValid property is set to True.

Availability Local, full, and lightweight clients.

Syntax detailInfoObject = object.DetailInfo
Element Description

detailInfoObject The DetailInfo object associated
with the device.

object The TestInfo object from which to
get status information.

Data Type DetailInfo object.

Read/Write Read only.

Added to API LNS Release 3.0.

ExpectedDomainId
Summary Contains the expected Domain ID of the tested device or

router side if the AuxResultData is set to
LcaDomainIdData.
This property can be used in conjunction with the
ActualDomainId to analyze Domain ID discrepancies.

If the AuxResultData property is set to some other value, this
property contains no useful information
The domain ID is stored as a string of hexadecimal digits.
For example, a 3-byte domain ID would be represented as
follows: "32a0cf". Domain IDs can be 1, 3, or 6 bytes in
length.

OpenLNS Programmer's Reference 928

Availability Local, full, and lightweight clients.

Syntax domainIdValue = toObject.AuxResultData
Element Description

toObject The TestInfo object to be acted on.

domainIdValue The expected domain ID of the
tested device or router side.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

ExpectedNeuronId
Summary Contains the expected Neuron ID of the tested device or

router side if the AuxResultData is set to
LcaNeuronIdData.
This property can be used in conjunction with the
ActualNeuronId to analyze NeuronID discrepancies.

If the AuxResultData property is set to some other value, this
property contains no useful information.
Neuron IDs are stored as 12-digit hexadecimal strings (for
example, "a327ff27ba44").

Availability Local, full, and lightweight clients.

Syntax neuronIdValue = toObject.ExpectedNeuronId
Element Description

toObject The TestInfo object to be acted on.

neuronIdValue The expected Neuron ID of the
tested device or router side.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

ExpectedNodeId
Summary Contains the expected node ID of the tested device or router

side if the AuxResultData is set to LcaNodeData.
This property can be used in conjunction with the to analyze
Node ID discrepancies.

If the AuxResultData property is set to some other value, this
property contains no useful information.

The NodeId and SubnetId comprise the logical network
address assigned to a device.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 929

Syntax nodeIdValue = toObject.ExpectedNodeId
Element Description

toObject The TestInfo object to be acted on.

nodeIdValue The expected node ID of the tested
device or router side.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

ExpectedProgramId
Summary Contains the expected program ID of the tested device or

router side if the AuxResultData is set to
LcaProgramIdData.
This property can be used in conjunction with the
ActualProgramId to analyze Program ID discrepancies.

If the AuxResultData property is set to some other value, this
property contains no useful information.
Every LonMark compliant LONWORKS device uses a
unique, 16-digit hexadecimal standard program ID that uses
the following format: FM:MM:MM:CC:CC:UU:TT:NN.

Availability Local, full, and lightweight clients.

Syntax progIdValue = toObject.ExpectedProgramId
Element Description

toObject The TestInfo object to be acted on.

progIdValue The expected program ID of the
tested device or router side.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

ExpectedSubnetId
Summary Contains the expected subnet ID of the tested device or

router side if the AuxResultData is set to LcaSubnetData.
This property can be used in conjunction with the
ActualSubnetId to analyze Subnet ID discrepancies.

If the AuxResultData property is set to some other value, this
property contains no useful information.

The NodeId and SubnetId comprise the logical network
address assigned to a device.

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 930

Syntax subnetIdValue = toObject.ExpectedSubnetId
Element Description

toObject The TestInfo object to be acted on.

nodeIdValue The expected subnet ID of the
tested device or router side.

Data Type String.

Read/Write Read only.

Added to API LNS Release 3.0.

IsDetailInfoValid
Summary Indicates whether the TestInfo object's DetailInfo property

contains valid information.

Availability Local, full, and lightweight clients.

Syntax validDetailValue = tiObject.IsDetailInfoValid
Element Description

validDetailValue A Boolean value indicating whether
the DetailInfo property contains
valid information.

TRUE. The DetailInfo property
contains valid
information.

FALSE. The DetailInfo property
contains invalid
information.

tiObject The TestInfo object to be acted on.

Data Type Boolean.

Read/Write Read only.

Added to API LNS Release 3.0.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the

OpenLNS Programmer's Reference 931

specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Status
Summary Indicates the test status reported by the Test method.

Availability Local, full, and lightweight clients.

Syntax statusValue = tiObject.Status
Element Description

toObject The TestInfo object to be acted on.

statusValue The enumerated values for this element,
which are contained in the ConstTestResults
constant, are as follows:
0 lcaTestResultGood
The device passed all applicable tests.
1 lcaTestResultComm
The OpenLNS Server was unable to
communicate with the device using either
Neuron ID or its subnet/node addressing.
The Network Service Device might not be
attached to the network, the Network
Service Device might be unconfigured, the
target device might not be attached to the
network, the target device may be powered
off, or the target device may be faulty.
2 lcaTestResultCommNeuronId
The OpenLNS Server was unable to
communicate with the device using Neuron
ID addressing. Because the device has not
been added or defined, the OpenLNS Server
could not test the device using subnet/node
ID addressing. The OpenLNS Server might
not be attached to the network, the Network
Service Device might be unconfigured, the
target device might not be attached to the
network, the target device may be powered
off, or the target device may be faulty.
3
lcaTestResultCommNeuronIdVerified

OpenLNS Programmer's Reference 932

The OpenLNS Server was able to
communicate with the device using
subnet/node addressing, but could not
communicate with the device using Neuron
ID addressing. However, through the use of
subnet/node addressed messages, the
OpenLNS Server has verified that the
device contains the expected Neuron ID.
This might be caused by intermittent device
or channel failures. You may want to retry
this method to see if the error persists.
4 lcaTestResultCommSnode
The OpenLNS Server was able to
communicate with the device using Neuron
ID addressing, but could not communicate
with the device using subnet/node
addressing. The OpenLNS Server was
unable to verify whether the device has
been configured with the proper
domain/subnet/node address. The device
may have reconfigured itself, the device
may have been reconfigured by another
network management tool, or the device
may be faulty. The device may be restored
using the Commission method.
5 lcaTestResultSnodeVerified
The OpenLNS Server was able to
communicate with the device using Neuron
ID addressing, but could not communicate
with the device using subnet/node
addressing. However, through the use of
Neuron ID addressed messages, The
OpenLNS Server has verified that the
device contains the expected subnet/node
address. This error can occur if the target
device is in an unconfigured state. The
device may need to be recomissioned or it
may be in the middle of a two-phase move.
It also might be caused by intermittent
device or channel failures. You may want to
retry this method to see if the error persists.
6 lcaTestResultDuplicateSnode
The OpenLNS Server was able to
communicate with the device using Neuron
ID addressing. However, when using
subnet/node addressing, the responding
device contains a different Neuron ID. This
failure indicates that multiple devices are
configured with the same
domain/subnet/node address. This could be

OpenLNS Programmer's Reference 933

caused by attaching a new device to the
network which was previously configured as
part of another network or by two networks
sharing the same media and domain ID.
This condition could also occur if the
unexpected device was supposed to be
removed from the system, but the OpenLNS
Server was unable to update the device’s
network image during a Remove method;
meanwhile, the removed subnet/node
address has been reused for the device
being tested.
7 lcaTestResultMismatchDomain
The OpenLNS Server was able to
communicate with the device using Neuron
ID addressing but could not communicate
with the device using subnet/node
addressing. Using Neuron ID addressing,
the OpenLNS Server found that the domain
ID configured in the device does not match
the database. This result will be returned if
the device’s domain address has not be
configured or the device has become
unconfigured due to a checksum error.
8 lcaTestResultMismatchNeuronId
The OpenLNS Server was unable to
communicate with the device using Neuron
ID addressing. However, the device that
responded to the subnet/node addressed test
message contains a different Neuron ID. It
appears that the subnet/node address is
configured in the responding device but not
the tested device. One possible cause is that
the tested device is supposed to replace the
responding device, but the network images
in both devices have not been updated yet.
You can resolve this problem by physically
removing the obsolete device.
9 lcaTestResultMismatchSnode
The OpenLNS Server was able to
communicate with the device using Neuron
ID addressing, but could not communicate
with the device using its subnet/node
addressing. Through the use of Neuron ID
addressed messages, the NSS has found
that the subnet/node address configured in
the device does not match the database.
This result will be returned if the device’s
domain address has not been configured.

OpenLNS Programmer's Reference 934

10 lcaTestResultNoNeuronId
The device has not been assigned a Neuron
ID.
11 lcaTestResultMismatchProgramId
The OpenLNS Server was able to
communicate with the device using both
Neuron ID and subnet/node addressing.
However, the device does not contain the
expected program ID. The device’s program
ID may have been changed by its
application program. Host devices can
modify the program ID of their attached
network interface. The device should be
Removed and Added.
12
lcaTestResultCommSnodeNotVerified
The OpenLNS Server was able to
communicate with the device using Neuron
ID addressing, but could not communicate
with the device using subnet/node
addressing. The OpenLNS Server did not
attempt to verify that the device has been
configured with the proper
domain/subnet/node address because the
device is currently authenticated, and
reading the address would result in
transmitting the key over the network. The
device may have reconfigured itself, the
device may have been reconfigured by
another network management tool, or the
device may be faulty. The device may be
restored using the Commission method.
13 lcaTestResultAuthEnabled
The OpenLNS Server was able to
communicate with the device using both
Neuron ID addressing and subnet/node
addressing. However, the device has
network management authentication
enabled despite the fact that the device’s
AuthenticationEnabled property is set to
FALSE. The device may have enabled
network management authentication itself,
the device may have been reconfigured by
another network management tool, or the
device may be faulty. It may be possible to
restore the device using the Commission
method.
14 lcaTestResultAuthDisabled
The OpenLNS Server was able to

OpenLNS Programmer's Reference 935

communicate with the device using both
Neuron ID addressing and subnet/node
addressing. However, the device has
network management authentication
disabled despite the fact that the device's
AuthenticationEnabled property is set to
TRUE. The device may have disabled
network management authentication itself,
the device may have been reconfigured by
another network management tool, or the
device may be faulty. The device may be
restored using the Commission method.
15 lcaTestResultKeyMismatch
The OpenLNS Server was able to
communicate with the device using both
Neuron ID addressing and subnet/node
addressing. The device has network
management authentication enabled and
the node's AuthentictionEnabled property is
set to TRUE. However, the device does not
contain the current system authentication
key. The device may have changed its
authentication key itself, the device may
have been reconfigured by another network
management tool, or the device may be
faulty. It may be possible to restore the
device using the Commission method.
16 lcaTestResultInterfaceFailure
The OpenLNS Server was unable to
communicate with the OpenLNS network
interface. The OpenLNS network interface
may have become disconnected or faulty.
Exit all OpenLNS applications and perform
diagnostics on the OpenLNS network
interface using the LONWORKS Interfaces
Control Panel application.
17 lcaTestResultInterfaceNotOnline
The OpenLNS network interface that the
OpenLNS Server is attempting to use is not
Online. Recommission the
NetworkServiceDevice of the System object
by calling the
System.NetworkServiceDevice.AppDev
ice.Commission method, and make sure
that the State property of the
NetworkServiceDevice object
(NetworkServiceDevice.AppDevice.State) is
set to lcaOnline.
18 lcaTestResultInterfaceConfigError

OpenLNS Programmer's Reference 936

The OpenLNS network interface that the
OpenLNS Server is attempting to use is not
property configured. Recommission the
NetworkServiceDevice of the System object
by calling the
System.NetworkServiceDevice.
AppDevice.Commission method.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.0.

TypeSpec
The TypeSpec object contains a group of properties that OpenLNS uses to identify the type a
network variable should use. You can write new values to these properties to change the
network variable’s type if the network variable’s ChangeableTypeSupport property is set to
lcaNvChangeableTypeSdOnly (1) or lcaNvChangeableTypeSCPT (2).
To change a network variable’s type, follow these steps:

1. Access the network variable’s TypeSpec object through the TypeSpec property of the
NetworkVariable object.

2. Set the program ID, scope, and name of the new type you want to use by writing to the
ProgramId, Scope, and TypeName properties of the TypeSpec object.

3. Optionally, invoke the Lookup method on the TypeSpec object to make sure that the
program ID, scope and name entered in step 2 reference a valid type.

4. Read the IsComplete property to make sure that the TypeSpec object is complete. This
step is only necessary if you are creating a new network variable, or changing a network
variable’s type from a type that was received from another network variable.

5. Pass the modified TypeSpec object back to the TypeSpec property of the network
variable. At this point, OpenLNS will use the values entered in step 2 to find the
definition of the type in the resource files, and assign values to the Index, Length, and
ObjectType properties of the TypeSpec object.

• If OpenLNS is unable to find the resource file for the program ID entered in step 2,
the LCA #154 lcaErrUnavailableResourceFiles exception will be thrown.

• If OpenLNS finds the resource file but is unable to find the type name referenced in
step 2, the LCA #155 lcaErrNotFoundInResourceFiles exception will be thrown.
Make sure that the network variable can support the new type before assigning it.

• If the length of the new type is too long for the network variable, the LCA#156
lcaErrTypeLengthTooLong exception will be thrown.

The following table summarizes the TypeSpec object.

Description Contains a group of properties that OpenLNS uses to identify
the type a network variable should use.

Added to API LNS Release 3.20.

Accessed Through NetworkVariable object.

Default Property None.

OpenLNS Programmer's Reference 937

Methods • Lookup

Properties • ClassId
• Index
• IsComplete
• Length
• ObjectType
• Parent
• ProgramId
• Scope
• TypeName

Methods
The TypeSpec object contains the following methods:

• Lookup

Lookup
Summary Validates that the scope, program ID, and format name

assigned to a TypeSpec object references a valid network
variable type.

Availability Local, full, and lightweight clients.

Syntax typeSpec.Lookup

Element Description

typeSpec The TypeSpec object to be acted
upon.

Added to API LNS Release 3.20.

Properties
The TypeSpec object contains the following properties:

• ClassId
• Index
• IsComplete
• Length
• ObjectType
• Parent
• ProgramId
• Scope
• TypeName

ClassId
Summary Identifies the object class of this object.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId

OpenLNS Programmer's Reference 938

Element Description

classIdValue The object class of the object. The
following value is defined for the
TypeSpec object in the ConstClassIds
constant:
94 lcaClassIdTypeSpec

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Index
Summary Indicates the index number of the type referenced by this

TypeSpec object, as defined in the resource file that contains
the type’s definition.

When new values are written to the Scope, ProgramId,
TypeName properties of the TypeSpec object and the
TypeSpec object is passed back to the network variable,
OpenLNS sets the Index property automatically. If the type
referenced by the TypeSpec object is a standard type, this will
be the SNVT index of the type. If the type is a user-defined
type, this will be the index of the type as defined in the
resource files containing the definition of the type.

Availability Local, full, and lightweight clients.

Syntax indexValue = typeSpec.Index
Element Description

indexValue The index number of the type.

typeSpec The TypeSpec object to be acted on.

Data Type Long.

Read/Write Read/write.

Added to API LNS Release 3.20.

IsComplete
Summary Indicates whether the TypeSpec object is complete.

Generally, you do not need to check whether a TypeSpec
object is complete before passing it back to a network
variable. However, if you are creating a new network
variable or changing a network variable’s type from a type
that was received from another network variable, you need to
check if it is complete. This property may be one of the
following values:

OpenLNS Programmer's Reference 939

• TRUE. The TypeSpec object is complete.

• FALSE. The TypeSpec object is incomplete. Several
conditions may cause a TypeSpec object to be incomplete.
For example, if you try to get a TypeSpec object for a
network variable with a changeable UNVT type that uses
a configuration property, and the category of the
configuration property is either CAT_INITIAL or
CAT_NULL, then the TypeSpec object would be
incomplete.

Availability Local, full, and lightweight clients.

Syntax complete = typeSpec.IsComplete
Element Description

complete A Boolean value indicating whether the
TypeSpec object is complete.

typeSpec The TypeSpec object to be acted on.

Data Type Boolean.

Read/Write Read only

Added to API LNS Release 3.20.

Length
Summary Indicates the length (in bytes) of network variables that use

the type referenced by this TypeSpec object.

When new values are written to the Scope, ProgramID,
TypeName properties of the TypeSpec object and the
TypeSpec object is passed back to the network variable,
OpenLNS sets the Length property automatically.

When you assign the TypeSpec object to a network variable,
make sure that the value of this property does not exceed the
value assigned to the network variable’s MaxLength
property. Otherwise, the LCA#156
lcaErrTypeLengthTooLong exception will be thrown.

Availability Local, full, and lightweight clients.

Syntax lengthInBytes = typeSpec.Length
Element Description

lengthInBytes The length of network variables (in
bytes) using the type referenced by this
TypeSpec object.

typeSpec The TypeSpec object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 940

ObjectType
Summary Indicates the type of objects to which the type should be

applied.

When new values are written to the Scope, ProgramID,
TypeName properties of the TypeSpec object and the
TypeSpec object is passed back to the network variable,
OpenLNS sets the ObjectType property automatically.

Availability Local, full, and lightweight clients.

Syntax objectType = typeSpec.ObjectType
Element Description

objectType The objects to which the type applies.
The possible values for this element,
which are specified in the
ConstTypeSpecObjectType constant, are
as follows:
0 lcaTypeSpecNv
The type applies to network variables.
2 TypeSpecLmo
This type applies to LonMark objects or
functional blocks (SFPTs and UFPTs).
2 TypeSpecFb
An alias for TypeSpecLmo.

typeSpec The TypeSpec object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.20.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

OpenLNS Programmer's Reference 941

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

ProgramId
Summary Contains the program ID of the TypeSpec object. The

program ID is stored as a unique 16-digit hexadecimal
number in the following format:
FM:MM:MM:CC:CC:UU:TT:NN.
Note: You may not use colons when writing the program ID.
For a device with a program ID of 80:00:01:01:28:80:04:02,
you can write 8000010128800402 in this property.

Each TypeSpec object references a type. OpenLNS uses the
ProgramId property in conjunction with the Scope property of
the applicable TypeSpec object to determine which resource
file contains the type’s definition.
The type to use within that resource file is identified by the
TypeName property.

• If the TypeSpec object applies to a network variable that
has a standard network variable type (SNVT), the
ProgramID property is set to 0000000000000000.

• If the TypeSpec object applies to a network variable that
has a user-defined network variable type (UNVT), the
ProgramID property is set to match the program ID of
the device containing the network variable or data point.

Availability Local, full, and lightweight clients.

Syntax programIdValue = typeSpec.ProgramID
Element Description

programIdValu
e

The length of network variables (in
bytes) using the type referenced by this
TypeSpec object.

typeSpec The TypeSpec object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 942

Scope
Summary Each TypeSpec object references a type defined in a LonMark

resource file. This property indicates the scope of the
resource file that contains that type’s definition. The scope of
a resource file determines which devices will use the types
defined in that resource file.

Availability Local, full, and lightweight clients.

Syntax scopeValue = typeSpec.Scope
Element Description

scopeValue The scope of the device resource file
containing the definition of this type.
The possible values of this element, which
are stored in the ConstResourceScope
constant, are as follows:
0 lcaResourceScopeStandard
This scope applies to all devices.
1 lcaResourceScopeClass
This scope applies to all devices of a
specified device class from any
manufacturer.
2 lcaResourceScopeSubclass
This scope applies to all devices of a
specified device class and device subclass
from any manufacturer.
3 lcaResourceScopeMfg
This scope applies to all devices of a
specified manufacturer.
4 lcaResourceScopeMfgClass
This scope applies to all devices of a
specified manufacturer and device class.
5 lcaResourceScopeMfgSubClass
This scope applies to all devices of a
specified manufacturer, device class and
device subclass.
6 lcaResourceScopeMfgModel
This scope applies to all devices of a
specified manufacturer, device class,
device subclass and model.
-1 lcaResourceScopeUnknown
The scope of the resource file is not
known, or could not be found.
-2

OpenLNS Programmer's Reference 943

lcaResourceScopeAutoDeterminatio
n

This value applies to the Mode property of
LonMarkObject objects only.
Select this value to have LNS determine
the value of the Mode property for the
LonMarkObject automatically.
If you select this value, OpenLNS will
iterate through all the available resource
files from most specific to most general (
highest scope to lowest scope) until it
finds the functional profile template
resource file containing the
LonMarkObject object’s definition. It will
then assign the proper value to the Mode
property.
If OpenLNS is unable to determine the
proper scope value, it will set the Mode
property to
lcaResourceScopeUnknown (-1).

typeSpec The TypeSpec object to be acted on.

Data Type Short.

Read/Write Read/write.

Added to API LNS Release 3.20.

TypeName
Summary Contains the name of the type referenced by the TypeSpec

object. Each TypeSpec object is accessed through a network
variable, and identifies the type used by that network
variable. The resource file that contains the definition of the
type is identified by the Scope and ProgramID properties of
the TypeSpec object

Availability Local, full, and lightweight clients.

Syntax typeName = typeSpec.TypeName
Element Description

typeName The name of the type.

typeSpec The TypeSpec object to be acted on.

Data Type String.

Read/Write Read/write.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 944

UpgradeInfo
Each time you call the Upgrade method to upgrade an AppDevice object’s external interface
file, an UpgradeStatus object is returned. The UpgradeStatus object contains properties
describing the results of the upgrade. This includes the UpgradeInfos property, which
contains a collection of UpgradeInfo objects. Each UpgradeInfo object represents a
component of the old external interface file, which could be a LonMarkObject, a network
variable, a configuration property, a static or dynamic message tag, a monitor set, or a
monitor point. To determine the external interface component to which an UpgradeInfo
object applies, read the Class and FromIndex properties of this object.

The other properties of the UpgradeInfo object contain information describing how the
component it represents was affected by the upgrade.

• The FromIndex and FromOwnerIndex properties indicate the device index value
assigned to the component in the old external interface file, and the ToIndex and
ToOwnerIndex properties indicate the device index value assigned to the component in
the upgraded external interface file.

• The Status property indicates whether or not the component was retained by the new
external interface.

• The Reason property indicates why the component was retained or removed from the
new external interface.

The following table summarizes the UpgradeInfo object.

Description Describes the results of a device XIF upgrade.

Added to API LNS Release 3.0.

Accessed Through UpgradeInfos object.

Default Property None.

Methods None.

Properties • Class
• ClassId
• FromIndex
• FromOwnerIndex Parent
• Reason
• Status
• ToIndex
• ToOwnerIndex

Methods
The UpgradeInfo object does not contain any methods.

Properties
The UpgradeInfo object contains the following properties:

• Class
• ClassId
• FromIndex
• FromOwnerIndex Parent

OpenLNS Programmer's Reference 945

• Reason
• Status
• ToIndex
• ToOwnerIndex

Class
Summary Indicates the type of external interface component described

by this UpgradeInfo object.

You can use this property in conjunction with the ToIndex or
FromIndex properties to determine the component in the new
and old external interfaces that the UpgradeInfo object
represents.

Availability Local, full, and lightweight clients.

Syntax classValue = uiObject.Class
Element Description

classValue

An enumeration indicating the type of
external interface component represented
by the UpgradeInfo object.
The possible values for this property,
which are contained in the ConstUpgrade
Class constant, are as follows:
1 lcaUgClsLmObj

A LonMarkObject.
2 lcaUgClsNetVar

A NetworkVariable.
3 lcaUgClsMsgTag

A static MessageTag.
4 lcaUgClsConfigProp

A ConfigProperty which is not associated
with a network variable or LonMark
object.
5 lcaUgClsLmObjConfigProp
A configuration property that is associated
with a LonMark object.
6 lcaUgClsNetVarConfigProp
A configuration property that is associated
with a network variable.
7 lcaUgClsMonSet

A MonitorSet.
8 lcaUgClsMonPoint

A MsgMonitorPoint or NvMonitorPoint.

OpenLNS Programmer's Reference 946

9 lcaUgClsDynamicMessageTag

A dynamic MessageTag.

uiObject The UpgradeInfo object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Prior to LNS Release 3.0.

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Upgrade Info object in the
ConstClassIds constant:
87 lcaClassIdUpgradeInfo

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

FromIndex
Summary Returns the device index value assigned to the external

interface component before the upgrade. This is the
component in the external interface file that is represented
by this UpgradeInfo object.

If the Class property is set to lcaUgClsConfigProp (4),
lcaUgClsLmObjConfigProp (5) or
lcaUgClsNetVarConfigProp (6), the UpgradeInfo obect
represents a configuration property.

In this case, the FromIndex property contains the handle
assigned to the configuration property in the external
interface file before the upgrade, and not the device index.
The handle is relative to the object containing the

OpenLNS Programmer's Reference 947

configuration property.
If the configuration property is contained by a
LonMarkObject or network variable, the FromOwnerIndex
property contains the device index assigned to the owner
LonMarkObject or network variable in the upgraded external
interface.

Availability Local, full, and lightweight clients.

Syntax indexValue = uiObject.FromIndex
Element Description

indexValue The device index value assigned to the
external interface component before the
upgrade.

uiObject The UpgradeInfo object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.0.

FromOwnerIndex
Summary If the UpgradeInfo object represents a configuration

property, this property returns the device index value
assigned to the parent LonMarkObject or network variable in
the external interface file before the upgrade.

If the UpgradeInfo object does not represent a configuration
property that is contained within a LonMarkObject or
network variable, this property will return -1.

Availability Local, full, and lightweight clients.

Syntax indexValue = uiObject.FromIndex
Element Description

indexValue The device index value assigned to the
external interface component before the
upgrade.

uiObject The UpgradeInfo object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 948

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Reason
Summary Indicates the reason the external interface component

represented by the UpgradeInfo object was retained or
removed during the external interface upgrade.

You can use the Status property to determine whether the
external interface component represented by this property
was removed or preserved in the new external interface.

Availability Local, full, and lightweight clients.

Syntax reasonValue = uiObject.Reason
Element Description

reasonValue An enumerated value indicating the
reason this external interface component
was preserved or deleted.
The enumerated values for this element,
which are contained in the ConstUpgrade
Reason constant, are as follows:
1 lcaUgRsType
The external interface component was
preserved because it matched the type of a
component in the new external interface
(it is the same type of component, has the
same direction [if a network variable], the
same size, and so on). External interface

OpenLNS Programmer's Reference 949

components can not be matched if their
types differ.
2 lcaUgRsName
The external interface component was
preserved because it matched the name of
a component in the new external interface.
4 lcaUgRsIndex
The external interface component was
preserved because it matched the index of
a component in the new external interface.
8 lcaUgRsObjMembership
The external interface component was
preserved because it is a network variable
or configuration property which is a
member of a LonMark object, and its
member index and member number in the
old LonMark object is the same in the new
LonMark object (which may have a new
object ID) in the new external interface.
16 lcaUgRsRecreated
The external interface component was
re-created in the new external interface.
This only applies to dynamic network
variables, monitor sets, and monitor
points.
32 lcaUgRsConvertFromStatic
The external interface component existed
as a static component on the old device
interface, but not the new one. As a result,
it has been added to the new device
interface as a dynamic component. All
such components will have the same
programmatic name as the original, unless
the original was an array. In this case an
index value will be appended to the name,
or if the name does not fit, the name will
be truncated.
This may result in the assignment of
duplicate names, but an OpenLNS
application may change both the user
name (Name property) and programmatic
name (ProgrammaticName property) in
this case.
A new custom interface will be created by
OpenLNS to house network variables and
LonMarkObjects that are converted from
static to dynamic in this fashion. The

OpenLNS Programmer's Reference 950

name used for these custom interfaces is
"LcaUpgrade<n>", where <n> is a
sequential number reflecting the number
of upgrades that the device has gone
through since LNS 3.20 was installed. For
example, the 3rd time the device is
upgraded, this interface would be named
"LcaUpgrade3." Note that static
components are converted to dynamic
components only if the new interface
supports dynamic LonMark Objects, and
the old interface did not.
4096 lcaUgRsCapacity
The external interface component was
deleted because it did not fit in the new
external interface. This only applies to
dynamic network variables, message tags,
monitor sets, and monitor points which
could not be mapped or recreated because
the new external interface has a lower
capacity.
8192 lcaUgRsNonExistent
The external interface component was
deleted because no matching component
could be found in the new external
interface.
16384 lcaUgRsNoOwner
The monitor point was deleted because the
network variable it was monitoring does
not exist. The monitor set will still be
re-created, even if its member monitor
points could not be.
32768 lcaUgRsNoMember
The monitor point was deleted because the
network variable it was monitoring was
deleted, or the address table entry the
monitor point was using was deleted.

uiObject The UpgradeInfo object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 951

Status
Summary Indicates whether the external interface component

represented by the UpgradeInfo object was preserved or
deleted during the external interface upgrade. It also
indicates whether any other modifictions were made as a
result of the upgrade (for example, the component was
moved).

• If an external interface component is preserved, the new
component will automatically have its properties set to
match the old component, and the component will be
bound into any connections of which the old component
was a member.

• If an external interface component is deleted, all
connection information and properties set for that
component will be erased. If the component is a
configuration property, its value will also be erased. Use
the Reason property to find out why a component was
preserved or removed from the new interface.

You can use the Class and FromIndex properties to
determine the interface component to which the Status
property applies.
If the component is a configuration property contained by a
LonMarkObject or NetworkVariable, you can use the
FromOwnerIndex property to identify the LonMarkObject or
NetworkVariable object.

Availability Local, full, and lightweight clients.

Syntax statusValue = uiObject.Status
Element Description

uiObject The UpgradeInfo object to be acted on.

statusValue The status of the component represented by
the UpgradeInfo object.
The enumerated values for this element,
which are contained in the ConstUpgrade
Status constant, are as follows:
1 lcaUgStsDeleted
The external interface component does not
exist in the new external interface. The
component will be removed from any
connections and any configuration property
values will be lost.
2 lcaUgStsPreserved
The external interface component was
preserved in the new external interface. It
will be a member of any connections in
which the old component was a member and

OpenLNS Programmer's Reference 952

any configuration property values will be
preserved.
4 lcaUgStsRelocated
The external interface component was
preserved but relocated to a different index.
See the ToIndex property and ToOwnerIndex
property (if applicable) for the new location.
8 lcaUgStsNvAttribsMismatch
The network variable was preserved, but the
polled or authenticated attributes do not
match. The network variable will be
removed from any bound connections and
the lcaUgStsDisconnNvAttrib value will
be set.
This value only applies to network variables.
16 lcaUgStsDisconn
The network variable or message tag have
been disconnected because it was removed.
This value only applies to network variables
and message tags.
32 lcaUgStsDisconnNvAttrib
The network variable is unbound because its
polling or authentication attributes are
different in the new interface.
This value only applies to network variables.
64 lcaUgStsDisconnAliasOverflow
Some of the network variable's aliases are
disconnected because they would not fit in
the new interface. The network variable may
remain in some connections.
This value only applies to network variables.
128 lcaUgStsDisconnAddrOverflow
The network variable or message tag is
removed from some or all connections
because there are not enough address table
entries in the new interface.
This value only applies to network variables
and message tags.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 953

ToIndex
Summary Returns the device index value assigned to the external

interface component after the upgrade. This is the
component in the external interface file that is represented
by this UpgradeInfo object.

If the Class property is set to lcaUgClsConfigProp (4),
lcaUgClsLmObjConfigProp (5) or
lcaUgClsNetVarConfigProp (6), the UpgradeInfo obect
represents a configuration property.

In this case, the ToIndex property contains the handle
assigned to the configuration property in the external
interface file in the upgraded external interface file, and not
the device index. The handle is relative to the object
containing the configuration property.
If the configuration property is contained by a
LonMarkObject or network variable, the FromOwnerIndex
property contains the device index assigned to the owner
LonMarkObject or network variable in the upgraded external
interface.

If the UpgradeInfo object's Status property is set to
lcaUgStsDeleted (1), then the component represented by
this UpgradeInfo object was deleted from the external
interface file during the upgrade. In this case, the ToIndex
property will be -1.

Availability Local, full, and lightweight clients.

Syntax indexValue = uiObject.ToIndex
Element Description

indexValue The device index value assigned to the
external interface component after the
upgrade.

uiObject The UpgradeInfo object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.0.

ToOwnerIndex
Summary If the UpgradeInfo object represents a configuration

property, this property returns the device index value
assigned to the parent LonMarkObject or network variable in
the external interface file after the upgrade.

If the UpgradeInfo object does not represent a configuration
property that is contained within a LonMarkObject or
NetworkVariable, this property will return -1.

If the UpgradeInfo object does represent a configuration

OpenLNS Programmer's Reference 954

property that is contained within a LonMarkObject or
network variable, but the Status property is set to
lcaUgStsDeleted (1), the configuration proprty was deleted
from the external interface file during the upgrade. In this
case, this property will also return -1.

Availability Local, full, and lightweight clients.

Syntax indexValue = uiObject.ToIndex
Element Description

indexValue The device index value assigned to the
external interface component after the
upgrade.

uiObject The UpgradeInfo object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API LNS Release 3.0.

UpgradeInfos
The UpgradeInfos object contains a collection of UpgradeInfo objects. The following table
summarizes the UpgradeInfos object.

Description A collection of UpgradeInfo objects.

Added to API LNS Release 3.0.

Accessed Through UpgradeStatus object.

Default Property Item.

Methods None.

Properties • ClassId
• Count
• Item
• Parent
• _NewEnum

Methods
The UpgradeInfos object does not contain any methods.

Properties
The UpgradeInfos object contains the following properties:

• ClassId
• Count
• Item
• Parent
• _NewEnum

OpenLNS Programmer's Reference 955

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
Upgrade Infos object in the
ConstClassIds constant:
88 lcaClassIdUpgradeInfo

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Count
Summary Returns the number of objects in a collection. You can use

this property to enumerate a collection object.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax returnValue = object.Count
Element Description

returnValue The number of objects in the collection
as a long integer.

object The collection object to be acted on.

Data Type Long.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Item
Summary Returns an UpgradeInfo object from a UpgradeInfos collection.

You can retrieve an UpgradeInfo object from its UpgradeInfos

OpenLNS Programmer's Reference 956

collection by passing its index (ordinal position) within that
collection as the argument for the Item property. Index values
start at 1.

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax retrievedObject = collObject.Item(index)
retrievedObject = collObject.Item(stringExpression)
Element Description

retrievedObject The UpgradeInfo object retrieved from
the UpgradeInfos collection.

collObject The UpgradeInfos collection object to be
acted on.

index A Long type specifying the ordinal
index of the UpgradeInfo object to be
retrieved.

stringExpression A string type specifying the name of the
UpgradeInfo object to be retrieved.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is added
to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent
clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is

OpenLNS Programmer's Reference 957

added to the API.

_NewEnum
Summary Enables you to iterate over the objects in a collection using

For Each ... Next statements.

• If you are developing your OpenLNS app in Visual C++,
you can browse a collection to find a particular item by
using the _NewEnum property. See the IEnumVARIANT
interface for details.

• If you are developing your OpenLNS app in Visual Basic,
you do not need to use the _NewEnum property because
it is automatically used in the implementation of For
Each ... Next statements.

• If you are developing your OpenLNS app in C#, you do
not need to use the _NewEnum property explicitly
because it is automatically used in the implemention of
foreach statements.

Availability Local, full, and lightweight clients.

Syntax retrievedObject = collObject._NewEnum
Element Description

retrievedObject An expression that evaluates to the
object retrieved.

collObject An iterator object that can be used to
access members of the collection.

Data Type Object.

Read/Write Read only.

Added to API OpenLNS.

UpgradeStatus
The UpgradeStatus object is returned by the AppDevice object's Upgrade method, and it
contains a summary of all the changes made in the upgrade of the device's external interface.
You can access the UpgradeStatus object returned the last time the Upgrade method was
called on an AppDevice by reading the its LastUpgradeStatus property.

Description Summarizes the changes made to a device’s external interface
during an upgrade.

Added to API LNS Release 3.0.

Accessed Through AppDevice object.

Default Property None.

Methods None.

Properties • ClassId
• Parent
• Result

OpenLNS Programmer's Reference 958

• Sequence
• UpgradInfos

Methods
The UpgradeStatus object does not contain any methods.

Properties
The Upgrade Status object contains the following properties:

• ClassId
• Parent
• Result
• Sequence
• UpgradInfos

ClassId
Summary Identifies the object class of this object.

This property allows the object type to be determined when it
is unknown (for example, when the object was accessed using
the Parent property of another object).

Availability Local, full, lightweight, and independent clients. Note that
some objects containing this property are not available to
Independent clients.

Syntax classIdValue = object.ClassId
Element Description

classIdValue The object class of the object. The
following value is defined for the
UpgradeStatus object in the
ConstClassIds constant:
86 lcaClassIdUpgradeStatus

object The object to be acted on.

Data Type Integer.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Parent
Summary Returns the object that spawned the current child object.

The parent object is determined by the means in which a
child object is accessed, not by the OpenLNS Object
hierarchy.

Availability Local, full, lightweight, and independent clients. Note that
some collection objects are not available to Independent

OpenLNS Programmer's Reference 959

clients.

Syntax parentObject = object.Parent
Element Description

parentObject The object that is the parent of the
specified object.

object Any object for which the parent is
desired.

Data Type Object.

Read/Write Read only.

Added to API Depends on the object used to access the property. Generally,
this property exists for an object as soon as the object is
added to the API.

Result
Summary Indicates if the upgrade was successful, failed as a result of a

connection error, failed as a result of the node not being
commissioned, or was not necessary.

The Upgrade method is used to upgrade a device’s external
interface. The method returns an UpgradeStatus object,
which contains information indicating whether the upgrade
was successful, as well as information describing the changes
made to each external interface component during the
upgrade (for example, functional block, network variable,
message tag, configuration property, monitor set, and
monitor point).

Availability Local, full, and lightweight clients.

Syntax resultValue = usObject.Result
Element Description

resultValue The enumerated values for this
element, which are contained in
the ConstUpgrade Result
constant, are as follows:
0 lcaUgResSuccess
The external interface upgrade was
successful. The UpgradeStatus object's
UpgradeInfos property contains the
results of the upgrade on the individual
external interface components.
1 lcaUgResNotRequired
The external interface upgrade failed
because the new external interface
specified has the same program ID and
interface components as the old
external interface.

OpenLNS Programmer's Reference 960

usObject The UpgradeStatus object to be acted
on.

Data Type Integer.

Read/Write Read/write.

Added to API LNS Release 3.0.

Sequence
Summary Returns the number of times the external interface of the

device containing the UpgradeStatus object has been
upgraded since OpenLNS was installed on the client. If
OpenOpenLNS has not been installed on the client, or if the
device has not been upgraded since OpenLNS was installed,
this property will return a value of 0.

The Upgrade method is used to upgrade a device’s external
interface. The method returns an UpgradeStatus object,
which contains information indicating whether the upgrade
was successful, as well as information describing the changes
made to each external interface component during the
upgrade (for example, functional block, network variable,
message tag, configuration property, monitor set, and
monitor point).

Availability Local, full, and lightweight clients.

Syntax upgradeCount = upgradeStatus.Sequence
Element Description

upgradeCount The number of times the device
has been upgraded since
OpenLNS was installed on the
client.

upgradeStatus The UpgradeStatus object to be acted
on.

Data Type Integer.

Read/Write Read only.

Added to API LNS Release 3.20.

UprgradeInfos
Summary Contains a collection of UpgradeInfo objects. Each

UpgradeInfo object contains information describing the
changes made to an external interface component during the
upgrade (for example, functional block, network variable,
message tag, configuration property, monitor set, and
monitor point).

Availability Local, full, and lightweight clients.

OpenLNS Programmer's Reference 961

Syntax ioColl = uiObject.UpgradeInfos
Element Description

uiColl The UpgradeInfos collection to
be returned.

uiObject The UpgradeInfo object to be acted on.

Data Type UpgradeInfos collection.

Read/Write Read only.

Added to API LNS Release 3.0.

OpenLNS Programmer's Reference 962

OpenLNS Programmer's Reference 963

3

Interfaces

This chapter details each interface in the OpenLNS Object hierarchy.

OpenLNS Programmer's Reference 964

ILcaMsgMonitorPointListener
The ILcaMsgMonitorPointListener interface can be added to a COM object created in a
multi-threaded programming environment such as Visual C++. You must then call the
Advise method of the MsgMonitorPoint with the object that implements this interface as an
argument. This will allow the object to receive updates from that message monitor point
directly, rather than through the Object Server. The following table summarizes the
ILcaMsgMonitorPointListener interface.

Description Allows a COM object implementing this
interface to directly receive updates from a
message monitor point.

Added to API LNS Release 3.0.

Methods • UpdateErrorEvent
• UpdateEvent

Methods
The ILcaMsgMonitorPointListener interface contains the following methods:

• UpdateErrorEvent
• UpdateEvent

UpdateErrorEvent
Summary Allows an object to execute a callback for message monitor

point and network variable update errors. This can only be
used in multi-threading programming environments such as
Visual C++. It cannot be used in Visual Basic. To create an
object to receive UpdateErrorEvent updates, follow these
steps:
1. Create an object that implements the

ILcaMsgMonitorPointListener interface.

2. Define the object's behavior when the UpdateErrorEvent
method is called.

3. Call the Advise method of the MsgMonitorPoint object
with the object created in step 1 as the object element.
OpenLNS will then provide event notification of update
errors for the selected monitor point using callbacks
instead of Windows messaging.

You must call the Advise method from the event handler
that is handling the update error events for the message
monitor point. For more information on this, see the
Advise method of the MsgMonitorPoint object.

The object created in step 1 will now call this method
whenever a message monitor point error is received.

Availability Local and full clients.

OpenLNS Programmer's Reference 965

Syntax object.UpdateErrorEvent updateType
Element Description

object An object that implements the
ILcaMsgMonitorPointListener interface.

updateType A value indicating the type of monitor
point update which returned an error.
This will be set to 1.

Added to API LNS Release 3.0.

UpdateEvent
Summary Allows an object to execute a callback for message monitor

point updates. This can only be used in multi-threading
programming environments such as Visual C++. It cannot be
used in Visual Basic. To cause events to be generated in this
manner, follow these steps:
1. Create an object that implements the

ILcaMsgMonitorPointListener interface.

2. Define the object's behavior when the UpdateEvent
method is called.

3. Call the Advise method of the MsgMonitorPoint object
with the object created in step 1 as the object element.
OpenLNS will then provide event notification of update
errors for the selected monitor point using callbacks
instead of Windows messaging.

You must call the Advise method from the event handler
that is handling the update error events for the message
monitor point. For more information on this, see the
Advise method of the MsgMonitorPoint object.

For completion code messages, the InputDp, OutputDp, and
Src parameters are NULL.

Availability Local and full clients.

Syntax UpdateErrorEvent(UpdateType as Integer)
Element Description

object An object that implements the
ILcaMsgMonitorPointListener interface.

updateType A value indicating the type of message
monitor point update. This will be set to
0.

inputDp The DataPoint object containing the
message monitor point update.

The InputDp parameter's AutoRead and
AutoWrite properties are set to False.

outputDp A DataPoint object that allows a
response to be sent if the update is a

OpenLNS Programmer's Reference 966

request/response message.

The OutputDp parameter's AutoWrite
property is set to True; therefore, it will
be sent as a response when you write to
this DataPoint object.

srcAddr The SourceAddress object indicating the
source device of the message monitor
point update.

Added to API LNS Release 3.0.

ILcaNvMonitorPointListener
The ILcaNvMonitorPointListener interface can be added to a COM object created in a
multi-threaded programming environment such as Visual C++. You must then call the
Advise method of the NvMonitorPoint object with the object that implements this interface
as an argument. This will allow the object to receive updates from that network variable
monitor point directly, rather than through the Object Server.

The following table summarizes the ILcaNvMonitorPointListener interface.

Description Allows a COM object implementing this interface to directly
receive updates from a network variable monitor point.

Availability Local and full clients.

Added to API LNS Release 3.0.

Methods • UpdateErrorEvent
• UpdateEvent

Methods
The ILcaNvMonitorPointListener object contains the following methods:

• UpdateErrorEvent
• UpdateEvent

UpdateErrorEvent
Summary Allows an object to execute a callback for network variable

monitor point and network variable update errors. This can
only be used in multi-threading programming environments
such as Visual C++. It cannot be used in Visual Basic. To
create an object to receive UpdateErrorEvent updates, follow
these steps:
1. Create an object that implements the

ILcaNvMonitorPointListener interface.

2. Define the object's behavior when the UpdateErrorEvent
method is called.

3. Call the Advise method of the NvMonitorPoint object
with the object created in step 1 as the object element.
OpenLNS will then provide event notification of update
errors for the selected monitor point using callbacks

OpenLNS Programmer's Reference 967

instead of Windows messaging.

You must call the Advise method from the event handler
that is handling the update error events for the network
variable monitor point. For more information on this, see
the Advise method of the NvMonitorPoint object.

The object created in step 1 will now call this method
whenever a network variable monitor point error is received.

Availability Local and full clients.

Syntax object.UpdateErrorEvent updateType
Element Description

object An object that implements either the
ILcaNvMonitorPointListener interface.

updateType A value indicating the type of monitor
point update which returned an error.
This will be set to 1.

Added to API LNS Release 3.0.

UpdateEvent
Summary Allows an object to execute a callback for network variable

monitor point updates. This can only be used in
multi-threading programming environments such as Visual
C++. It cannot be used in Visual Basic. To cause events to be
generated in this manner, follow these steps:
1. Create an object that implements the

ILcaNvMonitorPointListener interface.

2. Define the object's behavior when the UpdateEvent
method is called.

3. Call the Advise method of the NvMonitorPoint object
with the object created in step 1 as the object element.
OpenLNS will then provide event notification of update
events using callbacks instead of Windows messaging.
You must call the Advise method from the event handler
that is handling the update events for the network
variable monitor point. For more information, see the
Advise method of the NvMonitorPoint object.

For completion code messages, the InputDp, OutputDp, and
Src parameters are NULL.

Availability Local and full clients.

Syntax UpdateErrorEvent(UpdateType as Integer)
Element Description

object An object that implements the
ILcaNvMonitorPointListener interface.

updateType A value indicating the type of network
variable monitor point update. This will

OpenLNS Programmer's Reference 968

be set to 0.

inputDp The DataPoint object containing the
network variable monitor point update.

The InputDp parameter's AutoRead and
AutoWrite properties are set to False.

outputDp A DataPoint object that allows a
response to be sent if the update is a
request/response message.

The OutputDp parameter's AutoWrite
property is set to True; therefore, it will
be sent as a response when you write to
this DataPoint object.

srcAddr The SourceAddress object indicating the
source device of the network variable
monitor point update.

Added to API LNS Release 3.0.

ILcaProgressListener
The ILcaProgressListener interface can be added to an application to enable it to receive
database validation updates directly through the interface, as opposed to through the Object
Server. A database validation is initiated when the Network.Validate method is called.

If an object that implements the ILcaProgressListener interface is supplied to the function as
the progressCallback argument, it enables the object to receive updates from that database
validation process directly with the ProgressUpdate method. Otherwise, the update events
from the process will need to be received through the Object Server via the
OnDbValidationEvent event.
Note: If you are programming in Visual Basic, you should implement this as a
_DLcaProgressListener interface. For Visual C++ and all other development environments,
implement this as the ILcaProgressListener interface.

The following table summarizes the ILcaProgressListener interface.

Description Allows an application to receive database validation updates
directly through the interface.

Added to API LNS Release 3.20.

Methods • ProgressUpdate

Methods
The ILcaProgressListener object contains the following methods:

• ProgressUpdate

ProgressUpdate
Summary Executes a callback to receive database validation update

events through the ILcaProgressListener interface object.
To create an object that receives database validation updates,

OpenLNS Programmer's Reference 969

follow these steps:

1. Create an object that implements the ILcaProgressListener
interface.

2. Define the behavior of the object when the ProgressUpdate
method is called.

3. Call the Validate method of the Network with the object
created in step 1 as the progressCallback argument. The
object created in step 1 will now call this method whenever
a database validation update event is received, and will be
updated with the information delivered through the update
event.

Availability Local clients.

Syntax object. ProgressUpdate(totalPercentage as Long,
thisPhasePercentage as Long, thisPhaseNumber as Long,
totalPhases as Long, thisPhaseName as String, thisStepName
as String)
Element Description

totalPercentage The percentage of the database
validation that has been completed.
This element has a range between
0–100.

thisPhasePercentage The percentage of the current phase
of the database validation that has
been completed.

You can use the thisPhaseName
element to determine which phase
of the database validation is
currently being performed.
This element has a range between
0–100.

thisPhaseNumber The number of the current phase.
This element has a range between
0–4,292,967,296.

totalPhases The total number of phases to be
performed during the database
validation.
This element has a range between
0–4,292,967,296.

thisPhaseName The name of the phase that is
currently being performed.
The phase name will be returned as
a string of up to 128 characters.

thisStepName The step that is currently being
performed.

OpenLNS Programmer's Reference 970

The step name will be returned as a
string of up to 128 characters.

Added to API LNS Release 3.20.

OpenLNS Programmer's Reference 971

4

OpenLNS Errors

This chapter lists and describes the errors that may be
generated by the various OpenLNS components.

OpenLNS Programmer's Reference 972

Errors
LNS errors may be produced by each of the LNS components. These are uniquely
identified in the object server by the addition of a component offset value. Errors are
therefore mapped into the following ranges:

Range Error Type Mapping

1000-16499 Network Services
Errors

NS error 1 is LNS error 1001, NS error
2 is LNS error 1002, and so on.

16500-16599 Network Interface
Errors

NI error 1 is LNS error 16501, NI error
16502 is LNS error 1002, and so on.

16600-16999 Connection Errors CONNERR error 1 is LNS error 16601,
CONNERR 2 is LNS error 16502, and
so on.

17000-17999 Object Server Errors LCA error 1 is LNS error 17001, LCA
error 2 is LNS error 17002, and so on.

18000-18499 Data Server Errors DS error 1 is LNS error 18001, DS error
2 is LNS error 18002, and so on.

18500-19999 Formatter errors

20000-21999 Component errors

22000-24999 User errors

The following subsections describe the errors that may be generated by the following
LNS components:

• Network Services Errors
• Network Interface Errors
• Connection Errors
• Object Server Errors
• Data Server Errors
• Formatter Errors
• VNI Errors

Network Services Errors
A network services error occurs when the OpenLNS Server is unable to successfully
complete a service. These errors will appear in the format NS: #<Error Number>. The
LNS values for these errors are equal to the error number plus 1000.
lcaErrNsCancel 1
The service and the associated transaction were cancelled. This error occurs when an
internal error occurs, such as the NSS engine restarting.
lcaErrNsNodeHasNoAppl 5

OpenLNS Programmer's Reference 973

The device was discovered to be applicationless, or not associated with a program. If you
encounter this error, load the application into the device. For host-based nodes, ensure
that the host application is running.
lcaErrNsBadManagerId 6
The current manager ID does not correspond to a known manager. This is an internal
error and should be reported to customer support.
lcaErrNsResourceProblem 7
A problem occurred in resource allocation. This is an internal error and should be
reported to customer support.
lcaErrNsInterfaceFailure 8
The host was unable to communicate with the NSI. This may be due to problems
communicating with the NSS engine, or with the network interface. If you encounter this
error, ensure that the NSS engine process is running, and that the network interface is
functioning properly.
lcaErrNsBadClient 9
The specified server (or the current server) is undefined. This is an internal error and
should be reported to customer support.
lcaErrNsBadServer 10
The specified server (or the current server) is undefined.
lcaErrNsNoClient 11
No client is currently defined. This is an internal error and should be reported to
customer support.
lcaErrNsNoTxInProgress 12
There is no transaction defined for the client. This warning can be expected when
cancelling a method that is not part of an explicit transaction.
lcaErrNsNssNotFound 13
The NSI has not been configured to communicate with the NSS. This error may occur
when opening the database with the remote database collection if the clients NSD is not
properly configured. To reconfigure the client’s NSD, open the database remotely using
the Networks collection.
lcaErrNsClientBlocked 14
The client is already involved in a service request. You should invoke only one service
per client. This includes all requests to start or commit transactions. When a client has
already launched a service, wait until the current service completes before you invoke a
new service. This is an internal error and should be reported to customer support.
lcaErrNsTxInProgress 15
The client is already involved in a transaction. End the client's current transaction by
calling CancelTransaction method, or wait for the transaction to complete and call the
StartTransaction method, before starting a new transaction for that client.
You should avoid starting multiple transactions on a single network database within a
single application.

OpenLNS Programmer's Reference 974

lcaErrNsNotImplemented 16
The specified service or option is not implemented by the specified server. This error
could indicate a bad service parameter. This is an internal error and should be reported
to customer support.
lcaErrNsErrorInfo 17
The service failed. When you encounter this error, a service-specific error status is
available in the LastError property of the System object.
lcaErrNsServiceFailure 18
The requested service failed. This is an internal error, and should be reported to
customer support. This error may occur for a remote client operation when the OpenLNS
Server has shutdown.
lcaErrNsMsgRejectedByNode 19
A node returned a negative response to a command from NSS. This could be due to a
LonTalk authentication failure. It may also result from an inconsistency between the
program interface defined in the database and what the node actually supports.
lcaErrNsPrematureRelease 20
This is an internal error and should be reported to customer support.
lcaErrNsRootBusy 21
A transaction is still in progress. This is an internal error and should be reported to
customer support.
lcaErrNsRootDoesNotExist 22
The service depends on a transaction that does not exist. This is an internal error and
should be reported to customer support.
lcaErrNsNoFreeRootTransactions 23
This is an internal error and should be reported to customer support.
lcaErrNsCantFindObject 24
One of the objects needed to complete the service is not in the NSS's database.
lcaErrNsDuplicateObject 25
An attempt was made to add an object that already exists.
lcaErrNsCommError 26
The NSS cannot communicate with the node. This may be because the Neuron ID
referenced by the application is invalid or does not exist, the NSS or the node is not
physically attached to the media, the NSS is not configured (because the MgmtMode
property was not set to lcaMgmtModePropagateConfigUpdates after the database was
initially created), problems with the physical media, or the NSS timers (set using the
RetryCount and TxTimer properties of the System object) are too low.
lcaErrNsOperationError 27
The node failed to go online, offline or to reset when requested to do so. This may be due
to a problem in the implementation of the device.

OpenLNS Programmer's Reference 975

lcaErrNsUnsupportedInfo 28
The requested information is not available from an application node. For example,
transceiver status, SI/SD data, and network variable names are not always stored in the
node.
lcaErrNsOutOfRange 29
The value assigned to a property or parameter is either out of range, or invalid.
lcaErrNsEventFailure 30
The generation of an event failed. This is an internal error and should be reported to
customer support.
lcaErrNsDeferConfigUpdatesMgmntMode 31
The requested service cannot be provided in the current management mode. When you
encounter this error, set the system management mode to
lcaMgmtModePropagateConfigUpdates (0), and try the operation again. You can change
the system management mode by writing to the MgmtMode property of the System
object.
lcaErrNsSubscriptionDblimit 32
The NSS's event subscription table is full. This is an internal error, and should be
reported to customer support.
lcaErrNsSequence 33
A record from a binary external interface file or binary application image file was
received out of sequence. If you encounter the error, the XFB or APB file may be
corrupted.
lcaErrNsSegmentation 34
Segmentation is not supported, or there is a problem with segment order. This is an
internal error, and should be reported to customer support.
lcaErrNsChecksum 35
A checksum error occurred while transferring the binary external interface or binary
application image file to the NSS. If you encounter the error, the XFB or APB file may be
corrupted.
lcaErrNsSessionError 36
Invalid session handle or a session error. Make sure that sessions are begun and ended
in pairs, and are always part of an explicit transaction.
lcaErrNsNoNeuronId 37
An operation requiring a Neuron ID was attempted on a device with no Neuron ID. For
example, if you invoke the Wink method on a device whose Neuron ID has not been set
in the OpenLNS database, this exception will be thrown. In some other cases, this
exception may be thrown if a device’s Neuron ID has been set in the OpenLNS database,
but the device has not been commissioned. For example, if you read the
SelfDocumentation property of a device before that device has been commissioned, this
exception will be thrown, regardless of whether or not the device’s Neuron ID is set.
lcaErrNsProgramidMismatch 38
Program IDs do not match. This may occur if there is an incorrect or out-of-date program
version.

OpenLNS Programmer's Reference 976

lcaErrNsObjectInUse 39
A requested operation can't complete because the object involved in the operation is in
use. For example, you may not be able to delete a node because that node is still included
in connections.
lcaErrNsNodeHasNoSiData 40
The node has no SI (self-information) data, when required.
lcaErrNsDbError 41
An internal database error occurred. This is an internal error, and should be reported to
customer support.
lcaErrNsOutOfJournal 42
No more memory is available for journaling. This is an internal error, and should be
reported to customer support.
lcaErrNsOutOfMemory 43
No more memory is available for allocation.
lcaErrNsBadParms 44
Invalid parameter values.
lcaErrNsNetworkHasInstalledNodes 46
Attempt to add the NSS failed because application nodes have already been defined or
added. You must install the NSS before the other nodes. This is an internal error, and
should be reported to customer support.
lcaErrNsDbImportExport 47
Requested operation can't proceed because a database import or export is currently in
progress.
lcaErrNsProgramNotFound 48
Could not find the program definition required to execute the service.
lcaErrNsIntegrityError 49
Internal integrity error. This is an internal error, and should be reported to customer
support.
lcaErrNsDblimit 50
An unspecified database limit was exceeded.
lcaErrNsNodeNotFound 51
Cannot find the node.
lcaErrNsDuplicateNode 52
An attempt was made to add a node that is already defined.
lcaErrNsNodeDbLimit 53
The node limit has been exceeded.
lcaErrNsDuplicateProgram 54
The program template is already defined.

OpenLNS Programmer's Reference 977

lcaErrNsProgramDblimit 55
This is an internal error, and should be reported to customer support.
lcaErrNsNvmtNotFound 56
The network variable or message tag cannot be found.
lcaErrNsNvmtDbLimit 57
This is an internal error, and should be reported to customer support.
lcaErrNsChannelNotFound 58
The channel cannot be found.
lcaErrNsProgramIntfMismatch 59
The new program interface does not match the previously defined program interface; i.e.,
the number of network variables, message tags, or the structure of self identification
data is inconsistent even though the program IDs match. This error may also be thrown
if the SelfDocConsistency property of a DeviceTemplate object is set to a value that
conflicts with the configurations of the devices using that template.
lcaErrNsProgramIntfUnsupported 60
The program interface does not support the requested action.
lcaErrNsMsgError 61
There was a failure in the messaging sub-system. This is an internal error, and should
be reported to customer support.
lcaErrNsCancelError 62
An error occurred while canceling a transaction or service. This is an internal error, and
should be reported to customer support.
lcaErrNsNothingToCancel 63
There was no service or transaction to cancel.
lcaErrNsNodeNotInstalled 64
An operation on a node was requested that requires the node to be configured, but the
node is not configured. When you encounter this error, make sure that the device in
question has been configured.
lcaErrNsAuthViolation 65
Authentication rules were violoated.
lcaErrNsChannelDblimit 66
The network channel limit (currently 1000) has been reached.
lcaErrNsSubnetDblimit 67
The network subnet limit (currently 255) has been reached.
lcaErrNsSubnetNotFound 68

The specified subnet ID was not found. Subnet IDs must be created automatically by the
NSS or defined manually using the Add method of the Subnets collection object.
lcaErrNsRouterDblimit 69
The network router limit (currently 32766) has been reached.

OpenLNS Programmer's Reference 978

lcaErrNsRouterNotFound 70
The specified router handle does not exist.
lcaErrNsTimerRange 71
The timer value computed for a connection or for the OpenLNS Object Server to
communicate with a node exceeds the range supported by LONWORKS devices. This is
an internal error, and should be reported to customer support.
lcaErrNsWrongChannel 72
An attempt was made to add, commission, move, or replace a device that is on the wrong
channel. A device is considered to be on the wrong channel when a configured, learning,
or non-permanent bridge class router exists between the device and the channel on
which it is to be placed. When you encounter this error, place the device or router on the
correct channel, or define the device or router without a channel and have LNS
determine the channel automatically.
lcaErrNsInsufficientRouters 73
An attempt was made to create a connection between nodes on different channels, but no
routers were available to complete a logical path between the channels. This error can
occur when attempting to remove or move a router which has connections across it, or a
router which connects an NSI to either the NSS or another NSI.
lcaErrNsNoSessionInProgress 74

The EndSession method of the System object was called before a corresponding
BeginSession was called. Make sure that a session is open before you call EndSession.
lcaErrNsTopologyPhysicalLoop 75
The attempted router operation would have created a loop in the physical network
topology.
lcaErrNsTopologyLogicalLoop 76
The attempted router operation would have created a loop in the logical network
topology. Normally, loops are initially detected as physical loops. However, it is possible
to add a permanent repeater or bridge, so that a logical loop exists even though a
physical loop does not.
lcaErrNsTopologySubnetViolation 77
An attempt was made to define a device with a subnet that is incompatible with the
devices channel, due to router constraints. To resolve this error, either leave the subnet
undefined (so OpenLNS will define it) when you define the device, or make sure that the
selected subnet is not in use on other logical channels.
lcaErrNsRouterMustBePermanent 78
An attempt was made to illegally add a non-permanent router, or to change the class of a
permanent router to non-permanent. Once a permanent router has been added to the
topology, it cannot be changed to a non-permanent router, even by removing and then
re-adding it.
lcaErrNsCantDetermineChannel 79
An attempt was made to register or add a device without a specified channel handle, and
the system was not able to automatically determine the channel on which the device
resides. This error will occur if the channel the device resides on is connected to any

OpenLNS Programmer's Reference 979

other channel by repeaters or permanent bridges. Also, this error will occur if the
channel is not currently configured in the system.
lcaErrNsRedundantRoutersMustBeConfigured 80
An attempt was made to add a redundant router that was not of the configured class, to
change the class of a redundant router to the non-configured class, or to add a redundant
router to an existing non-redundant, non-configured class router.
lcaErrNsCantDetermineXcvrId 81
A channel was defined with a wildcard transceiver ID, but the transceiver ID could not
be automatically determined by the system.
lcaErrNsRouterCantBePermanent 82
An attempt was made to change a non-permanent router to a permanent router by
writing to the Class property of the Router object. A router can be changed in this way
only by being moved.
lcaErrNsObjectLocked 83
An attempt was made to change a locked object. This is an internal error, and should be
reported to customer support.
lcaErrNsInvalidContext 84
An attempt was made to invoke a service from an event handler that was called directly
from a background task. This is an internal error, and should be reported to customer
support.
lcaErrNsServerNotFound 85
The specified server could not be found. The server ID may be invalid. This is an internal
error, and should be reported to customer support.
lcaErrNsNodeStateError 86
The node was in the wrong state for the attempted operation. To resolve this error, try
setting the State property of the node’s AppDevice object to lcaStateCnfgOnline.
lcaErrNsLmobjNotFound 87
The specified LonMark object could not be found.
lcaErrNsLmobjDbLimit 88

The LonMarkObject property database limit has been exceeded.
lcaErrNsInvalidSidata 89
The self-documentation information was invalid (e.g., improper LonMark definitions).
lcaErrNsServiceCommError 90
A communications error occurred between the client and the server.
lcaErrNsRequestNotAllowed 91
The requested service has been disabled. This error is usually the result of a remote full
client performing an operation that has been disabled by the server.
lcaErrNsCpNotFound 92
The specified configuration property does not exist.

OpenLNS Programmer's Reference 980

lcaErrNsCpDbLimit 93
The configuration property database limit has been exceeded.
lcaErrNsCpRangeNotFound 94
The specified configuration property range does not exist.
lcaErrNsCpRangeDblimit 95
The configuration property range database limit has been exceeded.
lcaErrNsConnectionError 96
Connection rebinding failed for a set of moved nodes. Possible causes are: no more
address table slots, no more groups, or broadcast violation.
lcaErrNsFileLookupError 97
An error occurred during a file operation, probably due to an out of range file index.
lcaErrNsFileIoError 98
The file operation target failed to read/write a file.
lcaErrNsFileTimeoutError 99
The target timed out during a file transfer operation.
lcaErrNsFileWindowError 100
The target received a packet out of order during a file transfer operation.
lcaErrNsFileAuthError 101
File transfer failed due to incorrect authentication.
lcaErrNsFileAccessUnavail 102
Random file access is not implemented on the target.
lcaErrNsFileOpenFailure 103
The target failed an open file operation.
lcaErrNsFileSeekInvalid 104
The target failed a file seek operation.
lcaErrNsCantModifyConstCp 105
An attempt was made to modify a constant configuration property.
lcaErrNsCpDefaultsNotFound 106
Default configuration parameters have not been uploaded to the database. To correct
this, you should set default values from the current values in the device using the
UploadConfigProperties method of the AppDevice object. Use the
lcaConfigPropOptSetDefaults and lcaConfigPropOptLoadUnknown upload options when
you call the method. To avoid this error in other databases, import a program template
with a XIF containing CP default values.
lcaErrNsCantFindConnection 107
The requested connection was not found.
lcaErrNsLmobjMemNotFound 108

OpenLNS Programmer's Reference 981

The requested LonMark object member was not found. You will encounter this error if
you try to use the UnassignNetworkVariable method to remove a network variable from
a LonMarkObject, but the network variable was not previously assigned to the
LonMarkObject. You can use the AssignNetworkVariable method to assign a network
variable to a LonMarkObject.
lcaErrNsStaleFileHandle 109
An attempt was made to use a stale file transfer handle. This is an internal error, and
should be reported to customer support.
lcaErrNsFileLimitReached 110
The file transfer handle limit has been reached.
lcaErrNsFileContention 111
A file could not be accessed due to contention with the initiator. You can avoid this error
by not performing file transfers with devices that are already engaged in file transfers
with other devices.
lcaErrNsAccessExpired 112
The LNS demonstration software has expired. A new copy must be obtained.
lcaErrNsCpValueNotFound 113
A value could not be found for the specified configuration parameter. This exception will
be thrown if you use the GetDataPoint method to create a data point with the
lcaDataSourceOptionsDatabaseOnly (2) option set, and then attempt to read the value of
the data point, but the value does not exist in the OpenLNS database.
lcaErrNsNodeReset 114
An operation failure occurred due to an unexpected node reset.
lcaErrNsManagerNotAllowed 115
The specified services are not allowed by the manager. This is an internal error, and
should be reported to customer support.
lcaErrNsUnsupportedService 116
Service attempted to reboot a node that is not a 3150.
lcaErrNsLabelNotFound 117
The requested label could not be found.
lcaErrNsDuplicateLabel 118
An object with this label already exists.
lcaErrNsNoRecoveryInProgress 119
There is no database recovery in progress for the recovery status service.
lcaErrNsCantModifyProgramIntf 120
The service attempted to modify a read-only program interface.
lcaErrNsCantModifyNvType 121
The service attempted to modify a read-only network variable type.

OpenLNS Programmer's Reference 982

lcaErrNsNvNotLmobjMember 122
The network variable is not a member of a LonMark object.
lcaErrNsHostResourceProblem 123
There is a resource problem in the API or application.
lcaErrNsTxAlreadyCanceled 124
The specified transaction was already canceled.
lcaErrNsFirmwareVersionMismatch 125
The device contains an incompatible firmware version. This error will be generated if
you attempt to load a new application image into a device with the Load method, and the
system image (firmware version) used by the device is incompatible with the new
application image. Some devices support the LoadEx method, which will upgrade the
system image to a compatible version when this error occurs.
lcaErrNsUnimplementedCategory 126
The service encountered an unimplemented category or category operation. This is an
internal error, and should be reported to customer support.
lcaErrNsUnimplementedProperty 127
The service encountered an unimplemented property or property operation. This is an
internal error, and should be reported to customer support.
lcaErrNsDisallowedInMipMode 128
The specified service or operation is disallowed because the interface is not an NSI. This
is an internal error, and should be reported to customer support.
lcaErrNsDisallowedInTxHandler 129
The specified service or operation is disallowed in the transaction notification handler.
This is an internal error, and should be reported to customer support.
lcaErrNsNssNotInitialized 130
The NsInit() function either was not called or failed. This is an internal error, and
should be reported to customer support.
lcaErrNsNssEngineNotFound 131
The NSS Win32 engine was not found. If you encounter this error, you should verify that
LNS is installed properly on your machine.
lcaErrNsInvalidNsi 132
The network interface is not a valid NSI mip.
lcaErrNsFileHeaderError 133
The file which was accessed had an invalid header
lcaErrNsDbVersionError 134
Returned when the NSS encounters a database (or non-volatile data) with the worng
version number.
lcaErrNsNoNetworkInterface 135

Returned when an attempt is made set the MgmtMode property to
lcaMgmtModePropagateConfigUpdates (0) without selecting a network interface.

OpenLNS Programmer's Reference 983

lcaErrNsNsiInuse 136
Returned when an attempt is made to remove an NSI that is being used by other
processes.
lcaErrNsDialingFailure 137
Failed to call host. Probably due to busy, no answer, or recent failure.
lcaErrNsNetworkInterfaceState 138
Local network interface is in the wrong state (e.g. unconfigured). When you encounter
this error, set the network management mode to lcaMgmtModePropagateConfigUpdates
(0) by writing to the MgmtMode property of the System object. Then, re-commission the
network interface, if necessary.
lcaErrNsNetworkInterfaceConfig 139
Local interface is not properly configured or updated. When you encounter this error, set
the MgmtMode property of the System object to lcaMgmtModePropagateConfigUpdates
(0). and recommission the network interface, if necessary.
lcaErrNsNetworkInterfaceInUse 140

Network interface is currently in use.
lcaErrNsInvalidNeuronId 141
The specified neuron ID is illegal. This error is reported if a Neuron ID containing zeroes
in the middle 4 bytes is specified. Neuron Chips that use this format are defective and
should be returned.
lcaErrNsDialupDataUninitialized 142
Device not configured to dialup to host upon NSS communication.
lcaErrNsCannotStartAppl 143
Dialup NSI was unable to start host application or NSS after connection.
lcaErrNsCapacityLimit 144
License capacity or credit limit reached. This error will occur when all the credits in the
license, including deficit credits, have been used. For more information on licensing, see
Chapter 13 of the OpenLNS Programmer’s Guide.
lcaErrNsCpNvLengthUnknown 145

Length of configuration NV implementing a CP is unknown.
lcaErrNsInvalidErrorContext 146
An update error had been reported prior to updating the nodes. This is an internal error
and should be reported to customer support.
lcaErrNsLicenseViolation 147
LNS license access failure. A variety of conditions may cause this error. Some relate
directly to internal licensing components. For example, the license DLLs may not have
installed properly, the files that identifies the license (nsseng.exe for the OpenLNS
Server, lonmaker.DSL for LonMaker) do not exist, or the Crypkey licensing components
(crypserv.exe and ckldrv.sys) are not running properly. You can resolve these problems
by deleting the files that may be causing problems, and re-installing LNS. The license
DLLs, as well as the crypserv.exe and ckldrv.sys files, can be found in the Windows "LNS
Licenses" folder, and the Crypkey files can be found in the Windows "system32" folder.

OpenLNS Programmer's Reference 984

Note that you must stop the "CrypkeyLicense" service and "NetworkX" driver before
deleting the Crypkey files.
Certain conditions on the PC operating the license may also cause this error. For
example, if the PC’s file system is corrupted or low on space, or if the license files have
been manually deleted, tampered with in any way, or moved by some
disk-defragmentation utilities, this error will occur. You can resolve these situations by
ordering a replacement license key. If the PC clock is set back to a time before the
creation of the license or before the last time credits were purchased, this error will
occur. In some cases, this can be resolved by rebooting the PC. Otherwise, it may be
necessary to order a replacement key.
The error may occur if the license has been transferred out of the PC, manually
terminated, or if there are zero maximum credits. In this case, you need to purchase
additional credits for the license.
For more information on licensing, see Chapter 13 of the OpenLNS Programmer’s Guide.
lcaErrNsLicenseExpired 148
LNS license time limit has expired. This error will occur if you are using a trial license
and the number of days allocated to the license have expired, or if you are using a trial
license and set the PC clock back.
For more information on licensing, see Chapter 13 of the OpenLNS Programmer’s Guide.
lcaErrNsConflictWithCurrentNetwork 149
This error will be generated if you open a network that is already opened using a
different network interface, NSS type, or database directory.
lcaErrNsConflictWithAnotherNetwork 150
This error will be generated if you open a network that specifies the same database
directory as another currently opened network.
lcaErrNsBatchOptionNotImplemented 151
The batch service option combination specified is not implemented. This is an internal
error, and should be reported to customer support.
lcaErrNsBatchNoResult 152
Access to specified batch result is not possible, since it does not exist. This is an internal
error, and should be reported to customer support.
lcaErrNsLicenseFeatureDisabled 153
Feature has not been enabled in the license.
lcaErrNsDemoLicenseDisallowed 154
Full license already exists. Demo license not allowed.
lcaErrNsVnodeIndexMismatch 155
Virtual node index mismatch
lcaErrNsNiVniOpenFailure 156
Unable to open NI layer or VNI
lcaErrNsVniMsgError 157
VNI messaging error

OpenLNS Programmer's Reference 985

lcaErrNsMaxDbOpened 158
Exceeded the maximum number of databases
lcaErrNsEventsNotInitialized 159
Event subsystem not initialized.
lcaErrNsMcsNotFound 160
Monitor set cannot be found.
lcaErrNsMcsDblimit 161
Max number of monitor points exceeded.
lcaErrNsMcpNotFound 162
Monitor point cannot be found.
lcaErrNsMcpDblimit 163
Max number of monitor points exceeded.
lcaErrNsNvmtInUse 164
The network variable or monitor point is in use and cannot be used for current service.
lcaErrNsDbConversionInProgress 165
The engine is in the process of converting a database. Internal
lcaErrNsIllegalMcpTarget 166
Monitoring of specified target is not allowed.
lcaErrNsCantModifyNvName 167
Can't modify network variable name.
lcaErrNsDbconvAccessFailure 168
Unable to read/write old or new record during conversion
lcaErrNsUpgradeDisable 169
Program interface upgrade has been disabled.
lcaErrNsUpgradeInfoNotFound 170
No upgrade change info available for node.
lcaErrNsNssUpgradeRequired 171
NSS program ID changed. Requires upgrade or revert back to old interface.
lcaErrNsEngineNotInitialized 172
NSS/NSI engine initialization has not completed. This is an internal error, and should
be reported to customer support.
lcaErrNsNiNoWinsockDll 173
OpenLNS attempted to use IP without the winsock.dll file installed.
lcaErrNsNiCantOpenIpLink 174
An OpenLNS network interface failed to open an IP connection.
lcaErrNsNiInvalidIpAddress 175

OpenLNS Programmer's Reference 986

An OpenLNS network interface uses an IP address not defined on this PC.
lcaErrNsNsiNotConfigured 176
NSI needs to be added or re-commissioned.
lcaErrNsNiDeviceOpenFailure 177
NI device driver open failure.
lcaErrNsBadLength 178
Invalid length of parameter, data, service, or message.
lcaErrNsBadName 179
Invalid name length, characters, or usage.
lcaErrNsBadDomain 180
Invalid domain length, index, or usage.
lcaErrNsInsufficientRtrsForMnc 181
No routers exist to complete logical path needed for monitoring and control.
lcaErrNsInsufficientRtrsForNsi 182
No routers exist to complete logical path needed for NSI and control. This exception will
be thrown if you attempt to remove a router and the operation fails because it would
break communication between the OpenLNS Server and a remote Full client.
lcaErrNs96BitAuthNotSupported 183
This error will be generated if you attempt to use 96-bit authentication on a device that
does not support it.
lcaErrNsNeuronModelMismatch 184
Neuron model version mismatch. This error will be generated if you attempt to use the
Load method to load an application image into a device that is incompatible with the
device’s system image. In this case, you need to upgrade the device’s system image.
Some devices support the LoadEx method, which automatically upgrades the system
image before loading the application image if there are compatibility problems.
lcaErrNsSysimageFileFormatError 185

System image or upgrade image file format is invalid. Verify that OpenLNS has been
installed correctly.
lcaErrNsSysimageCannotBeWritten 186
This error will be generated if you invoke the LoadEx method on a device, but the system
image cannot be written, probably because it is not stored in flash memory. The old
system image will remain intact if this error is thrown. However, the device will remain
applicationless. You should load a new application image into the device with the Load
or LoadEx methods in this case.
lcaErrNsSysimageUpgradeMemoryFailure 187
This error will be generated if there is a failure to write the new system image the device
after the LoadEx method has been invoked. These failures usually occur because the
device does not have flash memory in the required location to hold the new image during
the download process. The old system image will remain intact if this error is thrown.

OpenLNS Programmer's Reference 987

However, the device will remain applicationless. You should load a new application
image into the device with the Load or LoadEx methods in this case.
lcaErrNsSysimageUpgradeFailed 188
This error will be generated when you invoke the LoadEx method on a device, and the
new system image is successfully transferred to the device, but the switch from an old
system image to a new system image fails. If you encounter this error, try invoking the
LoadEx method again, or loading the previous system image back into the device.
s16BitUserErrorCode 189
The user defined error code is too big. This is an internal error, and should be reported
to customer support.
lcaErrNs16BitWarningCode 190
The NSS warning code is too big. This is an internal error, and should be reported to
customer support.
lcaErrNs16BitErrorCode 191
The NSS error code is too big. This is an internal error, and should be reported to
customer support.
lcaErrNsFlexDomainAuthNotSupported 256
An attempt was made to leave a device authenticated but without a domain, and that
device does not support flex domain authentication.
lcaErrNsCantModifyBoundNvType 257
Cannot modify the network variable type of a network variable when it is bound.
lcaErrNsCantModifyMonitoredNvType 258
Cannot modify network variable type of a network variable when it is being monitored.
lcaErrNsRegCannotOpenReg 259
Cannot open the NSS registry.
lcaErrNsRegUnknown 260
Unknown NSS registry error.
lcaErrNsRegConfigFileNotFound 261
The NSS registry backup file cannot be found.
lcaErrNsRegCannotUpdateConfigFile 262
Cannot update the NSS registry backup file.
lcaErrNsUnsupportedFileDirectoryVer 263
The device contains a version of the file directory that is unsupported.
lcaErrNsBadsiHdrSize 264
Invalid self-identification data header size.
lcaErrNsBadsiCapacityExceedsLimits 265
Capacity defined by self-identification data exceeds supported limits.
lcaErrNsBadsiCountExceedsCapacity 266

OpenLNS Programmer's Reference 988

Resource count exceeds capacity limits in self-identification data.
lcaErrNsLmsdObjectRange 267
Invalid object range in the LonMark portion of a network variable self-documentation
string. When specifying a range of objects, the lowest object index must appear before
the highest object index.
lcaErrNsLmsdObjectMemberNumber 268
Invalid object member in the LonMark portion of a network variable self-documentation
string. The member number must be between 1 and 32767.
lcaErrNsLmsdObjectArray 269
The LonMark portion of a network variable self-documentation string indicates that
elements of the network variable are to be used as members of an object array. However,
the network variable array has fewer members than the object array.
lcaErrNsLmsdVersion 270
Unsupported LonMark version number in the node self-documentation string.
lcaErrNsLmsdExpectedObjHdr 271
Expected LonMark object header in node self-documentation string.
lcaErrNsLmsdObjectNameTooLong 272
The LonMark Object name in the node self-documentation string exceeds 16 characters.
lcaErrNsCpsdOwnerType 273
Invalid CP owner type in header portion of the CP self-documentation string. The header
must indicate whether the CP is owned by the device, one or more objects, or one or more
network variables.
lcaErrNsCpsdMismatchedRangeTypes 274
Mismatched CP range types in the CP self-documentation string. Both the low and high
range values must have the same type.
lcaErrNsCpsdDisableWithoutNodeobj 275
The CP Self-documentation of one or more CPs indicate that the object must be disabled
in order to set the CP, but no node object is defined. Without a node object, it is not
possible to disable an object.
lcaErrNsCpsdFileCpWithoutFtp 276
A CP template file is defined in the external interface file for a device, but the device
does not support FTP or direct memory access.
lcaErrNsCpsdCpRange 277
The CP Self-documentation includes a range of objects or network variables, with the
first index in the range being greater than the second. CP ranges must be specified from
lowest to highest.
lcaErrNsCpsdDistributedArraySize 278
The CP Self-documentation indicates that a CP array should be distributed among range
of network variables or objects, but the CP array size does not match the owner’s range.

OpenLNS Programmer's Reference 989

lcaErrNsCpsdTemplateVersion 279
The version of the CP template is unsupported.
lcaErrNsGroupDblimit 280
The number of LonTalk groups has been exceeded. There is a limit of 255 LONtalk
groups per domain. In some case you may form connections using subnet or domain
broadcast, to limit the use of groups. You may also limit the use of groups by using
network variable aliases. These options are specified in the connection description
template used when forming connections.
lcaErrNsNodeidDblimit 281
Number of LonTalk node IDs exceeded. There are 127 LONtalk node Ids per subnet.
OpenLNS will allocate a new subnet, as needed, if the application does not specify the
subnet to be used.
lcaErrNsNssEngineInitTimeout 282
The application timed out starting the NSS engine process (NssEng.Exe). This could be
an indication that LNS is not installed properly. If you encounter this error, you should
try rebooting your PC, or re-installing LNS.
lcaErrNsDmtNotFound 283
The dynamic message tag cannot be found.
lcaErrNsDmtDblimit 284
The maximum number of dynamic message tags has been exceeded. A single device can
support up to 65,534 dynamic message tags, including internally defined message tags
created for use with message points. You can add and remove message tags from a device
with the Add and Remove methods of the MessageTags collection.
lcaErrNsLmobjNotDynamic 285

The specified LonMarkObject is not dynamic. This exception may be thrown if you
attempt to assign a network variable to a static LonMarkObject with the
AssignNetworkVariable method, unassign a network variable from a static
LonMarkObject with the UnassignNetworkVariable method, or delete a static
LonMarkObject with the Remove method.

You can determine if a LonMarkObject is dynamic or not by reading its
IsDynamicproperty.
lcaErrNsLmobjNvNotDynamic 286
The specified network variable is not dynamic. This exception may be thrown if you
attempt to assign a static network variable to a LonMarkObject with the
AssignNetworkVariable method, unassign a static network variable from a
LonMarkObject with the UnassignNetworkVariable method, or delete a static network
variable with the Remove method.

You can determine if a network variable is dynamic or not by reading its IsDynamic
property.
lcaErrNsLmobjInUse 287

The specified LonMarkObject is in use, and at least one of its member network variables
is bound. This error may be thrown if you use the Remove or RemoveByIndex methods to
delete a LonMarkObject with the lcaLonMarkObjectRemoveNVs (1) option set as the
removalFlags element, and that LonMarkObject contains bound network variables.

OpenLNS Programmer's Reference 990

The bound network variables must be disconnected before the LonMarkObject can be
deleted. You can disconnect the network variables by specifying the
lcaLonMarkObjectRemoveAndDisconnectNVs (3) option as the removalFlags element
when you call the Remove or RemoveByIndex methods.
lcaErrNsApplReadWriteProtected 288
This exception will be thrown if you call the Load method to load a new application into a
device, but the device’s current application is read/write protected.
lcaErrNsEngineIsSuspended 289
The engine is currently suspended. This is an internal error, and should be reported to
customer support.
lcaErrNsNotSupportedFromRemoteClient 290
The operation is not supported from a remote full client. This is an internal error, and
should be reported to customer support.
lcaErrNsUnexpectedLink 291
The link between the parent and the child record was unexpected. This error usually
indicates that the OpenLNS database has been corrupted. If you encounter this error,
you should use the Validate method to run a database validation, and consider switching
to a backup database.
lcaErrNsUnsupportedProgramCapability 292
The program defines capabilities that are not supported by OpenLNS. This error will be
thrown when you call the Import method to import a device’s XIF file, and the XIF file
(or the device’s self-documentation) indicates that it supports dynamic function blocks or
dynamic function block members, but does not specify the
EXTCAP_SUPPRESS_DYN_FB_DEF and EXTACP_SUPPRESS_DYN_FB_MBR_DEF
flags. LNS 3.20 does not support downloading function blocks or function block
membership to a device, any so any device that supports these operations needs to have
an alternate way to define these dynamic function blocks and function block members.
They must indicate that via the EXTCAP flags mentioned above.
lcaErrNsInvalidCpAttribute 293
The LONMARK organization does not allow modifiable device-specific configuration
properties to be stored in files accessed via FTP on devices that support only sequential
access. If you attempt to set the DeviceSpecificAttribute property to True on such a
configuration property, this exception will be thrown.
lcaErrNsNotAllowedInASession 294
The operation is not allowed as part of a session. You can use sessions to group together
properties and methods that must be performed together to avoid immediate error
conditions. You can start a session with the BeginSession method, and close it with the
EndSession method. You should note that the only network operations you can perform
within sessions are those related to changes in the physical topology of your network.
These operations include moving devices and routers, adding and removing routers, and
setting the class of routers. For more information, see the online help for the
BeginSession method.
lcaErrNsInvalidCpFileSize 295
The configuration property value file size reported by the device does not agree with the
size defined by the definitions in the configuration property template file. Note that if

OpenLNS Programmer's Reference 991

the device template was imported from an external interface file, the configuration
property template file comes from the external interface file. Otherwise, the
configuration property template file is loaded from the device.
lcaErrNsWarningFirst 4030
A symbol denoting the beggining of the error number range reserved for warning codes.
lcaErrNsUpdateCommError 4030
The database updates were successful, but one or more nodes were not updated because
the NSS was unable to communicate with them. The NSS will continue to try to update
the nodes in the background if the UpdateInterval property of the System object is set to
a non-zero value, and you can force a retry with the RetryUpdates method.
You can keep track of which devices are up to date using commissioning events, and by
reading the CommissionStatus property of each AppDevice object. If you are receiving
persistent update failures on a device, you should re-commission the device with the
Commission method.
lcaErrNsUpdateFuncError 4031
The database updates were successful, but one or more nodes were not updated because
the node(s) rejected the update, for example due to an authentication failure. This
usually means that there is a configuration mismatch between the node and the NSS's
database. The NSS will continue to try to update the nodes in the background if the
UpdateInterval property of the System object is set to a non-zero value, and you can
force a retry with the RetryUpdates method.
You can keep track of which devices are up to date using commissioning events, and by
reading the CommissionStatus property of each AppDevice object. If you are receiving
persistent update failures on a device, you should re-commission the device with the
Commission method.
lcaErrNsNeuronStateChangeFail 4032
The NSS's database updates were successful, but one or more nodes were not updated
because the node(s) failed to make a necessary state transition. The NSS will continue
to try to update the nodes in the background if the UpdateInterval property of the
System object is set to a non-zero value, and you can force a retry with the RetryUpdates
method.
You can keep track of which devices are up to date using commissioning events, and by
reading the CommissionStatus property of each AppDevice object. If you are receiving
persistent update failures on a device, you should re-commission the device with the
Commission method.
lcaErrNsNodeUpdateDisallowed 4033
The database updates were successful, but one or more nodes could not be updated
because they are in the wrong state. The NSS will continue to try to update the nodes in
the background if the UpdateInterval property of the System object is set to a non-zero
value, and you can force a retry with the RetryUpdates method. You can keep track of
which devices are up to date using commissioning events and by reading the
CommissionStatus property of each AppDevice object. If a node is applicationless, you
must reload the application using the AppDevice .load method.
You can keep track of which devices are up to date using commissioning events, and by
reading the CommissionStatus property of each AppDevice object. If you are receiving

OpenLNS Programmer's Reference 992

persistent update failures on a device, you should re-commission the device with the
Commission method.
lcaErrNsUpdateFileXferError 4034
The database updates were successful, but an update error occurred. The NSS will
continue to try to update the nodes in the background if the UpdateInterval property of
the System object is set to a non-zero value, and you can force a retry with the
RetryUpdates method. You can keep track of which devices are up to date using
commissioning events and by reading the CommissionStatus property of each AppDevice
object.
You can keep track of which devices are up to date using commissioning events, and by
reading the CommissionStatus property of each AppDevice object. If you are receiving
persistent update failures on a device, you should re-commission the device with the
Commission method. Most file update errors map to this status during an update.
lcaErrNsUpdateWhenUncnfg 4035
The database updates were successful, but one or more nodes could not be updated
because they are not configured. You should ensure that all applicable devices are
configured when this error occurs. The NSS will continue to try to update the nodes in
the background if the UpdateInterval property of the System object is set to a non-zero
value, and you can force a retry with the RetryUpdates method.
You can keep track of which devices are up to date using commissioning events, and by
reading the CommissionStatus property of each AppDevice object. If you are receiving
persistent update failures on a device, you should re-commission the device with the
Commission method.
lcaErrNsUpdateWhenAppless 4036
The database updates were successful, but one or more nodes could not be updated
because they are applicationless. You can load a node’s application by calling the Load
method on the AppDevice object associated with the node. The NSS will continue to try
to update the nodes in the background if the UpdateInterval property of the System
object is set to a non-zero value, and you can force a retry with the RetryUpdates
method.
You can keep track of which devices are up to date using commissioning events, and by
reading the CommissionStatus property of each AppDevice object. If you are receiving
persistent update failures on a device, you should re-commission the device with the
Commission method.
lcaErrNsUpdateCpFileTooShort 4037
The database updates were successful, but one or more devices was not updated because
a configuration property file in the device is shorter than specified in the database. This
is usually due to an inconsistency between the device’s configuration property template
file and its data file. The configuration property template file should be the same for all
devices of a given type. If you encounter this type of error, check to make sure that the
device is using the appropriate external interface file. The NSS will continue to try to
update the nodes in the background if the UpdateInterval property of the System object
is set to a non-zero value, and you can force a retry with the RetryUpdates method.
You can keep track of which devices are up to date using commissioning events, and by
reading the CommissionStatus property of each AppDevice object. If you are receiving
persistent update failures on a device, you should re-commission the device with the
Commission method.

OpenLNS Programmer's Reference 993

lcaErrNsUpdateCpFailure 4038
The database updates were successful, but the configuration properties on one or more
devices could not be updated as a result of invalid configuration property definitions.
The NSS will continue to try to update the nodes in the background if the
UpdateInterval property of the System object is set to a non-zero value, and you can
force a retry with the RetryUpdates method.
You can keep track of which devices are up to date using commissioning events, and by
reading the CommissionStatus property of each AppDevice object. If you are receiving
persistent update failures on a device, you should re-commission the device with the
Commission method.
lcaErrNsUpdatesDeferred 4039
The database updates were successful, but the configuration properties on one or more
devices could not be updated because the MgmtMode is currently set to
lcaMgmtModeDeferConfigUpdates (1). You can update all the devices on the network
with all pending updates by setting the MgmtMode property to
lcaMgmtModePropagateConfigUpdates (0).
You can also update a single device with its pending device-only configuration changes
while the MgmtMode property is still set to lcaMgmtModeDeferConfigUpdates (1) with
the PropagateDeviceConfigUpdates method.
lcaErrNsWarningLast 4089
A symbol denoting the end of the error number range reserved for warning codes.

Network Interface Errors
These errors are returned by the OpenLNS network interface. These errors will appear
in the format NI: #<Error Number>. The LNS values for these errors are equal to the
error number plus 16,500.
lcaErrNiNoDevice 1
No network device is present.
lcaErrNiDriverNotOpen 2
The network driver could not be opened.
lcaErrNiDriverNotInit 3
The network driver required initialization
lcaErrNiDriverNotReset 4
The network driver required a reset.
lcaErrNiDriverError 5
An error occurred while communicating with the network driver.
lcaErrNiNoResponses 6
No message was received during the wait time.
lcaErrNiResetFails 7
The reset completion code was not received.
lcaErrNiTimeout 8

OpenLNS Programmer's Reference 994

Could not communicate with the network interface. A message timed out.
lcaErrNiUplinkCmd 9
An uplink command was received from the NSS instead of a message.
lcaErrNiInternalErr 10
An internal error occurred, probably an invalid completion code.
lcaErrNiFileOpenErr 11
The log file could not be created or opened.
lcaErrNiNotNss 12
The network interface received an LNS command, when no NSS was present.
lcaErrNiInvalidData 13
The parameter or return data was invalid.
lcaErrNiMsgRouted 14
The message was read, but then processed by a message callback function.
lcaErrNiResourceProblem 15
The required resources were not available to complete the function.
lcaErrNiInvalidNsi 16
The attached network interface does not contain NSI firmware.
lcaErrNiBadMessage 17
Poorly formed message.
lcaErrNiVniSendMsgFailure 18
The VNI had a message send failure.
lcaErrNiVniSendRespFailure 19
The VNI failed to send a response.
lcaErrNiVniReadFailure 20
The VNI failed to read a message.
lcaErrNiLostRefId 21
The VNI lost a network interface reference message ID.
lcaErrNiVniNotOpen 22
The LonTalk stack has not been opened.
lcaErrNiVniInitFailure 23
Could not initialize the LonTalk stack.
lcaErrNiObsolete 24
This is an internal error and should be reported to customer support.
lcaErrNiBadRefId 25
Bad network interface reference message ID.
lcaErrNiImplicitAddrDisallowed 26

OpenLNS Programmer's Reference 995

May not send implicit tags via NI layer. Must use a message monitor point.
lcaErrNiUnimplemented 27
This is an internal error and should be reported to customer support.
lcaErrNiBufferSize 28
The message length is too long.
lcaErrNiNoMessages 29
Message not found.
lcaErrNiNegativeResponse 30
Negative response.
lcaErrNiStateError 31
Unable to change the state of the network interface.
lcaErrNiReadBusy 32
Previous response messages have not been read.
lcaErrNiMaxInterfacesOpen 33
There are no network interface resources available.
lcaErrNiInvalidNiHandle 34
Invalid network interface resource.
lcaErrNiOpenNiDeviceMismatch 35
The network interface has already been opened with a different network driver. This
error will be generated if you open a network that is already opened using a different
network interface, NSS type, or database directory
lcaErrNiNoWinsockDll 36
OpenLNS attempted to use IP without the winsock.dll file installed.
lcaErrNiCantOpenIpLink 37
An OpenLNS network interface failed to open an IP connection.
lcaErrNiInvalidIpAddress 38
An OpenLNS network interface uses an IP address not defined on this PC.
lcaErrNiDeviceOpenFailure 39
Device driver open failure
lcaErrNiNoMoreLeft 40
Signal iteration complete
lcaErrNiMipInUse 41
If using a regular OpenLNS network interface (a non-high-performance network
interface), only one network may be opened at a time. This error will be returned if you
attempt to open a second network.

OpenLNS Programmer's Reference 996

Connection Errors
Connection errors are errors returned when attempting to make network variable or
message tag connections. These errors will appear in the format CONNERR: #<Error
Number>. The LNS values for these errors are equal to the error number plus 16,500.
lcaErrConnInvalidTargetCount 1
An incorrect number of targets were specified. You must specify at least one and no
more than 25 targets when adding members. To add more members, you must invoke the
Connect method multiple times.
lcaErrConnPropertyNotFound 2

There is no ConnectDescTemplate object with the specified handle.
lcaErrConnConflictingProperties 3
One or more of the fields of the connection descriptions used by intersecting connections
are incompatible with one another. This may include any of the fields of a connection
description, including the service type, the use of priority, and the use of authentication.
Several of the fields of a connection description may cause additional exceptions to be
thrown if those fields conflict. Those error codes start at CONNERR, #28
lcaErrConnConflictingPrioritySettings and end with CONNERR, #32
lcaErrConnConflictingBroadcastSettings. Note that these error codes (and the
CONNERR, #3 lcaErrConnConflictingProperties exception) do not apply to monitor
connections.
lcaErrConnNodeNotFound 4
An invalid device handle was specified for the hub or for one of the targets.
Each device in the network has a unique handle that allows a client to identify the
device. Once assigned, the handle is permanently associated with the device until that
device is removed.
lcaErrConnNvmtOutOfRange 5
The network variable or message tag index is larger than the maximum declared for that
node.
The index is the number used to identify a message tag or a network variable. The
Neuron C compiler assigns indices to message tags and network variables in the order in
which they are declared. The first network variable declared in the code is assigned
index 0, the second is assigned index 1, and so on. The same applies to the message tags.
lcaErrConnCantConnectNvToMt 6
You can only connect network variables to network variables and message tags to
message tags.
If you attempt to connect a message tag to a network variable, or vice versa, you will
generate this error message.
lcaErrConnTypesDoNotMatch 7
The network variables are not all of the same type.
If SNVTs are used for the connection then, all members must be of the same type.
lcaErrConnTypesDifferentSizes 8
The network variables are not all of the same size.

OpenLNS Programmer's Reference 997

If the connection members are not SNVTs, then all members must have the same length.
lcaErrConnDirectionOrPollingMismatch 9
An input network variable can only be connected to an output network variable, a polled
output network variable can only be connected to a polling input network variable, and
the implicit message tag msg_in can only be connected to an explicitly declared message
tag.
This error will occur if an attempt was made to connect network variables of the same
direction, network variables with mismatched polling attributes (a polled output network
variable to non-polling input network variable), or msg_in to msg_in.
lcaErrConnMtagCantUseTurnaround 10
An attempt was made to connect message tags in the same node (i.e., to create a
turnaround message tag connection, which is not possible).
lcaErrConnPriNotConfigurable 11

An attempt was made to modify the priority attribute; that attribute was not specified as
configurable.
For network variables, the priority keyword may be included as part of the connection
information in the Neuron C variable declaration. The config and nonconfig keywords
specify whether the priority designation can be modified with a network management
tool. The default is config.
The priority keyword affects output or polled input network variables.
Please refer to the Neuron C Reference Guide for more information.
lcaErrConnAuthNotConfigurable 12
An attempt was made to modify the authentication attribute and that attribute was not
specified as configurable.
For network variables, the authentication keyword may be included as part of the
connection information in the Neuron C variable declaration. Including the keyword
config in the declaration allows the network management tool to change the
authentication status of this network variable after a node has been installed. Setting
nonconfig prevents the authentication status from ever being changed for this network
variable. The default is config. Please refer to the Neuron C Reference Guide for more
information.
lcaErrConnSvctypeNotConfigurable 13
An attempt was made to modify the protocol service type attribute, and that attribute
was not specified as configurable.
For network variables, the service type can be specified in the connection information in
the Neuron C variable declaration. The options are unackd, nackd_rpt and ackd. The
keyword config is the default. This allows a network management tool to change the
service specification at installation time. The keyword nonconfig indicates that the
service type cannot be changed by a network management tool. Please refer to the
Neuron C Reference Guide for more information.
lcaErrConnNvSelectorConstraint 14
At most, one input network variable in a device, and in some situations only one output
network variable in a device, can use the same network variable selector, which is

OpenLNS Programmer's Reference 998

shared by connections that intersect each other. This error will be generated when an
attempt is made to form a connection that violates this constraint, and no network
variable alias was available to overcome the constraint. If network variable aliases are
available on the devices in the connection, they will normally be automatically used to
avoid this error.
A selector is a number assigned to the network variable during the connection process in
order to identify connected network variables. All members of the same connection, and
any intersecting connections, share this selector. Without aliases, if an attempt is made
to connect several inputs or several outputs (one or more of which polled by an input) on
the same node in the same connection (or intersecting connections), this error will be
generated. The use of aliases allows a single connection of several intersecting
connections to have several different selectors (one per alias). If aliases are available,
this error will normally not occur.
lcaErrConnNoMoreAddressSlots 15
This error will occur when a device involved in an attempted connection does not have an
available address table slot to complete the connection. This can also occur when
multiple connections are sharing an address table slot, and one of them changes. As a
result, they can no longer share address table slots.
In some cases broadcast addressing can be used to reduce address table usage, because
output connections to different nodes may be able to use the same broadcast address
table entry. In addition, if the connection is a multicast connection, the use of broadcast
addressing will not require a group address table entry on the target device. The use of
broadcast messaging is controlled by the BroadcastOptions property of the
ConnectDescTemplate object being used by the connection.
In some cases, aliases may be used to shift address table entry usage from one device to
another. Multicast messages using a group use one address table entry on the source
device, and one on each target device (note that this address table entry may be used for
other connections as well). Using aliases to support multicast will result in using an
address table entry for each target on the source node, but require no address table
entries on the target node. The use of aliases for multicast is controlled by the
AliasOptions property of the ConnectDescTemplate object.
lcaErrConnCannotCreateGroup 16
This error will occur when the requested connection requires a group, but there are no
more groups available in the domain.
A domain can contain 256 groups. Groups and group membership are assigned when
connections are created. If there are several targets within a connection, a group will
normally be formed. The use of aliases may prevent a group from being used, and
broadcast addressing can be used as an alternative to groups. Use of aliases for
multicast and broadcast can be controlled via the AliasOptions and BroadcastOptions
properties of the ConnectDescTemplate object being used by the connection.
Groups can be reused for multiple connections within the same domain. Connection
timers used by the different connections must be compatible, and the collection of nodes
must either be identical in all the connections, or all the connections must at least have
the same set of destination nodes (the sources can be different). This last case is called
group overloading. Reusing groups is done automatically with the OpenLNS Object
Server.
lcaErrConnNoMoreNetvarSelectors 17
An attempted connection failed because all network variable selector values were in use.

OpenLNS Programmer's Reference 999

A network can use up to 12288 selector values. Unrelated connections will normally
require unique selector values. Intersecting connections automatically use the same
selector Network variable aliases are used automatically to resolve selector conflicts on a
node (i.e. to eliminate this exception from occurring), although this uses up one selector
for each alias. Starting in LNS 2.0, selector values are grouped into categories, with one
category being "shareable". Non-intersecting, point-to-point connections may reuse
selector values from this category any number of times. This is done automatically by the
OpenLNS Object Server.
lcaErrConnMtagInConnAlready 18
With the exception of the special message tag msg_in, a message tag may only appear in
one connection. This error will occur when a connection was attempted that violated this
constraint.
lcaErrConnAuthenticationMismatch 19
This error will occur when not all members of an attempted connection have the same
setting for authentication.

It is possible to connect an authenticated output to a non-authenticated input, but an
authenticated input must be connected to an authenticated output. A polling input must
be authenticated if any of the targeted outputs are authenticated.
lcaErrConnGrpTooLargeForAckd 20
This error will occur when an attempt is made to form a connection of more than 64
members that uses acknowledged service. Only unacknowledged or
unacknowledged/repeat service is allowed for connections with more than 64 members.
Such a connection must be built using a connection description that specifies one of these
service types.
This error may also occur when polled output network variables or polling input network
variables are involved in the connection.
lcaErrConnUnackdWithAuth 21
An attempt was made to form a connection using authentication but not using the
acknowledged service type.
The authentication process is composed of four messages, 2 of which are using the
Acknowledged service. This is why using the authentication service without the
Acknowledged service is illegal.
lcaErrConnAuthOnUnauthNode 22
An attempt was made to form an authenticated connection with an unauthenticated
node. Only nodes with the AuthenticationEnabled set to True are permitted to
participate in authenticated connections.
lcaErrConnBcastSubnetsDiffer 23
An attempt was made to subnet broadcast, but the devices are not all in the same
subnet. This error is not currently generated, since the broadcast type used is
determined automatically.
lcaErrConnNewBcastCausesNvLeak 24
An attempt was made to use broadcast addressing, but a network variable leak was
detected on another node. A network variable leak means that update messages for the

OpenLNS Programmer's Reference 1000

network variable may be received by connections and devices that it is not intended to.
LNS attempts to avoid this problem by the appropriate allocation of network variable
selectors. However, some connection intersections make the use of broadcast addressing
impossible, and so you may need to avoid using broadcast addressing in some situations.
One solution for this problem is to use aliases for unicast connections, instead of using
multicast connections. See the Optimizing Connection Resources section in Chapter 8 of
the OpenLNS Programmer’s Guides for more information on this.
lcaErrConnExistingBcastCausesNvLeak 25
An attempt was made to create a connection (of any type), but a detected network
variable leak was caused by the use of broadcast addressing on another device. A
network variable leak means that update messages for the network variable may be
received by connections and devices that it is not intended to. LNS attempts to avoid this
problem by the appropriate allocation of network variable selectors. However, some
connection intersections are not possible when broadcast addressing is in use. One
solution for this problem is to use aliases for unicast connections, instead of using
multicast connections. See the Optimizing Connection Resources section in Chapter 8 of
the OpenLNS Programmer’s Guides for more information on this.
lcaErrConnBcastCantAck 26
Acknowledged services cannot be used with broadcast addressing.
Note that subnet broadcast is not allowed with ACKD service, and domain broadcast is
not allowed with either ACKD or UNACKD_RPT services.
lcaErrConnDomainBcastMustUseUnackd 27
Domain broadcast addressing is restricted to the unacknowledged service.
Please note that UNACKD_RPT service is not allowed with Domain broadcast.
lcaErrConnConflictingPrioritySettings 28
The connection descriptions for intersecting connections have incompatible settings for
priority. The priority option is available only for network variables. If an output network
variable that is not declared as polled is a member of multiple connections, the priority
settings for all of those connections must be identical. If a polling input network variable
is a member of multiple connections, the priority settings for those connections must also
be identical.
lcaErrConnConflictingAuthSettings 29
The authentication settings for the network variables in a connection are incompatible.
If a target network variable (an input network variable, or polled output network
variable) in a connection is using authenticated messaging, then all network variables
involved in the connection must also use authenticated messaging.
lcaErrConnConflictingSvctypeSettings 30
The connection descriptions for intersecting connections have incompatible settings for
service type. If an output network variable that is not declared as polled is a member of
multiple connections, the service type settings for all of those connections must be
identical.
lcaErrConnConflictingTimerSettings 31
The connection descriptions for intersecting connections have incompatible settings for
one of the timer values. If an output network variable that is not declared as polled is a
member of multiple connections, the timer settings for all of those connections must be

OpenLNS Programmer's Reference 1001

identical. If a polling input network variable is a member of multiple connections, the
timer settings for those connections must also be identical.
lcaErrConnConflictingBroadcastSettings 32
The connection descriptions for intersecting connections have incompatible settings for
broadcast addressing. If an output network variable that is not declared as polled is a
member of multiple connections, the broadcast options for all of those connections must
be identical. If a polling input network variable is a member of multiple connections, the
broadcast options for those connections must also be identical.
lcaErrConnCantDirectlyManageMonitorConn 33
Monitor connections cannot be directly managed. This error indicates that the
application is attempting to directly manage internal monitor connections, rather than
implicitly manipulating those connections by using monitor points.
lcaErrConnConflictingMonitorProperties 34
The connection descriptions used for intersecting monitoring connections have conflicting
settings. If the connection descriptions used by intersecting connections conflict, and
neither connection is a monitoring connection, then any of the following errors may be
thrown:
CONNERR, #3 lcaErrConnConflictingProperties
CONNERR, #28 lcaErrConnConflictingPrioritySettings
CONNERR, #29 lcaErrConnConflictingAuthSettings
CONNERR, #30 lcaErrConnConflictingSvctypeSettings
CONNERR, #31 lcaErrConnConflictingTimerSettings
CONNERR, #32 lcaErrConnConflictingBroadcastSettings

Object Server Errors
These errors are returned by the Object Server component. These errors will appear in
the format LCA: #<Error Number>. The LNS values for these errors are equal to the
error number plus 17,000.
lcaErrStringInvalidSize 1
A string passed did not match the required size, or exceeded the maximum size.
lcaErrInvalidType 2
An argument was passed with the wrong data type, or an assignment to a property has
been made using an inappropriate data type.
lcaErrDuplicateKey 3
This error indicates that the object with this key or name already exists. Names or Keys
of items being explicitly added to a collection object must be unique. It should be noted
that this restrictions does not apply to implicitly added items.
lcaErrInvalidOleObject 4
An invalid OLE object has been passed to the object server by making assignments to
LNS properties or calls to LNS methods.

OpenLNS Programmer's Reference 1002

lcaErrUninitializedDb 5
Contact technical support.
lcaErrObjectNotFound 6
An object has been requested by name, handle, or index, which could not be found in the
databases. Typically, this would be a request from an OpenLNS collection object with a
bad name, handle, or index.
It should be noted that this error can also occur in a few implicit assignments. For
example, if the network interface to be used has not been explicitly assigned to the
appropriate property, OpenLNS will continue using the network interface previously
assigned to the ActiveRemoteNi or NetworkInterface property, respectively.
In such a scenario, this exception could occur even though no explicit assignment has
been made, indicating that an implicit assignment maps to an unavailable object.
lcaErrCannotCreateObject 7
The Object Server was unable to created the object.
lcaErrInternal 8
An unexpected error occurred. Please contact technical support on
LonSupport@Echelon.com
lcaErrFeatureNotAvailable 9
A feature has been accessed which is not available in the current operating mode. Most
likely, this error message is caused by an attempt to access properties which are not
available to remote clients.
lcaErrFileOpen 10
The Object Server is attempting to open a file that is already opened by another
application.
lcaErrBadApbFile 11
The file containing the binary version of the downloadable application image has been
corrupted. The device manufacturer should be contacted for providing a valid APB file or
the file should be re-built using the NEURON C compiler and linker.
Alternatively, the APB file can be re-build using the NXE32BIN.EXE utility, which itself
requires the NXE and XFB files as input data.
lcaErrBadOrMissingXif 12
The file containing the external interface information of the device has been is corrupted
or is missing. The device manufacturer should be contacted for providing a valid XIF file,
of said file should be re-build using using the NEURON C compiler and linker.
Alternatively, the device could be installed using an "Ad-Hoc" installation scenario, in
which XIF files are not required. This requires the device to be available, online,
functioning, and not having the self-documentation features disabled.
lcaErrBadOrMissingXfb 13
The file containing the binary version of the external interface file has been corrupted or
is missing. The device manufacturer should be contacted for providing a valid APB file,
of said file should be re-build using using the NEURON C compiler and linker.

OpenLNS Programmer's Reference 1003

Alternatively, the XFB file might be re-build from the XIF file, using the XIF32BIN.EXE
utility.
lcaErrInvalidPgmType 14

The ProgramType property contains an invalid value.
lcaErrInvalidCollectionIndex 15
A query to an OpenLNS collection object has been made using an invalid index or
handle. Valid indices start with 1 and end with the current item count.
lcaErrCannotUpdateUnattachedObject 16
An attempt was made to update a device while not attached to the network.
lcaErrCannotUpdateWhenOffnet 17
An action has been requested which can not be performed in Offnet management mode.
Change the MgmtMode property accordingly to allow this action to be performed.
lcaErrCannorRemoveReservedSubsystem 18

An attempt has been made to remove a reserved Subsystem object. Such Subsystem
objects are all subsystem objects in the "ALL" and "Discovered" subsystem are and
underneath.

Other read-only subsystems collection objects are the Router object's Subsystems
property and the AppDevice object's Subsystems property.
lcaErrCannotAddToReservedSubsystem 19
An attempt has been made to add a subsystem object to a reserved subsystem area. Such
areas are all subsystem objects in the "ALL" and "Discovered" subsystem are and
underneath.

Other read-only subsystems collection objects are the Router object's Subsystems
property and the AppDevice object's Subsystems property.
lcaErrInvalidPath 20
An invalid subsystem path has been specified.
lcaErrDatabaseExists 21
An attempt has been made to create a database which already exists. The database path
should be changed to point to a different location.
lcaErrDatabaseNoAccess 22
Access to the database files has been denied by the operating system. Under operating
systems with file security, the access permissions should be granted using the
appropriate system tools.
lcaErrDatabasePathTooLong 23

The database path passed to the Networks collection's Add method is too long. The path
to a network database must not exceed 26 characters.
lcaErrMaxClientsExceeded 24
The LNS maximum of 254 simultaneous clients has been exceeded.

OpenLNS Programmer's Reference 1004

lcaErrDatabase 25
An unexpected database error occurred. Please take a note of the full error message, and
contact technical support at LonSupport@Echelon.com
lcaErrInvalidDeviceTemplate 26

The DeviceTemplate object has been corrupted.
lcaErrNoDatabase 27
The network database has not been found in the location previously registered.
lcaErrNoDbDictionary 28
The LNS dictionary files _objects.dat and _objects.idx are missing or can not be found.
The default location is C:\LONWORKS\ObjectServer\Dictionary.
lcaErrInvalidSystemObject 29

The System object associated with this network database is invalid, the network
database must be rebuilt from scratch.
lcaErrNetworkDbNotOpen 30

A service has been requested prior to invoking the Network object's Open method.
lcaErrCannotRemoveSubsystemWithDevices 31

An attempt to remove a subsystem which still contains AppDevice or Router objects has
been made. These objects must be removed first.
lcaErrObjectLocked 32
An attempt has been made to modify a locked object. Objects can be locked and unlocked
with the Lock method.
lcaErrCantCreateDbServer 33
This error is returned by a remote client when the host is unable to launch the OpenLNS
Server.
lcaErrUnsupportedEvent 34
Contact customer support.
lcaErrGeneric 35
Contact customer support.
lcaErrDbServer 36
An OpenLNS Server error. Contact customer support.
lcaErrCommissionCausesReplace 37
An attempt has been made to commission a device after changing it's Neuron ID. In this
situation, the Replace method should be used.
lcaErrAppdeviceRequired 38
The Object Server was unable to communicate with the Appdevice.
lcaErrWrongWriteDataSize 39
Contact customer support.
lcaErrInvalidFormat 40

OpenLNS Programmer's Reference 1005

Contact customer support.
lcaErrCompiler 41
Generic compiler error. See the LNS Field Compiler documentation for details.
lcaErrProjectMgrNotAvailable 42
The LNS Field Compiler's project manager and dependency checker is unavailable. See
the LNS Field Compiler documentation for details.
lcaErrInvalidLinkerOptions 43
The options passed to the NEURON Linker were invalid. See the LNS Field Compiler
documentation for details.
lcaErrInvalidBuildTemplate 44

The BuildTemplate object is invalid, as it does not comply with the requirements and
constrains to the LNS Field Compiler. See the LNS Field Compiler documentation for
details.
lcaErrInvalidHardwareTemplate 45

The HardwareTemplate object is invalid, as it does not comply with the requirements
and constrains to the LNS Field Compiler. See the LNS Field Compiler documentation
for details.
lcaErrInvalidProgramTemplate 46

The ProgramTemplate object is invalid, as it does not comply with the requirements and
constrains to the LNS Field Compiler. See the LNS Field Compiler documentation for
details.
lcaErrInvalidExportOption 47
The options passed to the NEURON Exporter were invalid. See the LNS Field Compiler
documentation for details.
lcaErrCantCallDtssComponent 48
An attempt to communicate with a LNS Device Control failed.
lcaErrCantLoadDevice 49
The application could not be loaded into the device.
lcaErrCantRemoveFromReservedSubsystem 50
An attempt has been made to remove an item from a reserved subsystem. Such
subsystem objects are all subsystem objects in the "ALL" and "Discovered" subsystem are
and underneath.

Other read-only subsystems collection objects are the Router object's Subsystems
property and the AppDevice object's Subsystems property.
lcaErrDeviceTemplatePgmMismatch 51

The program ID from the DeviceTemplate object does not match the one found on the
device during an attempt to commission the device.
lcaErrMustSetNeuronIdFirst 52
The NEURON ID must be set prior to querying this property or invoking the method.
lcaErrInvalidOnDiscoveredDevice 53

OpenLNS Programmer's Reference 1006

lcaErrCantCopyNssDirectory 54
Internal error. Contact customer support.
lcaErrCantRecoverNotNewDb 55

A call to the RecoverFromNetwork method has been made, using a previously used
network database. For the recovery process, a newly created network database is
required.
lcaErrCantRecoverMissingNssDbFiles 56
Some parts of the network database are lost and can not be recovered. The network must
be re-build from scratch, should no backup be available.
lcaErrCompilerInit 57
Initialization of the NEURON C Compiler failed. See the LNS Field Compiler
documentation for details.
lcaErrAssembler 58
Generic error message, indicating an unspecified NEURON Assembler error. See the
LNS Field Compiler documentation for details.
lcaErrAssemblerInit 59
Initialization of the NEURON Assembler failed. See the LNS Field Compiler
documentation for details.
lcaErrLinker 60
Generic error message, indicating an unspecified NEURON Linker error. See the LNS
Field Compiler documentation for details.
lcaErrLinkerInit 61
Initialization of the NEURON Linker failed. See the LNS Field Compiler documentation
for details.
lcaErrExport 62
Generic error message, indicating an unspecified NEURON Exporter error. See the LNS
Field Compiler documentation for details.
lcaErrExportInit 63
Initialization of the NEURON Exporter failed. See the LNS Field Compiler
documentation for details.
lcaErrGlobalDbNotOpen 64
An attempt has been made to obtain a service from LNS prior to opening the LNS global
database. This database is opened and closed by opening and closing the ObjectServer
object itself.
lcaErrOnlyAllowedOnHostIntf 65

The requested operation is only allowed on Interface objects associated with host devices.
Typically, this exception indicates an attempt to create virtual interface objects or to
dynamically add or remove network variables from regular, non-hosted, LONWORKS
devices.

OpenLNS Programmer's Reference 1007

lcaErrAnotherNetworkAlreadyOpen 66
An attempt to open a network database failed because another network object is still
held open by the same client process. This error should not occur in LNS 3 or greater. If
it does, contact customer support.
lcaErrSystemNotOpen 67
A service has been accessed prior to successfully opening the system object, which
requires the system to be open.
lcaErrDbConversionRequired 68
The global database or local database is from an older version of LNS, and the
appropriate CompactDb method must be called prior to opening the object. The
CompactDb method will compact the database, reorganize its contents, and
automatically upgrade to the latest version.
lcaErrPropertyCantBeSetWhenOpen 69
An attempt has been made to change a property while the associated key object (the
System , Network, or ObjectServer object) is open. This property requires the object to be
closed prior to accepting changes.
lcaErrCantRecoverReadOnlyFile 70
Contact customer support.
lcaErrStringIsEmpty 71
Contact customer support.
lcaErrWrongServerDll 72
Contact customer support.
lcaErrInvalidProgramType 73
Contact customer support.
lcaErrNotAvailableOnRemoteClient 74
The requested property of method is not available on the remote client.
lcaErrDuplicateApplicationName 75

The value assigned to the ApplicationName property was invalid.
lcaErrCantRecoverNotAttachedToNetIntf 76
Recovery fails due to a lack of an OpenLNS network interface.
lcaErrDevTemplateWithThisProgramExists 77

Implicit or explicit creation of a DeviceTemplate object failed due to the program ID
already being in use with a different device template in the same network database.
The program ID is a unique identifier for each device type (i.e. device template object).
Devices certified by the LonMark Interoperability Association will have a unique
program id, using a globally unique manufacturer ID allocated by LonMark.
lcaErrCantCreateLcaServer 78
The OpenLNS Server cannot be created.

OpenLNS Programmer's Reference 1008

lcaErrCantLaunchLcaServer 79
The OpenLNS Server cannot be launched.
lcaErrNoMemory 80
No more system memory available.
lcaErrDbInvalidVersion 81
The database has an invalid version. Note that OpenLNS databases can be upgraded
using the CompactDb method, but also note that OpenLNS databases are not backwards
compatible. Once updated to version N+1, the database will not be accessible for a
version N client any more.
lcaErrDictionaryInvalidVersion 82
The OpenLNS database dictionary files have an invalid version.
lcaErrDbAndDictionaryMismatch 83
The LNS dictionary files do not match the requirements of the global database and
network database. After making a backup copy, try upgrading the databases using the
CompactDb method. Note that OpenLNS databases can be upgraded using the
CompactDb method, but also note that OpenLNS databases are not backwards
compatible. Once updated to version N+1, the database will not be accessible for a
version N client any more.
lcaErrCouldNotOpenNeuronCFile 84
The NEURON C source code file could not be opened. It may be locked by another
application, it may be corrupted, or the operating system's security mechanism might
prevent LNS from accessing the file.
lcaErrCouldNotOpenLangResourceFile 85
The language resource file, which is part of the LonMark device resource files, could not
be opened. It may be locked by another application, it may be corrupted, or the operating
system's security mechanism might prevent LNS from accessing the file.
lcaErrCouldNotOpenFuncProfileFile 86
The functional profile template file, which is part of the LonMark device resource files,
could not be opened. It may be locked by another application, it may be corrupted, or the
operating system's security mechanism might prevent LNS from accessing the file.
lcaErrStringInvalidChar 87
The string passed contains one of more characters which are invalid in this environment.
For name properties, the file name style conventions from the windows operating system
apply.
lcaErrAuthKeyNotSet 88
The authentication key has not been set prior to accessing authenticated objects. Such an
object can be any AppDevice or Router object, including the OpenLNS Server itself. It
should be noted that a remote client needs to specify the authentication key prior to
opening the (remote) system.
lcaErrReadOnlyCollection 89
An attempt to change a member of a write-protected collection has been made. Such
read-only collection objects are the ones which by design do not support adding or

OpenLNS Programmer's Reference 1009

removing items at runtime. It should be noted that this exception may also occur with
collections which are usually write-enabled, as the context might not allow for changes.

For example, the Subsystems collection would typically be seen in the hierarchy System
::Subsystems context, to which further items can be added using the Subsystems
collection's Add method. The AppDevice and Router object's Subsystems collection
objects, however, represent all subsystem objects to which the device belongs to. Such a
collection would be a read-only collection in this particular context, and a write-enabled
collection in another context.
lcaErrValueOutOfRange 90
The value given exceeds a range limit.
lcaErrCantUpdateWhenPaused 91

A requested service can not be completed due to the DataServer being paused. DsPause
should be set to FALSE to re-start the DataServer.
lcaErrCantCreateLcaMonitor 92
The Lca Monitor, a utility component for internal purposes, could not be created. This
failure is caused by a lack of memory available to LNS.
lcaErrCantLaunchLcaMonitor 93
The Lca Monitor, a utility component for internal purposes, could not be launched. This
utility, LCAMON.EXE, would typically be located in the C:\LONWORKS\Bin folder,
which must be part of the search path or otherwise visible from the working directory of
the calling tool. The 93 exception would indicate any problem launching the LCA
Monitor utility tool like memory shortage, bad permissions, executable not found, etc.
lcaErrMustSetDsPauseToChange 94

The DataServer must be paused prior to applying the requested changes. Use DsPause to
pause the DataServer.
lcaErrNotAvailableOnLocalClient 95
A service only available to remote clients has been requested from a local client.
lcaErrObjectDeleted 96
The object has been deleted.
lcaInvalidRmcObject 97
Invalid object received through remote procedure call. Contact customer support.
lcaInvalidRmcServer 98
Contact customer support.
lcaInvalidRmcClient 99
Contact customer support.
lcaInvalidRmcVersion 100
The client and server are running different versions of LNS and the Object Server was
unable to compensate.
lcaInvalidRmcMethod 101
Contact customer support.

OpenLNS Programmer's Reference 1010

lcaNeuronIdInUse 102
The NEURON ID assigned is already in use for another device in the network.
lcaDbCantBeCompactedWhenOpen 103
CompactDb() methods must be called prior to opening the associated object.
lcaDbCantBeRemovedWhenInUse 104
The object can not be removed as it still is in use.
lcaErrCantRemoveDefaultAccount 105

The default Account object can not be removed.
lcaErrCantRemoveAccountWithCharges 106
An account object needs to be empty for being removed.
lcaErrCantRemoveNssNode 107
The device can not be removed, as it is associated with the network interface currently in
use
lcaErrCantConnectToServer 108
The remote client fails to connect to the OpenLNS Server
lcaErrTcpSocketError 109
An unspecified socket error occurred, causing the IP connection to get lost
lcaErrBadPermissionFormat 110

Malformed data was assigned to the PermissionString property.
lcaErrCantModifyInSharedMode 111

An attempt has been made to modify a shared DataServer property. Change the DsMode
property to enter exclusive mode, or refrain from modifying the property.
lcaErrDataUnderrun 112
An IP remote client did not receive expected data in time. The connection might be lost.
lcaErrDataOverrun 113
An IP remote client received unexpected data. The configuration should be verified.
lcaErrIllegalInTransaction 114
A service, which can not be part of an explicit transaction, has been requested within an
explicit transaction. Complete or dismiss the transaction using the CancelTransaction
method or CommitTransaction method prior to invoking this service.
lcaErrNoPermission 115

Permission to an item has been requested but denied. Use the PermissionString property
local to the server to change permission preferences.
lcaErrStaleObject 116
An attempt was made to modify or use a stale OpenLNS Object.
For example, once the system object has been successfully closed, all objects accessed
through the system object will be stale, and should be de-referenced.
lcaErrNotAvailableOnTcpClient 117

OpenLNS Programmer's Reference 1011

A service which is only available local to the server or on a Full client has been requested
from a Lightweight client.
lcaNotAnNsiHost 118
The (hosted) device does not execute the NSI firmware, and the requested service can not
be completed therefore.
lcaErrInterfaceNotModifyable 119
An attempt to dynamically modify a static interface was made. To support dynamic
interface modifications, dynamic network variables might be supported by implementing
the wink command extensions as documented in the LonMark Application Layer (7)
Interoperability Guidelines, Version 3.1 or better.
lcaErrNoConnectionToServer 120
There is no communication with the OpenLNS Server. This error may occur for a remote
client operation when the OpenLNS Server has shutdown.
lcaErrInvalidInitString 121

The AddNvFromString or InitFromString method was provided with an invalid string.
lcaErrReadOnlyInContext 122
Contact customer support.
lcaErrInvalidPropChangeEvent 123
Contact customer support.
LcaNotAllowedWhenIndependent 124
The called service doesn't work in server-independent mode.
LcaNetworkNotOpen 125
The network is not open.
LcaCantReadMsgPoint 126
The object server is unable to read the message point.
LcaOpenCloseTypeMismatch 127

If the Network object's Open method is used to open a network, the Close method must be
used to close it. If the OpenIndependent method is used to open the network, the
CloseIndependent method must be used to close it.
LcaInvalidDomainLength 128
The domain is the wrong length.
LcaDatabaseRecoveryFailed 129
The database recovery operation failed.
LcaOnlyAllowedOnLocalVNI 130
The requested service is not available on a remote Full client.
LcaInvalidHexValue 131
An invalid hexadecimal value was supplied.
LcaUniqueNVNameRequired 132

OpenLNS Programmer's Reference 1012

A network variable name is required for this service.
LcaInternalErrBadExceptionCode 133
Internal error.
LcaInternalErrBadHresultExceptionCode 134
Internal error.
LcaInternalErrBadVNIDataServer 135
Internal error.
LcaInternalErrBadNsdHandle 136
Internal error.
LcaInternalErrStartTransaction 137
Internal error.
LcaNotAllowedOnVniNetwork 138

An attempt was made to call the OpenIndependent method on a Network object which
was not fetched from the VNINetworks collection.
LcaInvalidAddressingMode 139

When using the GetMessagePoint method, an invalid addressing mode was supplied.
LcaNotAllowedOnPermanentNsd 140
An attempt was made to remove a permanent network service device.
LcaOnlyAllowedWhenIndependent 141
The requested service can only be performed on networks opened with the
OpenIndependent method.
LcaDatabaseDiskFullErr 142
The disk containing the OpenLNS database is full.
lcaErrUninitialized 168
There is uninitialized data.
lcaErrInvalidHandle 169
An object has an invalid handle.
lcaErrInvalidProgramId 170
An object has an invalid program ID.
lcaErrOutOfHandles
OpenLNS ran out of handles. 171
lcaErrNotImplemented
The error is not implemented in this version of OpenLNS 172
lcaErrCantRemoveExtensionWithChildren 173
Cannot remove an extension when it has child extensions. Remove the child extensions
first.
lcaErrExtensionTooLargeForRemote 174

OpenLNS Programmer's Reference 1013

The extension record is too large to be accessed remotely.

Data Server Errors
These are errors returned by the LNS Data Server. The Data Server handles network
variable and message tag monitoring and control. These errors will appear in the format
DS: #<Error Number>. The LNS values for these errors are equal to the error number
plus 18,000.
lcaErrDsBusy 1
Could not get semaphore to perform Data Server operation.
lcaErrDsAlreadyStarted 2
Cannot start Data Server, as it was already started.
lcaErrDsNoServer 3
Invalid Data server handle passed in.
lcaErrDsOptionOutOfRange 4
Invalid option passed in.
lcaErrDsNotImplemented 5
Function not implemented.
lcaErrDsNotStarted 6
Function unavailable until the Data Server has been started.
lcaErrDsCantActivate 7
Cannot activate
lcaErrDsCantDeactivate 8
Cannot deactivate.
lcaErrDsIllegalObjectHandle 9
Illegal object handle was passed in.
lcaErrDsReentry 10
Tried to perform an exclusive operation, such as updating a particular network variable
on a node, that was already in progress.
lcaErrDsRegistrySetErr 11
Unused.
lcaErrDsAlreadyCreated 12
Tried to create a Data Server when one already existed for this process.
lcaErrDsException 13
A system exception was thrown.
lcaErrDsInvalidObjectType 14
Unused.
lcaErrDsUserCancel 15

OpenLNS Programmer's Reference 1014

The operation specified was canceled interactively at the user interface.
lcaErrDsVersionIncompatibility 16
Some of the DLLs used by the Data Server are older, incompatible versions.
lcaErrDsInitValidationError 17
This indicates that the Data Server failed to initialize properly. This exception could be
thrown if your application specifies an invalid name or index number when retrieving an
object from the OpenLNS database.
lcaErrDsUpdateRegistryFailure 18
Could not update the Windows registry.
lcaErrDsNsCreateClientFailed 19

Failed to create a Network Services client for data services.
lcaErrDsNsInitFailed 20

Failed to initialize the Network Services Server.
lcaErrDsNsNotOpen 21

Error on shutdown, when attempting to close the Network Services server, the server is
not open.
lcaErrDsGetHandleFromNameFail 22
Could not get the node handle from its name.
lcaErrDsInvokeNodeAddrFail 23

Could not get the node’s address on the network from the Network Services server.
lcaErrDsGetRegistryFailure 24
Failed to retrieve an item from the Windows registry.
lcaErrDsSetRegistryFailure 25
Failed to write an item to the Windows registry.
lcaErrDsInvalidRegKey 26
Failed to set a Windows registry key because the new key passed in was invalid.
lcaErrDsInvalidNodeName 27
An invalid node name was specified, or no name services provider was specified for the
NSS.
lcaErrDsNodeDoesNotExist 28
Node does not exist on this network, probably because it has not yet been configured
with a network address.
lcaErrDsNvDoesNotExist 29
A network variable operation was attempted on an NV that does not exist.
lcaErrDsNvGetConnInfoFailed 30

A Network Services call to get connection information for this network variable has
failed.
lcaErrDsNvGetTypeInfoFailed 31

OpenLNS Programmer's Reference 1015

A Network Services call to get type information for this network variable has failed.
lcaErrDsStartNvObjectFailed 32
Could not start the network variable object.
lcaErrDsDeleteNvObjectFailed 33
Could not delete the network variable object.
lcaErrDsNvSetObjDataFailed 34
Failed to write data to the network variable object.
lcaErrDsDataFormatFailure 35
An attempt to format the requested data has failed.
lcaErrDsCreateThreadFailure 36
Could not create the thread to receive LONWORKS messages from the network.
lcaErrDsCreateEventFailure 37
Could not create the event to signal arriving LONWORKS messages from the network.
lcaErrDsEventSignalTimeout 38
Timed out waiting for a synchronizing event to be signaled by a LONWORKS network
response.
lcaErrDsCannotForceDataRequest 39
Unused.
lcaErrDsNvIllegalRetry 40
The number of retries specified for this network variable is out of range.
lcaErrDsNvIllegalInterval 41
The interval specified for this network variable is illegal.
lcaErrDsInvalidDriverName 42
The network interface driver specified does not exist.
lcaErrDsMismatchTypeSize 43
The type specified is not the correct size to represent this network variable.
lcaErrDsFmtTypeNotFound 44
The format type referenced does not exist.
lcaErrDsNvIllegalField 45
The network variable field referenced does not exist.
lcaErrDsInvalidServerHandle 46
The Data Server handle passed in is invalid.
lcaErrDsOptionIsReadOnly 47
Option is read-only. The value may not be set.
lcaErrDsObjectNotStarted 48
Failed because the object referenced must be started first.

OpenLNS Programmer's Reference 1016

lcaErrDsObjectIsAlreadyStarted 49
Cannot start this object, as it is already started.
lcaErrDsSetInvalidServiceType 50
Tried to set the service type to an invalid value.
lcaErrDsNiIsBusy 51
Operation failed because the network interface was busy.
lcaErrDsNiOpenFailure 52
Error opening the network interface.
lcaErrDsNiUnknown 53
Error with the network interface.
lcaErrDsCantWriteRemoteNvOutput 54
It is not possible to write a value to a remote output network variable.
lcaErrDsFormattingInternalError 55
Error loading one of the SNVT or User type (.TYP) files.
lcaErrDsFmtFileLoadFailure 56
Error loading one of the SNVT or User format (.FMT) files.
lcaErrDsBufferTooSmall 57
The specified buffer is too small for the current operation.
lcaErrDsMsgSendFailure 58
Failed to send the current message.
lcaErrDsNoDataAvailable 59
No data is available for retrieval in the current operation.
lcaErrDsTypeFileNotFound 60
The specifed type file could not be found.
lcaErrDsOptionIsMsgobjOnly 61
The specified configuration option only applies to message objects.
lcaErrDsOptionIsNvOnly 62
The specified configuration option only applies to network variable objects.
lcaErrDsNoResource 63

System resources unavailable.
lcaErrDsInvalidParamValue 64
One or more of the passed parameters has an illegal value.
lcaErrDsMtagDoesNotExist 65
The specified message does not exist.
lcaErrDsRegistryDataInvalid 66
Invalid data was found in a Data Server registry entry.

OpenLNS Programmer's Reference 1017

lcaErrDsFmttypeHasNoFields 67
The format type specified does not contain information about fields.
lcaErrDsEventSubscriptionFailed 68
Failed to subscribe to the specified event.
lcaErrDsCantFindFormatCatalog 69
The format catalog could not be found.
lcaErrDsCantFindStandardTypeFile 70
The specified standard type file could not be found.
lcaErrDsEventDesubscriptionFailed 71
Failed to unsubscribe to the specified event.
lcaErrDsInvalidVersion2TypeName 72
An invalid Version2 format name was supplied. Version 2 type names must start with
SNVT, UNVT, SCPT or UCPT. Format names should be taken from the standard and
user-defined resource file catalogs located in the directory specified by the
LdrfCatlalogPath property.
lcaErrDsInvalidWhenNvFieldInUse 75
The requested operation must be performed on a network variable. It cannot be
performed on an individual network variable field.
lcaErrDsInvalidWhenNvFieldNotSpecified 76
The requested operation must be performed on an individual network variable field. It
cannot be performed on a network variable.
lcaErrDsGetAppmanagerFailed 77
Failed to specify the application manager.
lcaErrDsCantSetHostMsgOwner 78
Fatal error occurred when attempting to become host message owner. Only one process
can be host message owner at any time.
lcaErrDsFmtIllegalBaseType 79
Format specifier is not valid for the type/field.
lcaErrDsNetworkError 200
Failed to communicate with target device.
lcaErrDsTargetNodeFailure 201
Target node responded with failure code.
lcaErrLnsDsUnexpected 365
Unexpected failure. Contact customer support.
lcaErrLnsDsFailed 366
Generic failure. Contact customer support.
lcaErrLnsDsOutOfMemory 367
Memory allocation failure.

OpenLNS Programmer's Reference 1018

lcaErrLnsDsNotImpl 368
Not implemented.
lcaErrLnsDsPointer 369
Invalid pointer.
lcaErrLnsDsInvalidArg 370

Invalid argument. One way this error can occur is if you call the Write method on a
DataPoint object obtained from a NetworkVariable or NvMonitorPoint object before
reading or setting its value with the DsIsDefaultFormat property, the RawValue
property, or the Value property. This indicates that the DataPoint ’s buffer is empty.
lcaErrLnsDsRange 371
Argument supplied is out of valid range.
lcaErrLnsDsTimeout 372
Timeout occurred.
lcaErrLnsDsSizeTooSmall 373
Size is too small.
lcaErrLnsDsInvalidObject 374
Object not valid.
lcaErrLnsDsInvalidWindow 375
Invalid window.
lcaErrLnsDsInvalidOperation 376
Operation not valid, or the operation was attempted on an invalid object.
lcaErrLnsDsQueueFull 377
The message queue is full and the most recent message has been dropped.
lcaErrLnsDsQueueStopped 378
The message queue was stopped by a client application and the most recent message has
been dropped.
lcaErrLnsDsOutstandingRefs 379
Outstanding object references still exist.
lcaErrLnsDsOutstandingClients 380
Outstanding clients still exist.
lcaErrLnsDsOutstandingNetworks 381
Outstanding networks still exist.
lcaErrLnsDsOutstandingVNIs 382
Outstanding VNIs still exist.
lcaErrLnsDsOutstandingMonitorSets 383
Outstanding monitor sets still exist.
lcaErrLnsDsNotFound 384

OpenLNS Programmer's Reference 1019

Object not found.
lcaErrLnsDsClientNotFound 385
Client not found.
lcaErrLnsDsNetworkNotFound 386

Network not found.
lcaErrLnsDsVniNotFound 387
VNI not found.
lcaErrLnsDsMonitorSetNotFound 388
Monitor set not found.
lcaErrLnsDsMonitorPointNotFound 389
Monitor point not found.
lcaErrLnsDsNodeNotFound 390
Node not found.
lcaErrLnsDsNetworkVariableNotFound 391

Network variable not found.
lcaErrLnsDsAppMessageNotFound 392
Application message not found.
lcaErrLnsDsNotOpen 393
Object must be opened before the requested operation can be performed.
lcaErrLnsDsNetworkNotOpen 394

Network must be opened before the requested operation can be performed.
lcaErrLnsDsVniNotOpen 395
VNI must be opened before the requested operation can be performed.
lcaErrLnsDsMonitorSetNotOpen 396
Monitor set must be opened before the requested operation can be performed.
lcaErrLnsDsNotConnected 397
The client must be connected to the server before the requested operation can be
performed.
lcaErrLnsDsOpenFailed 398
There was an error opening the object.
lcaErrLnsDsVniOpenFailed 399
There was an error opening the VNI.
lcaErrLnsDsMonitorSetOpenFailed 400
There was an error opening the monitor set.
lcaErrLnsDsCloseFailed 401
There was an error closing the object.

OpenLNS Programmer's Reference 1020

lcaErrLnsDsVniCloseFailed 402
There was an error closing the VNI.
lcaErrLnsDsThreadCreateFailed 403
There was an error creating the thread.
lcaErrLnsDsNotTemporaryMonitorSet 404
The requested operation can only be performed on temporary monitor sets.
lcaErrLnsDsNotTemporaryMonitorPoint 405
The requested operation can only be performed on temporary monitor points.
lcaErrLnsDsNssNotOpen 406
NSS must be opened before the requested operation can be carried out.
lcaErrLnsDsNssCreateClientFailed 407
There was an error creating the NSS client.
lcaErrLnsDsNssInitFailed 408
There was an error initializing NSS.
lcaErrLnsDsNssException 409
Error occurred during an NSS operation.
lcaErrLnsDsReadFailed 410

Network variable read failed.
lcaErrLnsDsWriteFailed 411

Network variable write failed.
lcaErrLnsDsPollFailed 412

Network variable poll failed.
lcaErrLnsDsSendFailed 413
Application message transmission failed.
lcaErrLnsDsMsgRejected 414
Application message rejected, as network management commands are restricted.
lcaErrLnsDsRequestFailed 415
Application message request failed.
lcaErrLnsDsResponseFailed 416
Application message response failed.
lcaErrLnsDsAddressNotAvailable 417
The source node address is not available.
lcaErrLnsDsIllegalHexCharacter 418
An illegal hexadecimal character was specified in the string.
lcaErrLnsDsTooManyClients 419
There are too many clients connected to the server.

OpenLNS Programmer's Reference 1021

lcaErrLnsDsInvalidClientContext 420
Invalid or no client context was supplied.
lcaErrLnsDsImplicitAddress 421
The requested operation is not allowed, as the monitor point uses implicit addressing.
lcaErrLnsDsExplicitAddress 422
The requested operation is not allowed, as the monitor point uses explicit addressing.
lcaErrLnsDsNotOwner 423
The requested operation is not allowed, as the client is not the owner of the object or
process affected.
lcaErrLnsDsNoNameServicesManager 424
Cannot look up the requested name, as there is no name service manager defined.
lcaErrLnsDsNameTooLong 425
The name specified is too long.
lcaErrLnsDsCountMismatch 426
Reference/Lock count mismatch. This could be caused by too many Release calls being
made by the application.
lcaErrLnsDsNotPermanentMonitorSet 428
The requested operation can only be performed on a permanent monitor set.
lcaErrLnsDsNotPermanentMonitorPoint 429
The requested operation can only be performed on a permanent monitor point.
lcaErrLnsDsException 430
An unexpected exception occurred.
lcaErrLnsDsInitUpdateFailed 431
A network variable could not be updated.

Formatter Errors
These are errors returned by the LNS formatter. These errors may be returned when
LNS fails to read data from a resource file properly. These errors will appear in the
format Subsystem: Formatter, #<Error Number>. The LNS values for these errors are
equal to the error number plus 18,500.
lcaErrFormatNotFound 1
Not found.
lcaErrFormatNotImplemented 2
Not implemented.
lcaErrFormatInvalidLocaleData 3
Invalid locale data.
lcaErrFormatTypeNotFound 4
Type not found.

OpenLNS Programmer's Reference 1022

lcaErrFormatInvalidTypFile 5
Invalid type file.
lcaErrFormatReferenceEnumScopeNotFound 6
Reference enumeration scope not found.
lcaErrFormatTypeEntryNotFound 7
Type entry not found.
lcaErrFormatFieldNotFound 8
Field not found.
lcaErrFormatIllegalBaseType 9
Format specifier is not valid for this type or field.
lcaErrFormatAchNotFound 10
Format file not found.
lcaErrFormatStringIllegal 11
Illegal string.
lcaErrFormatStringExceedsBounds 12
Array index exceeds array size.
lcaErrFormatSpecNotFound 13
Format specification not found.
lcaErrFormatBuildAchFailed 14
Compilation of format file failed.
lcaErrFormatIllegalDataOnFormat 15
Illegal data on format.
lcaErrFormatIllegalDataOnUnformat 16
Illegal data on unformat.
lcaErrFormatNoUnformat 17
No format.
lcaErrFormatExceedsSize 18
Exceeds size.
lcaErrFormatIllegalEnum 19
Illegal enumeration.
lcaErrFormatExceedsMaxNumFields 20
Exceeds maximum number of fields.
lcaErrFormatNoResource 21
No resource.
lcaErrFormatInvalidBuiltInType 22
Invalid built-in type.

OpenLNS Programmer's Reference 1023

lcaErrFormatNotBuiltInSpec 23
Not built in spec.
lcaErrFormatInvalidPropSet 24
Invalid prop set.
lcaErrFormatInvalidBaseType 25
Invalid base type.
lcaErrFormatFmtNotFound 26
Format not found.
lcaErrFormatInvalidDefaultType 27
Invalid default type.
lcaErrFormatUnknownError 28
Unknown error.
lcaErrFormatFileNotFoundInCatalog 29
File not found in catalog.
lcaErrFormatCatalogNotOpened 30
Catalog not opened.
lcaErrFormatEnumNotFound 31
Enumeration not found.
lcaErrFormatTypeNotOpened 32
Type not opened.
lcaErrFormatNotVersion2TypeName 33
Not version 2 type name.
lcaErrFormatInvalidParameter 34
Invalid parameter.
lcaErrFormatInvalidBfSize 35
Invalid buffer size.
lcaErrFormatInvalidBfOffset 36
Invalid buffer offset.
lcaErrFormatEnumNonuniqueSubstr 37
Substring match was not unique.
lcaErrFormatRawInputTooSmall 38
Raw input too small.
lcaErrFormatNoFormatFileForTypeFile 39
No format file for type file.
lcaErrFormatStringDuplicate 40

OpenLNS Programmer's Reference 1024

Duplicate string provided. This exception will be thrown if you write to the
CategoryPreferenceList property and specify the same format more than once.
lcaErrFormatLocaleStringNotFound 41
Locale string not found.
lcaErrFormatCatalogNotFound 200
Catalog not found.
lcaErrFormatInvalidProgramId 201
Invalid program ID.
lcaErrFormatLdrfErr 202
LDRF error.
lcaErrFormatLdrfErrParam 203
LDRF error: bad parameter.
lcaErrFormatLdrfErrFileType 204
LDRF error: bad file type.
lcaErrFormatLdrfErrCrc 205
LDRF error: bad CRC.
lcaErrFormatLdrfErrNotFound 206
LDRF error: not found.

lcaErrFormatLdrfErrFileInfo 207
LDRF error: bad file info.
lcaErrFormatLdrfErrSys 208
LDRF error: sys.
lcaErrFormatLdrfErrTrunc 209
LDRF error: trunc.
lcaErrFormatLdrfErrStale 210
LDRF error: stale.
lcaErrFormatLdrfErrVersion 211
LDRF error: bad version.
lcaErrFormatLdrfErrNew 212
LDRF error: new.
lcaErrFormatLdrfErrWrite 213
LDRF error: write failed.
lcaErrFormatLdrfErrNoAccess 214
LDRF error: no access.
lcaErrFormatLdrfErrFull 215

OpenLNS Programmer's Reference 1025

LDRF error: full.
lcaErrFormatLdrfErrDuplicate 216
LDRF error: duplicate.
lcaErrFormatLdrfErrNotCatalog 217
LDRF error: not catalog.
lcaErrFormatLdrfErrNotResource 218
LDRF error: not resource.
lcaErrFormatLdrfErrNotType 219
LDRF error: not type.
lcaErrFormatLdrfErrNotFpt 220
LDRF error: not FTP.
lcaErrFormatLdrfErrNotFormat 221
LDRF error: not format.
lcaErrFormatLdrfErrTypeTree 222
LDRF error: bad type tree.
lcaErrFormatLdrfErrIncomplete 223
LDRF error: incomplete.
lcaErrFormatLdrfErrSequence 224
LDRF error: sequence.
lcaErrFormatLdrfErrNotSelected 225
LDRF error: not selected.
lcaErrFormatLdrfErrInternal 226
LDRF error: internal error.
lcaErrFormatObjReadOnly 227
Read-only object.

VNI Errors
VNI errors will be returned when an operation fails while using the MyVNI property.
These errors will appear in the format VNI: #<Error Number>. The LNS values for these
errors are equal to the error number plus 19,000.
lcaErrRmoMaxObjectsAllocated 1
Maximum objects allocated.
lcaErrRmoBadObjectId 2
Bad object ID.
lcaErrRmoProcessTimeout 3
Process timeout.
lcaErrRmoNoServerObject 4

OpenLNS Programmer's Reference 1026

Remote object does not exist.
lcaErrRmoNoIpcMsgAvail 5
No Windows Inter Process Communication (IPC) message available.
lcaErrRmoIpcUnknownError 6
Unknown Windows Inter Process Communication (IPC) error.
lcaErrRmoIpcMsgError 7
Windows Inter Process Communication (IPC) messaging error.
lcaErrRmoIpcResourceProblem 8
Windows Inter Process Communication (IPC) resource problem.
lcaErrRmoIpcOutOfMemory 9
Windows Inter Process Communication (IPC) subsystem is out of memory.
lcaErrRmoIpcOutOfRange 10
Windows Inter Process Communication (IPC) parameter is out of range.
lcaErrRmoIpcCantFindObject 11
Windows Inter Process Communication (IPC) subsystem cannot find specified object.
lcaErrRmoIpcLockFailure 12
Windows Inter Process Communication (IPC) subsystem lock failure.
lcaErrRmoCantLinkToObject 13
Cannot link to remote object.
lcaErrLtaNoError 300
LonTalk Adapter error.
lcaErrLtaInvalidParameter 301
LonTalk Adapter invalid parameter.
lcaErrLtaNotQualified 302
LonTalk Adapter not qualified.
lcaErrLtaMessageBlocked 303
LonTalk Adapter message blocked.
lcaErrLtaMessageDeferred 304
LonTalk Adapter message deferred.
lcaErrLtaAppMessage 305
LonTalk Adapter application message.
lcaErrLtaFlexDomain 306
LonTalk Adapter flex domain.
lcaErrLtaNoMessage 307
LonTalk Adapter no message.
lcaErrLtaAppNameTooLong 308

OpenLNS Programmer's Reference 1027

LonTalk Adapter name too long.
lcaErrLtaInvalidState 309
LonTalk Adapter invalid state.
lcaErrLtaNoResources 310
LonTalk Adapter no resources.
lcaErrLtaDuplicateObject 311
LonTalk Adapter duplicate object.
lcaErrLtaNotImplemented 312
LonTalk Adapter not implemented.
lcaErrLtaEndOfEnumeration 313
LonTalk Adapter end of enumeration.
lcaErrLtaOwnerDoesNotExist 314
LonTalk Adapter owner does not exist.
lcaErrLtaInvalidIndex 315
LonTalk Adapter invalid index.
lcaErrLtaCantOpenPort 316
LonTalk Adapter cannot open port.
lcaErrLtaNotFound 317
LonTalk Adapter not found.
lcaErrLtaNoWinsockDll 318
LonTalk Adapter no Winsock DLL.
lcaErrLtaCantOpenIpLink 319
LonTalk Adapter cannot open IP link.
lcaErrLtaCantStartSnmp 320
LonTalk Adapter cannot start SNMP.
lcaErrLtaNoLink 321
LonTalk Adapter no IP link.
lcaErrLtaInvalidIpaddress 322
LonTalk Adapter invalid IP address.
lcaErrLtaLocalMsgFailure 323
LonTalk Adapter local message failure.
lcaErrLtaStaleNvIndex 324
LonTalk Adapter stale network variable index.
lcaErrLtaInvalidAddress 325
LonTalk Adapter invalid address.
lcaErrLtaErrorLogMask 428

OpenLNS Programmer's Reference 1028

LonTalk Adapter error log mask.
lcaErrLtaNvLengthMismatch 430
LonTalk Adapter network variable length mismatch.
lcaErrLtaNvMsgTooShort 431
LonTalk Adapter network variable message too short.
lcaErrLtaEepromWriteFailure 432
LonTalk Adapter EEPROM write failure.
lcaErrLtaBadAddressType 433
LonTalk Adapter bad address.
lcaErrLtaInvalidDomain 438
LonTalk Adapter invalid domain.
lcaErrLtaInvalidAddrTableIndex 441
LonTalk Adapter invalid address table index.
lcaErrLtaNvUpdateOnOutputNv 443
LonTalk Adapter update on output network variable.
lcaErrLtaUnknownPdu 446
LonTalk Adapter unknown PDU.
lcaErrLtaInvalidNvIndex 447
LonTalk Adapter invalid network variable index.
lcaErrLtaBadErrorNo 449
LonTalk Adapter bad buffer number.
lcaErrLtaNetBufTooSmall 451
LonTalk Adapter network buffer too small.
lcaErrLtaCnfgCsError 453
LonTalk Adapter configuration checksum error.
lcaErrLtaXcvrRegOpFailure 455
LonTalk Adapter transceiver register operation failed.
lcaErrLtaSubnetPartition 459
LonTalk Adapter subnet partition.
lcaErrLtaAuthenticationMismatch 460
LonTalk Adapter authentication mismatch.
lcaErrVniUnknownRegError 601
Unknown registry error.
lcaErrVniRegBadParms 602
Bad parameter (registry subsystem).
lcaErrVniRegOutOfMemory 603

OpenLNS Programmer's Reference 1029

Out of memory (registry subsystem).
lcaErrVniRegCantFindObject 604
Cannot find object (registry subsystem).
lcaErrVniRegResourceProblem 605
Resource problem (registry subsystem).
lcaErrVniRegOutOfRange 606
Parameter out of range (registry subsystem).
lcaErrVniRegNoMoreEntries 607
No more entries (registry subsystem).
lcaErrVniRegCantOpenRegistry 608
Cannot open registry.
lcaErrVniRegUnknownRegistryError 609
Unknown error (registry subsystem).
lcaErrVniVniDoesNotExist 610
Specified VNI does not exist.
lcaErrVniCantCreateVniProcess 611
Cannot create the remote process.
lcaErrVniCantLockVniServerDir 612
Cannot lock the server directory.
lcaErrVniOpenObjectConflict 613
Tried to use two different objects to represent the same VNI object.
lcaErrVniOpenFailure 614
VNI open failure.
lcaErrVniNoMoreMonitorPoints 615
No more monitor points found.
lcaErrVniNoMoreMonitorSets 616
No more monitor sets found.
lcaErrVniStackNotOpen 617
VNI stack is not open.
lcaErrVniNotImplemented 618
Not implemented.
lcaErrVniMonitorSetNotFound 619
Monitor set not found.
lcaErrVniNvPointNotFound 620

Network variable monitor point not found.
lcaErrVniMsgPointNotFound 621

OpenLNS Programmer's Reference 1030

Message monitor point not found.
lcaErrVniMustSpecifyMsgTag 622
Must specify message tag.
lcaErrVniMsgTagNotFound 623
Message tag not found.
lcaErrVniOutOfTemporaryMonitorPoints 624
Monitor set ran out of temporary monitor points due to capacity constraints.
lcaErrVniOutOfTemporaryMonitorSets 625
VNI stack ran out of temporary monitor sets due to capacity constraints.
lcaErrVniAddPointToPersistentMonitorSet 626
Attempted to add a point to a persistent monitor set.
lcaErrVniDelPointFromPersistentMonitorSet 627
Attempted to delete a point from a persistent monitor set.
lcaErrVniAbosoluteRegPathNotSupported 628
Absolute registry paths not supported.
lcaErrVniRegBadCollectionPath 629
Cannot define a collection of VNIs at this level in the registry.
lcaErrVniOpenStackNiMismatch 630
The VNI is already open with different network interface settings.
lcaErrVniTraceFileCantBeOpened 631
The specified trace file cannot be opened.
lcaErrVniNoMoreMessageBuffers 632
The client has more messages outstanding than permitted.
lcaErrVniIsNotAnIpDevice 633
The specified device is not an IP device.
lcaErrVniL5MipInUse 634
The requested operation is not supported while a Layer 5 network interface is in use.
lcaErrVniXifCannotBeFound 635
The external interface file cannot be found.
lcaErrVniXifReadError 636
Failed to read external interface file.
lcaErrVniAllocation 637
VNI allocated error.
lcaErrVniProgramInterfaceMismatch 638
Program interface mismatch.
lcaErrVniRegConfigFileNotFound 639

OpenLNS Programmer's Reference 1031

Configuration file could not be found.
lcaErrVniRegCannotUpdateConfigFile 640
Configuration file could not be updated.
lcaErrVniThreadCreationFailure 641
Failed to create thread.
lcaErrVniDumpLtipXmlConfigFailed 642
XML configuration failed.
lcaErrVniNotSupportedOnL5Mip 643
The requested operation is not supported on a Layer 5 network interface.
lcaErrVniInvalidMessagePointOptions 644
Invalid message point options.

OpenLNS Programmer's Reference 1032

OpenLNS Programmer's Reference 1033

Appendix A
Deprecated Items

This appendix lists methods, properties, and objects that should
no longer be used in OpenLNS.

OpenLNS Programmer's Reference 1034

Deprecated Items
In OpenLNS and LNS Turbo Editions, some methods, objects, properties and events
have been deprecated. This section provides a list of those items. Some have been
deprecated because they were never implemented in LNS, or because they are no longer
applicable or useful. Others have been deprecated because they have been replaced by
new features with better functionality.
Note that some of the objects, methods, properties and events marked as deprecated in
the documentation are still implemented in OpenLNS to maintain backwards-
compatibility with applications running on previous versions of LNS. For example, many
of the methods of the ConfigProperty object were deprecated in LNS Turbo Editions as a
result of the new data point feature, including the GetElement(),
GetElementFromDevice(), SetElement(), and SetElementFromDevice() methods. You can
still successfully use these methods when running on OpenLNS; however, Echelon
recommends that you use the DataPoint object to read and write configuration
properties, and so these methods have been marked deprecated.
The following sections list the deprecated objects, properties, methods and events in
OpenLNS. The reason for deprecation can be determined using the following codes:
BA – Better Feature Available. The feature is still implemented in LNS for compatibility
purposes, but a more efficient way to achieve its purpose exists. Items marked with this
reason include details on why the item was deprecated and the features to use in its
place.
U – Unimplemented. The feature was never implemented in LNS.
NLA – No Longer Applicable. The feature is still implemented in LNS for compatibility
purposes, but is no longer useful or functional because of other changes to the LNS
implementation.

LNS FX Programmer's Reference 1035

Deprecated Objects
The following objects have been deprecated in OpenLNS and LNS Turno Editions (3.2). This means that you should no longer use the
object, or any of its properties and methods, in your applications.

Object Version Reason Substitute Feature

BuildTemplate 3.2 U

BuildTemplates 3.2 U

HardwareTemplate 3.2 U

HardwareTemplates 3.2 U

NetworkVariableFiel
d

3.2 BA Use DataPoint objects to read and write the values of the network variables and
network variable fields on your network. You can use the GetDataPoint method to
acquire a DataPoint for reading or writing the value of a network variable.

If the network variable is a structure, you can use the GetField method to access any
of the fields of the source network variable once you have used the GetDataPoint
method to acquire a DataPoint for a network variable.

ProgramTemplate 3.2 U

ProgramTemplates 3.2 U

OpenLNS Programmer's Reference 1036

Deprecated Methods
The following methods have been deprecated in OpenLNS and LNS Turbo Editions (3.2). This means that you should no longer use
these methods in your applications. Note that the parent objects of these methods have not been deprecated unless those objects are
listed in the Deprecated Objects section.

Method
Applicable
Parent Object Version Reason Substitute Feature

BeginLicense System 4.0 NLA

Build AppDevice
System

3.2 U

CloseComponent AppDevice 3.2 U

DebitLicense System 4.0 NLA

EndLicense System 4.0 NLA

Export AppDevice
DeviceTemplate

3.2 U

GetElement ConfigProperty 3.2 BA Use DataPoint objects to read and write to the values of all
configuration properties and configuration property arrays.
You can use the GetDataPoint method of the
ConfigProperty object to begin this procedure.

GetElementFromDevice

GetField NetworkVariable 3.2 BA If the network variable is a structure, you can use the
GetField method to access any of the fields of the source
network variable once you have used the GetDataPoint
method to acquire a DataPoint for a network variable.

GetRawValues ConfigProperty 3.2 BA Use the GetRawValuesEx method to read the raw values of
configuration property arrays. GetRawValuesFromDevice

Link DeviceTemplate 3.2 U

Lock System 3.2 U

OpenLNS Programmer's Reference 1037

Method
Applicable
Parent Object Version Reason Substitute Feature

OpenComponent AppDevice 3.2 U

Purge Interface 3.2 BA Use the RemoveNv method to remove network variables
from an Interface object.

RecoverFromNssDb System 3.2 U

Remove Networks 3.2 BA Use the RemoveEx method to remove a network from a
Networks collection.

RestoreLicense System 4.0 NLA

SetCapacity System 3.2 NLA

SetCustomerInfo ObjectServer 4.0 NLA

SetElement ConfigProperty 3.2 BA Use DataPoint objects to read and write to the values of all
configuration properties and configuration property arrays.
You can use the GetDataPoint method of the
ConfigProperty object to begin this procedure.

SetElementFromDevice

SetLicenseInfo ObjectServer 4.0 NLA

SetLicenseInfoEx ObjectServer 4.0 NLA

SetRawValues ConfigProperty 3.2 BA Use the SetRawValuesEx method to write to the raw
values of configuration property arrays. SetRawValuesFromDevice

Unlock System 3.2 U

OpenLNS Programmer's Reference 1038

Deprecated Properties
The following propeties have been deprecated in OpenLNS and LNS Turbo Editions (3.2). This means that you should no longer use
these properties in your applications. Note that the parent objects of these methods have not been deprecated unless those objects are
listed in the Deprecated Objects section.

Property
Applicable Parent
Object Version Reason Substitute Feature

ActiveXComponent AppDevice 3.2 U

BuildStatus AppDevice
DeviceTemplate
ProgramTemplate

3.2 U

BuildTemplate ProgramTemplate
System

3.2 U

BuildTemplates TemplateLibrary 3.2 U

CompatibleNv NetworkVariable 3.2 BA Use the Add method of the NetworkVariables
collection to create new network variables.

ComplementaryNv NetworkVariable 3.2 BA Use the Add method of the NetworkVariables
collection to create new network variables.

ConnErrNvMtIndex1 Error 3.2 BA Use the ConnErrIndex1 property, which
supports Long index numbers.

The ConnErrNvMtIndex1 property is currently
included in LNS for backwards compatibility
only.

ConnErrNvMtIndex2 Error 3.2 BA Use the ConnErrIndex2 property, which
supports Long index numbers.

The ConnErrNvMtIndex2 property is currently
included in LNS for backwards compatibility
only.

DataServerHandle System 3.2 NLA

OpenLNS Programmer's Reference 1039

Property
Applicable Parent
Object Version Reason Substitute Feature

DataServerObjectHandle System 3.2 NLA

DaysRemaining System 4.0 NLA

DefecitCredits CreditInfo 4.0 NLA

DsAuthenticate NetworkVariable
NetworkVariableField

3.2 BA Use temporary monitor sets instead of single-
point monitoring. You can use the
Authentication property of the
MsgMonitorOptions and NvMonitorOptions
objects to determine the authentication setting
that will be applied to temporary monitor
points. For more information on temporary
monitor sets, see Chapter 9 of the OpenLNS
Programmer’s Guide.

DsAutoUpdate NetworkVariable 3.2 U

DsEventSubscription System 3.2 NLA

DsFormatFilesPath System 3.2 NLA

DsMessageOwner System 3.2 NLA

DsMode System 3.2 NLA

DsMonitorTag NetworkVariable
NetworkVariableField

3.2 BA Use temporary monitor sets instead of single-
point monitoring. For more information on
temporary monitor sets, see Chapter 9 of the
OpenLNS Programmer’s Guide.

DsPause NetworkVariable
NetworkVariableField

3.2 NLA

DsPrecision NetworkVariable
NetworkVariableField
System

3.2 BA Use the FloatPrecision property of the
FormatLocale object being used by your
application to establish the precision to use

OpenLNS Programmer's Reference 1040

Property
Applicable Parent
Object Version Reason Substitute Feature

when displaying network variable values.

DsPriority NetworkVariable
NetworkVariableField

3.2 BA Use temporary monitor sets instead of single-
point monitoring. You can use the Priority
property of the MsgMonitorOptions and
NvMonitorOptions objects to determine the
priority assigned to each message. For more
information on temporary monitor sets, see
Chapter 9 of the OpenLNS Programmer’s
Guide.

DsReportByException NetworkVariable
NetworkVariableField
System

3.2 BA Use temporary monitor sets instead of single-
point monitoring. You can use the
ReportByException property of the
MsgMonitorOptions and NvMonitorOptions
objects to determine when update events will be
generated. For more information on temporary
monitor sets, see Chapter 9 of the OpenLNS
Programmer’s Guide.

DsRetries NetworkVariable 3.2 BA Use temporary monitor sets instead of single-
point monitoring. You can use the Retries
property of the MsgMonitorOptions and
NvMonitorOptions objects to determine the
retry count assigned to each monitor point. For
more information on temporary monitor sets,
see Chapter 9 of the OpenLNS Programmer’s
Guide.

OpenLNS Programmer's Reference 1041

Property
Applicable Parent
Object Version Reason Substitute Feature

DsService NetworkVariable
NetworkVariableField
System

3.2 BA Use temporary monitor sets instead of single-
point monitoring. You can use the ServiceType
property of the MsgMonitorOptions and
NvMonitorOptions objects to determine the
service type to apply to the temporary monitor
points. For more information on temporary
monitor sets, see Chapter 9 of the OpenLNS
Programmer’s Guide.

DsUseBoundUpdates NetworkVariable
NetworkVariableField

3.2 BA To enable bound updates for a network
variable, create a monitor point for the network
variable, and set the UseBoundUpdates
property of the MsgMonitorOptions and
NvMonitorOptions objects to True. For more
information on temporary monitor sets, see
Chapter 9 of the OpenLNS Programmer’s
Guide.

DynamicNvPersistenceMode System 3.2 BA Use the Remove method to remove network
variables from a NetworkVariables collection
object.

ExportDirectory System 3.2 U

ExportFormat DeviceTemplate 3.2 U

GraphicsDirectory System 3.2 U

HardwareTemplate DeviceTemplate 3.2 U

HardwareTemplates TemplateLibrary 3.2 U

LicenseCredits CreditInfo 4.0 NLA

LicenseType CreditInfo 4.0 NLA

LockDuration System 3.2 U

OpenLNS Programmer's Reference 1042

Property
Applicable Parent
Object Version Reason Substitute Feature

MaxDefecitCredits CreditInfo 4.0 NLA

MaximumDeviceCapacity System 4.0 NLA

ProgramTemplate DeviceTemplate 3.2 U

ProgramTemplates TemplateLibrary 3.2 U

RawValue ConfigProperty 3.2 BA Use DataPoint objects to read and write to the
values of all configuration properties and
configuration property arrays. You can use the
GetDataPoint method of the ConfigProperty
object to begin this procedure.

RawValueFromDevice

RemoteIgnorePendingUpdate Network 3.2 BA Use the
AllowPropagateModeDuringRemoteOpen
property.

SingleUserMode ObjectServer 3.2 NLA

TypeDefaultValue ConfigProperty 3.2 BA Use DataPoint objects to read the default
values of the ConfigProperty objects on your
network. You can use the GetDataPoint method
to acquire a DataPoint for reading the default
value of a network variable. When you do this,
you need to specify
lcaDataSourceOptionsTypeDefaultValue
(3) as the options element.

UsedCredits CreditInfo 4.0 NLA

Value ConfigProperty 3.2 BA Use DataPoint objects to read and write the
value of the ConfigProperty objects on your
network. You can use the GetDataPoint
method to acquire a DataPoint for reading or
writing the value of a configuration property.

OpenLNS Programmer's Reference 1043

Property
Applicable Parent
Object Version Reason Substitute Feature

ValueFromDevice ConfigProperty 3.2 BA Use DataPoint objects to read and write the
value of the ConfigProperty objects on your
network. You can use the GetDataPoint method
to acquire a DataPoint for reading or writing
the value of a configuration property.

Deprecated Events
The following events have been deprecated in OpenLNS and LNS Turno Editions (3.2). This means that you should no longer use the
object, or any of its properties and methods, in your applications.

Event
Applicable
Parent Object Version Reason Substitute Feature

OnBuildMessage ObjectServer 3.2 U

OnLicenseEvent ObjectServer 4.0 NLA

OnNetworkServiceDeviceReset ObjectServer 3.2 NLA

www.echelon.com

	Table of Contents
	Preface
	Purpose
	Audience
	System Requirements
	OpenLNS SDK
	OpenLNS Server Computer (Smaller Network)
	OpenLNS Server Computer (Larger, Busier Network)

	OpenLNS Documentation
	For More Information and Technical Support
	Content

	1 OpenLNS Object Server
	Introduction
	OpenLNS Object Server Object Model
	OpenLNS Object Hierarchy
	Object Naming Convention

	2 Objects
	Account
	Methods
	Properties
	AccountNumber
	Charges
	ClassID
	Description
	Name

	Accounts
	Methods
	Add
	Remove

	Properties
	ClassId
	Count
	Item
	_NewEnum

	ActivationLicense
	Methods
	Refresh

	Properties
	ActivatedVersion
	ClassId
	DaysRemaining
	DeviceCapacity
	DeviceCapacityConsumed
	ExpirationDate
	LicenseId
	LicenseStatus
	IsTrialLicense
	MaxOpenSystems
	RequiredVersion
	RunTimeLimit
	RunTimeRemaining

	Alias
	Methods
	Properties
	ClassId
	Index
	Parent
	Selector

	Aliases
	Methods
	ItemByIndex
	Refresh

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	AppDevice
	Methods
	ClearStatus
	Commission
	CommussionEx
	Decommission
	Delay
	DownloadConfigProperties
	GetMessagePoint
	Load
	LoadEx
	MoveEx
	PostMove
	PreMove
	PropagateDeviceConfigUpdates
	Reboot
	ReleasePendingUpdates
	Replace
	ReplaceEx
	Reset
	ResyncToTemplate
	Test
	Upgrade
	UploadConfigProperties
	Wink

	Properties
	AliasCapacity
	AliasUseCount
	AppImagePath
	AttachmentStatus
	AuthenticationEnabled
	BitmapFilePath
	Channel
	ClassId
	CommissionStatus
	ConfigurationState
	ConnectionUpdateType
	Delay
	Description
	DetailInfo
	Device Template
	Extensions
	Handle
	HasBeenCommissioned
	IconFilePath
	InitialAuthenticationKey
	Interface
	Interfaces
	LastTestInfo
	LastUpgradeStatus
	Location
	LocationInNeuron
	MonitorSets
	MtHubs
	Name
	NetworkServiceDevice
	NeuronId
	NodeId
	NonGroupRcvTimerNonGroupRcvTimer_Property
	NsiHandle
	NVHubs
	Parent
	PingClass
	PendingNeuronIdPendingNeuronId_Property
	Priority
	ProgramId
	SelfDocumentation
	State
	SubnetId
	Subnets
	Subsystems
	UpgradeRequirement

	AppDevices
	Methods
	Add
	AddReference
	ItemByHandle
	ItemByNeuronID
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	Application
	Methods
	Properties
	ClassId
	MajorAPIVersion
	MajorVersion
	MinorAPIVersion
	MinorVersion
	Name
	Parent
	State

	BufferConfiguration
	Methods
	Properties
	ClassId
	InputBufferCount
	InputBufferSize
	OutputBufferCount
	OutputBufferSize
	PriorityBufferCount
	PriorityBufferSize

	Channel
	Methods
	Properties
	AltPathType
	AppDevices
	BitmapFilePath
	ClassId
	Delay
	Description
	Extensions
	Handle
	IconFilePath
	MaxPriority
	Name
	Parent
	RouterDevices
	TransceiverId

	Channels
	Methods
	Add
	ItemByHandle
	Remove

	Properties
	ClassId
	Count
	FilterType
	Item
	Parent
	RefChannel 1
	RefChannel 2
	RefTransceiverType
	_NewEnum

	ComponentApp
	Methods
	Properties
	ClassId
	CommandID
	ComponentClassID
	DefaultAppFlag
	Description
	ManufacturerID
	Name
	Parent
	RegisteredServer
	VersionNumber

	ComponentApps
	Methods
	Add
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	ConfigProperties
	Methods
	ItemByHandle

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	ConfigProperty
	Methods
	GetDataPoint
	GetRawValuesEx
	SetRawValuesEx
	SetValueToUnknown

	Properties
	AppliesTo
	AppliesToType
	ByteLength
	ClassId
	ConfigFileOffset
	ConfigFileType
	ConfigNv
	ConfigNvIndex
	ConstantAttribute
	Description
	DeviceSpecificAttribute
	Dimension
	FlagsByte
	FormatName
	FuncProfileDescription
	FuncProfileName
	FuncProfileProgrammaticName
	Handle
	ImplementationType
	Mode
	Name
	Parent
	Precision
	TypeInherits
	TypeIndex
	ValueStatus

	ConnectDescTemplate
	Methods
	Properties
	AliasOptions
	BroadcastOptions
	ClassId
	Description
	Handle
	MTHubs
	Name
	NVHubs
	Parent
	PropertyOptions
	ReceiveTimer
	RepeatCount
	RepeatTimer
	RetryCount
	ServiceType
	TransmitTimer
	UseAuthenticationFlag
	UsePriorityFlag

	ConnectDescTemplates
	Methods
	Add
	ItemByHandle
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	Connections
	Methods
	Properties
	ClassId
	MessageTags
	NetworkVariables
	Parent

	CreditInfo
	Methods
	Properties
	ClassId
	DaysRemaining
	DeficitCredits (Deprecated)
	LicensedCredits (Deprecated)
	LicenseType (Deprecated)
	MaxDeficitCredits (Deprecated)
	UsedCredits (Deprecated)

	DatabaseValidationReport
	Methods
	Export

	Properties
	ClassId
	ErrorSummaries
	Parent
	PassedValidation
	RepairedErrors
	TotalObjectsValidated
	UnrepairedErrors

	DatabaseValidationErrorInstance
	Methods
	Properties
	ClassId
	ErrorType
	ObjectClassInvolved
	ObjectInternalId
	ObjectName
	Parent
	ParentObjectClass
	ParentObjectInternalId
	ParentObjectName
	Repairable
	RepairAttempted
	Repaired

	DatabaseValidationErrorSummaries
	Methods
	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	DatabaseValidationErrorSummary
	Methods
	GetInstance

	Properties
	ClassId
	ErrorType
	NumberOfInstances
	ObjectDetailsAvailable
	Parent
	Repairable
	RepairAttempted

	DataPoint
	Methods
	GetField
	Read
	Write

	Properties
	AutoRead
	AutoWrite
	ClassId
	FieldCount
	FieldName
	FormatSpec
	FormattedValue
	MaxValue
	MessageCode
	MinValue
	Parent
	RawValue
	SourceIndex
	SourceOptions
	TypeName
	Value

	DataValue
	Methods
	Properties
	AppDevice
	ClassId
	Data
	DataType
	FloatValue
	IntValue
	Length
	MonitorTag
	NetworkVariable
	SourceNodeId
	SourceSubnetId
	StringValue

	DetailInfo
	Methods
	Properties
	ClassId
	ErrorLog
	LostMessages
	MissedMessages
	ModelNumber
	Parent
	ReceiveTxFull
	ResetCause
	State
	TransactionTimeouts
	VersionNumber
	XmitErrors

	DeviceTemplate
	Methods
	Import
	ResyncToResources

	Properties
	AppDevices
	BitmapFilePath
	ClassId
	ComponentApps
	Description
	DeviceClass
	DeviceSubclass
	DeviceValidation
	DynamicNvSupported
	Extensions
	Format
	Handle
	HostSelect
	IconFilePath
	Interface
	ManufacturerID
	ModelNo
	Name
	Parent
	ProgramId
	ProgramType
	RegisteredComponent
	SelfDocConsistency
	SelfDocumentation
	UserTypeFileName
	XifPath

	DeviceTemplates
	Methods
	Add
	ItemByHandle
	ItemByProgramID
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	Error
	Methods
	Properties
	Category
	ClassId
	ConnErrAppDeviceHandle1
	ConnErrAppDeviceHandle2
	ConnErrIndex1
	ConnErrIndex2
	ConnErrIndexType1
	ConnErrIndexType2
	Description
	ErrObjClassId
	ErrObjHandle
	Number
	Parent

	Extension
	Methods
	Properties
	ClassId
	CopyWithParent
	Description
	Extensions
	Handle
	Key
	Owner
	OwnerClassId
	Parent
	Value1
	Value2
	Value3

	Extensions
	Methods
	Add
	ItemByHandle
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	FileTransfer
	Methods
	AddTarget
	ClearTargets
	ReadFile
	WriteFile

	Properties
	AuthenticationFlag
	ClassId
	FileCount
	FileIndex
	FileInfo
	FileSize
	FileType
	HostTimeout
	Parent
	PriorityFlag
	ReadBufferLength
	RetryCount
	RxTimeOut
	StartPosition
	TxTimeOut

	FormatLocale
	Methods
	Properties
	CategoryPreferenceList
	ClassId
	DateFormatSeparator
	DateFormatSeparatorSource
	DecimalPointCharacter
	DecimalPointCharacterSource
	DoubleFloatPrecision
	FallbackFormat
	FloatPrecision
	LanguageId
	LanguageIdSource
	ListSeparatorCharacter
	ListSeparatorCharacterSource
	MeasurementUnits
	MeasurementUnitsSource
	Name
	Parent
	ShortDateFormat
	ShortDateFormatSource
	ShortTimeFormat
	ShortTimeFormatSource
	TimeFormatSeparator
	TimeFormatSeparatorSource

	FormatLocales
	Methods
	Add
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	FormatSpec
	Methods
	Properties
	AltFormatName
	AltFormatNamesCount
	ClassId
	FormatName
	FormatType
	Index
	Parent
	Precision
	ProgramId
	Scope
	Units
	UnitsAdder
	UnitsMultiplier

	Interface
	Methods
	AddCompatibleNv
	AddCompatibleNvEx
	AddComplementaryNv
	AddComplementaryNvEx
	AddNvFromString
	CreateTypeSpec
	DownloadConfigProperties
	RemoveNv
	UploadConfigProperties

	Properties
	ClassId
	ConfigProperties
	ConfigPropertiesAvailable
	CpByHandle
	DynamicLonMarkObjectCapacity
	DynamicMessageTags
	LonMarkObjects
	MaxNvInUse
	MaxNvSupported
	MessageTags
	Name
	NetworkVariables
	Parent
	StaticNvCount
	SupportsDynamicNvsOnStaticLMOs
	Version

	Interfaces
	Methods
	Add
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	LdrfLanguage
	Methods
	Properties
	ClassId
	Extension
	LanguageCode
	LdrfId
	Name
	Parent

	LdrfLanguages
	Methods
	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	LonMarkAlarm
	Methods
	Properties
	AlarmType
	ClassId
	IndexToSNVT
	LimitValue
	Location
	ObjectId
	Parent
	PriorityLevel
	TimeStamp
	Value

	LonMarkObject (Functional Block)
	Methods
	AssignNetworkVariable
	MoveToInterface
	UnassignNetworkVariable

	Properties
	AlarmFormat
	ClassId
	ComponentApps
	ConfigProperties
	Description
	Extensions
	FuncProfileDescription
	FuncProfileIsDerived
	FuncProfileName
	FuncProfileProgrammaticName
	Index
	IsDynamic
	LonMarkAlarm
	Mode
	Name
	NetworkVariables
	Parent
	ParentInterface
	PrincipalNv
	ProgrammaticName
	ReportMask
	Request
	SelfTestResults
	Status
	TypeIndex
	TypeSpec

	LonMarkObjects
	Methods
	Add
	AddEx
	AddFromTypeSpec
	ItemByIndex
	ItemByProgrammaticName
	Remove
	RemoveByIndex

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	MessageTag
	Methods
	AddTarget
	Connect
	Disconnect

	Properties
	AddressTableIndex
	AppDevice
	AppDeviceName
	ClassId
	ConnectDescTemplate
	Direction
	Index
	IsDynamic
	MtHubs
	MtTargets
	Name
	Parent

	MessageTags
	Methods
	Add
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	MonitorSet
	Methods
	Close
	Disable
	Enable
	Open

	Properties
	ClassId
	IsEnabled
	IsOpen
	IsPollingEnabled
	MsgMonitorPoints
	MsgOptions
	Name
	NvMonitorPoints
	NvOptions
	Parent
	Tag

	MonitorSets
	Methods
	Add
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	MsgMonitorOptions
	Methods
	Properties
	Authentication
	ClassId
	FilterByCode
	FilterBySource
	FilterCode
	Parent
	Priority
	Retries
	ServiceType
	UseAsyncSend

	MsgMonitorPoint
	Methods
	Advise
	Disable
	Enable
	SendMsgWait
	Unadvise

	Properties
	ClassId
	CurrentOptions
	DefaultOptions
	InputFormatSpec
	Name
	OutputDataPoint
	OutputFromatSpec
	Parent
	RequestDataPoint
	Tag

	Events
	UpdateErrorEvent
	UpdateEvent

	MsgMonitorPoints
	Methods
	Add
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	Network
	Methods
	Backup
	CancelValidation
	Close
	CloseIndependent
	CompactDb
	CreateTemporaryMonitorSet
	Open
	OpenIndependent
	PreReplace
	Replace
	Validate

	Properties
	AllowPropagateModeDuringRemote
	BitmapFilePath
	Channels
	ClassId
	CurrentMonitorSets
	DatabasePath
	Description
	EventInterval
	Extensions
	Handle
	IconFilePath
	IsOpen
	IsOpenIndependent
	MyVNI
	Name
	NetworkServiceDevices
	NsiTimeout
	OriginalName
	Parent
	RemoteNetworkName
	ServerIdentifier
	Systems

	Networks
	Methods
	Add
	RemoveEx

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	NetworkInterface
	Methods
	Properties
	ClassId
	Name
	Parent

	NetworkInterfaces
	Methods
	Properties
	ClassId
	Count
	Item
	_NewEnum

	NetworkResources
	Methods
	Properties
	AppDeviceCount
	ClassId
	ExclusiveSelectorPoolSize
	ExclusiveSelectorsAvailable
	GroupIdsAllocated
	Parent
	RouterCount
	SharableSelectorPoolSize
	SubnetsAllocated

	NetworkServiceDevice
	Methods
	BeginResetEvent
	EndResetEvent

	Properties
	AppDevice
	BitmapFilePath
	ClassId
	DefaultApplication
	Description
	Dialup
	Extensions
	IconFilePath
	Interfaces
	LcaNsdType
	MipIsLayer2
	Name
	NetworkInterface
	NetworkInterfaceFlag
	NodeHandle
	NsiHandle
	NsiNodeId
	NsiSubnetId
	NssFlag
	Parent
	PingClass

	NetworkServiceDevices
	Methods
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	NetworkVariable
	Methods
	AddTarget
	Connect
	Disconnect
	DsRestoreOptions
	DsSaveOptions
	GetDataPoint
	MoveToInterface
	ToString

	Properties
	Aliases
	AppDevice
	AppDeviceName
	AuthenticationConfigFlag
	AuthenticationFlag
	ChangeableTypeSupport
	ClassId
	ConfigClassFlag
	ConfigProperties
	ConnectDescTemplate
	Description
	Direction
	DsFormatType
	DsIsDefaultFormat
	DsPollInterval
	DsPriority
	EstimatedMaxRate
	EstimatedRate
	Extensions
	FuncProfileDescription
	FuncProfileName
	FuncProfileProgrammaticName
	ImplementsCp
	Index
	IsConfigProperty
	IsDynamic
	IsPolled
	Length
	LmNumberManufacturerAssigned
	LonMarkMemberIndex
	LonMarkMemberNumber
	LonMarkObjectNumber
	MaxLength
	Name
	NvHubs
	NvTargets
	OfflineFlag
	Parent
	ParentInterface
	Priority
	PriorityConfigFlag
	ProgrammaticName
	Selector
	SelfDocumentation
	ServiceType
	ServiceTypeConfigFlag
	SnvtId
	SnvtTypeIsModifiable
	SyncFlag
	TypeSpec

	NetworkVariables
	Methods
	Add
	ItemByIndex
	ItemByProgrammaticName
	Remove
	RemoveByIndex

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	NvMonitorOptions
	Methods
	Properties
	Authentication
	ClassId
	GenerateInitialFetch
	Parent
	PollInterval
	Priority
	ReportByException
	ResetPollingIfUpdated
	Retries
	ServiceType
	SuppressPollingIfBound
	ThrottleInterval
	UseAsyncSend
	UseBoundUpdates

	NvMonitorPoint
	Methods
	Advise
	Disable
	Enable
	Unadvise

	Properties
	ClassId
	CurrentOptions
	DataPoint
	DefaultOptions
	FormatSpec
	Name
	Parent
	Tag

	Events
	UpdateErrorEvent
	UpdateEvent

	NvMonitorPoints
	Methods
	Add
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	ObjectServer
	Methods
	AboutBox
	AcceptIncomingSession
	BeginIncomingSessionEvents
	Close
	CompactDb
	Drag
	EndIncomingSessionEvents
	ExtensionByHandle
	Move
	Open
	RebuildLdrfCatalog
	SetCustomerInfo
	SetFocus
	SetLicenseInfo
	SetLicenseInfoEx
	ShowWhatsThis
	ZOrder

	Properties
	ActiveNetwork
	ActiveRemoteNI
	CausesValidation
	ClassId
	ComponentApps
	Container
	CurrentFormatLocale
	DatabasePath
	DragIcon
	DragMode
	Extensions
	Flags
	FormatLocales
	Height
	HelpContextId
	Index
	IsOpen
	LdrfLanguages
	LdrfCatalogPath
	Left
	Name
	NetworkInterfaces
	Networks
	Object
	Parent
	RemoteFlag
	RemoteNetworks
	ResourceLanguageId
	TabIndex
	TabStop
	Tag
	ToolTipText
	Top
	Version
	Visible
	VNINetworks
	WhatsThisHelpID
	Width

	Events
	DragDrop
	DragOver
	GotFocus
	LostFocus
	OnAttachmentEvent
	OnChangeEvent
	OnCommission
	OnDbConversionEvent
	OnDbValidationEvent
	OnIncomingSessionEvent
	OnLonMarkObjectStatusChange
	OnMissedEvent
	OnMsgMonitorPointErrorEvent
	OnMsgMonitorPointEvent
	OnMsgMonitorPointUpdateEvent
	OnNetworkServiceDeviceResetNew
	OnNetworkVariableStringUpdate
	OnNetworkVariableUpdate
	OnNodeConnChangeEvent
	OnNodeIntfChangeEvent
	OnNvMonitorPointErrorEvent
	OnNvMonitorPointEvent
	OnNvMonitorPointUpdateEvent
	OnNVUpdateError
	OnSessionChangeEvent
	OnSystemMgmtModeChangeEvent
	OnSystemNssIdle
	OnSystemServicePin
	Validate

	ObjectStatus
	Methods
	Properties
	AlarmNotifyDisabled
	ClassId
	CommFailure
	Disabled
	ElectricalFault
	FailSelfTest
	FeedbackFailure
	InAlarm
	InOverride
	InvalidId
	InvalidRequest
	LockedOut
	ManualControl
	MechanicalFault
	ObjectId
	OpenCircuit
	OutOfLimits
	OutOfService
	OverRange
	Parent
	ProgrammingFail
	ProgrammingMode
	ReportMask
	ResetComplete
	SelfTestInProgress
	Summary
	UnableToMeasure
	UnderRange

	PingIntervals
	Methods
	Properties
	ClassId
	MobileClassPingInterval
	Parent
	PermanentClassPingInterval
	StationaryClassPingInterval
	TemporaryClassPingInterval

	RecoveryStatus
	Methods
	Properties
	ClassId
	CurrentPhaseNumber
	ItemsInPhase
	NumbersPhases
	Parent
	PhaseType
	ProgressIndicator
	ProgressIndicatorType
	Status
	TotalAppDevices
	TotalChannels
	TotalConnections
	TotalNvMts
	TotalRouters

	Router
	Methods
	Commission
	CommissionEx
	Decommission
	MoveEx
	PostMove
	PreMove
	Reboot
	Replace
	ReplaceEx
	Reset
	Test

	Properties
	AttachmentStatus
	AuthenticationEnabled
	BitmapFilePath
	Class
	ClassId
	CommissionStatus
	Description
	Extensions
	FarSide
	Handle
	IconFilePath
	InitialAuthenticationKey
	Location
	Name
	NearSide
	Parent
	PingClass
	State
	Subsystems

	Routers
	Methods
	Add
	AddEx
	AddReference
	ItemByHandle
	ItemByNeuronID
	Remove
	RemoveEx

	Properties
	ClassId
	Count
	Item
	_NewEnum

	RouterSide
	Methods
	ClearStatus

	Properties
	BufferConfiguration
	Channel
	ClassId
	DetailInfo
	LastTestInfo
	NeuronId
	NodeId
	Parent
	PendingNeuronId
	Priority
	ProgramId
	State
	SubnetId
	Subnets

	ServiceStatus
	Methods
	Properties
	ClassId
	Parent
	QueuePosition
	ResourceType
	Status

	SourceAddress
	Methods
	Properties
	ClassId
	DomainId
	NodeId
	Parent
	SubnetId

	Subnet
	Methods
	Properties
	BitmapFilePath
	ClassId
	Description
	DomainId
	Extensions
	IconFilePath
	Name
	Parent
	SubnetId

	Subnets
	Methods
	Add
	Remove

	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	Subsystem
	Methods
	Properties
	AppDevices
	BitmapFilePath
	ClassId
	Description
	Extensions
	Handle
	IconFilePath
	Name
	Parent
	Path
	RouterDevices
	Subsystems

	Subsystems
	Methods
	Add
	ItemByHandle
	Remove

	Properties
	ClassID
	Count
	Item
	Parent
	_NewEnum

	System
	Methods
	BeginAttachmentEvent
	BeginChangeEvent
	BeginCommissionEvent
	BeginLonMarkObjectStatusChangeEvent
	BeginMissedEvent
	BeginNodeConnChangeEvent
	BeginNodeIntfChangeEvent
	BeginNssIdleEvent
	BeginServicePinEvent
	BeginSession
	BeginSystemMgmtModeChangeEvent
	CancelTransaction
	Close
	CommittTransaction
	DeconfigNetwork
	DiscoverDevices
	DoEventSync
	DoRestoreOptions
	DsSaveOptions
	EndAttachmentEvent
	EndChangeEvent
	EndCommissionEvent
	EndLonMarkObjectStatusChangeEvent
	EndMissedEvent
	EndNodeConnChangeEvent
	EndNodeIntfChangeEvent
	EndNssIdleEvent
	EndServicePinEvent
	EndSession
	EndSystemMgmtModeChangeEvent
	ExtensionByHandle
	GetPermission
	GetProgramId
	Open
	PrepareToRecoverFromNetwork
	RecoverFromNetwork
	RetryUpdates
	SetEventSyncMode
	StartTransaction
	WinkByNeuronId

	Properties
	Accounts
	ActivationLicense
	ApplicationHandle
	ApplicationName
	AuthenticationKey
	ClassId
	ClientId
	CommissionedDeviceCount
	ComponentApps
	Connections
	CurrentAccount
	CurrentDeviceCount
	CustomerId
	DebugTraceFlag
	Description
	DiscoveryInterval
	DiscoveryLimitedFlag
	DomainId
	DsPollInterval
	DsPriority
	DsRepeatTimer
	DsRetries
	DsRetryCount
	DsTxTimer
	Extensions
	FileTransfer
	Handle
	HostTimer
	ImportDirectory
	InstallOptions
	IsOpen
	LastError
	LaunchLcaServerFlag
	LdrfCatalogPath
	LdrfLanguages
	MgmtMode
	Name
	NetworkResources
	NetworkServiceDevice
	NssDbVersion
	Parent
	PermissionString
	PingIntervals
	RecoveryStatus
	RegisterServicePin
	RemoteChannel
	RepeatTimer
	ResourceLanguageId
	RetryCount
	SecurityLevel
	ServiceStatus
	State
	Subnets
	Subsystems
	TemplateLibrary
	TxTimer
	UncommissionedDeviceCount
	UninstalledDeviceCount
	UpdateInterval

	Systems
	Methods
	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	TemplateLibrary
	Methods
	Properties
	ClassId
	ConnectDescTemplates
	Description
	DeviceTemplates
	Parent

	TestInfo
	Methods
	Properties
	ActualDomainId
	ActualNeuronId
	ActualNodeId
	ActualProgramId
	ActualSubnetId
	AuxResultData
	ClassId
	DetailInfo
	ExpectedDomainId
	ExpectedNeuronId
	ExpectedNodeId
	ExpectedProgramId
	ExpectedSubnetId
	IsDetailInfoValid
	Parent
	Status

	TypeSpec
	Methods
	Lookup

	Properties
	ClassId
	Index
	IsComplete
	Length
	ObjectType
	Parent
	ProgramId
	Scope
	TypeName

	UpgradeInfo
	Methods
	Properties
	Class
	ClassId
	FromIndex
	FromOwnerIndex
	Parent
	Reason
	Status
	ToIndex
	ToOwnerIndex

	UpgradeInfos
	Methods
	Properties
	ClassId
	Count
	Item
	Parent
	_NewEnum

	UpgradeStatus
	Methods
	Properties
	ClassId
	Parent
	Result
	Sequence
	UprgradeInfos

	3 Interfaces
	ILcaMsgMonitorPointListener
	Methods
	UpdateErrorEvent
	UpdateEvent

	ILcaNvMonitorPointListener
	Methods
	UpdateErrorEvent
	UpdateEvent

	ILcaProgressListener
	Methods
	ProgressUpdate
	OpenLNS Errors

	4 Errors
	Network Services Errors
	Network Interface Errors
	Connection Errors
	Object Server Errors
	Data Server Errors
	Formatter Errors
	VNI Errors

	Appendix A: Deprecated Items

