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Welcome 
Echelon’s IzoT ShortStack® Software Development Kit (SDK) enables any 
product that contains a microprocessor or microcontroller to quickly and 
inexpensively become a networked and Internet connected smart device.  The 
ShortStack Micro Server provides a simple way to add LonTalk/IP and LON 
networking to new or existing smart devices.  The IzoT ShortStack SDK is easy 
to use due to a simple host API, a simple driver, a simple hardware interface, a 
small host memory footprint, and comprehensive tool support.   

This document describes how to develop an application for a networked device 
using Echelon’s IzoT ShortStack SDK.  It describes the architecture of a 
ShortStack device and how to develop a ShortStack device.  To develop a 
ShortStack device you will interface the ShortStack Micro Server with your 
microprocessor, create your ShortStack serial driver and adapt the portable API 
code provided to your compiler and runtime environment.  The application is 
created with definitions for interoperable network interface items such as 
datapoints and blocks using the IzoT Markup Language (IML), and using the 
LonTalk/IP Compact API functions to program your ShortStack application. 

Audience 
This document assumes that the reader has a good understanding of the IzoT 
platform and development of embedded devices. 

What’s New in the IzoT ShortStack SDK 
The IzoT ShortStack SDK extends previous versions of the ShortStack SDK. It 
includes most features and functions of earlier versions, and features a new 
method for defining and managing the application’s network interface.  

Installation 

The IzoT ShortStack SDK is available on a shared repository on GitHub at 
github.com/izot/shortstack. To obtain access to the private IzoT ShortStack SDK 
repository on GitHub, fill out the IzoT ShortStack SDK registration form at 
echelon.com/shortstack.  

You can obtain source code for the API and examples from the shared repository, 
which also includes all required binaries and a number of optional utilities.  This 
makes it easy to the integrate updates provided by Echelon. 

IzoT Markup Language (IML) 

The IzoT Markup Language replaces the Neuron C model file used by earlier 
versions of the ShortStack SDK. IML provides a new and easier method of 
defining and managing your application’s network interface. See Introduction to 
the IzoT Markup Language for more information. 

To define your application’s network interface, you will include IML in the source 
files for your application.  To implement the network interface you define with 
IML, you will pre-process your source code with the IzoT Interface Interpreter.  
The IzoT ShortStack SDK includes a Windows installer for the IzoT Interface 
Interpreter for Windows.  

https://github.com/
http://www.echelon.com/shortstack
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You can continue to use a Neuron C model file to define your network interface 
by using the LonTalk Interface Developer (LID) included with earlier versions of 
the ShortStack Developer’s Kit.  

Older Versions of ShortStack 

The IzoT ShortStack SDK co-exists with installations of earlier releases of the 
ShortStack software. You can continue using older versions of ShortStack, and 
the LonTalk Interface Developer (LID), for existing projects.  

You can update those projects to take advantage of the new IzoT Micro Server, 
see Application migration from the ShortStack FX SDK to the IzoT ShortStack 
SDK for more information. 

New Hardware Support 

The IzoT ShortStack SDK adds standard Micro Servers for the FT 6050 Smart 
Transceiver.   

Other Neuron Chips and Smart Transceivers are also supported.  Standard Micro 
Servers are included for various configurations of FT 3120, FT 3150, PL 3120, PL 
3150, PL 3170, FT 5000, and FT 6050 processors, and you can use the IzoT 
NodeBuilder tool to create a custom Micro Server if your require a configuration 
not provided  by one of the standard Micro Servers. 

Micro Server Enhancements 

All standard IzoT ShortStack SDK Micro Servers include enhancements for 
improved host synchronization and start-up.  You must rebuild any custom Micro 
Servers that you created with earlier versions of the ShortStack tool by using the 
new IzoT ShortStack Micro Server core libraries to take advantage of these 
enhancements.  

Improvements include a configurable post-reset delay to allow the host more time 
to re-synchronize the serial link layer driver, and improved validation of an 
important initialization message.  

ShortStack LonTalk/IP Compact API 

The ShortStack LonTalk/IP Compact application programming interface (API) 
includes new functions and callback handler functions, including a function to 
configure the IzoT ShortStack SDK Micro Servers’ post-reset pause and including 
improved support for persistent storage of non-volatile data.  

Some functions of the ShortStack FX LonTalk Compact API have been taken over 
by the IzoT Interface Interpreter, including the commonly used callback 
handlers. 

Some new callback functions have been added, while some other callback 
prototypes have changed.   

The API also supports an enhanced interface to the serial driver. 

ShortStack FX LonTalk Compact API Compatibility 

The IzoT ShortStack SDK LonTalk/IP Compact API is similar to the ShortStack 
FX LonTalk Compact API, but differs in some details of API functions and 
callback function prototypes. 

Porting an existing ShortStack FX application to IzoT ShortStack requires some 
code changes.  While these changes are discussed in Application Migration From 
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ShortStack FX to IzoT ShortStack, your compiler and linker will point-out where 
the required changes were not made correctly.  

Porting an existing ShortStack FX application to the IzoT ShortStack SDK also 
requires a change from the Neuron C model file to the IzoT Markup Language 
(IML).  This requires a different way to express your preferences, such as your 
selection of the Micro Server, and your selection of profiles or datapoints to 
implement. However, you can use one of the new IzoT ShortStack Micro Servers 
with existing ShortStack FX projects and the LonTalk Interface Developer. 
(Access to and control over some of the added features may be limited.) 

Example Ports 

The IzoT ShortStack SDK includes a set of simple example host applications 
based on a port of the ShortStack LonTalk/IP API and a driver for embedded 
Linux on a Raspberry Pi (or compatible) platform.  

IzoT ShortStack SDK User’s Guide 

The IzoT ShortStack SDK User’s Guide describes the IzoT Interface Interpreter 
and the IzoT Markup Language; detailed information on both can be found at 
echelon.com/docs/izot.  

Related Documentation 
The documentation for the IzoT ShortStack SDK includes this IzoT ShortStack 
SDK User’s Guide which includes documentation on the The ShortStack 
LonTalk/IP Compact API and Callback Handler Functions. 

The IzoT ShortStack SDK includes an example port for an embedded Linux 
platform, including an example implementation of the serial driver, API, and 
callback handlers, and several sample applications.  You can access these 
example ports from the IzoT ShortStack SDK GitHub repository at 
github.com/izot/shortstack, where you can obtain the examples and optionally 
contribute enhancements to the IzoT ShortStack SDK community.  

The following manuals are available from the Echelon Web site at 
echelon.com/docs and provide additional information that can help you develop 
applications for a ShortStack Micro Server: 

• Series 6000 Chip Data Book (005-0199-01C).  This manual provides 
detailed specifications on the electrical interfaces, mechanical interfaces, 
and operating environment characteristics for the FT 6050 and FT 6010 
Smart Transceivers, and the Neuron 6050 Processor. 

• Series 5000 Chip Data Book (005-0199-01C).  This manual provides 
detailed specifications on the electrical interfaces, mechanical interfaces, 
and operating environment characteristics for the FT 5000 Smart 
Transceiver and Neuron 5000 Processor. 

• FT 3120 / FT 3150 Smart Transceiver Data Book (005-0139-01D).  This 
manual provides detailed technical specifications on the electrical 
interfaces, mechanical interfaces, and operating environment 
characteristics for the FT 3120® and FT 3150® Smart Transceivers. 

• PL 3120 / PL 3150 / PL 3170 Power Line Smart Transceiver Data Book 
(005-0193-01C).  This manual provides detailed technical specifications 

http://www.echelon.com/docs/izot/
https://github.com/izot/shortstack
http://www.echelon.com/docs
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on the electrical interfaces, mechanical interfaces, and operating 
environment characteristics for the PL 3120, PL 3150, and PL 3170 
Smart Transceivers. 

• Introduction to the LONWORKS Platform (078-0183-01B).  This manual 
provides an introduction to the ISO/IEC 14908-1 Control Network 
Protocol, and provides a high-level introduction to LONWORKS networks 
and the tools and components that are used for developing, installing, 
operating, and maintaining them. 

• ISI Programmer's Guide (078-0299-01F).  Describes how you can use the 
Interoperable Self-Installation (ISI) protocol to create networks of control 
devices that interoperate, without requiring the use of an installation 
tool.  Also describes how to use Echelon's ISI Library to develop devices 
that can be used in both self-installed as well as managed networks. 

• ISI Protocol Specification (078-0300-01F).  Describes the Interoperable 
Self-Installation (ISI) protocol, which is a protocol used to create 
networks of control devices without requiring the use of an installation 
tool. 

• LONMARK® Application Layer Interoperability Guidelines.  This manual 
describes design guidelines for developing applications for open 
interoperable LONWORKS devices, and is available from the LONMARK 
Web site, lonmark.org.  

• IzoT Commissioning Tool User's Guide (078-0509-01A).  This manual 
describes how to use the IzoT Commissioning Tool to design, commission, 
monitor and control, maintain, and manage a network. 

• IzoT NodeBuilder® User’s Guide (078-0516-01A).  This manual describes 
how to develop a LONWORKS device using the IzoT NodeBuilder tool.   
 
You use the IzoT NodeBuilder Tool to create a custom ShortStack Micro 
Server.  See Custom Micro Servers, for more information about custom 
Micro Servers.  Most ShortStack developers will not need to create a 
custom ShortStack Micro Server. 
 
You can also use the IzoT NodeBuilder Tool to create a model file for a 
ShortStack FX application using the LonTalk Interface Developer.   
 
You do not need IzoT NodeBuilder with IzoT ShortStack when using one 
of the standard IzoT ShortStack Micro Servers provided.  

• FT 5000 EVB Hardware Guide (078-0390-01B).  This manual describes 
how to develop, prototype, test and debug applications using the FT 5000 
EVB. 

• FT 6000 EVB Hardware Guide (087-0504-01A). This manual describes 
how to develop, prototype, test and debug applications using the FT 6000 
EVB. 

• IzoT Markup Language section of the IzoT Manual at 
echelon.com/docs/izot 

http://www.lonmark.org/
http://www.echelon.com/docs/izot


ShortStack User’s Guide        vii 

The following useful documents are available in the IzoT ShortStack SDK 
repository: 

• Eclipse Configuration. This document describes how to configure Eclipse 
Luna for the example applications. It can be found in the docs folder 
within the IzoT ShortStack SDK repository. 

• ShortStack Goes Raspberry Pi Wiring Instructions.  This document 
describes the wiring instructions between a Raspberry Pi Model B+ and 
an Echelon FT 6000 EVK.  It can be found in the example/rpi/doc folder 
within the IzoT ShortStack SDK repository. 
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1  

Introduction to the  
IzoT ShortStack SDK 

This chapter introduces the IzoT ShortStack SDK.  It 
describes the architecture of a ShortStack device, the 
requirements and restrictions of an IzoT ShortStack Micro 
Server, and the IzoT ShortStack components that are 
available from Echelon. 



 

2 Introduction to the IzoT ShortStack SDK 

Overview 
Automation solutions for buildings, homes, and industrial applications include 
sensors, actuators, and control systems.  A LonTalk/IP network is a peer-to-peer 
network that uses the LonTalk/IP control network protocol for monitoring 
sensors, controlling actuators, communicating with devices, and managing 
network operation.  In short, a LonTalk/IP network provides communications and 
complete access to control network data from any device in the network.  

The communications protocol used for LonTalk/IP networks is the ISO/IEC 
14908-1 Control Network Protocol combined with IP.  The ISO/IEC 14908-1 
protocol is an international standard seven-layer protocol that has been 
optimized for control applications.  The seven layers are described in Table 1 

 

Table 1. LONWORKS Network Protocol Layers 

OSI Layer  Purpose  Services Provided  

7 Application  Application compatibility  Network configuration, self-installation, 
network diagnostics, file transfer, 
application configuration, application 
specification, alarms, data logging, 
scheduling  

6 Presentation  Data interpretation  Network variables, application messages, 
foreign frame transmission  

5 Session  Control  Request/response, authentication 

4 Transport  End-to-end 
communication reliability  

Acknowledged and unacknowledged 
message delivery, common ordering, 
duplicate detection 

3 Network  Destination addressing  Unicast and multicast addressing, 
routers  

2 Data Link  Media access and framing  Framing, data encoding, CRC error 
checking, predictive carrier sense 
multiple access (CSMA), collision 
avoidance, priority, collision detection 

1 Physical  Electrical interconnect  Media-specific interfaces and modulation 
schemes 

 

Layers 4 through 7 of the ISO/IEC 14908-1 protocol are implemented in the 
protocol stack for all LonTalk/IP devices.  The services provided by these layers 
are called the LonTalk/IP Control Services.  Layers 1 through 3 are media and 
link dependent.   
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For LonTalk/IP devices implemented as native ISO/IEC 14908-1 devices, Layers 
2 and 3 are defined by ISO/IEC 14908-1, and Layer 1 is defined by other 
standards such as ISO/IEC 14908-2 for FT channels, ISO/IEC 14908-3 for PL 
channels, and ISO/IEC 14908-4 for IP-852 channels.  As a result, LonTalk/IP 
devices implemented as native ISO/IEC 14908-1 devices are fully compatible with 
and interoperable with classic LON devices.  LonTalk/IP devices support 
additional services such as UDP messaging, ICMP support, and SNMP support.  
These services are provided in a way that is compatible with classic LON 
messaging. 

For native LonTalk/IP devices on Ethernet, Layers 1 through 3 are defined by the 
Ethernet and IP standards.  For native LonTalk/IP devices on Wi-Fi, Layers 1 
through 3 are defined by the Wi-Fi and IP standards. 

You can use the IzoT ShortStack SDK to implement a LonTalk/IP device with an 
Echelon Series 6000 processor and a host processor of your choice.  A device 
implemented with the IzoT ShortStack SDK and a Series 6000 processor is fully 
compatible with both LonTalk/IP and classic LON devices. 

You can also use the IzoT ShortStack SDK to implement a classic LON device 
with an Echelon Series 5000 or Series 3100 processor and a host processor of your 
choice.  A device implemented with the IzoT ShortStack SDK and a Series 5000 
or Series 3100 processor is a classic LON device, and is fully compatible with both 
LonTalk/IP and classic LON devices. 

IzoT Device Architectures 
An IzoT device consists of four primary components: 

1. An application processor that implements the application layer, or both 
the application and presentation layers, of the LonTalk/IP or LON 
protocol  

2. A protocol engine that implements layers 2 through 5 (or 2 through 7) of 
the LonTalk/IP or LON protocol  

3. A network transceiver that provides the physical interface for the 
network communications media, and implements the physical layer of the 
LonTalk/IP or LON protocol 

4. Circuitry to implement the device I/O 

These components can be combined in a physical device.  For example, you can 
use Echelon’s FT 6050 Smart Transceiver as a single-chip solution that combines 
all four components in a single chip that communicates on a free topology (FT) 
twisted pair channel and implements the LonTalk/IP protocol.  You can use 
Echelon’s CPM 4200 Wi-Fi Module as a single module solution that combines all 
four components in a single module for Wi-Fi-based communication using the 
LonTalk/IP protocol.  You can create a single-device solution with Echelon’s IzoT 
Device Stack EX running on versatile embedded computers with a Linux 
operating system, such as the Raspberry Pi or Beaglebone Black, and 
communicate via Ethernet and the LonTalk/IP protocol.  

The IzoT ShortStack SDK supports an IzoT device architecture where these 
components are split between two processors, a host processor that runs the 
device application, and a co-processor that implements the LonTalk/IP or LON 
protocol and provides the network interface.  The co-processor is implemented 
with a Smart Transceiver or Neuron Chip running the ShortStack firmware.  The 
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combination of the Smart Transceiver or Neuron Chip with the ShortStack 
firmware is called a ShortStack Micro Server.  The Micro Server connects to your 
microcontroller through a synchronous (SPI) or asynchronous (SCI) serial link.  

You can use one of many embedded operating systems or you may not use an 
operating system at all (“bare metal” design).  The IzoT ShortStack SDK does not 
require an operating system on the target host, but the IzoT ShortStack example 
applications and driver are designed for use with a Linux operating system. 

IzoT ShortStack SDK Application Development 
For a ShortStack device, you write the application program in C or C++ using a 
common application framework and application programming interface (API).  
This API is called the LonTalk/IP Compact API.  You select a suitable host 
processor and use the host processor’s application development environment to 
develop the application. 

The general architecture of a ShortStack device is shown in Figure 1.  Because a 
ShortStack Micro Server can work with any host processor, you must provide the 
serial driver implementation for the host.  The ShortStack software includes an 
example driver for the Raspberry Pi platform using the Raspbian Linux 
operating system. 

To define the LonTalk/IP interface for your device, you embed markup in your 
code that is contained in C comments within one of your C or C++ source files.  
This markup is defined by the IzoT Markup Language (IML). 
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Figure 1. A ShortStack Device 

Neuron Hosted and IzoT ShortStack Device 
Characteristics 

Table 2 compares some of the key characteristics of the Neuron hosted and host-
based solutions for LonTalk/IP and LON devices. 

Table 2. Comparing Neuron Hosted and Host-Based Solutions 

Characteristic 
Neuron Hosted 
Solution 

ShortStack 
Solution 

Maximum number of network 
variables 

254[1][2]  or 62 254[1][2] or 62 

Maximum size of network 
variable 

225[3] or 31 bytes 225[3] or 31 bytes 
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Maximum number of NV config 
table entries 

254[1][2] or 62 254[1][2] or 62 

Maximum number of address 
table entries 

254[2][3] or 15 254[2][3]  or 15 

Maximum number of aliases 127[1][2] or 62 127[1][2] or 62 

Maximum number of dynamic 
network variables 

0 0 

Maximum size of application 
messages 

228 bytes 228 bytes 

Maximum number of receive 
transaction records 

16 16 

Maximum number of transmit 
transaction records 

2 2 

Support for the 14908-1 
Extended Command Set 

No No 

File access methods supported LW-FTP [4], 
DMF[4] 

LW-FTP[4], DMF 
[4]  

 

Link-layer type N/A 4- or 5-line SCI  
or  
6- or 7-line SPI 

Typical host API runtime 
footprint 

N/A 5-6 KB code with 
1 KB RAM 
(includes serial 
driver, but does 
not include 
optional API or 
ISI API) in a 
bare-metal 
target.  

Host processor type N/A Most 
microprocessors 
or 
microcontrollers 

Application development 
language 

Neuron C C or C++ with 
IML 
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Notes:   

1. Neuron firmware version 16 or greater. 
2. Dependant on available resources. 
3. Series 6000 Smart Transceivers and Neuron Chips 
4. The file access methods listed are:   

• Direct memory file (DMF); see Supporting Direct Memory 
Files 

• The LONWORKS file transfer protocol (LW-FTP); see the 
File Transfer engineering bulletin at echelon.com/docs 

 

IzoT ShortStack SDK and CPM 4200 Wi-Fi SDK 
 

The IzoT ShortStack SDK and CPM 4200 Wi-Fi SDK solutions are both built on 
the LonTalk/IP platform using the IzoT Interface Interpreter, and they share 
very similar declarations of the device’s network interface and use similar API 
and application frameworks.  This simplifies migrating applications from one 
solution to the other.  In addition, you can create applications that share a 
common code base for devices that use both solutions. 

http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf
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Requirements and Restrictions for ShortStack 
The ShortStack LonTalk/IP Compact API and serial driver typically require 
about 6 KB of program memory on the host processor (approximately 2 KB for 
the API and 3 to 4 KB for the serial driver) and less than 1 KB of RAM in a bare 
metal design.The API does not require additional non-volatile memory, but most 
applications implement properties and require persistent, modifyable storage of 
such data. The API does not require an operating system—memory requirements 
may be higher if the host includes an operating system. 

The ShortStack firmware requires a Smart Transceiver or Neuron Chip with a 
minimum of 4 KB of application memory and 2 KB of RAM.  The IzoT ShortStack 
SDK includes a variety of standard Micro Server images, which support FT 3120, 
FT 3150, FT 5000, FT 6050, PL 3120, PL 3150, and PL 3170 Smart Transceivers 
in various configurations.  You can create a custom Micro Server to support other 
chips and hardware configurations 

The interface between your host processor and the ShortStack Micro Server can 
be the asynchronous Serial Communications Interface (SCI) or the synchronous 
Serial Peripheral Interface (SPI).  The availability and speed of the interface 
depends on the type of serial interface, the clock speed of the ShortStack Micro 
Server, and the specific processor used for the Micro Server: 

• The highest bit rate for the SCI interface is approximately 1.2 Mbps for a 
ShortStack Micro Server running on an FT 6050 Smart Transceiver with 
an 80 MHz system clock.  

• The highest bit rates for the SPI interface are approximately 906 kbps 
uplink and 690 kbps downlink for a ShortStack Micro Server running on 
an FT 6050 Smart Transceiver with an 80 MHz system clock.   

The interface rate scales with the ShortStack Micro Server system clock.  See 
Setting the SCI Bit Rate and Setting the SPI Bit Rate. 

The ShortStack Micro Server can support up to 254 network variables in your 
ShortStack application.  You can implement configuration properties as 
configuration network variables or in configuration files.   

Network Installation 
You can create a ShortStack device that installs itself using the Interoperable 
Self-Installation (ISI) protocol, or you can create a device that is installed with a 
network management tool.  You can also create a device that supports both 
installation methods, that is, you can create a device that installs itself in self-
installed networks, or is installed by a network management tool in a managed 
network. 

For installation into a managed network, you can use the IzoT Commissioning 
Tool (CT) or another tool that can install and monitor LonTalk/IP or LON 
devices.  See the IzoT Commissioning Tool User's Guide for more information 
about IzoT CT.  However, if your ShortStack device supports the Interoperable 
Self-Installation (ISI) protocol, a network management tool is not required.   

For network diagnostics and troubleshooting, you can use the Wireshark network 
protocol analyzer.  The Wireshark network protocol analyzer collects and displays 
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low-level protocol packets, and often provides important diagnostics. See 
www.wireshark.org for more information. 

For ShortStack device development a logic analyzer, serial communications 
analyzer, or digital storage oscilloscope is also useful for diagnosing and 
troubleshooting the serial communication between the Micro Server and your 
host processor. 

ShortStack Architecture 
A ShortStack device consists of the following components: 

1. The ShortStack Micro Server running the ShortStack firmware  

2. An SCI or SPI serial driver for the host processor 

3. The ShortStack LonTalk/IP Compact API for the host processor 

4. A ShortStack application that uses the ShortStack LonTalk/IP Compact 
API 

Figure 2 shows the basic software architecture of a ShortStack device. 

Host Application

Serial Driver

ShortStack Firmware

LONWORKS Network

Transceiver 
Interface

API 
Interface

SCI or SPI 
Interface

ShortStack LonTalk/IP Compact API

Host Microprocessor

ShortStack 
Micro Server

 
Figure 2. ShortStack Architecture 

The ShortStack Serial Driver 
The ShortStack serial driver provides the hardware-specific interface between 
the LonTalk/IP Compact API and ShortStack Micro Server.  If you use a 

http://www.wireshark.org/
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standard operating system, the serial driver itself may be portable across 
different platforms, as is the case with the driver example included with the 
example for the Raspberry Pi computer and the Raspbian Linux operating 
system. 

The serial driver manages data exchange between the host processor and the 
ShortStack Micro Server.  You must create the serial driver that resides on the 
host microprocessor, typically derived from the example driver for the Raspberry 
Pi. You can use or modify the example driver, or create your own driver for a 
different processor or operating system. 

SCI Architecture 
The ShortStack SCI interface is a half-duplex asynchronous serial interface with 
1 start bit, 8 data bits, and 1 stop bit (least significant bit first) as shown in 
Figure 3.  You can use standard UART or USART hardware to implement this 
link. 

See SCI Interface for more information about the SCI interface for ShortStack 
devices. 

ISO/IEC 14908 control network

SCI DriverRTS~

TXD
RXD

CTS~
HRDY~

LonTalk Compact API

Application Framework

Control Algorithm

 ShortStack 
Micro Server

FT 3120, PL 3120, 
FT 3150, PL 3150,
PL 3170, FT 5000,

FT 6050

SCI
4.8 kbps – 1.2 Mbps

 
Figure 3. SCI Architecture for a ShortStack Device 

SPI Architecture 
The SPI interface is a half-duplex synchronous serial interface, where the Micro 
Server acts as the master, as shown in Figure 4.  Most ShortStack devices use 
the SCI interface because of the need for fewer I/O lines for the asynchronous 
link, and because the requirements for the SPI driver are more complex.  The SPI 
interface is useful if all SCI resources on the host processor are already in use or 
if an SPI interface is more readily available on the host processor.  

See SPI Interface for more information about the SPI interface for ShortStack 
devices. 
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SPI Driver
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MISO
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FT 3150, PL 3150,
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SCLK
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Figure 4. SPI Architecture for a ShortStack Device 

The ShortStack LonTalk/IP Compact API 
The IzoT ShortStack SDK includes source code for the ShortStack LonTalk/IP 
Compact API that you compile and link with your application.  This API defines 
the functions that your application calls to communicate with other devices on a 
LonTalk/IP or LON network.  The API code is written in ANSI C.  You must port 
the code for your host processor. 

The ShortStack LonTalk/IP Compact API consists of the following: 

• A service to initialize the ShortStack device after each reset. 

• A service that the application must call periodically.  This service 
processes messages pending in any of the data queues. 

• Services to initiate typical operations, such as the propagation of network 
variable updates. 

• Event dispatchers for common events, such as those signaling the arrival 
of network variable data or an error in the propagation of an application 
message.  

• Callback handler functions for advanced and less common events. 

• Optional API components to perform low-level self-installation tasks. 

• Optional API components to perform high-level ISI self-installation tasks. 

• Optional API components for additional utility services. 

Overview of the ShortStack Development Process 
This manual describes the development process for creating a ShortStack device, 
which includes the general tasks listed in Table 3. 
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Table 3. Tasks for Developing a ShortStack Device 

Task Additional Considerations Reference 

Obtain the IzoT 
ShortStack SDK and 
become familiar with it 

 Getting Started with 
the IzoT ShortStack 
SDK 

Select hardware for the 
ShortStack Micro 
Server and prepare it 
by loading the 
ShortStack firmware 
into it 

You need to select the Micro Server 
configuration and preferences for every 
new device, but you can reuse a Micro 
Server hardware and software 
configuration for a different application, 
and thus implement a different device. 

Selecting and Creating 
a ShortStack 
MicroServer 

Selecting the Host 
Processor 

Integrate the 
ShortStack Micro 
Server with your device 
hardware 

You integrate the Micro Server with the 
device hardware.  You can reuse many 
parts of a hardware design for different 
applications to create different 
ShortStack devices. 

Designing the 
Hardware Interface 

Create the serial driver 
for the host processor 

You need to create a serial driver 
(typically derived from an example 
driver), for each device’s hardware. You 
can reuse the driver with the same 
device hardware for different 
applications, and thus create different 
ShortStack devices.  You do not need to 
re-create a new serial driver for each 
application. 

Creating a ShortStack 
Serial Driver 

Port the ShortStack 
LonTalk/IP Compact 
API to the host 
processor 

You need to port the ShortStack 
LonTalk/IP Compact API once for each 
host processor and compiler, but you can 
reuse the ported API files with any 
number of applications that share the 
same hardware and software 
development environment. 

Porting the ShortStack 
LonTalk/IP Compact 
API 

Appendix A ShortStack 
LonTalk/IP Compact 
API  

Select and define the 
functional profiles and 
data types for your 
device using tools such 
as the IzoT Resource 
Editor and the SNVT 
and SCPT Master List 

You need to select profiles and data 
types for use in the device’s network 
interface for each application that you 
plan to implement.  This selection can 
include the definition of user-defined 
types for network variables, 
configuration properties or functional 
profiles.  A large set of standard 
definitions is also available and is 
sufficient for many applications. 

IzoT Markup Language 
section of the IzoT 
Manual at 
echelon.com/docs/izot 

 

http://www.echelon.com/docs/izot
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Task Additional Considerations Reference 

Structure the layout 
and network interface 
of your ShortStack 
device by declaring the 
required blocks, 
datapoints, and 
properties with the 
IzoT Markup 
Language. 

Define the network interface for your 
device using standard C source code and 
the IzoT Markup Language.  

IzoT Markup Language 
section of the IzoT 
Manual at 
echelon.com/docs/izot 

 

Integrate the IzoT 
Interface Interpreter 
into your development 
tool’s work flow. 

Run the IzoT Interface Interpreter prior 
to build your project within your host 
development tool.  

You can include the IzoT Interface 
Interpreter as an integral step to your 
build process, making generation and 
maintenance of your application 
framework completely transparent.  

Integrating the IzoT 
Interface Interpreter 

Complete event 
handlers and the 
ShortStack LonTalk/IP 
Compact API callback 
handler functions to 
process application-
specific network events 

Complete your event handlers to connect 
your application’s algorithm with the 
IzoT network.  

You can also implement advanced 
callback handlers for less frequently 
used events.  

  

Developing a 
ShortStack Application 

Appendix A, 
ShortStack 
LonTalk/IP Compact 
API 

Modify your application 
to interface with an 
IzoT network by using 
the ShortStack 
LonTalk/IP Compact 
API function calls 

You need to make these function calls 
for every application that you 
implement.  These calls include, for 
example, calls to the 
LonPropagateNv() function that 
propagates an updated output network 
variable value to the network.  Together 
with the completion of the callback 
handler functions, this task forms the 
core of your networked device’s control 
algorithm. 

Developing a 
ShortStack Application 

Appendix A, 
ShortStack 
LonTalk/IP Compact 
API 

Optionally, add 
Interoperable Self-
Installation (ISI) 
functions to your 
ShortStack device, add 
low-level functions to 
implement self-
installation,  or add 
other optional utility 
functions and callbacks 

This step is optional, but can make your 
device significantly easier to install 
without the use of an installation tool.  

Developing a 
ShortStack Application 
with ISI 

Appendix B, 
LonTalk/IP ISI API 

 

http://www.echelon.com/docs/izot
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Task Additional Considerations Reference 

Optionally, create a 
custom Micro Server 
image that supports 
your own hardware 
configuration 

The standard Micro Servers are pre-
compiled binary images that support a 
variety of hardware configurations.  You 
can create a custom Micro Server and 
use it in place of a standard one to 
provide better support for your 
hardware, or even to offload some of the 
application’s control algorithm to the 
Micro Server. 

Custom Micro Servers 

Test, install, and 
integrate your 
ShortStack device 
using self-installation 
or a LonTalk/IP or 
LON network tool such 
as the IzoT 
Commissioning Tool 

 IzoT Commissioning 
Tool User's Guide 
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2  

Getting Started with the IzoT 
ShortStack SDK 

This chapter describes the IzoT ShortStack SDK and how to install it.   
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IzoT ShortStack SDK Overview 
The IzoT ShortStack SDK is a software toolkit that contains software tools, the 
ShortStack LonTalk/IP Compact API, LonTalk/IP ISI API, ShortStack firmware, 
and documentation needed for developing applications for any microcontroller or 
microprocessor that uses a ShortStack Micro Server to communicate with a 
LonTalk/IP or LON network.  You can use the software with ShortStack Micro 
Servers that use an Echelon Series 6000, Series 5000, or Series 3100 Smart 
Transceiver or an Echelon Neuron 6050 or Neuron 5000 Processor.   

The kit includes the following components: 

1. Portable ANSI C source code for the ShortStack LonTalk/IP Compact API 
and LonTalk/IP ISI API. 

2. ShortStack firmware images for free topology twisted-pair and power line 
configurations.  Firmware images are provided for both TP/FT-10 and PL-
20 channel types, including 6050, 5000, 3170, 3150, and 3120 Smart 
Transceiver devices.  

3. ANSI C source code and pre-compiled library files that you can use to 
create custom Micro Servers to provide support for different hardware 
configurations. 

4. The IzoT Interface Interpreter.  The IzoT Interface Interpreter translates 
your C source code that you have annotated with IML into device 
interface data and device interface files that simplify the implementation 
of your ShortStack application, and creates a skeleton application 
framework that provides much of the code required by your application to 
interface with the ShortStack Micro Server. 

5. Documentation.  This ShortStack User’s Guide describes how to use the 
components of the ShortStack Developer’s Kit to create a ShortStack 
device.  The kit also includes detailed HTML documentation for the 
ShortStack LonTalk/IP Compact API and LonTalk/IP ISI API. 

6. Source code for an example port for the Raspberry Pi. 

Installing the IzoT ShortStack SDK 
You can install the IzoT ShortStack SDK on any computer that runs Microsoft 
Windows 10, Windows 8, Windows 7, or Windows XP. 

To install the IzoT ShortStack SDK, which is available free of charge, perform 
the following steps: 

1. If you do not have an account with GitHub, register for a free account at 
github.com 

2. Click the Download Now button at echelon.com/shortstack to register 
for the IzoT ShortStack SDK.  Enter your GitHub account name in the 
registration form. 

3. Wait until you receive a notification e-mail from GitHub, confirming that 
you have been given access to the IzoT ShortStack repository. 

4. Visit the IzoT ShortStack SDK repository at github.com/izot/shortstack to 
view and clone the repository.  

http://github.com/
http://www.echelon.com/shortstack
https://github.com/izot/shortstack


ShortStack User’s Guide        17 

 
Clone the repository into your local shortstack project folder.  Do not 
clone it to a location within the LONWORKS folder.  Use one of your user 
locations instead, such as My Documents\izot-shortstack.  You need 
to have full read and write access to that location. 

5. Locate the IzoT Interface Interpreter installer in the install folder within 
the repository, and install the IzoT Interface Interpreter.  The installer is 
named iiiVVV.exe, where VVV is a three-digit version number.  
 
Run the IzoT Interface Interpreter installer on your Windows computer. 

6. Explore the repository.  
 
A good place to start is the Simple application example for Raspberry Pi 
computers using the Raspbian Linux operating system.  This example is 
located in the example/rpi/simple folder within your repository, and is 
accompanied by wiring instructions in the example/rpi/doc folder.  
 
The examples assume, but do not require, that you use Eclipse Luna.  
The doc folder within the IzoT ShortStack SDK repository contains 
details about the Eclipse workspace and project configuration assumed by 
the IzoT ShortStack SDK  examples.   

7. Install the IzoT Resource Editor.  You can obtain the IzoT Resource 
Editor from the download section at echelon.com/shortstack. 

You can use the IzoT Resource Editor to view standard profiles and data 
types, and to create and edit your custom profiles and data types.  The 
IzoT Resource Editor also includes a conversion tool to translate your 
custom resource definitions into IzoT resource packages.  The IzoT 
Interface Interpreter only accepts resources in the IzoT resource package 
format.   

The IzoT Interface Interpreter already includes all standard and IoT 
resource definitions.  You need to use the IzoT Resource Editor and the 
conversion tool to the IzoT resource package format only for your user-
defined resources. 

ShortStack LonTalk/IP Compact API Files 
The ShortStack LonTalk/IP Compact API is provided as a set of portable ANSI C 
files, which are listed in Table 4.  These files are contained in the 
[ShortStack]\api directory (where [ShortStack] is the directory in which you 
cloned the IzoT ShortStack SDK repository.  

You must port the API to your host processor; for more information about porting 
the API, see Porting the ShortStack LonTalk/IP Compact API. 

http://www.echelon.com/shortstack
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Table 4. ShortStack LonTalk/IP Compact API Files 

File Name Description 

LonBegin.h 

LonEnd.h 

Optional definitions for implementing data packing and 
alignment preferences 

Ldv.h Definition of the driver API functions. These are used by the 
ShortStack API, but you need to supply the implementations 
of these functions. See Creating a ShortStack Serial Driver.   

LonPlatform.h Definitions for adjusting the ShortStack LonTalk/IP Compact 
API to your compiler and environment. 

Definitions for several common compilers are provided, but 
you need to review and possibly add definitions to match your 
toolchain. 

ShortStackApi.c 

ShortStackApi.h 

Function definitions for the ShortStack LonTalk/IP Compact 
API 

ShortStackHandlers.c 

 

Function definitions for the ShortStack callback functions 

ShortStackInternal.c Internal functions and utilities that are used by the 
ShortStack LonTalk/IP Compact API, but not exported to the 
host application 

ShortStackIsiApi.c 

ShortStackIsiApi.h 

Function definitions for the LonTalk/IP ISI API 

ShortStackIsiHandlers.c 

 

Function definitions for the ShortStack ISI callback handler 
functions 

ShortStackIsiInternal.c Internal functions and utilities that are used by the 
LonTalk/IP ISI API, but not exported to the host application 

ShortStackIsiTypes.h Definitions of the data structures that are typically used by 
ShortStack ISI applications 

ShortStackTypes.h Definitions of the data structures that are typically used by 
ShortStack applications 

Standard Micro Server Firmware Images 
The IzoT ShortStack SDK includes several standard ShortStack Micro Server 
firmware images provided as pre-compiled image files that you can program into 
serial flash memory chips for use with FT 6050 Smart Transceivers, into serial 
EEPROM memory chips for FT 5000 Smart Transceivers, into on-chip memory 
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for FT or PL 3120 Smart Transceivers or PL 3170 Smart Transceivers, or into 
flash memory chips to be used with FT or PL 3150 Smart Transceiversor. 

You can use the ShortStack Micro Server only with an Echelon Smart 
Transceiver or an Echelon Neuron Chip.  If you run the ShortStack Micro Server 
on a different Neuron Chip, the Micro Server exits quiet mode and enters the 
applicationless state. 

Each set of pre-compiled images includes the following files: 

• An APB and an NDL file for downloading the images over a LONWORKS 
network 

• An XIF and a SYM file for use by the IzoT Interface Interpreter or the 
LonTalk Interface Developer  

• For 3120 and 3170 devices, an NFI file for a programmer device or in-
circuit programmer for programming a Smart Transceiver 

• For 3150 devices, an NEI file for a universal chip programmer or in-
circuit programmer for programming a flash memory chip. 

• For Series 5000 devices, an NME file for a universal chip programmer or 
in-circuit programmer for programming a serial EEPROM memory chip  

• For Series 6000 devices, an NMF file for a universal chip programmer or 
in-circuit programmer for programming a serial flash memory chip. 

• For standard Micro Servers that support ISI, a *.h file that you use with 
your application when writing code to use the ShortStack LonTalk/IP ISI 
API; see Developing a ShortStack Application with ISI, for more 
information.  

When you use the LonTalk Interface Developer utility, it selects the appropriate 
set of Micro Server image files based on your preferences, and copies them to the 
project’s output folder.  These image files have the project’s base name (rather 
than the image’s base name) and the appropriate file extension (APB, NDL, NFI, 
NEI, NME, XIF, SYM, or H). 

When using the IzoT Interface Interpreter, you need to provide the set of image 
files for your selected Micro Server, and describe your choice of Micro Server in 
your application’s C source code.  

Table 5 describes the standard firmware image files for a ShortStack Micro 
Server, along with other information about each image.  See Firmware Image 
File Names for a description of the firmware file naming convention.    

All standard ShortStack Micro Server images are located within the 
[ShortStack]/microserver/standard folder within your ShortStack project 
folder 
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Table 5. Standard ShortStack Firmware Image Files 

Smart 
Transceiver 
Type 

Channel 
Type 

Supported 
Clock 
Rates 
(MHz) [1] 

Neuron 
Firmware 
Version [2] 

Support for 
ISI 

Supported 
CP Access 
Methods [3] 

FT 3120-E4 
V16 

TP/FT-10 10 

20 

40 

16 No DMF, LW-
FTP, CPNV 

FT 3150 2K [4] TP/FT-10 10 17.1 Yes DMF, LW-
FTP, CPNV 

FT 5000 ES TP/FT-10 20 18 Yes DMF, LW-
FTP, CPNV 

FT 5000 TP/FT-10 20 19 Yes DMF, LW-
FTP, CPNV 

FT 6050 TP/FT-10 20 21 Yes DMF, 
LW_FTP, 
CPNV 

PL 3120-E4 PL-20C, PL-
20N 

10 14 No LW-FTP, 
CPNV 

PL 3150 [4] PL-20C, PL-
20N 

10 17.1 Yes DMF, LW-
FTP, CPNV 

PL 3170 PL-20C, PL-
20N 

10 17 Yes DMF, LW-
FTP, CPNV 

Notes:   

1. The supported clock rates refer to external crystal or oscillator frequency 
for Series 3100 devices, but refer to internal system clock rate for Series 
5000 and 6000 devices. 

2. The Neuron firmware versions listed refer to the versions used to create 
the standard Micro Server images. 

3. The configuration property access methods listed are:   

• Direct memory file (DMF); see Supporting Direct Memory Files 

• The LONWORKS file transfer protocol (LW-FTP); see the File 
Transfer engineering bulletin at echelon.com/docs 

• Configuration network variables (CNVs); see Persistent NVs 

4. The standard Micro Servers for FT 3150 and PL 3150 devices support a 
standard hardware design with external flash memory of 32 KB or more, 
and 128 bytes per sector. 

http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf
http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf
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You can create a custom Micro Server image to support a combination of 
hardware, channel type, and ISI features that is not supported by the pre-
compiled Micro Server images.  Specifically, you must create a custom Micro 
Server image: 

• If your device uses a different Echelon Smart Transceiver or Neuron Chip 
than the ones listed in Table 5 (such as a Neuron 6050 Processor). 

• If your device uses a different Neuron firmware version than the ones 
used for the standard Micro Server images. 

• If your device uses a clock speed or system clock setting that is supported 
by the chosen hardware and transceiver, but is not listed in Table 5. 

• If your device uses a memory map that is different from the one described 
in Micro Server Memory Map. 

• If your Micro Server device requires ISI-DAS support, or a different level 
of ISI support. 

• If you require an application-specific custom Micro Server that supports 
ISI.  Such a Micro Server can execute part of the ISI API local to the 
Micro Server for optimum performance and minimum host memory 
footprint. 

• If your application requires a DMF window different from the default size 
or location; see Supporting Direct Memory Files for more information. 

• If your device requires a Micro Server with different properties than 
those used for the standard Micro Server images, such as the buffer 
configuration or maximum number of addresses, aliases or network 
variables. 

See Custom Micro Servers for more information about creating a custom Micro 
Server. 
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3 

 Introduction to the  
IzoT Markup Language 

This chapter introduces the IzoT Markup Language (IML) 
and provides code examples using IML. 
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Overview 
Your program interacts with the LonTalk/IP or LON network and other devices 
through input and output datapoints, which implement network variables for 
dynamic, non-persistent, data, or properties for persistent configuration data 
which changes infrequently.  

A datapoint is an extension of a simple network variable; a datapoint contains 
the network variable.  The network variable is the datum which receives an 
update from the network, or which can be propagated onto the network. In 
addition to the network variable, the datapoint also contains the corresponding 
global_index and can be associated with onUpdate and onComplete events. 

Multiple datapoints are typically combined into logical units called blocks.  A 
block is an implementation of a profile, and defines a particular functionality.  
For example, a block implementing the standard SFPTrealTimeKeeper profile 
consists of one mandatory output datapoint (reporting current date and time), 
and a number of optional network variables and properties.  For example, the 
optional nciUpdateRate property can be implemented to allow configuration of 
the rate by which the date and time information is transmitted on the network. 

The IzoT ShortStack SDK includes a large selection of standard network variable 
and property data types and profile definitions for a multitude of different 
applications.  You can also create and use your own definitions as user-defined 
data types and profiles.  

The set of datapoints, properties, and profiles implemented by your program, 
along with related attributes, is collectively known as the device interface.  You 
will specify and implement the device interface within your source code.  The 
IzoT Interface Interpreter (III) produces a framework which interacts with the 
ShortStack API to exchange data and other events with the control network.  The 
IzoT Interface Interpreter also generates configuration data required to configure 
the Micro Server.  

Your definitions of blocks, datapoints and properties alongside your specification 
of related preferences such as the selection of the Micro Server type or the 
inclusion of optional runtime features, all occur within your C source code. 

The basic principle of the IzoT Markup Language (IML) is a simple as-if 
paradigm: when editing your C source code for your program, you declare IzoT 
interface items as if your standard C or C++ compiler knew what those meant, 
and you annotate your declaration with a special tag.  Your C compiler ignores 
the tag because it appears within a C comment, but when you execute the IzoT 
Interface Interpreter in a pre-compilation step, the IzoT Interface Interpreter 
recognizes the tag and creates the required framework, ready for submission to 
your compiler. 

This chapter introduces IML.  See the IzoT Markup Language section of the IzoT 
Manual at echelon.com/docs/izot for more information. 

Selected Introductory Examples 

The following example implements the standard SFPTpressureSensor profile 
and all its mandatory member network variables and properties within your 
program’s C source code.  

http://www.echelon.com/docs/izot
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Example 1 
This example implements a single SFPTpressureSensor block. 

 
#include “ShortStackDev.h” 
 
SFPTpressureSensor(pressure) pressure; //@IzoT block 
 

The //@IzoT block tag specifies a block, with the profile specified by the 
variable declared to its left.  When this code is processed by the IzoT 
Interface Interpreter, it generates a standard C type (typedef) within the 
ShortStackDev.h file, which your code must include.  

Example 2 
This example implements an array of two blocks, both based on the standard 
SFPTpressureSensor profile: 

 
#include “ShortStackDev.h” 
 
SFPTpressureSensor(pressure) pressure[2]; //@IzoT block 
 

Example 3 
This example adds a completion update to monitor success or failure of 
transactions in relation to the block’s principal nvoPress output, and adds 
an optional nciPressOffset1 property, which is defined by the profile to apply 
to the block’s nvoPress output. 

 
#include “ShortStackDev.h” 
 
SFPTpressureSensor(pressure) pressure[2]; //@IzoT block \ 
//@IzoT onComplete(nvoPress, onPressureCompletion), \ 
//@IzoT implement(nvoPress.nciPressOffset1, init=3.5) // kPa 
 

Continuation lines of IML declarations must begin with the //@IzoT tag to 
prevent your C or C++ compiler from processing these.  

Example 4 
This example implements the onPressureCompletion event handler.  The 
event handler must not be static, and must meet the event’s specific 
prototype. 

 
void onPressureCompletion( 
    const unsigned index, const LonBool success 
) 
{ 
    if (index == pressure[0].nvoPress.global_index) { 
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        … track success or failure for your first pressure sensor 
… 
    } else { 
        … and the same for the second … 
    } 
} 
 

Example 5 
This example implements two blocks of the SFPTpressureSensor profile, 
one with, and one without, the optional nciPressOffset1 property: 
#include “ShortStackDev.h” 
 
SFPTpressureSensor(a) simple; //@IzoT block  
SFPTpressureSensor(b) configurable; //@Izot block \ 
//@IzoT implement(nvoPress.nciPressOffset1, init=3.5) // kPa 
 

Example 5 implements the simple and configurable blocks.  Both implement 
the standard SFPTpressureSensor profile, but only configurable implements 
the optional nvoPressOffset1 property. This difference leads to different C data 
types used for the simple and configurable variables; one to include, one not to 
include, the optional property.  

Each generated profile and type name must be unique.  In Example 5, there are 
two instances of the SFPTpressureSensor profile.  To make the profile name 
unique for repeated instances, you must add an IML type name modifier.  In 
Example 5, the type name modifiers are shown as a and b. 

The type name modifier acts as an appendix to the name of the generated type. 
These are declared in ShortStackDev.h and will be SFPTpressureSensor__a 
and SFPTpressureSensor__b in this example, but you can reference them as 
SFPTpressureSensor(a) and SFPTpressureSensor(b) in your program.  

Examples 1 to 3 use pressure for the type name modifier.  The technical 
requirement is that the type name modifier must be a valid part of an identifier 
and, when combined with the resource type name, must yield a type name unique 
within your program.  You can use the name of the variable declared, as shown in 
Examples 1 through 3, as a simple way to meet this requirement. 

IzoT Interface Interpreter also generates ShortStackDev.c, which you must 
compile and link with your program.  This file implements the code to initialize 
your blocks, datapoints and properties, and all data and functions necessary to 
configure the LonTalk/IP Compact API and ShortStack Micro Server. 

The IzoT Interface Interpreter also generates an interface file with a XIF file 
name extension, which shares the base name of your C source file.  The XIF file is 
useful when integrating your device in a managed network of devices. 

The Simple Application Example 
This following is a commented review of the complete simple application 
example that can be found in the example/rpi/simple folder within the IzoT 
ShortStack repository.  
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Part 1: Include files and global preferences 
#include "ShortStackDev.h" 
#include "ShortStackApi.h" 
#include "ldv.h" 
 
//@IzoT Option target("shortstack-classic") 
//@IzoT Option programId("9F:FF:FF:08:16:01:04:00") 
//@IzoT Option \ 
//@IzoT Server \ 
//@IzoT ("../../../microserver/standard/SS430_FT6050_SYS20000kHz") 
 

Part 2: Interface definition 
The application implements two blocks based on the standard closed loop 
actuator profile, each implementing an input and output pair of network 
variables.  This profile does not stipulate a particular data type for these network 
variables.  In this example, the standard SNVT_volt type is used. 

Because the application implements more than one block, it is also required to 
implement a standard Node Object block.  The Node Object must be declared 
first, and provides general diagnostics and housekeeping services. 

SFPTnodeObject(node) nodeObject; //@IzoT block \ 
//@IzoT external("nodeObject"), \ 
//@IzoT onUpdate(nviRequest, onNviRequest),\ 
//@IzoT implement(nciLocation), implement(nciNetConfig), \ 
//@IzoT implement(nciDevMajVer, init=1), \ 
//@IzoT implement(nciDevMinVer, init=0) 
 
SFPTclosedLoopActuator(volt, SNVT_volt) driver[2]; //@izot block \ 
//@IzoT external("volts"), \ 
//@IzoT onUpdate(nviValue, onDriverUpdate), \ 
//@IzoT implement(nciLocation, init="room 101") 

 

Part 3: Minimum Node Object behavior 
The onNviRequest update event handler, associated with the Node Object’s 
nviRequest input, implements the Node Object’s behavior.  The following code 
shows the minimum behavior required. 

Most applications implement additional Node Object features such as support for 
disable, override, or self-test functionality.  The source code within the repository 
contains more comments to guide you in the process of supporting those. 

void onNviRequest( 
    const unsigned index,  
    const LonReceiveAddress* const pSourceAddress 
) 
{ 
    uint32_t flags = LON_GET_UNSIGNED_DOUBLEWORD( 
        nodeObject.nvoStatus.data.flags 
    ); 
    uint16_t object_id = LON_GET_UNSIGNED_WORD( 
        nodeObject.nviRequest.data.object_id 
    ); 
    object_request_t request = 
nodeObject.nviRequest.data.object_request; 
 
    flags &= ~(ST_REPORT_MASK | ST_INVALID_ID | 
ST_INVALID_REQUEST); 
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    if (object_id >= LON_FB_COUNT) { 
        object_id = 0; 
        flags |= ST_INVALID_ID; 
    } else if (request == 
            RQ_REPORT_MASK) { 
        flags = ST_REPORT_MASK | ST_INVALID_ID | 
ST_INVALID_REQUEST; 
    } else if (request == RQ_NORMAL) { 
        flags = 0; 
    } else if (request == 
            RQ_UPDATE_STATUS) { 
        flags = 0; 
    } else if (request == 
            RQ_CLEAR_STATUS) { 
        flags = 0; 
    } else { 
        flags = ST_INVALID_REQUEST; 
    } 
 
    LON_SET_UNSIGNED_WORD( 
        nodeObject.nvoStatus.data.object_id, object_id 
    ); 
    LON_SET_UNSIGNED_DOUBLEWORD( 
        nodeObject.nvoStatus.data.flags, flags 
    ); 
} 

 

Part 4: Application algorithm.  
This simple application implements a trivial algorithm: when one of the volt 
inputs receives an update, the application adds 3 to its value, assigns the result 
to the corresponding output, and propagates the output.  

Trivial as this might be, this is a good way to start with IzoT ShortStack. You can 
use a network tool such as the NodeUtil command-line utility to write a value to 
the input and observe the computed value in the output.  This confirms a 
complete round trip from your network tool though the Micro Server and the link 
layer into your onDriverUpdate event handler, and the return trip back down 
through the link layer and Micro Server and back to your tool.  

void onDriverUpdate( 
    const unsigned index,  
    const LonReceiveAddress* const pSourceAddress 
) 
{ 
    for (int i = 0; i < sizeof(driver) / sizeof(driver[0]); ++i) { 
        if (index == driver[i].nviValue.global_index) { 
            LON_SET_UNSIGNED_WORD( 
                driver[i].nvoValueFb.data, 
                3 + LON_GET_UNSIGNED_WORD(driver[i].nviValue.data) 
           ); 
            LonPropagateNv(driver[i].nvoValueFb.global_index); 
            break; 
        } 
    } 
} 

 
Your device must be in the online and configured state in order to receive input 
data.  You can use a network tool or the NodeUtil console utility to set this state. 
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Part 5: Driver configuration 
Your serial driver defines an LdvCtrl control block type for optional driver 
configuration data.  The example driver for Raspberry Pi uses this to be informed 
of serial device selection and GPIO pin assignments for the link layer control 
signals.  

The LonTalk/IP Compact API makes no assumptions on the LdvCtrl type, but 
simply passes this through to your driver. 

static LdvCtrl ldvCtrl = { 
    ”/dev/ttyAMA0”, 38400, 
    { 10, 9, 11 } // RTS, CTS, HRDY GPIO pins 
}; 
 
 

Part 6: The main() function 
int main(int argc, char* argv[], char* env[]) 
{ 
    LonApiError sts = LonInit(&ldvCtrl); 
 
    while (sts == LonApiNoError) { 
        LonEventHandler(); 
    } 
 
    LonExit(); 
    return LonApiNoError; 
} 
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4 

 Integrating the IzoT Interface 
Interpreter 

This chapter discusses how you can integrate the IzoT 
Interface Interpreter with your build process or development 
environment. 
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Input and Output Files 
The IzoT Interface Interpreter consumes input from one of your project’s C or 
C++ source files.  This is called the IML source file for the purpose of this 
discussion, however, the IML source file is a regular C source file with IML 
contained within C comments.  The IML source file must be processed by the 
IzoT Interface Interpreter prior to processing the file with your C or C++ 
compiler.  

The IzoT Interface Interpreter generates the following output files:  

• ShortStackDev.h must be included in all your application source code 
which uses the ShortStack API or accesses portions of the device 
application’s network interface, such as datapoints or blocks.  The IML 
source file must also include the ShortStackDev.h file. 

• ShortStackDev.c includes all code generated by the IzoT Interface 
Interpreter.  This file must be compiled and linked with your application 
after the IzoT Interface Interpreter finished with success.  

• A device interface file is also generated.  This file shares the basename of 
the IML source file and carries a .XIF file extension.  The .XIF file is used 
for integration with some network tools, and plays no role in the C 
compilation and link process.  

Pre-build Step or Script Method 
The easiest method to integrate the IzoT Interface Interpreter with your 
development environment is to configure the interface interpreter as a pre‐build 
step, for example, when using a script‐driven build process.  Many integrated 
development environments such as the Eclipse IDE also support user‐defined 
pre‐build steps.  

To launch the IzoT Interface Interpreter as a pre‐build step, configure your build 
steps to point to iii.exe and execute with the --target shortstack-classic 
option, followed by the path to the IML source file, as shown in the following 
example:  

iii.exe --target shortstack-classic main.c 

The Interface Interpreter generates output in the location of the IML source file.  

The IzoT Interface Interpreter is installed into the bin sub‐folder of your 
LONWORKS folder, C:\Program Files (x86)\LonWorks by default for 64-bit 
versions of Windows. 
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Makefile Method 
Projects using explicitly declared makefiles (or similar build managers) can link 
ShortStackDev.o with the other object files, but use special rules to implement 
a make‐driven pre‐compilation execution of the IzoT Interface Interpreter. 

The principle of operation is outlined in the following sketch: 
all: pre-build main-build 
main-build: myapp.elf 
 
# III output 
pre-build: rm ShortStackDev.c ShortStackDev.h myapp.xif  
 
myapp.elf: ShortStackDev.o $(OTHER_OBJS) 
 # link 
 
ShortStackDev.o: ShortStackDev.c 
 # compile 
 
# IML source 
ShortStackDev.c: 
 iii.exe --target shortstack-classic myapp.c  
 
%.o: %.c 

# compileOutput Files in Detail 
The IzoT Interface Interpreter takes all of the information that you provide and 
automatically generates the following files that are needed for your ShortStack 
application: 

• ShortStackDev.h 

• ShortStackDev.c 

• main.xif 

Together, the generated files and the files for API and driver code form the 
ShortStack application framework, which includes everything you need to begin 
device development.   

To include these files in your application, include the ShortStackDev.h file in 
your ShortStack application using an ANSI C #include statement, and add the 
ShortStackDev.c file to your project so that it can be compiled and linked. 

You do not normally need to edit any of the generated files.  

The following sections describe the generated files. 

ShortStackDev.h 
The ShortStackDev.h file is the main header file that the IzoT Interface 
Interpreter produces.  This file provides the definitions that are required for your 
application code to interface with the application framework and the ShortStack 
LonTalk/IP Compact API, including C extern references to public functions, 
variables, and constants generated by the IzoT Interface Interpreter.  
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Include this file with all source files that make your application.  You do not 
normally have to edit this file.  Any manual changes to this file are not retained 
when you re-run the IzoT Interface Interpreter.  The file contains comments 
about how you can override some of the preferences and assumptions made by 
the utility. 

ShortStackDev.c 
The ShortStackDev.c file is the main source file that the IzoT Interface 
Interpreter produces.  This file includes the ShortStackDev.h file header file, 
declares the network variables, configuration properties, and blocks, event 
dispatchers and initialization functions.  

It defines variables and constants, including the network variable table and the 
device’s initialization data block, and a number of utility functions.  

The ShortStackDev.c file also defines the appInitData structure, which 
contains data that is sent to the Micro Server during initialization (in the 
LonNiAppInit and LonNiNvInit messages).  Table 6 describes the fields of this 
data structure.    

Although you can modify this data structure, you should not need to unless you 
are developing an application that supports multiple device interfaces.  If you do 
modify this data, you must ensure that other control data remains consistent 
with your changes, including the siData array and the nvTable (both in 
ShortStackDev.c), and the device interface files (XIF and XFB file extensions). 
Other data that also must remain consistent with your preferences are 
definitions contained in the ShortStackDev.h file, including those that 
configure the API options. 

Table 6. Fields of the appInitData Structure 

Field Description 

appInitData.signature A 16-bit number that identifies the current 
application.  The IzoT Interface Interpreter 
generates a new number whenever you regenerate 
the application framework.  The Micro Server uses 
this number to distinguish repeated initialization 
of the same application from initialization of a new 
application. 

The example implementations also use the 
signature to sign persistent data to ensure the 
applicability of this data when loaded into the 
application at startup.  

appInitData.programId The 48-bit program ID in binary form. 
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Field Description 

appInitData.communication The 96-bit communication parameter record that 
is used to correctly initialize communications with 
the LonTalk/IP or LON network. 

This data is optional in the IzoT ShortStack SDK, 
and normally set to all zeroes.  All-zero 
communication parameters have no effect, causing 
the Micro Server to use its default parameters.  

A new 
LonCustomCommunicationParameters() 
callback is supported in ShortStackHandlers.c 
which allows advanced applications to select a 
communication parameter record for use with the 
Micro Server.  

This is controlled with the 0x40 flag in the 
preferences byte. 

appInitData.preferences An 8-bit vector of flags.  Includes 0x20 to enable 
explicit addressing, 0x40 to select the Micro 
Server’s default communication parameters, and a 
5-bit value for the service-pin-held delay in 
seconds (mask 0x1F), where zero disables the 
feature.  

  
The remaining flag 0x80 is reserved for future use, 
and should be kept cleared (zero).   

appInitData.nvCount One byte for the total number of network variables 
in the application.  This number should not exceed 
the Micro Server’s maximum network variable 
count (also known as the Micro Server’s network 
variable capacity). 

appInitData.nvData[] One byte for each network variable.  Each byte 
includes the following flags:  priority (0x80), 
output (0x40), service type (acknowledged [0x00], 
repeated [0x10], unacknowledged [0x20]), and 
authenticated (0x08). 

Compile and link the ShortStackDev.c file with your application, but you do not 
normally have to edit this file.  Any manual changes to this file are not retained 
when you rerun the IzoT Interface Interpreter, but the file contains comments 
about how you can override some of the preferences and assumptions made by 
the utility. 

main.xif 
The IzoT Interface Interpreter generates the device interface file for your project 
in the XIF format.  
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For this file, main is the name of the C source file which is processed by the IzoT 
Interface Interpreter. 

These files comply with the LONMARK device interface format.  

Important:  If your device is defined with a non-standard program ID, the device 
interface file cannot contain interoperable LONMARK constructs.   
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5 

Selecting and Creating a 
ShortStack Micro Server 

This chapter describes how to create a ShortStack Micro Server using 
one of the standard ShortStack Micro Server images that are included 
with the IzoT ShortStack SDK, and how to load them into a Smart 
Transceiver or Neuron Chip.   
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Overview 
This chapter describes how to select a Micro Server, how to load the ShortStack 
firmware image into the Micro Server, how to initialize the Micro Server, and 
how to work with non-volatile memory within the Micro Server.  For information 
about creating a custom Micro Server, see Custom Micro Servers.   

Selecting the Micro Server Hardware 
You can build a ShortStack Micro Server using any Echelon Smart Transceiver 
or Neuron Chip.  The Echelon Smart Transceiver integrate a Neuron core with a 
free topology (FT) twisted pair transceiver or a power line (PL) transceiver.  The 
Echelon FT Smart Transceivers include the FT 6050, FT 6010, FT 5000, FT 3150, 
and FT 3120.  The Echelon PL Smart Transceivers include the PL 3170, PL 3150, 
and PL 3120.  The Echelon Neuron Chips include a Neuron core and do not 
include an integrated transceiver.  The Neuron Chips can be used with other 
transceivers such as RS-485 transceivers.  The Echelon Neuron Chips include the 
Neuron 6050 and the Neuron 5000. 

You can develop custom hardware using an Echelon Smart Transceiver or 
Neuron Chip.  For device evaluation and development with the Smart 
Transceivers, you can use the Echelon FT 6000 EVB or FT 5000 EVB evaluation 
boards, which include optional Electronic Industries Alliance (EIA) standard RS-
232-C level shifters, jumpers, and I/O connectors that you can use to prototype a 
ShortStack interface to a host with an RS-232 interface. 

More information about Echelon’s evaluation boards is available from the 
Echelon Web site at echelon.com. 

If you are developing a new FT device that must be compatible with existing 
LON FT devices, the FT 6050 provides the best performance and lowest 
implementation cost, and requires the smallest board space.  If you are 
developing a new FT device that does not require interoperability with existing 
LON FT devices, the FT 6010 provides the best performance and lowest 
implementation cost, and requires the smallest board space.  If you are 
developing a new PL device, the PL 3120 provides the best performance and 
lowest implementation cost for applications that do not require a large number of 
network variables.  For applications that require many network variables, the PL 
3150 provides the best performance and lowest implementation cost.  If you are 
developing a new device that will not be using an FT or PL interface, the Neuron 
6050 provides the best performance and lowest implementation cost, and 
requires the smallest board space. 

Micro Server Clock Rate 
The Micro Server clock rate determines the available bit rate for the link-layer 
transfer and the overall performance of the Micro Server.  For Series 6000 or 
5000 devices, the clock rate is determined by the internal system clock rate.  You 
can specify a Series 6000 or 5000 device’s internal system clock rate within the 
device’s hardware template when you create a custom Micro Server.  For Series 
3100 devices, the clock rate is determined by the external crystal or oscillator.  
For the standard Micro Servers, the internal system clock rate is fixed.  Each 
device type has its own clock rate maximum: 

http://www.echelon.com/
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• For PL 3120, PL 3150, and PL 3170 Smart Transceivers, the highest 
possible external clock rate is 10 MHz.  Typical PL 3120, PL 3150, or PL 
3170 ShortStack devices use a 10 MHz crystal.   

• For FT 3120 Smart Transceivers, the highest possible external clock rate 
is 40 MHz.  Typical FT 3120 ShortStack devices use a 20 MHz crystal. 

• For FT 3150 Smart Transceivers, the highest possible external clock rate 
is 20 MHz.  However, using a flash memory device for off-chip storage 
limits the Micro Server’s clock rate to 10 MHz.  Thus, typical FT 3150 
ShortStack devices use a 10 MHz crystal. 

• For FT 6050 or FT 5000 Smart Transceivers, the external clock rate is 
always 10 MHz, from which the chips generate an on-chip system clock 
rate (the clock multiplier is configurable).   The highest possible system 
clock rate is 80 MHz.  For this highest system clock rate, the link-layer 
transfer speed is very high, and generally non-standard for most UARTs 
and USARTs.  That is, not all host processors will support all possible bit 
rates for the highest system clock rates.  The standard Micro Server uses 
a 20 MHz system clock rate, which allows standard bit rates to be used. 

See Selecting the Link-Layer Bit Rate for more information about requirements 
for the bit rate. 

Micro Server Memory Map 
The Micro Server needs its own data storage, which it maintains in mapped non-
volatile memory.  For an FT 3120, PL 3120, or PL 3170 Smart Transceiver the 
memory map is fixed, but Micro Servers that are based on FT 3150, PL 3150, or 
FT 5000 Smart Transceivers can use a variety of memory maps.  The Series 6000 
Smart Transceivers use an auto-tuning link algorithm which automatically 
configures the effective memory map to meet the application requirements.  The 
memory map for all standard Micro Servers is fixed, but you can create a custom 
Micro Server to provide a different memory map.  

For example, additional RAM can be used for creating 3150 Micro Servers that 
support ISI-DAS devices or other advanced Micro Server configurations.  

A Micro Server with large off-chip flash memory can store additional Micro 
Server code, which allows the device to embed feature-rich versions of the ISI 
self-installation protocol, or to implement a feature-rich custom Micro Server.  A 
Micro Server with smaller off-chip flash memory areas leave larger areas of 
unused memory in the Micro Server’s physical memory map, which allows the 
application to use direct memory files (DMF).  Larger areas of such unused 
memory allow the application to store configuration property files in the direct 
memory files. 

A 3120 or 3170 Smart Transceiver provides up to 4 KB of on-chip non-volatile 
memory, whereas a 6050, 5000, or 3150 Smart Transceiver uses off-chip flash 
memory which can provide 32 KB or more of non-volatile memory.  For many 
applications, the memory provided with the FT 3120, PL 3120, or PL 3170 Smart 
Transceivers is sufficient, but more complex ShortStack applications that 
implement a large number of network variables, include a feature-rich self-
installation library, or require an increased buffer configuration, could require a 
Micro Server based on an FT 6050, FT 5000, FT 3150, or PL 3150 Smart 
Transceiver.  
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For FT 3150 and PL 3150 devices, the standard ShortStack Micro Server images 
require a flash device that supports a 128-byte sector size, such as the Atmel 
AT29C512 (64 KB) or AT29C010A (128 KB) flash device.  The memory map used 
in the Micro Server images is declared for a 32 KB flash device, with a 128-byte 
sector size (which yields a memory map of 0x0000 to 0x7FFF).  This memory map 
leaves significant memory available for applications to use the direct memory file 
access method; see Supporting Direct Memory Files for more information. 

For FT 5000 devices, the standard ShortStack Micro Server images require an 
SPI or I2C EEPROM or SPI flash memory device; see the Series 5000 Chip Data 
Book for additional information about the external memory requirements for an 
FT 5000 Smart Transceiver.  The memory map used in the Micro Server images 
is declared for a 32 KB EEPROM device.  This memory map leaves significant 
memory available for applications to use the direct memory file access method; 
see Supporting Direct Memory Files for more information. 

For devices based on a Series 6000 chip such as the FT 6050 Smart Transceiver, 
a serial flash memory part is required  Echelon’s Series 6000 Chip Data Book 
provides detailed specifications on the electrical interfaces, mechanical 
interfaces, and operating characteristics for the FT 6050 Smart Transceiver, FT 
6010 Smart Transceiver, and Neuron 6050 Processor. 

Preparing the ShortStack Micro Server 
You need to load the Micro Server executable image into the Micro Server 
hardware before you can use it as a ShortStack device.  After you complete 
development, you can load the Micro Server image into your ShortStack device as 
part of your manufacturing process.   

You typically load the Micro Server only once.  However, if you load a new 
version of the Neuron firmware into a Smart Transceiver, be sure to load an 
updated Micro Server image into the Smart Transceiver at the same time. 

After you load a new Micro Server image, the first initialization of the Micro 
Server, together with the initialization of the host application, can take up to one 
minute to complete.  The Micro Server is unresponsive to the network until this 
initialization is complete.  After the initialization is complete, resetting or power-
cycling the Micro Server with the same host application completes much more 
quickly. 

Reloading a Micro Server with an updated version of the Micro Server firmware 
could require changes in the serial driver or the API that resides in your host 
processor.  For example, migrating an application from the an earlier version of 
the ShortStack Developer’s Kit to the IzoT ShortStack SDK requires some 
changes to the serial driver because you use an updated ShortStack Micro 
Server.  Loading a Micro Server with a version that is incompatible with the 
current host application can sever link-layer communications. 

The serial link layer communications used with IzoT Shortstack are compatible 
with ShortStack FX. 

Table 7 summarizes the processor and memory combinations that you can use 
with the standard, pre-compiled, Micro Server images, along with the files and 
tools that you use to program each.  See Firmware Image File Names for a 
description of the Micro Server image file extensions and file naming convention. 
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Table 7. Loading the Micro Server Executable Image 

Smart 
Transceiver 

Memory 
Type 

Micro 
Server 
Image File 
Extension 

Micro Server 
Image 
Programming 
Tool 

Example 
Programming 
Tools 

FT 3120, PL 
3120, or PL 
3170 Smart 
Transceiver 

On-chip 
EEPROM 

APB, NDL, 
or NEI  

Network 
management 
tool 

NodeLoad utility  

IzoT 
Commissioning 
Tool 

NFI PROM 
programmer 

A universal 
programmer, such 
as one from BPM 
Microsystems or 
HiLo Systems 

FT 3150 or 
PL 3150 
Smart 
Transceiver 

Off-chip 
flash 

APB or 
NDL 

Network 
management 
tool 

NodeLoad utility  

IzoT 
Commissioning 
Tool 

NEI Universal chip 
programmer  
or in-circuit 
flash 
programmer 

A universal 
programmer, such 
as one from BPM 
Microsystems or 
HiLo Systems 

FT 5000 
Smart 
Transceiver 

Off-chip 
EEPROM 
or flash 

APB or 
NDL 

Network 
management 
tool 

NodeLoad utility  

IzoT 
Commissioning 
Tool 

NME or 
NMF 

EEPROM or 
flash 
programmer 

A universal 
programmer, such 
as one from BPM 
Microsystems or 
HiLo Systems 

In-circuit 
programmer, such 
as Total Phase™ 
Aardvark™ 
I2C/SPI Host 
Adapter 

FT 6050 
Smart 
Transceiver 

Off-chip 
flash 
memory 

APB or 
NDL 

Network 
management 
tool 

NodeLoad utility  

IzoT 
Commissioning 
Tool 
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Smart 
Transceiver 

Memory 
Type 

Micro 
Server 
Image File 
Extension 

Micro Server 
Image 
Programming 
Tool 

Example 
Programming 
Tools 

 

NMF 

 

Flash 
programmer 

A universal 
programmer, such 
as one from BPM 
Microsystems or 
HiLo Systems 

In-circuit 
programmer, such 
as Total Phase™ 
Aardvark™ 
I2C/SPI Host 
Adapter 

Notes: 

• Information about the NodeLoad utility and the IzoT Commissioning tool 
is available from echelon.com. 

• Information about BPM Microsystems programmer models is available 
from bpmicro.com.  The Forced Programming option in the menu is 
provided only to refresh the internal memory contents and should not be 
used to program new devices.  In this mode, the programmer simply 
reads out the contents of the memory and rewrites them.  

• Information about HiLo Systems manual programmer models is available 
from hilosystems.com.tw.  

• Information about TotalPhase programmers is available from 
totalphase.com. 

For device production, you typically use a universal chip programmer (where the 
chip is programmed prior to soldering it to the device circuit board) or an in-
circuit programmer.  For development, you typically use in-circuit programming 
(where the chip is part of the device during programming) for simplicity rather 
than programming speed. 

Firmware Image File Names 
The base file names for the standard Micro Server firmware images use the 
following naming convention:   

SS430_ + image base file name + _ + 5-digit clock speed + kHz + file extension 

For a Series 3100 device, the clock speed figure contained in the file name refers 
to the external clock speed (for example, 10000kHz for a 10 MHz crystal).  For 
Series 5000 or Series 6000 devices, because the external clock speed is fixed at 10 
MHz, the clock speed figure embedded in the image file name refers to the 
internal system clock frequency.  The system clock rate is prefixed with SYS to 
highlight this difference.  Micro Servers created for pre-production parts include 
ES (to signify Engineering Sample) in the name. 

http://www.echelon.com/
http://www.bpmicro.com/
http://www.hilosystems.com.tw/
http://www.totalphase.com/
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Examples:   

• The universal chip programmer standard image for the PL 3120-E4 
Smart Transceiver has the following name:  
SS430_PL3120E4_10000kHz.nfi. 

• The NodeLoad standard image for the ISI-enabled FT 6050 Smart 
Transceiver has the following name:  
SS430_FT6050ISI_SYS20000kHz.ndl. 

The firmware images with these names are located in the 
[ShortStack]\microserver\standard directory.  

When you use the LonTalk Interface Developer utility, it selects the appropriate 
set of Micro Server image files based on your preferences, and copies them to the 
project’s output folder.  These image files have the project’s base name (rather 
than the image’s base name) and the appropriate file extension. 

The IzoT Interface Interpreter does not copy or rename the Micro Server image 
files.  Instead, the IzoT Interface Interpreter assumes that you provide the 
repository of applicable Micro Server image files in a suitable location, and that 
your application’s C source code references the chosen Micro Server.  The IzoT 
Interface Interpreter supports a project-specific Micro Server repository as well 
as one or more repositories in different locations on your computer or computer 
network. 

Table 8 lists the valid file extension values for the firmware image files. 

Table 8. Micro Server Image File Extensions 

Extension Description 

APB Micro Server firmware image file for network management 
tools, such as the IzoT Commissioning tool.  Applies to all 
Smart Transceivers. 

NDL Micro Server firmware image file for the Nodeload utility.  
Applies to all Smart Transceivers. 

NEI, NXE Micro Server firmware image file for a universal chip 
programmer (for 3150 or 5000 Smart Tranceivers) or for image 
download tools (for 3120 or 3170 Smart Transceivers). 

NFI Micro Server programmable firmware image file for a 
universal chip programmer.  Applies only to 3120 and 3170 
Smart Transceivers. 

NME, NMF Micro Server programmable firmware image file for a 
universal chip programmer.  Applies only to Series 5000 or 
6000 chips. 

In addition, the [ShortStack]\microserver\standard directory includes files 
with the following file extensions for each Micro Server: 

• XIF – The Micro Server’s device interface (XIF) file (used by the IzoT 
Interface Interpreter and the LonTalk Interface Developer tools) 
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• SYM – The Micro Server’s device symbol file (used by the IzoT Interface 
Interpreter and the LonTalk Interface Developer tools) 

• H – A C header file that is shared between the Micro Server and the host 
application to define the location of ISI callbacks and other 
implementation details for an ISI application (present only for Micro 
Servers that support the ISI protocol) 

Loading an FT 3120, PL 3120, or PL 3170 Smart 
Transceiver 

Because a 3120 or 3170 Smart Transceiver does not support external memory, 
the only memory to program is on-chip EEPROM, which you program over the 
network or with a universal chip programmer that supports the 3120 or 3170 
Smart Transceiver. 

To load the ShortStack Micro Server firmware using a universal chip 
programmer or in-circuit programmer, you can use: 

• A 3120 chip programmer to load a ShortStack Micro Server’s NEI file into 
the 3120 or 3170 Smart Transceiver’s non-volatile memory.  

• A general-purpose programmer that supports the 3120 or 3170 Smart 
Transceiver, such as a BPM Microsystems or Hi-Lo Systems universal 
programmer, to load a ShortStack Micro Server’s NFI file into the 3120 or 
3170 Smart Transceiver’s non-volatile memory. 

To load the ShortStack Micro Server firmware using in-circuit programming, use 
the NodeLoad utility or the IzoT Commissioning tool.  See Using a Network 
Management Tool for In-Circuit Programming for information about using these 
tools to load a ShortStack Micro Server. 

Do not use the IzoT Commissioning tool for the initial load of a ShortStack Micro 
Server into a power line Smart Transceiver.  You can use the IzoT 
Commissioning tool for any subsequent loads as long as the channel type does not 
change (for example by adding or removing support for the CENELEC protocol).  
See Using the IzoT Commissioning Tool with ShortStack. 

Loading an FT 3150 or PL 3150 Smart Transceiver 
A device based on a 3150 Smart Transceiver always has non-volatile off-chip 
memory (PROM, EEPROM, or flash memory), and might also have off-chip RAM.  
The ShortStack firmware must reside in the non-volatile memory.  The standard 
Micro Servers for FT 3150 and PL 3150 Smart Transceivers support offchip flash 
memory with at least 32 KB and 128 bytes per sector. 

You can load the ShortStack Micro Server firmware into a flash memory device, 
such as an Atmel AT29C512 or AT29C010A flash memory device, for an Echelon 
FT 3150 Smart Transceiver or PL 3150 Smart Transceiver.  

To load the ShortStack firmware use an appropriate flash programmer to load a 
ShortStack Micro Server’s NEI file into the 3150 Smart Transceiver’s off-chip 
memory.   

Although you can reload the FT 3150 or PL 3150 Micro Server using in-circuit 
programming, you need to perform an initial load for the Micro Server firmware 
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using a universal chip programmer or in-circuit programmer.  This initial load is 
required because the 3150 Smart Transceiver does not contain boot loader code 
on chip. 

After the off-chip non-volatile memory part has been initially programmed and 
inserted into the device, you can reload the Micro Server image using in-circuit 
programming using network management tools such as the NodeLoad utility or 
the IzoT Commissioning tool.  See Using a Network Management Tool for In-
Circuit Programming for information about using these tools to load a 
ShortStack Micro Server. 

Loading a Blank Application 
IzoT ShortStack SDK device development does not require the loading of an 
initially blank application into the Smart Transceiver.  However, for FT 3150 or 
PL 3150 Smart Transceivers, you can load a blank application into off-chip 
memory to clear the off-chip memory.   

Although a device normally performs initialization once for a given firmware 
image, it is possible to force this process to occur again with the same firmware 
image by resetting the 3150 Smart Transceiver to the blank state (the initial 
state of the EEPROM on a newly manufactured Smart Transceiver) using the 
EEBLANK utility.   

This utility is available as a free download from echelon.com/downloads, in the 
Development Tools category.  To reset a 3150 chip's state, program the 
appropriate EEBLANK image (there is an image for each Smart Transceiver 
clock rate) into a 3150 flash memory chip and power up the device.  For a short 
period, the service LED flashes, then it changes to full on to indicate that the 
chip has been returned to the blank state.  The next time that any image is 
loaded into the flash memory for this device, the on-chip EEPROM is re-
initialized. 

Loading an FT 5000 Smart Transceiver 
A device based on a Series 5000 Chip always has non-volatile off-chip memory 
(EEPROM or flash memory).  The ShortStack firmware must reside in the non-
volatile memory.  The standard Micro Server for an FT 5000 Smart Transceiver 
supports a 32 KB EEPROM memory part.  ShortStack devices that use an FT 
5000 Smart Transceiver with a different memory map or different non-volatile 
memory types (such as flash memory), need to use a custom Micro Server for the 
intended configuration.  Note that there is no standard Micro Server image for a 
Neuron 5000 Processor. 

To load the ShortStack firmware use an appropriate EEPROM or flash 
programmer (such as the Total Phase Aardvark I2C/SPI Host Adapter) to load a 
ShortStack Micro Server’s NME or NMF file into the FT 5000 Smart 
Transceiver’s off-chip memory.  For the FT 5000 EVB, connect the programmer to 
the JP23 header, as described in the FT 5000 EVB Hardware Guide. 

To load the Micro Server image using in-circuit programming, use network 
management tool such as the NodeLoad utility or the IzoT Commissioning tool.  
See Using a Network Management Tool for In-Circuit Programming for 
information about using these tools to load a ShortStack Micro Server. 

http://www.echelon.com/downloads
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Do not use the IzoT Commissioning Tool for the initial load of a ShortStack Micro 
Server into an FT 5000 Smart Transceiver or Neuron 5000 Processor.  You can 
use the IzoT Commissioning tool for any subsequent loads as long as the Micro 
Server’s system clock multiplier does not change.  See Using the IzoT 
Commissioning Tool with ShortStack. 

Loading an FT 6050 Smart Transceiver 
A device based on a Series 6000 Chip always has non-volatile off-chip serial flash 
memory.  The ShortStack firmware needs to reside in the non-volatile memory.  
The standard Micro Server for an FT 6050 Smart Transceiver supports all of the 
supported flash memory parts listed in the Series 6000 Data Book. 

To load the ShortStack firmware use an appropriate flash programmer (such as 
the Total Phase Aardvark I2C/SPI Host Adapter) to load a ShortStack Micro 
Server’s NMF file into the FT 6050 Smart Transceiver’s off-chip memory.  For the 
FT 6050 EVB, connect the programmer to the JP23 header, as described in the 
FT 6050 EVB Hardware Guide. 

To load the Micro Server image using in-circuit programming, use network 
management tool such as the NodeLoad utility or the IzoT Commissioning tool.  
See Using a Network Management Tool for In-Circuit Programming for 
information about using these tools to load a ShortStack Micro Server. 

Do not use the IzoT Commissioning Tool for the initial load of a ShortStack Micro 
Server.  You can use the IzoT Commissioning tool for any subsequent loads as 
long as the Micro Server’s system clock multiplier does not change.  See Using the 
IzoT Commissioning Tool with ShortStack. 

Using a Network Management Tool for In-Circuit 
Programming 

To load the ShortStack firmware images using in-circuit programming, you can 
use network management tools such as Echelon’s NodeUtil or NodeLoad utilities, 
or the IzoT Commissioning tool. 

Network management tools load Smart Transceiver application images (for a 
ShortStack device, this image is the Micro Server firmware) and normally 
complete the load process by resetting the device, waiting for the device to 
complete its boot sequence, and confirming a healthy device state.  

However, for the initial loading of a ShortStack Micro Server, this health check is 
likely to fail.  Following the device reset, the Micro Server enters quiet mode, in 
which all network interaction is suspended, and it waits for the host processor to 
complete the ShortStack initialization sequence.  The Micro Server enters quiet 
mode in this case to prevent an incomplete implementation of the LonTalk 
protocol stack from attaching to the network, but in this state it also prevents the 
loader from confirming the successful load completion.  

The NodeLoad utility provides a parameter that suppresses the final reset and 
health check (the -M parameter) that allows an automated load process to 
complete without error.   

For the IzoT Commissioning Tool, you might see an error during the load process; 
if you reset the physical device and re-commission the device from the drawing, 
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the error should resolve itself.  However, you should not use the IzoT 
Commissioning Tool for the initial load of a ShortStack Micro Server.  You can 
use the IzoT Commissiong Tool for any subsequent loads as long as the Micro 
Server’s system clock multiplier does not change. 

After the Micro Server image has been loaded, and while the Micro Server is in 
quiet mode, the Micro Server performs an extensive one-time initialization.  This 
initialization period can take as long as one minute.  The tasks performed during 
initialization depend on the chosen Micro Server hardware and clock settings, as 
well as the features and limits supported by the chosen Micro Server. 

Using the NodeLoad Utility with ShortStack 
You can use the NodeLoad utility to load an NDL file into the Smart 
Transceiver’s non-volatile memory over a LONWORKS network.  To use the 
NodeLoad utility, you need a LONWORKS network interface, such as the U10, 
U20, or U60 DIN Network Interface or the PCLTA-21 PCI Network Interface. 

The NodeLoad utility is designed for loading known and tested application 
images.  If you use the utility to load a custom Micro Server image, or an 
incorrect Micro Server image for the hardware, the NodeLoad utility might not 
prevent you from loading an incompatible image into the Smart Transceiver.  For 
a 3120 Smart Transceiver, it can be difficult to recover from such an 
incompatibility.  For example, if you load an FT Micro Server image into a PL 
Smart Transceiver, you might not be able to recover without desoldering the 3120 
chip and reprogramming it with a device programmer. 

Be sure to specify the -M switch for the nodeload command when you load a 
Micro Server image into a Smart Transceiver for the first time.  This switch 
specifies that a Micro Server image is to be loaded. 

For loading application images during development or manufacture, use the -X 
switch for the nodeload command, combined with the -L switch, to ensure that 
the correct communication parameter and clock multiplier settings are loaded.  
However, you should generally not use the -X switch for devices in field (after 
device deployment) because uploading incompatible communication parameters 
or clock multiplier settings can render the device inoperable or unresponsive to 
network communication. 

Use the NodeLoad utility only for NDL files.  Do not use the utility to load other 
files into a Smart Transceiver. 

Example  
To load an NDL file called SS430_FT6050ISI_SYS20000kHz.ndl over a 
LON network interface named LON1, allowing 20 seconds to press the 
service pin on the destination device, specifying that the utility load a Micro 
Server image file, and specifying that the load use the communication 
parameters included in the NDL file, use the following command: 
nodeload –DLON1 –W20 –M –X –LSS430_FT6050ISI_SYS20000kHz.ndl 

If you copy this command and paste it to a Windows command prompt and it 
does not work, try re-typing the dashes before the command switches.  The 
NodeLoad utility might not recognize the dashes as copied from this PDF 

The result of running the NodeLoad utility should look similar to the 
following: 
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nodeload -DLON1 -W20 -M –X –LSS430_FT6050ISI_SYS20000kHz.ndl 
Echelon NodeLoad Release 1.20 
Received uplink local reset 
Received an ID message from device 1. 
Program ID is 9FFFFF0000000400 
Received uplink local reset 
Resetting node 
Successfully loaded SS430_FT6050ISI_SYS20000KHZ.NDL 
NodeLoad Result: Success; NID=04c5c5e20100. 

The Nodeload utility is available as a free download from echelon.com/downloads, 
in the Development Tools category. 

See the NodeLoad Utility User’s Guide for more information about the NodeLoad 
utility. 

Using the IzoT Commissioning Tool with 
ShortStack 
You can use the IzoT Commissioning Tool to load the ShortStack firmware into a 
Smart Transceiver, or upgrade it.  A blank FT 3120 Smart Transceiver has a 
TP/FT-10 twisted-pair compatible communications interface initialized for a 10 
MHz input clock, and its Neuron firmware state is applicationless.  Likewise, a 
blank PL 3120 Smart Transceiver has a PL-20 power line compatible 
communications interface initialized for a 10 MHz input clock, and its Neuron 
firmware state is applicationless.  If your device uses the appropriate 
communications parameters with a 10 MHz clock, you can load the Micro Server 
and network configuration over the network, using a network management tool, 
such as the IzoT Commissioning tool.  Otherwise, you need to load the Smart 
Transceiver using a Universal chip programmer or in-circuit programmer. 

You cannot use the IzoT Commissioning Tool for the initial load of a Micro 
Server.  Because IzoT Commissioning Tool cannot adjust the device’s on-chip 
system clock multiplier (just as it would not adjust a Series 3100 device’s 
external crystal speed) or a power line Smart Transceiver’s channel 
characteristics (such as addition or removal of support for the CENELEC 
protocol), a blank or recently changed device could become inoperative after 
loading.  After you load the device with the correct properties (either by using a 
Universal chip programmer or the NodeLoad utility), you can use the IzoT 
Commissioning Tool for subsequent loading as long as the system clock 
multiplier or transceiver selection remains unchanged. 

Use a universal chip programmer or in-circuit programmer to perform the initial 
load for the Micro Server.  You can use a universal chip programmer, in-circuit 
programmer, or in-circuit network management tool for subsequent loads.  For 
the initial load for the Micro Server, an in-circuit network management tool can 
report a failed load because the Micro Server enters quiet mode after an initial 
load.  In this mode, the network management tool cannot communicate with the 
Micro Server.  However, for subsequent loads, the Micro Server exits quiet mode 
quickly as initialization completes much faster than the first time. 

 

 

 

http://www.echelon.com/downloads


ShortStack User’s Guide        49 

To load the ShortStack firmware using in-circuit programming using IzoT 
Commissioning Tool: 

1. Add a Device shape to your IzoT Commissioning Tool drawing.   

2. Optional:  Ensure that the host processor is loaded with the ShortStack 
LonTalk/IP Compact API, the appropriate application program and serial 
driver.  This step ensures that the host application, serial driver, and 
Micro Server synchronize after the load. 

3. Ensure that the Smart Transceiver and the host processor are connected 
and able to communicate with one another.  

4. Ensure that the device is connected to the LonTalk/IP or LON network. 

5. Complete the information required by the IzoT Commissioning Tool 
Device Wizard. 
 
Do not select the Commission device checkbox (or use the 
Commissioning Device Wizard). 

After you add the device to the IzoT Commissioning Tool drawing, load the Micro 
Server firmware into the device.  When prompted for the device application 
image name, specify the ShortStack Micro Server image in the Image Name 
field, and specify the device’s interface file that was generated by the IzoT 
Interface Interpreter or the LonTalk Interface Developer utility in the XIF 
Name field.  Do not use the Micro Server’s XIF file. 

In the Image name field, be sure to select the correct Micro Server image for 
your Smart Transceiver.  The IzoT Commissioning Tool can prevent some 
incompatibilities between the hardware, firmware, and Micro Server image, but 
some incorrect configurations are still possible. 

To verify that the entire device is operational, do not import the device’s XIF 
prior to commissioning, but instead specify Upload From Device for the 
External Interface Definition in either the New Device Wizard or the Commission 
Device Wizard.  Because the SI data is located on the host, reading the SI data 
requires communications with the Micro Server through the link layer.  If the 
device can perform such communication successfully, the device is likely to be 
fully operational.  See Performing an Initial Micro Server Health Check for 
additional information about verifying the operational status of the Micro Server. 

To test the device within IzoT Commissioning Tool, right-click the device’s shape 
in the drawing and select Manage.  From the Device Manager window, select 
Test. 

See the IzoT Commissioning Tool User’s Guide for more information about using 
this tool. 

Working with FT 6000 EVB or FT 5000 EVB 
Evaluation Boards 

You can use an Echelon FT 6000 EVB or FT 5000 EVB evaluation board to 
develop your ShortStack application.  However, you need to set the jumpers to 
configure the Smart Transceiver for the ShortStack Micro Server and to set the 
appropriate link-layer bit rate. 
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You can connect the host processor board to an FT 6000 or FT 5000 EVB through 
either of the following connectors: 

• The evaluation board’s general-purpose peripheral I/O connector P201 
(the Gizmo and MiniGizmo connector).  This connection allows the 
ShortStack Micro Server and the host processor to use a common power 
supply with either a 3.3 V or a 5 V signal level.  If the ShortStack Micro 
Server and the host processor use separate power supplies, you must 
ensure that they share a common ground for the link-layer; use the P201 
connector to provide the ground connection.  This connection supports 
either an SCI or an SPI serial driver connection.  See Using the Gizmo 
Interface (SCI or SPI). 
 
For specific wiring instructions between an Echelon FT 6000 or FT 5000 
EVB and a Raspberry Pi mini-computer (or compatible device) see the 
wiring instructions located in [ShortStack]/example/rpi/doc, where 
[ShortStack] is your local folder into which you cloned the IzoT 
ShortStack SDK repository.  

• The on-board EIA-232 connector J201.  This connection includes a Maxim 
Integrated Products MAX3387E AutoShutdown Plus RS-232 Transceiver 
that allows ShortStack link-layer drivers to use standard EIA-232 
communications levels, with handshake signals, and maintain separate 
power supplies.  This connection supports only SCI serial driver 
connections.  See Using the EIA-232 Interface (SCI). 

To enable the FT 5000 EVB or FT 6050 EVB to support a ShortStack application, 
you need to mount or dismount jumpers on the following headers:  JP31, JP32, 
JP201, and JP203.  In addition, you should verify the settings for the JP1, 
JP33, JP202, JP204, and JP205 jumpers.  See the FT 6000 EVB Hardware 
Guide for more information about these jumpers. 

General Jumper Settings for the FT 5000 
EVB and FT 6000 EVB 
Verify and set the following jumpers to run a ShortStack Micro Server on an FT 
6000 EVB or FT 5000 EVB 

Although the jumper settings for headers JP1, JP33, and JP202 are not specific 
to running a ShortStack Micro Server on these evaluation boards, they are 
included so that you can verify the settings for all of the headers on the board. 

JP1 

For the FT 5000 EVB only, leave the jumpers for the JP1 header mounted as 
shown in Figure 5.  This header connects the Smart Transceiver to the 
onboard serial flash and serial EEPROM memory. 

JP1

 
Figure 5. EVB Serial Memory Connections Header (JP1) 
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JP31 

Dismount all of the jumpers from the JP31 header, as shown in Figure 6.  
The settings shown in the figure disconnect the Smart Transceiver’s I/O lines 
from the onboard I/O. 

JP31
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Figure 6. EVB I/O Connections Header (JP31) 

JP33 

The ShortStack Micro Server does not use the onboard LCD display, so you 
can dismount jumper on the JP33 header to remove power to the LCD 
display, as shown in Figure 7. This jumper setting is optional. 

JP33

 
Figure 7. EVB LCD Display Power Header (JP33) 

Using the Gizmo Interface (SCI or SPI) 
To use the P201 Gizmo interface on an FT 6000 EVB or FT 5000 EVB for a 
ShortStack application, set the following jumpers as described below. 

JP32 

Dismount all of the jumpers from the JP32 header, as shown in Figure 8 and 
Figure 9.  The settings for pins 1-10 of the header shown in the figure 
disconnect the Smart Transceiver’s I/O lines from the onboard I/O.   

The 3 PD jumper setting in Figure 10 specifies the SCI interface for the 
ShortStack Micro Server.  The 3 PD jumper setting in Figure 11 specifies the 
SPI interface for the ShortStack Micro Server. 

For SCI, if your ShortStack serial driver does not use the HRDY~ signal, 
mount the jumper for 1 PD to tie the HRDY~ signal low.  For SPI, leave the 1 
PD jumper un-mounted, as shown in the figures. 

If you use a standard Micro Server or a custom ShortStack Micro Server that 
does not use the IO9 pin, you can dismount the 9 PD jumper to engage the 
R226 pull-up.  If you use a custom ShortStack Micro Server that uses the IO9 
pin, you can mount or dismount the 9 PD jumper as needed. 
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Figure 8. EVB I/O Connections Header (JP32) – SCI 
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Figure 9. EVB I/O Connections Header (JP32) – SPI 

JP201 

Dismount all of the jumpers on the JP201 header, except the 10T1IN 
jumper, as shown in Figure 10.  Although this header enables the EIA-232 
interface, and is not needed for the Gizmo interface, the 10T1IN jumper 
connects the R213 pull-up resistor for the Micro Server’s IO10 pin (TXD for 
SCI or HRDY~ for SPI). 
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Figure 10. EVB EIA-232 Communications Header (JP201)  
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JP202 

Mount the jumper for the JP202 header to determine the external power 
source for the EVB, as shown in Figure 11.  

JP202JP202

Power comes 
from J202

(default setting)

Power comes 
from P201

 
Figure 11. EVB Power Selector Header (JP202) 

To use the Echelon power supply that ships with the EVB, mount the jumper 
so that power comes from the J202 connector.  This is the factory-default 
setting.   

To allow the EVB to share a common 5V power supply with your host board, 
mount the jumper so that power comes from pin 25 of the P201 Gizmo 
header. 

When possible, use a single power domain for both the host processor board 
and the EVB: 

1. Important:  Do not connect the external power supply to J202 
connector of the EVB. 

2. Set the EVB’s JP202 jumper to use power from the P201 Gizmo 
header (the left-hand image of Figure 12). 

3. Connect power from the host board to pin 25 of the P201 Gimzo 
header. 

4. Connect the two boards to a common ground (you can use pin 20 or 23 
of the P201 Gizmo header to provide ground to the EVB). 

5. Supply power to the host processor board. 

 

JP203 

Dismount the 0 T2IN and FON PD jumpers, as shown in Figure 12.  These 
jumpers apply to the EIA-232 interface only. 

The figure also shows the 5 PD and 6 PD jumpers configured to specify the 
serial bit rate for the standard 20 MHz Micro Server (76800 bps for SCI; 
76700 bps uplink and 38600 bps downlink for SPI). 
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Figure 12. EVB ShortStack Header (JP203) 

To set the link-layer bit rate for the Micro Server, determine the correct bit 
rate for your device according to Selecting the Link-Layer Bit Rate, and then 
mount the EVB’s 5 PD and 6 PD jumpers on the JP203 header 
appropriately to match the correct settings for the IO5 and IO6 pins on the 
Smart Transceiver.  Depending on which serial driver you use, see either 
Setting the SCI Bit Rate or Setting the SPI Bit Rate for the correct settings for 
the IO5 and IO6 pins. 

JP204 

Mount the jumper for the JP204 header, as shown in Figure 13, to determine 
whether power is supplied to pin 19 of the P201 Gizmo header.  The default 
setting is to provide no power to pin 19, but you can supply either +5 V or 
+3.3 V. 

JP204 JP204

No power to 
Gizmo pin 19

(default setting)

+5V power to 
Gizmo pin 19

JP204

+3.3V power to 
Gizmo pin 19

 
Figure 13. EVB Gizmo Pin 19 Power Selector Header (JP204) 

JP205 

Mount the jumper for the JP205 header to determine whether power is 
supplied to pin 17 of the P201 Gizmo header, as shown in Figure 14.  The 
default setting is to provide no power to pin 17, but you can supply +3.3 V. 

JP205 JP205

No power to 
Gizmo pin 17

(default setting)

+3.3 V power to 
Gizmo pin 17

 
Figure 14. EVB Gizmo Pin 17 Power Selector Header (JP205) 

P201 

To connect your host evaluation board or Micro Server custom board to the 
P201 Gizmo header, you need to create a custom connection cable.  For rapid 
prototyping, you can use short 0.25” (0.635 mm) square socket test leads for 
these connections.  Figure 15 shows the Gizmo header (P201) on the FT 5000 
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EVB.  The figure shows the signal names as used by the FT 6000 EVB and 
FT 5000 EVB, and also shows the signal names for the first 12 pins as used 
by the SCI and SPI interfaces for a ShortStack Micro Server (signal names 
are from the Micro Server’s point of view). 

When connecting an FT 6000 or FT 5000 EVB to a host processor board, be 
sure to provide a solid ground connection between the two boards.  You can 
use pin 20 or 23 of the P201 Gizmo header for this ground connection. 
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Figure 15. The Gizmo Header (P201) with the SCI and SPI Micro Server Signals 

Using the EIA-232 Interface (SCI) 
To use the EIA-232 interface on the FT 6000 or FT 5000 EVB for a ShortStack 
application, set the following jumpers as described below. 

JP32 

Dismount all of the jumpers from the JP32 header, as shown in Figure 16.  
The settings for pins 1-10 of the header shown in the figure disconnect the 
Smart Transceiver’s I/O lines from the onboard I/O.   

The 3 PD jumper setting specifies the SCI interface for the ShortStack Micro 
Server.  If your ShortStack serial driver does not use the HRDY~ signal, 
mount the jumper for 1 PD to tie the HRDY~ signal low.   

If you use a standard Micro Server or a custom ShortStack Micro Server that 
does not use the IO9 pin, you can dismount the 9 PD jumper to connect the 
R226 pull-up.  If you use a custom ShortStack Micro Server that uses the IO9 
pin, you can mount or dismount the 9 PD jumper as needed. 
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Figure 16. EVB I/O Connections Header (JP32) 

JP201 

Mount all of the jumpers on the JP201 header, as shown in Figure 17.  These 
jumper settings connect the Micro Server’s IO1 (HRDY~), IO4 (RTS~), IO8 
(RXD), and IO10 (TXD) signals to the EIA-232 connector.  If your ShortStack 
serial driver does not use the HRDY~ signal, you can dismount the jumper 
for 1 R30. 
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Figure 17. EVB EIA-232 Communications Header (JP201) 
JP203 

Mount the 0 T2IN and FON PD jumpers on the JP203 header, as shown in 
Figure 18.  The figure also shows the 5 PD and 6 PD jumpers configured to 
specify a 76800 bps serial bit rate for the standard 20 MHz Micro Server. 
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Figure 18. EVB ShortStack Header (JP203) 
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The MAX3387E RS-232 transceiver that is used on the FT 5000 EVB is 
configured to enter autoshutdown mode after inactivity of approximately 30 
seconds.  For applications that use high link-layer bit rates, the time required for 
the transceiver to become fully active (approximately 100 µs) might be long 
enough to cause a framing error on the serial link-layer signals.  

To prevent the MAX3387E RS-232 transceiver from entering autoshutdown 
mode, you can mount the FON PD jumper on the JP203 header connect the 
chip’s FORCEON pin (pin 11) to GND, as shown in Figure 18.  Alternatively, 
your SCI serial driver can briefly toggle the ShortStack Micro Server’s HRDY~ 
signal every 10 to 20 seconds during periods of idleness.  This toggle causes the 
MAX3387E transceiver to detect transmission activity and not enter 
autoshutdown mode.   

To set the link-layer bit rate for the Micro Server, determine the correct bit rate 
for your device according to Selecting the Link-Layer Bit Rate, and then mount 
the EVB’s 5 PD and 6 PD jumpers on the JP203 header appropriately to match 
the correct settings for the IO5 and IO6 pins on the Smart Transceiver.  See 
Setting the SCI Bit Rate for the correct settings for the IO5 and IO6 pins. 

The EIA-232 interface requires a null-modem cable for the D-SUB9 EIA-232 
connector (J201) on the EVB.  To define the null-modem EIA-232 interface, use 
the pin connections listed in Table 9.  Keep the total cable length to a maximum 
of 24 inches (0.6 meters). 

Table 9. EIA-232 Header to D-SUB9 Connector Pin Connections 

D-SUB9 Connector Pin Micro Server SCI Signal 

1 N/A  

2 TXD  

3 RXD 

4  HRDY~ 

5 GND 

6 N/A 

7 RTS~ 

8 CTS~ 

9 N/A 

Clearing the Non-Volatile Memory 
In general, if you have a working device, you should not need to clear the onboard 
non-volatile memory. For a working device, you can receive a Service message 
and reload the non-volatile memory as needed.   

However, if it should become necessary to clear the non-volatile memory: 
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For the FT 5000 EVB 
See External Serial Non-Volatile Memory Device Connection (JP1) in the FT 5000 
EVB Hardware Guide. 

At this point, you can reload the board with whatever application is required (for 
example, a ShortStack Micro Server or a Neuron C application).  Because the 
device has returned to its default (empty) state and default settings, use the 
NodeLoad utility with the -X switch when loading an application or Micro Server 
image (see Using the NodeLoad Utility with ShortStack).  Never use the IzoT 
Commissioning Tool to load an image following this procedure 

For the FT 6000 EVB 
Reload the .NMF file using a suitable in-circuit SPI flash programmer.  See 
Performing In-Circuit Programming of the External Serial Memory Device in the 
FT 6000 EVB Hardware Guide. 

Using a Logic Analyzer 
During device development, you can use a logic analyzer, such as the TechTools 
DigiView™ Logic Analyzer, to verify the link-layer signals.  For an example, see 
Performing an Initial Micro Server Health Check.  You can use the JP24 header 
(see Figure 19) on the EVB to connect a logic analyzer to the EVB. 
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Figure 19. Logic Analyzer Header (JP24) 

Working with Mini EVB Evaluation Boards 
You can use an Echelon Mini FX or Mini EVK evaluation board to develop your 
ShortStack application.  However, you need to set the jumpers to configure the 
Smart Transceiver for the ShortStack Micro Server and to set the appropriate bit 
rate. 

You can connect the host processor to a Mini EVB through either of the following 
connectors: 

• The evaluation board’s general-purpose peripheral I/O connector P201 
(the Gizmo and MiniGizmo connector).  This connection allows the 
ShortStack Micro Server and the host processor to use a common power 
supply with a 5V signal level.  By default, this connection supports only 
SCI serial driver connections.  To use the SPI interface, you must drive 
the IO3 (SPI/SCI~) pin high with a 10 kΩ pull-up resistor through the 
Gizmo (P201) header.  See Using the Gizmo Interface (SCI). 
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• The on-board EIA-232 connector J201.  This connection includes a 
Maxim Integrated Products MAX3387E AutoShutdown Plus RS-232 
Transceiver, which allows ShortStack link-layer drivers to use standard 
EIA-232 communications levels and maintain separate power supplies.  
This connection supports only SCI serial driver connections.  See Using 
the EIA-232 Interface (SCI). 

When connecting a Mini EVB to a host processor board, be sure to provide a solid 
ground connection between the two boards. 

To enable the Mini EVB to support a ShortStack application, you must mount or 
dismount jumpers on the following headers:  JP201 and JP203.  See the Mini FX 
PL Hardware Guide for more information about these jumpers. 

Using the Gizmo Interface (SCI) 
To use the P201 Gizmo interface on a Mini EVB for a ShortStack application, set 
the following jumpers as described below. 

JP201 

Dismount all of the jumpers on the JP201 header, as shown in Figure 20.  
This header enables the EIA-232 interface, which is not needed for the Gizmo 
interface.  In the figure, the jumpers for the FT 3120 and 3150 boards are on 
the left, and the jumpers for the PL 3120, 3150, and 3170 boards are on the 
right.   
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Figure 20. Mini EVB EIA-232 Enable Jumpers (JP201) 

JP203 

Dismount the IO0 jumper as shown in Figure 21; this jumper applies to the 
EIA-232 interface only.  The figure also shows the IO5 and IO6 jumpers 
configured to specify a 38 400 bit rate on a Mini FX PL 3150 Evaluation 
Board for a 10 MHz Micro Server.  
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Figure 21. PL 3150 Mini FX ShortStack Enable Jumper (JP203) 

To set the link-layer bit rate for the Micro Server, determine the correct bit 
rate for your device according to Selecting the Link-Layer Bit Rate and then 
mount the Mini EVB’s JP203 jumpers appropriately to match the correct 
settings for the IO5 and IO6 pins on the Smart Transceiver.  See Setting the 
SCI Bit Rate for the correct settings for the IO5 and IO6 pins. 

The PL 3170 Smart Transceiver supports the 38400 bit rate only.  Therefore, 
the JP203 jumper settings for the IO5 and IO6 pins do not apply to the Mini 
FX PL 3170 Evaluation Board. 

When possible, use a single power domain for both the host processor board 
and the Mini EVB.  If you use the Pyxos FT EV Pilot EVB as your host 
processor board, you can allow the Mini EVB to provide 5V power: 

1. Important:  Do not connect the external power supply to either the 
JP201 connector or the J31 connector of the Pyxos FT EV Pilot EVB. 

2. Connect pin 26 (VDD5) of the P201 Gimzo header on the Mini EVB to pin 
2 of the JP33 header on the Pyxos FT EV Pilot EVB.  The JP33 header is 
near the center of the EVB, to the right of the JP512 and JP510 headers.  
By default, there is a jumper that connects pins 1-2 of the JP33 header; 
remove this jumper to connect to pin 2 of the header. 

3. Connect the two boards to a common ground:  Use pin 20 or 23 of the 
P201 Gizmo header to provide ground from the Mini EVB, and use pin 43 
or 44 of the JP505 header to provide ground to the Pyxos FT EV Pilot 
EVB. 

4. Supply power to the Mini EVB. 

If you use a host processor board other than the Pyxos FT EV Pilot EVB, you 
should still use a common power domain.  In this case, you should use a common 
power supply that meets the input power requirements of both the host processor 
board and the Mini EVB (note that the power line EVBs have different power 
requirements from the FT EVBs).   

To connect your host evaluation board or Micro Server custom board to the P201 
Gizmo header, you need to create a custom connection cable.  For rapid 
prototyping, you can use short 0.25” (0.635 mm) square socket test leads for these 
connections.  Figure 22 shows the Gizmo header (P201) on the PL 3170 EVB.  
The figure shows the signal names as used by the PL 3170 EVB, and also shows 
the signal names for the first 12 pins as used by the SCI and SPI interfaces for a 
ShortStack Micro Server (signal names are from the Micro Server’s point of 
view). 
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Figure 22. The Gizmo Header (P201) with the SCI and SPI Micro Server Signals 

Using the EIA-232 Interface (SCI) 
To use the EIA-232 interface on a Mini EVB for a ShortStack application, set the 
following jumpers as described below. 

JP201 

To enable the EIA-232 communications on a Mini EVB, mount all of the 
jumpers on the JP201 header, as shown in Figure 23.  In the figure, the 
jumpers for the FT 3120 and 3150 boards are on the left, and the jumpers for 
the PL 3120, 3150, and 3170 boards are on the right.   
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Figure 23. Mini EVB EIA-232 Enable Jumpers (JP201) 

The MAX3387E RS-232 transceiver that is used on the Mini EVBs is 
configured to enter autoshutdown mode after inactivity of approximately 30 
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seconds.  For applications that use high link-layer bit rates, the time required 
for the transceiver to become fully active (approximately 100 µs) might be 
long enough to cause a framing error on the serial link-layer signals.  

To prevent the MAX3387E RS-232 transceiver from entering autoshutdown 
mode, your serial driver can briefly toggle the ShortStack Micro Server’s 
HRDY~ signal every 10 to 20 seconds during periods of idleness.  This toggle 
causes the MAX3387E transceiver to detect transmission activity and not 
enter autoshutdown mode.  Alternatively, you can connect the FORCEON pin 
(pin 11) either to VDD5 or to the VL pin (pin 15). 

JP203 

Mount the IO0 jumper as shown in Figure 24 to connect the CTS~ signal to 
the MAX3387E RS-232 transceiver.  The figure also shows the IO5 and IO6 
jumpers configured to specify a 19 200 bit rate on a Mini FX PL 3170 
Evaluation Board for a 10 MHz Micro Server.  

IO
5

IO
6

IO
0

JP203
 

Figure 24. PL 3170 Mini FX ShortStack Enable Jumper (JP203) 
To set the link-layer bit rate for the Micro Server, determine the correct bit 
rate for your device according to Selecting the Link-Layer Bit Rate, and then 
mount the Mini EVB’s JP203 jumpers appropriately to match the correct 
settings for the IO5 and IO6 pins on the Smart Transceiver.  See either 
Setting the SCI Bit Rate for the correct settings for the IO5 and IO6 pins. 

The EIA-232 interface requires a null-modem cable for the D-SUB9 EIA-232 
connector (J201) on the Mini EVB.  To define the null-modem EIA-232 interface, 
use the pin connections listed in Table 10. Keep the total cable length to a 
maximum of 24 inches (0.6 meters). 

Table 10.  EIA-232 Header to D-SUB9 Connector Pin Connections 

D-SUB9 Connector Pin Micro Server SCI Signal 

1 N/A  

2 TXD  

3 RXD 

4  HRDY~ 

5 GND 

6 N/A 
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7 RTS~ 

8 CTS~ 

9 N/A 

ShortStack Device Initialization 
A ShortStack device performs the following tasks during initialization:  

1. Upon power-up or return from reset, the Micro Server performs initial 
health checks, and initializes itself. 
 
Depending on the chosen hardware and the Micro Server’s properties, 
this step can take a while (several tens of seconds) the first time the 
Micro Server initializes; however, this step completes almost instantly for 
all subsequent resets. 
 
The Micro Server also enters quiet mode at the beginning of this step.  

2. While the Micro Server performs initialization step 1, the host 
application runs its own local initialization code. 

3. When the host application’s initialization is complete, and its serial 
driver is ready to receive messages from the Micro Server, it must assert 
the HRDY~ signal.  This assertion must occur before the Micro Server’s 
watchdog timer expires (840 ms after reset for a Series 5000 or 6000 
device; 210 to 840 ms after reset for a Series 3100 device, depending on 
the external clock rate).  For some host platforms, you can tie the 
HRDY~ signal low, so that the Micro Server assumes that the host is 
always ready to receive messages.  However, your host-side circuitry 
must ensure that the HRDY~ signal is reliably high (deasserted) during 
power-up and host initialization. 

4. When the Micro Server’s initialization is complete and the host signals its 
readiness to receive packets (by asserting the HRDY~ signal), the Micro 
Server sends an uplink reset message.  This message includes 
information about the Micro Server, including its current state, last 
known error condition, and its initialization state. 

The ShortStack host application must register with the Micro Server to complete 
the initialization of the ShortStack device (the Micro Server together with the 
host processor) before it can communicate as a LonTalk/IP or LON device.  Before 
the application is correctly registered with the Micro Server, the Micro Server is 
in quiet mode and does not respond to network events and appears inoperative to 
the network.  In addition, after you load a new Micro Server image, the first 
initialization of the Micro Server, together with the initialization of the host 
application and its registration with the Micro Server, can take up to one minute 
to complete.  Subsequent initializations complete much more quickly. 

The ShortStack host application sends registration information to the ShortStack 
Micro Server on startup.  The registration information includes the device’s 
program ID, optional communication parameters, network variable configuration 
data, and miscellaneous preferences.  
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The ShortStack LonTalk/IP Compact API automatically resends this registration 
data whenever the Micro Server reports a reset and indicates that no application 
is registered.  

After the registration data has been accepted and successfully processed by the 
Micro Server, the Micro Server leaves quiet mode, and thus allows the device to 
communicate as a LonTalk/IP or LON device.    

See Initializing the ShortStack device for more information about the 
initialization ShortStack LonTalk/IP Compact API function and the IzoT 
Markup Language section of the IzoT Manual at echelon.com/docs/izot.for more 
information about generating the self-identification, self-documentation, and 
initialization data. 

Using the ShortStack Micro Server Key 
Each ShortStack Micro Server firmware image has a version number and a key 
value that identifies it.  The key value identifies the Micro Server in terms of its 
Smart Transceiver chip type, its clock rate, whether it supports ISI, and its 
channel type.  The key value is a 16-bit number that is reported to the host 
whenever the Micro Server sends a reset notification; Table 11 defines the bit 
values that comprise the key for standard Micro Servers. 

 

 

 

Table 11. Micro Server Key Bit Values 

Micro 
Server 
Type 

Bit Values 

Key 
Value Custom Revision 

Chip 
Type 

Clock 
Speed 

ISI 
Support 

Channel 
Type 

FT 3120 @ 
10 MHz 0 0001 0000 001 0 000 0x0010 

FT 3120 @ 
20 MHz 0 0001 0000 010 0 000 0x0020 

FT 3120 @ 
40 MHz 0 0001 0000 011 0 000 0x0030 

FT 3150 @ 
10 MHz 0 0001 0001 001 0 000 0x0090 

FT 3150 @ 
10 MHz 0 0001 0001 001 1 000 0x0098 

PL 3120 @ 
10 MHz 0 0001 0010 001 0 001 0x0111 

http://www.echelon.com/docs/izot


ShortStack User’s Guide        65 

Micro 
Server 
Type 

Bit Values 

Key 
Value Custom Revision 

Chip 
Type 

Clock 
Speed 

ISI 
Support 

Channel 
Type 

PL 3150 @ 
10 MHz 0 0001 0011 001 0 001 0x0191 

PL 3150 @ 
10 MHz 0 0001 0011 001 1 001 0x0199 

PL 3170 @ 
10 MHz 0 0001 0100 001 1 001 0x0A19 

FT 5000 
ES 0 0000 0101 011 1 000 0x02B8 

FT 5000 0 0001 0101 011 1 000 0x0AB8 

FT 5000 0 0001 0101 011 0 000 0x0AB0 

FT 6050 0 0001 0111 011 1 000 0x0BB8 

FT 6050 0 0001 0111 011 0 000 0x0BB0 

In the table: 

• Custom is a one-bit field that identifies whether the Micro Server is a 
standard Echelon-supplied Micro Server or a custom Micro Server.  0b01 
indicates standard; 0b1 indicates custom. 

• Revision is a four-bit field that can distinguish otherwise-identical Micro 
Servers:   

o 0b0000 indicates the initial version. 

o 0b0001 indicates the first revision level. 

• Chip type is a four-bit field that identifies the chip type: 

o 0b0000 indicates an FT 3120 Smart Transceiver 

o 0b0001 indicates an FT 3150 Smart Transceiver 

o 0b0010 indicates a PL 3120 Smart Transceiver  

o 0b0011 indicates a PL 3150 Smart Transceiver 

o 0b0100 indicates a PL 3170 Smart Transceiver 

o 0b0101 indicates an FT 5000 Smart Transceiver 

o 0b0110 indicates a Neuron 5000 Processor2 

                                                 
1 “0b0” represents a binary literal or constant value of 0 (zero). 
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o 0b0111 indicates a Series 6000 chip 

• Clock speed is a three-bit field that identifies the clock speed for the 
Smart Transceiver or Neuron Processor3: 

o 0b000 indicates 5 MHz 

o 0b001 indicates 10 MHz 

o 0b010 indicates 20 MHz 

o 0b011 indicates 40 MHz 

o 0b100 indicates 80 MHz 

o 0b101 indicates 160 MHz 

• ISI support is a one-bit field that identifies whether the Micro Server 
supports Interoperable Self-Installation (ISI): 

o 0b0 indicates no ISI support 

o 0b1 indicates ISI support. 

• Channel type is a three-bit field that identifies the LONWORKS network 
type: 

o 0b000 indicates a TP/FT-10 channel 

o 0b001 indicates a PL-20C channel 

o 0b010 indicates a PL-20N channel 

o 0b111 indicates all other channel types 

A ShortStack host application could use this key value to determine whether its 
Micro Server is running with an FT or PL transceiver, and perform an 
appropriate initialization for that transceiver type.  Alternatively, a host 
application could use this key to bypass initialization for ISI for a Micro Server 
that does not support ISI. 

If you develop a custom Micro Server, you can set the key to any value that has 
meaning for your application, however, you must set the most-significant bit to 1 
to signify that the key applies to a custom Micro Server.  The key is defined in 
the [ShortStack]\microserver\custom\MicroServer.h header file: 

#define MICRO_SERVER_KEY 0x8000ul   

The key is a 16-bit number as defined in the context of Neuron C’s unsigned long 
type.   

 

                                                                                                                                                 
2 The Neuron 5000 or 6050 Processor is not supported by the standard Micro Servers that are 
included with the IzoT ShortStack SDK. You need to create a custom Micro Server to support a 
Neuron 5000 Processor. 
3 For a Series 3100 Smart Transceiver, this value is the external crystal or oscillator frequency 
value.  For a Series 5000 or 6000 chip, this value is twice its system clock value (from the device’s 
hardware template), to represent an equivalent Series 3100 clock rate. 



ShortStack User’s Guide        67 

 

 

6 

Selecting the Host Processor 

This chapter describes considerations for selecting a new 
host processor for a ShortStack device, and for evaluating an 
existing host processor.  It also describes considerations for 
selecting the host programming environment. 
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Selecting a Host Processor 
For most applications, the choice of the host processor is determined by the 
overall needs of the application, rather than the needs of the ShortStack Micro 
Server.  Other considerations for choosing the host processor include prior 
experience with the processor or architecture, cost, performance, memory 
support, power requirements, I/O support, and availability of development tools. 

The Micro Server has few requirements for the host processor.  The following 
sections describe considerations that can help you choose a host processor or 
determine the suitability of your current host processor. 

Serial Communications 
The host processor must be able to connect to the ShortStack Micro Server 
through either the four (or five) line Serial Communications Interface (SCI) or 
the six (or seven) line Serial Peripheral Interface (SPI).  In addition, the host 
processor’s implementation of the serial interface must support at least one of the 
bit rates listed in Setting the SCI Bit Rate or Setting the SPI Bit Rate.   

An existing serial driver, which might be available as part of an embedded 
operating system’s services, may allow for flow control that complies with the 
ShortStack link layer protocol.  Alternatively, you can supply your own serial 
driver that implements the required protocol.  See SCI Interface or SPI Interface 
for information about the required protocol. 

If your application uses SPI, the host processor needs to support SPI Slave mode, 
because the Micro Server always operates as the SPI Master. 

Both the SCI and SPI interfaces provide a host ready (HRDY~) signal.  Your 
application can use this signal to prevent new link layer uplink transfers to the 
host processor, but because Micro Server has limited buffering capabilities, the 
application must assert the HRDY~ signal briefly.  A typical driver 
implementation deasserts this signal briefly while it enqueues a received packet, 
to protect the temporarily busy receiver routine from an input data buffer 
overflow.  The host must ensure that this signal is deasserted reliably through 
the entire power-up and initialization phase, until the host asserts it after the 
host application and serial driver are fully initialized and ready to exchange link-
layer data. 

If your ShortStack application makes no requirements for which interface to use, 
the SCI interface is easier to implement.  The SCI interface requires fewer I/O 
lines, and is more standardized, which allows for easier possible future transition 
to a different host platform.  In addition, the ShortStack SCI driver is easier to 
port because of its simpler link-layer protocol. 

Byte Orientation 
 A processor with a big-endian (most significant byte at low address) architecture 
is easier to implement than a processor with a little-endian (least significant byte 
at low address) for a ShortStack device.  Network data in a LonTalk/IP or LON 
network uses big-endian byte orientation.   
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A big-endian host processor does not need to change byte orientation, and thus 
requires fewer processing instructions and machine cycles to access network 
data.  If you use a little-endian host processor, you might need to implement code 
for byte re-ordering on the uplink and downlink.  Some processor architectures, 
such as that used in the ARM processor family, are bi-endian, and feature 
switchable “endianness”.  

The ShortStack LonTalk/IP Compact API and application framework provide 
utilities to handle the byte orientation correctly.   

Processing Power 
The processing power required by the ShortStack host processor is generally 
determined by the application’s control algorithm.  ShortStack has minimal 
processing requirements.   

However, the ShortStack LonTalk/IP Compact API requires frequent periodic 
servicing through the LonEventHandler() API function (see Periodically 
Calling the Event Handler).  Different host processors take different amounts of 
time to run this function.  The time required to run this function also depends on 
the incoming and outgoing network traffic.  

Most modern microprocessors can run this function without impacting the 
application’s control algorithm.  However, a device with a very demanding control 
algorithm, or a device with a performance-limited host processor might need 
additional RAM to buffer link-layer packets to avoid loss of data. 

Volatile Memory 
Although every application is different, a general bare-metal ShortStack device 
requires about 800 bytes of RAM (as well as approximately 4 to 6 KB of memory 
for the application program plus application framework [serial driver and 
ShortStack LonTalk/IP Compact API]).  See API Memory Requirements for a 
description of the memory requirements for the ShortStack LonTalk/IP Compact 
API and optional APIs. 

If your application uses large network variables, application messages, or foreign 
frame messages, which include larger payload data and therefore require larger 
buffers or additional buffers in the host application, the RAM requirement could 
increase significantly.   

Modifiable Non-Volatile Memory 
Although the ShortStack LonTalk/IP Compact API does not require modifiable 
non-volatile memory, most interoperable ShortStack devices require a small 
amount of modifiable non-volatile data storage.  This data includes configuration 
property values, which control and configure the interoperability and networking 
aspects of the ShortStack device.  

The total amount of such data depends on your application, and can range from 
zero bytes to several kilobytes.  Many simple interoperable devices require no 
more than a few hundred bytes of modifiable non-volatile memory.  Devices 
typically use flash or EEPROM memory to store such data, but ShortStack 
makes no requirement for the type of memory.  
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How the application accesses this memory depends on the application’s 
requirements.  The ShortStack LonTalk/IP Compact API provides tools and code 
that can help manage non-volatile memory.   

Compiler and Application Programming Language 
The IzoT ShortStack SDK provides the ShortStack LonTalk/IP Compact API and 
application framework as portable ANSI C source code.  A standard ANSI C (or 
C++) compiler for application development is appropriate.  Other development 
tools and languages are possible, but you need to then port the driver, API, and 
application framework to the other language.  

You can use the ShortStack LonTalk/IP Compact API and application framework 
with most ANSI C compilers with little or no changes.  The LonPlatform.h file 
provides a set of common definitions for various compilers. 

The ShortStack LonTalk/IP Compact API and application framework use many 
data structures and unions, some of which are deeply nested types.  All of these 
structures are based on byte-sized entities (and combinations of multiple single-
byte entities, rather than multi-byte entities), so the application compiler can 
generate the exact memory image of these structures and unions without 
inserting any padding bytes.  By exclusively using single-byte entities, the 
ShortStack LonTalk/IP Compact API allows most compilers to be used with an 
IzoT ShortStack SDK application. 

See Porting the ShortStack LonTalk/IP Compact API for more information, 
including considerations for porting a ShortStack application to a host 
development environment and embedded operating system. 

Selecting the Development Environment 
The ShortStack LonTalk/IP Compact API and framework have no requirement 
for an embedded operating system, and use only a few basic routines from the 
standard ANSI C toolkit, such as the memcpy() or memset() functions.  

Many simple ShortStack devices do not include an embedded operating system.  
These devices typically call the ShortStack LonTalk/IP Compact API from the 
application’s main loop. 

Devices that use an embedded operating system can use dedicated threads, tasks, 
or processes to call and process data from the ShortStack LonTalk/IP Compact 
API.  Other solutions can call and process data from the API from a timer-based 
interrupt service handler routine.  

Although the ShortStack LonTalk/IP Compact API and application framework 
support all of these approaches, the ShortStack model is single-threaded and not 
re-entrant.  An application that uses a multi-tasking (or multi-threaded) or 
interrupt-driven ShortStack LonTalk/IP Compact API should ensure that all 
ShortStack LonTalk/IP Compact API access is within a single thread (or task or 
interrupt context). 

See Appendix A, ShortStack LonTalk/IP Compact API for additional 
considerations and recommendations regarding threading and execution context. 
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7 

Designing the Hardware Interface 

This chapter describes what you need to design the 
hardware interface between your ShortStack host processor 
and the ShortStack Micro Server. 
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Overview of the Hardware Interface 
The hardware interface for a ShortStack Micro Server consists of the 11 or 12 
I/O-pin interface of an Echelon Smart Transceiver or Neuron Chip.  However, a 
ShortStack Micro Server does not use all 11 or 12 pins.  The ShortStack Micro 
Server supports two serial interfaces for communications with the host processor:  
the Serial Communications Interface (SCI) and the Serial Peripheral Interface 
(SPI).  One I/O pin selects the serial interface, two pins set the interface bit rate, 
and five to seven I/O pins comprise the interface.  One pin (IO9) is optionally 
available to the host processor, and the remaining I/O pins are not used. 

This chapter describes the hardware interface, including the requirement for 
pull-up resistors, checking the status of the optional IO9 pin, selecting a 
minimum communications interface bit rate, considerations for host latency, 
specifying the SCI interface, specifying the SPI interface, and how to perform an 
initial health check of the Micro Server. 

Reliability 
A ShortStack Micro Server considers the serial link reliable, similar to other 
serial interfaces that are commonly used within computing equipment and 
embedded devices, such as an inter-integrated circuit (I2C) bus connection to a 
serial EEPROM device. 

The ShortStack link layer protocol does not include error detection or error 
recovery.  Instead, error detection and recovery are implemented by the LonTalk 
protocol, and this protocol detects and recovers from errors.  

To minimize possible link-layer errors, be sure to design the hardware interface 
for reliable and robust operations.  For example, use a star-ground configuration 
for your device layout on the device’s printed circuit board (PCB), limit entry 
points for electrostatic discharge (ESD) current, provide ground guarding for 
switching power supply control loops, provide good decoupling for VDD inputs, and 
maintain separation between digital circuitry and cabling for the network and 
power.  See the FT 3120 / FT 3150 Smart Transceiver Data Book, the PL 3120 / 
PL 3150 / PL 3170 Power Line Smart Transceiver Data Book, the Series 5000 
Chip Data Book or the Series 6000 Chip Data book for more information about 
PCB design considerations for a Smart Transceiver. 

The example applications contain example implementations of the link layer 
driver, including examples and recommendations for time-out guards within the 
various states of that driver.  See the examples folder of the IzoT ShortStack 
SDK repository on github.com/izot/shortstack for example code and 
documentation.  The optional local utility API functions also include health-check 
features, such as the facility to ‘ping’ the Micro Server or to echo data across the 
serial link layer, to help your application to prevent and detect unrecoverable 
link-layer errors. 

Serial Communication Lines 
For both serial interfaces (SCI and SPI), you must add 10 kΩ pull-up resistors to 
all communication lines between the host processor and the ShortStack Micro 
Server (including those marked as N/A in Table 11 and Table 13, and not 

https://github.com/izot/shortstack
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connected to the host processor).  These pull-up resistors prevent invalid 
transactions on start-up and reset of the host processor or the Micro Server.  
Without a pull-up resistor, certain I/O pins can revert to a floating state, which 
can cause unpredictable results. 

If your link-layer driver does not use the HRDY~ signal, you can tie it to GND. 
However, you can have the host drive the HRDY~ signal, even if the host 
processor is fast and always ready to receive uplink data, to assist with a 
synchronized start-up after power-up or reset. 

High-speed communication lines must also include proper back termination.  
Place a series resistor with a value equal to the characteristic impedance (Z0) of 
the PCB trace minus the output impedance of the driving gate (the resistor value 
will be approximately 50 Ω) at the driving pin.  In addition, the trace must run on 
the top layer of the PCB, over the inner ground plane, and cannot have any vias 
to the other side of the PCB.  Low-impedance routing and correct line 
termination is increasingly important with higher link layer bit rates, so 
carefully check the signal quality for both the Micro Server and the host when 
you design and test new ShortStack device hardware, or when you change the 
link-layer parameters for existing ShortStack device hardware. 

The RESET~ Pin 
The ShortStack Micro Server has no special requirements for the Smart 
Transceiver’s or Neuron Chip’s RESET~ (or RST~) pin.  See the FT 3120 / FT 
3150 Smart Transceiver Data Book, the PL 3120 / PL 3150 / PL 3170 Power 
Line Smart Transceiver Data Book, the Series 5000 Chip Data Book, or the Series 
6000 Chip Data book for information about the requirements for this pin. 

However, because a ShortStack device uses two processor chips, the Smart 
Transceiver or Neuron Chip and the host processor, you have an additional 
consideration for the Smart Transceiver’s RESET~ pin:  Whether to connect the 
host processor’s reset pin to the Smart Transceiver’s RESET~ pin. 

For most ShortStack devices, you should not connect the two reset pins to each 
other.  It is usually better for the Micro Server and the host application to be able 
to reset independently.  For example, when the Micro Server encounters an error 
that causes a reset, it logs the reset cause (see Querying the Error Log); if the 
host processor resets the Micro Server directly, possibly before the Micro Server 
can detect and log the error, your application cannot query the Micro Server’s 
error log after the reset to identify the problem that caused the reset.  The Micro 
Server also resets as part of the normal process of integrating the device within a 
network; there is normally no need for the host application to reset at the same 
time. 

In addition, the host processor should not reset the Micro Server while the Micro 
Server is starting up (that is, before the Micro Server sends the uplink reset 
message, LonResetNotification, to the host processor). 

For devices that require the host application to be able to control all operating 
parameters of the Micro Server, including reset, you can connect one of the host 
processor’s general-purpose I/O (GPIO) output pins to the Smart Transceiver’s 
RESET~ pin, and drive the GPIO pin to cause a Micro Server reset from within 
your application or within your serial driver.  Alternatively, you can connect one 
of the host processor’s GPIO input pins to the Smart Transceiver’s RESET~ pin 
so that the host application can be informed of Smart Transceiver resets. 
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A host processor’s GPIO output pin should not actively drive the Smart 
Transceiver’s RESET~ pin high, but instead should drive the pin low.  You can 
use one of the following methods to ensure that the GPIO pin cannot drive the 
RESET~ pin high: 

• Ensure that the GPIO pin is configured as an open-drain (open-collector) 
output 

• Ensure that the GPIO pin is configured as a tri-state output  

• Place a Schottky diode between the GPIO pin and the RESET~ pin, with 
the cathode end of the diode connected to the GPIO pin 

Configuring the GPIO pin as either open drain or tri-state ensures that the GPIO 
pin is in a high-impedance state until it is driven low.  Using a Schottky diode is 
preferable to using a regular diode because a Schottky diode has a low forward 
voltage drop (typically, 0.15 to 0.45 V), whereas a regular diode has a much 
higher voltage drop (typically, 0.7 V); thus, the Schottky diode ensures that the 
voltage drop is low enough to ensure a logic-low signal.   

Host-driven reset of the Micro Server should only be an emergency means to 
recover from some serious error.  In addition, the host application or serial driver 
should always log the reason or cause for the reset, along with timestamp 
information.  An unrecoverable error that requires a reset of the Micro Server is 
generally evidence of a malfunction in the host driver, the Micro Server, or the 
physical link layer, and should be investigated. 

Using the IO9 Pin 
Neither of the standard serial interfaces for a ShortStack Micro Server uses the 
IO9 pin of the Smart Transceiver chip.  However, an application can read the 
static input signal that is available to the IO9 pin. 

To make this signal available to the application, the Micro Server includes the 
following information in each uplink reset notification:  

• Whether the IO9 input signal is available for application use (always 
TRUE for a IzoT ShortStack SDK Micro Server) 

• The logic state of the IO9 static input 

Applications can use this information for automatic configuration of the Micro 
Server.  For example, your ShortStack device can use a jumper or configuration 
switch to select, or deselect, CENELEC media access protocol for power line use, 
thus potentially allowing the device to use a single application image for use in 
CENELEC member states as well as in countries that are not governed by the 
CENELEC committee. 

Selecting the Link-Layer Bit Rate 
The minimum bit rate for the serial link between the ShortStack Micro Server 
and the host processor is most directly determined by the expected number of 
packets per second, the type of packets, and the size of the packets.  Another 
factor that can influence the required bit rate is support for explicit addressing, 
an optional feature that the ShortStack application can enable and disable. 

The following minimums apply to general-use LONWORKS devices: 
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• ShortStack Micro Server external clock frequency 

o 10 MHz or higher for TP/FT-10 devices (for Series 5000 or 6000 
devices, specify a minimum 5 MHz system clock rate) 

o 5 MHz or higher for power-line devices 

• Bit rate 

o 38400 bps or higher for TP/FT-10 devices 

o 9600 bps or higher for power-line devices 

To generate a more precise estimate for the minimum bit rate for the serial 
interface, use the following formula:  

( ) exp**5 PPSBPTPEAPMinBitRate Interfacesizetype +++=  

where: 

• The constant 5 represents general communications overhead 

• typeP  is the packet-type overhead, and has one of the following values: 

o 3 for network-variable messages 

o 1 for application messages  

• EA  is the explicit-addressing overhead, and has one of the following 
values: 

o 0 for no explicit-addressing support 

o 11 for explicit-addressing support enabled 

• sizeP  is the packet size of the payload, and has one of the following values: 

o sizeof(network_variable) 

o sizeof(message_length) 

• InterfaceBPT  represents data transfer overhead for the serial interface, and 
has one of the following values: 

o 1 bit per transfer for SPI 

o 10 bits per transfer for SCI 

• expPPS  is the expected packet-per-second throughput value 

Example:  For an average network variable size of 3 bytes, no explicit messaging 
support, and a TP/FT-10 channel that delivers up to 180 packets per second, the 
minimum bit rate for an SCI interface is 19 200 bps.  To allow for larger NVs, 
channel noise, and other systemic latency, set the device bit rate at a value above 
the minimum calculated from the formula.  Thus, for this example, a bit rate of at 
least 38 400 or 76 800 bps is recommended. 

To calculate the expected packet-per-second throughput value for a channel, you 
can use the Echelon Perf utility, available from echelon.com/downloads.  

However, the bit rate is not the only factor that determines the link-layer transit 
time.  Some portion of the link-layer transit time is spent negotiating handshake 
lines between the host and the Micro Server.   For faster bit rates, the 

http://www.echelon.com/downloads
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handshaking overhead can increase, thus your application might require a faster 
clock speed for the Micro Server to handle the extra processing. 

Example:  For a Series 3100 Micro Server running at 10 MHz and an ARM7 host 
running at 20 MHz, the link-layer transit for a 4-byte network variable fetch, the 
handshaking overhead can be as much as 22% of the total link-layer transit time 
at 19 200 bps, and as much as 40% at 38 400 bps.  

FT 3150 and PL 3150-based Micro Servers using off-chip flash memory are 
limited to 10 MHz operation, but faster operation might be possible with FT 3120 
or FT 3150-based Smart Transceivers.  FT 5000 or FT 6050 Smart Transceivers 
can operate with up to an 80 MHz system clock rate, but the standard Micro 
Server for Series 5000 and 6000 chips use a 20 MHz system clock, making its 
performance equivalent to that of an FT 3120 Smart Transceiver with an 
external 40 MHz crystal.  The selection of the 20 MHz clock rate is a compromise 
between processing performance and the availability of standard bit rates. 

For a performance test application that attempts to maximize the number of 
propagated packets, the application is likely to show approximately 3% increased 
throughput when operating with a 40 MHz Series 3100 Micro Server compared to 
a 10 MHz Series 3100 Micro Server (for Series 5000 or 6000 Micro Servers, the 
comparison is between the 20 MHz system clock setting and the 5 MHz system 
clock setting).  However, for a production application, which only occasionally 
transmits to the network and has unused output buffers available on the Micro 
Server, a faster Micro Server reduces the time required for the handshake 
overhead (by up to a factor of 4 for Series 3100 devices – or up to a factor of 16 for 
Series 5000 or 6000 devices, compared to Series 3100 devices) so that a downlink 
packet can be delivered to the Micro Server more quickly, which can improve 
overall application latency.   Thus, depending on the needs of your application, 
you can use a slower or faster Micro Server, but a faster Micro Server will 
provide the best performance.  

Host Latency Considerations 
The processing time required by the host processor for a ShortStack Micro Server 
can have a significant impact on link-layer transit time for network 
communications and on the total duration of network transactions.  This impact 
is the host latency for the ShortStack application. 

To maintain consistent network throughput, a host processor must complete each 
transaction as quickly as possible.  Operations that take a long time to complete, 
such as flash memory writes, should be deferred whenever possible.  For 
example, an ARM7 host processor running at 20 MHz can respond to a network-
variable fetch request in less than 60 µs, but typically requires 10-12 ms to erase 
and write a sector in flash memory. 

The following formula shows the overall impact of host latency on total 
transaction time: 

( )( ) hostlinklayerrMicroServechanneltrans ttttt +++= *2  

where: 

• transt  is the total transaction time 

• channelt  is the channel propagation time 
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• rMicroServet  is the Micro Server latency (approximately 1 ms for a Series 
3100 Micro Server running at 10 MHz; approximately 65 µs for a Series 
5000 or 6000 Micro Server running with an 80 MHz system clock) 

• linklayert  is the link-layer transit time 

• hostt  is the host latency 

The channel propagation time and the Micro Server latency are fairly constant 
for each transaction.  However, link-layer transit time and host latency can be 
variable, depending on the design of the host application.  

You must ensure that the total transaction time for any transaction is much less 
than the LONWORKS network transmit timer.  For example, the typical transmit 
timer for a TP/FT-10 channel is 64 ms, and the transmit timer for a PL-20 
channel is 384ms. 

Typical host processors are fast enough to minimize link-layer transit time and 
host latency, and to ensure that the total transaction time is sufficiently low.  
Nonetheless, your application might benefit from using an asynchronous design 
of the host serial driver and from deferring time-consuming operations such as 
flash memory writes. 

SCI Interface 
The ShortStack Serial Communications Interface (SCI) is a half-duplex 
asynchronous serial interface between the ShortStack Micro Server and the host 
processor.  The communications format is:  

• 1 start bit  

• 8 data bits  (least-significant bit first) 

• 1 stop bit 

The SCI link-layer interface uses two serial data lines:  RXD (receive data) and 
TXD (transmit data).  The signal directions are from the point of view of the 
Micro Server.  An uplink transaction describes data exchange from the Micro 
Server to the host processor, and uses the TXD line.  A downlink transaction 
refers to data exchange from host processor to the Micro Server, and uses the 
RXD line.  

The SCI interface includes three flow-control lines:  the RTS~ (request to send) 
signal that informs the Micro Server of a pending downlink, the CTS~ (clear to 
send) signal that allows a downlink transfer to begin, and an optional HRDY~ 
(host ready) signal that can be used to temporarily prevent uplink transfers.  
These three signals are all active low. 

The interface also includes two bit-rate selection signals and an interface type 
selection signal.  You can connect these signals to the host processor, but they do 
not have to be.  However, if the host processor does not control the bit-rate 
selection signals, you must ensure that the host processor and the Micro Server 
run at the same SCI bit rate. 
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ShortStack Micro Server I/O Pin Assignments for SCI 
A ShortStack Micro Server has 11 or 12 I/O pins that control the configuration of 
the Micro Server and provide the interface to the host processor.  The IO3 input 
pin selects the serial interface:  SCI or SPI.  The serial interface also determines 
the usage of the other I/O pins.  Table 12 summarizes these pin assignments for 
the SCI interface.  

If your host processor can support both the SCI and SPI interfaces, use the SCI 
interface because it is typically faster and easier to implement, both in hardware 
and software.  

Table 12. ShortStack Micro Server Pin Assignments for the SCI Interface 

Smart Transceiver 
Pin 

Signal Name Direction 

IO0 CTS~ Output 

IO1 HRDY~ Input 

IO2 N/A No connection 

IO3 SPI/SCI~ Input (tie to GND for 
SCI) 

IO4 RTS~ Input 

IO5 Serial Bit Rate Bit 0 
(SBRB0; LSB) 

Input 

IO6 Serial Bit Rate Bit 1 
(SBRB1; MSB) 

Input 

IO7 N/A No connection 

IO8 RXD Input 

IO9 N/A No connection (but see 
Using the IO9 Pin) 

IO10 TXD Output 

IO11 N/A No connection 

Notes:   

• Signal direction is from the point of view of the Smart Transceiver or 
Neuron Chip (Micro Server). 

• N/A = Not applicable. 
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Setting the SCI Bit Rate 
You select the SCI interface by setting the ShortStack Micro Server’s IO3 input 
pin to logic 0 (ground).  The settings for pins IO5 and IO6 determine the SCI 
serial bit rate, as listed in Table 13.  The rates are listed as bits per second; the 
values are also approximate and rounded to the nearest 100 bits per second.  

Table 13. SCI Serial Bit Rates 

Series 
3100 

External 
Clock 

Series 
5000 or 

6000 
System 
Clock 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

GND GND GND VDD VDD GND VDD VDD 

5 MHz — 38400 19200 9600 4800 

10 MHz 5 MHz 76800 38400 19200 9600 

20 MHz 10 MHz 153600 76800 38400 19200 

40 MHz 20 MHz 302100 153600 76800 38400 

— 40 MHz 604200 302100 153600 76800 

— 80 MHz 1208400 604200 302100 153600 

Note:  Specify the Series 5000 or 6000 system clock rate in the hardware template for a 
custom Micro Server.  The standard Series 5000 or 6000 Micro Server images use a 20 MHz 
system clock.  The external crystal clock frequency for a Series 5000 or 6000 chip is 10 MHz. 

The standard Series 3100 ShortStack Micro Server images support only the 10 
MHz, 20 MHz, and 40 MHz clock rates; you need to create a custom Micro Server 
image to use the 5 MHz clock rates listed in Table 13.  The standard Series 5000 
or 6000 ShortStack Micro Server images support only the 20 MHz system clock 
rate; you need to create a custom Micro Server image to use one of the other 
system clock rates.  See Custom Micro Servers for more information about 
creating a custom Micro Server image. 

Some of the higher bit rates listed in Table 13 are not standard SCI bit rates, 
therefore, some host processors or UART/USART implementations might not be 
able to communicate at the specific rate listed in the table.  In this case, modify 
the UART/USART setting to the closest bit rate to the desired value in the table, 
or modify the Micro Server’s bit rate setting. 

For implementations with higher bit rates, be sure that the link-layer hardware 
provides low impedance and correct termination.  Also add extra ground 
connections between the data signals.  If a high-bit rate application presents link-
layer problems, be sure to analyze the waveform with an oscilloscope to be sure it 
has the correct shape before proceeding to other debugging procedures. 

The PL 3170 Smart Transceiver supports the 38400 bit rate only.  
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SCI Communications Interface 
The SCI communications interface shown in Figure 25 is implemented with the 
following inputs and outputs: 

• Interface Selector (SPI/SCI~):  Tied to GND to specify the SCI interface. 

• Request to Send (RTS~):  When asserted, indicates that the host 
processor has data to send.  The serial driver asserts this signal low if the 
CTS~ signal is deasserted (high), and waits for the Micro Server to assert 
CTS~. 

• Clear to Send (CTS~):  When asserted, informs the host processor that 
Micro Server is ready to receive data from the serial driver.  Set by the 
Micro Server after the host has asserted RTS~.  The Micro Server keeps 
CTS~ asserted until it receives the expected number of bytes.  The host 
must deassert RTS~ after the CTS~ acknowledgement has been 
received, and must start transmitting the related data with minimal 
delay. 

• Host Ready (HRDY~):  When deasserted, indicates that the host 
processor is temporarily not able to accept data transfers from the Micro 
Server.  This signal is optional; if your application does not use this 
signal, tie it low so that it is continually asserted (to specify that the host 
is always ready to accept data transfers).  See Serial Communications for 
additional considerations for the HRDY~ signal.  Typical host 
applications deassert the HRDY~ signal in the following situations: 

o During power-up and initialization following a reset (until the 
serial driver is ready to receive data from the Micro Server) 

o When enqueuing received data, following a completed uplink 
transfer 

• Receive Data (RXD):  Transfers data from the host processor to the Micro 
Server. 

• Transmit Data (TXD):  Transfers data from the Micro Server to the host 
processor. 

• Serial Bit Rate Bit 0 (SBRB0) and Serial Bit Rate Bit 1 (SBRB1):  
Together set the communications bit rate (see Table 13). 
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Figure 25. ShortStack SCI Communications Interface 

SCI Micro Server to Host (Uplink) Control Flow 
The host must assert the HRDY~ pin low to indicate that it is ready to receive 
data.  Because the Micro Server has a limited set of buffers, the host processor 
must deassert the HRDY~ pin for only a short duration.  A typical application 
deasserts the HRDY~ signal during its power-up and initial initialization 
following a reset, and after an uplink data packet has been completely received, 
while the packet data is enqueued for further processing, then reasserts the 
signal. 

If your host processor is always able to receive data, you can hardwire the 
HRDY~ input low. 

Figure 26 shows an example for the Micro Server to host SCI control flow, 
including the states of the various I/O pins.   

 
Figure 26. SCI Micro Server to Host Transfer Control Flow Diagram 

SCI Host to Micro Server (Downlink) Control Flow 
The Micro Server uses the CTS~ pin to enforce a half-duplex interface.  Every 
downlink transfer needs to be guarded with a complete RTS~ / CTS~ handshake 
between the host processor and the Micro Server, by implementing the following 
simple protocol: 
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1. The serial link-layer driver awaits the completion of the previous 
transaction.  That is, it monitors the CTS~ line and waits until the Micro 
Server has deasserted this signal. 

2. The serial link-layer driver asserts the RTS~ line to indicate the 
availability of downlink data. 

3. The driver awaits confirmation from the Micro Server, which it indicates 
by asserting the CTS~ line.  Depending on the type of operation and the 
current availability of buffers within the Micro Server, the driver could 
wait for a significant amount of time.  The driver must include a timeout 
guard that can accommodate this wait period, even though the CTS~ 
assertion will usually occur much sooner. 

4. After the driver detects that the CTS~ line is asserted (low), it releases 
(deasserts) the RTS~ line. 

5. The driver transmits the data. 

6. After the Micro Server receives the number of bytes of data (indicated in 
the message header), it releases (deasserts) the CTS~ line. 

See Creating a ShortStack Serial Driver, for more information about the serial 
driver. 

The IzoT ShortStack SDK application and driver example for use with the 
Raspberry Pi -computer and the Raspbian Linux operating system includes an 
example SCI driver, which implements the recommended timeout guards.  See 
[ShortStack]/example/rpi/driver/rpi.c for the implementation of those 
timeouts, and for extensive discussion about each timeout’s duration.  

Figure 27 shows an example for the host to Micro Server SCI control flow.  The 
figure also shows the transfer of the two-byte header, followed by the payload. 

 
Figure 27. SCI Host to Micro Server Transfer Control Flow Diagram 

SPI Interface 
The ShortStack Serial Peripheral Interface (SPI) is a half-duplex synchronous 
serial interface between the ShortStack Micro Server and the host processor.  
The Micro Server is configured as the SPI master.  The host processor is 
configured as the SPI slave. 

If the host processor does not control the bit-rate selection signals, you must 
ensure that the host processor and the Micro Server run at the same SPI bit rate. 
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ShortStack Micro Server I/O Pin Assignments for SPI 
A ShortStack Micro Server has 11 or 12 I/O pins that control the configuration of 
the Micro Server and provide the interface to the host processor.  The IO3 input 
pin selects the serial interface:  SCI or SPI.  The serial interface also determines 
the usage of the other I/O pins.  Table 14 summarizes these pin assignments for 
the SPI interface.  

If your host processor can support both the SCI and SPI interfaces, use the SCI 
interface because it is typically faster and easier to implement, both in hardware 
and software. 

Table 14. ShortStack Micro Server Pin Assignments for an SPI Interface 

Smart Transceiver 
Pin 

Signal Name Direction 

IO0 R/W~ Output 

IO1 SCLK Output 

IO2 SS~ Output 

IO3 SPI/SCI~ Input (tie to VDD for SPI) 

IO4 TREQ~ Input 

IO5 Serial Bit Rate Bit 0 
(SBRB0; LSB) 

Input 

IO6 Serial Bit Rate Bit 1 
(SBRB1; MSB) 

Input 

IO7 MOSI Output 

IO8 MISO Input 

IO9 N/A No connection (but see 
Using the IO9 Pin) 

IO10 HRDY~ Input 

IO11 N/A No connection 

Notes:   

• Signal direction is from the point of view of the Smart Transceiver 
(Micro Server). 

• N/A = Not applicable. 
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Setting the SPI Bit Rate 
You select the SPI interface by setting the ShortStack Micro Server’s IO3 input 
pin to logic 1 (VDD) with a 10 kΩ pull-up resistor.  You control the effective SPI bit 
rate with the SCLK output from the ShortStack Micro Server, but you preselect 
the desired bit rate using the SBRB0 and SBRB1 (IO5 and IO6) input signals.  
For the SPI interface, there are different bit rates for uplink transfers and 
downlink transfers.  The settings for pins IO5 and IO6, and the resulting link 
layer bit rates, are listed in Tables 15 and 16.  The rates in the tables are listed 
as bits per second; the values are also approximate and rounded to the nearest 
100 bits per second.  

Table 15. SPI Serial Bit Rates for Uplink 

Series 
3100 

External 
Clock 

Series 
5000 or 

6000 
System 
Clock 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

GND GND GND VDD VDD GND VDD VDD 

5 MHz — 29200 16600 10200 5100 

10 MHz 5 MHz 58300 33200 20300 10300 

20 MHz 10 MHz 116700 66300 40600 20500 

40 MHz 20 MHz 226600 129500 76700 40900 

— 40 MHz 453100 258900 153300 81900 

— 80 MHz 906200 517900 306600 163700 

Note:  Specify the Series 5000 or Series 6000 system clock rate in the hardware template for 
a custom Micro Server.  The standard Series 5000 or 6000 Micro Server images use a 20 
MHz system clock.  The external crystal clock frequency for a Series 5000 or 6000 chip is 10 
MHz. 

 

Table 16. SPI Serial Bit Rates for Downlink 

Series 
3100 

External 
Clock 

Series 
5000 or 

6000 
System 
Clock 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

GND GND GND VDD VDD GND VDD VDD 

5 MHz — 21700 9200 4800 2900 

10 MHz 5 MHz 43400 18400 9700 5700 

20 MHz 10 MHz 86800 36800 19300 11500 
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Series 
3100 

External 
Clock 

Series 
5000 or 

6000 
System 
Clock 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

GND GND GND VDD VDD GND VDD VDD 

40 MHz 20 MHz 172600 73300 38600 22800 

— 40 MHz 345200 146700 77100 45600 

— 80 MHz 690500 293400 154300 91300 

The standard Series 3100 ShortStack Micro Server images support only the 10 
MHz, 20 MHz, and 40 MHz clock rates; you must create a custom Micro Server 
image to use the 5 MHz clock rates listed in Tables 15 and 16.  The standard 
Series 5000 or 6000 ShortStack Micro Server images support only the 20 MHz 
system clock rate; you must create a custom Micro Server image to use the other 
clock rates listed in Tables 15 and 16.  See Custom Micro Servers for more 
information about creating a custom Micro Server image. 

Some host processors or UART/USART implementations might not be able to 
process data at some of the higher bit rates listed in Tables 15 and 16.  In this 
case, modify the UART/USART setting to the closest bit rate to the desired value 
in the table, or modify the Micro Server’s bit rate setting.  Most host processors 
should be able to process uplink data at up to 129500 bps and downlink data at 
up to 73300 bps. 

For implementations with higher bit rates, be sure that the link-layer hardware 
provides low impedance and correct termination.  Also add extra ground 
connections between the data signals.  If a high-bit rate application presents link-
layer problems, be sure to analyze the waveform with an oscilloscope to be sure it 
has the correct shape before proceeding to other debugging procedures. 

SPI Communications Interface 
The SPI communications interface shown in Figure 28 is implemented with the 
following inputs and outputs: 

• Interface Selector (SPI/SCI~):  Tied to VDD to specify the SPI interface. 

• Host Ready (HRDY~):   When deasserted, indicates that the host 
processor is temporarily not able to accept any data transfers from the 
Micro Server.  This signal is optional; if your application does not use this 
signal, you must tie it low so that it is continually asserted (to specify 
that the host is always ready to accept data transfers).  Typical host 
applications deassert the HRDY~ signal in the following situations: 

o During power-up and initialization following a reset (until the 
serial driver is ready to receive data from the Micro Server) 

o When enqueuing received data, following a completed uplink 
transfer 

• Master Input Slave Output (MISO):  Transmits control and data bytes 
from the host to the Micro Server.  Data is presented at the falling clock 
edge, and sampled at the rising edge, MSB first, 8 bit.   
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• Master Output Slave Input (MOSI):  Transmits control and data bytes 
from the Micro Server to the host.  Data is presented at the rising clock 
edge, and sampled at the falling edge, MSB first, 8 bit.   

• Serial Clock (SCLK):  Provides a clock signal for all data transfers.  Data 
is presented at the falling clock edge, and sampled at the rising edge.   

• Slave Select (SS~):  When asserted, selects the host SPI interface for SPI 
communications.  This signal can be used to drive a (low-active) Enable 
signal on the host’s SPI interface, when necessary.   

• Transmit Request (TREQ~):  When asserted, indicates that the host 
processor is ready to send data.  The host asserts this signal low and 
waits for the Micro Server to deassert the R/W~ signal.  

• Read/Write (R/W~):  Indicates which direction is active during a byte 
transfer (low indicates write).  The R/W~ signal is low during a transfer 
from the Micro Server to the host (MOSI); the R/W~ signal is high during 
a transfer from the host to the Micro Server (MISO).  See SPI Host to 
Micro Server Control Flow (MISO) for more information about the MISO 
flow. 

• Serial Bit Rate Bit 0 (SBRB0) and Serial Bit Rate Bit 1 (SBRB1):  
Together set the communications bit rate. 

The ShortStack SPI interface supports only one host processor on the bus; it does 
not support any other devices or microprocessors on the bus.   

ShortStack
Micro Server

TREQ~

R/W~

MISO

MOSI

SCLK

SS~
IO2

IO1

IO8

IO7

IO0

IO4

IO10
HRDY~
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IO5

IO6

VDD

SBRB0

SBRB1

 
Figure 28. ShortStack SPI Communications Interface 

SPI Micro Server to Host Control Flow (MOSI) 
The host driver asserts the HRDY~ signal low to indicate that it is ready to 
receive data.  Because the Micro Server has a limited set of buffers, the host 
driver must deassert the HRDY~ signal for only a short duration.  A typical 
driver deasserts the HRDY~ signal during its power-up and initial initialization 
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following a reset, and after an uplink data packet has been completely received, 
while the packet data is enqueued for further processing, then reasserts the 
signal. 

If your driver is always able to receive data, you can hardwire the HRDY~ input 
low. 

Before sending a byte to the host, the Micro Server waits for the HRDY~ signal 
to be asserted low, then it sets the R/W~ signal low to indicate the direction of 
the data transfer.  The Micro Server presents data on each rising edge of the 
SCLK signal; the host samples the data on each falling edge.   

During MOSI transmissions, the MISO signal is ignored, and any data 
transferred to the Micro Server during this time is discarded.  The SCLK period 
and duty cycle can vary during MISO and MOSI transmissions; the SCLK signal 
cannot be used for any other purpose than ShortStack SPI interface data 
transfers. 

Figure 29 shows an example for the Micro Server to host SPI control flow.   
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Byte Received InterruptByte Received Interrupt

R/W Sampled

 
 

Figure 29. SPI Micro Server to Host (MOSI) Transfer Control Flow Diagram 

SPI Host to Micro Server Control Flow (MISO) 
Because the Micro Server is the SPI master, the host processor loads the first 
byte to be transmitted and asserts the TREQ~ signal.  Asserting the TREQ~ 
signal causes the Micro Server to start the data transfer by driving the SCLK 
signal.  Loading the data byte before asserting the TREQ~ signal ensures that: 

• The data is transmitted as soon as the Micro Server begins sending a 
clock signal (the SCLK signal) 

• The data is sampled on the rising edge of the SCLK signal 

After the byte-received interrupt in the host’s SPI status register is set, the host 
tests the R/W~ signal to determine if the transmission was successful.  If the 
R/W~ signal is low (indicating a write operation by the Micro Server), the host 
must save the incoming byte as part of an uplink transfer and retry transmission 
until the R/W~ signal is high.  When the host attempts to write data while the 
Micro Server is already writing data, this condition is known as a write collision. 

After the host samples the R/W~ signal and it is still high after the transfer of 
the first byte, it immediately de-asserts the TREQ~ signal before it loads the 
second byte of the burst transfer into its SPI transmission data register. 

Because the host samples the R/W~ signal between the transmission of the first 
and second byte, the minimum length for a transfer in either direction is two 
bytes.  This requirement is inherently met by the ShortStack SPI interface 
message structure because each link layer packet is two or more bytes in length.  
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For some packets with only one byte of payload, an extra padding byte (zero) is 
added.  In addition, the Micro Server keeps the R/W~ signal high for the duration 
of one byte; this extra time allows the host to confirm transfer direction.  

The Micro Server samples data on the rising edge of the SCLK signal.  The host 
presents data on the falling edge of the SCLK signal, because the SCLK signal is 
high between bytes (idle line).  For most SPI implementations, this idle state is 
achieved by setting the Clock Polarity Bit (CPOL) to one and the Clock Phase Bit 
(CPHA) to one. 

Figure 30 shows an example for the host to Micro Server SPI control flow, 
without a write collision.  The figure also shows the transfer of the two-byte 
header. 
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Figure 30. SPI Host to Micro Server (MISO) Transfer Control Flow Diagram without Write 
Collision 

Figure 31 shows the sequence for a MISO transaction when there is a write 
collision with a MOSI transmission.  The host tests the R/W~ signal after loading 
the first byte to be transmitted to determine if the transmission was successful.  
Because the R/W~ signal is low, indicating that the ShortStack Micro Server is 
currently performing a MOSI transfer, the host saves the incoming byte and 
retries transmission until the R/W~ signal is high after the attempted transfer of 
the first byte.  The figure shows that the host successfully transmits the data on 
the second attempt.  
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Figure 31. SPI Host to Micro Server (MISO) Transfer Control Flow Diagram with Write 

Collision 
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SPI Resynchronization 
The Micro Server resynchronizes the ShortStack SPI interface by de-asserting 
the SS~ signal during a byte transfer, or by de-asserting the SS~ signal and 
issuing several SCLK pulses.  This resynchronization occurs during Micro Server 
start-up and when the Micro Server resets. 

Performing an Initial Micro Server Health Check  
After you load the ShortStack Micro Server image into a Smart Transceiver, the 
Micro Server enters quiet mode (also known as flush mode).  While the Smart 
Transceiver is in quiet mode, all network communication is paused. 

The Smart Transceiver enters quiet mode to ensure that only complete 
implementations of the LonTalk protocol stack attach to a LonTalk/IP or LON 
network.  In a functioning ShortStack device, the application initializes the Micro 
Server. After that initialization is complete, the Micro Server leaves quiet mode 
and enables regular network communication. 

To check that the Micro Server is functioning correctly before the host processor 
has initialized it, you can use an oscilloscope or a logic analyzer to observe the 
activity on the TXD (IO10) signal or MOSI (IO7) signal that reflects the uplink 
LonNiReset message transfer that follows a Micro Server reset, as shown in 
Figure 32 for SCI and Figure 33 for SPI. 
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Figure 32. Uplink LonNiReset Message Transfer – SCI  
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Figure 33. Uplink LonNiReset Message Transfer – SPI 
The Micro Server’s service LED flashes slowly (which indicates that the Smart 
Transceiver is in the unconfigured state), and all network communications are 
disabled while it is in quiet mode. 

Ensure that all communication and handshake lines are connected to VDD with 
10kΩ pull-up resistors.  For the initial hardware test, the HRDY~ input signal 
should be grounded (asserted).  If you use the SCI interface, the SPI/SCI~ input 
signal should also be grounded; if you use the SPI interface, the SPI/SCI~ input 
signal must be connected to VDD.  Your hardware design can include a button 
that connects the RESET~ pin to ground; you press this button to reset the 
Micro Server. 

When you press the Reset button for a ShortStack device, the Smart Transceiver 
firmware performs reset processing, as described in the data books for the Smart 
Transceiver chips.  Then, the Micro Server performs reset processing that is 
generally independent of the host processor.  See ShortStack Device Initialization 
for more information about the Micro Server’s reset processing. 

After the Micro Server is fully initialized, it transmits the uplink 
LonResetNotification message to the host.  The host normally registers (or re-
registers) its application with the Micro Server; the host application (through the 
ShortStack LonTalk/IP Compact API) begins application registration with the 
Micro Server, in which the driver sends the following messages to the Micro 
Server (in the LonInit() function and interrupt service routine for either the 
CTS~ signal or the SPI signals):   

• The LonNiAppInit message 

• One or more LonNiNvInit messages (how many depends on the number 
of network variables that are defined for the device) 

• The LonNiReset message 

After the Micro Server completes processing for the LonNiReset message, it 
sends the uplink reset message (LonResetNotification) to the host processor.  
After the host application processes this message, the host application can begin 
processing.  If the message (in the Flags field) indicates that the Micro Server is 
not initialized, the host application should re-run the LonInit() function. 
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Setting Up a Logic Analyzer for ShortStack 
Within your logic analyzer software, specify the capture options for each signal, 
as shown in Table 17 for SCI and Table 18 for SPI. 

Table 17. Logic Analyzer Signal Definitions for SCI 

Signal Name Signal Type Communications Settings 

IO1 – HRDY  Boolean ― 

IO0 – CTS~  Boolean ― 

IO4 – RTS~  Boolean ― 

IO8 – RXD  Asynchronous  Data Bits:  8 

Parity:  None 

Baud Rate:  Depends on 
SBRB0 and SBRB1 settings 

IO10 – TXD  Asynchronous Data Bits:  8 

Parity:  None 

Baud Rate:  Depends on 
SBRB0 and SBRB1 settings 
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Table 18. Logic Analyzer Signal Definitions for SPI 

Signal Name Signal Type Communications Settings 

IO2 – SS Boolean ― 

IO10 – HRDY  Boolean ― 

IO1 – SCLK  Boolean ― 

IO4 – TREQ  Boolean ― 

IO0 – RW  Boolean ― 

IO8 – MISO  Synchronous: 

CLK = IO1 – SCLK  

DATA = IO8 – MISO  

ENABLE = IO0 – RW  

Data Bits: 8 

Enable State: High 

Clock Edge: Rising 

MSB first 

IO7 – MOSI  Synchronous: 

CLK = IO1 – SCLK  

DATA = IO7 – MOSI  

ENABLE = IO0 – RW 

Data Bits: 8 

Enable State: Low 

Clock Edge: Falling 

MSB first 

For both IO7 – MOSI and IO8 – MISO, the synchronous clock is the IO1 – SCLK 
signal and the enable signal is the IO0 – RW signal. 

Example Health Check for SCI 
Figure 34 through Figure 38 show sample logic analyzer traces4 for the 
communications activity between the host processor and the Micro Server during 
the initialization sequence after device reset.  This example assumes an SCI 
setup for a 10 MHz Series 3100 Micro Server, with both the SBRB0 and SBRB1 
signals connected to GND to set the bit rate at 76800 bps.  The data transmission 
signals (RXD and TXD) in the figures are labeled from the host’s point of view.  
This example shows the reset behavior of the serial driver for an ARM7 example 
port.  

Figure 34 shows a high-level logic analyzer trace for this initialization sequence: 

• The boxed area labeled A represents sending the LonNiAppInit message 

• The boxed area labeled B represents sending the LonNiNvInit message 

• The boxed area labeled C represents sending the LonNiReset message 

                                                 
4 The logic analyzer traces were captured using the TechTools DigiView™ Logic Analyzer. 
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The trace also shows the handshake protocol (the RTS~ and CTS~ signals) that 
the serial driver and the Micro Server use to negotiate communications.  The 
handshake interaction is described in the subsequent figures. 

 
Figure 34. High-Level Logic Analyzer Trace for ShortStack Device Reset 

Figure 35 shows the detailed trace for the serial driver and Micro Server 
interactions for sending the LonNiAppInit message.   

 
Figure 35. Detailed Logic Analyzer Trace for Sending the LonNiAppInit Message 

The figure shows the following actions by the host processor and the Micro 
Server: 

1. After a device reset, the operating system, application, and driver load 
and initialize.  

2. When the driver is ready to receive data, it asserts the HRDY~ signal. 

3. Because the driver needs to send the initialization messages, it confirms 
that the CTS~ signal is not asserted, and then it asserts the RTS~ signal 
to inform the Micro Server that the driver has data to send to the Micro 
Server (in this case, the header packet for the LonNiAppInit message).  

4. The Micro Server asserts the CTS~ signal to inform the driver that the 
Micro Server is ready to receive data. 

5. The driver deasserts the RTS~ signal.  The handshake between the 
driver and the Micro Server is complete, so the driver deasserts the RTS~ 
signal so that the signal can be asserted when the driver needs to send 
more data to the Micro Server.  It is important that the driver deassert 
the RTS~ signal before the last byte of data is transmitted, and deasserts 
the RTS~ signal as soon as the CTS~ signal is asserted. 
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6. The driver sends the two-byte header packet to the Micro Server.  In this 
case, the length byte is 0x1C (decimal 28) and the command byte is 0x08, 
which specifies the LonNiAppInit message. 

7. After the Micro Server receives the header packet, it deasserts the CTS~ 
signal to inform the driver that the Micro Server is no longer receiving 
data.  The Micro Server is always aware of the number of bytes that it 
expects to receive from the driver.  In this case, because the packet is the 
header, the Micro Server knows that the driver will send only 2 bytes, so 
it deasserts the CTS~ signal after it has received the 2 bytes. 

8. The driver confirms that CTS~ is deasserted, and again asserts the 
RTS~ signal to inform the Micro Server that the driver has data to send 
to the Micro Server (in this case, the payload packet for the 
LonNiAppInit message). 

9. After the Micro Server has processed the header information for the 
LonNiAppInit message, it asserts the CTS~ signal to inform the driver 
that the Micro Server is ready to receive the payload data. 

10. The driver deasserts the RTS~ signal.  The handshake between the 
driver and the Micro Server is complete. 

11. The driver sends the 28-byte payload packet for the LonNiAppInit 
message to the Micro Server.  The size of this message may vary. 

12. Once the Micro Server received all payload data (according to the payload 
length transmitted with the header segment), it de-asserts CTS~, then 
acts on the contents of that message (not shown in the above illustration). 

 

Figure 36 shows the detailed trace for the serial driver and Micro Server 
interactions for sending the LonNiNvInit message.  The figure also includes the 
end of the transaction for the LonNiAppInit message. 

 
Figure 36. Detailed Logic Analyzer Trace for Sending the LonNiNvInit Message 

The figure shows the following actions by the host processor and the Micro 
Server: 

1. The driver confirms that the CTS~ signal is not asserted, and then 
asserts the RTS~ signal to inform the Micro Server that the driver has 
more data to send to the Micro Server (in this case, the header packet for 
the LonNiNvInit message). 

2. The Micro Server asserts the CTS~ signal to inform the driver that the 
Micro Server is ready to receive data.  During the long delay between the 
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driver’s asserting RTS~ and the Micro Server’s asserting CTS~, the 
Micro Server processes the LonNiAppInit message. 

3. The driver deasserts the RTS~ signal.  The handshake between the 
driver and the Micro Server is complete. 

4. The driver sends the two-byte header packet to the Micro Server.  In this 
case, the length byte is 0x08 and the command byte is 0x0B, which 
specifies the LonNiNvInit message. 

5. After the Micro Server receives the header packet, it deasserts the CTS~ 
signal.  The Micro Server is always aware of the number of bytes that it 
expects to receive from the driver.  In this case, because the packet is the 
header, the Micro Server knows that the driver will send only 2 bytes, so 
it deasserts the CTS~ signal after it has received the 2 bytes. 

6. After confirming that CTS~ is deasserted, the driver again asserts the 
RTS~ sigal to inform the Micro Server that the driver has data to send to 
the Micro Server (in this case, the payload packet for the LonNiNvInit 
message). 

7. After the Micro Server has processed the header information for the 
LonNiNvInit message, it asserts the CTS~ signal to inform the driver 
that the Micro Server is ready to receive the payload data. 

8. The driver deasserts the RTS~ signal.  The handshake between the 
driver and the Micro Server is complete. 

9. The driver sends the eight-byte payload packet for the LonNiNvInit 
message to the Micro Server.  The size of this message depends on the 
number of network variables defined for the device. 

10. The Micro Server de-asserts CTS~ once it received the expected number 
of bytes. 

When necessary (depending on the application’s set of network variables), steps 1 
to 9 can be repeated several times to transfer additional LonNiNvInit data to 
the Micro Server. 

The last LonNiNvInit packet signals the end of the registration sequence.  The 
Micro Server completes the final registration steps, and leaves quiet mode.  Quiet 
mode ensures that only a complete and fully functioning protocol stack attaches 
to the network.  While in quiet mode, the host processor can use local commands 
to communicate with the Micro Server, such as query status or ping, but cannot 
communicate with other devices on the network. 

Although the figure does not show it, after the Micro Server receives the last byte 
of the payload data for the LonNiNvInit message, it deasserts the CTS~ signal.  
Because it parses the data in the link-layer header to read the length byte, the 
Micro Server is always aware of the number of bytes that it expects to receive 
from the driver. 

Figure 37 shows the detailed trace for the serial driver and Micro Server 
interactions for sending the LonNiReset message.  The figure also includes the 
end of the transaction for the LonNiNvInit message. 
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Figure 37. Detailed Logic Analyzer Trace for Sending the LonNiReset Message 

The figure shows the following actions by the host processor and the Micro 
Server: 

1. The driver confirms that the CTS~ signal is not asserted, and then 
asserts the RTS~ signal to inform the Micro Server that the driver has 
more data to send to the Micro Server (in this case, the header packet for 
the LonNiReset message). 

2. The Micro Server asserts the CTS~ signal to inform the driver that the 
Micro Server is ready to receive data.  During the long delay between the 
driver’s asserting RTS~ and the Micro Server’s asserting CTS~, the 
Micro Server processes the LonNiNvInit message. 

3. The driver deasserts the RTS~ signal.  The handshake between the 
driver and the Micro Server is complete. 

4. The driver sends the two-byte header packet to the Micro Server.  In this 
case, the length byte is 0x00 (there is no payload for this message) and 
the command byte is 0x50, which specifies the LonNiReset message. 

5. After the Micro Server receives the header packet, it deasserts the CTS~ 
signal to inform the driver that the Micro Server is no longer ready to 
receive data. 

6. Because the Micro Server received the LonNiReset message, it resets. 

As shown in Figure 38, the driver does not re-assert the RTS~ signal.  For this 
example, the host processor has no more data to send to the Micro Server because 
there is no payload for the LonNiReset message.  The Micro Server deasserts 
the RESET~ signal as it completes reset processing.  

Approximately 1 second (for a Series 3100 Smart Transceiver running at 10 
MHz) after the Micro Server receives the LonNiReset message, the Micro Server 
sends the uplink reset message (LonResetNotification) to the host processor.   
The LonNiReset message is shown on the RXD line because the signals are 
labeled from the host’s point of view. 

IzoT Micro Servers enforce an artificial post-reset pause after transmitting the 
uplink reset message.  The Micro Server does not interact with the host in any 
way for the duration of this pause.  The post-reset pause is 50 ms by default, and 
can be configured from your host application for most Micro Servers (disabled, or 
re-adjusted in a 1..255 ms range).  The PL 3170 Micro Servers support a non-
configurable 50 ms post-reset delay. 
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The post-reset delay grants more processing time to the host after it received the 
reset notification, which generally requires that the host aborts pending 
downlink operation and re-synchronizes its link layer driver.  

 
Figure 38. Detailed Logic Analyzer Trace for Receiving the Uplink Reset Message 

There is no handshake through the RTS~ and CTS~ control signals for an uplink 
message, and the message includes both the two-byte header and the message 
payload in a single message transfer.  In this case, length byte is 0x10 (decimal 
16) and the command byte is 0x50, which specifies the LonNiReset message.  
This message is always the first message a Micro Server should send to the host 
processor after a reset.  The actual content of this message depends on the 
characteristics of the Micro Server. 

Although it is not likely during Micro Server initialization, an uplink transfer can 
interrupt the downlink transmission between the sending of the header and the 
sending of the related payload.  If the header has been transmitted and an uplink 
occurs before the payload can be delivered, the driver accepts the uplink data 
before it continues with handshake negotiations for the downlink payload 
transfer.   

The example described in this section showed the Micro Server initialization 
sequence, which consists of two separate message transfers:  a two-byte header 
and the related payload, both of which require a complete handshake.  However, 
a link-layer downlink operation for polling or propagating output network 
variables with indices larger than 62 consists of three message transfers:  a two-
byte header, a second two-byte extended header, and the related payload, all of 
which require a complete handshake.  See Overview of the ShortStack Serial 
Driver for more information about the link-layer header. 

Example Health Check for SPI 
 Figure 39 and 40 show sample logic analyzer traces5 for the communications 
activity between the host processor and the Micro Server during the initialization 
sequence after device reset.  Figure 39 shows the messages from the host to the 
Micro Server; Figure 40 shows the response from the Micro Server after device 
reset is complete.  This example assumes an SPI setup for a 20 MHz Series 5000 
Micro Server, with both SBRB0 and SBRB1 connected to GND to set the bit 
rate at 172600/226600 bps.  The data transmission signals (MISO and MOSI) in 

                                                 
5 The logic analyzer traces were captured using the TechTools DigiView Logic Analyzer. 
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the figures are labeled from the Micro Server’s point of view as the SPI master.  
This example shows the reset behavior of the serial driver for the ARM7 example 
port SPI driver that is available from the Echelon Knowledge Base: 
echelon.com/support. 

 

 
Figure 39. LonInit Communications Flow for SPI, Part 1 

 

The basic communications flow shown in Figure 40 includes the following steps: 

1. When the host application is ready, the driver asserts the HRDY~ signal.  
A low HRDY~ signal indicates that the host is available to receive data 
from the Micro Server. 

2. Because the LonInit() function needs to send data to the Micro Server, 
the driver asserts the TREQ~ signal.  A low TREQ~ signal indicates that 
the host has data to send to the Micro Server.   

3. When the Micro Server is ready to receive the host’s data, it deasserts the 
R/W~ signal.  A high R/W~ signal allows the host to send data.  When the 
Micro Server sees the low TREQ~ signal while the R/W~ signal is high, it 
drives the SCLK signal to allow the data transfer to begin. 

4. The host sends the header byte for the first message (the LonNiAppInit 
message).  The data appears on the MISO signal. 

5. As soon as the first header byte is placed within the driver’s output 
buffer, the driver deasserts the TREQ~ signal.   

6. After the Micro Server receives the two-byte header, it stops driving the 
SCLK signal to end the data transfer.  As the header byte is received by 
the Micro Server, it asserts the R/W~ signal.  A low R/W~ signal 
indicates either a write by the Micro Server or that the Micro Server is 
not ready to receive data from the host. 

7. Steps 2 through 6 repeat for sending the payload for the first message 
(the LonNiAppInit message). 

8. Steps 2 through 7 repeat for sending the second message (the 
LonNiNvInit message) and the third message (the LonNiReset 
message), although the third message has no payload.  

https://support.echelon.com/hc/en-us/articles/201877620-Does-Echelon-have-an-example-SPI-driver-for-ShortStack-2-1-or-ShortStack-FX-KB635-
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After the Micro Server receives the LonNiReset message, it resets.  After the 
reset is complete, the Micro Server sends an uplink reset message 
(LonResetNotification) to the host processor, as shown in Figure 40. 

 

 
Figure 40. LonInit Communications Flow for SPI, Part 2 

 

IzoT ShortStack Micro Servers enforce a configurable post-reset pause after the 
uplink reset message is sent. The Micro Server does not interact with the host in 
any way for the duration of this pause. The post-reset pause is 50 ms by default, 
and can be configured from your host application for most Micro Servers 
(disabled, or re-adjusted in a 1..255 ms range).  The PL 3170 Micro Servers 
support a non-configurable 50 ms post-reset delay. 

The post-reset delay grants more processing time to the host after it received the 
reset notification, which generally requires that the host aborts pending 
downlink operation and re-synchronizes its link layer driver. 

Because the message originates with the Micro Server (an uplink message), it 
asserts the R/W~ signal and drives the SCLK signal when it is ready to send the 
data.  The message includes both the two-byte header and the message payload 
in a single message transfer. 
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Creating a ShortStack Serial Driver 

This chapter describes the link-layer serial driver and how 
to develop a ShortStack serial driver for your host processor.  
This driver manages the handshaking and data transfers 
between the host and the ShortStack Micro Server.  The 
driver also manages the buffers in the host for 
communication with the ShortStack Micro Server.   
If a ShortStack driver is available for your host processor 
that matches your buffer memory and I/O configuration, you 
can skip this chapter. 
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Overview of the ShortStack Serial Driver 
Each data exchange on the serial link layer consists of one or more segments.  
For downlink messages, the serial driver and Micro Server perform a handshake 
for each segment.  For uplink messages, there is no handshake. 

The link-layer message consists of the following segments: 

• A two-byte link-layer header 

• A two-byte link-layer extended header (applies only to downlink 
messages for network variable updates or polls where the network 
variable index is greater than 62) 

• The message payload, if any 

The link-layer header consists of two parts:   

• The length byte.  This value describes the length of the message payload. 
This value is 0x00 if there is no message payload, and is at least 0x02 if 
there is a message payload. 

• The command byte.  This value determines the command being sent to 
the Micro Server or being received from the Micro Server. 

The link-layer extended header consists of two parts: 

• The info byte.  This value is the actual network variable index for the 
update or poll request.  The command byte of the link-layer header 
contains a network variable index of 0x3F (decimal 63) to inform the 
Micro Server and the serial driver that an extended header is required to 
process the command. 

• A reserved byte.  For all current ShortStack Micro Servers, the value of 
this byte is 0x00. 

Figure 41 shows the structure of the link-layer message. 
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Figure 41 Link-Layer Message Structure 

Thus, for a typical link-layer message, the link-layer message includes the link-
layer header and the data payload.  Not all link-layer messages include payload, 
but all use the same two-byte header.  For network variable polls or updates, the 
link-layer message can include three segments:  the link-layer header, the link-
layer extended header, and the data payload. 

For both the SCI and SPI interfaces, each link-layer downlink transmission 
consists of the link-layer header transmission, followed by the link-layer 
extended header transmission (if applicable), followed by the optional payload 
transmission.  For downlink messages, all segments are individually verified 
with the handshake procedure between the host and Micro Server that is 
described in Designing the Hardware Interface.  

However, there is no handshake process for an uplink transfer.  If uplink data is 
ready in the Micro Server, and the host processor signals its readiness by 
asserting the HRDY~ signal (or has its HRDY~ signal permanently tied low), 
the Micro Server transfers the link layer header, immediately followed by the 
payload data (if any).  In addition, for uplink transfers, the link-layer extended 
header is not required. 

After each downlink transfer, an uplink transfer can occur.  If an uplink transfer 
occurs after sending one segment, but prior to sending the next segment, the 
subsequent segment transmission needs to wait for the uplink to complete.  

After the uplink is complete, it is enqueued within the serial driver, and the 
pending downlink is completed before processing the newly arrived packet. 
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The actual payload length must match the specified length in the header byte of 
the link-layer message.  If the actual length exceeds the specified length, extra 
bits are ignored, but may cause problems for subsequent transactions.  
Transmitting fewer bits than specified in the link-layer header’s length byte 
causes the Micro Server to wait for the missing bits, and then reset when its 
watchdog timer expires. 

Role of the ShortStack LonTalk/IP Compact API 
One of the most important tasks performed by the ShortStack LonTalk/IP 
Compact API is the processing of uplink link-layer packets into pre-parsed data 
packets that it passes to the appropriate callback handler function defined by 
your application.  

The application periodically calls the LonEventHandler() API function, which 
queries the serial driver’s uplink queue and, upon availability of an uplink 
packet, dequeues and processes this packet. 

For any downlink operation, typically initiated by your application’s calling one 
of the ShortStack LonTalk/IP Compact API functions, such as 
LonPropagateNv(), the API translates the application-friendly data used with 
the API call into the corresponding link-layer packet, and enqueues this packet 
for downlink transfer. 

Some link-layer transfers can occur without any interaction of your application; 
for example, a network variable poll or fetch request can typically be satisfied by 
the API alone, without intervention by your application. 

Role of the ShortStack Serial Driver 
The ShortStack serial driver provides a hardware-specific interface between the 
ShortStack LonTalk/IP Compact API and the ShortStack Micro Server.  The 
driver exchanges link-layer messages with ShortStack Micro Server, and 
implements the host-side of the link-layer protocol.   

The serial driver includes buffer management for incoming and outgoing 
messages, and typically allows for non-blocking operation. 

ShortStack LonTalk/IP Compact API Interface 
Typically, the ShortStack serial driver implements a set of interrupt handlers 
that respond to USART events such as transmit buffer empty or receive buffer full 
when bare-metal designs are used.  Implementations that use an operating 
system may find operating system support for basic serial communication, but 
may need to add support for some of the ShortStack link layer signals.  These 
applications will typically use a worker thread or some other suitable means of 
concurrent processing to exchange data between an input and output message 
queue pair on the side of your application, and the Micro Server. 

The ShortStack LonTalk/IP Compact API uses the functions listed in Table 19 
that communicate between the API and the driver, including handling all uplink 
and downlink data transfers.  Your ShortStack serial driver must support these 
functions.  These functions are declared in the ldv.h file.  
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For more information about these interface functions, see an example port’s 
implementation of the functions; for example, see the IzoT ShortStack SDK 
Examples repository on github.com/izot/shortstack for example code and 
documentation. 

 

Table 19. Interface Functions for the ShortStack LonTalk/IP Compact API 

Function Description 

LdvOpen() Initializes the ShortStack serial driver and the 
underlying communication interface. 

This API was previously known as LdvInit(). 

LdvClose() Completes all pending downlink traffic and closes the 
driver. 

This API is new with the IzoT ShortStack SDK.  

LdvAllocateMsg() Allocates a transmit buffer in the ShortStack serial 
driver. 

LdvAllocateMsgWait() Allocates a transmit buffer in the ShortStack serial 
driver in a blocking operation (until a fatal timeout 
occurs). 

This API is new with the IzoT ShortStack SDK. 

LdvPutMsg() Submits a downlink message to the driver. 

This is a non-blocking function. 

This API will typicall return to the caller before the 
related message transmission is complete. 

LdvGetMsg() Gets an incoming message (if any) from the 
ShortStack serial driver’s receive buffer. 

LdvReleaseMsg() Releases a message buffer back to the ShortStack 
serial driver after receiving and processing a message. 

LdvReset() Resets the serial driver. 

LdvSuspend() Temporarily suspends the serial driver. The driver 
can be suspended, synchronized to the end of the next 
segment, or the end of the next multi-segmented 
frame.  

This API is new with the IzoT ShortStack SDK.  

The API is optional; your implementation of the driver 
can indicate whether support for this API is provided. 
The ShortStack API does not require this API. 

https://github.com/izot/shortstack
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Function Description 

LdvResume() Resume a suspended driver.  

This API is new with the IzoT ShortStack SDK.  

The API is optional; your implementation of the driver 
can indicate whether support for this API is provided. 
The ShortStack API does not require this API. 

Creating an SCI ShortStack Driver 
This section describes how to implement an SCI ShortStack driver.  The SCI 
hardware interface is described in SCI Interface. 

A ShortStack Micro Server considers the serial link reliable.  An inter-byte time-
out (or any other time-out condition) is considered a serious error, and recovery 
generally requires resetting the Micro Server and the host driver state.  To 
minimize the effects of such a time out, set a large time-out interval based on the 
communications bit rate or use another appropriate large value (such as 3 or 5 
seconds). 

The [ShortStack]/example/rpi/driver/rpi.c example source file contains 
definitions and discussion of suggested values for various timeout conditions.  

SCI Uplink Operation 
In an SCI uplink operation, data is transferred from the ShortStack Micro Server 
to the host processor.  Figure 42 and Figure 43 show the activity that the driver 
should manage for an uplink operation.  The figures also show how the Micro 
Server, serial driver, LonTalk/IP Compact API, and the application interact to 
process an uplink message. 

The host processor uses the HRDY~ handshake signal to inform the Micro 
Server when it is ready to receive uplink data.  The Micro Server does not send 
uplink data unless the HRDY~ signal is asserted.  While an uplink transfer is in 
progress, the Micro Server does not re-sample the HRDY~ signal.  To prevent 
loss of uplink data, the host must assert this handshake signal whenever 
possible, and de-assert it for the shortest time possible.   

An uplink transfer can occur between the two or three segments of a downlink 
transfer.  Your driver must be able to receive uplink data at this time to avoid a 
possible deadlock condition. 

 



ShortStack User’s Guide        107 

Processing

DriverMicro Server

Send packet Receive packet

High

Low

Input buffer 
available?

No Yes

API

Assert HRDY~
(if implemented)

Application

De-assert HRDY~
(if implemented)

Signal error and 
drop packet Enqueue packet

Notify application 
(optional)

Check HRDY~

A

 
Figure 42. SCI Uplink Operation (Part 1) 
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Figure 43. SCI Uplink Operation (Part 2) 

SCI Downlink Operation 
In an SCI downlink operation, data is transferred from the host processor to the 
ShortStack Micro Server.  Figure 44 shows the activity that the driver should 
manage for a downlink operation.  Figure 45 shows the SCI handshake and data 
transfer for the header, extended header, or payload. 

To send a message downlink, the driver must initiate a downlink operation for 
each link-layer message segment:  one for the link-layer message header, one for 
the extended header (if applicable), and one for the message payload (if any): 

1. The driver first initiates the transfer of the link-layer message header, 
then, if allowed, transfers the header.   

2. If the message applies to a network variable with index greater than 62, 
the driver then initiates the transfer of the link-layer extended header, 
then, if allowed, transfers the extended header.  

3. Then, if payload data exists (indicated by the non-zero length byte in the 
header), the driver initiates the transfer of the message payload, and, if 
allowed, transfers the message payload. 
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When the host asserts the RTS~ signal for the first time, the Micro Server 
assumes that the assertion is for the 2-byte header.  It asserts the CTS~ signal 
until it has read the two bytes.  It then extracts the length of the payload from 
the header and parses the command byte to determine if an extended header is 
needed.  When the host asserts the RTS~ signal a second time, the Micro Server 
asserts the CTS~ signal until it receives either the extended header or the entire 
payload (based on its length and command byte, as indicated in the header), 
depending on which is expected.  Some messages have no payload (for example, 
the reset message), thus the payload length for these messages is zero.  

Before beginning a transfer, or after having transferred the entire transaction 
payload, the host needs to wait for the CTS~ signal to become inactive (high) 
again.  The Micro Server deasserts this signal after it receives all bytes of the 
current transaction, and after it has completed any immediate processing that 
might be required.  If the application does not query this signal state, error states 
can occur.  For example, the host might attempt to transfer a new transaction 
because it would assume that the CTS~ signal’s being asserted is the 
acknowledgment of the new transfer request rather than the acknowledgment 
from the previous transfer.  

It is possible for an uplink transfer to occur after the Micro Server receives the 
downlink header, but before it is ready to receive the downlink payload.  Your 
host driver must allow for such an uplink. Blocking such an uplink, for example 
by de-asserting the HRDY~ signal, can cause a fatal deadlock to occur. 

No uplink can occur while the CTS~ signal is asserted. 
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Figure 44. Downlink Operation 
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Figure 45. SCI Handshake and Data Transfer 

When the Micro Server checks the RTS~ signal for most commands (in the 
“RTS~ Low?” decision box), if the signal remains high without data transfer for 
longer than the watchdog timer setting for the Smart Transceiver (approximately 
840 ms for a Series 3100 Smart Transceiver at 10 MHz or for a Series 6000 or 
5000 Smart Transceiver), the Micro Server performs a watchdog reset. 

Prior to receiving the payload (if any), the Micro Server prepares to receive the 
payload data.  For most downlink operations, this preparation includes allocating 
an output buffer.  If no buffers are available, acknowledgement for the RTS~ 
signal with CTS~ assertion could take a significant amount of time, depending 
on the local channel type, channel usage, the types of transactions that are 
holding the buffers, and transport and transaction control properties.  Your 
driver must be able to handle such delays. 
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Your driver must be prepared to accept uplink transaction while it awaits 
approval of a pending downlink handshake.  This is crucial, because the uplink 
transfer of data might be required to make a buffer available for use by the 
pending downlink, and failure to accept uplink data at this time could lead to a 
fatal link layer deadlock situation. 

Network Variable Fetch Example 
You can use a logic analyzer or oscilloscope to observe the interactions between 
the host and Micro Server during network operations, such as a fetch of a 
network variable.  A logic analyzer trace can be a helpful tool to verify that the 
serial driver works as expected. 

Figure 46 shows an example logic analyzer trace after the Micro Server receives a 
network variable fetch request from the network.  The timing for the logic 
analyzer trace is 5 ms per division.  The example used an FT 3150 Micro Server 
running at 10 MHz with an ARM7 host running at 20 MHz. 

The figure illustrates that the host waits for the CTS~ signal to become inactive 
before it starts a new transfer by asserting the RTS~ signal. 
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Figure 46. Logic Analyzer Trace for an NV Fetch 

The figure shows the following events: 

A. The Micro Server samples the HRDY~ signal.  If it is asserted, which it is 
in this example, the Micro Server begins to transfer the uplink data. 

B. The TXD signal shows the uplink data transfer. 

C. The host briefly de-asserts the HRDY~ signal while it stores the packet 
in an incoming queue (if the host has buffers available, it need not de-
assert the HRDY~ signal).  The host can optionally notify the application 
of the available data for asynchronous processing. 

D. The host prepares its response, waits for the CTS~ signal to be inactive, 
asserts the RTS~ signal, then waits for the CTS~ signal to be asserted. 

E. The Micro Server asserts the CTS~ signal. 

F. The host de-asserts the RTS~ signal and transmits the message header 
(shown on the RXD signal). 

G. The host waits for the CTS~ signal to become inactive, re-asserts the 
RTS~ signal, and waits for the CTS~ signal to be asserted again. 

H. The Micro Server is ready for the payload, and asserts the CTS~ signal. 

I. The host de-asserts (releases) the RTS~ signal and begins the payload 
transfer. 

J. The RXD signal shows the payload transfer (the downlink response 
containing the requested NV value). 
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Creating an SPI ShortStack Driver 
This section describes how to implement an SPI ShortStack driver.  The SPI 
hardware interface is described in SPI Interface. 

SPI Uplink Operation 
In an SPI uplink operation, data is transferred from the ShortStack Micro Server 
to the host processor.  Figure 47 and Figure 48 show the activity that the driver 
needs to manage for an uplink operation.  The figures also show how the Micro 
Server, serial driver, ShortStack LonTalk/IP Compact API, and the application 
interact to process an uplink message.  The driver must sense the R/W~ signal 
low between the arrivals of the first and second bytes in the burst when it is 
receiving a packet. 

The host processor uses the HRDY~ handshake signal to inform the Micro 
Server when it is ready to receive uplink data.  The Micro Server does not send 
uplink data unless the HRDY~ signal is asserted.  To prevent loss of uplink data, 
the host must assert this handshake signal whenever possible, and de-assert it 
for the shortest time possible. 
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Figure 47. SPI Uplink Operation (Part 1) 
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Figure 48. SPI Uplink Operation (Part 2) 

SPI Downlink Operation 
In an SPI downlink operation, data is transferred from the host processor to the 
ShortStack Micro Server.  To send a link-layer message downlink, the driver 
initiates two downlink operations:  one for the link-layer message header, and the 
other for the message payload.  Figure 49 shows the activity that the driver needs 
to manage for a downlink operation (this figure is the same as Figure 44).  Figure 
50 shows the SPI handshake and data transfer for the header, extended header, 
or payload.  The driver needs to sense the R/W~ signal high between 
transmissions of the first and second bytes in the burst when it is transmitting a 
packet.  In addition, the Micro Server keeps the R/W~ signal high for an 
additional byte time; this extra time allows the host to confirm transfer direction. 

As described in SPI Host to Micro Server Control Flow (MISO), the host must 
detect possible write collisions during data transfer. 
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Figure 50. SPI Handshake and Data Transfer 

Prior to receiving the payload (if any), the Micro Server prepares to receive the 
payload data.  For most downlink operations, this preparation includes allocating 
an output buffer.  If no buffers are available, the Micro Server could take a 
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significant amount of time to de-assert the R/W~ signal after the host asserts the 
TREQ~ signal, depending on the local channel type, channel usage, the types of 
transactions that are holding the buffers, and transport and transaction control 
properties.  Your driver must handle such delays. 

Transmit and Receive Buffers 
The ShortStack serial driver must define the number and size of the transmit 
and receive buffers in the host processor.  More buffers require more memory, but 
can also increase performance and minimize the potential for lost messages.   

Set the serial driver’s buffer count for both transmit and receive buffers to the 
number of application buffers defined for the Micro Server, and adjust upward as 
necessary for the application.  For example: 

#define LDV_TXBUFCOUNT 5 
#define LDV_RXBUFCOUNT 5 

The transmit and receive buffers within the host cannot be smaller than those 
defined in the Micro Server.   

The IzoT ShortStack SDK example application and driver for use with a 
Raspberry Pi computer and the Raspbian Linux operating system includes the 
implementation of a simple protected queue (ldvq.h, ldvq.c) with configurable 
limits similar to those discussed.  See the source code in the ldvq.c file for a 
discussion of implementation details, configuration options, and ramifications.  

Link-Layer Error Detection and Recovery 
The ShortStack Micro Server and the ShortStack LonTalk/IP Compact API both 
assume that the serial communication between the host microprocessor and the 
ShortStack Micro Server is a reliable link.  To maximize performance, the 
ShortStack Micro Server uses a simple link layer protocol with minimal error 
detection.  Your hardware design for the interface between your host and the 
ShortStack Micro Server must provide this reliable link.  

When either the Micro Server or the host processor resets, your serial driver 
must synchronize with the ShortStack Micro Server.  Your serial driver must 
also implement an inter-byte timeout for both the serial receiver and transmitter.  
If the receiver timer expires, the current message is discarded.  If the transmitter 
timer expires, the current message is resent later. 

Your serial driver must implement appropriate timeout guards.  For example, 
when your driver waits for an SCI CTS~ assertion by the Micro Server, or for the 
byte-transmitted interrupt after asserting the SPI TREQ~ signal, a timeout 
period of 5 seconds can help to detect serious malfunction.  

Likewise, when the driver expects a predetermined number of bytes to arrive 
from the Micro Server, an inter-byte timeout of 1 second, or a total packet 
timeout that is a function of the expected byte count, is required.  

The IzoT ShortStack SDK example applications and driver for use with the 
Raspberry Pi computer and the Raspbian Linux operating system include several 
configurable timeout values and extensive discussion, embedded within the rpi.c 
implementation file.  
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Review this example driver and the embedded commentary even if you do not 
plan on using a Raspberry Pi or a Linux operating system.  

If the link-layer is idle for a period of time, the serial driver or host application 
can issue a ping command (the LonSendPing() function with the 
LonPingReceived() callback handler function) to verify that the Micro Server is 
still running properly and has an operational link layer.  The ping command is a 
short link-layer message that is echoed by the Micro Server; no other action is 
triggered by this command.   

You can also use the echo command (the LonRequestEcho() function with the 
LonEchoReceived() callback handler function) to test the link layer.  The echo 
command provides more functionality than the ping command, but at the cost of 
additional bytes and transfer time.  Using the echo command, the application can 
send six arbitrary bytes to the Micro Server.  The Micro Server receives the data, 
increments each of the six bytes (using unsigned 8-bit arithmetic, ignoring any 
overflow conditions), and returns the entire data packet to the host.  

You can use the echo command when the device is idle to verify that the link 
layer and the Micro Server are operational.  You can also use the echo command 
during device stress testing to verify robust link-layer operations under high 
traffic conditions.  For such a stress test, an application repeatedly sends echo 
requests with different data and confirms that the data received meets 
expectations.  Data errors detected during such a test may indicate poor link- 
layer line termination, excessive crosstalk on the link-layer lines, out-of-sync bit 
rates (for SCI), or excessive bit rates (for SPI). 

Because the echo command can be processed before the application registers with 
the Micro Server, it can be a good early indicator for correct implementation of 
both the serial driver and the link-layer protocol. 

See Local Utility Functions, Local Utility Callback Handler Functions, or the 
HTML API documentation for more information about the ping command and the 
echo command. 

When a serious error condition is detected, your application can log an error and 
signal the event to the user.  You can also optionally assert the Micro Server’s 
reset line in an attempt to recover from the error condition, but such a reset is 
not normally necessary. 

Loading the ShortStack Application into the Host 
Processor 

Before you can test and debug your ShortStack device, you must load the 
ShortStack application into the host processor.   

How you load the ShortStack application into the host processor depends on the 
host processor that your ShortStack device uses.  Typically, you use a device 
programmer for in-circuit flash programming through a JTAG connection to the 
host processor, or a secure shell (SSH) connection to the target device.  In some 
cases, you may even create, manage and compile your source code on the device 
itself. 

The IzoT ShortStack SDK examples for use with the Raspberry Pi, for example, 
assume that you either work locally on the Raspberry Pi, or use a cross-
compilation toolchain and remote debugger from another computer. 
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Performing an Initial Host Processor Health Check 
To check that the host processor and the serial driver implementation are 
working properly, connect the host to a ShortStack Micro Server.  To ensure that 
an initial health check of the host tests only the host, use a Micro Server that is 
already known to work properly.   

For an initial health check of the host, use a Micro Server that you tested 
according to the test described in Performing an Initial Micro Server Health 
Check .  

To do a basic health check for the host, follow these steps: 

1. When using SCI, disconnect the host from the Micro Server, and verify 
that your serial driver can transmit data correctly. 
 
Add a jumper wire or pushbutton to simulate the Micro Server’s assertion 
of the CTS~ signal for this test. 

2. When using SCI, connect your host’s transmit and receive signal and 
verify that your serial driver can receive the data it sent.  
 
Add a jumper wire or pushbutton to simulate the Micro Server’s assertion 
of the CTS~ signal for this test. 

3. Connect the host to the Micro Server, and supply power to both  

4. Issue a downlink reset command (command code 0x50) 

5. Observe that the Micro Server resets 

6. Observe the uplink reset notification 

The Reset pulse on the Micro Server is typically very short, and often not 
noticeable when visually monitoring the Reset LED.  Boards with external flash 
memory include pulse-stretching devices that enforce a longer Reset pulse, which 
may provide a more visible state change on the Reset LED.  You can use an 
oscilloscope or logic analyzer to capture the Reset pulse. 

During this and similar tests in the early stages of development, you can also 
monitor the Reset signal, because errors in the host-side driver implementation 
can cause the Micro Server to reset.  For example, if the host asserts the RTS~ 
signal, but fails to deliver data in time, or if the host fails to deliver the entire 
packet, or if the host fails to assert the HRDY~ signal in a timely fashion, the 
Micro Server may reset due to a watchdog timer timeout.  A Smart Transceiver 
Chip’s watchdog timer expires in approximately 840 ms (for a Series 3100 Smart 
Transceiver at 10 MHz or for a Series 6000 or 5000 Smart Transciever). 

Prior to initialization, the Micro Server is in quiet mode, which prevents all 
network communication, until the downlink initialization is complete.  However, 
the basic host health check described in this section works while the Micro Server 
is in quiet mode, and can thus be used for an initial health check before the 
application framework (which includes the initialization data structure) is 
complete. 

When you power-up the Micro Server for the first time, allow up to a minute for it 
to complete its first-time boot sequence.  The duration for the first-time boot 
varies with the Micro Server hardware and software configuration, but 
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subsequent boots require much less time.  See ShortStack Device Initialization 
for more information about the Micro Server’s reset processing. 

Then, use a simple test application and your serial driver to issue a downlink 
Reset command.  This is a simple command without a payload; it consists only of 
two header bytes: 0x00 for the payload length, and 0x50 for the command 
(LonNiReset).  The LonNiReset command instructs the Micro Server to reset.  
You can observe the Smart Transceiver’s reset line’s being asserted for a brief 
moment.  

When the Micro Server completes the reset sequence, it notifies the host 
processor of the event.  The uplink reset message also uses the LonNiReset 
(0x50) command in the link-layer header, but includes 16 payload bytes. 

The uplink reset message contains information about the state, version, and type 
of the Micro Server, its capacity for various system resources, and whether it is 
initialized.  The message can be helpful to diagnose problems (or success) during 
early stages of development. 

Before your application attempts to register with the Micro Server for the first 
time, it can execute an echo command (the LonRequestEcho() function with the 
LonEchoReceived() callback handler function).  Repeated use of this command 
provides an early link-layer stress test, and can provide early indication of errors 
in the physical design of the link layer. 
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9 

Porting the ShortStack LonTalk/IP 
Compact API 

If you are using a host processor and development 
environment that does not have an available IzoT 
ShortStack SDK example port, you must port the 
ShortStack LonTalk/IP Compact API files to work with your 
chosen host processor and development environment.  A 
minimal port requires you to provide definitions that control 
the portable code, but a more substantial port might be 
required.  A completed port applies to all applications that 
use the same hardware and software configuration. 
 
This chapter describes the steps and considerations for 
porting the ShortStack LonTalk/IP Compact API. 
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 Portability Overview 
The ShortStack LonTalk/IP Compact API is implemented in ANSI C.  Although 
ANSI C is a standard programming language, different implementations are 
required to meet the requirements of different target processors.  To support the 
largest possible number of target processors and compilers, the ShortStack 
LonTalk/IP Compact API implements the following portability features: 

• Host-side types and interfaces use standard ANSI C types and style.  For 
example, the LonPropagateNv() function, which takes a network 
variable’s index as an argument, expects this argument to be of the 
standard C type unsigned.  

• All data types that interface with the Micro Server or the LONWORKS 
network are based on streams of bytes, and do not use multi-byte scalar 
types such as 16 or 32-bit integers.  Using streams of bytes helps to 
control byte padding and packing issues within structures.  
 
All types are based on the LonByte type.  Multibyte scalars are 
composed of multiple LonByte members in big-endian byte order, such 
as the LonWord type.  
 
Optionally, you can use macros such as LON_GET_UNSIGNED_WORD 
or LON_SET_UNSIGNED_WORD to assist in transforming those types 
into the host processor’s native types.  Native types can be more efficient 
in numeric algorithms.  

• Structures and unions are declared using macros because some compilers 
allow you to control packing and alignment of aggregates for each type 
definition individually through non-standard keyword extensions.  These 
macros are LON_BEGIN_STRUCT, LON_END_STRUCT, 
LON_BEGIN_UNION, and LON_END_UNION. 
 
Example:  For the GNU C Compiler, the following macros control 
structure declarations: 
 
#define LON_STRUCT_BEGIN(n) struct 
__attribute__((__packed__)) 
#define LON_STRUCT_END(n)  n 

• Structures and unions that are embedded in other structures or unions 
use another set of macros to provide further support for non-standard 
keywords that control packing and alignment of aggregates.  These 
macros are LON_BEGIN_NESTED_STRUCT, 
LON_END_NESTED_STRUCT, LON_BEGIN_NESTED_UNION, and 
LON_END_NESTED_UNION.  

• Because some compilers might not allow control over packing and 
alignment though non-standard keyword extensions, but do support 
compiler directives (pragmas) for this purpose, the IzoT ShortStack SDK 
includes two optional include files:  LonBegin.h and LonEnd.h.  The 
LonBegin.h file can be optionally (and automatically) inserted prior to 
any type definition made by the ShortStack LonTalk/IP Compact API 
files, and the LonEnd.h file can be optionally (and automatically) 
included following the last type definition made by the ShortStack 
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LonTalk/IP Compact API.  This method allows you to use one set of 
packing and alignment preferences for the ShortStack LonTalk/IP 
Compact API, and another set of preferences for the remainder of your 
application. 
 
Example:  The LonBegin.h file may contain the following directive: 
 
#pragma pack(push,1) 
 
And the LonEnd.h file may contain the following directive: 
 
#pragma pack(pop) 
 
Refer to your compiler’s documentation to determine which directives or 
other methods for packing and alignment control are supported.  
Compiler directives (pragmas) are implementation-specific for each ANSI 
C compiler. 

• Enumerations are used to provide literals for many types.  Although 
ANSI C enumerations are derived from a signed integer type, 
enumerations for a ShortStack application (or a LONWORKS network) 
need to be based on a signed character type (or a signed eight-bit integer).  
The ShortStack LonTalk/IP Compact API provides a set of macros that 
allows you to define enumerated types with the possible use of non-
standard keyword extensions.  It also provides another macro that 
references an enumerated type so that the reference consumes only a 
single byte. 
 
Example:  For a compiler that supports a non-standard syntax extension 
to force an enumeration to fit into a user-defined compound (other than 
“int”), these macros may defined as: 
 
 #define LON_ENUM_BEGIN(n)   enum : LonByte 
 #define LON_ENUM_END(n)     n 
 #define LON_ENUM(n)         n  

• The ShortStack LonTalk/IP Compact API does not use bit fields.  For 
ANSI C, the standard compound for bit fields is the native word size of 
the target processor (equivalent to int).  However, for a ShortStack 
application (or a LONWORKS network), bit fields must be packed into 
byte-sized entities.  This packing requires non-standard keywords, and 
another set of implementation-specific controls to determine the 
placement of the individual bits within each byte.  Not all compilers for 
embedded development support bit fields, or standard ways to control bit 
fields (for example, anonymous bit fields and zero-length bit fields).  

See LonPlatform.h which resides in the api folder within your IzoT ShortStack 
SDK source code repository for complier-specific definitions used by the LonTalk 
Interface Developer. 

The definition of unions, structures, and enumerations using the LON_BEGIN_* 
and LON_END_* macros introduced above provide a hook to accomplish the 
correct definition of those items as required by the IzoT ShortStack SDK, 
however, these definitions can confuse other source code parsers such as 
automated source code formatting tools or other non-standard source code 
processors.  
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Use automatic source code formatting tools with caution in context with your 
IzoT ShortStack SDK application’s source code.  

Bit Field Members 
For portability, none of the types that the IzoT Interface Interpreter  or LonTalk 
Interface Developer generates use bit fields.  Instead, the tools define bit fields 
with their enclosing bytes, and provide macros to extract or manipulate the bit 
field information. 

By using macros to work directly with the bytes of the bit field, your code is 
portable to both big-endian and little-endian platforms (that is, platforms that 
represent the most-significant bit in the left-most position and platforms that 
represent the most-significant bit in the right-most position).  The macros also 
reduce the need for anonymous bit fields to achieve the correct alignment and 
padding. 

Example:  The following macros and structure define a simple bit field of two 
flags, a 1-bit flag alpha and a 4-bit flag beta: 

typedef LON_STRUCT_BEGIN(Example) { 
 LonByte flags_1;  // contains alpha, beta 
} LON_STRUCT_END(Example); 
 
#define LON_ALPHA_MASK 0x80 
#define LON_ALPHA_SHIFT 7 
#define LON_ALPHA_FIELD flags_1 
#define LON_BETA_MASK 0x70 
#define LON_BETA_SHIFT 4 
#define LON_BETA_FIELD flags_1 

When your program refers to the flags_1 structure member, it can use the bit 
mask macros (LON_ALPHA_MASK and LON_BETA_MASK), along with the 
bit shift values (LON_ALPHA_SHIFT and LON_BETA_SHIFT), to retrieve the 
two flag values.  These macros are defined in the LonNvTypes.h file.  The 
LON_STRUCT_* macros enforce platform-specific byte packing. 

To read the alpha flag, use the following example assignment: 
Example var; 
alpha_flag = (var.LON_ALPHA_FIELD & LON_ALPHA_MASK) >> 
      LON_ALPHA_SHIFT; 

You can also use the LON_GET_ATTRIBUTE() and 
LON_SET_ATTRIBUTE() macros to access flag values.  For example, for a 
variable named var, you can use these macros to get or set the attributes for the 
alpha flag: 

alpha_flag = LON_GET_ATTRIBUTE(var, LON_ALPHA); 
… 
LON_SET_ATTRIBUTE(var, LON_ALPHA, alpha_flag); 

These macros are defined in the ShortStackTypes.h file. 

Enumerations 
The IzoT Interface Interpreter and the LonTalk Interface Developer utility do not 
produce enumerations.  The ShortStack LonTalk/IP Compact API requires an 
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enumeration to be of size byte.  The ANSI C standard requires that an 
enumeration be an int, which is larger than one byte for many platforms.  

A ShortStack enumeration uses the LON_ENUM_BEGIN and 
LON_ENUM_END macros.  For many compilers, these macros can be defined to 
generate native enumerations: 

#define LON_ENUM_BEGIN(name)  enum 
#define LON_ENUM_END(name)  name 

Some compilers support a colon notation to define the enumeration’s underlying 
type: 

#define LON_ENUM_BEGIN(name) enum : signed char 
#define LON_ENUM_END(name) 

When your program refers to an enumerated type in a structure or union, it can 
use the LON_ENUM_* macros instead of the enumeration’s name.  

For those compilers that support byte-sized enumerations, it can be defined as: 
#define LON_ENUM(name) name 

For other compilers, it can be defined as: 
#define LON_ENUM(name) signed char 

Example:  Table 20 shows an example enumeration using the ShortStack 
LON_ENUM_* macros, and the equivalent ANSI C enumeration.  

Table 20. Enumerations in ShortStack 

ShortStack Enumeration Equivalent ANSI C Enumeration 

typedef LON_ENUM_BEGIN(Color) { 
red, green, blue 

} LON_ENUM_END(Color); 
 
typedef LON_STRUCT_BEGIN(Example) { 

… 
LON_ENUM(Color) color; 
… 

} LON_STRUCT_END(Example); 

enum { 
red, green, blue 

} Color; 
 
typedef struct { 

… 
Color color; 
… 

} Example; 

LonPlatform.h 
The file within the ShortStack LonTalk/IP Compact API that helps implement 
the portability concepts described in Portability Overview is the LonPlatform.h 
include file.  The ShortStack LonTalk/IP Compact API and application 
framework automatically include this file before any other ShortStack 
LonTalk/IP Compact API-specific definition or file inclusion.  

The LonPlatform.h file uses conditional compilation to detect the specific 
compiler and to set various preferences and definitions for portability. 

Before you begin porting the ShortStack LonTalk/IP Compact API, ensure that 
the LonPlatform.h file includes support for your compiler.  LonPlatform.h 
resides in the api folder within your IzoT ShortStack SDK source code repository.  
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After you make the appropriate modifications to the LonPlatform.h file, you can 
compile the ShortStack LonTalk/IP Compact API files and the application 
framework generated by the IzoT Interface Interpreter.   

Testing the Ported API Files 
After the ShortStack LonTalk/IP Compact API files and the application 
framework generated by the IzoT Interface Interpreter compile without errors or 
significant warnings, you can perform a simple test to ensure that the port works 
correctly.   

For this simple test, use your driver and API port with a very basic test 
application, such as the Simple application example located in your 
example/rpi/simple folder within your IzoT ShortStack SDK project folder. 
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10 

Developing a ShortStack 
Application 

This chapter describes how to develop a ShortStack 
application.  It also describes the various tasks performed by 
the application.  
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Overview of a ShortStack Application 
This chapter describes how to use the ShortStack LonTalk/IP Compact API and 
the device interface data produced by the IzoT Interface Interpreter to perform 
the following tasks: 

• Use the ShortStack LonTalk/IP Compact API 
• Use the API with a multitasking operating system  
• Initialize the ShortStack LonTalk/IP Compact API 
• Periodically call the ShortStack event handler 
• Exchange network variable data with other devices 
• Communicate with other devices using application messages 
• Handle network management commands 
• Handle Micro Server reset events 
• Query the error log 
• Reinitialize the Micro Server 
• Provide persistent storage for non-volatile data 

Most ShortStack applications perform only the tasks that relate to persistent 
storage, initialization, periodically calling the LonEventhandler() function, 
sending and receiving network variables, and handling network management 
commands. 

This chapter assumes that you have completed the device development described 
in the preceding chapters.  This chapter shows the basic control flow for each of 
the above tasks.  It also provides a simple code example to illustrate some of the 
basic tasks. 

Using the ShortStack LonTalk/IP Compact API 
Within the seven-layer OSI Model protocol, the ShortStack LonTalk/IP Compact 
API forms the majority of the Presentation layer, and provides the interface 
between the serial driver in the Session layer and the host application in the 
Application layer, as shown in Figure 51. 

Micro Server

FT 3120, PL 3120, 
FT 3150, PL 3150, 
PL 3170, FT 5000

ISO/IEC 14908 control network

Host Application

ShortStack API

Application framework

Driver API

SCI/SPI Driver
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ShortStackApi.c
ShortStackTypes.h
ShortStackInternal.c

 
Figure 51. The ShortStack LonTalk/IP Compact API within the OSI Model 
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The ShortStack LonTalk/IP Compact API is implemented primarily in the 
following two ANSI C source files: 

• [ShortStack]\api\ShortStackApi.c 

• [ShortStack]\api\ShortStackHandlers.c 

The ShortStackApi.c source file contains the core of the ShortStack LonTalk/IP 
Compact API, which includes functions for handling network events, propagating 
network variables, and responding to network variable poll requests.  

A ShortStack application must call the LonEventHandler() API function 
periodically to process any pending uplink messages.  This function calls specific 
API functions based on the type of event, and then calls callback functions to 
notify the application layer of these network events.   

Generally, you will not have to modify the ShortStack API files for each of your 
applications, but you may have to make some changes when porting the API 
source code to your target platform and environment.  

The ShortStack application framework connects the ShortStack API with your 
application, as shown in Figure 52. 
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Figure 52. The ShortStack Application Framework 

Figure 51 and Figure 52 do not show the API or framework files that are required 
for ShortStack ISI applications; see Developing a ShortStack Application with 
ISI, for information about supporting ISI in your ShortStack application. 

Your main C source file contains the definition of datapoints (network variables), 
properties and blocks, general preferences related to your ShortStack device, and 
handlers for most common event types. 

The ShortStackHandlers.c source file contains stubs for handler functions for 
the less common event types.  Review these handlers and add code to these 
callback stubs if necessary.   
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Using Multiple System Execution Contexts 
Although a ShortStack application does not require an operating system, you can 
use the ShortStack LonTalk/IP Compact API with an operating system that 
supports multiple system execution contexts.  A context could be a process, 
thread, task, interrupt service routine, or the operating system’s main thread of 
execution, as defined by the operating system. 

A typical ShortStack application may use one or more execution contexts for the 
link-layer driver, and may use a different execution context for both the 
ShortStack LonTalk/IP Compact API functions and callback handler functions. 

The ShortStack LonTalk/IP Compact API is a non-reentrant, single-threaded 
API.  If your application uses a multi-tasking (or multi-threading) environment 
or interrupt service routines to access the ShortStack LonTalk/IP Compact API, 
you must ensure that only one task (or thread or interrupt) accesses the 
ShortStack LonTalk/IP Compact API.  The same task that calls the LonInit() 
and LonEventHandler() functions must also be the only task that calls the 
ShortStack LonTalk/IP Compact API. 

In a multi-tasking environment, the link-layer driver typically consists of USART 
transmit and receive interrupts or threads, possibly also using interrupts that 
respond to changes on the link-layer handshake lines.  

The IzoT ShortStack SDK example applications use a single execution thread for 
the driver, serving both uplink and downlink network communications.  A pair of 
protected input (uplink) and output (downlink) queues and a pipe is used to 
communicate between the main application thread and the driver. 

If your application requires the use of multiple contexts, you can provide one 
execution context that calls the LonEventHandler() function.  You can also 
supply appropriate inter-context communication and synchronization tools to 
guard every API function, for example by implementing a mutex requested by the 
LonEventHandler support context and by any other context which might call any 
of the API functions.  

Events and callbacks execute in the context which calls the LonEventHandler() 
function.  You must take additional precautions to prevent a deadlock when an 
event handler itself calls a protected API.  

Tasks Performed by a ShortStack Application 
The general ShortStack application life cycle includes two phases:  

• Initialization  

• Normal processing  

The initialization phase of a ShortStack application typically occurs during each 
power-up or reset of the host application, but can also be repeated as necessary.  
The initialization phase defines basic parameters for the LonTalk/IP or LON 
network communication, such as the communication parameters for the physical 
transceiver in use, and defines the application’s device interface:  its functional 
blocks, network variables, configuration properties, and self-documentation data.  
Successful completion of the initialization phase causes the Micro Server to leave 
quiet mode, after which it can send and receive messages over the network. 
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Your application does not always have to run its initialization code when the 
Micro Server is reset.  For example, the Micro Server can be reset by the network 
management tool to change the device’s state.  Your application can use the 
LonResetNotification message provided to the LonReset() callback handler 
function to determine the Micro Server’s state and last reset cause.  The 
ShortStack LonTalk/IP Compact API automatically determines whether re-
initialization is required.  

The Micro Server might also reset during normal operation when a configuration 
property (declared with the reset_required modifier) value changes.  This 
change acts as a notification that the application, but not necessarily the Micro 
Server and the ShortStack device as a whole, must reinitialize.  

When the host processor powers-up or resets, you must reinitialize the 
ShortStack device. 

When your driver recognizes an uplink reset message, ensure that any in-
progress downlink activity is immediately aborted.  This is required to prevent a 
synchronization failure for the link layer.  The link layer is said to be out of 
synchronization when the Micro Server and host disagree on the type of the next 
downlink segment.  The Micro Server might expect a header while the host 
transmits payload corresponding to a header sent prior to the Micro Server reset.  

Be prepared to receive uplink data at all times, and particulary between the 
segments of a downlink transfer.  The ShortStack link layer is half-duplex so that 
data is only transferred into one direction at a time, but a two- or three-
segmented downlink transfer is not atomic, and may be interrupted by uplink 
transfers.  

These uplink messages can be crucial for continued operation.  For example, one 
such uplink message could deliver a completion code for a transaction started 
earlier.  Delivery of this completion code could be required to unlock a buffer 
required for the next transaction. 

During normal processing, the application periodically calls the 
LonEventHandler() API function, which calls the serial driver API and might 
call callback functions and event handlers (such as the onUpdate events).  Other 
API functions allow the ShortStack application to initiate transactions.  Such a 
transaction might in turn lead to other events, such as the onComplete event. 

The following sections describe the tasks that an IzoT ShortStack SDK 
application performs during its life cycle. 

Initializing the ShortStack device 
Your application must call the LonInit() function once during device startup.  
This function initializes the ShortStack LonTalk/IP Compact API, driver, and 
Micro Server.   

The LonInit() function copies the ShortStack device interface data to the 
ShortStack Micro Server.  This data defines the network parameters and device 
interface for the ShortStack Micro Server.  Your application can call this function 
after device startup to reinitialize and restart the ShortStack Micro Server, to 
change the network parameters, or to change the device interface.   

Add a call the LonInit() function in the main() function of your application (or 
to your host platform equivalent of that function). 
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During initialization, the Micro Server enters quiet mode until the initialization 
is complete.  Quiet mode ensures that only a complete and fully functioning 
protocol stack attaches to the network.  While the Micro Server is in quiet mode, 
the host processor can use local commands to communicate with the Micro 
Server, such as Query Status or Ping, but the Micro Server cannot communicate 
with other devices on the network. 

Example: 
void main(void) { 
 // Initialize host-side hardware  
 ... 
 // Initialize host software  
 ... 
 LonInit(); 
  
 // Enter the main loop: 
 while (TRUE) { 
  LonEventHandler(); 
  // Process your application 
  ... 
 }  
}  

Periodically Calling the Event Handler 
Your ShortStack application must periodically call the LonEventHandler() 
function to check if there are any LonTalk/IP or LON events to process.  You can 
call this function from your application’s control (or idle) loop, or from any point 
in your application that is processed periodically (if your application meets the 
execution context requirements described in Using the ShortStack LonTalk/IP 
Compact API ).  

The host application must be prepared to process the maximum rate of 
LonTalk/IP or LON traffic delivered to the device.  To prevent any possible 
backlog of incoming messages, use the following formula to determine the 
minimum call rate for the LonEventHandler() function:  

1−
=

rCountInputBuffe
ateMaxPacketRrate  

where MaxPacketRate is the maximum number of packets per second arriving for 
this device, and InputBufferCount is the number of input buffers defined for your 
application (that is, buffers that hold incoming data until your application is 
ready to process it).  The formula subtracts one from the number of available 
buffers to allow new data to arrive while other data is being processed.  However, 
the formula also assumes that your application has more than one input buffer; 
having only one input buffer is not sufficient. 

In the absence of measured data for the network, assume 90 packets per second 
arriving for a TP/FT-10 ShortStack device, or 9 packets arriving per second for a 
PL-20 ShortStack device.  These packet rates meet the channels’ throughput 
figures, assuming that most traffic uses the acknowledged or request/response 
service.  Use of other service types will increase the required packet rate, but not 
every packet on the network is necessarily addressed to the ShortStack device.  
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Using the formula, devices that implement two input buffers and are attached to 
a TP/FT-10 channel that expect high throughput can call the 
LonEventHandler() function approximately once every 10 ms.  

Again using the formula, a typical PL-20 power-line device can call the 
LonEventHandler() function once every 100 ms.  However, to ensure low 
network latency, all ShortStack devices can call the LonEventHandler() 
function at least once every 10 ms. 

When an event occurs during a call to the LonEventHandler() function, the 
function calls the appropriate callback function for your host application to 
handle the event.  Your callback handler functions must be designed for this 
minimum call rate, and must defer time-consuming operations (such as lengthy 
flash writes) whenever possible. 

Exchanging NV Data with Other Devices 
Your application implements input and output datapoints, either as members of 
blocks, or as simple device datapoints. Each datapoint implements a network 
variable, and provides additional properties such as the global_index member.  

Example 
This example implements a generic standard closed loop actuator profile in a 
block called act.  The profile has one mandatory input and one mandatory 
output, called nviValue and nvoValueFb, but no particular data type is 
stipulates for these.  The following example uses the SNVT_volt standard 
data type to implement the actuator.  It also declares an onUpdate event, 
which executes whenever the input received new data.  Within that event, 
the algorithm assigns 3 plus the value of the input to the output, then 
triggers propagation of the output to the network and connected devices. 
 
SFPTclosedLoopActuator(a, SNVT_volt) act; //@IzoT Block \ 
//@IzoT onUpdate(nviValue, onActuatorUpdate) 
 
void onActuatorUpdate( 
    const unsigned index,  
    const LonReceiveAddress* const pSourceAddress 
) { 
 LON_SET_UNSIGNED_WORD( 
  act.nvoValueFb.data, 
  3 + LON_GET_UNSIGNED_WORD(act.nviValue.data) 
 ); 
 LonPropagateNv(act.nvoValueFb.global_index); 
}  

Communicating with Application Messages 
You can use application messages to exchange data or requests with other 
LonTalk/IP or LON devices.  Application messages are used by applications 
requiring a different data interpretation model that the one used for network 
variables.  An application message is a message packet with a 6-bit message code 
that identifies the packet to the receiving application or applications.  The 
applications exchanging application messages must agree on the interpretation of 
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the message codes.  For example, you can use application messages to implement 
a manufacturing-test interface that is only used during manufacturing test of 
your device.  You can also use the same mechanism that is used for application 
messaging to create foreign-frame messages (for encapsulating packets using 
other protocols), network management messages, network diagnostic messages, 
and explicitly addressed network variable messages. 

There are two interoperable uses for application messages:  the Interoperable 
Self-Installation (ISI) protocol and the LONWORKS file transfer protocol (LW-
FTP).  The ISI protocol is used in self-installed networks; see Developing a 
ShortStack Application with ISI, for more information about ISI.  LONWORKS 
FTP is used to exchange large blocks of data between devices or between devices 
and tools, and is also used to access configuration files on some devices. 

The content of an application message is defined by a message code that is sent as 
part of the message.  Message code values are listed in Table 21.  For user-
defined application messages, you can use message codes 0 to 47 (0x0 to 0x2F).  
Your application must define the meaning of each user-defined message code.  
Standard application messages are defined by LONMARK International, and use 
message codes 48 to 62 (0x30 to 0x3E). 

Table 6. Message Code Values 

Message Type 
Message 

Code Description 

User Application 
Messages 

0 to 47 

(0x0 to 
0x2F) 

Generic application messages.  The 
interpretation of the message code is left to 
the application. 

Reserved for 
Standard 
Application 
Messages 

48 to 60 

(0x30 to 
0x3C) 

Standard application messages defined by 
LONMARK International. 

ISI Messages 61 

(0x3D) 

Standard application messges defined by the 
Interoperable Self Installation (ISI) protocol 

FTP Messages 62 

(0x3E) 

Standard applications messages defined by 
the LONWORKS File Transfer Protocol (LW-
FTP) 

Responder Offline 63 

(0x3F) 

Used by application message responses.  
Indicates that the sender of the response was 
in an offline state and could not process the 
request. 

Foreign Frames 64 to 78 

(0x40 to 
0x4E) 

Used by application-level gateways to other 
networks.  The interpretation of the message 
code is left to the application. 
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Message Type 
Message 

Code Description 

Foreign Responder 
Offline 

79 

(0x4F) 

Protocol 
V0 

Used by foreign frame responses.  Indicates 
that the sender of the response was in an 
offline state and could not process the 
request. 

LonTalk/IP UDP 
Messages 

79 

(0x4F) 

Protocol 
V2 

Used for LonTalk/IP UDP messages that are 
not encoded with the LonTalk/IP Control 
Services defined by the ISO/IEC 14908-1 
Control Networking Protocol 

Network Diagnostic 
Messages 

80 to 95 

(0x50 to 
0x5F) 

Used by network tools for network 
diagnostics. 

Network 
Management 
Messages 

96 to 115 

(0x60 to 
0x73) 

Used by network tools for network 
installation and maintenance. 

Router 
Configuration 
Messages 

116 to 124 

(0x74 to 
0x7C) 

Used by networks tools for router 
management 

Network 
Management 
Escape Code 

125 

(0x7D) 

Used by network management tools for inter-
component communication 

Router Far Side 
Escape Code 

126 

(0x7E) 

Used by network tools to address 
management messages to the far side of a 
router 

Service Messages 127 

(0x7F) 

Used for reporting the Neuron ID or MAC ID 
of a device 

Network Variables 128 to 255 

(0x80 to 
0xFF) 

The lower six bits of the message code 
contain the upper six bits of the network 
variable selector.  The first data byte 
contains the lower eight bits of the selector. 

The message code is followed by a variable-length data field, that is, a message 
code may have one byte of data in one instance and 25 bytes of data in another 
instance. 

Each message tag is created with a tag IML directive.  The IzoT Interface 
Interpreter assigns individual values to all tags during initialization.  
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Example  
LonTag myTag; //@IzoT Tag 
 

Sending an Application Message 
You can send an application message by calling the LonSendMsg() function.  
This function forwards the message to the ShortStack Micro Server, which in 
turn transmits the message on the network.  After the message is sent, the 
ShortStack Micro Server informs the LonEventHandler() function in the 
ShortStack LonTalk/IP Compact API, which in turn calls your 
LonMsgCompleted() callback handler function.  This function notifies your 
application of the success or failure of the transmission.  You can use this 
function for any application-specific processing of message transmission 
completion. 

To be able to send an application message, the ShortStack device must be 
configured and online.  If the application calls the LonSendMsg() function when 
the device is either not configured or not online, the function returns the 
LonApiOffline error code. 

You can send an application message as a request message that causes the 
generation of a response by the receiving device or devices.  If you send a request 
message, the receiving device (or devices) sends a response (or responses) to the 
message.  When the ShortStack Micro Server receives a response, it forwards the 
response to the LonEventHandler() function in the ShortStack LonTalk/IP 
Compact API, which in turn calls your LonResponseArrived() callback handler 
function for each response it receives. 

Figure 53 shows the control flow for sending an application message. 
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Figure 53. Control Flow for Sending an Application Message 

Receiving an Application Message 
When the ShortStack Micro Server receives an application message from the 
network, it forwards the message to the LonEventHandler() function in the 
ShortStack LonTalk/IP Compact API, which in turn calls your 
LonMsgArrived() callback handler function.  Your implementation of this 
function must process the application message, and can optionally notify your 
ShortStack application about the message. 

The ShortStack Micro Server does not call the LonMsgArrived() callback 
handler function if an application message is received while the ShortStack 
device is either unconfigured or offline. 

If the message is a request message, your implementation of the 
LonMsgArrived() callback handler function must determine the appropriate 
response and send it using the LonSendResponse() function. 

Figure 54 shows the control flow for receiving an application message. 

 



 

140 Developing a ShortStack Application                                          

LonEventHandler()
(API function)

LonMsgArrived()
(callback function)

application-specific action

LonSendResponse()
(API function)

Receives an 
application 
message 
from the 
network 

ShortStack application Micro Server

 
Figure 54. Control Flow for Receiving an Application Message 

Handling Management Tasks and Events 
LonTalk/IP and LON installation and maintenance tools use network 
management commands to set and maintain the network configuration for a 
device.  The ShortStack Micro Server automatically handles most network 
management commands that are received from these tools.  A few network 
management commands are application-specific, and are forwarded by the Micro 
Server to the LonEventHandler() function in the ShortStack LonTalk/IP 
Compact API, which in turn forwards the request to your application through the 
network management callback handler functions.  These commands are requests 
for your application to wink, go offline, go online, handle pressed or held service 
pin events, or reset, and must be handled by your LonWink(), LonOffline(), 
LonOnline(), LonServicePinPressed(), LonServicePinHeld(), and 
LonReset() callback handler functions.   

The IzoT Interface Interpreter supports several event types, and automatically 
implements the corresponding callback functions. These are 
LonNvUpdateOccurred(), LonNvUpdateCompleted(), LonWink(), 
LonOffline(), LonOnline(), LonReset(), LonServicePinPressed(), 
LonServicePinHeld() and LonGetCurrentNvSize(). 

All other callback handers are defined as empty skeletons within 
ShortStackHandlers.c, which is located in your api source folder.  

You can add your callback handler code to this file, and you can provide 
application-specific implementations of callback functions outside the standard 
ShortStackHandler.c file.  

To indicate that you supply the implementation of callback X, define the 
X_HANDLED preprocessor symbol in your project preferences.  For example, to 
indicate that you supply the LonNvConfigReceived() callback outside 
ShortStackHandlers.c, define the LONNVCONFIGRECEIVED_HANDLED 
preprocessor symbol in your project preferences.  

Handling Local Network Management Tasks  
There are various network management tasks that a device can choose to initiate 
on its own.  These are local network management tasks, which are initiated by 
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the ShortStack application and implemented by the ShortStack Micro Server.  
Local network management tasks are never propagated to the network.  The 
optional Network Management Query and Update ShortStack APIs allow you to 
include handling of these local network management commands if your 
ShortStack application requires it. 

Many of these commands are called by your ShortStack application and then 
handled by the ShortStack Micro Server with no additional notification through 
callback handler functions.  These functions include:  LonClearStatus(), 
LonSetNodeMode(), LonUpdateAddressConfig(), 
LonUpdateAliasConfig(), LonUpdateConfigData(), 
LonUpdateNvConfig(), and LonUpdateDomainConfig(). 

A few of the extended local network management commands are requests for 
information.  After the ShortStack Micro Server receives these requests, it makes 
the response information available to the ShortStack LonTalk/IP Compact API.  
When the Micro Server makes this information available, the 
LonEventHandler() function calls the appropriate callback handler function, 
which you can customize to handle the information in an application-specific way.  
Figure 55 through 58 show the control flow for handling these kinds of network 
management commands.  
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(API function)
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(callback function)

application-specific action
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Figure 55. Control Flow for Query Domain Network Management Command 
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Figure 57. Control Flow for Query Status Local Network Management 
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Handling Reset Events 
A ShortStack Micro Server can reset for a variety of reasons.  To determine the 
cause of a Micro Server reset, you can use the LonGetLastResetNotification() 
function of the ShortStack Network Management Query API.  This function 
returns a pointer to the LonResetNotification structure, which is defined in 
the ShortStackTypes.h file.  The LonResetNotification structure is also 
provided with the LonReset() callback handler function.    

The IzoT Interface Interpreter supplies reset notifications to the optional onReset 
event. 

The LonResetNotification structure contains the following information: 

• The State of the Micro Server  

• The Version of the link layer protocol (3 for the ShortStack 2.1 SDK; 4 for 
the IzoT ShortStack SDK and ShortStack FX SDK) 

• Information about availability and state of the static IO9 input signal on 
the Micro Server (see Using the IO9 Pin) 

• Information about whether the Micro Server is initialized 

• Information whether the Micro Server supports an extended address 
table (the Micro Server must be running on a Series 6000 processor to 
support an extended address table) 

• The Micro Server Key (see Using the ShortStack Micro Server Key) 

• The cause for the most recent reset, encoded in a value from the 
LonResetCause enumeration 

• The most recent system error, encoded in a value from the 
LonSystemError enumeration 

• The Micro Server’s 48-bit unique ID (also known as its Neuron ID, or a 
MAC ID for Series 6000 processors) 

• The current number of address table records, domains, and aliases 
supported by the Micro Server 

Querying the Error Log 
The ShortStack Micro Server writes application errors to the system error log.  
The reset notification contains the most recent system error code, but you can use 
the LonQueryStatus() function to query the complete error and statistics log. 

The LonStatus structure, which is provided in response to the 
LonQueryStatus() call through the LonStatusReceived() callback handler 
function, contains complete statistics information, such as the number of 
transmit errors, transaction timeouts, missed and lost messages.  

In addition to the standard system error codes (129 and above), a ShortStack 
Micro Server can log ShortStack-specific system error codes that help you 
diagnose problems. 

Table 22 lists the ShortStack-specific system error codes.  All system error codes 
are provided by the LonSystemError enumeration in ShortStackTypes.h. 
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Table 7. LonSystemError Enumeration Values for ShortStack 

Value Condition Description 

1 Smart Transceiver 
lock 

Unsupported Micro Server hardware. Use an Echelon Smart 
Transceiver for the Micro Server.   

This error condition also changes the Micro Server’s state to 
applicationless. 

2 niSiData message 
received 

This message is unsupported for the IzoT ShortStack  SDK.   

3 Network variable 
processing with 
host selection is not 
supported 

The Micro Server was created with the #pragma 
netvar_processing_off directive, which is not supported. 

This error condition also changes the Micro Server’s state to 
applicationless. 

4 Transceiver not 
supported 

This error occurs when the host tries to configure the Micro 
Server for a transceiver that is neither special-purpose mode, 
nor single-ended at 78 kbps.  

Unlike the Smart Transceiver lock, the Micro Server is not 
changed to the applicationless state.  This error is logged and 
the node enters quiet mode. 

5 Message too big An outgoing message cannot be sent because it exceeds the 
available buffer size. 

6 Unknown link-layer 
command 

The Micro Server received an unknown link-layer command 
from the host. 

7 Malformed NVINIT 
message 

The NVINIT message specified a number of network 
variables, but provided data for fewer network variables. 

64 RPC callback 
timeout 

The Micro Server attempted a remote procedure call to call 
an ISI callback on the host, but the host failed to 
acknowledge the uplink message for 15.5 seconds (31*500 
ms). 

65 RPC callback 
NACK 

The Micro Server attempted a remote procedure call to call 
an ISI callback on the host, but the host replied with an 
unexpected negative response. 

66 RPC out of 
sequence 

An out-of-sequence reply from the host has been received.   
The out-of-sync reply is ignored. 

67 RPC nothing to 
acknowledge 

A positive or negative RPC acknowledgement has been 
received, but was unexpected.  The acknowledgement is 
ignored. 

68 Interleaving RPC 
call attempted 

An RPC call to the host was attempted while a previous call 
was still outstanding.  The Micro Server resets. 
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Error conditions that change the state to applicationless also invalidate the 
cached signature, thus enforcing a complete re-initialization after Micro Server 
reload. 

Runtime Interface Selection 
Most IzoT applications have one static interface; that is, the set of datapoints, 
properties and blocks, their attributes and relations, and a number of related 
aspects are defined by you when you create the application.  The interface data 
changes during the lifetime of your application, for example, by exchanging 
datapoint values with other devices in the network. However, the interface itself 
remains static; no datapoint or block is added or removed during the lifetime of 
your device.  

Some advanced devices implement dynamic interfaces, which support the 
addition, modification, and removal of datapoints or blocks either at installation 
time or during the lifetime of the application.  Dynamic interfaces are an 
advanced feature and require an advanced protocol stack.  The IzoT ShortStack 
SDK does not support creating devices with dynamic interfaces.  

Applications with runtime interface selection fill the gap between static and 
dynamic interfaces.  For example, an application which supports five different 
interfaces subject to different purchase options, but supports only one interface at 
any one time.  The same application may support a low-cost entry-level model 
while a higher priced variant adds premium features and exposes a different 
interface.  Alternatively, the application may support expansion with external 
hardware modules that require a different interface for each module. 

This application could be configured at manufacture time, for example, with a 
sealed hardware jumper or an application message.  Another application could 
allow the user to install node-locked license files and purchase additional 
features over time.  

The IzoT ShortStack SDK and the IzoT Interface Interpreter do not require a 
specific method in which those are runtime-selectable interfaces are licensed or 
managed.  However, the IzoT Interface Interpreter can help you define and 
manage applications with multiple interfaces where exactly one interface is 
active at any one time.   

This architecture and related considerations are discussed in the remainder of 
this section.  

The IzoT ShortStack SDK includes an application example in the 
examples/rpi/ris folder which demonstrates the features discussed here.  

Static Interface Framework 
The structure of a typical static interface is illustrated with the Simple example 
included in the IzoT ShortStack SDK examples/rpi/simple folder. 

This application has a main C source file, rpi-simple.c in this example. This file 
contains the declaration of the interface in the IzoT Markup Language, and it 
contains the standard C main() function.  Within the main() function, the code 
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calls the LonInit() API function, then makes periodic calls to the 
LonEventPump() API.  

The following illustration shows some of the function call sequences in this 
process.  The illustration is neither accurate nor complete, but is used to 
demonstrate the principle of operation between your source code, the ShortStack 
API code, and the framework code generated by IzoT Interface Interpreter.  

 

The illustration shows how your main() function calls the LonInit() API, which 
in turn calls a LonFrameworkInit() function generated by the IzoT Interface 
Interpreter.  This function initializes the boiler block defined in the example 
main C file.   

Likewise, your application makes periodic calls to the LonEventPump() API. 
When this API detects that a network variable update occurred, it invokes the 
corresponding callback function, LonNvUpdateOccurred(), which the IzoT 
Interface Interpreter generates.  This callback dispatches the update 
notifications into your event handlers, onBoiler in this example.  

A similar mechanism applies to all other events supported by the IzoT Markup 
Language, and to a number of additional callbacks related to application lifetime 
management and initialization.  For example, the data required to register your 
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application with the ShortStack Micro Server is defined within the framework 
files generated by IzoT Interface Interpreter.  

Key to the the static interface framework is that the framework generated by 
IzoT Interface Interpreter resides in the ShortStackDev.h and 
ShortStackDev.c files, and includes the callback functions required by the 
ShortStack API.  

Runtime Interface Selection Framework Architecture 
The architecture of an application with runtime interface selection expands on 
that of a static interface application.  

In an application with runtime interface selection, each interface is defined in its 
own source file.  For example, the Runtime Interface Selection (RIS) application 
example defines a simple interface in regular.c and the premium interface 
version in deluxe.c.  

Each interface contains the complete definition of the interface, including block 
declarations and event handlers, and each of these source files is processed by the 
IzoT Interface Interpreter prior to compilation.  

For example, the RIS example in the IzoT ShortStack SDK configures the pre-
build step, normally defined as iii “${ProjDirPath}/${ProjName}.c”, as 

cmd /C iii “$(ProjDirPath}\regular.c” && iii 
“$(ProjDirPath}\deluxe.c” 
 
 

This passes the regular interface and the deluxe interface through the IzoT 
Interface Interpreter as two separate interfaces.  

Because each interface is different, you must specify a unique program ID for 
each interface.  The IzoT Interface Interpreter also generates device interface 
files (.XIF file extension) for use with network tools, one for each interface.  The 
device interface files share the interface name.  In this example, you will obtain 
regular.xif and deluxe.xif.  

Option Output  
All but one of the interfaces include the IML option output directive to request 
that the pair of generated output be named different than the ShortStackDev 
default.  

Example 

//@IzoT Option output(“regularDev”) 
 
 

The most complex of your interfaces, however, does not use option output.  The 
framework for the most complex interface will be located in the 
ShortStackDev.c and .h files.  The ShortStack API requires that the 
ShortStackDev.h file exists, and is subject to conditional compilation and 
compile-time configuration based on symbols defined in this file.  
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In order to obtain an API configured for the superset of all features required by 
all your interfaces, the most complex of your interfaces will usually be a good 
choice for generating ShortStackDev.c and .h files.  

Make sure not to re-use the interface file’s name in the option output directive, 
because the IzoT Interface Interpreter will parse your interface and then 
overwrite it with the generated framework.  The above example uses the name of 
the interface followed by Dev in analogy to ShortStackDev.  

Option Namespace 
 
All interfaces select a non-default namespace.  

Example 

//@IzoT Option namespace(“regular”) 
 
 

The namespace is a prefix used with the generated callback functions.  Without 
option namespace (the default), the IzoT Interface Interpreter generates callback 
functions including LonResetOccurred, LonWink, and 
LonNvUpdateOccurred.  

Only one of each can exist in any single application, as linker errors would 
otherwise occur.  The Option namespace directive solves this problem.  For 
example, option namespace(“regular”) yields callbacks named 
regularLonResetOccurred, regularLonWink, and 
regularNvUpdateOccurred.  

Another interface in the same application can specify the deluxe namespace with 
option namespace(“deluxe”) and thus yield deluxeLonResetOccurred, 
deluxeLonWink, or deluxeLonNvUpdateOccurred. 

Callback Dispatch 
The ShortStack API requires that you present implementations of the standard 
ShortStack API callback functions with their native names, e.g. 
LonResetOccurred, LonWink, or LonNvUpdateOccurred. You must 
implement all these functions with their correct native names and correct 
prototypes.  

For applications with runtime interface selection, the option namespace 
directive redirects the implementations of these callbacks to differently named 
entry points, and you must provide the regular callback functions.  

In your implementation of these callbacks, you select which interface’s 
implementation to call, based on your knowledge of the currently selected 
interface type. For example, your callback dispatcher may sample a hardware 
input pin to select between the regular and the deluxe interface, and route the 
callback accordingly. 
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Example 

void LonWink(void) 
{ 
  if (is_deluxe_enabled()) { 
     deluxeLonWink(); 
  } else { 
     regularLonWink(); 
  } 
} 
 
 

The RIS application example included with the IzoT ShortStack SDK contains an 
example dispatcher implementation in the dispatch.c file.  

This illustration shows how the callback dispatcher intercepts and re-routes the 
callbacks. 

 

Interface Selection 
The IzoT Interface Interpreter and the ShortStack LonTalk/IP Compact API have 
no requirements on how you select, license, or manage your interfaces, except the 
following standard requirements of all interoperable devices: 

• Every interface needs to implement its own, unique, program ID 
• Exactly one and only one interface can be active at all times on each 

device 
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The RIS application example, which is part of the IzoT ShortStack SDK, uses an 
insecure simple console input to change the interface, and stored the current 
interface selection in an unprotected file.  

The following non-exhaustive list offers some suggestions for other methods of 
selecting the active interface: 

• Use a simple hardware input such as a DIP switch. 

• Use a software configuration tool to set a configuration property to select 
an alternate interface. 

• Use a concealed hardware input, conditioned and sealed at production 
time, to select one of these interfaces. 

• Automatically sense the configuration based on hardware configuration, 
for example by detecting which I/O modules have been installed, and 
automatically present the matching interface. 

• Support node-locked license keys. For example, those could consist of a 
combination of the device’s MAC-ID or the Micro Server’s Neuron ID and 
an encoded selection of enabled application features, stored in an 
encrypted form using a secret algorithm and key such that the license 
cannot be moved to a different device. 

Interface Switchover 
You device can select an interface on initial startup, or at any time while running.  
To select the interface on initial startup, you will select the interface type prior to 
calling LonInit().  To change the interface after the LonInit() function has been 
called, use the LonReinit() function. 

Any change of the interface requires that the device enters the unconfigured state. 
The device loses all information about network connections it was previously 
engaged with, and will generally obtain a new network address after being re-
commissioned by the network tool when used in a managed network. 

Further Steps 
Much of each interfaces’ functionality will be encoded within your interface source 
files, but you can share the same code for implementation of your interfaces’ base 
functionality among all your interfaces, and you can support other aspects of your 
application’s behavior as a function of the currently selected interface.  

Sharing Code 
 
You cannot share IML definitions between different interfaces, but you can share 
the runtime code which executes in relation to some of the interfaces’ aspects.  

To do so, implement a suitable processing function in any of your C source files, 
import the prototype of your functions into your interface definitions using the 
standard C extern keyword, and call your shared code from each of your interface 
definitions as required.  
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For example, each interface can declare an onWink event. You do not have to 
include the corresponding onWink event handler with your interface code so long 
as you present a function with the correct name and prototype to the linker. 

The following illustrates a shared onWink event handler: 

 

Other interfaces might share portions of the application’s algorithm by calling into 
common functions, as illustrated in the following example. 
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Dispatcher Extensions 
Your callback dispatcher must ensure that all callback functions required by the 
ShortStack LonTalk/IP Compact API and application framework are 
implemented. However, the dispatcher is not limited to those callbacks.  

Some applications might use common code, for example to sample physical input. 
In the event of a significant change to such an input, your common input handler 
can call the current interface through a new dispatch interface defined within 
your application.  

Use the following illustration to see the approach for a hypothetical zero-crossing 
detector. 
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Dispatched Callbacks 
 

Here are the callbacks which need to be dispatched. 

Framework Callbacks 
void LonFrameworkInit(void); 
const LonByte* LonGetSiData(unsigned* pLength); 
const LonByte* LonGetAppInitData(void); 
void* LonGetNvTable(void); 
unsigned LonGetNvCount(void); 
unsigned LonGetMtCount(void); 
LonUbits32 LonGetSignature(void); 
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API Callbacks 
 
void LonResetOccurred( 
  const LonResetNotification* const pResetNotification 
); 
void LonWink(void); 
void LonOffline(void); 
void LonOnline(void); 
void LonServicePinPressed(void); 
void LonServicePinHeld(void); 
void LonNvUpdateOccurred( 
 const unsigned index, 
 const LonReceiveAddress* const pSourceAddress 
); 
void LonNvUpdateCompleted(const unsigned index, const LonBool 
success); 
const unsigned LonGetCurrentNvSize(const unsigned nvIndex); 
 
 
 

Persistent NVs 
If your device interface includes any properties or non-volatile network variables, 
your application must provide functions for reading and writing non-volatile data 
for properties. 

During processing for the LonInit() function, the ShortStack LonTalk/IP 
Compact API calls the LonNvdDeserializeNvs() callback function.  This 
function has the following signature: 

const LonApiError LonNvdDeserializeNvs(void); 

Whenever the application receives an update to a persistent network variable, 
the ShortStack LonTalk/IP Compact API automatically calls the 
LonNvdSerializeNvs() callback function to store the new data persistently.  

The IzoT ShortStack SDK’s ShortStackHandlers.c API source file includes an 
example implementation for the LonNvdSerializeNvs() and 
LonNvdDeserializeNvs() callbacks.  

When deserializing, your application must obtain the most recent value for the 
network variable with the given index from non-volatile memory, and store it in 
the location provided by the LonGetNvValue() function.  For changeable-type 
network variables, the application must always retrieve network-variable data 
that equals the initial network variable type in size.  If the current size of a 
changeable-type network variable is less than its maximum (and initial) size, 
supply zeroes to fill the remaining, currently unused, memory.  You can obtain 
the size of the initial network variable from the network variable table or by 
using the sizeof() operator with the initial (declared) network variable type, 
(rather than using the LonGetNvSize() callback handler function, which 
returns the current size of the network variable). 

Whenever a CNV or non-volatile network variable is updated over the network, 
your implementation of the LonNvsSerializeNvs() callback must write the 
CNV or network variable data to non-volatile memory. 
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Application Start-Up and Failure Recovery 
Typical applications load all persistent data into RAM during startup.  The 
ShortStack LonTalk/IP Compact API handles that process for persistent network 
variables by calling the LonNvdDeserializeNvs() function from the LonInit() 
function, but your application must take appropriate steps to ensure correct data 
for all other persistent data. 

Because your application is responsible for loading and modifying applicable data 
in non-volatile memory, you can use the application signature generated by the 
IzoT Interface Interpreter to ensure that the application manages its own data, 
rather than another application’s data.  Use the LonGetSignature() function 
implemented in ShortStackDev.c to retrieve the current application’s 
signature. 

Writing non-volatile data can be error-prone and slow, depending on the type and 
organization of the memory.  Your application must detect any failures during 
the write process, and ensure that the write process completes in a timely a 
fashion.  

If the write process takes too long to complete within the API’s timing 
requirements (see Periodically Calling the Event Handler), your application must 
use queues or caches to minimize both latencies and the number of modifications. 

The application must also detect data corruption.  If, for example, the device 
incurs a power loss during a write operation to non-volatile data, that data can be 
invalid.  When the application starts up after the failure, and attempts to re-load 
that data, it must detect that the data is not valid.  If invalid data is found, the 
application can recover, or can cease operation and put the Micro Server into the 
unconfigured state. 

Applications can implement any method to ensure reliable persistence of data, or 
to ensure detection of failure, such as hardware support (for example, battery 
backup, or early power-out interrupts to flush any pending write requests). 
Typical software support includes management of “dirty” flags and checksum 
protection for persistent data. 
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11 

Developing a ShortStack 
Application with ISI 

This chapter describes how to develop a ShortStack 
application with Interoperable Self-Installation (ISI) 
support.  It also describes the various tasks performed by 
the application when using ISI.  
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Overview of ISI 
A control network may be a small, simple network in a small retail store or in a 
machine consisting of a few devices, or it may be a large network in a building, 
factory, or ship consisting of tens of thousands of devices.  The devices in the 
network must be configured to become part of the common network and to 
exchange data.  The process of configuring devices in a control network is called 
network installation. 

There are two main categories of networks: 

• Managed networks  

• Self-installed networks 

A managed network is a network where a shared network management server 
performs network installation.  A user typically uses a tool to interact with the 
server and to define how the devices are configured and how they communicate. 
Such a tool is called a network management tool.  For example, Echelon’s IzoT 
Commissioning Tool (CT) is a network management tool that uses the IzoT Net  
Server network management server to install devices in a network.  Although a 
network management tool and a server are used to establish initial network 
communication, they need not be present for the network to function.  The 
network management tool and server are required only to make changes to the 
network’s configuration. 

In a managed network, the network management tool and server together 
allocate various network resources, such as device and data point addresses.  The 
network management server is also aware of the network topology, and can 
configure devices for optimum performance within the constraints of that 
topology. 

The alternative to a managed network is a self-installed network.  There is no 
central tool or server that manages the network configuration in a self-installed 
network.  Instead, each device contains code that replaces parts of the network 
management server’s functionality, which results in a network that does not 
require a special tool or server to establish network communication or to change 
the configuration of the network. 

Because each device is responsible for its own configuration, a common standard 
is required to ensure that devices configure themselves in a compatible way.  The 
standard protocol for performing self-installation in LonTalk/IP and LON 
networks is called the LONWORKS Interoperable Self-Installation (ISI) Protocol.  
The ISI protocol can be used for networks of up to 300 devices. 

Larger or more complex networks need to either be installed as managed 
networks, or should be partitioned into multiple smaller subnetworks, where 
each subnetwork has no more than 300 devices and meets the ISI topology and 
connection constraints.  Devices that conform to the LONWORKS ISI protocol are 
called ISI devices. 

An ISI device manages its network identity (its address) and its network variable 
connections with minimum impact on the network performance.  These two 
groups of services are supported through a set of API calls, callback handlers, 
and notification events.  See Managing the Network Address and Managing 
Network Variable Connections for more information about these services. 
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The IzoT ShortStack SDK includes standard Micro Servers that can be used to 
create ISI devices, and allows the creation of custom Micro Servers that support 
the ISI protocol.  Such an ISI-enabled Micro Server can be used in self-installed 
or managed networks, but a Micro Server without built-in support for the ISI 
protocol cannot be used in an ISI network (unless you implement the required 
portions of the ISI protocol as part of your host application using the standard 
ShortStack messaging and self-installation APIs provided).  For a detailed 
description of the ISI protocol, see the LONWORKS ISI Protocol Specification. 

The ISI protocol is a licensed protocol that does not require any licensing fees.  In 
addition to the IzoT ShortStack SDK, the IzoT SDK, CPM 4200 Wi-Fi SDK, and 
IzoT NodeBuilder Software each include a license for development use of the ISI 
protocol. 

Using ISI in an IzoT ShortStack SDK Application  
Using the ISI protocol in a ShortStack application is similar to using the ISI 
protocol in a Neuron C-based application (such as ones developed with the IzoT 
NodeBuilder Software).  The application calls ISI functions and implements some 
or all of the ISI callback handler functions to produce the desired ISI behavior. 

There are two ways to modify the ISI behavior of a Micro Server: 

• If your ShortStack device uses a Micro Server that supports the ISI 
protocol, you can implement most of the ISI callback handler functions 
within your host application.  Overriding ISI callback handler functions 
is an important part of creating an ISI application, because these callback 
handlers provide essential, and typically application-specific, details to 
the ISI engine. 

• If you create an ISI-enabled custom Micro Server, you can determine the 
location of most of the ISI callback handler functions.  If there is 
sufficient space in the Smart Transceiver, you can put enough 
intelligence into the Micro Server Neuron C application to have a large 
percentage of the ISI logic in the Smart Transceiver.  Alternatively, you 
can let the Micro Server use the ShortStack ISI RPC protocol to call 
callback handler functions located on the host processor. 

See Comparing ShortStack ISI and Neuron C ISI Implementations for 
information about the similarities and differences between ShortStack ISI 
applications and Neuron C ISI applications.  See Creating a Custom Micro Server 
with ISI Support for information about customizing an ISI-enabled Micro Server. 

Running ISI on a 3120 Device 
A standard ShortStack Micro Server on a 3120 Smart Transceiver does not 
include support for ISI because of resource limitations.  For 3120 devices, the 
ShortStack LonTalk/IP Compact API allows you to implement ISI support on the 
host processor. 

Running ISI on a 3150 Device 
A standard ShortStack Micro Server on a 3150 Smart Transceiver can be 
installed in an ISI-S or ISI-DA network.  Support for ISI is largely handled by the 
Micro Server itself.  However, you can also use the ShortStack LonTalk/IP 
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Compact API to implement ISI support on the host processor.  In addition, you 
can create a custom Micro Server to provide custom ISI support, including 
support for ISI-DAS applications. 

Running ISI on a PL 3170 Device 
A standard ShortStack Micro Server on a PL 3170 Smart Transceiver can be 
installed in an ISI-S or ISI-DA network.  Support for ISI is largely handled by the 
Micro Server itself.  However, you can also use the ShortStack LonTalk/IP 
Compact API to implement ISI support on the host processor.  In addition, you 
can create a custom Micro Server to provide custom ISI support.  However, a 
Micro Server on a 3170 Smart Transceiver cannot support ISI-DAS applications. 

An ISI-enabled Micro Server for the PL 3170 Smart Transceiver has several 
limitations, compared to other ISI-enabled standard Micro Servers.  The 
following limitations are permanent and cannot be overcome by creating a 
custom, ISI-enabled, Micro Server: 

• The link layer supports SCI at the fixed bit rate of 38400 bps.  In 
addition, the SPI/SCI~, SBRB0, and SBRB1 signals are ignored. 

• The utility functions, which include local operations such as the ping or 
echo command, are not supported by the Micro Server. 

• The post-reset pause is fixed at 50 ms and cannot be configured. 

• ISI-S and ISI-DA modes are supported, but ISI-DAS mode is not. 

The following limits can be changed by creating a custom, ISI-enabled, Micro 
Server, and adjusting the Micro Server’s properties as needed: 

• Capacity is limited to 120 network variables and 75 aliases. 

• The ISI connection table is 24 records, local to the Micro Server. 

• Controlled enrollment is supported. 

Running ISI on an Series 6000 or 5000 Device 
A standard ShortStack Micro Server on an Series 6000 or Series 5000 Smart 
Transceiver or Neuron Chip, such as the FT 6050 Smart Transceiver, can be 
installed in an ISI-S or ISI-DA network.  Support for ISI is largely handled by the 
Micro Server itself.  However, you can also use the ShortStack LonTalk/IP 
Compact API to implement ISI support on the host processor.  In addition, you 
can create a custom Micro Server to provide custom ISI support, including 
support for ISI-DAS applications. 

Tasks Performed by a ShortStack ISI Application 
A ShortStack ISI application must determine when to start the ISI engine (based 
on the SCPTnwrkCnfg configuration property), call ISI services as needed, 
handle ISI events, and recover from failures. 

After the ISI engine starts, it manages various aspects of your device, and makes 
services available to you through the ISI API.  The two major aspects managed 
include:  managing the device’s network address and managing its network 
variable connections. 
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Starting and Stopping ISI 
Use the IsiStart() function to start the ISI engine for any supported ISI type.  
Typically, because the ISI engine is stopped after a Micro Server reset, you start 
the ISI engine in your onReset event handler when self-installation is enabled.  

The IsiStart() function accepts two arguments:  the ISI mode of operation 
(defined by the IsiType enumeration) and a bit vector with various flags (defined 
by the IsiStartFlags enumeration). 

The LonTalk/IP ISI API does not support, or require, the host application to call 
the IsiPreStart() function.  Micro Servers that support hardware which requires 
the use of this function automatically call this API during power-up and reset. 

Use the IsiStop() function to explicitly stop the ISI engine at any time.  
Typically, you stop the ISI engine when self-installation is disabled.  Because the 
ISI engine is always off after a power-up or reset, and must be started explicitly 
with each reset, this function is not widely used. 

When you stop the ISI engine, ISI callbacks into the application no longer occur. 
Because most ISI functions behave appropriately when the engine is stopped, the 
ShortStack application does not have to track the engine’s state and can issue the 
same set of ISI API calls in any state.   

Implementing a SCPTnwrkCnfg Property 
ISI applications must implement a SCPTnwrkCnfg configuration property that 
is implemented as a configuration network variable.  This configuration property 
must apply to your application’s Node Object functional block, if available, or 
apply to the entire device if there is no Node Object.   

This configuration property provides an interface for network management tools 
to disable self-installation on an ISI device.  By using this configuration property, 
the same device can be used in both self-installed and managed networks.   

The configuration property has two values:  CFG_LOCAL and 
CFG_EXTERNAL.  When set to CFG_LOCAL, your application must enable 
self installation.  When set to CFG_EXTERNAL, your application must disable 
self installation.  Network management tools automatically set this value to 
CFG_EXTERNAL to prevent conflicts between self-installation functions and 
the network management tool. 

For a device that will use self-installation, during the first start (only) with a new 
application image, set the value for the SCPTnwrkCnfg configuration property 
as CFG_LOCAL so that the ISI engine can come up running with the first 
power-up.  Subsequent starts use the default value of CFG_EXTERNAL. 

Example 
SFPTnodeObject(node) nodeObject;  //@IzoT block \ 
//@izot implement(nciNetConfig, flags=Reset, init=CFG_LOCAL) \ 
//@izot onUpdate(nciNetConfig, onNetConfigChange) 
 
//@IzoT Event onReset(onResetHandler) 
 
void onResetHandler( 
    const LonResetNotification* const pResetNotification 
) { 
   if (*nodeObject.nciNetConfig == CFG_LOCAL) { 
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     /* Start the ISI engine */ 
     IsiStart(IsiTypeS, IsiFlagExtended); 
   } 
} 
 
void onNetConfigChange( 
   const unsigned index,  
   const LonReceiveAddress* const pSourceAddress 
) { 
   if (*nodeObject.nciNetConfig == CFG_LOCAL) { 
      /* The device is returned to self-installation. 
       * Clear old configuration data and start again. 
       * This task can take a significant amount of time, 
       * after which the Micro Server resets. */ 
      IsiReturnToFactoryDefaults();  
   } 
} 

Managing the Network Address 
After the ISI engine is started, it manages the device’s network address.  The 
network address consists of a subnet and node ID pair plus a domain identifer.  

The subnet and node ID pair is managed automatically:  ISI chooses a suitable 
value pair, and ensures the uniqueness of that value pair within the network, 
making changes to that value pair as needed while the device is running. 

The domain identifier and its length (generally referred to collectively as the 
domain) define the logical network to which the device belongs.  Several devices 
can share the same physical network media, for example a power line 
communications channel, but can be logically isolated into distinct logical 
networks, each with a unique domain.  Each logical network is also referred to as 
a domain.  

ISI devices can be part of one primary domain.  All ISI devices are also part of a 
secondary domain for administrative purposes, but all application-specific 
communication is limited to the primary domain. 

There are four methods to assign a domain to an ISI device: 

1. The domain can be pre-defined and assigned by the device application or 
by the ISI implementation.  All ISI devices must initially support this 
method because an initial application domain is assigned prior to 
acquiring a domain using one of the other methods.  This method enables 
all devices to be used in an ISI-S network, the smallest form of an ISI 
network, which uses this method by default.  All ISI-enabled ShortStack 
Micro Servers support installation in an ISI-S network. 

2. A device that supports domain acquisition can acquire a unique domain 
address from a domain address server.  If a domain address server is not 
available, domain acquisition fails, and the ISI engine continues to use 
the most recently assigned domain (initially, the default domain).  
Devices that support domain acquisition also support multiple, 
redundant, domain address servers.  Domain address acquisition is 
initiated by the user and controlled by the device acquiring the domain, 
not by the domain address server.  This method allows the device to make 
intelligent decisions about retries, and prevents enrollment during 
domain acquisition.  It also allows the device to increase automatic 
enrollment performance following the completion of domain acquisition.  
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All standard ISI-enabled ShortStack Micro Servers support domain-
acquisition services, but custom ISI-enabled Micro Servers can choose not 
to support them. 

3. A domain address server can assign a domain to a device without a 
request from the device.  This method minimizes the code required in the 
device, and can be used with all devices.  This process is called fetching a 
device.  All ISI-enabled devices and all ISI domain address servers 
support this method.  This method simplifies the implementation of the 
ISI application, but control of the process is no longer within the ISI 
application. 

4. A domain address server can fetch the domain from any of the devices in 
a network and assign it to itself.  This method keeps multiple domain 
address servers in a network synchronized with each other, or allows a 
replacement domain address server to join an existing ISI network.  This 
process is called fetching a domain.  All ISI-enabled devices and all ISI 
domain address servers support this method. 

A domain address server typically supports all four methods.  That is, it can 
supply a pre-defined domain (which is typically used as the domain address 
server’s default domain), it can support a device that requests a domain (domain 
acquisition), it can fetch any ISI device, and it can fetch a domain from another 
device.  

Supporting a Pre-Defined Domain 
While its ISI engine is running, any ISI device is always a member of two 
domains:  the administrative secondary domain that uses a pre-defined and fixed 
domain, and the application-specific primary domain.  

The primary domain uses a three-byte domain ID with value 0x49.53.00 (ASCII 
codes for “IS\0”) by default.  An IsiGetPrimaryDid() callback function is 
supported, which allows applications to provide a different default for the 
primary domain.  This alternate default can be used by some devices to start in a 
closed, non-interoperable, ISI network.  The same method can also be used by 
domain address servers to assign a unique domain identifier to the server’s 
default primary domain (typically equal to the server’s own unique ID). 

Acquiring a Domain from a DAS 
To acquire a domain from a domain address server using domain acquisition 
services, start the ISI engine using the IsiStart() function with the isiTypeDa 
type. 

A domain address server must be in device acquisition mode to respond to 
domain ID requests.  To start device acquisition mode on a domain address 
server, call the IsiStartDeviceAcquisition() function. 

To start domain acquisition on a device that supports domain acquisition, call the 
IsiAcquireDomain() function. 

A typical implementation starts the domain acquisition process when the 
Connect button is activated and a domain is not already assigned.  If 
SharedServicePin is set to FALSE, the IsiAcquireDomain() function also 
issues a standard Service message, thus allowing the same installation paradigm 
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in both a managed and an unmanaged environment.  If the application uses the 
physical Service pin to trigger calls to the IsiAcquireDomain() function, the 
system image will have issued a Service message automatically, and the 
SharedServicePin flag should be set to TRUE in this case. 

When calling IsiAcquireDomain() with SharedServicePin set to FALSE 
while the ISI engine is not running, a standard Service message is issued 
nevertheless, allowing the same installation paradigm and same application code 
to be used in both self-installed and the managed networks. 

After domain acquisition has been enabled by calling 
IsiStartDeviceAcquisition() on the domain address server and it has been 
started on the device by calling IsiAcquireDomain(), the device responds to the 
isiWink ISI event with a visible or audible response.  For example, a device may 
flash its LEDs.  The user confirms that the correct device executed its wink 
routine by activating an appropriate user interface control on the domain address 
server that calls the server’s IsiStartDeviceAcquisition() function again.  
When confirmed, the domain address server grants the unique domain ID to the 
device.  The device notifies its application with ISI events accordingly. 

The device automatically cancels domain acquisition if it receives multiple, but 
mismatching, domain response messages.  This mismatch can happen if multiple 
domain address servers with different domain addresses are in device acquisition 
mode, and all respond to the device’s query. 

Devices can support domain acquisition to provide more robust device 
installation with automatic retries and automatic connection reminders. 

The IsiCancelAcquisition() function causes a device to cancel domain 
acquisition.  The cancellation applies to both device and domain acquisition.  
After this function call is completed, the ISI engine calls 
IsiUpdateUserInterface() with the IsiNormal event.  On a domain address 
server, use the IsiCancelAcquisitionDas() function instead. 

Example 1 

The following example starts domain acquisition on a domain address server 
when the user presses a Connect button on the server. if 
(connect_button_pressed) { 
  IsiStartDeviceAcquisition(); 
} 

When started, the domain address server remains in this state for five minutes, 
unless cancelled with an IsiCancelAcquisitionDas() call.  Each successful 
device acquisition retriggers this timeout. 

Example 2 

The following example starts domain acquisition on a device when the user 
pushes a Connect button on the device. 
if (connect_button_pressed) { 
  IsiAcquireDomain(FALSE); 
} 
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Fetching a Device from a Domain Address 
Server 
A domain address server can use the IsiFetchDevice() function to assign the 
DAS’ unique domain ID to any device.  Unlike the IsiAcquireDomain() 
function, the IsiFetchDevice() function does not require any action, or special 
library code, on the device.  To fetch a device, call the IsiFetchDevice() function 
on the domain address server. 

DAS devices can make this feature available to the user.  With this feature, it is 
not required that devices support domain acquisition in order to participate in an 
ISI network that uses unique domain IDs. 

Similar to the domain acquisition process, fetching a device also requires a 
manual confirmation step to ensure that the correct device is paired with the 
correct domain address server. 

Example 

The following example fetches a device on a domain address server when the 
user presses the Connect button on the server. 
if (connect_button_pressed) { 
  IsiFetchDevice(); 
} 

Fetching a Domain for a DAS 
A domain address server can use the IsiFetchDomain() function to obtain a 
domain ID.  Unlike the IsiAcquireDomain() function, the IsiFetchDomain() 
process does not require a domain address server to provide the domain ID 
information, and does not use the DIDRM, DIDRQ, and DIDCF standard ISI 
messages.  Instead, the domain address server uses the IsiFetchDomain() 
function to obtain the current domain ID from any device in the network, even 
from those that do not implement or execute ISI at all.  This is typically used 
when installing replacement or redundant domain address servers in a network:  
a domain address server normally uses the IsiGetPrimaryDid() override to 
specify a unique, non-standard, primary domain ID.  A replacement domain 
address server (or a redundant domain address server) must override this 
preference by using the domain ID that is actually used in the network.  This 
override is provided with the IsiFetchDomain() function. 

Example 

The following example fetches a domain on a domain address server when 
the user presses the Connect button on the server. 
if (connect_button_pressed) { 
  IsiFetchDomain(); 
} 

If no unambiguous domain ID is already present on the network, the domain 
address server uses its default domain ID, as advised with the 
IsiGetPrimaryDid() callback, as a unique domain ID. 
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Managing Network Variable Connections 
You can exchange data between devices by creating connections between network 
variables on the devices.  Connections are like virtual wires, replacing the 
physical wires of traditional hard-wired systems.  A connection defines the data 
flow between one or more output network variables to one or more input network 
variables.  The process of creating a self-installed connection is called enrollment.  
Inputs and outputs join a connection during open enrollment, much like students 
join a class during open enrollment.  Following the sucessful completion of an ISI 
enrollment, the ISI engines on the devices in the connection automatically create 
and manage the network variable connection, assign the network variable 
selectors and other protocol resources, monitor their suitability, and change these 
values as needed while the connection is active. 

Other connection-related ISI services include deleting an entire connection, 
removing individual devices from a connection, or extending a connection by 
adding new participants. 

Because an ISI network uses unbounded groups (group size 0), your application 
should not poll network variable values.  Using a request-response service with 
unbounded groups can significantly degrade network performance. 

This section describes the ISI connection model and describes the procedures 
required to create a connection. 

ISI Connection Model 
Connections are created during an open enrollment period that is initiated by a 
user, a connection controller, or a device application.  When initiated, a device is 
selected to open enrollment—this device is called the connection host.  Any device 
in a connection can be the connection host; the connection host is responsible for 
defining the open enrollment period and for selecting the connection address to 
be used by all network variables within the connection.  Connection address 
assignment and maintenance is handled by the ISI engine, and is transparent to 
your application. 

Even though any device in a connection can be the connection host, if you have a 
choice of connection hosts, pick the natural hub as the connection host.  For 
example, in a connection with one switch and multiple lights, the switch is the 
natural hub, whereas in a connection with one light and multiple switches, the 
light is the natural hub.  If there is no natural hub—multiple switches connected 
to multiple lights for example—you can pick any of the devices (preferably one 
with easy access). 

A connection host opens enrollment by sending a connection invitation.  After a 
connection host opens enrollment, any number of devices can join the connection. 

Connections are created among connection assemblies.  A connection assembly is 
a block of functionality, a grouping of one or more network variables, much like a 
Neuron C functional block.  A simple assembly refers to a single network 
variable, as shown in Figure 59.   
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Figure 59. A Simple Assembly 

A connection assembly that consists of a single network variable is called a 
simple assembly.   

A single assembly can include multiple network variables in a functional block, 
can include multiple network variables that span multiple functional blocks, or 
can exist on a device that does not have any functional blocks; an assembly is a 
collection of one or more network variables that can be connected as a unit for 
some common purpose.   

A connection assembly that consists of more than one network variable is called a 
compound assembly, as shown in Figure 60. 

 
Figure 60. A Compound Assembly 

For example, a combination light-switch and lamp ballast controller can have 
both a switch and a lamp functional block, which are paired to act as a single 
assembly in an ISI network, but could be handled as independent functional 
blocks in a managed network, as shown in Figure 61. 
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Figure 61. Multiple Functional Blocks as a Single Compound Assembly 

To communicate and identify an assembly to the ISI engine, the application 
assigns a unique number to each assembly.  This assembly number must be in 
the 0 to 254 range, sequentially assigned starting at 0.  Required assemblies for 
standard profiles must be first, assigned in the order that the profiles are 
declared in the application.  Standard ISI profiles that define multiple assemblies 
typically specify the order in which the assemblies are to be assigned. 

Each assembly has a width, which is equal to the number of network variable 
selectors used in the enrollment.  Typically, but not necessarily, the number of 
network variable selectors in an enrollment equals the number of network 
variables in the assembly.  In the previous figures, for example, assembly 0 has a 
width of 1, assembly 1 typically has a width of 2, and assembly 2 typically has a 
width of 4.  All assemblies need to have a width of at least 1.  Simple assemblies 
have a width of 1; compound assemblies typically have a width greater than 1.  

Keep the width of an assembly as small as possible while maintaining the 
functionality of the application.  For example, keep the width below 10. 

One of the network variables in a compound assembly is designated as the 
primary network variable.  If the primary network variable is part of a functional 
block, that functional block is designated as the primary functional block. 
Information about the primary network variable can be included in the 
connection invitation. 

To open enrollment, the connection host broadcasts a connection invitation that 
can include the following information about the assembly:   

• The network variable type of the primary network variable in the 
assembly 

• The functional profile number of the primary functional profile in the 
assembly 

• The connection width  
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Other devices on the network receive the invitation and interpret the offered 
assembly to decide whether they could join the new connection. 

In the case of assembly 0 in Figure 59, the connection invitation can specify a 
width of one and the network variable type.  This is a case similar to the one 
employed by a generic switch device where the switch offers a SNVT_switch 
network variable that is not tied to a specific functional profile. 

Assembly 1 in Figure 60 demonstrates a more specialized example.  A switch can 
offer this assembly and describe it as an implementation of the 
SFPTclosedLoopSensor profile, with a width of two, and a SNVT_switch 
input and output.  The ISI protocol defines how multiple network variable 
selectors are mapped to the individual network variables offered. 

Because the invitation includes no more than one functional profile number, a 
compound assembly is typically limited to a single functional block on each 
device.  To include multiple functional blocks in an assembly, a variant can be 
specified.  A variant is an identifier that customizes the information specified in 
the connection invitation.  Variants can be defined for any device category or any 
functional profile-member number pair.   

For example, a variant can be specified with the SFPTclosedLoopSensor 
functional block offered in assembly 2 in Figure 61, above, to specify that the 
SFPTclosedLoopActuator functional block is included in the assembly.  
Standard variant values are defined in standard functional profiles that are 
published by LONMARK International, and manufacturers can specify 
manufacturer-specific variant values for manufacturer-specific assemblies. 

Each assembly on a device has a unique number that is assigned by the 
application.  Each network variable on a device can be assigned to an assembly. 
The ISI engine calls the IsiGetNvIndex() and IsiGetNextNvIndex() callback 
functions to map a member of an assembly to a network variable on the device. 

Opening Enrollment 
You can create a connection using automatic, controlled, or manual enrollment. 
When you use controlled or manual enrollment, user intervention is required to 
identify devices or assemblies to be connected.  Controlled enrollment is initiated 
by a centralized tool, such as a controller or user interface panel.  This 
centralized tool is called the connection controller.  Most of the standard ISI 
profiles require support for controlled enrollment.  Manual enrollment is initiated 
from the devices to be connected, typically with a push button called the 
Connect button.  When you use automatic enrollment, connections are 
automatically created, and no user intervention is required. 

The standard Micro Server images support controlled enrollment.   

To join a connection, a device needs to support at least one type of enrollment.  A 
device can support multiple types of enrollment, or a device can support all three 
types of enrollment.  For example, a lamp actuator can support automatic 
enrollment to a gateway, controlled enrollment configured by a user interface 
panel, and manual enrollment with switch devices.  Devices that support 
controlled enrollment need also to support connection recovery as described in 
Recovering Connections.  Standard functional profiles can require support for 
specific types of enrollment. 
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An event triggers your application to open enrollment.  The type of event depends 
on the type of enrollment: 

• Manual enrollment:  A user input on the device itself typically triggers 
manual enrollment.  The input can be a simple button push, or a device 
could have a more complex user interface that allows the user to request 
a connection. 

• Controlled enrollment:  A request from a connection controller typically 
triggers controlled enrollment.  This request is typically initiated by some 
user input to the connection controller and arrives in a control request 
(CTRQ) message.  The CTRQ message identifies an ISI function and an 
optional parameter. 

• Automatic enrollment:  The isiWarm event in the 
IsiUpdateUserInterface() callback function typically triggers 
automatic enrollment.  

To open manual enrollment, call the IsiOpenEnrollment() function on the 
connection host, passing in the assembly number to be offered for this connection. 
The ISI engine then sends a connection invitation by broadcasting an open 
enrollment message (CSMO).  The CSMO message is the invitation for other 
devices to join this connection, and signals an open enrollment period.  The ISI 
protocol also provides extended versions of the CSMO messages, which add fields 
to determine if the connection is acknowledged or polled, the scope of the 
connection and parts of the program ID, and the primary network variable 
member. 

The ISI engine creates the CSMO message by calling the IsiCreateCsmo() 
function, which fills the relevant fields of an IsiCsmoData data structure with 
the values needed to describe the connection type and data that is offered to the 
network.  The default implementation of this function, which is provided with the 
ISI libraries and is available to Neuron C applications, is not available to 
ShortStack devices.  However, you can implement this function either within the 
host application or within a custom Micro Server. 

After calling the IsiCreateCsmo() function, the ISI engine constructs the 
remainder of the CSMO message and broadcasts the connection invitation to the 
network.  To create a compound connection (one with an assembly width larger 
then 1), you must override the IsiGetWidth() callback function.  Sending 
reminders of this message also calls several callback functions, including 
IsiCreateCsmo() and IsiGetWidth(). 

Controlled enrollment is initiated and controlled by the connection controller, 
which opens the controlled enrollment by sending a CTRQ message specifying 
the IsiOpenEnrollment() function, and also specifying the assembly number to 
be offered.  The application responds to the CTRQ message with a control 
response (CTRP) message indicating that it implements the requested operation. 

If your ShortStack device supports controlled enrollment, you can create a 
custom Micro Server that includes it. 

To open automatic enrollment, wait for the IsiWarm event from the 
IsiUpdateUserInterface() callback function, and then call the 
IsiInitiateAutoEnrollment() function, passing a pointer to an IsiCsmoData 
structure containing the invitation, and an the assembly number to be offered for 
this connection.  The ISI engine then sends a connection invitation by 
broadcasting an automatic enrollment (CSMA) message.  The ISI engine also 
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sends periodic reminders about the automatic connection by sending CSMR 
messages.  The reminder ensures that new devices have an opportunity to join 
the automatic connections.  

Whenever a CSMR is due, the ISI engine calls IsiCreateCsmo() to create the 
message.  The CSMA and CSMR messages are the invitations for other devices to 
enroll in this connection automatically.  Opening automatic enrollment through 
IsiInitiateAutoEnrollment() is an immediate action, and after the call is 
made, the connection is implemented for the assembly that the call was made 
with, regardless of whether there are any members for the connection. 

The ISI engine automatically transmits the extended CSMOEX, CSMAEX, or 
CSMREX message (as appropriate) if isiFlagExtended was specified during the 
start of the engine.  Otherwise, the ISI engine automatically clips the Extended 
sub-structure of the IsiCsmoData structure and issues the regular CSMO, 
CSMA, or CSMR message. 

You can provide feedback to the user while enrollment is open, for example by 
starting a Connect light to flash.  This is typically only done with manual 
enrollment.  The ISI engine informs your application of significant ISI events by 
calling an IsiUpdateUserInterface() callback function. 

Example 1 

This example opens automatic enrollment. 
void IsiUpdateUserInterface(IsiEvent event, unsigned 
      parameter) { 
  if (event == IsiWarm && !myIsiGetIsConnected(myAssembly)) 
  { 
    IsiInitiateAutoEnrollment(&myCsmoData, myAssembly); 
  } 
} 

In this example, the Event is compared to IsiWarm and to the value 
returned by the myIsiGetIsConnected() function.  Your application 
implements this function, which returns TRUE if the status for the specified 
assembly (myAssembly) is connected, and returns FALSE otherwise.  To 
maintain the connection status for each assembly, the application 
periodically calls the IsiQueryIsConnected() function.  Then, within the 
IsiIsConnectedReceived() callback handler function, you can update the 
connection status for each assembly. 

The IsiWarm event signals that a sufficient amount of time has passed since 
the ISI engine has been started.  This interval includes a random component 
to prevent all devices in the network from simulatenously starting the 
automatic enrollment processes and thus colliding in the event of a site-wide 
return to power. 

Example 2 

This example opens manual enrollment for a simple assembly with one 
network variable, using the network variable’s global index as the 
application-specific assembly number.  This example runs within your host 
application. 
void startEnrollment(void) { 
  IsiOpenEnrollment(nvoValue.global_index); 
} 



 

172 Developing a ShortStack Application with ISI                                          

Example 3 

This controlled enrollment example instructs a remote device with a specified 
unique ID (Neuron ID) to open enrollment for its assembly number 5.  The 
first part of this example runs within your host application, which initiates 
the controlled enrollment request (the host application implements an ISI 
connection controller), and the second part of this example runs within a 
custom Micro Server that is used by the targeted remote device.  

See the Interoperable Self-Installation Protocol Specification for information 
about the ISI Protocol, including its message codes and structures.  For 
example, the IsiControl enumeration and the IsiMessage data structure 
are not included in the ShortStackIsiTypes.h file. 
LonTag isiTag; //@IzoT Tag bindable(No) 
 
const LonApiError controlEnrollment(IsiControl control, 
        unsigned parameter, LonUniqueId* pUniqueId) { 
 
  LonSendUniqueId target; 
  IsiMessage message; 
 
  /* Use Neuron ID addressing with one of the addresses 
   * gathered during device discovery */ 
  target.Type = LonAddressNeuronId;    
  target.Domain = 0; 
  target.RepeatRetry = 3 | 
      (LonRpt192<<LON_SENDNID_REPEAT_TIMER_SHIFT); 
  target.RsvdTransmit = LonTx96; 
  target.subnet = 0;   
  memcpy(target.NeuronId, pUniqueId, 
      sizeof(target.NeuronId)); 
 
  /* Prepare the ISI message */ 
  message.Header.Code = IsiCtrq;       
  message.Msg.Ctrq.Control = control; 
  message.Msg.Ctrq.Parameter = parameter; 
 
  return LonSendMsg(isiTag, FALSE, 
      LonServiceRequest, FALSE,  
      (const LonSendAddress*)&target, 
      IsiApplicationMessageCode, &message, 
      sizeof(IsiMessageHeader) + sizeof(IsiCtrqMessage)); 
} 
 
void myEnroll(...) { 
    LonApiError error = controlEnrollment(IsiOpen, 5, ...); 
} 

Your application can evaluate success or failure of the request by using the 
LonResponseArrived() callback handler function.  When the controlled 
enrollment request completes, the target device replies with an ISI CTRP 
response message, which indicates success or failure.  The CTRP message 
includes the target device’s unique ID, which allows you to correlate it with the 
outstanding request.  

If the device fails to provide a CTRP response message, you can generally assume 
that the target device does not implement controlled enrollment.  As the example 
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shows, you can use network protocol features, such as the repeat counter and 
timer values, to configure repeated communication attempts. 

On the receiving device, a controlledEnrollmentDispatcher() function and a 
sendControlResponse() utility function are implemented to process the 
controlled enrollment request.   

To ensure that your custom Micro Server can control enrollment, add a call to the 
controlledEnrollmentDispatcher() function within the IsiMsgHandler() 
function in the MicroServer.nc file.  An example for the calling the 
controlledEnrollmentDispatcher() function is provided in Example 2 in 
Accepting a Connection Invitation. 

boolean IsiMsgHandler(void) { 
  boolean result, preemptionMode; 
  boolean enrolled; 
 
  result = FALSE; 
  preemptionMode = shortStackInPreempt(); 
 
  enrolled = controlledEnrollmentDispatcher(); 
 
  switch(isiType) { 
#ifdef  SS_SUPPORT_ISI_S 
    case isiTypeS: 
      result = IsiApproveMsg() &&  
          (preemptionMode  
           || !IsiProcessMsgS()  
           || controlledEnrollmentDispatcher()); 
      break; 
#endif  //  SS_SUPPORT_ISI_S 
#ifdef  SS_SUPPORT_ISI_DA 
    case isiTypeDa: 
      result = IsiApproveMsg() &&  
         (preemptionMode ||  
          !IsiProcessMsgDa() ||  
          controlledEnrollmentDispatcher()); 
      break; 
#endif  //  SS_SUPPORT_ISI_DA 
#ifdef  SS_SUPPORT_ISI_DAS 
    case isiTypeDas: 
      result = IsiApproveMsgDas() &&  
          (preemptionMode  
           || !IsiProcessMsgDas()  
           || controlledEnrollmentDispatcher()); 
      break; 
#endif  //  SS_SUPPORT_ISI_DAS 
  }  
  return result; 
} 

Example 4 

This example opens manual enrollment for a compound assembly with four 
selectors.  The IsiGetWidth() returns the library’s default value.  In this 
example, enrollment is being opened in response to the user’s pressing a 
Connect button.  Enrollment can only be opened when the ISI engine is in the 
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normal state.  The ProcessIsiButton() function is called in response to the 
Connect button’s being pressed. 

This example runs within your host application. 
IsiEvent isiState = IsiNormal; 
 
void IsiCreateCsmo(....) { 
  // set pCsmoData as desired 
} 
 
unsigned IsiGetWidth(unsigned assembly) { 
  return 4; 
} 
 
void ProcessIsiButton(unsigned assembly) { 
  switch(isiState) { 
    ... 
    case IsiNormal: 
      IsiOpenEnrollment(assembly); 
      break; 
    ... //Processing for other states 
  } // end of switch(isiState) 
} 

The example assumes that the IsiCreateCsmo() and IsiGetWidth() 
callback handler functions are implemented in the same location, and implies 
that both are implemented in the location of the ProcessIsiButton() 
function (presumably, within your host application).  When you create an ISI-
enabled custom Micro Server, you can choose whether the IsiCreateCsmo() 
and IsiGetWidth() callback handler functions should be implemented local 
to the Micro Server or on the host, but these two callback handler functions 
would typically be implemented in the same location. 

Example 5 

This example refines example 1 and provides a more comprehensive example 
of opening automatic enrollment for a simple assembly with one network 
variable. 

This example runs within your host application. 
// MyCsmoData defines the enrollment details for the  
// automatic ISI network variable connection offered by 
// this device. 
static const IsiCsmoData MyCsmoData = { 
  // group 
  ISI_DEFAULT_GROUP,   
  // direction and width: 
  IsiDirectionOutput << ISI_CSMO_DIR_SHIFT) | 1,  
  // Profile number 
  { 0, 2 }, 
  // NV type index (76: SNVT_freq_hz) 
  76, 
  // Variant: 
  0 
}; 
 
// Call InitiateAutoEnrollment in response to isiWarm 
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void IsiUpdateUserInterface(IsiEvent event, unsigned 
      parameter) { 
  if (event == IsiWarm && 
      !myIsiGetIsConnected(myAssemblyNumber)) { 
    // We waited long enough and we are not connected 
    // already, so let's open an automatic connection: 
    IsiInitiateAutoEnrollment(&MyCsmoData, 
      myAssemblyNumber); 
  } 
} 
 
void IsiCreateCsmo(unsigned assembly, IsiCsmoData* pCsmo) { 
  if (assembly == myAssemblyNumber) { 
    memcpy(pCsmo, &MyCsmoData, sizeof(IsiCsmoData)); 
  } 
} 
 
unsigned IsiGetWidth(unsigned assembly) { 
  unsigned result = 0; 
  if (assembly == myAssemblyNumber) { 
    result = LON_GET_ATTRIBUTE(MyCsmoData, ISI_CSMO_WIDTH); 
  } 
  return result; 
} 

In this example, the Event is compared to IsiWarm and to the value 
returned by the myIsiGetIsConnected() function.  Your application 
implements this function, which returns TRUE if the status for the specified 
assembly (myAssembly) is connected, and returns FALSE otherwise.  To 
maintain the connection status for each assembly, the application 
periodically calls the IsiQueryIsConnected() function.  Then, within the 
IsiIsConnectedReceived() callback handler function, you can update the 
connection status for each assembly. 

Example 6 

This example opens automatic enrollment for a compound assembly with four 
selectors, offering enrollment for member network variables 1 to 4 of an 
implementation of the SFPTsceneController profile (the nviScene, 
nvoSwitch, nviSetting, and nviSwitch members). 

This example runs within your host application. 
// MyCsmoData defines the enrollment details for the 
// automatic ISI network variable connection offered by 
// this device 
static const IsiCsmoData MyCsmoData = { 
  // group 
  ISI_DEFAULT_GROUP,   
  // direction and width: 
  (isiDirectionVarious << ISI_CSMO_DIR_SHIFT) | 4,  
  // Profile number in big-endian notation: 
  { 3251 / 256, 3251 % 256 }, 
  // NV type index (0: determined by SFPT) 
  0, 
  // Variant: 
  0 
}; 
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// Call InitiateAutoEnrollment in response to isiWarm 
void IsiUpdateUserInterface(IsiEvent event, unsigned 
      parameter) { 
  if (event == IsiWarm && 
      !myIsiGetIsConnected(myAssemblyNumber)) { 
    // We waited long enough and we are not connected 
    // already, so let's open an automatic connection: 
    IsiInitiateAutoEnrollment(&MyCsmoData, 
      myAssemblyNumber); 
  } 
} 
 
void IsiCreateCsmo(unsigned assembly, IsiCsmoData* pCsmo) { 
  if (assembly == myAssemblyNumber) { 
    memcpy(pCsmo, &MyCsmoData, sizeof(IsiCsmoData)); 
  } 
} 
 
unsigned IsiGetWidth(unsigned assembly) { 
  unsigned result = 0; 
  if (assembly == myAssemblyNumber) { 
    result = LON_GET_ATTRIBUTE(MyCsmoData, ISI_CSMO_WIDTH); 
  } 
  return result; 
} 

As in the previous example, the Event is compared to IsiWarm and to the 
value returned by the myIsiGetIsConnected() function.  Your application 
implements this function, which returns TRUE if the status for the specified 
assembly (myAssembly) is connected, and returns FALSE otherwise.  To 
maintain the connection status for each assembly, the application 
periodically calls the IsiQueryIsConnected() function.  Then, within the 
IsiIsConnectedReceived() callback handler function, you can update the 
connection status for each assembly. 

Example 7 

For a complete example that implements connection management for 
multiple assemblies, see the self-installation example application that 
included with the ShortStack FX SDK ARM7 Example Port, which is 
available for free download from echelon.com/downloads.  

Receiving an Invitation 
You can receive a connection invitation and specify which assemblies are eligible 
to join the ISI connection.  When an ISI device receives a CSMO, CSMA, or 
CSMR connection invitation message, the ISI engine first checks the availability 
of the device resources that are required to implement the connection.  If any of 
these resources is missing or insufficient, such as address or connection table 
space, the invitation is dropped.  

If the ISI engine determines that there are sufficient resources, it calls the 
IsiGetAssembly() and IsiGetNextAssembly() callback handler functions with 
the received CSMO, CSMA, or CSMR message.  These functions return all 
assembly numbers that are provisionally approved to join the connection.  The 
automatic argument of IsiGetAssembly() and IsiGetNextAssembly() 

http://echelon.com/software-downloads?ele=153-0296-01A
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indicates whether the enrollment is manual or controlled (CSMO) or 
automatically (CSMA or CSMR) initiated, with FALSE meaning that the 
enrollment was initiated manually or by a connection controller.  On devices that 
do not support connection removal, the assembly is ignored if it is already 
engaged in another connection. 

When a device receives an extended CSMOEX, CSMAEX, or CSMREX message, 
all fields of the IsiCsmoData structure are passed to the application, and the 
fields in the Extended sub-structure are all valid. 

When a device receives a regular CSMO, CSMA, or CSMR message, the extended 
fields are automatically set to all zeros, with exception of the 
Extended.Member field, which is set to one. 

Applications do not need to distinguish between regular and extended incoming 
messages. 

You can provide feedback to the user when an invitation is received and 
provisionally approved, for example by causing a Connect light to flash while 
enrollment is open.  Such feedback is typically only provided for a manual 
connection.  The ISI engine informs your application that an eligible invitation 
has been received and provisionally approved by calling the 
IsiUpdateUserInterface() callback function (with the IsiPending event code) 
for each assembly that is provisionally approved to join the connection.  The 
application can indicate provisionally approved, but not yet accepted, connection 
invitations. 

Example 

This example receives and provisionally approves a connection invitation, 
and blinks a Connect light until the invitation is accepted, or the connection 
is confirmed or canceled. 

This example runs within your host application. 
// IsiUpdateUserInterface is called with IsiPending as the 
// IsiEvent parameter in response to receiving a CSMO 
void IsiUpdateUserInterface(IsiEvent event, unsigned 
      parameter) { 
  ... //Optional event processing 
  isiState = (event == IsiPending || event == IsiApproved 
      || event > IsiWarm) ? event : IsiNormal; 
} 
 
unsigned IsiGetAssembly(const IsiCsmoData* pCsmo,  
      LonBool automatic) { 
  unsigned result = ISI_NO_ASSEMBLY; 
  if (pCsmo->Group == ISI_LIGHTING_CATEGORY 
      && pCsmo->Extended.Scope == isiScopeStandard 
      && pCsmo->NvType == SNVT_SWITCH_2_INDEX 
      && !(pCsmo->Variant & 0x60) 
      && !LON_GET_ATTRIBUTE(pCsmo->Extended, ISI_CSMO_ACK) 
      && !LON_GET_ATTRIBUTE(pCsmo->Extended, 
          ISI_CSMO_POLL)) { 
    // Recognized CSMO, return appropriate assembly 
    // number 
    result = myAssemblyNumber; 
  } 
  return result; 
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} 
 
unsigned IsiGetNextAssembly(const IsiCsmoData* pCsmo, 
      LonBool automatic, unsigned assembly) { 
  unsigned result = ISI_NO_ASSEMBLY; 
 
  if (assembly == myAssemblyNumber) { 
    result = myAssemblyNumber + 1; 
  }  
  return result; 
} 

The example identifies the enrollment and specifies myAssemblyNumber 
as the first local applicable assembly for the enrollment.  The 
GetNextAssembly() callback handler function then adds a second local 
applicable assembly to the list. Unacceptable enrollment data, or requests for 
additional local assemblies, receive the ISI_NO_ASSEMBLY constant. 

Accepting a Connection Invitation 
You can accept a connection invitation to join the offered connection.  When you 
accept a connection invitation, the ISI engine sends an enrollment acceptance 
message (CSME) to the connection host.  Accepting an invitation only sends an 
acceptance to the connection host; the connection is not implemented until the 
connection host confirms the new connection. 

You can only accept enrollment for an assembly that has been provisionally 
approved.  To provisionally approve an assembly, the IsiGetAssembly() or 
IsiGetNextAssembly() function must return the assembly number for the 
current IsiCsmoData structure, and the IsiUpdateUserInterface() callback 
function must identify the current assembly as being in the IsiPending state. 

For manual enrollment, a connection invitation is typically accepted based on 
user input.  For example, LEDs blink on a device when invitations are received 
and provisionally approved, and the user then pushes the related Connect button 
to accept a specific invitation. 

For a controlled enrollment, a connection invitation is typically accepted based on 
a request from a connection controller.  This request is typically initiated by some 
user input to the connection controller. 

For automatic enrollment, a connection invitation is typically accepted based on 
some application-specific criteria.  For example, a home gateway opens automatic 
enrollment for its inputs and outputs, and newly installed home devices 
automatically accept all eligible connection invitations from the home gateway.  

The actual establishment of an automatic connection is handled by the ISI 
engine, and requires a call to IsiCreateEnrollment() or 
IsiExtendEnrollment().  The ISI engine extends the connection if the library 
supports connection extension, or creates the extension if the library does not 
support connection extension and the assembly is not already connected, or if the 
library supports connection removal.  The ISI libraries that are used with the 
standard, ISI-enabled, ShortStack Micro Servers support connection extensions 
and connection removal procedures.  You can use different ISI libraries with 
custom Micro Server implementations; see Creating a Custom Micro Server with 
ISI Support. 



ShortStack User’s Guide        179 

For devices that support connection removal, you can create a connection that 
replaces all existing connections for an assembly.  For devices that support 
connection extension, you can add a new connection to an assembly that might 
already be enrolled in other connections.   

To create a connection that replaces all existing connections for an assembly, call 
IsiCreateEnrollment().  To add a connection to an assembly without overriding 
any existing connections associated with the same assembly, call 
IsiExtendEnrollment().  You can extend a nonexistent connection; 
IsiExtendEnrollment() has the same functionality as IsiCreateEnrollment() 
if no connection exists for the assembly. 

Extending a connection consumes additional device and network resources, 
compared with the initial connection.  Each extension to a connection requires 
one or more new aliases and connection table entries, and results in additional 
network transactions for every update to the connection.  You can eliminate this 
additional resource usage by deleting and re-creating a connection instead of 
extending it. 

You can provide feedback to the user when an invitation is accepted, for example 
by changing the state of the Connect light when the connection invitation is 
accepted from flashing to solid on.  Such feedback is typically only provided for 
manual enrollment.  The ISI engine informs your application that a connection 
invitation has been accepted by calling the IsiUpdateUserInterface() callback 
function, assigning the IsiApproved or IsiApprovedHost state to the 
respective assembly.  The application indicates the accepted connection 
invitation. 

Example 1 

This manual enrollment example accepts a connection invitation when the 
user presses a Connect button.  

This example runs within your host application. 
IsiEvent isiState; 
 
void ProcessIsiButton(unsigned assembly) { 
  switch(isiState) { 
  ... 
    case IsiPending: 
      IsiCreateEnrollment(assembly); 
      break; 
      ... //Processing for other states 
  } // end of switch(state) 
} 

After the host accepts the connection, your application receives the 
IsiUpdateUserInterface() callback with the Event set to IsiApproved.  
Your application can use this event status to update the device interface, for 
example, by illuminating an LED. 

Example 2 

The following example opens controlled enrollment when requested by the 
connection controller. 

This example runs within a custom Micro Server. 
void sendControlResponse(boolean success) { 
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  IsiMessage ctrlResp; 
 
  ctrlResp.Header.Code = isiCtrp; 
  ctrlResp.Ctrp.Success = success; 
  memcpy(ctrlResp.Ctrp.NeuronID, read_only_data.neuron_id, 
      NEURON_ID_LEN); 
  
  resp_out.code = isiApplicationMessageCode; 
  memcpy(resp_out.data, &ctrlResp, 
      sizeof(IsiMessageHeader)+sizeof(IsiCtrp)); 
  resp_send(); 
} 
 
boolean controlledEnrollmentDispatcher(void) {  
  boolean isProcessed; 
  IsiMessage inMsg; 
 
  isProcessed = FALSE; 
  memcpy(&inMsg, msg_in.data, sizeof(IsiMessage)); 
 
  if (inMsg.Header.Code == isiCtrq) { 
    if (inMsg.Ctrq.Control == isiOpen) { 
      sendControlResponse(TRUE); 
      IsiOpenEnrollment(inMsg.Ctrq.Parameter); 
      isProcessed = TRUE; 
    } else if (inMsg.Ctrq.Control == isiCreate) { 
      sendControlResponse(TRUE); 
      IsiCreateEnrollment(inMsg.Ctrq.Parameter); 
    } else if (inMsg.Ctrq.Control == isiFactory) { 
      sendControlResponse(TRUE); 
      IsiReturnToFactoryDefaults(); 
    } else { 
      sendControlResponse(FALSE); 
    } 
  } else { 
    // Other requests deleted for this example 
    ... 
  } 
  return isProcessed; 
} 

Implementing a Connection 
In a manual or controlled enrollment, when a connection host sends a connection 
invitation by broadcasting an open enrollment message, one or more devices can 
accept the connection invitation and respond with an enrollment acceptance 
message (CSME).  When the connection host receives at least one CSME 
message, the host application receives the IsiApprovedHost event through the 
IsiUpdateUserInterface() callback function.  Typically, the application 
changes the state of the related Connect light from flashing to solid on. 

When the connection host’s assembly is in the IsiApprovedHost state, the 
connection can be cancelled or implemented.  See Canceling a Connection for 
information about cancellation. 
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To implement a connection on a connection host, call either 
IsiCreateEnrollment() or IsiExtendEnrollment().  The connection host joins 
the connection and issues a connection enrollment confirmation message 
(CSMC).  When calling IsiCreateEnrollment(), any connection that exists for 
the same assembly is removed; see Deleting a Connection for more information.  
When calling IsiExtendEnrollment(), the new connection is added to any 
existing connections for the same assembly, consuming an alias table entry for 
each NV in the assembly. 

After the connection host confirms the connection, devices that have previously 
accepted the connection invitation join the connection by replacing or extending 
an existing connection, depending on the function that was used to accept the 
invitation. 

When a device joins a connection, the ISI engine on that device updates the 
network configuration for the device, and the accepted connection becomes active. 

The ISI engine automatically implements the connections for the accepted 
assembly.  To determine the network variables to be connected, the ISI engine 
calls the IsiGetNvIndex() and IsiGetNextNvIndex() functions for each 
selector used with the connection. 

You can provide feedback to the user when a connection has been joined, for 
example by turning off the Connect light.  Such feedback is typically only 
provided for manual connections.  The ISI engine informs your application that a 
connection has been implemented by providing the IsiImplemented event 
through the IsiUpdateUserInterface() callback function.  The application 
indicates the new connection.  Your application will receive one IsiImplemented 
event for each network variable that belongs to the assembly. 

Example 

This manual enrollment example implements a connection on a connection 
host when the user presses the Connect button a second time.  The complete 
application also turns off the Connect light to indicate the acceptance on the 
host. 
void ProcessIsiButton(unsigned assembly) { 
  switch(isiState) { 
  ... 
    case IsiApprovedHost: 
      if (bCancelEnrollment) 
        IsiCancelEnrollment(); 
      else  
        IsiCreateEnrollment(assembly); 
      break; 
      ... // Processing for other states 
  } // End of switch(state) 
} 

After the host accepts the connection, your application receives the 
IsiImplemented event through the IsiUpdateUserInterface() callback 
handler function once for each local network variable associated with the 
assembly.  Your application can use this event status to update the device 
interface, for example, by illuminating an LED. 
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Canceling a Connection 
You can cancel a pending enrollment on the connection host at any stage, and on 
any device that has accepted the connection invitation.  However, cancellation is 
no longer possible after the connection is implemented; see Deleting a Connection 
for information about deleting an implemented connection. 

Pending enrollment sessions are automatically cancelled if: 

• On the connection host, if no connection enrollment acceptance message 
(CSME) is received within the open enrollment period after the 
IsiOpenEnrollment() function call. 

• On the connection host, if the connection is not implemented by a 
IsiCreateEnrollment() or IsiExtendEnrollment() function call within 
the open enrollment period after the receipt of a connection enrollment 
confirmation message (CMSE). 

• On an accepting device, if the connection has been accepted and no 
connection enrollment confirmation message (CMSC) has been received 
within the open enrollment period after the acceptance. 

To explicitly cancel a pending enrollment, call the IsiCancelEnrollment() 
function. 

When a connection host cancels a pending enrollment session, it issues a 
connection enrollment cancellation message (CSMX).  Devices that have accepted 
the related connection invitation automatically cancel when they receive a 
related CSMX message. 

When a connection member cancels a pending enrollment session, the 
cancellation only has local effect—the approved assembly changes to the 
IsiCancelled state.  Because the connection host can re-send invitation 
messages (CSMOs), the same device can, once again, conditionally approve the 
assembly and move it to the IsiPending state.  The user can now accept the 
connection invitation again (by causing the application to call 
IsiCreateEnrollment() or IsiExtendEnrollment()), or simply do nothing.  The 
pending assembly remains pending until the enrollment is closed, and 
automatically returns to the IsiNormal state. 

Deleting a Connection 
You can delete an implemented connection using one of the following three 
methods: 

• The device can restore factory defaults by calling the 
IsiReturnToFactoryDefaults() function.  This function clears all 
system tables, stops the ISI engine, and resets the Micro Server.  See 
Deinstalling a Device for more information about this function. 

• The device can delete a connection by calling the IsiDeleteEnrollment() 
function.  This function causes the connection information to be removed 
from the local device, as well as on all other devices that are members of 
the same connection.  The IsiDeleteEnrollment() function can be called 
on the connection host, and on any other device that has joined the 
connection. 
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• The device can opt out of an existing connection, leaving other devices 
that have joined the same connection unchanged.  To leave a connection 
locally, call the IsiLeaveEnrollment() function.  Calling this function on 
the connection host has the effect of IsiDeleteEnrollment(), that is, a 
connection host cannot leave a connection, but should always delete the 
connection. 

The ISI engine calls the IsiUpdateUserInterface() function with the 
IsiDeleted event to notify the application of the completion of a deletion. 

Handling ISI Events 
You can signal the progress of the enrollment process to the device user.  Such 
feedback is typically only provided for devices that use manual connections, 
because automatic and controlled connections do not require user interaction 
from the connected devices.  User feedback may be as simple as a single Connect 
light and button, possibly shared with the Service light and button.  A more 
complex gateway or controller may have a more sophisticated user interface. 

To receive status feedback from the ISI engine, override the 
IsiUpdateUserInterface() callback function.  The ISI engine calls this function 
with the IsiEvent parameter set to one of the values listed in Table 23 when the 
associated event occurs.  Some of these events carry a meaningful value in the 
numeric parameter, as shown in the table. 

Table 8. ISI Event Types 

IsiEvent Value Description 

IsiNormal 0 The ISI engine has returned to the normal, or idle, state for an 
assembly.  The related assembly is encoded in the parameter; a 
parameter value of ISI_NO_ASSEMBLY indicates that the 
event applies to all assemblies. 

IsiRun 1 The ISI engine has been successfully started (parameter is 
TRUE) or stopped (parameter is FALSE). 

IsiPending 2 The connection related to the assembly given with the numerical 
parameter has entered the pending state.  The event means that 
the device has received, and provisionally approved, a connection 
invitation, but has not yet accepted the connection invitation.   

This event only applies to a connection member.  For a 
connection host, see IsiPendingHost. 

Devices often signal the IsiPending (or IsiPendingHost) state 
with a flashing LED. 
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IsiEvent Value Description 

IsiApproved 3 The connection related to the assembly given with the numerical 
parameter changed from the pending state to the approved 
state.  This event occurs when a connection invitation has been 
provisionally approved and accepted.  

This event only applies to a connection member.  For a 
connection host, see IsiApprovedHost. 

Devices often signal the IsiApproved (or IsiApprovedHost) 
state by turning on an LED (which was flashing before, coming 
from the IsiPending or IsiPendingHost state). 

IsiImplemented 4 The connection related to the assembly given with the numerical 
parameter has been implemented.  This event occurs on a 
connection host after calling IsiCreateEnrollment() or 
IsiExtendEnrollment() to implement a connection and close 
enrollment, and on a connection member after receiving an 
enrollment confirmation message (CSMC). 

The application receives one IsiImplemented event for each 
network variable that is part of the assembly. 

IsiCancelled 5 The connection related to the assembly given with the numerical 
parameter has been cancelled by a timeout, user intervention, or 
network action.  An assembly number of ISI_NO_ASSEMBLY 
indicates that all pending enrollments are cancelled. 

IsiDeleted 6 The connection related to the assembly given with the numerical 
parameter has been deleted. 

IsiWarm 7 The ISI engine has warmed up (that is, a predetermined time, 
with a random component, has passed since the last reset).  
After this time, the application can call the 
IsiInitiateAutoEnrollment() function.  

This event occurs no sooner than the expiry of the Tauto ISI 
protocol timer, but can occur later. 

IsiPendingHost 8 The connection related to the assembly given with the numerical 
parameter has entered the pending state.  This event occurs on a 
connection host after it has issued a connection invitation 
(CSMO), but not yet received any enrollment acceptance 
messages (CSMEs).  

This event only applies to a connection host.  For a connection 
member, see IsiPending. 
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IsiEvent Value Description 

IsiApprovedHost 9 The connection indicated with the numerical parameter changed 
from the pending state to the approved state.  This event occurs 
on a connection host at the receipt of the first connection 
enrollment acceptance message (CSME).  

This event only applies to a connection host.  For a connection 
member, see IsiApproved. 

IsiAborted 10 The device stopped domain or device acquisition.  The parameter 
is a member of the IsiAbortReason enumeration, and indicates 
the reason for the abort. 

IsiRetry 11 The device is retrying the device acquisition procedure.  The 
parameter is the remaining number of retries. 

IsiWink 12 The device should perform its wink function.  The specific 
function is application-dependent, but should provide some 
visible or audible feedback to the user.  For example, the 
application blinks an LED on the device. 

IsiRegistered 13 This event indicates either acquisition start or successful 
acquisition completion on either a device that supports domain 
acquisition or a domain address server.  The parameter indicates 
either a successful start (parameter = 0) or completion 
(parameter = 0xFF). 

You typically override the IsiUpdateUserInterface() callback function with an 
application-specific function to provide application-specific user feedback.  The 
default implementation of this function does nothing, and is only useful for 
devices that exclusively use automatic enrollment. 

Figure 62 summarizes the typical sequence of events for a connection host using 
manual or controlled enrollment.  The sequence of events is similar for a 
connection host using automatic enrollment, except that the connection host 
skips the IsiApprovedHost event and goes straight to the IsiImplemented 
event.   Although the sequence of events shown in this figure is typical, the actual 
sequence of events passed to the IsiUpdateUserInterface() callback can vary. 
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Normal

Cancelled

ApprovedHost

PendingHostImplemented

IsiOpenEnrollment()

IsiCancelEnrollment()
or timeout

IsiCancelEnrollment()
or timeout

IsiCreateEnrollment(),
IsiExtendEnrollment() CSME

 
Figure 62. Sequence of Events for a Connection Host 

Figure 63 summarizes the typical sequence of events for a connection member.  
Although the sequence of events shown in this figure is typical, the actual 
sequence of events passed to the IsiUpdateUserInterface() callback can vary. 
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IsiGet[Next]Assembly()

IsiCancelEnrollment()
or timeout
or CSMX

IsiCancelEnrollment()
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Figure 63. Sequence of Events for a Connection Member 
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Domain Address Server Support 
None of the standard ShortStack Micro Servers supports the creation of an ISI 
domain address server (DAS) because of resource limitations on all supported 
hardware platforms. 

To implement a domain address server as a ShortStack device, perform either of 
the following tasks: 

• Create a custom Micro Server on a 3150 Smart Transceiver that supports 
more RAM through the external memory interface, or create a custom 
Micro Server on an FT 5000 or 6050 Smart Transceiver.  The ISI memory 
requirement is approximately 0.5 KB.   
 
Ensure that this Micro Server has sufficient external RAM for buffers (a 
DAS typically needs fairly large buffer counts) and any DAS-specific code 
that requires external RAM (such as device lists and lookup-tables on the 
Micro Server).  Typically, external RAM of a few kilobytes suffices. 

• Use a standard Micro Server on a 3120 or 3170 Smart Transceiver, or a 
custom Micro Server on a 3150, Series 6000 or 5000 Smart Transceiver or 
Neuron Chip, that does not have built-in ISI support, and implement ISI 
with DAS-features on the host processor. 

Discovering Devices 
You can discover all devices in an ISI network.  All devices in an ISI network 
periodically broadcast their status by sending out Domain Resource Usage 
Message (DRUM) messages.  To discover devices, you can monitor these status 
messages.  Gateways and controllers that need to maintain a table of all devices 
in a network, or provide unique capabilities for specific types of devices in a 
network, should monitor these messages. 

To discover devices, monitor the DRUM messages being sent on the network by 
other devices and store the relevant information in a device table.  A device table 
is a table that contains a list of devices and their attributes including their 
network addresses.  The DRUM messages contain all of the relevant information 
for explicit messaging.  To create a device table, store the relevant DRUM fields, 
such as subnet ID, node ID, and Neuron ID, in a table that you can use to 
communicate directly with other devices.  To detect deleted devices, monitor the 
time of the last update for each entry in the table and detect devices that have 
not recently sent a DRUM. 

You can implement the code to maintain the device table within a custom Micro 
Server or within the host application.  For either implementation, you need to 
create a custom Micro Server. 

Maintaining a Device Table within the Micro 
Server  
To implement device discovery local to the Micro Server, perform the following 
steps: 

1. Add code to the MicroServer.nc file that defines a data structure for the 
device table. 
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2. Implement the ProcessDrum() function. 

3. Create a function that decrements credits from each device in the device 
table. 

4. In the ShortStackIsiHandlers.h file, define the 
IsiCreatePeriodicMsg() callback handler function to be implemented 
within your custom Micro Server. 

5. In the MicroServerIsiHandlers.c file, call the function that decrements 
credits from the IsiCreatePeriodicMsg() callback handler function. 

6. In the MicroServer.nc file, modify the IsiMsgHandler() function to 
call your DRUM dispatcher.   

7. Create a utility function that informs the host of newly discovered or 
removed devices. 

8. Add code to your host application to process the user-defined remote 
procedure call for the utility function. 

Each of these steps is described in the following sections.  

Define the Data Structure 
Define a Device data structure to hold information about a discovered device, 
and create a devices table to hold information about all discovered devices.  You 
can add the following code to the MicroServer.nc file or add it to a separate file 
(perhaps called DeviceDiscovery.c) that you reference (#include) from 
MicroServer.nc.      

#include <mem.h> 
             
#define MAX_DEVICES 16 
#define MAX_CREDITS 5 
             
unsigned deviceCount; 
 
// Struct to hold device information 
typedef struct { 
  unsigned credits; 
  unsigned subnetId; 
  unsigned nodeId; 
  unsigned neuronId[NEURON_ID_LEN]; 
} Device; 
             
Device devices[MAX_DEVICES]; 

Implement the ProcessDrum() Function 
Add the ProcessDrum() function to MicroServer.nc (or to your 
DeviceDiscovery.c).   This function is called from the ISI message handler 
whenever it sees an ISI DRUM message.  We’ll add the code that makes this call 
later. 

The function also uses a utility function, ReportDevice(), that is described in 
The ReportDevice() Utility Function.     

void ProcessDrum(const IsiDrum* pDrum) { 
  unsigned i; 
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  extern ReportDevice(boolean, unsigned);    
             
  // Iterate through the device list and see if the Neuron 
  // ID of the stored device matches that of the new 
  // device; if it does, then update the related details 
  for (i = 0; i < deviceCount; i++) { 
    if (memcmp(devices[i].neuronId, pDrum->NeuronId,  
          NEURON_ID_LEN) == 0) { 
      devices[i].credits = MAX_CREDITS; 
      devices[i].subnetId = pDrum->SubnetId; 
      devices[i].nodeId = pDrum->NodeId; 
      break; 
    } 
  } 
 
  // If i is equal to the device count, then the device 
  // was not found, so add it to the device table if 
  // possible 
  if (i == deviceCount && deviceCount < MAX_DEVICES) { 
    memcpy(devices[i].neuronId, pDrum->NeuronId, 
        NEURON_ID_LEN); 
    deviceCount++; 
    devices[i].credits = MAX_CREDITS; 
    devices[i].subnetId = pDrum->SubnetId; 
    devices[i].nodeId = pDrum->NodeId; 
     
    ReportDevice(TRUE, i); 
  } 
} 

Create the Decrement Function     
Add the DetectStale() function to MicroServer.nc (or to your 
DeviceDiscovery.c).  This function slowly decrements credits from each device 
in the devices table.  

If the device is functioning, it continues to send DRUM messages, and thus is 
maintained in the table.  If a device disappears from the network, it is eventually 
removed from the table. 

The function also uses a utility function, ReportDevice(), that is described in 
The ReportDevice() Utility Function.     

void DetectStale(void) { 
  unsigned i; 
  extern ReportDevice(boolean, unsigned);    
 
  for (i = 0; i < devicecount; i++) { 
    devices[i].credits--; 
    if (devices[i].credits == 0) { 
      ReportDevice(FALSE, i); 
      devicecount--; 
      if (devicecount != i) { 
        // Move device from end to this spot's location 
        memcpy(devices+i, devices+devicecount, 
            sizeof(Device)); 
      } 
    } 
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  } 
} 

Call the DetectStale() function at a rate roughly equal to the expected DRUM 
rate.  One way to ensure an appropriate call rate is to call this function from the 
IsiCreatePeriodicMsg() callback handler function, although in this case, you 
should implement the IsiCreatePeriodicMsg() callback handler function local 
to the Micro Server.  

Define IsiCreatePeriodicMsg() in ShortStackIsiHandlers.h 
In the ShortStackIsiHandlers.h file, define the IsiCreatePeriodicMsg() 
callback handler function to be implemented within your custom Micro Server.     

/* 
 * Callback: IsiCreatePeriodicMsg 
 * Standard location: default 
 * 
 * The IsiCreatePeriodicMsg() callback enabled an optional 
 * and advanced feature, through which the application can 
 * claim a slot in the ISI broadcast scheduler. 
 * This callback is rarely overridden. 
 */ 
/*#define ISI_DEFAULT_CREATEPERIODICMSG */ 
#define ISI_SERVER_CREATEPERIODICMSG   
/*#define ISI_HOST_CREATEPERIODICMSG    */ 

Call the Decrement Function     
Within the MicroServerIsiHandlers.c file, locate the implementation of the 
IsiCreatePeriodicMsg() callback handler function, and call the DetectStale() 
function from this callback handler function.     

// -------------------------------------------------------- 
//  Callback:   IsiCreatePeriodicMsg 
// -------------------------------------------------------- 
#ifndef ISI_DEFAULT_CREATEPERIODICMSG 
boolean IsiCreatePeriodicMsg(void) { 
#ifdef  ISI_SERVER_CREATEPERIODICMSG 
     
  extern void DetectStale(void); 
     
  boolean result; 
  result = FALSE; 
     
  DetectStale(); 
     
  // TODO: Add code implementing the actual 
  // IsiCreatePeriodicMsg() callback, if needed.  
     
  return result; 
     
#else 
#ifdef  ISI_HOST_CREATEPERIODICMSG 
  // DO NOT MODIFY - This code redirects the callback to 
  // the host 
  return IsiRpc(LicIsiCreatePeriodicMsg, 0, 0, NULL, 0); 



ShortStack User’s Guide        191 

#endif  //  ISI_HOST_CREATEPERIODICMSG 
#endif  //  ISI_SERVER_CREATEPERIODICMSG 
}   // IsiCreatePeriodicMsg 
#pragma ignore_notused  IsiCreatePeriodicMsg 
#endif  //  ISI_DEFAULT_CREATEPERIODICMSG 

Call Your DRUM Dispatcher from IsiMsgHandler() 
Within the MicroServer.nc file, locate the IsiMsgHandler() function.  After 
each message has been approved, and you have confirmed that 
preemptionMode is FALSE, call your DRUM dispatcher.  This function 
determines whether the newly arrived ISI message is a DRUM message, and 
calls ProcessDrum() if necessary. 

The ProcessDrum() function is defined to return FALSE so that it can easily be 
inserted into the IsiMsgHandler() routine. 

boolean ProcessDrum(void) { 
  IsiMessage message;  
             
  memcpy(&message, msg_in.data, sizeof(IsiMessage)); 
  if (message.Header.Code == isiDrum || 
        message.Header.Code == isiDrumEx) { 
    ProcessDrum(&message.Msg.Drum); 
  } 
  return FALSE; 
} 
         
// IsiMsgHandler() is a utility function used by the 
// ShortStack Micro Server core to identify and process ISI 
// messages.  This function returns true if the message was 
// handled by this function. 
 
extern boolean shortStackInPreempt(void); 
  
boolean IsiMsgHandler(void) { 
  boolean result, preemptionMode; 
         
  result = FALSE; 
  preemptionMode = shortStackInPreempt(); 
         
  switch(isiType) { 
#ifdef  SS_SUPPORT_ISI_S 
    case isiTypeS: 
      result = IsiApproveMsg() && (preemptionMode || 
          ProcessDrum() || !IsiProcessMsgS()); 
      break; 
#endif  //  SS_SUPPORT_ISI_S 
#ifdef  SS_SUPPORT_ISI_DA 
    case isiTypeDa: 
      result = IsiApproveMsg() && (preemptionMode || 
          ProcessDrum() || !IsiProcessMsgDa()); 
      break; 
#endif  //  SS_SUPPORT_ISI_DA 
#ifdef  SS_SUPPORT_ISI_DAS 
    case isiTypeDas: 
      result = IsiApproveMsgDas() && (preemptionMode || 
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          ProcessDrum() || !IsiProcessMsgDas()); 
      break; 
#endif  //  SS_SUPPORT_ISI_DAS 
  }   
  return result; 
} 
#pragma ignore_notused IsiMsgHandler 

The ReportDevice() Utility Function  
The ReportDevice() utility function informs the host application of newly 
discovered or removed devices by implementing a user-defined remote-procedure 
call (RPC).  This call is handled by the IsiRpc() function, which supplies the 
related Device data structure and the information about whether this device 
was newly added or removed from the devices table.  To reduce overhead, this 
remote procedure call is implemented as an unacknowledged call.     

void ReportDevice(boolean added, unsigned index) { 
  (void)IsiRpc(LicIsiUserCommand|LicIsiNoAck, added, index, 
       devices+index, sizeof(Device)); 
} 

Process Your User-Defined RPC 
Your host application must process the information about newly discovered or 
removed devices.  The Micro Server’s IsiRpc() function supplies this information 
to your host application.  You add code to your host application to process this 
information by extending the IsiUserCommand() callback handler function in 
the ShortStackIsiHandlers.c file.   

A typical use for this callback is to update an advanced device’s graphical user 
interface with a representation of all devices that are located on the same ISI 
network.  The same device table information can also be used to implement 
advanced connection scenarios with ISI. 

Maintaining a Device Table within a Host 
Application 
As an alternative to implementing the device table within the Micro Server, you 
can implement most of the device discovery process within the host application.  
For this implementation, the host receives a DRUM message through a user-
defined remote procedure call (RPC) and maintains the device table on the host.  
You must create a custom Micro Server to forward DRUM messages to the host. 

To implement device discovery local to the host application, perform the following 
steps: 

1. Add code to the host application that receives a DRUM message through 
a user-defined remote procedure call 

2. Add code to your host application to process the user-defined remote 
procedure call 

Each of these steps is described in the following sections. 
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Implement the ProcessDrum() Function 
Within the MicroServer.nc file, locate the IsiMsgHandler() function.  After 
each message has been approved, and you have confirmed that 
preemptionMode is FALSE, call your DRUM dispatcher.  This function 
determines whether the newly arrived ISI message is a DRUM message, and 
forwards the DRUM message to the host application, using a user-defined 
unacknowledged remote procedure call. 

The ProcessDrum() function is defined to return FALSE so that it can easily be 
inserted into the IsiMsgHandler() routine. 

boolean ProcessDrum(void) { 
  IsiMessage message;  
 
  memcpy(&message, msg_in.data, sizeof(IsiMessage)); 
  if (message.Header.Code == isiDrum || 
      message.Header.Code == isiDrumEx) { 
    (void)IsiRpc(LicIsiUserCommand|LicIsiNoAck, 0, 0, 
        &message.Msg.Drum, sizeof(IsiDrum)); 
  } 
  return FALSE; 
} 
 
// IsiMsgHandler() is a utility function used by the 
// ShortStack Micro Server core to identify and process ISI 
// messages.  This function returns true if the message was 
// handled by this function. 
 
extern boolean shortStackInPreempt(void); 
  
boolean IsiMsgHandler(void) { 
  boolean result, preemptionMode; 
 
  result = FALSE; 
  preemptionMode = shortStackInPreempt(); 
 
  switch(isiType) { 
#ifdef  SS_SUPPORT_ISI_S 
    case isiTypeS: 
      result = IsiApproveMsg() && (preemptionMode || 
          ProcessDrum() || !IsiProcessMsgS()); 
      break; 
#endif  //  SS_SUPPORT_ISI_S 
#ifdef  SS_SUPPORT_ISI_DA 
    case isiTypeDa: 
      result = IsiApproveMsg() && (preemptionMode || 
          ProcessDrum() || !IsiProcessMsgDa()); 
      break; 
#endif  //  SS_SUPPORT_ISI_DA 
#ifdef  SS_SUPPORT_ISI_DAS 
    case isiTypeDas: 
      result = IsiApproveMsgDas() && (preemptionMode || 
          ProcessDrum() || !IsiProcessMsgDas()); 
      break; 
#endif  //  SS_SUPPORT_ISI_DAS 
  }   
  return result; 
} 
#pragma ignore_notused IsiMsgHandler 
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Process Your User-Defined RPC 
The Micro Server’s IsiRpc() function supplies DRUM messages to your host 
application, which needs to evaluate these DRUM messages to maintain an 
accurate list of devices that are available on the ISI network at any given time.  
You add code to your host application to process this information by extending 
the IsiUserCommand() callback handler function in the 
ShortStackIsiHandlers.c file. 

A typical use for this callback is to update an advanced device’s graphical user 
interface with a representation of all devices that are located on the same ISI 
network.  The same device table information can also be used to implement 
advanced connection scenarios with ISI. 

Recovering Connections 
A connection controller can display connections that it created but that are no 
longer in its database, and it can display connections that it did not create.  To 
recover connections, a connection controller first discovers all the devices in the 
network, as described in Discovering Devices.  To recover the connections, the 
controller uses the read connection table request (RDCT) message, which allows 
it to read a device’s connection table over the network.  Support for this message 
is required for devices that support controlled enrollment, and is optional for 
other devices. 

The RDCT message includes optional host and member assembly fields that 
specify which connection table entries are requested: 

• If the host and member assembly fields are not supported by the device, 
or are both set to 0xFF, the connection table entry indicated by the index 
is requested.   

• If the host and member assembly fields are supported by the device, and 
the host or member field is not 0xFF, the index provided is the starting 
index.  The first matching connection table entry is returned, if any.   

• If both host and member fields are set to a value different from 0xFF, 
connection table entries are returned that match either the host or the 
member fields, if any. 

This message allows a connection controller to read the entire connection table, 
or to read the table selectively to provide quick answers to questions like “is 
assembly Z on device X connected, and is it the host of the connection?” 

If the requested data is available, the response to an RDCT message is a read 
connection table success (RDCS) message.  This message contains the requested 
connection table index and data.  If the connection table index does not exist, or if 
the requested assemblies do not exist, the response is a read connection table 
failure (RDCF) message. 

A connection controller can determine if a device does not support the optional 
host and member assembly fields by comparing the assembly numbers in the 
read response to the requested assembly number, or by receiving an RDCF 
message that indicates a failed read.  If a device does not support the host and 
member assembly fields, the connection controller needs to read every entry in 
the connection table individually.  Reading every entry has minimal impact for 
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devices with one or two connection table entries, but increases network traffic for 
devices with many connection table entries. 

You can implement much of the code for ISI connection recovery either within 
your custom Micro Server or in your host application.  

The following sections describe example implementations for supporting 
connection recovery.  The first example shows a custom Micro Server 
implementation, where the Micro Server recovers the ISI connections and relays 
the results to the host application.  The second example shows a host-based 
implementation.  

Example 1: Custom Micro Server 
Implementation 
The following connection controller example uses code implemented within a 
custom Micro Server to recover all the connections from a device. 

Add the following code to the MicroServer.nc file or add it to a separate file 
(perhaps called ConnectionRecovery.c) that you reference (#include) from 
MicroServer.nc. 

#include <msg_addr.h> 
#include <isi.h> 
 
#define RETRY_COUNT 3 
#define ENCODED_TX_TIMER 11 // 768ms 
#define ENCODED_RPT_TIMER 2 
#define PRIMARY_DOMAIN 0 
 
// This structure holds information required while reading 
// a remote device's connection table 
struct { 
  unsigned neuronId[NEURON_ID_LEN]; 
  unsigned index; 
} recoveryJob; 
 
// Issue one read connection table request using the global 
// recoveryJob variable for destination address and current 
// connection table index information. Increment the index 
// kept in that global variable. 
void RequestConnectionTable(void) { 
  IsiMessage request; 
  msg_out_addr destination; 
 
  request.Header.Code = isiRdct; 
  request.Msg.Rdct.Index = recoveryJob.index++; 
  request.Msg.Rdct.Host = request.Msg.Rdct.Member = 
        ISI_NO_ASSEMBLY; 

 
  destination.nrnid.type = NEURON_ID; 
  destination.nrnid.domain = PRIMARY_DOMAIN; 
  destination.nrnid.rpt_timer = ENCODED_RPT_TIMER; 
  destination.nrnid.subnet = 0; 
  destination.nrnid.retry = RETRY_COUNT; 
  destination.nrnid.tx_timer = ENCODED_TX_TIMER; 
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  memcpy(destination.nrnid.nid, recoveryJob.neuronId, 
        NEURON_ID_LEN); 
 
  IsiMsgSend(&request,sizeof(IsiMessageHeader) 
        +sizeof(IsiRdct), REQUEST, &destination); 
} 
 
// Handle receipt of incoming responses. This example 
// focuses on isiRdcs and isiRdcf responses. 
boolean processRdc(void) { 
  boolean processed; 
  IsiMessage response; 
 
  processed = FALSE; 
 
  if (resp_in.code == isiApplicationMessageCode) { 
    // This is an ISI response 
    memcpy(&response, resp_in.data, resp_in.len); 
    if (response.Header.Code == isiRdcf) { 
    // The remote device rejected our request, probably 
    // because we have queried all available connection 
    // table entries already (bad index). Notify the user 
    // interface, if needed. 
    ... 
    processed = TRUE; 
  } else if (response.Header.Code == isiRdcs) { 
    // The remote device replied to our request with the 
    // connection table entry requested, in 
    // response.Msg.Rdcs. Notify the UI and/or process 
    // this data further, as needed by the application: 
    (void)IsiRpc(LicIsiUserCommand|LicIsiNoAck, ....); 
 
    // Because we received a positive response, let's try 
    // for the next index 
    RequestConnectionTable(); 
    processed = TRUE; 
  } 
  return processed; 
} 

In the processRdc() function, use the IsiRpc() function to notify your host 
application of any results.  If you have already used the IsiRpc() function with 
the LicIsiUserCommand code for device discovery, use the first numerical 
parameter to this function to specify a sub-command so that your host 
application can correctly interpret the data delivered.  

When you notify the host application about a connection recovery, you also have 
to include information about the remote device, the connection table index, and 
the remote connection table record.  Add that information to a structure (that you 
define) that is shared between your host application and your custom Micro 
Server.  The call to the IsiRpc() function should include the data within that 
structure to the host application.  

The processRdc() function returns TRUE to allow for simple integration within 
the Micro Server code, as shown below. 

// Initiate the process of reading a remote device's 
// connection table.  The function kick-starts the process, 
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// where the majority of the work is done in the processRdc 
// function. Calling this function before the previous 
// connection table read job completes causes the previous  
// job to abort, and the new one to start 
void ReadRemoteConnectionTable(const unsigned*  
      remoteNeuronId) { 
  memcpy(recoveryJob.neuronId, remoteNeuronId, 
      NEURON_ID_LEN); 
  recoveryJob.index = 0; 
  RequestConnectionTable(); 
} 

Most likely, you call the ReadRemoteConnectionTable() function from within 
your code that implements device discovery, either when device discovery is 
complete or whenever a new device is discovered. 

Finally, within the IsiRespHandler() function in the Micro Server.nc file, add 
a call to the processRdc() function. 

boolean IsiRespHandler(void) { 
  boolean processed; 
  processed = processRdc(); 
 
#ifdef  SS_SUPPORT_ISI_DAS 
  return processed || (isiType == isiTypeDas && 
    !IsiProcessResponse()); 
#else 
  return processed; 
#endif  // SS_SUPPORT_ISI_DAS 
} 

Example 2: Host Implementation 
You can use the standard ShortStack LonTalk/IP Compact API to implement ISI 
connection recovery within your host application.  If your application has 
knowledge of other ISI devices within the same network, for example as a result 
of device discovery, you can issue RDCT requests using the standard 
LonSendMsg() API function, using the remote device’s unique ID (Neuron ID) 
or its current subnet and node ID for addressing.  See the Interoperable Self-
Installation Protocol Specification for more information about the RDCT, RDCS, 
and RDCF message codes and formats. 

One of the parameters that the LonSendMsg() function requires is the message 
data to send.  In this case, the message data to send is an IsiMessage structure, 
using the isiRdct command and the RDCT data block.  To send this message, 
port the IsiMessage structure and fill in the RDCT data block and ISI message 
header, as appropriate.  Then, in the LonSendMsg() function, use IsiMessage 
&msg instead of LonByte *pData for the message data.    

An example for calling the LonSendMsg() function is shown below.  The 
message code for ISI messages is 0x3D.  The actual data to send and the remote 
address to send it to are dependent on the application. 

LonTag isiTag; //@IzoT Tag bindable(No) 
 
LonBool msgPriority = FALSE; 
LonBool msgAuth = FALSE; 
LonByte msgCode = 0x3d; 
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IsiMessage msg;  
msg.Header = ... 
msg.Rdct = ... 
 
LonSendUniqueId remoteAdr; 
remoteAdr.Type = LonAddressNeuronId; 
remoteAdr.... = ... 
  
LonApiError msgResp; 
 
msgResp = LonSendMsg(isiTag, msgPriority, 
    LonServiceType.LonServiceRequest, msgAuth, 
    (LonSendAddress*)&remoteAdr, msgCode, &msg, 
    sizeof(IsiMessageHeader)+sizeof(IsiRdct)); 
  
if (msgResp != LonApiNoError) { 
  /* do something about the error */ 
} 

In this case, the IsiRespHandler() function that runs on the Micro Server will 
not recognize the response, or pass it to your LonResponseArrived() callback 
handler function, implemented in ShortStackHandlers.c. 

Deinstalling a Device 
You can deinstall a device to remove all network configuration data, including 
the domain addresses, network addresses, and connection configurations.  For 
devices that do not provide direct connection removal, this is the only way to 
remove a device from a connection.  You can use this procedure to re-enable self-
installation for an ISI device that was installed in a managed network.  You can 
also use this procedure to return a device to a known state.  You can deinstall a 
device to move it from a managed network to a self-installed network, or to move 
a self-installed device to a new self-installed network.  All ISI devices must 
support deinstallation. 

To deinstall a device, set the SCPTnwrkCnfg configuration property to 
CFG_LOCAL to enable self-installation and then call the 
IsiReturnToFactoryDefaults() function.  You typically deinstall a device in 
response to an explicit user action.  For example, the user might be required to 
press and hold the service pin for five seconds to trigger deinstallation. 

The IsiReturnToFactoryDefaults() function clears and reinitializes all system 
tables, stops the ISI engine, and resets the Micro Server.  Because of the Micro 
Server reset, the call to the IsiReturnToFactoryDefaults() function never 
returns when it runs on the Micro Server.  When it runs in the host application, 
the ISI host API’s implementation of IsiReturnToFactoryDefaults() does 
return to the caller, but the Micro Server can take up to one minute to re-
initialize.  When initialization is complete, the Micro Server resets and 
establishes communications with the host application. 

Example 

This following example deinstalls a device after the service pin is held for a 
long period. 
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//@IzoT Option servicebutton_held(12) 
//@IzoT Event onService(onServiceHandler) 
 
void onServiceHandler(LonBool held) { 
   if (held) { 
    nodeObject->nciNetConfig = CFG_LOCAL; 
  IsiReturnToFactoryDefaults(); 

  } 
} 

Comparing ShortStack ISI and Neuron C ISI 
Implementations 

The ShortStack ISI implementation differs from the Neuron C ISI 
implementation in the following ways: 

• A ShortStack ISI device must have at least two application output 
buffers. 

• The ISI types and definitions follow the ShortStack rules for portable 
types (see ShortStackIsiTypes.h), and are binary compatible with the 
equivalent data structures defined in isi.h. 

• All LonTalk/IP ISI API functions return a LonApiError code for success 
or failure of the remote procedure call request.  This code does not 
indicate successful completion of the requested function; see 
IsiApiComplete() for more information. 

• The IsiApiComplete() callback handler function is supported with the 
LonTalk/IP ISI API to provide success or failure completion codes, and 
possible results, of previous ISI API calls.  A negative completion code 
indicates that the function could not be called, either at that time or 
within the current context.  The ISI operation itself signals its success or 
failure through state changes, indicated with the 
IsiUpdateUserInterface() callback handler function (as in the Neuron 
C implementation).   

• Most ISI callback handler functions are synchronous.  That is, they 
cannot return to their caller until the return value is known.  In many 
cases, the ISI function requires interaction with the host processor.  
While waiting for a function call to complete, the Micro Server can handle 
only one ISI request from the host processor.  Similarly, all ISI requests 
from the host are also synchronous.  That is, the host waits for a response 
to an ISI request before it can issue another one. 

• Predicates are synchronous in the Neuron C implementation, but are 
necessarily asynchronous in the LonTalk/IP ISI API.  Affected predicates 
are:  IsiQueryIsConnected(), IsiQueryImplementationVersion(), 
IsiQueryProtocolVersion(), IsiQueryIsRunning(), and 
IsiQueryIsBecomingHost().  The predicates’ results are delivered 
asynchronously through:  IsiIsConnectedReceived(), 
IsiImplementationVersionReceived(), 
IsiProtocolVersionReceived(), IsiIsRunningReceived(), and 
IsiIsBecomingHostReceived(). 
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• The following functions and callback handler functions that are included 
with the Neuron C implementation are not supported by the LonTalk/IP 
ISI API:  IsiMsgDeliver(), IsiMsgSend(), IsiUpdateDiagnostics(), 
IsiGetAlias(), IsiSetAlias(), IsiGetNv(), IsiSetNv(), IsiSetDomain(), 
IsiGetFreeAliasCount(), and IsiIsConfiguredOnline().  

• The following functions and callback handler functions that are included 
with the Neuron C implementation are supported by (but not exposed to) 
the LonTalk/IP ISI API:  IsiStart*(), IsiTick*(), IsiProcessMsg*(), and 
IsiApproveMsg*().  Wrapper functions and ShortStack-specific handler 
functions are provided in the MicroServer.nc file; you can edit these 
handler functions to allow a custom Micro Server to intercept ISI 
messages, if needed. 

• The IsiPreStart() function is not supported because the Micro Server 
automatically handles calls to IsiPreStart() as needed. 

• The IsiCancelAcquisitionDas() function is not supported.  Use the 
IsiCancelAcquisition() function when calling from your host 
application, even when operating an ISI-DAS device.  

• Callback forwardees are only available to callback overrides that are local 
to the Micro Server.  Callback overrides that reside on the host processor 
should provide a complete implementation, and cannot fall back to the 
forwardee. 

• Do not call the ISI API from within an ISI callback override.  With the 
LonTalk/IP ISI API, you can call exactly one ISI API function from within 
a callback override that runs on the host processor.  The API call is 
buffered, and runs after the callback itself completes.  The Micro Server 
rejects subsequent API calls from within the callback override, and 
returns a negative response. 

Because most of the LonTalk/IP ISI API is asynchronous, your host application 
typically receives control from a ShortStack host API function while the Micro 
Server is still busy executing the related action.  While most ISI operations 
complete quickly, some operations can take a significant amount of time.  For 
example, calls to the IsiCreateEnrollment() or IsiExtendEnrollment() 
functions on an enrollment host for a connection that involves a large number of 
network variables are time-consuming operations.  

The Micro Server can appear unresponsive while performing the requested task. 
However, most ISI operations include a series of callbacks, including remote 
procedure calls to callback overrides implemented within your host application. 
The Micro Server processes most of its normal tasks in this state, and honors 
incoming and outgoing message queues.  

However, you can monitor the IsiApiComplete() callback handler function 
(implemented in ShortStackIsiHandlers.c) to determine completion of the 
more complex ISI operations, and suspend network communications until the 
task completes.  Failure to suspend network operations in this case could cause 
inconsistent results.  

As an example of such an inconsistency, consider the case of a very wide 
connection.  The enrollment host initiates the implementation of a network 
variable connection including, for example, ten output network variables.  While 
the Micro Server performs all the necessary steps to implement that connection, 
the host application could enqueue ten network variable updates in an attempt to 
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inform the newly connected destination devices of the output network variables’ 
current values.  

If the Micro Server has not yet completed the implementation of the connection 
(as signalled through the IsiApiComplete() callback handler function), some of 
the related network variables will not yet be bound at the time that the host 
application attempts to send the network variable update messages.  Only 
devices that are already connected will receive the update messages, and update 
messages for output network variables that are not yet connected will not be sent 
on the network.  

Any network device must be designed to handle partial and transient failures.  
Thus, the remote device connected to these output network variables cannot rely 
on updates to network variables to occur within a specific time or order.  
However, a robust ShortStack ISI application monitors the completion of the 
operation, and avoids producing inconsistent and potentially confusing data. 
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12 

Custom Micro Servers 

This chapter describes custom Micro Servers and how to 
create and use one.  Using a custom Micro Server allows you 
to modify the operating parameters for the Micro Server. 
The IzoT NodeBuilder Software is required to create a 
custom Micro Server.  
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Overview 
The IzoT ShortStack SDK includes standard Micro Server firmware images for 
3120 and 3150 Smart Transceivers running on TP/FT-10 or PL-20 channels, PL 
3170 Smart Transceivers, FT 6050 Smart Transceivers and FT 5000 Smart 
Transceivers, in some common hardware configurations (see Table 5 in 
Standard ShortStack Micro Server Firmware Images  for a list of the standard 
Micro Server images). 

If your ShortStack device requires support for different operating parameters 
from those provided by the standard Micro Server images, you can create a 
custom Micro Server for the device.  See Custom Micro Server Benefits and 
Restrictions for a description of the kinds of parameters that you can modify.   

Because a ShortStack Micro Server can run only on an Echelon Smart 
Transceiver or the Echelon Neuron 6050 and Neuron 6010 Processors, the 
modifications that you make to the operating parameters for a custom Micro 
Server must be supported by the Smart Transceiver or Neuron Processor that 
your device uses.  

The IzoT NodeBuilder Software is required to create a custom Micro Server.  The 
IzoT NodeBuilder Software is included with the FT 6000 EVK, and is available as 
a free download for developers with the NodeBuilder Development Tool. 

Custom Micro Server Benefits and Restrictions 
When you create a custom Micro Server, you can provide support for any of the 
following operating parameters: 

• Custom hardware configurations, such as different clock speeds or 
memory maps.  For example, you can support off-chip RAM for an FT 
3150 or PL 3150 device, which can increase the number of buffers that 
the device supports.  You can also support a Neuron 6050 or 5000 device. 

• Increased buffer counts or alternate buffer sizes for network and 
application buffers (within the limits of available hardware resources) 

• Maximum number of network variables or network variable aliases.  For 
example, you could support a lower maximum to optimize processing 
speed.  However, you cannot support more than 254 network variables 
and 127 aliases. 

• Maximum number of address table entries. Most Micro Servers support 
no more than 15 address table entries, but Micro Servers for Series 6000 
chips support an extended address table with up to 254 address table 
entries. 

• Alternate levels of support for direct memory files (DMF), including 
enabling or disabling DMF.  If DMF is enabled, you can define the 
maximum size of the DMF window to customize the code and data space 
that is local to the Micro Server. 
 

• Alternate levels of support for ISI and ISI network types.  You can 
customize the implementation of many ISI callback functions, which 



ShortStack User’s Guide        205 

allows you to create both general-purpose Micro Servers and application-
specific Micro Servers. 

When you create a custom Micro Server, there are certain operating parameters 
that you cannot control or change: 

• The firmware’s core algorithms or basic behaviour.   

• The link-layer protocol for communications between the Micro Server and 
the host processor.   

• The Micro Server’s processing for network variables or application 
messages.  That is, you cannot provide application-specific processing 
within the Micro Server for network variables or application messages. 

• Support for transceivers other than Echelon Smart Transceivers and the 
Echelon Neuron 6050 or 5000 Processor.  A ShortStack Micro Server can 
only run on an FT 3120, PL 3120, FT 3150, PL 3150, PL 3170, or FT 5000 
Smart Transceiver, or a Series 6000 chip, or the Echelon Neuron 5000 
Processor.   

• Capacity for more network variables, aliases, domains, or address tables 
than are supported by the Micro Server hardware and firmware.  That is, 
a custom Micro Server cannot support more than 254 network variables, 
127 network variable aliases, 2 domains.  Most Micro Servers are limited 
to 15 address table entries, but those using a Series 6000 chip can 
support up to 254.  

Configuring and Building a Custom Micro Server 
To configure and build a custom Micro Server, create a project for the IzoT 
NodeBuilder Software.  This project will include the main Micro Server Neuron C 
application and associated source files, and the ShortStack library.  The 
ShortStack library contains the majority of ShortStack Micro Server executable 
code. 

Table 24 lists the files that are included with the IzoT ShortStack SDK for 
custom Micro Server development.  These files are located in the 
microserver/custom folder within your IzoT ShortStack SDK repository.   

Table 9. Files for Custom Micro Server Development  

File Name Description 

ShortStack430.lib This C library contains the majority of the Micro Server 
implementation. 

ShortStack430Isi.lib This C library provides the same basic functionality as the 
ShortStack430.lib library, but this library also includes ISI 
support. 

Use this library when you create a custom Micro Server with 
ISI support.  For a custom Micro Server without ISI support, 
use the ShortStack430.lib library instead.   
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File Name Description 

ShortStack430CptIsi.lib This C library provides the same basic functionality as the 
ShortStack430Isi.lib library, but with the following 
limitations: 

• ISI-DAS mode is not supported.  Also, all API calls 
related to DAS mode are not available. 

• The link-layer uses the SCI protocol at a 38400 bit 
rate.  Therefore, you must use either a Series 3100 
device with a 10 MHz external clock or a Series 5000 
or Series 6000 device with a 5 MHz system clock. 

• The post-reset pause is set to 50 ms and is not 
configurable. 

• The local utility functions (and their callback handler 
functions) are not available.  See Local Utility 
Functions for more information about these functions. 

Use this library when you create a custom Micro Server with 
ISI support for a PL 3170 Smart Transceiver, or other 
resource-constrained device.   

MicroServer.nc This file is the main Neuron C source file for developing a 
custom Micro Server. 

Although you can edit this file, you typicall will not have to 
edit it unless you implement modified ISI behavior locally in 
your Micro Server. 

MicroServer.h This header file adjusts the features and capabilities of the 
custom Micro Server.  This file contains compiler #pragma 
directives and macro definitions (with descriptive comments 
to describe their functions), such as: 

• Compiler directives to set application and network 
buffer counts and sizes 

• Compiler directives to set the size of the receive 
transaction database 

• Compiler directives to set the maximum number of 
network variables (0..254), aliases (0..127), address 
table entries (1..15 or 1..254), and domain table 
entries (1..2)  

• Macros for conditional compilation 

This file includes all of the preferences for a custom Micro 
Server that you might need to modify, except those included 
in the ShortStackIsiHandlers.h file. 
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File Name Description 

ShortStackIsiHandlers.h This header file adjusts the implementation details for the 
various ISI callback handler functions. 

You will only require this file if your custom Micro Server 
supports ISI. 

MicroServerIsiHandlers.c This file contains the override callback handler function 
implementations for ISI support.  

You may have to edit this file for a custom Micro Server to 
match the changes you make to the 
ShortStackIsiHandlers.h file. 

You wll only require this file only if your custom Micro Server 
supports ISI. 

Overview of Custom Micro Server Development 
A custom Micro Server can include or exclude support for the ISI protocol.  A 
Micro Server that includes support for the ISI protocol does not necessarily have 
to use the ISI protocol, but to use the ISI protocol through the LonTalk/IP ISI 
API, the Micro Server must support the ISI protocol.  Applications that are 
designed to work with a variety of Micro Servers can determine the level of ISI 
support needed by inspecting the Micro Server’s uplink reset notification; see 
Handling Reset Events. 

A Micro Server that does not include support for the ISI protocol requires less 
space and can support some of the more resource-limited hardware platforms. 
However, if your target hardware provides sufficient resources, you can include 
support for the ISI protocol within your custom Micro Server, even if you do not 
immediately plan to use ISI.  If the Micro Server supports the ISI protocol, you 
have the flexibility to add ISI support to your host application at a later time, 
without requiring an update to your Micro Server firmware image.  The 
processing overhead for the ISI protocol within the Micro Server is minimal if the 
ISI processing engine is not running (which is its default state). 

The process of creating a custom Micro Server without ISI support is simpler 
than creating one with ISI support. 

The general process of creating a custom Micro Server involves the following 
tasks: 

1. Locate the microserver\custom directory within your local IzoT 
ShortStack SDK repository. 

2. Edit the MicroServer.h file to define your custom Micro Server’s 
operating parameters. 

3. Edit the MicroServer.nc file as necessary.  Generally, you do not have 
to edit this file, unless you implement modified ISI behavior locally 
within your Micro Server. 

4. For a Micro Server that supports ISI, edit the 
MicroServerIsiHandlers.c file and ShortStackIsiHandlers.h files as 
necessary. 
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5. Compile the project and link with the ShortStack430.lib, 
ShortStack430Isi.lib, or ShortStack430CptIsi.lib library.  For a 
Micro Server that supports ISI, you also link the project with the 
appropriate ISI library, such as the Isi6000.lib, IsiFull.lib or 
IsiCompactS.lib library. 

The generated image and interface files define your custom Micro Server.  The 
image files can be loaded into an appropriate Smart Transceiver, as described in 
Preparing the ShortStack Micro Server. 

The following sections describe the process for creating a custom Micro Server in 
more detail. 

Creating a Custom Micro Server without ISI Support 
 Figure 64 shows the files that are required to create a custom Micro Server that 
does not support the ISI protocol.  You edit the MicroServer.h and 
MicroServer.nc files, and compile and link the project with the 
ShortStack430.lib library to create your custom Micro Server.  

Micro Server without ISI Support

// #define SS_SUPPORT_ISI

MicroServer.h

+

#include “MicroServer.h”

MicroServer.nc

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

ShortStack430.lib

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

Generated

Supplied, fixed content

Supplied, user-edited
 

Figure 64. Files for Creating a Custom Micro Server without ISI Support 
To configure and build a custom Micro Server without ISI support, perform the 
following tasks: 

• Create a NodeBuilder project, using the files described in Table 24. 
 
Expand the Device Templates folder in the Workspace window, 
right-click the Release target folder (debugging the ShortStack 
firmware is not supported, so you cannot use the Development 
target), and select Settings to open the NodeBuilder Device 
Template Target Properties dialog.   

o Select the Linker tab.  Select Generate symbol file.   
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o Also from the Linker tab, you can optionally select 
Generate map file and select Verbose.  A map file is 
optional, but useful. 

o Select the Exporter tab.  Select Automatic for boot ID 
generation.  Also select Checksum all code.  For the reboot 
options, select Communications Parameters from the 
Category dropdown list box to select what should be 
rebooted, and select Type/rate mismatch to specify when a 
reboot should occur.  However, do not enable rebooting of 
communication parameters on communication parameter 
mismatch for Micro Servers that use a PL 3120, PL 3150, or 
PL 3170 Smart Transceiver, unless you are certain that the 
optional features of the PL-20 transceiver will not change 
(such as CENELEC mode or low-power mode). 

o If you use an off-chip flash memory part for the ShortStack 
and system firmware, do not enable rebooting the EEPROM, 
and do not enable rebooting on a fatal application error.  If 
you are using a ROM (PROM or EPROM) part for the 
ShortStack and system firmware, you can enable these reboot 
options to allow possible recovery in the event of a fatal error.  

o Select the Configuration tab.  Ensure that Export 
configured is not selected.  The option to export a device 
with a pre-defined configuration does not apply to a 
ShortStack Micro Server. 

• Click OK to save the settings and close the NodeBuilder Device 
Template Target Properties dialog. 

2. Specify an appropriate program ID.  The program ID is not exposed to the 
network, because the Micro Server remains in quiet mode until the 
application initialization (which includes the application’s program ID) is 
complete, but a mismatching channel type identifier might trigger 
warnings when using your Micro Server with the IzoT Interface 
Interpreter. 
 
Within the IzoT NodeBuilder Software, right-click the device template 
and select Settings to open the NodeBuilder Device Template Properties 
dialog.  From the Program ID tab, specify an appropriate program ID. 

3. Specify your target hardware correctly: 

• Always build your Micro Server for the correct clock speed.  If your 
hardware supports multiple clock rates, build one Micro Server for 
each.  Mismatching clock rates can cause problems during the initial 
link-layer connection. 

• Always build your Micro Server for the correct transceiver family.  If 
your hardware supports both TP/FT-10 and PL-20 power line 
transceivers, build one Micro Server for each.  Within each 
transceiver family, the exact details can be configured during 
ShortStack application initialization. 

• Select the memory map that meets your direct memory files 
requirements.  See Supporting Direct Memory Files for more 
information about direct memory files. 
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4. Review the preferences specified in the MicroServer.h file.  See 
Managing Memory for information about configuring the Micro Server’s 
resources within the MicroServer.h file. 

5. Build the Micro Server.  Link your project with the ShortStack430.lib 
library. 

Be sure to keep the following files for the custom Micro Server: 

• The Micro Server’s device interface file (XIF file extension) 

• The Micro Server’s symbol table (SYM file extension) 

• The Micro Server’s application image files (APB, NDL, NEI, NFI, NXE, 
NME, or NMF file extensions) 

All Micro Server files must share the same base name, which can be any valid set 
of characters.  However, to avoid confusion with standard Micro Server images, 
do not use names that start with SS430_ or a similar pattern. 

Creating a Custom Micro Server with ISI Support 
You can create a custom Micro Server that supports the ISI protocol.  However, a 
custom Micro Server with ISI support can run only on an FT 3150, PL 3150, PL 
3170, or FT 5000 Smart Transceiver, or a Series 6000 chip.  An FT 3120 or PL 
3120 Smart Transceiver does not have sufficient memory to accommodate a 
Micro Server with ISI support.  

For an ISI device that is not a domain address server, you can use a standard 
Micro Server with an FT 3150, PL 3150, PL 3170, or FT 5000 Smart Transceiver 
or Series 6000 chip.  For a domain address server, you must create a custom 
Micro Server.  A DAS-enabled Micro Server needs to run on hardware with at 
least 512 bytes of additional, off-chip RAM (or extended RAM for FT 5000 Smart 
Transceivers and Series 6000 chips).  For more flexibility, supply at least 2 KB 
RAM (or extended RAM for FT 5000 Smart Transceivers) for a DAS Micro Server 
to provide sufficient buffer configurations.   

The process for creating a custom Micro Server that supports ISI is similar to the 
process described in Creating a Custom Micro Server without ISI Support, but 
includes additional files and additional considerations.  Figure 65 shows the files 
that are required to create a custom Micro Server that supports the ISI protocol.    
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Micro Server with ISI Support

#define SS_SUPPORT_ISI

MicroServer.h

+

#include “MicroServer.h”

MicroServer.nc

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

ShortStack430Isi.lib

...

MicroServerIsiHandlers.c

+

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

IsiXYZ.lib

...

ShortStackIsiHandlers.h

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

Also #included 
with the host API

Generated

Supplied, fixed content

Supplied, user-edited

(Use ShortStack430IsiCpt.lib 
for PL 3170 devices)

 
Figure 65. Files for Creating a Custom Micro Server with ISI Support 

You edit the MicroServer.h, MicroServer.nc, ShortStackHandlers.h, and 
MicroServerIsiHandlers.c files, and compile and link the project with the 
ShortStack430Isi.lib (or ShortStack430IsiCpt.lib) library and an appropriate 
ISI library (typically, Isi6000.lib or IsiFull.lib) to create your custom Micro 
Server.  Be sure to select an ISI library that supports all of the functionality that 
your device requires; for example, if your device requires that automatic 
enrollment be able to replace connections, do not select a small ISI library that 
does not support connection removal. 

To configure and build a custom Micro Server with ISI support, perform the 
following tasks: 

1. Create a NodeBuilder project, using the files described in Table 24. 

• Expand the Device Templates folder in the Workspace window, and 
right-click one of the target folders (such as Development or 
Release), and select Settings to open the NodeBuilder Device 
Template Target Properties dialog.  In this dialog, select the Linker 
tab and select Generate symbol file.  Click OK to save the setting 
and close the dialog. 

• Also in the Linker tab of the NodeBuilder Device Template Target 
Properties dialog, you can optionally select Generate Map File.  A 
map file is optional, but recommended. 

• For Micro Servers that support authentication, you should export a 
configured custom Micro Server, including pre-defined authentication 
keys.  In the NodeBuilder Device Template Target Properties dialog, 
select the Configuration tab and select Export Configured.  See 
the IzoT NodeBuilder User’s Guide for information about exporting a 
configuration. 
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2. Specify your target hardware correctly: 

• Always build your Micro Server for the correct clock speed.  If your 
hardware supports multiple clock rates, build one Micro Server for 
each.  Mismatching clock rates can cause problems during the initial 
link-layer connection. 

• Always build your Micro Server for the correct transceiver family.  If 
your hardware supports both TP/FT-10 and PL-20 transceivers, build 
one Micro Server for each.  Within each transceiver family, the exact 
details can be configured during the ShortStack initialization phase. 

• Select the memory map to meet your direct memory file 
requirements. See Supporting Direct Memory Files for more 
information about direct memory files. 

3. Review the preferences in the MicroServer.h file.  In particular, you 
must uncomment the #define SS_SUPPORT_ISI macro.  See 
Configuring MicroServer.h for ISI for more information. 

4. Review the preferences in the ShortStackIsiHandlers.h file. 

5. If you implement one or more ISI callback handler functions local to the 
Micro Server, review and edit the callback handler functions in the 
MicroServer.nc file, as needed. 

6. Build the Micro Server: 

• Link your project with the ShortStack430Isi.lib (or 
ShortStack430IsiCpt.lib) library. 

• Link your project with a suitable standard ISI library, such as 
Isi6000.lib, IsiFull.lib or IsiCompactDaHb.lib.  If resources 
permit, use the Isi6000.lib for Series 6000 devices or use the 
IsiFull.lib library otherwise. 

You can use a custom Micro Server that supports the ISI protocol either with an 
application that supports ISI or with one that does not.  If the application does 
not support ISI, it does not start the ISI engine (that is, it does not call the 
IsiStart() API function).  There is minimal performance penalty for a Micro 
Server to support a disabled ISI engine.  

Be sure to keep the following files for the custom Micro Server: 

• The Micro Server’s device interface file (XIF file extension) 

• The Micro Server’s symbol table (SYM file extension) 

• The Micro Server’s application image files (APB, NDL, NEI, NFI, NXE, 
NME, or NMF file extensions) 

• The ShortStackIsiHandlers.h file, but rename it to match the Micro 
Server image file (be sure to keep the .h extension) 

All Micro Server files need to share the same base name, which can be any valid 
set of characters.  However, to avoid confusion with standard Micro Server 
images, do not use names that start with SS430_ or a similar pattern. 
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Configuring MicroServer.h for ISI 
The MicroServer.h configuration file includes comments that describe how to 
use the file.  The file provides five ISI-related preferences: 

• The SS_SUPPORT_ISI macro enables ISI support. 

• The SS_SUPPORT_ISI_S macro controls inclusion of support for an 
application that does not support domain acquisition. 

• The SS_SUPPORT_ISI_DA macro controls inclusion of support for an 
application that supports domain acquisition. 

• The SS_SUPPORT_ISI_DAS macro controls inclusion of support for a 
domain address server (DAS) application. 

• The SS_COMPACT macro specifies that the Micro Server will use the 
ShortStack430IsiCpt.lib library, and will have the limitations 
described in Table 24. 

• The SS_CONTROLLED_ENROLLMENT macro specifies that the 
Micro Server will support controlled enrolment. 

• The SS_ISI_IN_SYSTEM_IMAGE macro indicates that the Micro 
Server firmware includes ISI support as part of the Smart Transceiver's 
system image.  This macro is independent of the SS_SUPPORT_ISI 
macro, and is relevant even if ISI support is not configured. 

• The SS_5000 macro indicates that the Micro Server will be used with an 
FT 5000 Smart Transceiver or Neuron 5000 Processor. 

• The SS_6000 macro indicates that the Micro Server will be used with a 
Series 6000 Smart Transceiver or Neuron Processor. 

In addition to the SS_SUPPORT_ISI macro, specify both the 
SS_SUPPORT_ISI_S and the SS_SUPPORT_ISI_DA macros to support ISI 
applications with or without domain acquisition.  Because ISI domain address 
servers require additional hardware resources (primarily more RAM), specify the 
SS_SUPPORT_ISI_DAS macro only if it is needed. 

See Managing Memory for additional information about configuring the Micro 
Server’s resources within the MicroServer.h file. 

Configuring ShortStackIsiHandlers.h  
For an ISI callback handler function, you can control the location of its 
implementation.  Specifically, you can choose one of the following actions for 
almost every ISI callback handler function: 

• Use its default implementation (delivered with the ISI library), and not 
override the callback handler function.  
 
Using the default implementation for a callback handler function is the 
simplest option, but provides the least customized behavior. 

• Implement the callback override within a copy of the 
[ShortStack]\Custom MicroServer\MicroServerIsiHandlers.c file 
(which runs on the Micro Server).  
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Implementing a callback override local to the Micro Server can provide 
the most responsive ISI implementation, but such a specialized Micro 
Server might work only with your specific ISI-enabled host application. 

• Implement the callback override within a copy of the 
[ShortStack]\Api\ShortStackIsiHandlers.c file (which is part of your 
host application).  
 
Implementing a callback override on the host allows you to create a 
general-purpose Micro Server, but can require more traffic across the 
ShortStack link layer because the Micro Server routes callbacks to the 
host using a simple remote procedure call protocol (ISI-RPC). 

You control the location of each of the supported ISI callback handler functions in 
the [ShortStack]\Custom MicroServer\ShortStackIsiHandlers.h file.  This 
file includes comments that describe how to override a callback handler function, 
and includes recommendations for each callback handler function’s location.  
Some callback handler functions are subject to certain restrictions, which are 
described in the ShortStackIsiHandlers.h file.  For example, some callbacks 
have fewer choices for the location of the callback handler, and certain callback 
handlers form groups that should always reside in the same location. 

Implement the ISI connection table local to the Micro Server.  The ISI connection 
table is a fairly frequently accessed resource; implementing this table on the host 
processor can require a high number of ISI-RPC messages to access this table. 

Implement the IsiUpdateUserInterface() callback handler function within 
your host application, so that your application can synchronize its user interface 
with the ISI engine.  

The IsiGetNvValue() callback handler function needs to be overridden within 
the host application.  

The LonTalk Interface Developer utility copies the ShortStackIsiHandlers.h 
file to your project directory only if you select a standard Micro Server from the 
ShortStack Micro Server Selection.  If you edit this file and re-run the utility, 
changes to the file are overwritten.  However, if your project directory has a 
ShortStackIsiHandlers.h file that you created for a custom Micro Server, the 
LonTalk Interface Developer utility does not overwrite the file. 

Implementing ISI in 
MicroServerIsiHandlers.c 
The MicroServerIsiHandlers.c file contains implementations for the Micro 
Server-side ISI callback overrides.  For callback overrides that run on the host, 
the code in the MicroServerIsiHandlers.c file is complete, and contains all the 
processing required for the remote procedure call.  You need to implement the 
override within your host application (in ShortStackIsiHandlers.c), but you do 
not need to edit the MicroServerIsiHandlers.c file.  

For callback overrides that run on Micro Server, you typically need to provide 
application-specific code in the MicroServerIsiHandlers.c file.  Only those 
callback functions that relate to the connection table have a meaningful default 
implementation (which implements an ISI connection table with 32 records).  
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See Option Server in the IzoT Markup Language section of the IzoT Manual at 
echelon.com/docs/izot for more information. 

Supporting Direct Memory Files 
To allow a custom Micro Server to support the direct memory file (DMF) access 
method, specify the #pragma enable_dmf compiler directive when you create 
the custom Micro Server.  Specify this directive, along with other preferences, in 
the MicroServer.h configuration file. 

A Micro Server can receive a memory read or write network management request 
that relates either to its own local memory or to non-existent memory (memory 
that corresponds to a gap in the Micro Server’s own memory map). 

When the Micro Server receives a memory read or write network management 
request that can be satisfied from the Micro Server’s own local memory, the 
Micro Server responds to the request by accessing its memory.  These kinds of 
requests allow for normal management tasks, including the loading of a revised 
Micro Server image over the network.  

For a memory read or write request that does not relate to local memory, but 
instead relates to a “gap” in the hardware memory map or to an area declared as 
memory-mapped I/O, the Micro Server can have two responses: 

• With the DMF access method disabled (or not supported), the Micro 
Server replies to such a request with a negative response.  

• With the DMF access method enabled, these requests are relayed to the 
host processor.  It is the responsibility of the host processor to satisfy the 
request, or to reply with a failure code. 

To allow a custom Micro Server to use the DMF access method, leave an area 
within the Smart Transceiver’s 64 KB memory space unused.  Define your 
hardware memory map such that it contains an area of undeclared memory.  The 
standard Micro Servers use the 0xA100..0xCEFF area, but you can change the 
size or location of this DMF window in your hardware design. 

ShortStack supports only one DMF window.  The Micro Server relays all memory 
read or write requests that cannot be satisfied locally to the host (if the DMF 
access method is enabled), including those relating to disjoint gaps in the memory 
map, but the DMF presentation and address translation provided by the LonTalk 
Interface Developer utility supports only one DMF window. 

The DMF access method requires Version 16 Neuron firmware or later, and is not 
available for current PL 3120 Smart Transceivers, which are based on Version 14 
firmware.  All other standard Micro Server images have this feature enabled.  
For custom Micro Servers, if you attempt to enable the DMF access method for a 
Smart Transceiver running Version 15 or earlier firmware, the Neuron C 
compiler issues a linker error. 

Managing Memory 
The IzoT Interface Interpreter and the LonTalk Interface Developer utility’s 
Neuron C compiler generates four tables that affect memory usage in on-chip 
EEPROM within a Smart Transceiver.  The ShortStack Micro Server firmware 
and network management tools use these tables to define the network 
configuration for a device.  The four tables include: 

http://www.echelon.com/docs/izot
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• The address table. 
By default, this table is generated at its maximum size, which is 15 
entries for Series 3100 and 5000 chips. Standard Micro Servers for Series 
6000 chips, which support an extended address table with up to 254 
records, are configured to support 32 address table entries. 

• The alias table. 
This table has no default size, and you need to specify a size using the 
#pragma num_alias_table_entries compiler directive.  You can set the 
size of the alias table to zero, or any value up to 127.   

• The domain table.   
By default, this table is generated at its maximum size, which is 2 
entries. 

• The network variable configuration table. 
This table contains one entry for each network variable that is declared 
in the model file.  Each element of a network variable array counts 
separately. 

See the FT 3120 / FT 3150 Smart Transceiver Data Book, the PL 3120 / PL 3150 
/ PL 3170 Power Line Smart Transceiver Data Book, the Series 5000 Chip Data 
Book, or the Series 6000 Chip Data book for detailed descriptions of these tables. 

Address Table 
The address table contains the list of network addresses to which the device 
sends implicitly addressed network variable updates or polls, or sends implicitly 
addressed application messages.  You can configure the address table through 
network management messages from a network management tool.  

By default, the address table contains 32 entries for Micro Servers using a Series 
6000 chip, and 15 entries for all others.  Each address table entry uses five bytes 
of on-chip EEPROM (extended RAM for a Series 6000 or 5000 Micro Server).  Use 
the following compiler directive to specify the number of address table entries:  

#pragma num_addr_table_entries nn  

where nn can be any value from 0 to 15, 0 to 254 for Series 6000 chips. 

Whenever possible, specify at least 15 entries for the address table. For Series 
6000 chips, large address tables with over 100 entries and up to the 254 entry 
maximum may impact network performance due to linear address table searches 
performed by the Neuron firmware when network messages are received.  

Alias Table  
An alias is an abstraction for a network variable that is managed by network 
management tools, the ISI engine, and the Micro Server firmware.  Network 
management tools and the ISI engine use aliases to create connections that 
cannot be created solely with the address and network variable tables.  Aliases 
provide network integrators flexibility for how devices are installed into 
networks.  

The alias table has no default size, and can contain between 0 and 127 entries.  
Each alias entry uses four bytes of on-chip EEPROM (extended RAM for a Series 
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5000 Micro Server).  Use the following compiler directive to specify the number of 
alias table entries: 

#pragma num_alias_table_entries nnn  

where nnn can be any value from 0 to 127 (or 0 to 62 for PL 3120 Micro Servers 
with Version 14 firmware).  Subject to the Micro Server’s preferences and 
hardware capabilities, it might not be possible to implement the maximum 
number of aliases. 

Specify the number of entries for the alias table, within the amount of available 
on-chip EEPROM.  The number of required entries is typically fewer than the 
maximum of 127.  The following calculation provides a useful starting point for 
the alias table size, nnn:  

nnn = 0; for nv_count = 0  

nnn = 10 + ( nv_count / 3 ); for nv_count > 0  

The number of aliases defined here is fixed, and cannot be changed from the 
ShortStack application.  You can use any special knowledge that you have about 
the application to set the size of the alias table appropriately.  A small number of 
aliases can prevent you from using the device in a complex network, but a large 
number of unused aliases can reduce the Micro Server’s throughput and the 
overall device performance. 

Domain Table  
By default, the domain table is configured for two domains.  Each domain uses 15 
bytes of on-chip EEPROM (extended RAM for a Series 5000 Micro Server).  The 
number of domain table entries is dependent on the network in which the device 
is installed; it is not dependent on the application.   

Use the following compiler directive to specify the number of domain table 
entries:  

#pragma num_domain_entries n 

where n can be either 1 or 2. 

Specify the maximum of 2 domain table entries.  LONMARK International 
requires all interoperable LONWORKS devices to have two domain table entries.  
Reducing the size of the domain table to one entry will prevent certification.  

Network Variable Configuration Table 
This table contains one entry for each network variable that is declared in the 
model file.  Each element of a network variable array counts separately. 

The maximum size of the network variable configuration table is 254 entries, 
provided that there are sufficient available EEPROM resources (extended RAM 
resources for a Series 6000 or 5000 Micro Server).  Each entry uses three bytes of 
EEPROM (or extended RAM).  You cannot change the size of this table, except by 
adding or deleting network variables in your application. 

You can use the following compiler directive to specify the maximum number of 
network variables that the Micro Server supports, which in turn, affects the size 
of the network variable configuration table: 
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#pragma set_netvar_count nnn 

where nnn can be any value from 0 to 254 (or 0 to 62 for PL 3120 Micro Servers 
with Version 14 firmware).  Subject to the Micro Server’s preferences and 
hardware capabilities, it might not be possible to implement the maximum 
network variable capacity. 

The actual number of network variables is set by the application.  Unlike for the 
alias table, providing support for more network variables than are needed does 
not affect the device’s throughput.  However, the total number of network 
variables declared for a device does affect its overall throughput and the time 
that the device might require for reset; also the maximum number of network 
variables declared with this directive affects the amount of memory required by 
your custom Micro Server. 
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13 

Application Migration from 
ShortStack FX to IzoT ShortStack  

You can upgrade an existing ShortStack FX project to IzoT 
ShortStack and the IzoT Interface Interpreter. 
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Who Should Upgrade 
You can use the IzoT ShortStack SDK and the IzoT Interface Interpreter for new 
projects, but developers with existing LID-based projects for the ShortStack FX 
SDK may not have to upgrade those, or may opt to upgrade those existing 
projects only in certain aspects.  

Using an IzoT ShortStack SDK 4.30 Micro Server with 
the ShortStack FX SDK 
 

Existing LID-based ShortStack FX SDK projects can take advantage of new IzoT 
ShortStack SDK 4.30 Micro Servers, and can use the FT 6050 standard Micro 
Server and take advantage of other general Micro Server enhancements.  

These general enhancements include improved resilience for misconfiguration in 
certain error cases and an enforced delay after transmitting the uplink reset 
notification.  

IzoT ShortStack SDK 4.30 Micro Servers which support the same hardware as 
supported in the ShortStack FX SDK are backwards compatible. You can, for 
example, use the new SS430_FT5000ISI_SYS20000kHz standard Micro Server 
for FT 5000 at 20 MHz system clock in place of its ShortStack FX SDK 
predecessor.  

The standard Micro Servers for FT 5000 now support 7 normal and 3 priority 
buffers at 146 bytes each, while ShortStack FX SDK Micro Servers for the same 
Smart Transceiver supported 11 normal and 11 priority buffers at 66 bytes each.  

To use a version 4.30 Micro Server in place of the ShortStack FX SDK Micro 
Server, point the LonTalk Interface Developer to the new IzoT ShortStack SDK 
4.30 Micro Server as if it was a custom Micro Server, and re-generate your 
application framework.  Alternatively, you can load the version 4.30 Micro Server 
image into your Micro Server hardware.  

Upgrading a ShortStack FX SDK Project for FT 6050 
You can upgrade existing LID-based ShortStack FX SDK projects to use the new 
Micro Server for the FT 6050 Smart Transceiver.  To do so, point the LonTalk 
Interface Developer to the new IzoT ShortStack SDK 4.30 Micro Server as if it 
was a custom Micro Server, and re-generate your application framework.  

This approach has the following limitations: 

• The ShortStack FX LonTalk Compact API is unaware of the extended 
address table. The extended address table uses address table index 
values in the 0..254 range, which requires a change in the nv_config and 
alias_config data structures.  As a result, the ShortStack FX LonTalk 
Compact API cannot be used to update or examine these data structures 
on a Series 6000 Smart Transceiver or Neuron Chip.  Micro Servers  
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which support the extended address table indicate this with a new flag 
0x40 in the Flags byte of the LonResetNotification structure.  
 

• The ShortStack FX SDK and the LonTalk Interface Developer are 
unaware of the extended address table.  The generated XIF file will not 
accurately reflect these capabilities.  You can use your device without an 
XIF file, or edit a LID-generated XIF file by hand.  

To manually edit the LID-generated XIF file, open the Micro Server’s XIF 
and your application’s XIF file (generated by LID) in a text editor.  

Copy lines 7, 8, 9 and 10 of the Micro Server XIF file into your application’s 
XIF file. 

Copy the XIF version number from line 1 from the Micro Server XIF file into 
your application’s XIF file.  

Merge line 6 from the Micro Server XIF file into your application’s XIF file: 

Use field 4 (network variable record count) from your application’s XIF 
file.  

Use field 5 (message tag count) from your application’s XIF file. 

Set field 16 (application type) to 6. 

Use field 17 (netvar count) from your application’s XIF file. 

Use field 23 (maximum NV count) from your application’s XIF file. 

For all other fields, use the values from the Micro Server’s XIF file. 

For all other lines, use the values generated by the LonTalk Interface 
Developer. 

Migration From LonTalk Interface Developer to Izot 
Interface Interpreter 

To migrate a ShortStack FX SDK (or earlier) project based on a framework 
generated by the LonTalk Interface Developer utility to the IzoT ShortStack SDK 
and a framework generated by the IzoT Interface Interpreter, follow these steps: 

New IzoT ShortStack SDK Project 
Create a new IzoT ShortStack SDK project.  Port the API and driver, and 
implement a trivial implementation as a first milestone.  Here is an example for 
such an application (not including the driver and API).  Adjust the server 
selection as necessary to match your Micro Server. 

#include “ShortStackDev.h” 
#include “ShortStackApi.h” 
#include “ldv.h” 
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//@IzoT Option target(“shortstack-classic”) 
//@IzoT Option programId(“9F:FF:FF:00:00:00:04:00”) 
//@IzoT Option server(“SS430_FT6050_SYS20000kHz”) 
 
SFPTclosedLoopActuator(act, SNVT_volt) act; //@IzoT Block \ 
//@IzoT onUpdate(nviValue, onActUpdate) 
 
void onActUpdate( 
  const unsigned index, 
  const LonReceiveAddress* const pSourceAddress 
) 
{ 
  LON_SET_UNSIGNED_WORD( 
     act.nvoValue.data, 
     3 + LON_GET_UNSIGNED_WORD(act.nviValue.data) 
  ) 
  LonPropagateNv(act.nvoValue.global_index); 
} 
 
static const LdvCtrl ldvCtrl = {  
  /* Initialize as required by your driver */ 
}; 
 
int main(int argc, char* argv[]) 
{ 
  LonApiError sts = LonInit(&ldvCtrl); 
 
  while(sts == LonApiNoError) { 
     sts = LonEventHandler(); 
  } 
 
  LonExit(); 
 
  return sts != LonApiNoError; 
} 
 
 

The trivial test application accepts a simple input value, adds 3 and assigns the 
result to the output.  You can test this application with a simple tool such as 
NodeUtil, but remember that the device must be in the configured and online 
state in order to receive updates to input network variables.  

You can complete this experiment to be confident that your ShortStack device is 
working, even if the simple application does not meet your application 
requirements. 

Select Preferences 
The ShortStack FX SDK uses the LonTalk Interface Developer utility to gather 
your preferences.  Using the IzoT ShortStack SDK, you can express your 
preferences directly within your source code.  The application example above 
includes some of those expressions. For example, 
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   //@IzoT Option server(“SS430_FT6050_SYS20000kHz”)  
 

selects the SS430_FT6050_SYS20000kHz standard Micro Server for the FT 6050 
Smart Transceiver.  

A comparison of options and preferences supported by the LonTalk Interface 
Developer to their IzoT ShortStack SDK equivalent follows. 

 
LonTalk Interface 
Developer 

IzoT Interface Interpreter 

Project file selection Your main C source code is your project. The IzoT Interface Interpreter does not 
maintain data outside your main C source file. 

Verbosity, 
Verbose Code 

You can execute the IzoT Interface Interpreter with the --verbose option to 
obtain slightly more verbose console output, but an option to control verbosity of 
comments within the generated code is not supported, as you do not have to 
edit the code generated by the IzoT Interface Interpreter. 

Framework Type //@IzoT Option target(“shortstack-classic”) 
 
or 
 
execute the IzoT Interface Interpreter with the --target shortstack-classic 
command line option. 

Micro Server 
selection, 
transceiver 
selection, clock 
selection 

//@IzoT Option server(...) 
 
The IzoT ShortStack SDK uses the Micro Server’s default transceiver type and 
communication parameter by default. To override those see the 
LonCustomCommunicationParameters() callback function in 
ShortStackHandlers.c. 

Program Id //@IzoT Option programId(...) 

Model File,  
Preprocessor 
symbols,  
Include search path 

The IzoT Interface Interpreter does not use a Neuron C model file.  Your 
definitions of the interface are an integral part of your application’s C or C++ 
source code. 

Enable Application 
Messages 

LonTag myTag; //@IzoT Tag 
 
The IzoT Interface Interpreter automatically enables the application messaging 
API when you declare one or more message tag objects.  

Enable Explicit 
Addressing 

//@IzoT Option explicit_addressing(...) 

Enable Service Pin 
Notification,  
Service Pin 
Notification Delay 

//@IzoT Option servicebutton_held(...) 

Include Query //@IzoT Option api(1) 
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Functions 
Include Update 
Functions 

The IzoT Interface Interpreter groups both query and update functions into one 
API extension, API extension 1.  You can select multiple API extensions by 
adding their numbers.  For example, //@IzoT Option api(3) selects both API 
extensions 1 and 2. 

Include Utility 
Functions 

//@IzoT Option api(2) 

You can select multiple API extensions by adding their numbers. For example, 
//@IzoT Option api(3) selects both API extensions 1 and 2. 

Include ISI //@IzoT Option isi(...) 

Enable Direct-
memory Files 
(DMF),  
DMF Window Start 
Address,  
DMF Window Size 

The IzoT Interface Interpreter included with the IzoT ShortStack SDK 4.30 does 
not support implementations of properties in property files, and therefore does 
not support DMF. 

Migrate the Model File 
The LonTalk Interface Developer utility requires that you model your 
application’s network interface using the Neuron C language.  By contrast, the 
IzoT Interface Interpreter does not require you to model your application’s 
network interface.  Instead, IzoT Interface Interpreter allows you to implement 
your blocks, properties, message tags and datapoints as if your standard C or 
C++ compiler knew about those items, and IzoT Interface Interpreter makes it so. 

You will find that translating the model file into a set of IML instructions for 
IzoT Interface Interpreter is very easy, because IzoT Interface Interpreter 
includes comprehensive recognition of profiles and blocks.  

In the Neuron C model file, implementing a profile as a block requires 
declaration of every network variable and property required declaration of the 
block, and declaration of mappings between the network variables and properties 
declared on one hand and members listed in the block’s profile on the other hand. 

The IzoT Interface Interpreter implements entire profiles, including all 
mandatory members, with a single instruction.  Optional instructions to add 
optional members or other refinements are supported.  

Interface Item IzoT Interface Interpreter Instruction 

Mandatory datapoint 
(network variable) 
members of functional 
blocks 

Implemented automatically with block declaration. 

Mandatory property 
members of functional 
blocks 

Implemented automatically with block declaration 
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Implementation of a 
profile as a block 

Use the Block directive.  
 
Example: 
 
SPFTco2Sensor(s) co2; //@IzoT Block 

Implementing an 
optional profile member 

Use the implement instruction with the Block directive.  
 
Example 1: 
 
SFPTco2Sensor(s) co2; //@IzoT Block implement(nvofloatCO2) 
 
Example 1 adds the optional nvofloatCO2 profile member to the block.  
The IzoT Interface Interpreter recognizes a property’s application set.  
The optional nciCO2Offset property of the CO2 sensor profile, for 
example, applies to the mandatory nvoCO2ppm member.  
 
The IzoT Interface Interpreter requires that you specify a property 
within its application set, and generates the block accordingly. 
 
Example 2: 
 
SFPTco2Sensor(s) co2; //@IzoT Block \ 
//@IzoT implement(nvoCO2ppm.nciCO2Offset) 

Device datapoint 
(network variable, not 
implementing a 
member of a profile) 

Use the Datapoint directive. 
 
Example: 
 
SNVT_temp(t) nvoTemp; //@IzoT Datapoint 

Device property (not 
implementing a 
member of a profile) 

Use the Property directive. 
 
Example: 
 
SCPTlocation here; //@IzoT Property 

Message Tag Use the Tag directive and the LonTag type. 
 
Example: 
 
LonTag myTag; //@IzoT Tag 

 

Migrate Event Handlers 
The next step is to migrate your ShortStack event handlers.  The IzoT 
ShortStack SDK ShortStackHandler.c source file looks very similar to the version 
included with the ShortStack FX SDK.  In many cases, you can simply merge 
your callback function bodies into the IzoT ShortStack SDK project.  

Frequently used callbacks, however, are automatically implemented by the IzoT 
Interface Interpreter, and are dispatched into event handlers.  With the 
exception of the service pin-related callbacks, these event handlers have the same 
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prototype as their ShortStack FX SDK callback function equivalents.  However, 
the events are declared within your main C source file.  

The IzoT Interface Interpreter supports multicast events and re-usable event 
handlers.  That is, you can declare and re-use the same onUpdate event handler 
for all your input network variables, or you can declare one unique event handler 
for each input network variable, or handle update events for certain groups of 
input network variables in one handler, others in another.  

The IzoT Interface Interpreter implements event dispatchers such that events 
related to network variable updates or completion events only fire when the 
event applies to the corresponding item.  That is, an onUpdate event which 
applies to a single network variable will only execute when this particular 
network variable received an update, an onUpdate event applying to two 
network variables will only execute when either of the two network variables 
received an update.  

You can also create multicast events, for example by declaring three different 
onWink event handlers.  Those are fired in declaration-order. 

Event types supported in this fashion are onUpdate, onComplete, onReset, 
onOnline, onOffline, onService, and onWink.  All other events are handled 
within ShortStackHandlers.c in the same way as with the ShortStack FX 
SDK. 

LdvCtrl 
Declare the new LdvCtrl structure, and pass a pointer to this structure to the 
LonInit() function.  The data type of LdvCtrl is determined by you and your 
driver implementation.  LdvCtrl provides a way for your application to pass 
parameters into your driver through the standard IzoT ShortStack LonTalk/IP 
Compact API.  

Not all drivers require such parameters.  Those which don’t will define LdvCtrl 
as a simple dummy type, an int, for example.  This is your choice.  

Other drivers, such as the IzoT ShortStack SDK driver example for Raspberry Pi, 
support a selection of device names, GPIO pin assignments and other data 
through the LdvCtrl data structure.  

LonExit() 
The IzoT ShortStack SDK supports a new LonExit() API, which supports 
applications that can be terminated.  Many embedded applications never 
terminate and therefore do not need to call LonExit().  Those which do support 
termination, such as the IzoT ShortStack SDK application examples for 
Raspberry Pi, can call this new API to support clean shut-down procedures. 

LonSuspend(), LonResume() 
The ShortStack LonTalk/IP Compact API supports two new optional functions, 
LonSuspend() and LonResume(), to temporarily suspend the serial driver, and 
resume normal operation.  The underlying functionality is implemented in your 
driver’s LdvSuspend() and LdvResume() functions.  The ShortStack API does 
not require that you implement this functionality, but it supports it when you do.  
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Some applications may temporarily suspend the serial driver to allow for other 
critical operations.  The IzoT Shortstack SDK driver example for Raspberry Pi 
includes an example implementation of synchronized suspend and resume 
operations.  

LonGetCurrentNvSize() 
This callback function is no longer necessary in the IzoT ShortStack SDK, 
because the IzoT Interface Interpreter includes knowledge of the SCPTnvType 
property implementation that applies to a changeable-type network variable.  
The tool automatically generates code which implements this callback. 

LonNvdDeserializeNvs(), LonNvdSerializeNvs() 
While the LonNvdDeserialize() API and callback function remains unchanged, 
the IzoT ShortStack SDK adds the LonNvdSerializeNvs() companion callback, 
and provides an example implementation for both within 
ShortStackHandlers.c. 

In the ShortStack FX SDK, you had to implement custom code to store non-
volatile network variable and property data when it was received.  

In the IzoT ShortStack SDK, you must implement the LonNvdSerialize() and 
LonNvdDeserialize() callbacks.  The ShortStack LonTalk/IP Compact API calls 
these functions when necessary. 
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14 

Authentication 

This chapter provides details of using authentication with 
the IzoT ShortStack SDK. 
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Using Authentication 
Authentication is a special acknowledged service between one source device and 
one or more (up to 63) destination devices.  Authentication is used by the 
destination devices to verify the identity of the source device.  This type of service 
is useful, for example, if a device containing an electronic lock receives a message 
to open the lock.  By using authentication, the electronic lock device can verify 
that the “open” message comes from an authorized device, not from a person or 
device attempting to break into the system. 

Authentication doubles the number of messages per transaction.  An 
unauthenticated acknowledged message normally requires two messages:  an 
update and an acknowledgment.  An authenticated message requires four 
messages, as shown in Figure 52. These extra messages can affect system 
response time and channel capacity. 

A device can use authentication with acknowledged updates or network variable 
polls.  However, a device cannot use authentication with unacknowledged or 
repeated updates.   

For a program to use authenticated network variables or send authenticated 
messages, follow these steps:  

1. Declare the network variable as authenticated, or allow the network 
management tool to specify that the network variable is to be 
authenticated. 

2. Specify the authentication key to be used for this device using a network 
management tool, and enable authentication.  You can use the IzoT 
Commissioning Tool to install a key during network integration, or your 
application can use the LonQueryDomainConfig() and 
LonUpdateDomainConfig() API functions to install a key locally. 

You can also create a custom Micro Server with a pre-set authentication key. 

Specifying the Authentication Key 
All devices that read or write a given authenticated network variable connection 
must have the same authentication key.  This 48-bit authentication key is used 
in a special way for authentication, as described in How Authentication Works.  If 
a device belongs to more than one domain, specify a separate key for each 
domain. 

The key itself is transmitted to the device only during the initial configuration.  
All subsequent changes to the key do not involve sending it over the network.  
The network management tool can modify a device’s key over the network, in a 
secure fashion, with a network management message. 

Alternatively, your application can use a combination of the 
LonQueryDomainConfig() and LonUpdateDomainConfig() API calls to 
specify the authentication keys during application start-up.  

If you set the authentication key during device manufacturing, perform the 
following tasks to ensure that the key is not exposed to the network during device 
installation: 
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1. Specify that the device uses network-management authentication (set the 
configuration data in the LonConfigData data structure, which is 
defined in the ShortStackTypes.h file). 

2. Set the device’s state to configured.  An unconfigured device does not 
enforce authentication. 

3. Set the device’s domain to an invalid domain value to avoid address 
conflicts during device installation. 

If you do not set the authentication key during device manufacturing, the device 
installer can specify authentication for the device using a network management 
tool, but must specify an authentication key because the device has only a default 
key.  

To produce highly secured ShortStack devices, create a custom Micro Server and, 
export the generated image with the authentication keys pre-set.  See the IzoT 
NodeBuilder User’s Guide for more information. 

How Authentication Works 
Figure 66 illustrates the process of authentication: 

1. Device A uses the acknowledged service to send an update to a network 
variable that is configured with the authentication attribute on Device B.  
If Device A does not receive the challenge (described in step 2), it sends a 
retry of the initial update. 

2. Device B generates a 64-bit random number and returns a challenge 
packet that includes the 64-bit random number to Device A.  Device B 
then uses an encryption algorithm (built in to the Neuron firmware) to 
compute a transformation on that random number using its 48-bit 
authentication key and the message data.  The transformation is stored 
in Device B. 

3. Device A then also uses the same encryption algorithm to compute a 
transformation on the random number (returned to it by Device B) using 
its 48-bit authentication key and the message data.  Device A then sends 
this computed transformation to Device B. 

4. Device B compares its computed transformation with the number that it 
receives from Device A.  If the two numbers match, the identity of the 
sender is verified, and Device B can perform the requested action and 
send its acknowledgment to Device A.  If the two numbers do not match, 
Device B does not perform the requested action, and an error is logged in 
the error table. 

If the acknowledgment is lost and Device A sends the same message again, 
Device B remembers that the authentication was successfully completed and 
acknowledges it again. 
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Figure 66. Authentication Process 

If Device A updates an output network variable that is connected to multiple 
readers, each receiver device generates a different 64-bit random number and 
sends it in a challenge packet to Device A.  Device A must then transform each of 
these numbers and send a reply to each receiver device. 

The principal strength of authentication is that it cannot be defeated by simple 
record and playback of commands that implement the desired functions (for 
example, unlocking the lock).  Authentication does not require that the specific 
messages and commands be secret, because they are sent unencrypted over the 
network, and anyone who is determined can read those messages. 

It is good practice to connect a device directly to a network management tool 
when initially installing its authentication key.  This direct connection prevents 
the key from being sent over the network, where it might be detected by an 
intruder.  After a device has its authentication key, a network management tool 
can modify the key, over the network, by sending an increment to be added to the 
existing key. 

You can update the device’s address without having to update the key, and you 
can perform authentication even if the devices’ domains do not match.  Thus, a 
ShortStack device can set its key during device manufacturing, and you can then 
use a network management tool to update the key securely over the network. 
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A 

ShortStack LonTalk/IP 
Compact API 

This appendix describes the functions and callback handler 
functions included with the ShortStack LonTalk/IP Compact 
API.  It also describes modifying the API callback handlers 
for use with your ShortStack application.  
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Introduction 
The ShortStack LonTalk/IP Compact API provides the functions that you call 
from your ShortStack application to send and receive information to and from a 
LonTalk/IP or LON network.  The API also defines the callback functions that 
your ShortStack application should provide to handle LONWORKS events from the 
network and Micro Server.  Because each ShortStack application handles these 
callbacks in its own specific way, you must modify the callback functions. 

Typically, you use the API functions for ShortStack initialization and sending 
and receiving network variable updates.  See Developing a ShortStack 
Application, for more information about using these functions. 

The ShortStack LonTalk/IP Compact API functions are implemented in the 
ShortStackApi.c file; the ShortStack callback functions are defined in the 
ShortStackHandlers.c file.  See ShortStack LonTalk/IP Compact API Files for 
a list of the files included with the IzoT ShortStack SDK. 

This appendix provides an overview of the functions and callbacks.  For detailed 
information about the ShortStack LonTalk/IP Compact API, see the HTML 
documentation that is available from the doc/api directory within your local IzoT 
ShortStack SDK repository.  

Changes to the API 
The ShortStack LonTalk/IP Compact API is the same as the ShortStack FX 
LonTalk Compact API in spirit, but details have changed.  The host API supports 
application-specific configuration data for the driver, for example to assign a 
serial device or specific GPIO pins for the link layer signals. 

The host API has been enhanced to automatically re-initialize the Micro Server 
when required.  This simplifies updating the Micro Server over the network, 
because the new API automatically detects the situation and re-initializes the 
Micro Server with the current application’s configuration.  

Several API functions have a slightly different prototype compared to earlier 
releases of ShortStack. All LDV functions, which implement the driver API, now 
return standard error codes, and use a driver-specific handle parameter.  Some 
functions of the LDV API have been removed, some new ones added, to better 
support targeting modern hosts such as those using an embedded Linux 
operating system.  

A new LonSetPostResetPause() API has been added.  This feature is discussed 
under Micro Server, next.  

The host API automatically detects if the Micro Server supports an extended 
address table (EAT), and automatically translates all affected data types and 
message formats, transparent to the application.  

The following API types are affected: LonNvConfig, LonAliasConfig. 

The following API functions are affected: LonUpdateNvConfig(), 
LonUpdateAliasConfig(), LonQueryNvConfig(), and 
LonQueryAliasConfig(). 

The following callbacks are affected: LonNvConfigReceived() and 
LonAliasConfigReceived(). 
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Support for EAT-enabled Micro Servers is implemented by exposing only EAT-
compatible APIs to the application.  The LonNvConfig and LonAliasConfig 
data types have been updated to match the format required by Micro Servers 
which support an extended address table.  

Applications reading the network variable configuration and alias configuration 
data will continue to function as before. When re-compiled and used with an 
EAT-enabled Micro Server, these applications have immediate access to the 
extended data, which includes the high nibble of the address table index.  

Applications that write network variable configuration and alias configuration 
data must supply well-formed data, including the extended data which includes 
the address table index high nibble.  To write the data, obtain the current record 
using LonQueryNvConfig() or LonQueryAliasConfig(), and then modify and 
assign using the record with LonUpdateNvConfig() or 
LonUpdateAliasConfig()as necessary. 

The LonCustomCommunicationParameters() callback has been added to 
support applications with runtime selection of communication parameters.  This 
supports, for example, applications for power line communication to use the same 
application binary to support deployment in CENELEC member countries and 
affiliates using the PL-20C channel type, and using the PL-20N channel type 
elsewhere. 

Customizing the API 
Portions of the API are optional, in particular, application messaging, network 
management query support, network management update support, and network 
management callbacks.  If you do not plan to use these functions, you can choose 
not to include them in your ShortStack application to reduce the footprint of the 
application in your host microprocessor.  Use the api option to control inclusion 
of optional portions of the API. 

Example 

//@IzoT Option api(3) // include all optional parts 

API Memory Requirements 
The memory requirements for the ShortStack LonTalk/IP Compact API depend 
on which parts of the API you include in your application.  You control which 
parts of the API to include in your application using the IML api option.   

Table 25 lists the approximate API memory requirements based on a reference 
implementation using a bare-metal ARM7 target.  Part of the memory 
requirement is application specific, depending on the device interface.  10 to 20% 
of the memory requirements listed in the table assume a simple device interface. 
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Table 10. ShortStack LonTalk/IP Compact API Memory Requirements 

Included API 

Memory Requirement 
Standard 
API 

Optional 
API ISI API 

1.8 KB 

2.3 KB 

3.0 KB 

3.5 KB 

The memory requirements for the serial driver depend on the driver’s 
implementation.  For the ARM7 serial driver that is included with the ARM7 
Example Port included in the ShortStack FX release, the memory requirement is 
approximately 3 KB. 

The ShortStack LonTalk/IP Compact API and 
Callback Handler Functions 

This section provides an overview of the ShortStack FX LonTalk Compact API 
functions and callback handler functions.  For detailed information about the 
ShortStack LonTalk/IP Compact API and the callback handler functions, see the 
HTML API documentation and the API source code: 

• doc/api within the IzoT ShortStack SDK for the HTML API
documentation,

• api within the IzoT ShortStack SDK for the API source code.

ShortStack LonTalk/IP Compact API Functions 
The ShortStack LonTalk/IP Compact API includes functions for managing 
network data and the ShortStack Micro Server. 

Commonly Used Functions 
Table 26 lists API functions that you will typically use in your ShortStack 
application to send and receive data over a LonTalk/IP or LON network. 
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Table 11. Commonly Used ShortStack LonTalk/IP Compact API Functions 

Function Description 

LonEventHandler() Processes any messages received by the ShortStack driver.  If 
messages are received, it calls the appropriate callback functions. 

See Periodically Calling the Event Handler for more information 
about how to use this function. 

LonInit() Initializes the ShortStack LonTalk/IP Compact API, the serial 
driver, and the ShortStack Micro Server.  This function downloads 
ShortStack device interface data from the ShortStack application 
to the ShortStack Micro Server. 

The ShortStack application calls LonInit() once on startup. 

LonPropagateNv() Propagates a network variable value to the network. 

This function propagates a network variable if all of the following 
conditions are met: 

• The network variable is declared with the output modifier

• The network variable is bound

Other Functions 
Table 27 lists other ShortStack LonTalk/IP Compact API functions that you can 
use in your ShortStack application.  These functions are not typically used by 
most ShortStack applications. 

Table 12. Other ShortStack LonTalk/IP Compact API Functions 

Function Description 

LonGetUniqueId() Gets the unique ID (Neuron ID) value of the ShortStack Micro 
Server. 

LonGetVersion() Gets the version number of the ShortStack firmware in the 
ShortStack Micro Server. 

LonPollNv() Requests a network variable value from another device or 
devices.  A ShortStack application can call LonPollNv() to 
request that another device (or devices) send the latest value (or 
values) for network variables that are bound to the specified 
input variable.  To be able to poll an input network variable on 
the ShortStack device, it must be declared as an input network 
variable and include the polling modifier.  You cannot poll an 
output network variable on the ShortStack device with the 
LonPollNv() function. 

Do not use polling with ISI connections. 
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Function Description 

LonSendServicePin() Broadcasts a Service- message to the network.  The Service- 
message is used during configuration, installation, and 
maintenance of a LonTalk/IP or LON device. 

Application Messaging Functions 
Table 28 lists the ShortStack LonTalk/IP Compact API functions that are used 
for implementing application messaging and for responding to an application 
message.  Application messages are used by applications requiring a different 
data interpretation model that the one used for network variables.  The same 
functions can be used for foreign frame and explicit network variable update 
messages.  Support for application messaging is automatically included when 
your application declares at least one message tag.   

Table 13. Application Messaging ShortStack LonTalk/IP Compact API Functions 

Function Description 

LonSendMsg() Sends an application, foreign frame, or explicit network variable 
update message. 

LonSendResponse() Sends an application, foreign frame, or explicit network variable 
update message response to a request message.   

The ShortStack application calls LonSendResponse() in response 
to a LonMsgArrived() callback handler function.   

Network Management Query Functions 
The ShortStack LonTalk/IP Compact API includes the optional network 
management query API functions that provide additional network management 
commands listed in Table 29.   Support for these network management API 
functions is optional.  

The network management query API functions are asynchronous functions.  
They issue a downlink request and return immediately.  The functions can fail if 
no downlink buffer is available. 

If you do not plan to use these local network management commands, you do not 
have to include these functions in your ShortStack application.  You can include 
these functions with api extension 1. 

Example 

//@IzoT Option api(1) 
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Table 14. Network Management Query API Functions 

Function Description 

LonQueryAddressConfig() Queries configuration data for the Micro Server’s address 
table. 

LonQueryAliasConfig() Queries configuration data for the Micro Server’s alias 
table. 

LonQueryConfigData() Queries configuration data on the ShortStack Micro 
Server. 

LonQueryDomainConfig() Retrieves domain information from the ShortStack Micro 
Server. 

LonQueryNvConfig() Queries configuration data for the Micro Server’s 
network variable table. 

LonQueryStatus() Requests the status of the ShortStack Micro Server. 

LonQueryTransceiverStatus() Requests the status of the ShortStack Micro Server’s 
transceiver.  Used with power line transceivers.  

If this function is used with an FT transceiver, the 
function will appear to succeed, but the callback that 
contains the results will declare a failure. 

Network Management Update Functions 
The ShortStack LonTalk/IP Compact API includes the optional network 
management update API functions that provide additional network management 
commands listed in Table 30.   Support for these network management API 
functions is optional.  

The network management update API functions can fail if no downlink buffer is 
available. 

If you do not plan to use these local network management commands, you do not 
need to include these functions in your ShortStack application.  You can include 
these functions in your source code with IML api extension 1. 

Example 

//@IzoT Option api(1) 
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Table 15. Network Management Update API Functions 

Function Description 

LonClearStatus() Clears a subset of status information on the ShortStack 
Micro Server. 

LonSetNodeMode() Sets the operating mode for the Micro Server: 

• Online:  For an online device, both the host
application and the Micro Server are running, and
the device responds to all network messages.

• Offline:  For an offline device, the host application
cannot propagate network variables or send
network messages.  The Micro Server processes
network variable update requests, and updates the
network variable values, but the ShortStack
LonTalk/IP Compact API does not call the
LonNvUpdateOccurred() callback handler
function.  The Micro Server acknowledges
application messages that the device receives, but
discards them.

LonUpdateAddressConfig() Sets configuration data for the Micro Server’s address table. 

LonUpdateAliasConfig() Sets configuration data for the Micro Server’s alias table. 

LonUpdateConfigData() Sets configuration data on the ShortStack Micro Server. 

LonUpdateDomainConfig() Sets domain information from the ShortStack Micro Server. 

LonUpdateNvConfig() Sets configuration data for the Micro Server’s network 
variable table. 

Local Utility Functions 
Table 31 lists the ShortStack LonTalk/IP Compact API functions that provide 
local utility functions for the host application.  Including these functions is 
optional.   

If you choose not to include these functions, they are not available for use in your 
ShortStack application.  You can include these functions in your source code by 
enabling IML api extension 2.  

Example 

//@IzoT Option api(2) 
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Table 16. Local Utility ShortStack LonTalk/IP Compact API Functions 

Function Description 

LonGoConfigured() Puts the Micro Server in the configured state and online 
mode. 

LonGoUnconfigured() Puts the Micro Server in the unconfigured state. 

LonMtIsBound() Queries the ShortStack Micro Server to determine if the 
specified message tag is bound to the network.  You can use 
this function to ensure that transactions are initiated only 
for connected message tags.  The 
LonMtIsBoundReceived() callback handler function 
processes the reply to the query.   

LonNvIsBound() Queries the ShortStack Micro Server to determine if the 
specified network variable is bound to the network.  You can 
use this function to ensure that transactions are initiated 
only for connected network variables.  The 
LonNvIsBoundReceived() callback handler function 
processes the reply to the query. 

LonQueryAppSignature() Queries the Micro Server's current version of the host 
application signature. 

LonQueryVersion() Queries the version number of the Micro Server application 
and the Micro Server core library used for the Micro Server. 

With this version information and the Micro Server key, you 
can uniquely identify the current Micro Server. 

LonRequestEcho() Sends a six-byte message (arbitrary values defined by the 
application) to the ShortStack Micro Server.  The Micro 
Server transforms this message by incrementing each of the 
six data bytes and returning the message to the host.  

You can use the echo command instead of the ping command, 
but the echo command takes longer to complete (because of 
larger messages, and because of the data transformation 
performed by the Micro Server).  Echo tests should be 
performed frequently during early stages of device 
development or stress testing, but should be executed 
infrequently on a production device. 
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Function Description 

LonSendPing() Sends a message to the ShortStack Micro Server to verify 
that communications with the Micro Server are functional.  
This function can be useful after long periods of network 
inactivity. 

Define a ping timer of at least 60 seconds.  The application 
typically resets this timer upon completion of every 
successful uplink or downlink communication.  When this 
timer expires, the application issues a ping request to the 
Micro Server.  If the Micro Server is functional, it replies to 
the ping request by causing the LonPingReceived() 
callback event.  In general, link layer idleness of more than 
1.5 times the ping timer’s duration indicates a serious error. 
An application can recover from this error by physically 
resetting the Micro Server. 

LonSetPostResetPause Disables or configures the Micro Server’s post reset delay. 
Assign zero to disable or a value in the 1..255 ms range to 
enable.  

The Micro Server uses 50 ms by default. 

Assignments to this value are stored in persistent memory 
on the Micro Server. 

ShortStack Callback Handler Functions 
The ShortStack LonTalk/IP Compact API provides event handler functions for 
managing network and device events. 

Commonly Used Callback Handler 
Functions 
Table 32 lists the callback handler functions that you will most likely need to 
define so that your application can perform application-specific processing for 
certain LONWORKS events.  You do not have to modify these callback functions if 
you have no application-specific processing requirements. 
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Table 17. Commonly Used ShortStack Callback Handler Functions 

Function Description 

LonGetCurrentNvSize() Indicates a request for the network variable size. 

The ShortStack LonTalk/IP Compact API calls this callback 
handler function to determine the current size of a 
changeable-type network variable.   

For applications using the IzoT Interface Interpreter, this 
callback is automatically implemented.  

LonNvUpdateCompleted() This callback is no longer used.  It indicates that either an 
update network variable call or a poll network variable call 
is completed. 

Applications using the IzoT Interface Interpreter declare 
onComplete events instead.  

LonNvUpdateOccurred() This callback is no longer used.  It indicates that a network 
variable update request from the network has been 
processed by the ShortStack LonTalk/IP Compact API.  This 
call indicates that the network variable value has already 
been updated, and allows your host application to perform 
any additional processing, if necessary. 

Applications using the IzoT Interface Interpreter declare 
onUpdate events instead. 

LonOffline() This callback is no longer used.  It represenets a request 
from the network that the device go offline.   

Installation tools use this message to disable application 
processing in a device.  An offline device continues to 
respond to network management messages, but the host 
application cannot propagate network variables or send 
network messages.    

When this function is called, the ShortStack Micro Server is 
still online, but changes to the offline state as soon as this 
callback handler completes. 

Applications using the IzoT Interface Interpreter declare 
onOffline events instead. 
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Function Description 

LonOnline() This callback is no longer used.  It represenets a request 
from the network that the device go online. 

Installation tools use this message to enable application 
processing in a device.   

When this function is called, the ShortStack Micro Server is 
still offline, but changes to the online state as soon as this 
callback handler completes. 

Applications using the IzoT Interface Interpreter declare 
onOnline events instead. 

LonReset() This callback is no longer used.  It is a notification that the 
ShortStack Micro Server has been reset. 

Applications using the IzoT Interface Interpreter declare 
onReset events instead. 

LonServicePinHeld() This callback is no longer used.  It is an indication that the 
Service input on the device has been activated for some 
number of seconds (default is 10 seconds).  Use it if your 
application needs notification of the Service input being 
active. 

Applications using the IzoT Interface Interpreter declare 
onService events instead. 

LonServicePinPressed() This callback is no longer used.  It is an indication that the 
Service input on the device has been activated.  Use it if 
your application needs notification of the Service input 
being activated. 

Applications using the IzoT Interface Interpreter declare 
onService events instead. 

LonWink() This callback is no longer used.  It indicates a wink request 
from the network.   

Installation tools use the Wink message to help installers 
physically identify devices.  When a device receives a Wink 
message, it can provide some visual, audio, or other 
indication for an installer to be able to physically identify 
this device. 

Applications using the IzoT Interface Interpreter declare 
onWink events instead. 

Application Messaging Callback Handler 
Functions  
Table 33 lists the callback handler functions that are called by the ShortStack 
LonTalk/IP Compact API for application messaging transactions.  Customize 
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these functions if you use application messaging in your ShortStack device. 
Application messaging is optional.  

If you choose not to support application messaging, you do not have to customize 
these functions.  These functions are automatically included when your 
application declares at least one message tag. 

Table 18. Application Messaging ShortStack Callback Handler Functions 

Function Description 

LonMsgArrived() An application or foreign frame message from the network to be 
processed.  This function performs any application-specific 
processing required for the message.  If the message is a request 
message, the function must deliver a response using the 
LonSendMsgResponse() function.  

Application messages are always delivered to the application, 
regardless of whether the message passed authentication.  The 
application decides whether authentication is required for a 
message. 

LonMsgCompleted() Indicates that a downlink transfer for a message, initiated by a 
LonSendMsg() call, was completed.  

If a request message has been sent, this callback handler is 
called only after all responses have been reported by the 
LonResponseArrived() callback handler. 

LonResponseArrived() An application message response from the network.  This 
function performs any application-specific processing required 
for the message.  

Network Management Query Callback 
Handler Functions 
The ShortStack LonTalk/IP Compact API includes the optional network 
management query API callback handler functions listed in Table 34.  These 
callbacks allow you to customize the application processing for responses to local 
network management commands (see Table 29).  Support of these network 
management query API callback functions is optional.  

If you do not plan to use extended local network management commands, there is 
no need to customize or include these functions in your ShortStack application. 
Use IML api extension 1 to include these functions. 
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Table 19. Network Management Query API Callback Handler Functions 

Function Description 

LonAddressReceived() Indicates that configuration data for the Micro 
Server’s address table has been received. 

LonAliasConfigReceived() Indicates that configuration data for the Micro 
Server’s alias table has been received. 

LonConfigDataReceived() Indicates that configuration data has been received 
from the Micro Server.  Receipt of this data is 
initiated by a call to the LonQueryConfigData() 
function. 

LonDomainConfigReceived() Indicates that domain information has become 
available.  This event is initiated by the Micro 
Server in response to a previous call to 
LonQueryDomain() by the ShortStack application. 

LonNvConfigReceived() Indicates that configuration data for the Micro 
Server’s network variable table has been received. 

LonStatusReceived() Indicates that the status report has been received 
from the Micro Server.  Receipt of this data is 
initiated by a call to the LonQueryStatus() 
function.  Modify this function to perform 
application-specific handling of the status report. 

LonTransceiverStatusReceived() Indicates that the transceiver status report has been 
received from the Micro Server.  Receipt of this data 
is initiated by a call to the 
LonQueryTransceiverStatus() function.  Modify 
this function to perform application-specific 
handling of the transceiver status. 

Local Utility Callback Handler Functions 
Table 35 lists the callback handler functions for the local utility functions 
described in Local Utility Functions.   

You can include the local API functions and their callback handler functions with 
IML api extension 2. 



ShortStack User’s Guide        247 

Table 20. Local Utility API Callback Handler Functions 

Function Description 

LonAppSignatureReceived() Indicates the current host application signature. 

LonEchoReceived() Provides the Micro Server’s echo response, containing 
the transformed data from the corresponding 
LonRequestEcho() request.  

The application is responsible for verifying that the 
echo response meets expectations.  

LonGoConfiguredReceived() Indicates that the Micro Server has responded to the 
LonGoConfigured() request. 

LonGoUnconfiguredReceived() Indicates that the Micro Server has responded to the 
LonGoUnConfigured() request. 

LonMtIsBoundReceived() Indicates whether the specified message tag is bound. 

LonNvIsBoundReceived() Indicates whether the specified network variable is 
bound.  

LonPingReceived() Indicates whether the Micro Server received the ping 
message. 

LonVersionReceived() Indicates the version number of the Micro Server 
application and the Micro Server core library used for 
the Micro Server. 
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B 

LonTalk/IP ISI API 

This appendix describes the functions and callbacks 
included with the LonTalk/IP ISI API.  It also describes why 
and how to modify the API callbacks for use with your 
ShortStack application.  
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Introduction 
The ShortStackIsiTypes.h and ShortStackIsiApi.h header files include all 
types, enumerations, and prototypes that are needed to create an ISI-compliant 
host application.   

This appendix provides an overview of the ShortStack ISI functions and 
callbacks.  For detailed information about the LonTalk/IP ISI API, see the HTML 
documentation that is available in the doc/api directory within your local IzoT 
ShortStack SDK repository. 

The LonTalk/IP ISI API 
Table 36 lists the LonTalk/IP ISI API functions.  When the host application calls 
one of the functions listed in Table 36, a common function sends the downlink 
message.  When the API completes (that is, when the API receives either an ACK 
or NACK response from the Micro Server for the downlink API call), it calls the 
IsiApiComplete() callback handler function to inform the host application that 
it can issue additional API calls. 

Table 21. LonTalk/IP ISI API Functions 

Function Description 

IsiAcquireDomain() Starts or re-starts the domain ID acquisition 
process in a device that supports domain 
acquisition. 

Do not use this function if the engine is started 
with isiTypeS. 

IsiCancelAcquistion() Cancels both device and domain acquisition. 

After this function call completes, the ISI engine 
calls the IsiUpdateUserInterface() function with 
the IsiNormal event. 

Do not use this function if the engine is started 
with isiTypeS. 

IsiCancelEnrollment() Cancels an open (pending or approved) enrollment.  
When used on a connection host, a CSMX 
connection cancellation message is issued to cancel 
enrollment on the connection members.  When 
used on a device that has accepted (but not yet 
implemented) an open enrollment, this function 
causes the device to opt out of the enrollment 
locally. 

The function has no effect unless the ISI engine is 
running and in the pending or approved state. 
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Function Description 

IsiCreateEnrollment() Accepts a connection invitation.  You can call this 
function after the application has received and 
approved a CSMO open enrollment message.  If the 
assembly is not already in a connection, or if the 
assembly is in a connection and the device supports 
direct connection removal, the connection is re-
created.  If the assembly is already in a connection, 
any previous connection information is replaced.  
You cannot call this function with an assembly that 
is already in a connection on a device that does not 
support direct connection removal. 

On a connection host that has received at least one 
CSME enrollment acceptance message, this 
command completes the enrollment and 
implements the connection as new, replacing any 
previously existing enrollment information 
associated with this assembly. 

Calling this function on a device that does not 
support connection removal while indicating an 
assembly number that is already engaged in 
another connection, does not implement the new 
connection.  The IsiImplemented event is not 
fired in this case.  The application can use the 
IsiQueryIsConnected() function to determine if a 
given assembly is currently engaged in a 
connection. 

Use the IsiExtendEnrollment() function instead 
where supported, unless application requirements 
dictate otherwise. 

The ISI engine must be running and in the correct 
state when calling this function.  For a connection 
host, the ISI engine must be in the approved state.  
Other devices must be in the pending state. 

IsiDeleteEnrollment() Removes the specified assembly from all 
connections, and sends a CSMD connection 
deletion message to all other devices in each 
connection to remove them from the connection.  
This function has no effect if the ISI engine is 
stopped. 
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Function Description 

IsiExtendEnrollment() Accepts a connection invitation on a device that 
supports connection extension.  You can call this 
function after the application has received and 
approved a CSMO open enrollment message.  The 
connection is added to any previously existing 
connections.  If no previous connection exists for 
the assembly, a new connection is created.  You 
cannot call this function on a device that does not 
support connection extension. 

Where supported, and unless application 
requirements dictate otherwise, call this function 
instead of the IsiCreateEnrollment() function. 

On a connection host that has received at least one 
CSME enrollment acceptance message, this 
command completes the enrollment and extends 
any existing connections.  If no previous connection 
exists for the assembly, the ISI engine creates a 
new connection. 

The ISI engine must be running and in the correct 
state for this function to have any effect.  For a 
connection host, the ISI engine must be in the 
approved state.  Other devices must be in the 
pending state. 

IsiFetchDevice() Fetches a device by assigning a domain to the 
device from a domain address server (DAS).  An 
alternate method to assign a domain to a device is 
for the device to use the IsiAcquireDomain() 
function. 

This function can only be called from a domain 
address server. 

IsiFetchDomain() Starts or restarts the fetch domain process in a 
domain address server (DAS). 

This function can only be called from a domain 
address server. 

IsiInitiateAutoEnrollment() Starts automatic enrollment.  The local device 
becomes the connection host.  Automatic 
enrollment can replace previous connections, if 
any.  When this call returns, the ISI connection is 
implemented for the associated assembly. 

This function cannot be called before the IsiWarm 
event has been signaled in the 
IsiUpdateUserInterface() callback. 

This function does nothing when the ISI engine is 
stopped. 
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Function Description 

IsiIssueHeartbeat() Sends an update for the specified bound output 
network variable and its aliases, using group 
addressing.  This function is typically called by the 
IsiQueryHeartbeat() callback handler function. 

This function requires that the ISI engine has been 
started with the IsiFlagHeartbeat flag. 

IsiLeaveEnrollment() Removes the specified assembly from all enrolled 
connections as a local operation only.  When used 
on the connection host, the function is 
automatically interpreted as 
IsiDeleteEnrollment(). 

This function has no effect if the ISI engine is 
stopped. 

IsiOpenEnrollment() Opens manual enrollment for the specified 
assembly.  The device becomes a connection host 
for this connection and sends a CSMO manual 
connection invitation to all devices in the network. 

The ISI engine must be running, and in the idle 
state. 

IsiQueryImplementationVersion() Returns the version number of this ISI 
implementation. 

This function returns its result asynchronously 
through the 
IsiImplementationVersionReceived() callback 
function. 

The most current ISI implementation is version 
3.03.  For this version, this function reports 
implementation version 3. 

IsiQueryIsBecomingHost() Returns TRUE if IsiOpenEnrollment() has been 
called for the specified assembly and the 
enrollment has not yet timed out, been cancelled, 
or confirmed.  The function returns FALSE 
otherwise. 

This function returns its result asynchronously 
through the IsiIsBecomingHostReceived() 
callback function. 

IsiQueryIsConnected() Returns TRUE if the specified assembly is enrolled 
in a connection.  The function returns FALSE if 
the ISI engine is stopped. 

This function returns its result asynchronously 
through the IsiIsConnectedReceived() callback 
function. 
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Function Description 

IsiQueryIsRunning() Returns TRUE if the ISI engine is running and 
FALSE if the ISI engine is stopped. 

This function returns its result asynchronously 
through the IsiIsRunningReceived() callback 
function. 

IsiQueryProtocolVersion() Returns the version of the ISI protocol supported 
by the ISI engine.  The number indicates the 
maximum protocol version supported.  The ISI 
engine also supports protocol versions less than the 
number returned unless explicitly indicated. 

This function returns its result asynchronously 
through the IsiProtocolVersionReceived() 
callback function. 

The most current ISI protocol version is 1. 

IsiReturnToFactoryDefaults() Restores the device’s self-installation data to 
factory defaults, causing the immediate and 
unrecoverable loss of all connection information. 

This function returns to the caller, however, calling 
this function resets the Micro Server. 

IsiStart() Starts the ISI engine.  The ISI engine sends and 
receives ISI messages, and manages the network 
configuration of your device. 

This function also specifies whether domain 
acquisition server or client services are supported. 

Calls to this function with the IsiTypeDas 
parameter for a Micro Server that does not support 
ISI DAS are NACKed. 

IsiStartDeviceAcquisition() Starts or retriggers device acquisition mode on a 
domain address server.  The domain address server 
responds to domain ID requests from devices that 
implement a domain acquisition client, as long as it 
is in device acquisition mode. 

Call this function only if the ISI engine has been 
started with the IsiTypeDas type. 

IsiStop() Stops the ISI engine. 

Certain ISI API calls are managed by the Micro Server itself.  These include the 
following functions: 

• IsiTick() 

• IsiApproveMsg() 
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• IsiProcessMsg() 

• IsiProcessResponse() 

The Micro Server automatically translates these calls according to the mode that 
was used when starting the ISI engine.  Wrapper functions for the related ISI 
functions are implemented within the MicroServer.nc file.  For a custom Micro 
Server, you can modify those wrapper functions, for example, to intercept ISI 
messages.  These wrapper functions (and any extensions that you supply) must 
be located on the Micro Server. 

The LonTalk/IP ISI Callback Handler Functions 
Table 37 lists the ShortStack ISI callback handler functions.   

In any ISI application, callback handlers provide application-specific details to 
the ISI engine.  You can implement these callback handlers on your host 
processor or in a custom Micro Server for ShortStack ISI applications.  In either 
case, the set of callback handler functions and their prototypes remain the same.  

ISI callback handler functions must return to the caller as soon as possible, 
providing the requested information.  

Table 22. ShortStack ISI Callback Handler Functions 

Function Description 

IsiApiComplete() Indicates that the API function is complete and 
that the result has been received. 

The ISI engine calls this function when an API 
function completes.  Do not call an ISI API 
function until the previous one completes. 

This callback is available only on the host 
processor. 

IsiCreateCsmo() Constructs the IsiCsmoData portion of a 
CSMO Message.  The ISI engine calls this 
function prior to sending a CSMO message.   

You can implement this callback on an 
application-specific custom Micro Server or on 
the host.  The standard Micro Servers expect 
this callback on the host.  Typical applications 
implement this callback handler function in the 
same location (host or custom Micro Server) as 
the IsiGetWidth() callback handler function. 
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Function Description 

IsiCreatePeriodicMsg() Specifies whether the application has any 
messages for the ISI engine to send using the 
periodic broadcast scheduler.  Because the ISI 
engine sends periodic outgoing messages at 
regular intervals, you can use this function to 
send a message during one of the periodic 
message slots.  If the application has no 
message to send, then this function must return 
FALSE.  If it does have a message to send, then 
this function must return TRUE. 

To use this function, enable application-specific 
periodic messages using the 
IsiFlagApplicationPeriodic flag when you 
call the IsiStart() function. 

The default implementation of this function 
does nothing but return FALSE.  You can 
override this function by providing an 
application-specific implementation of 
IsiCreatePeriodicMsg(). 

Do not send any messages, start other network 
transactions, or call other ISI API functions 
while the IsiCreatePeriodicMsg() callback is 
running.  To call other ISI API functions or 
start other network transactions, signal the 
application’s readiness through an application-
specific utility in the IsiCreatePeriodicMsg() 
callback function and evaluate the signal when 
appropriate.  This separate utility can send the 
periodic message soon after the 
IsiCreatePeriodicMsg() function is 
completed. 

You can implement this callback handler on an 
application-specific custom Micro Server or on 
the host.  The standard Micro Servers use the 
default implementation of this callback. 

IsiGetAssembly() Returns the number of the first assembly that 
can join a connection.  The function returns 
ISI_NO_ASSEMBLY (0xFF) if no such 
assembly exists, or an application-defined 
assembly number (0 to 254).  

You can implement this callback on an 
application-specific custom Micro Server or on 
the host.  The standard Micro Servers expect 
this callback on the host. 
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Function Description 

IsiGetConnection() Returns a pointer to an entry in the connection 
table.  The default implementation returns a 
pointer to a built-in connection table with 32 
entries, stored in the Micro Server’s on-chip 
EEPROM memory (extended RAM for a Series 
5000 Micro Server).  You can override this 
function to provide an application-specific 
means of accessing the connection table, or to 
provide an application table of a different size. 

This function is frequently called and must 
return as soon as possible. 

If you override this function, you will typically 
also override the 
IsiGetConnectionTableSize() and 
IsiSetConnection() functions.  And, if you 
implement any of these callback handlers either 
on the host or on the Micro Server, you must 
override the other two in the same location. You 
can implement all three of these functions on 
the Micro Server for the best performance. 

IsiGetConnectionTableSize() Returns the number of entries in the connection 
table. The default implementation returns the 
number of entries in the built-in connection 
table (32).  You can override this function to 
support an application-specific implementation 
of the ISI connection table.  You can use this 
function to support a larger connection table. 

The ISI library supports connection tables with 
0 to 254 entries.  The connection table size is 
considered constant following a call to 
IsiStart(); you must first stop, then re-start, 
the ISI engine if the connection table size 
changes dynamically.  

If you override this function, you must also 
override the IsiGetConnection() and 
IsiSetConnection() functions.  And, if you 
implement any of these callback handlers either 
on the host or on the Micro Server, you must 
override the other two in the same location. You 
can implement all three of these functions on 
the Micro Server for the best performance.  

Custom Micro Servers can change the 
connection table size, or its location, or both. 
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Function Description 

IsiGetNextAssembly() Returns the next applicable assembly for an 
incoming CSMO following the specified 
assembly.  The function returns 
ISI_NO_ASSEMBLY (0xFF) if there are no 
such assemblies, or an application-specific 
assembly number (1 to 254).  You can call this 
function after calling the IsiGetAssembly() 
function, unless IsiGetAssembly() returned 
ISI_NO_ASSEMBLY.  

You can implement this callback on an 
application-specific custom Micro Server or on 
the host.  The standard Micro Servers expect 
this callback on the host. 

IsiGetNextNvIndex() Returns the network variable index of the 
network variable at the specified offset within 
the specified assembly, following the specified 
network variable.   Returns ISI_NO_INDEX 
(0xFF) if there are no more network variables or 
a valid network variable index (0 to 254) 
otherwise. 

You can implement this callback on an 
application-specific custom Micro Server or on 
the host.  The standard Micro Servers expect 
this callback on the host. 

IsiGetNvIndex() Returns the network variable index (0 to 254) of 
the network variable at the specified offset 
within the specified assembly or 
ISI_NO_INDEX (0xFF) if no such network 
variable exists.  This function must return at 
least one valid network variable index for each 
assembly number returned by 
IsiGetAssembly() and 
IsiGetNextAssembly(). 

You can implement this callback on an 
application-specific custom Micro Server or on 
the host.  The standard Micro Servers expect 
this callback on the host. 

IsiGetNvValue() Returns the value of the specified network 
variable. 

You can implement this callback on the host, 
but it is only required if ISI network variable 
heartbeats are supported and enabled. 
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Function Description 

IsiGetPrimaryDid() Returns a pointer to the default primary 
domain ID for the device.  The function also 
provides the domain ID length.  Domain IDs 
can be 1, 3, or 6 bytes long; the 0-length domain 
ID cannot be used for the primary domain.  

You can override this function to override the 
ISI standard domain ID value. 

You can only use this function to define a 
unique primary domain when creating a domain 
address server, and to define a non-standard 
domain when creating a non-interoperable self-
installed system.  Both length and value of the 
domain ID provided are considered constant 
after the ISI engine is running.  To change the 
primary domain ID at runtime using the 
IsiGetPrimaryDid() callback, stop and re-
start the ISI engine. 

You can implement this callback on the Micro 
Server.  By default, the default implementation 
is used.  To create an ISI domain address server 
with ShortStack, you must create a custom 
Micro Server and override the 
IsiGetPrimaryDid() function.  Typically, such 
an overridden IsiGetPrimaryDid() callback 
returns the Micro Server’s own Neuron ID. 

IsiGetPrimaryGroup() Returns the group ID for the specified 
assembly.  The default implementation returns 
ISI_DEFAULT_GROUP (128).  

You can implement this callback on an 
application-specific custom Micro Server or on 
the host.  The standard Micro Servers expect 
this callback on the host. 
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Function Description 

IsiGetRepeatCount() Specifies the repeat count used with all network 
variable connections, where all connections 
share the same repeat counter.  The repeat 
counter value is considered constant for the 
lifetime of the application, and is only queried 
when the device powers up the first time after a 
new application image has been loaded, and 
every time IsiReturnToFactoryDefaults() 
runs.  Only repeat counts of 1, 2 or 3 are 
supported.  To take full advantage of the 
secondary frequency on a PL transceiver, only 
use a repeat count of 1 or 3.  This function has 
no affect on ISI messages. 

The default implementation of this function 
always returns 3. 

This function operates whether the ISI engine is 
running or not. 

You can implement this callback on an 
application-specific custom Micro Server or on 
the host.  The standard Micro Servers use the 
default implementation that is provided with 
the ISI library, which results in 3 repeats. 

IsiGetWidth() Returns the width in the specified assembly.  
The width is equal to the number of network 
variable selectors associated with the assembly. 

You can implement this callback on an 
application-specific custom Micro Server or on 
the host.  The standard Micro Servers expect 
this callback on the host. 

IsiImplementationVersionReceived() Retrieves the version number of this ISI 
implementation.   

This callback occurs as a result of an earlier call 
to the IsiQueryImplementationVersion() 
function. 

IsiIsBecomingHostReceived() Reports TRUE if IsiOpenEnrollment() has 
been called for the specified assembly and the 
enrollment has not yet timed out, been 
cancelled, or confirmed.  The function reports 
FALSE otherwise. 

This callback occurs as a result of an earlier call 
to the IsiQueryIsBecomingHost() API 
function. 
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Function Description 

IsiIsConnectedReceived() Reports TRUE if the specified assembly is 
enrolled in a connection.  The function reports 
FALSE if the ISI engine is stopped. 

This callback occurs as a result of an earlier call 
to the IsiQueryIsConnected() API function. 

IsiIsRunningReceived() Reports TRUE if the ISI engine is running and 
FALSE if the ISI engine is stopped. 

This callback occurs as a result of an earlier call 
to the IsiQueryIsRunning() API function. 

IsiProtocolVersionReceived() Retrieves the version of the ISI protocol 
supported by the ISI engine.  The number 
indicates the maximum protocol version 
supported.  The ISI engine also supports 
protocol versions less than the number returned 
unless explicitly indicated. 

This callback occurs as a result of an earlier call 
to the IsiQueryProtocolVersion() API 
function. 

IsiQueryHeartbeat() Returns TRUE if a heartbeat for the network 
variable with the specified global index has 
been sent, and returns FALSE otherwise.  
When network variable heartbeat processing is 
enabled, and the ISI engine is running, the 
engine queries bound output network variables 
using this callback (including any alias 
connections) whenever the heartbeat is due.  
This function does not send the heartbeat 
update—see IsiIssueHeartbeat().  For more 
details on network variable heartbeat 
scheduling, see the ISI Protocol Specification. 

You can implement this callback handler on an 
application-specific custom Micro Server or on 
the host.  The standard Micro Servers expect 
this callback to be implemented on the host. 
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Function Description 

IsiSetConnection() Updates an entry in the connection table, which 
needs to be kept in persistent, nonvolatile, 
storage. 

The default implementation updates an entry in 
the built-in connection table with 32 entries, 
stored in the Micro Server’s on-chip non-volatile 
memory.  You can override this function to 
provide an application-specific means of 
accessing the connection table, or to provide an 
application table of a different size. 

This function is frequently called and must 
return as soon as possible. 

If you override this function, you must also 
override the IsiGetConnectionTableSize() 
and IsiGetConnection() functions.  And, if you 
implement any of these callback handlers either 
on the host or on the Micro Server, you must 
override the other two in the same location. You 
can implement all three of these functions on 
the Micro Server for the best performance. 

IsiUpdateUserInterface() Provides status feedback from the ISI engine.  
These events are useful for synchronizing the 
device’s user interface with the ISI engine.  To 
receive notification of ISI status events, 
override the IsiUpdateUserInterface() 
callback function.  The default implementation 
of this function does nothing.  

This callback is typically, and by default, 
implemented on the host. 

IsiUserCommand() Informs the host application about user-defined 
Micro Server events. 

A custom Micro Server can inform the host 
application about events that are otherwise 
known only to custom code that is local to a 
custom Micro Server.  

See Discovering Devices for an example of using 
this function. 

An ISI-aware host application requires an ISI-aware Micro Server, but an ISI-
aware Micro Server can be used with an ISI-unaware host application and host 
API. 

As defined in the [ShortStack]\microserver\custom 
\ShortStackIsiHandlers.h header file, an ISI callback handler function can 
reside in one of the following locations: 
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• The ISI Library.  The callback handler is an ISI default function.  No 
development effort is required to implement these functions, but no 
customized behavior is available. 

• The Micro Server application.  The callback handler is a locally 
overridden function.  Customization of these handlers requires a custom 
Micro Server.  Assuming the Micro Server has sufficient resources, these 
callback handler overrides offer the best performance and control and 
minimal host footprint, but can lead to application-specific Micro Server 
implementations. 

• The host application.  The callback handler is a remote function that uses 
the ShortStack ISI protocol.  These callback handlers are the most 
flexible, but lowest performance ISI callback handlers.  This type of 
callback handler is typically used for application-specific callbacks, and 
allows the use of a single Micro Server for multiple applications. 

A callback handler function cannot call any other ISI callback handler functions, 
unless both the caller and the called functions reside on the same platform (host 
or Micro Server). 

For each callback, you can choose whether the callback is handled by the ISI 
default, by a version local to the Micro Server, or by the host application.  The 
[ShortStack]\microserver\custom\ShortStackIsiHandlers.h header file 
includes conditional-compilation macros for each callback handler function:  

• To direct the callback to the Micro Server 

• To direct the callback to the host 

• To enable the default implementation 

The callback control macros use the following naming convention: 

ISI_location_callback 

For example:  ISI_HOST_GETASSEMBLY or 
ISI_SERVER_GETCONNECTIONTABLESIZE. 

For a remote callback handler, the ShortStack Micro Server includes a proxy 
function that receives the function’s parameters, packs them into a message 
buffer, and passes the data to the host function.   

If the host application attempts to send a response to a callback handler, and it is 
unable to do so because there are no transmit buffers, it retries sending the 
response until it is successful.  The Micro Server’s RPC guard times out after 5 
seconds, after which the Micro Server logs an error and resets.  See Table 22, 
Developing a ShortStack Application, for a list of the LonSystemError 
enumeration values. 

While waiting for the response, the Micro Server continues to process downlink 
and uplink traffic.  However, because only one downlink ISI API request can be 
buffered, additional requests are NACKed.  Other functionality might be delayed 
and enqueued for later processing while waiting for the completion of an RPC. 
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C 

Downloading a ShortStack 
Application over the Network 

This appendix describes considerations for designing a 
ShortStack host application that allows host application 
updates over the network.  
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Overview 
For a Neuron hosted device, you can update the application image over the 
network using a network management tool, such as the IzoT Commissioning 
Tool.  However, you typically cannot use the same tools or technique to update a 
ShortStack application image over the network.  Many ShortStack devices do not 
require application updates over the network, but for those that do, this appendix 
describes considerations for adding this capability to the device. 

If a ShortStack host has sufficient non-volatile memory, it can hold two (or more) 
application images:  one image for the currently running application, and the 
other image to control downloaded updates to the application.  The device then 
switches between these images as necessary.  Because neither the ShortStack 
LonTalk/IP Compact API nor the ShortStack Micro Server directly supports 
updating the host application over the network, you must do the following: 

1. Define a custom host application download protocol.  

2. Implement an application download utility. 

3. Implement application download capability within your ShortStack host 
application.  

For the application download process: 

• The application must be running and configured for the duration of the 
download.  

• There must be sufficient volatile and non-volatile memory to store the 
new image without affecting the current image. 

• The application must be able to boot the new image at the end of the 
download.  During this critical period, the application must be able to 
tolerate device resets and boot either the old application image or the new 
one, as appropriate.   

This appendix decribes some of the considerations for designing a ShortStack 
application download function.   

Custom Host Application Download Protocol 
The custom host application protocol that you define for downloading a 
ShortStack host application over the network must support the following steps: 

1. Prepare for application download. 
 
When the application download utility informs the current ShortStack 
host application to start an application download, the application must 
respond by indicating whether it is ready for the utility to begin the 
download.  The utility must be able to wait until the application is ready, 
or abort download preparation after a timeout period.  The utility can 
also inform the user of its state. 
 
During this stage, the ShortStack host application must verify that the 
application to be downloaded can run on the device platform (using the 
Micro Server key and link layer protocol version numbers or similar 
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mechanism), and verify that the application image is from a trusted 
source (for example, by using an encrypted signature). 

2. Download the application. 
 
A reliable and efficient data transfer mechanism must be used.  The 
LONWORKS file transfer protocol (LW-FTP) can be used, treating the 
entire application image as a file. 
 
The download utility and the application must support long flash write 
times during this portion of the download process.  The ShortStack host 
application must update the flash in the background, however, it might 
be necessary for the protocol to define additional flow control to allow the 
host application to complete flash writes before accepting new data. 

3. Complete download. 
 
The application download utility informs the current application that the 
download is complete.  The host application verifies the integrity of the 
image, and either: 

a. Accepts the image, and proceeds to the final steps below. 

b. Requests retransmission of some sections of the image. 

c. Rejects the download.  

4. Boot the new application. 
 
To boot the new application, you must implement a custom boot loader 
(or boot copier) so that the host processor can load the new application 
and restart the processor with the new image.  See your host processor’s 
and operating system’s documentation for recommendations and 
information about creating a custom boot loader. 

For the duration of the first three steps, the application must be running, the 
link-layer driver needs to be operational, and the ShortStack device must be 
configured and online. 

Upgrading Multi-Processor Devices 
A ShortStack device consists of at least two processor chips, each with their 
respective applications:  a Smart Transceiver with the ShortStack Micro Server 
and your host processor with the ShortStack link-layer driver, ShortStack 
LonTalk/IP Compact API, and your application program.  

Because both processor chips must communicate through the link layer, both 
must use the same protocol for application download, and have matching 
settings. 

Most updates to ShortStack host applications will likely address issues within 
the application’s control algorithm, and leave the ShortStack LonTalk/IP 
Compact API and link-layer driver unchanged.  To ensure that the new 
application is correct for the current device and its settings, the host application 
download protocol must ensure that at least the following requirements are met 
before control is handed to the new application: 
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• The Micro Server and the host application must support the same link-
layer protocol version.  The link-layer protocol version is contained in the 
Micro Server’s reset notification message. 

• The Micro Server and the host application must support matching 
transceiver types.  You can configure the variations of the PL-20 
transceiver into a Micro Server that supports any of the PL-20 channel 
types (PL-20N, PL-20C, PL-20C-LOW, PL-20N-LOW), but you cannot run 
an application designed for any of the supported power line channels on a 
Micro Server designed for a twisted-pair free topology (TP/FT-10) 
channel, nor can you run a TP/FT-10 Micro Server on a PL-20 channel.  
The Micro Server can report the supported channel types through its 
Micro Server key, which is part of the reset notification message.  

• In addition to matching transceiver families, the host application may 
require additional Micro Server features, such as support for the ISI 
protocol.  These settings are also contained in the Micro Server’s reset 
notification message, if applicable. 

• The Micro Server and host application must support the same physical 
link-layer protocol (SCI or SPI).  Unless the host processor controls the 
Micro Server’s SBRB0 and SBRB1 input signals for bitrate selection, 
both sides’ link-layer bit rates must match. 

In addition, the new application will have certain requirements for the host 
environment, such as availability of memory or I/O resources, or the availability 
or version numbers of the embedded operating system.  Your host application 
download protocol can include an appropriate mechanism to determine and verify 
these requirements before passing control to the new application.  

In some cases, your host application download may require an upgrade to the 
Micro Server image at the same time as the upgrade of the host application.  The 
following considerations apply for designing the dual-processor application 
download protocol: 

• Because a complete and fully operational ShortStack device is required to 
run the host application download protocol, the host application download 
must be completed first.  

• The application cannot reset or initialize the Micro Server until the 
download process has been completed for both the host application and 
the Micro Server image. 

• Because the Micro Server will also be updated in the process, some steps 
of the application verification process can be postponed.  For example, the 
new host application may require a Micro Server key value that is 
correctly implemented by the new Micro Server image, but not the 
current one.  

• After the successful download of the Micro Server image, the Micro 
Server resets and enters quiet mode until the entire device has been 
successfully initialized.  While the Micro Server is in quiet mode, no 
network communication is possible with the device.  

• After the new Micro Server resets (after loading its new application 
image), it sends a reset notification to the host application.  This reset 
notification reports the new Micro Server’s capabilities and attributes, 
and indicates that an application initialization is required. 
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• After the host application has completed initialization, the host 
application download protocol must perform any previously postponed 
verification steps and pass control to the new host application, which in 
turn initializes the Micro Server. 

Application Download Utility 
This tool reads the application image to be loaded, and runs the application 
download protocol described in Custom Host Application Download Protocol.  You 
can write the utility as an IzoT Net plug-in or as any type of network-aware 
application. 

Download Capability within the Application 
Your application implements the custom application download protocol, and 
provides non-volatile storage for the new application image.  The application 
must also tolerate time consuming writes to flash during the transfer.  At a 
minimum, the ShortStack host application must reserve enough RAM to buffer 
two flash sectors.  When one sector has been completely received, the application 
writes it to flash in a background process.  If the write is not complete when the 
second buffer is filled, the ShortStack host application tells the application 
download utility to delay additional updates until the application is ready to 
receive the data. 

After the transfer is complete, and all data has been written to non-volatile 
memory, the application performs all necessary verification tasks, and prepares 
the image so that the boot loader can reboot the host processor from the new 
image.  This preparation must be defined so that a device or processor reset at 
any point will result in a functioning ShortStack device.  For example, the reset 
may always cause a boot from the old application image, or from the new 
application image, or from some temporary boot application that can complete 
the transition (possibly with user intervention).   

See your host processor and operating system documentation about guidance, 
recommendations, and tools that support these tasks.   





ShortStack User’s Guide        271 

 
 
 

D 

Glossary 

This appendix defines many of the common terms used for 
ShortStack device development.  

B 
block 

A block, also known as a functional block, is a network visible component of 
the software application on a LonTalk/IP or LON device.  A block 
encapsulates the datapoints and properties required for a task performed by 
the device application.   

For example, an LED controller device may provide functionality to 
independently control the color of multiple LED lamps, and also to monitor 
the power consumption and energy usage of the lamps.  The LED controller 
application may expose this functionality as an independent load control 
block for controlling each lamp, as well as independent analog sensor blocks 
for monitoring instantaneous power and energy consumption for each lamp.  

Each block is defined by a profile that defines the datapoint and property 
members that can be implemented by the block.  A profile defines mandatory 
and optional members.  A block always implements the mandatory members, 
and may also implement any of the optional members from the profile.  

D 
datapoint 

A datapoint is a data value or structured set of values where each value has 
specified encoding, units, range, and scaling.  A datapoint may be published 
or subscribed to by a LonTalk/IP or LON device, or it may be published by an 
IzoT Server via the IzoT REST API.  A datapoint published or subscribed to 
by a device is called a device datapoint, and is also called a network variable. 
A datapoint published by an IzoT Server is called a server datapoint.  Both 
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types of datapoints are just called "datapoint" when used in the context of a 
device or an IzoT Server.  

A device datapoint is a generalization of a network variable.  Most device 
datapoints implement a network variable (and are often the same as a 
network variable), but a device datapoint can also implement other forms of 
network data objects, or can hold additional data or meta-data. 

Device datapoints may be shared among multiple LonTalk/IP and LON 
devices.  Each device datapoint represents a single scalar value or a structure 
or union of multiple values containing 1 to 225 bytes.  A device may have 
multiple datapoints, and each datapoint may be shared with one or more 
datapoints on any device or group of devices within a network. 

downlink 

Link-layer data transfer from the host to the Micro Server. 

H 
handshake 

The communication across the link layer between the host serial driver and 
the ShortStack Micro Server that confirms readiness to receive a link-layer 
segment.  For the serial driver, the handshake involves three or four control 
signals. 

host processor  

A microcontroller or microprocessor that is attached to a ShortStack Micro 
Server and runs a LonTalk/IP or LON application. 

I 
IzoT Interface Interpreter 

A utility that generates the framework for your application and produces 
device interface files. 

The IzoT Interface Interpreter supersedes the LonTalk Interface Developer 
utility, which was included with the ShortStack FX SDK. 

IzoT ShortStack SDK 

Software required to develop LonTalk/IP or LON applications for any 
microcontroller or microprocessor.  The kit includes software tools, examples, 
documentation, plus the ShortStack LonTalk/IP Compact API and 
ShortStack firmware. 

 

L 
link layer 

A protocol and interface definition for communication between a host 
processor and a ShortStack Micro Server; see ShortStack link layer. 

link-layer protocol 

The protocol that is used for data exchange across the link layer. 
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link-layer segment 

A part of a message sent across the link layer that requires a handshake 
between the host serial driver and the ShortStack Micro Server.  Examples of 
a link-layer segment are:  the link-layer header, the link-layer extended 
header, and the link-layer payload. 

LonTalk/IP API 

A C language interface that can be used by a LonTalk/IP or LON application 
to send and receive network variable updates and application messages. 
There is a full featured version shipped with the IzoT SDK and a smaller 
version called the ShortStack LonTalk/IP Compact API shipped with the IzoT 
ShortStack SDK. 

 

LonTalk application framework 

Application code and device interface data structures created by the IzoT 
Interface Interpreter supporting an as-if method of programming using 
expressions in annotated standard C source code or by the LonTalk Interface 
Developer based on a model file. 

LonTalk Interface Developer 

A utility that generates an application framework for a LonTalk application; 
the LonTalk Interface Developer is part of the LonTalk Platform and is 
included with the ShortStack FX SDK. 
The IzoT ShortStack SDK replaces the LonTalk Interface Developer with the 
IzoT Interface Interpreter.  

M 
model file 

A Neuron C application that is used to define the network interface for a 
ShortStack FX SDK application. 

The IzoT ShortStack SDK uses the IzoT Interface Interpreter, which does not 
require or support model files. 

N 
network variable 

A data item that a particular device application program expects to get from 
other devices on a network (an input network variable) or expects to make 
available to other devices on a network (an output network variable).  
Examples are a temperature value, switch value, and actuator position 
setting. 

Neuron C  

A programming language based on ANSI C with extensions for control 
network communication, I/O, and event-driven programming; also used for 
defining a network interface when used for a model file. 
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S 
ShortStack application 

An application for a LONWORKS device implemented with the LonTalk 
Compact API and a ShortStack Micro Server. 

ShortStack device 

A LONWORKS device based on the ShortStack LonTalk/IP Compact API and a 
ShortStack Micro Server. 

ShortStack Driver API 

A portable C language hardware driver that encapsulates platform-
dependent code for transferring data between a host processor and a 
ShortStack Micro Server. 

ShortStack Firmware 

Firmware for an Echelon Smart Transceiver or Neuron Processor that 
enables the Smart Transceiver to be used as a network interface by a 
ShortStack host processor. 

ShortStack host processor 

A microprocessor or microcontroller that is integrated with the ShortStack 
LonTalk/IP Compact API, ShortStack Driver API, and a ShortStack Micro 
Server to create an IzoT device. 

ShortStack link layer 

The physical connection and protocol used to attach a ShortStack host 
processor to a ShortStack Micro Server; the hardware interface is either an 
SCI or SPI serial interface. 

ShortStack LonTalk/IP Compact API 

A compact version of the LonTalk/IP API for ShortStack devices with support 
for up to 254 network variables. 

ShortStack Micro Server 

An Echelon Smart Transceiver running the ShortStack Firmware. 

U 
uplink 

Link-layer data transfer from the Micro Server to the host. 
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