

Version 4.30 078-0540-01B

Quickly add control networking and Internet
accessibility to any device with a microprocessor
or microcontroller

IzoT® ShortStack®
SDK User’s Guide

Echelon, IzoT, LONWORKS, LONMARK, NodeBuilder, LonTalk,
Neuron, 3120, 3150, 3170, LNS, ShortStack, LonMaker,
OpenLDV, Pyxos, LonScanner, and the Echelon logo are
trademarks of Echelon Corporation that may be registered in
the United States and other countries.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Echelon products are not designed or intended for use in
equipment or systems, which involve danger to human
health or safety, or a risk of property damage and Echelon
assumes no responsibility or liability for use of the Neuron
Chips in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 2015 Echelon Corporation.
All Rights Reserved.

Echelon Corporation
www.echelon.com

http://www.echelon.com/

ShortStack User’s Guide iii

Welcome
Echelon’s IzoT ShortStack® Software Development Kit (SDK) enables any
product that contains a microprocessor or microcontroller to quickly and
inexpensively become a networked and Internet connected smart device. The
ShortStack Micro Server provides a simple way to add LonTalk/IP and LON
networking to new or existing smart devices. The IzoT ShortStack SDK is easy
to use due to a simple host API, a simple driver, a simple hardware interface, a
small host memory footprint, and comprehensive tool support.

This document describes how to develop an application for a networked device
using Echelon’s IzoT ShortStack SDK. It describes the architecture of a
ShortStack device and how to develop a ShortStack device. To develop a
ShortStack device you will interface the ShortStack Micro Server with your
microprocessor, create your ShortStack serial driver and adapt the portable API
code provided to your compiler and runtime environment. The application is
created with definitions for interoperable network interface items such as
datapoints and blocks using the IzoT Markup Language (IML), and using the
LonTalk/IP Compact API functions to program your ShortStack application.

Audience
This document assumes that the reader has a good understanding of the IzoT
platform and development of embedded devices.

What’s New in the IzoT ShortStack SDK
The IzoT ShortStack SDK extends previous versions of the ShortStack SDK. It
includes most features and functions of earlier versions, and features a new
method for defining and managing the application’s network interface.

Installation

The IzoT ShortStack SDK is available on a shared repository on GitHub at
github.com/izot/shortstack. To obtain access to the private IzoT ShortStack SDK
repository on GitHub, fill out the IzoT ShortStack SDK registration form at
echelon.com/shortstack.

You can obtain source code for the API and examples from the shared repository,
which also includes all required binaries and a number of optional utilities. This
makes it easy to the integrate updates provided by Echelon.

IzoT Markup Language (IML)

The IzoT Markup Language replaces the Neuron C model file used by earlier
versions of the ShortStack SDK. IML provides a new and easier method of
defining and managing your application’s network interface. See Introduction to
the IzoT Markup Language for more information.

To define your application’s network interface, you will include IML in the source
files for your application. To implement the network interface you define with
IML, you will pre-process your source code with the IzoT Interface Interpreter.
The IzoT ShortStack SDK includes a Windows installer for the IzoT Interface
Interpreter for Windows.

https://github.com/
http://www.echelon.com/shortstack

iv

You can continue to use a Neuron C model file to define your network interface
by using the LonTalk Interface Developer (LID) included with earlier versions of
the ShortStack Developer’s Kit.

Older Versions of ShortStack

The IzoT ShortStack SDK co-exists with installations of earlier releases of the
ShortStack software. You can continue using older versions of ShortStack, and
the LonTalk Interface Developer (LID), for existing projects.

You can update those projects to take advantage of the new IzoT Micro Server,
see Application migration from the ShortStack FX SDK to the IzoT ShortStack
SDK for more information.

New Hardware Support

The IzoT ShortStack SDK adds standard Micro Servers for the FT 6050 Smart
Transceiver.

Other Neuron Chips and Smart Transceivers are also supported. Standard Micro
Servers are included for various configurations of FT 3120, FT 3150, PL 3120, PL
3150, PL 3170, FT 5000, and FT 6050 processors, and you can use the IzoT
NodeBuilder tool to create a custom Micro Server if your require a configuration
not provided by one of the standard Micro Servers.

Micro Server Enhancements

All standard IzoT ShortStack SDK Micro Servers include enhancements for
improved host synchronization and start-up. You must rebuild any custom Micro
Servers that you created with earlier versions of the ShortStack tool by using the
new IzoT ShortStack Micro Server core libraries to take advantage of these
enhancements.

Improvements include a configurable post-reset delay to allow the host more time
to re-synchronize the serial link layer driver, and improved validation of an
important initialization message.

ShortStack LonTalk/IP Compact API

The ShortStack LonTalk/IP Compact application programming interface (API)
includes new functions and callback handler functions, including a function to
configure the IzoT ShortStack SDK Micro Servers’ post-reset pause and including
improved support for persistent storage of non-volatile data.

Some functions of the ShortStack FX LonTalk Compact API have been taken over
by the IzoT Interface Interpreter, including the commonly used callback
handlers.

Some new callback functions have been added, while some other callback
prototypes have changed.

The API also supports an enhanced interface to the serial driver.

ShortStack FX LonTalk Compact API Compatibility

The IzoT ShortStack SDK LonTalk/IP Compact API is similar to the ShortStack
FX LonTalk Compact API, but differs in some details of API functions and
callback function prototypes.

Porting an existing ShortStack FX application to IzoT ShortStack requires some
code changes. While these changes are discussed in Application Migration From

ShortStack User’s Guide v

ShortStack FX to IzoT ShortStack, your compiler and linker will point-out where
the required changes were not made correctly.

Porting an existing ShortStack FX application to the IzoT ShortStack SDK also
requires a change from the Neuron C model file to the IzoT Markup Language
(IML). This requires a different way to express your preferences, such as your
selection of the Micro Server, and your selection of profiles or datapoints to
implement. However, you can use one of the new IzoT ShortStack Micro Servers
with existing ShortStack FX projects and the LonTalk Interface Developer.
(Access to and control over some of the added features may be limited.)

Example Ports

The IzoT ShortStack SDK includes a set of simple example host applications
based on a port of the ShortStack LonTalk/IP API and a driver for embedded
Linux on a Raspberry Pi (or compatible) platform.

IzoT ShortStack SDK User’s Guide

The IzoT ShortStack SDK User’s Guide describes the IzoT Interface Interpreter
and the IzoT Markup Language; detailed information on both can be found at
echelon.com/docs/izot.

Related Documentation
The documentation for the IzoT ShortStack SDK includes this IzoT ShortStack
SDK User’s Guide which includes documentation on the The ShortStack
LonTalk/IP Compact API and Callback Handler Functions.

The IzoT ShortStack SDK includes an example port for an embedded Linux
platform, including an example implementation of the serial driver, API, and
callback handlers, and several sample applications. You can access these
example ports from the IzoT ShortStack SDK GitHub repository at
github.com/izot/shortstack, where you can obtain the examples and optionally
contribute enhancements to the IzoT ShortStack SDK community.

The following manuals are available from the Echelon Web site at
echelon.com/docs and provide additional information that can help you develop
applications for a ShortStack Micro Server:

• Series 6000 Chip Data Book (005-0199-01C). This manual provides
detailed specifications on the electrical interfaces, mechanical interfaces,
and operating environment characteristics for the FT 6050 and FT 6010
Smart Transceivers, and the Neuron 6050 Processor.

• Series 5000 Chip Data Book (005-0199-01C). This manual provides
detailed specifications on the electrical interfaces, mechanical interfaces,
and operating environment characteristics for the FT 5000 Smart
Transceiver and Neuron 5000 Processor.

• FT 3120 / FT 3150 Smart Transceiver Data Book (005-0139-01D). This
manual provides detailed technical specifications on the electrical
interfaces, mechanical interfaces, and operating environment
characteristics for the FT 3120® and FT 3150® Smart Transceivers.

• PL 3120 / PL 3150 / PL 3170 Power Line Smart Transceiver Data Book
(005-0193-01C). This manual provides detailed technical specifications

http://www.echelon.com/docs/izot/
https://github.com/izot/shortstack
http://www.echelon.com/docs

vi

on the electrical interfaces, mechanical interfaces, and operating
environment characteristics for the PL 3120, PL 3150, and PL 3170
Smart Transceivers.

• Introduction to the LONWORKS Platform (078-0183-01B). This manual
provides an introduction to the ISO/IEC 14908-1 Control Network
Protocol, and provides a high-level introduction to LONWORKS networks
and the tools and components that are used for developing, installing,
operating, and maintaining them.

• ISI Programmer's Guide (078-0299-01F). Describes how you can use the
Interoperable Self-Installation (ISI) protocol to create networks of control
devices that interoperate, without requiring the use of an installation
tool. Also describes how to use Echelon's ISI Library to develop devices
that can be used in both self-installed as well as managed networks.

• ISI Protocol Specification (078-0300-01F). Describes the Interoperable
Self-Installation (ISI) protocol, which is a protocol used to create
networks of control devices without requiring the use of an installation
tool.

• LONMARK® Application Layer Interoperability Guidelines. This manual
describes design guidelines for developing applications for open
interoperable LONWORKS devices, and is available from the LONMARK
Web site, lonmark.org.

• IzoT Commissioning Tool User's Guide (078-0509-01A). This manual
describes how to use the IzoT Commissioning Tool to design, commission,
monitor and control, maintain, and manage a network.

• IzoT NodeBuilder® User’s Guide (078-0516-01A). This manual describes
how to develop a LONWORKS device using the IzoT NodeBuilder tool.

You use the IzoT NodeBuilder Tool to create a custom ShortStack Micro
Server. See Custom Micro Servers, for more information about custom
Micro Servers. Most ShortStack developers will not need to create a
custom ShortStack Micro Server.

You can also use the IzoT NodeBuilder Tool to create a model file for a
ShortStack FX application using the LonTalk Interface Developer.

You do not need IzoT NodeBuilder with IzoT ShortStack when using one
of the standard IzoT ShortStack Micro Servers provided.

• FT 5000 EVB Hardware Guide (078-0390-01B). This manual describes
how to develop, prototype, test and debug applications using the FT 5000
EVB.

• FT 6000 EVB Hardware Guide (087-0504-01A). This manual describes
how to develop, prototype, test and debug applications using the FT 6000
EVB.

• IzoT Markup Language section of the IzoT Manual at
echelon.com/docs/izot

http://www.lonmark.org/
http://www.echelon.com/docs/izot

ShortStack User’s Guide vii

The following useful documents are available in the IzoT ShortStack SDK
repository:

• Eclipse Configuration. This document describes how to configure Eclipse
Luna for the example applications. It can be found in the docs folder
within the IzoT ShortStack SDK repository.

• ShortStack Goes Raspberry Pi Wiring Instructions. This document
describes the wiring instructions between a Raspberry Pi Model B+ and
an Echelon FT 6000 EVK. It can be found in the example/rpi/doc folder
within the IzoT ShortStack SDK repository.

viii

ShortStack User’s Guide ix

Table of Contents

Welcome ... iii
Audience .. iii
What’s New in the IzoT ShortStack SDK .. iii
Related Documentation ... v

Introduction to the IzoT ShortStack SDK ... 1
Overview ... 2

IzoT Device Architectures ... 3
IzoT ShortStack SDK Application Development 4
Neuron Hosted and IzoT ShortStack Device Characteristics 5
IzoT ShortStack SDK and CPM 4200 Wi-Fi SDK 7

Requirements and Restrictions for ShortStack ... 8
Network Installation .. 8
ShortStack Architecture .. 9

The ShortStack Serial Driver ... 9
SCI Architecture ... 10
SPI Architecture .. 10

The ShortStack LonTalk/IP Compact API ... 11
Overview of the ShortStack Development Process 11

Getting Started with the IzoT ShortStack SDK 15
IzoT ShortStack SDK Overview .. 16
Installing the IzoT ShortStack SDK ... 16
ShortStack LonTalk/IP Compact API Files.. 17
Standard Micro Server Firmware Images .. 18

Introduction to the IzoT Markup Language ... 23
Overview .. 24
Selected Introductory Examples ... 24
The Simple Application Example ... 26

Integrating the IzoT Interface Interpreter .. 31
Input and Output Files ... 32
Pre-build Step or Script Method ... 32
Makefile Method .. 33
compileOutput Files in Detail ... 33

ShortStackDev.h ... 33
ShortStackDev.c .. 34
main.xif .. 35

Selecting and Creating a ShortStack Micro Server 37
Overview ... 38
Selecting the Micro Server Hardware .. 38

Micro Server Clock Rate ... 38
Micro Server Memory Map ... 39

Preparing the ShortStack Micro Server ... 40
Firmware Image File Names .. 42
Loading an FT 3120, PL 3120, or PL 3170 Smart Transceiver 44
Loading an FT 3150 or PL 3150 Smart Transceiver 44

Loading a Blank Application .. 45
Loading an FT 5000 Smart Transceiver .. 45
Loading an FT 6050 Smart Transceiver .. 46
Using a Network Management Tool for In-Circuit Programming 46

x

Using the NodeLoad Utility with ShortStack 47
Using the IzoT Commissioning Tool with ShortStack 48

Working with FT 6000 EVB or FT 5000 EVB Evaluation Boards 49
General Jumper Settings for the FT 5000 EVB and
 FT 6000 EVB .. 50
Using the Gizmo Interface (SCI or SPI) .. 51
Using the EIA-232 Interface (SCI)... 55
Clearing the Non-Volatile Memory .. 57
Using a Logic Analyzer ... 58

Working with Mini EVB Evaluation Boards 58
Using the Gizmo Interface (SCI) .. 59
Using the EIA-232 Interface (SCI)... 61

ShortStack Device Initialization ... 63
Using the ShortStack Micro Server Key .. 64

Selecting the Host Processor ... 67
Selecting a Host Processor... 68

Serial Communications ... 68
Byte Orientation .. 68
Processing Power ... 69
Volatile Memory .. 69
Modifiable Non-Volatile Memory ... 69
Compiler and Application Programming Language 70

Selecting the Development Environment ... 70

Designing the Hardware Interface ... 71
Overview of the Hardware Interface .. 72

Reliability ... 72
Serial Communication Lines .. 72
The RESET~ Pin ... 73
Using the IO9 Pin .. 74
Selecting the Link-Layer Bit Rate .. 74
Host Latency Considerations .. 76

SCI Interface .. 77
ShortStack Micro Server I/O Pin Assignments for SCI 78
Setting the SCI Bit Rate ... 79
SCI Communications Interface .. 80
SCI Micro Server to Host (Uplink) Control Flow 81
SCI Host to Micro Server (Downlink) Control Flow 81

SPI Interface... 82
ShortStack Micro Server I/O Pin Assignments for SPI 83
Setting the SPI Bit Rate ... 84
SPI Communications Interface ... 85
SPI Micro Server to Host Control Flow (MOSI) 86
SPI Host to Micro Server Control Flow (MISO) 87
SPI Resynchronization .. 89

Performing an Initial Micro Server Health Check 89
Setting Up a Logic Analyzer for ShortStack .. 91
Example Health Check for SCI .. 92
Example Health Check for SPI ... 97

Creating a ShortStack Serial Driver .. 101
Overview of the ShortStack Serial Driver .. 102
Role of the ShortStack LonTalk/IP Compact API 104

ShortStack User’s Guide xi

Role of the ShortStack Serial Driver .. 104
ShortStack LonTalk/IP Compact API Interface 104
Creating an SCI ShortStack Driver .. 106

SCI Uplink Operation ... 106
SCI Downlink Operation ... 108
Network Variable Fetch Example .. 112

Creating an SPI ShortStack Driver .. 113
SPI Uplink Operation .. 113
SPI Downlink Operation ... 115

Transmit and Receive Buffers ... 118
Link-Layer Error Detection and Recovery ... 118
Loading the ShortStack Application into the Host Processor 119
Performing an Initial Host Processor Health Check 120

Porting the ShortStack LonTalk/IP Compact API................................ 123
Portability Overview .. 124

Bit Field Members ... 126
Enumerations .. 126
LonPlatform.h .. 127
Testing the Ported API Files .. 128

Developing a ShortStack Application .. 129
Overview of a ShortStack Application .. 130

Using the ShortStack LonTalk/IP Compact API 130
Using Multiple System Execution Contexts 132

Tasks Performed by a ShortStack Application .. 132
Initializing the ShortStack device .. 133
Periodically Calling the Event Handler ... 134
Exchanging NV Data with Other Devices ... 135
Communicating with Application Messages 135

Sending an Application Message ... 138
Receiving an Application Message ... 139

Handling Management Tasks and Events... 140
Handling Local Network Management Tasks 140
Handling Reset Events .. 143
Querying the Error Log ... 143

Runtime Interface Selection .. 145
Static Interface Framework .. 145
Runtime Interface Selection Framework Architecture 147

Option Output ... 147
Option Namespace .. 148

Callback Dispatch .. 148
Interface Selection ... 149
Interface Switchover.. 150
Further Steps ... 150

Sharing Code ... 150
Dispatcher Extensions .. 152

Dispatched Callbacks .. 153
Framework Callbacks ... 153
API Callbacks .. 154

Persistent NVs ... 154
Application Start-Up and Failure Recovery 155

xii

Developing a ShortStack Application with ISI 157
Overview of ISI ... 158
Using ISI in an IzoT ShortStack SDK Application 159

Running ISI on a 3120 Device .. 159
Running ISI on a 3150 Device .. 159
Running ISI on a PL 3170 Device .. 160
Running ISI on an Series 6000 or 5000 Device 160

Tasks Performed by a ShortStack ISI Application 160
Starting and Stopping ISI ... 161
Implementing a SCPTnwrkCnfg Property .. 161
Managing the Network Address ... 162

Supporting a Pre-Defined Domain ... 163
Acquiring a Domain from a DAS ... 163
Fetching a Device from a Domain Address Server 165
Fetching a Domain for a DAS .. 165

Managing Network Variable Connections ... 166
ISI Connection Model ... 166
Opening Enrollment ... 169
Receiving an Invitation ... 176
Accepting a Connection Invitation ... 178
Implementing a Connection ... 180

Canceling a Connection ... 182
Deleting a Connection ... 182
Handling ISI Events .. 183
Domain Address Server Support .. 187
Discovering Devices ... 187

Maintaining a Device Table within the Micro Server 187
Maintaining a Device Table within a Host Application 192

Recovering Connections .. 194
Example 1: Custom Micro Server Implementation 195
Example 2: Host Implementation .. 197

Deinstalling a Device... 198
Comparing ShortStack ISI and Neuron C ISI Implementations 199

Custom Micro Servers .. 203
Overview ... 204
Custom Micro Server Benefits and Restrictions 204
Configuring and Building a Custom Micro Server 205

Overview of Custom Micro Server Development 207
Creating a Custom Micro Server without ISI Support 208
Creating a Custom Micro Server with ISI Support 210

Configuring MicroServer.h for ISI ... 213
Configuring ShortStackIsiHandlers.h ... 213
Implementing ISI in MicroServerIsiHandlers.c 214

Supporting Direct Memory Files ... 215
Managing Memory ... 215

Address Table .. 216
Alias Table ... 216
Domain Table ... 217
Network Variable Configuration Table .. 217

Application Migration from ShortStack FX to IzoT ShortStack 219
Who Should Upgrade... 220

ShortStack User’s Guide xiii

Using an IzoT ShortStack SDK 4.30 Micro Server with
 the ShortStack FX SDK ... 220
Upgrading a ShortStack FX SDK Project for FT 6050 220
Migration From LonTalk Interface Developer to Izot
 Interface Interpreter .. 221

New IzoT ShortStack SDK Project .. 221
Select Preferences ... 222

Migrate the Model File .. 224
Migrate Event Handlers ... 225

LdvCtrl ... 226
LonExit() .. 226
LonSuspend(), LonResume() .. 226
LonGetCurrentNvSize() .. 227
LonNvdDeserializeNvs(), LonNvdSerializeNvs() 227

Authentication ... 229
Using Authentication ... 230

Specifying the Authentication Key ... 230
How Authentication Works ... 231

ShortStack LonTalk/IP Compact API ... 233
Introduction .. 234
Customizing the API .. 235
API Memory Requirements ... 235
The ShortStack LonTalk/IP Compact API and Callback
 Handler Functions .. 236

ShortStack LonTalk/IP Compact API Functions 236
Commonly Used Functions ... 236
Other Functions .. 237
Application Messaging Functions .. 238
Network Management Query Functions 238
Network Management Update Functions 239
Local Utility Functions ... 240

ShortStack Callback Handler Functions ... 242
Commonly Used Callback Handler Functions 242
Application Messaging Callback Handler Functions 244
Network Management Query Callback Handler Functions 245
Local Utility Callback Handler Functions 246

LonTalk/IP ISI API ... 249
Introduction .. 250
The LonTalk/IP ISI API ... 250
The LonTalk/IP ISI Callback Handler Functions 255

Downloading a ShortStack Application over the Network 265
Overview ... 266
Custom Host Application Download Protocol .. 266
Upgrading Multi-Processor Devices ... 267
Application Download Utility .. 269
Download Capability within the Application ... 269

Glossary ... 271

Index ... 275

ShortStack User’s Guide 1

1

Introduction to the
IzoT ShortStack SDK

This chapter introduces the IzoT ShortStack SDK. It
describes the architecture of a ShortStack device, the
requirements and restrictions of an IzoT ShortStack Micro
Server, and the IzoT ShortStack components that are
available from Echelon.

2 Introduction to the IzoT ShortStack SDK

Overview
Automation solutions for buildings, homes, and industrial applications include
sensors, actuators, and control systems. A LonTalk/IP network is a peer-to-peer
network that uses the LonTalk/IP control network protocol for monitoring
sensors, controlling actuators, communicating with devices, and managing
network operation. In short, a LonTalk/IP network provides communications and
complete access to control network data from any device in the network.

The communications protocol used for LonTalk/IP networks is the ISO/IEC
14908-1 Control Network Protocol combined with IP. The ISO/IEC 14908-1
protocol is an international standard seven-layer protocol that has been
optimized for control applications. The seven layers are described in Table 1

Table 1. LONWORKS Network Protocol Layers

OSI Layer Purpose Services Provided

7 Application Application compatibility Network configuration, self-installation,
network diagnostics, file transfer,
application configuration, application
specification, alarms, data logging,
scheduling

6 Presentation Data interpretation Network variables, application messages,
foreign frame transmission

5 Session Control Request/response, authentication

4 Transport End-to-end
communication reliability

Acknowledged and unacknowledged
message delivery, common ordering,
duplicate detection

3 Network Destination addressing Unicast and multicast addressing,
routers

2 Data Link Media access and framing Framing, data encoding, CRC error
checking, predictive carrier sense
multiple access (CSMA), collision
avoidance, priority, collision detection

1 Physical Electrical interconnect Media-specific interfaces and modulation
schemes

Layers 4 through 7 of the ISO/IEC 14908-1 protocol are implemented in the
protocol stack for all LonTalk/IP devices. The services provided by these layers
are called the LonTalk/IP Control Services. Layers 1 through 3 are media and
link dependent.

ShortStack User’s Guide 3

For LonTalk/IP devices implemented as native ISO/IEC 14908-1 devices, Layers
2 and 3 are defined by ISO/IEC 14908-1, and Layer 1 is defined by other
standards such as ISO/IEC 14908-2 for FT channels, ISO/IEC 14908-3 for PL
channels, and ISO/IEC 14908-4 for IP-852 channels. As a result, LonTalk/IP
devices implemented as native ISO/IEC 14908-1 devices are fully compatible with
and interoperable with classic LON devices. LonTalk/IP devices support
additional services such as UDP messaging, ICMP support, and SNMP support.
These services are provided in a way that is compatible with classic LON
messaging.

For native LonTalk/IP devices on Ethernet, Layers 1 through 3 are defined by the
Ethernet and IP standards. For native LonTalk/IP devices on Wi-Fi, Layers 1
through 3 are defined by the Wi-Fi and IP standards.

You can use the IzoT ShortStack SDK to implement a LonTalk/IP device with an
Echelon Series 6000 processor and a host processor of your choice. A device
implemented with the IzoT ShortStack SDK and a Series 6000 processor is fully
compatible with both LonTalk/IP and classic LON devices.

You can also use the IzoT ShortStack SDK to implement a classic LON device
with an Echelon Series 5000 or Series 3100 processor and a host processor of your
choice. A device implemented with the IzoT ShortStack SDK and a Series 5000
or Series 3100 processor is a classic LON device, and is fully compatible with both
LonTalk/IP and classic LON devices.

IzoT Device Architectures
An IzoT device consists of four primary components:

1. An application processor that implements the application layer, or both
the application and presentation layers, of the LonTalk/IP or LON
protocol

2. A protocol engine that implements layers 2 through 5 (or 2 through 7) of
the LonTalk/IP or LON protocol

3. A network transceiver that provides the physical interface for the
network communications media, and implements the physical layer of the
LonTalk/IP or LON protocol

4. Circuitry to implement the device I/O

These components can be combined in a physical device. For example, you can
use Echelon’s FT 6050 Smart Transceiver as a single-chip solution that combines
all four components in a single chip that communicates on a free topology (FT)
twisted pair channel and implements the LonTalk/IP protocol. You can use
Echelon’s CPM 4200 Wi-Fi Module as a single module solution that combines all
four components in a single module for Wi-Fi-based communication using the
LonTalk/IP protocol. You can create a single-device solution with Echelon’s IzoT
Device Stack EX running on versatile embedded computers with a Linux
operating system, such as the Raspberry Pi or Beaglebone Black, and
communicate via Ethernet and the LonTalk/IP protocol.

The IzoT ShortStack SDK supports an IzoT device architecture where these
components are split between two processors, a host processor that runs the
device application, and a co-processor that implements the LonTalk/IP or LON
protocol and provides the network interface. The co-processor is implemented
with a Smart Transceiver or Neuron Chip running the ShortStack firmware. The

4 Introduction to the IzoT ShortStack SDK

combination of the Smart Transceiver or Neuron Chip with the ShortStack
firmware is called a ShortStack Micro Server. The Micro Server connects to your
microcontroller through a synchronous (SPI) or asynchronous (SCI) serial link.

You can use one of many embedded operating systems or you may not use an
operating system at all (“bare metal” design). The IzoT ShortStack SDK does not
require an operating system on the target host, but the IzoT ShortStack example
applications and driver are designed for use with a Linux operating system.

IzoT ShortStack SDK Application Development
For a ShortStack device, you write the application program in C or C++ using a
common application framework and application programming interface (API).
This API is called the LonTalk/IP Compact API. You select a suitable host
processor and use the host processor’s application development environment to
develop the application.

The general architecture of a ShortStack device is shown in Figure 1. Because a
ShortStack Micro Server can work with any host processor, you must provide the
serial driver implementation for the host. The ShortStack software includes an
example driver for the Raspberry Pi platform using the Raspbian Linux
operating system.

To define the LonTalk/IP interface for your device, you embed markup in your
code that is contained in C comments within one of your C or C++ source files.
This markup is defined by the IzoT Markup Language (IML).

ShortStack User’s Guide 5

Transceiver and
wiring

Application in any
suitable language

ShortStack Device

Sh
or

tS
ta

ck
 M

ic
ro

 S
er

ve
r

SCI or SPI serial I/O
link layer and driver
software

Link layer

Host Processor

Echelon
Smart Transceiver

Link layer

Figure 1. A ShortStack Device

Neuron Hosted and IzoT ShortStack Device
Characteristics

Table 2 compares some of the key characteristics of the Neuron hosted and host-
based solutions for LonTalk/IP and LON devices.

Table 2. Comparing Neuron Hosted and Host-Based Solutions

Characteristic
Neuron Hosted
Solution

ShortStack
Solution

Maximum number of network
variables

254[1][2] or 62 254[1][2] or 62

Maximum size of network
variable

225[3] or 31 bytes 225[3] or 31 bytes

6 Introduction to the IzoT ShortStack SDK

Maximum number of NV config
table entries

254[1][2] or 62 254[1][2] or 62

Maximum number of address
table entries

254[2][3] or 15 254[2][3] or 15

Maximum number of aliases 127[1][2] or 62 127[1][2] or 62

Maximum number of dynamic
network variables

0 0

Maximum size of application
messages

228 bytes 228 bytes

Maximum number of receive
transaction records

16 16

Maximum number of transmit
transaction records

2 2

Support for the 14908-1
Extended Command Set

No No

File access methods supported LW-FTP [4],
DMF[4]

LW-FTP[4], DMF
[4]

Link-layer type N/A 4- or 5-line SCI
or
6- or 7-line SPI

Typical host API runtime
footprint

N/A 5-6 KB code with
1 KB RAM
(includes serial
driver, but does
not include
optional API or
ISI API) in a
bare-metal
target.

Host processor type N/A Most
microprocessors
or
microcontrollers

Application development
language

Neuron C C or C++ with
IML

ShortStack User’s Guide 7

Notes:

1. Neuron firmware version 16 or greater.
2. Dependant on available resources.
3. Series 6000 Smart Transceivers and Neuron Chips
4. The file access methods listed are:

• Direct memory file (DMF); see Supporting Direct Memory
Files

• The LONWORKS file transfer protocol (LW-FTP); see the
File Transfer engineering bulletin at echelon.com/docs

IzoT ShortStack SDK and CPM 4200 Wi-Fi SDK

The IzoT ShortStack SDK and CPM 4200 Wi-Fi SDK solutions are both built on
the LonTalk/IP platform using the IzoT Interface Interpreter, and they share
very similar declarations of the device’s network interface and use similar API
and application frameworks. This simplifies migrating applications from one
solution to the other. In addition, you can create applications that share a
common code base for devices that use both solutions.

http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf

8 Introduction to the IzoT ShortStack SDK

Requirements and Restrictions for ShortStack
The ShortStack LonTalk/IP Compact API and serial driver typically require
about 6 KB of program memory on the host processor (approximately 2 KB for
the API and 3 to 4 KB for the serial driver) and less than 1 KB of RAM in a bare
metal design.The API does not require additional non-volatile memory, but most
applications implement properties and require persistent, modifyable storage of
such data. The API does not require an operating system—memory requirements
may be higher if the host includes an operating system.

The ShortStack firmware requires a Smart Transceiver or Neuron Chip with a
minimum of 4 KB of application memory and 2 KB of RAM. The IzoT ShortStack
SDK includes a variety of standard Micro Server images, which support FT 3120,
FT 3150, FT 5000, FT 6050, PL 3120, PL 3150, and PL 3170 Smart Transceivers
in various configurations. You can create a custom Micro Server to support other
chips and hardware configurations

The interface between your host processor and the ShortStack Micro Server can
be the asynchronous Serial Communications Interface (SCI) or the synchronous
Serial Peripheral Interface (SPI). The availability and speed of the interface
depends on the type of serial interface, the clock speed of the ShortStack Micro
Server, and the specific processor used for the Micro Server:

• The highest bit rate for the SCI interface is approximately 1.2 Mbps for a
ShortStack Micro Server running on an FT 6050 Smart Transceiver with
an 80 MHz system clock.

• The highest bit rates for the SPI interface are approximately 906 kbps
uplink and 690 kbps downlink for a ShortStack Micro Server running on
an FT 6050 Smart Transceiver with an 80 MHz system clock.

The interface rate scales with the ShortStack Micro Server system clock. See
Setting the SCI Bit Rate and Setting the SPI Bit Rate.

The ShortStack Micro Server can support up to 254 network variables in your
ShortStack application. You can implement configuration properties as
configuration network variables or in configuration files.

Network Installation
You can create a ShortStack device that installs itself using the Interoperable
Self-Installation (ISI) protocol, or you can create a device that is installed with a
network management tool. You can also create a device that supports both
installation methods, that is, you can create a device that installs itself in self-
installed networks, or is installed by a network management tool in a managed
network.

For installation into a managed network, you can use the IzoT Commissioning
Tool (CT) or another tool that can install and monitor LonTalk/IP or LON
devices. See the IzoT Commissioning Tool User's Guide for more information
about IzoT CT. However, if your ShortStack device supports the Interoperable
Self-Installation (ISI) protocol, a network management tool is not required.

For network diagnostics and troubleshooting, you can use the Wireshark network
protocol analyzer. The Wireshark network protocol analyzer collects and displays

ShortStack User’s Guide 9

low-level protocol packets, and often provides important diagnostics. See
www.wireshark.org for more information.

For ShortStack device development a logic analyzer, serial communications
analyzer, or digital storage oscilloscope is also useful for diagnosing and
troubleshooting the serial communication between the Micro Server and your
host processor.

ShortStack Architecture
A ShortStack device consists of the following components:

1. The ShortStack Micro Server running the ShortStack firmware

2. An SCI or SPI serial driver for the host processor

3. The ShortStack LonTalk/IP Compact API for the host processor

4. A ShortStack application that uses the ShortStack LonTalk/IP Compact
API

Figure 2 shows the basic software architecture of a ShortStack device.

Host Application

Serial Driver

ShortStack Firmware

LONWORKS Network

Transceiver
Interface

API
Interface

SCI or SPI
Interface

ShortStack LonTalk/IP Compact API

Host Microprocessor

ShortStack
Micro Server

Figure 2. ShortStack Architecture

The ShortStack Serial Driver
The ShortStack serial driver provides the hardware-specific interface between
the LonTalk/IP Compact API and ShortStack Micro Server. If you use a

http://www.wireshark.org/

10 Introduction to the IzoT ShortStack SDK

standard operating system, the serial driver itself may be portable across
different platforms, as is the case with the driver example included with the
example for the Raspberry Pi computer and the Raspbian Linux operating
system.

The serial driver manages data exchange between the host processor and the
ShortStack Micro Server. You must create the serial driver that resides on the
host microprocessor, typically derived from the example driver for the Raspberry
Pi. You can use or modify the example driver, or create your own driver for a
different processor or operating system.

SCI Architecture
The ShortStack SCI interface is a half-duplex asynchronous serial interface with
1 start bit, 8 data bits, and 1 stop bit (least significant bit first) as shown in
Figure 3. You can use standard UART or USART hardware to implement this
link.

See SCI Interface for more information about the SCI interface for ShortStack
devices.

ISO/IEC 14908 control network

SCI DriverRTS~

TXD
RXD

CTS~
HRDY~

LonTalk Compact API

Application Framework

Control Algorithm

 ShortStack
Micro Server

FT 3120, PL 3120,
FT 3150, PL 3150,
PL 3170, FT 5000,

FT 6050

SCI
4.8 kbps – 1.2 Mbps

Figure 3. SCI Architecture for a ShortStack Device

SPI Architecture
The SPI interface is a half-duplex synchronous serial interface, where the Micro
Server acts as the master, as shown in Figure 4. Most ShortStack devices use
the SCI interface because of the need for fewer I/O lines for the asynchronous
link, and because the requirements for the SPI driver are more complex. The SPI
interface is useful if all SCI resources on the host processor are already in use or
if an SPI interface is more readily available on the host processor.

See SPI Interface for more information about the SPI interface for ShortStack
devices.

ShortStack User’s Guide 11

ISO/IEC 14908 control network

SPI Driver
TREQ~

SS~

MISO

R/W~
HRDY~

LonTalk Compact API

Application Framework

Control Algorithm

 ShortStack
Micro Server

FT 3120, PL 3120,
FT 3150, PL 3150,
PL 3170, FT 5000,

FT 6050

SPI
5 – 906 kbps

SCLK

MOSI

Figure 4. SPI Architecture for a ShortStack Device

The ShortStack LonTalk/IP Compact API
The IzoT ShortStack SDK includes source code for the ShortStack LonTalk/IP
Compact API that you compile and link with your application. This API defines
the functions that your application calls to communicate with other devices on a
LonTalk/IP or LON network. The API code is written in ANSI C. You must port
the code for your host processor.

The ShortStack LonTalk/IP Compact API consists of the following:

• A service to initialize the ShortStack device after each reset.

• A service that the application must call periodically. This service
processes messages pending in any of the data queues.

• Services to initiate typical operations, such as the propagation of network
variable updates.

• Event dispatchers for common events, such as those signaling the arrival
of network variable data or an error in the propagation of an application
message.

• Callback handler functions for advanced and less common events.

• Optional API components to perform low-level self-installation tasks.

• Optional API components to perform high-level ISI self-installation tasks.

• Optional API components for additional utility services.

Overview of the ShortStack Development Process
This manual describes the development process for creating a ShortStack device,
which includes the general tasks listed in Table 3.

12 Introduction to the IzoT ShortStack SDK

Table 3. Tasks for Developing a ShortStack Device

Task Additional Considerations Reference

Obtain the IzoT
ShortStack SDK and
become familiar with it

 Getting Started with
the IzoT ShortStack
SDK

Select hardware for the
ShortStack Micro
Server and prepare it
by loading the
ShortStack firmware
into it

You need to select the Micro Server
configuration and preferences for every
new device, but you can reuse a Micro
Server hardware and software
configuration for a different application,
and thus implement a different device.

Selecting and Creating
a ShortStack
MicroServer

Selecting the Host
Processor

Integrate the
ShortStack Micro
Server with your device
hardware

You integrate the Micro Server with the
device hardware. You can reuse many
parts of a hardware design for different
applications to create different
ShortStack devices.

Designing the
Hardware Interface

Create the serial driver
for the host processor

You need to create a serial driver
(typically derived from an example
driver), for each device’s hardware. You
can reuse the driver with the same
device hardware for different
applications, and thus create different
ShortStack devices. You do not need to
re-create a new serial driver for each
application.

Creating a ShortStack
Serial Driver

Port the ShortStack
LonTalk/IP Compact
API to the host
processor

You need to port the ShortStack
LonTalk/IP Compact API once for each
host processor and compiler, but you can
reuse the ported API files with any
number of applications that share the
same hardware and software
development environment.

Porting the ShortStack
LonTalk/IP Compact
API

Appendix A ShortStack
LonTalk/IP Compact
API

Select and define the
functional profiles and
data types for your
device using tools such
as the IzoT Resource
Editor and the SNVT
and SCPT Master List

You need to select profiles and data
types for use in the device’s network
interface for each application that you
plan to implement. This selection can
include the definition of user-defined
types for network variables,
configuration properties or functional
profiles. A large set of standard
definitions is also available and is
sufficient for many applications.

IzoT Markup Language
section of the IzoT
Manual at
echelon.com/docs/izot

http://www.echelon.com/docs/izot

ShortStack User’s Guide 13

Task Additional Considerations Reference

Structure the layout
and network interface
of your ShortStack
device by declaring the
required blocks,
datapoints, and
properties with the
IzoT Markup
Language.

Define the network interface for your
device using standard C source code and
the IzoT Markup Language.

IzoT Markup Language
section of the IzoT
Manual at
echelon.com/docs/izot

Integrate the IzoT
Interface Interpreter
into your development
tool’s work flow.

Run the IzoT Interface Interpreter prior
to build your project within your host
development tool.

You can include the IzoT Interface
Interpreter as an integral step to your
build process, making generation and
maintenance of your application
framework completely transparent.

Integrating the IzoT
Interface Interpreter

Complete event
handlers and the
ShortStack LonTalk/IP
Compact API callback
handler functions to
process application-
specific network events

Complete your event handlers to connect
your application’s algorithm with the
IzoT network.

You can also implement advanced
callback handlers for less frequently
used events.

Developing a
ShortStack Application

Appendix A,
ShortStack
LonTalk/IP Compact
API

Modify your application
to interface with an
IzoT network by using
the ShortStack
LonTalk/IP Compact
API function calls

You need to make these function calls
for every application that you
implement. These calls include, for
example, calls to the
LonPropagateNv() function that
propagates an updated output network
variable value to the network. Together
with the completion of the callback
handler functions, this task forms the
core of your networked device’s control
algorithm.

Developing a
ShortStack Application

Appendix A,
ShortStack
LonTalk/IP Compact
API

Optionally, add
Interoperable Self-
Installation (ISI)
functions to your
ShortStack device, add
low-level functions to
implement self-
installation, or add
other optional utility
functions and callbacks

This step is optional, but can make your
device significantly easier to install
without the use of an installation tool.

Developing a
ShortStack Application
with ISI

Appendix B,
LonTalk/IP ISI API

http://www.echelon.com/docs/izot

14 Introduction to the IzoT ShortStack SDK

Task Additional Considerations Reference

Optionally, create a
custom Micro Server
image that supports
your own hardware
configuration

The standard Micro Servers are pre-
compiled binary images that support a
variety of hardware configurations. You
can create a custom Micro Server and
use it in place of a standard one to
provide better support for your
hardware, or even to offload some of the
application’s control algorithm to the
Micro Server.

Custom Micro Servers

Test, install, and
integrate your
ShortStack device
using self-installation
or a LonTalk/IP or
LON network tool such
as the IzoT
Commissioning Tool

 IzoT Commissioning
Tool User's Guide

ShortStack User’s Guide 15

2

Getting Started with the IzoT
ShortStack SDK

This chapter describes the IzoT ShortStack SDK and how to install it.

16 Getting Started with the IzoT ShortStack SDK

IzoT ShortStack SDK Overview
The IzoT ShortStack SDK is a software toolkit that contains software tools, the
ShortStack LonTalk/IP Compact API, LonTalk/IP ISI API, ShortStack firmware,
and documentation needed for developing applications for any microcontroller or
microprocessor that uses a ShortStack Micro Server to communicate with a
LonTalk/IP or LON network. You can use the software with ShortStack Micro
Servers that use an Echelon Series 6000, Series 5000, or Series 3100 Smart
Transceiver or an Echelon Neuron 6050 or Neuron 5000 Processor.

The kit includes the following components:

1. Portable ANSI C source code for the ShortStack LonTalk/IP Compact API
and LonTalk/IP ISI API.

2. ShortStack firmware images for free topology twisted-pair and power line
configurations. Firmware images are provided for both TP/FT-10 and PL-
20 channel types, including 6050, 5000, 3170, 3150, and 3120 Smart
Transceiver devices.

3. ANSI C source code and pre-compiled library files that you can use to
create custom Micro Servers to provide support for different hardware
configurations.

4. The IzoT Interface Interpreter. The IzoT Interface Interpreter translates
your C source code that you have annotated with IML into device
interface data and device interface files that simplify the implementation
of your ShortStack application, and creates a skeleton application
framework that provides much of the code required by your application to
interface with the ShortStack Micro Server.

5. Documentation. This ShortStack User’s Guide describes how to use the
components of the ShortStack Developer’s Kit to create a ShortStack
device. The kit also includes detailed HTML documentation for the
ShortStack LonTalk/IP Compact API and LonTalk/IP ISI API.

6. Source code for an example port for the Raspberry Pi.

Installing the IzoT ShortStack SDK
You can install the IzoT ShortStack SDK on any computer that runs Microsoft
Windows 10, Windows 8, Windows 7, or Windows XP.

To install the IzoT ShortStack SDK, which is available free of charge, perform
the following steps:

1. If you do not have an account with GitHub, register for a free account at
github.com

2. Click the Download Now button at echelon.com/shortstack to register
for the IzoT ShortStack SDK. Enter your GitHub account name in the
registration form.

3. Wait until you receive a notification e-mail from GitHub, confirming that
you have been given access to the IzoT ShortStack repository.

4. Visit the IzoT ShortStack SDK repository at github.com/izot/shortstack to
view and clone the repository.

http://github.com/
http://www.echelon.com/shortstack
https://github.com/izot/shortstack

ShortStack User’s Guide 17

Clone the repository into your local shortstack project folder. Do not
clone it to a location within the LONWORKS folder. Use one of your user
locations instead, such as My Documents\izot-shortstack. You need
to have full read and write access to that location.

5. Locate the IzoT Interface Interpreter installer in the install folder within
the repository, and install the IzoT Interface Interpreter. The installer is
named iiiVVV.exe, where VVV is a three-digit version number.

Run the IzoT Interface Interpreter installer on your Windows computer.

6. Explore the repository.

A good place to start is the Simple application example for Raspberry Pi
computers using the Raspbian Linux operating system. This example is
located in the example/rpi/simple folder within your repository, and is
accompanied by wiring instructions in the example/rpi/doc folder.

The examples assume, but do not require, that you use Eclipse Luna.
The doc folder within the IzoT ShortStack SDK repository contains
details about the Eclipse workspace and project configuration assumed by
the IzoT ShortStack SDK examples.

7. Install the IzoT Resource Editor. You can obtain the IzoT Resource
Editor from the download section at echelon.com/shortstack.

You can use the IzoT Resource Editor to view standard profiles and data
types, and to create and edit your custom profiles and data types. The
IzoT Resource Editor also includes a conversion tool to translate your
custom resource definitions into IzoT resource packages. The IzoT
Interface Interpreter only accepts resources in the IzoT resource package
format.

The IzoT Interface Interpreter already includes all standard and IoT
resource definitions. You need to use the IzoT Resource Editor and the
conversion tool to the IzoT resource package format only for your user-
defined resources.

ShortStack LonTalk/IP Compact API Files
The ShortStack LonTalk/IP Compact API is provided as a set of portable ANSI C
files, which are listed in Table 4. These files are contained in the
[ShortStack]\api directory (where [ShortStack] is the directory in which you
cloned the IzoT ShortStack SDK repository.

You must port the API to your host processor; for more information about porting
the API, see Porting the ShortStack LonTalk/IP Compact API.

http://www.echelon.com/shortstack

18 Getting Started with the IzoT ShortStack SDK

Table 4. ShortStack LonTalk/IP Compact API Files

File Name Description

LonBegin.h

LonEnd.h

Optional definitions for implementing data packing and
alignment preferences

Ldv.h Definition of the driver API functions. These are used by the
ShortStack API, but you need to supply the implementations
of these functions. See Creating a ShortStack Serial Driver.

LonPlatform.h Definitions for adjusting the ShortStack LonTalk/IP Compact
API to your compiler and environment.

Definitions for several common compilers are provided, but
you need to review and possibly add definitions to match your
toolchain.

ShortStackApi.c

ShortStackApi.h

Function definitions for the ShortStack LonTalk/IP Compact
API

ShortStackHandlers.c

Function definitions for the ShortStack callback functions

ShortStackInternal.c Internal functions and utilities that are used by the
ShortStack LonTalk/IP Compact API, but not exported to the
host application

ShortStackIsiApi.c

ShortStackIsiApi.h

Function definitions for the LonTalk/IP ISI API

ShortStackIsiHandlers.c

Function definitions for the ShortStack ISI callback handler
functions

ShortStackIsiInternal.c Internal functions and utilities that are used by the
LonTalk/IP ISI API, but not exported to the host application

ShortStackIsiTypes.h Definitions of the data structures that are typically used by
ShortStack ISI applications

ShortStackTypes.h Definitions of the data structures that are typically used by
ShortStack applications

Standard Micro Server Firmware Images
The IzoT ShortStack SDK includes several standard ShortStack Micro Server
firmware images provided as pre-compiled image files that you can program into
serial flash memory chips for use with FT 6050 Smart Transceivers, into serial
EEPROM memory chips for FT 5000 Smart Transceivers, into on-chip memory

ShortStack User’s Guide 19

for FT or PL 3120 Smart Transceivers or PL 3170 Smart Transceivers, or into
flash memory chips to be used with FT or PL 3150 Smart Transceiversor.

You can use the ShortStack Micro Server only with an Echelon Smart
Transceiver or an Echelon Neuron Chip. If you run the ShortStack Micro Server
on a different Neuron Chip, the Micro Server exits quiet mode and enters the
applicationless state.

Each set of pre-compiled images includes the following files:

• An APB and an NDL file for downloading the images over a LONWORKS
network

• An XIF and a SYM file for use by the IzoT Interface Interpreter or the
LonTalk Interface Developer

• For 3120 and 3170 devices, an NFI file for a programmer device or in-
circuit programmer for programming a Smart Transceiver

• For 3150 devices, an NEI file for a universal chip programmer or in-
circuit programmer for programming a flash memory chip.

• For Series 5000 devices, an NME file for a universal chip programmer or
in-circuit programmer for programming a serial EEPROM memory chip

• For Series 6000 devices, an NMF file for a universal chip programmer or
in-circuit programmer for programming a serial flash memory chip.

• For standard Micro Servers that support ISI, a *.h file that you use with
your application when writing code to use the ShortStack LonTalk/IP ISI
API; see Developing a ShortStack Application with ISI, for more
information.

When you use the LonTalk Interface Developer utility, it selects the appropriate
set of Micro Server image files based on your preferences, and copies them to the
project’s output folder. These image files have the project’s base name (rather
than the image’s base name) and the appropriate file extension (APB, NDL, NFI,
NEI, NME, XIF, SYM, or H).

When using the IzoT Interface Interpreter, you need to provide the set of image
files for your selected Micro Server, and describe your choice of Micro Server in
your application’s C source code.

Table 5 describes the standard firmware image files for a ShortStack Micro
Server, along with other information about each image. See Firmware Image
File Names for a description of the firmware file naming convention.

All standard ShortStack Micro Server images are located within the
[ShortStack]/microserver/standard folder within your ShortStack project
folder

20 Getting Started with the IzoT ShortStack SDK

Table 5. Standard ShortStack Firmware Image Files

Smart
Transceiver
Type

Channel
Type

Supported
Clock
Rates
(MHz) [1]

Neuron
Firmware
Version [2]

Support for
ISI

Supported
CP Access
Methods [3]

FT 3120-E4
V16

TP/FT-10 10

20

40

16 No DMF, LW-
FTP, CPNV

FT 3150 2K [4] TP/FT-10 10 17.1 Yes DMF, LW-
FTP, CPNV

FT 5000 ES TP/FT-10 20 18 Yes DMF, LW-
FTP, CPNV

FT 5000 TP/FT-10 20 19 Yes DMF, LW-
FTP, CPNV

FT 6050 TP/FT-10 20 21 Yes DMF,
LW_FTP,
CPNV

PL 3120-E4 PL-20C, PL-
20N

10 14 No LW-FTP,
CPNV

PL 3150 [4] PL-20C, PL-
20N

10 17.1 Yes DMF, LW-
FTP, CPNV

PL 3170 PL-20C, PL-
20N

10 17 Yes DMF, LW-
FTP, CPNV

Notes:

1. The supported clock rates refer to external crystal or oscillator frequency
for Series 3100 devices, but refer to internal system clock rate for Series
5000 and 6000 devices.

2. The Neuron firmware versions listed refer to the versions used to create
the standard Micro Server images.

3. The configuration property access methods listed are:

• Direct memory file (DMF); see Supporting Direct Memory Files

• The LONWORKS file transfer protocol (LW-FTP); see the File
Transfer engineering bulletin at echelon.com/docs

• Configuration network variables (CNVs); see Persistent NVs

4. The standard Micro Servers for FT 3150 and PL 3150 devices support a
standard hardware design with external flash memory of 32 KB or more,
and 128 bytes per sector.

http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf
http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf

ShortStack User’s Guide 21

You can create a custom Micro Server image to support a combination of
hardware, channel type, and ISI features that is not supported by the pre-
compiled Micro Server images. Specifically, you must create a custom Micro
Server image:

• If your device uses a different Echelon Smart Transceiver or Neuron Chip
than the ones listed in Table 5 (such as a Neuron 6050 Processor).

• If your device uses a different Neuron firmware version than the ones
used for the standard Micro Server images.

• If your device uses a clock speed or system clock setting that is supported
by the chosen hardware and transceiver, but is not listed in Table 5.

• If your device uses a memory map that is different from the one described
in Micro Server Memory Map.

• If your Micro Server device requires ISI-DAS support, or a different level
of ISI support.

• If you require an application-specific custom Micro Server that supports
ISI. Such a Micro Server can execute part of the ISI API local to the
Micro Server for optimum performance and minimum host memory
footprint.

• If your application requires a DMF window different from the default size
or location; see Supporting Direct Memory Files for more information.

• If your device requires a Micro Server with different properties than
those used for the standard Micro Server images, such as the buffer
configuration or maximum number of addresses, aliases or network
variables.

See Custom Micro Servers for more information about creating a custom Micro
Server.

22 Getting Started with the IzoT ShortStack SDK

ShortStack User’s Guide 23

3

 Introduction to the
IzoT Markup Language

This chapter introduces the IzoT Markup Language (IML)
and provides code examples using IML.

24 Introduction to the IzoT Markup Language

Overview
Your program interacts with the LonTalk/IP or LON network and other devices
through input and output datapoints, which implement network variables for
dynamic, non-persistent, data, or properties for persistent configuration data
which changes infrequently.

A datapoint is an extension of a simple network variable; a datapoint contains
the network variable. The network variable is the datum which receives an
update from the network, or which can be propagated onto the network. In
addition to the network variable, the datapoint also contains the corresponding
global_index and can be associated with onUpdate and onComplete events.

Multiple datapoints are typically combined into logical units called blocks. A
block is an implementation of a profile, and defines a particular functionality.
For example, a block implementing the standard SFPTrealTimeKeeper profile
consists of one mandatory output datapoint (reporting current date and time),
and a number of optional network variables and properties. For example, the
optional nciUpdateRate property can be implemented to allow configuration of
the rate by which the date and time information is transmitted on the network.

The IzoT ShortStack SDK includes a large selection of standard network variable
and property data types and profile definitions for a multitude of different
applications. You can also create and use your own definitions as user-defined
data types and profiles.

The set of datapoints, properties, and profiles implemented by your program,
along with related attributes, is collectively known as the device interface. You
will specify and implement the device interface within your source code. The
IzoT Interface Interpreter (III) produces a framework which interacts with the
ShortStack API to exchange data and other events with the control network. The
IzoT Interface Interpreter also generates configuration data required to configure
the Micro Server.

Your definitions of blocks, datapoints and properties alongside your specification
of related preferences such as the selection of the Micro Server type or the
inclusion of optional runtime features, all occur within your C source code.

The basic principle of the IzoT Markup Language (IML) is a simple as-if
paradigm: when editing your C source code for your program, you declare IzoT
interface items as if your standard C or C++ compiler knew what those meant,
and you annotate your declaration with a special tag. Your C compiler ignores
the tag because it appears within a C comment, but when you execute the IzoT
Interface Interpreter in a pre-compilation step, the IzoT Interface Interpreter
recognizes the tag and creates the required framework, ready for submission to
your compiler.

This chapter introduces IML. See the IzoT Markup Language section of the IzoT
Manual at echelon.com/docs/izot for more information.

Selected Introductory Examples

The following example implements the standard SFPTpressureSensor profile
and all its mandatory member network variables and properties within your
program’s C source code.

http://www.echelon.com/docs/izot

ShortStack User’s Guide 25

Example 1
This example implements a single SFPTpressureSensor block.

#include “ShortStackDev.h”

SFPTpressureSensor(pressure) pressure; //@IzoT block

The //@IzoT block tag specifies a block, with the profile specified by the
variable declared to its left. When this code is processed by the IzoT
Interface Interpreter, it generates a standard C type (typedef) within the
ShortStackDev.h file, which your code must include.

Example 2
This example implements an array of two blocks, both based on the standard
SFPTpressureSensor profile:

#include “ShortStackDev.h”

SFPTpressureSensor(pressure) pressure[2]; //@IzoT block

Example 3
This example adds a completion update to monitor success or failure of
transactions in relation to the block’s principal nvoPress output, and adds
an optional nciPressOffset1 property, which is defined by the profile to apply
to the block’s nvoPress output.

#include “ShortStackDev.h”

SFPTpressureSensor(pressure) pressure[2]; //@IzoT block \
//@IzoT onComplete(nvoPress, onPressureCompletion), \
//@IzoT implement(nvoPress.nciPressOffset1, init=3.5) // kPa

Continuation lines of IML declarations must begin with the //@IzoT tag to
prevent your C or C++ compiler from processing these.

Example 4
This example implements the onPressureCompletion event handler. The
event handler must not be static, and must meet the event’s specific
prototype.

void onPressureCompletion(
 const unsigned index, const LonBool success
)
{
 if (index == pressure[0].nvoPress.global_index) {

26 Introduction to the IzoT Markup Language

 … track success or failure for your first pressure sensor
…
 } else {
 … and the same for the second …
 }
}

Example 5
This example implements two blocks of the SFPTpressureSensor profile,
one with, and one without, the optional nciPressOffset1 property:
#include “ShortStackDev.h”

SFPTpressureSensor(a) simple; //@IzoT block
SFPTpressureSensor(b) configurable; //@Izot block \
//@IzoT implement(nvoPress.nciPressOffset1, init=3.5) // kPa

Example 5 implements the simple and configurable blocks. Both implement
the standard SFPTpressureSensor profile, but only configurable implements
the optional nvoPressOffset1 property. This difference leads to different C data
types used for the simple and configurable variables; one to include, one not to
include, the optional property.

Each generated profile and type name must be unique. In Example 5, there are
two instances of the SFPTpressureSensor profile. To make the profile name
unique for repeated instances, you must add an IML type name modifier. In
Example 5, the type name modifiers are shown as a and b.

The type name modifier acts as an appendix to the name of the generated type.
These are declared in ShortStackDev.h and will be SFPTpressureSensor__a
and SFPTpressureSensor__b in this example, but you can reference them as
SFPTpressureSensor(a) and SFPTpressureSensor(b) in your program.

Examples 1 to 3 use pressure for the type name modifier. The technical
requirement is that the type name modifier must be a valid part of an identifier
and, when combined with the resource type name, must yield a type name unique
within your program. You can use the name of the variable declared, as shown in
Examples 1 through 3, as a simple way to meet this requirement.

IzoT Interface Interpreter also generates ShortStackDev.c, which you must
compile and link with your program. This file implements the code to initialize
your blocks, datapoints and properties, and all data and functions necessary to
configure the LonTalk/IP Compact API and ShortStack Micro Server.

The IzoT Interface Interpreter also generates an interface file with a XIF file
name extension, which shares the base name of your C source file. The XIF file is
useful when integrating your device in a managed network of devices.

The Simple Application Example
This following is a commented review of the complete simple application
example that can be found in the example/rpi/simple folder within the IzoT
ShortStack repository.

ShortStack User’s Guide 27

Part 1: Include files and global preferences
#include "ShortStackDev.h"
#include "ShortStackApi.h"
#include "ldv.h"

//@IzoT Option target("shortstack-classic")
//@IzoT Option programId("9F:FF:FF:08:16:01:04:00")
//@IzoT Option \
//@IzoT Server \
//@IzoT ("../../../microserver/standard/SS430_FT6050_SYS20000kHz")

Part 2: Interface definition
The application implements two blocks based on the standard closed loop
actuator profile, each implementing an input and output pair of network
variables. This profile does not stipulate a particular data type for these network
variables. In this example, the standard SNVT_volt type is used.

Because the application implements more than one block, it is also required to
implement a standard Node Object block. The Node Object must be declared
first, and provides general diagnostics and housekeeping services.

SFPTnodeObject(node) nodeObject; //@IzoT block \
//@IzoT external("nodeObject"), \
//@IzoT onUpdate(nviRequest, onNviRequest),\
//@IzoT implement(nciLocation), implement(nciNetConfig), \
//@IzoT implement(nciDevMajVer, init=1), \
//@IzoT implement(nciDevMinVer, init=0)

SFPTclosedLoopActuator(volt, SNVT_volt) driver[2]; //@izot block \
//@IzoT external("volts"), \
//@IzoT onUpdate(nviValue, onDriverUpdate), \
//@IzoT implement(nciLocation, init="room 101")

Part 3: Minimum Node Object behavior
The onNviRequest update event handler, associated with the Node Object’s
nviRequest input, implements the Node Object’s behavior. The following code
shows the minimum behavior required.

Most applications implement additional Node Object features such as support for
disable, override, or self-test functionality. The source code within the repository
contains more comments to guide you in the process of supporting those.

void onNviRequest(
 const unsigned index,
 const LonReceiveAddress* const pSourceAddress
)
{
 uint32_t flags = LON_GET_UNSIGNED_DOUBLEWORD(
 nodeObject.nvoStatus.data.flags
);
 uint16_t object_id = LON_GET_UNSIGNED_WORD(
 nodeObject.nviRequest.data.object_id
);
 object_request_t request =
nodeObject.nviRequest.data.object_request;

 flags &= ~(ST_REPORT_MASK | ST_INVALID_ID |
ST_INVALID_REQUEST);

28 Introduction to the IzoT Markup Language

 if (object_id >= LON_FB_COUNT) {
 object_id = 0;
 flags |= ST_INVALID_ID;
 } else if (request ==
 RQ_REPORT_MASK) {
 flags = ST_REPORT_MASK | ST_INVALID_ID |
ST_INVALID_REQUEST;
 } else if (request == RQ_NORMAL) {
 flags = 0;
 } else if (request ==
 RQ_UPDATE_STATUS) {
 flags = 0;
 } else if (request ==
 RQ_CLEAR_STATUS) {
 flags = 0;
 } else {
 flags = ST_INVALID_REQUEST;
 }

 LON_SET_UNSIGNED_WORD(
 nodeObject.nvoStatus.data.object_id, object_id
);
 LON_SET_UNSIGNED_DOUBLEWORD(
 nodeObject.nvoStatus.data.flags, flags
);
}

Part 4: Application algorithm.
This simple application implements a trivial algorithm: when one of the volt
inputs receives an update, the application adds 3 to its value, assigns the result
to the corresponding output, and propagates the output.

Trivial as this might be, this is a good way to start with IzoT ShortStack. You can
use a network tool such as the NodeUtil command-line utility to write a value to
the input and observe the computed value in the output. This confirms a
complete round trip from your network tool though the Micro Server and the link
layer into your onDriverUpdate event handler, and the return trip back down
through the link layer and Micro Server and back to your tool.

void onDriverUpdate(
 const unsigned index,
 const LonReceiveAddress* const pSourceAddress
)
{
 for (int i = 0; i < sizeof(driver) / sizeof(driver[0]); ++i) {
 if (index == driver[i].nviValue.global_index) {
 LON_SET_UNSIGNED_WORD(
 driver[i].nvoValueFb.data,
 3 + LON_GET_UNSIGNED_WORD(driver[i].nviValue.data)
);
 LonPropagateNv(driver[i].nvoValueFb.global_index);
 break;
 }
 }
}

Your device must be in the online and configured state in order to receive input
data. You can use a network tool or the NodeUtil console utility to set this state.

ShortStack User’s Guide 29

Part 5: Driver configuration
Your serial driver defines an LdvCtrl control block type for optional driver
configuration data. The example driver for Raspberry Pi uses this to be informed
of serial device selection and GPIO pin assignments for the link layer control
signals.

The LonTalk/IP Compact API makes no assumptions on the LdvCtrl type, but
simply passes this through to your driver.

static LdvCtrl ldvCtrl = {
 ”/dev/ttyAMA0”, 38400,
 { 10, 9, 11 } // RTS, CTS, HRDY GPIO pins
};

Part 6: The main() function
int main(int argc, char* argv[], char* env[])
{
 LonApiError sts = LonInit(&ldvCtrl);

 while (sts == LonApiNoError) {
 LonEventHandler();
 }

 LonExit();
 return LonApiNoError;
}

ShortStack User’s Guide 31

4

 Integrating the IzoT Interface
Interpreter

This chapter discusses how you can integrate the IzoT
Interface Interpreter with your build process or development
environment.

32 Integrating the IzoT Interface Interpreter

Input and Output Files
The IzoT Interface Interpreter consumes input from one of your project’s C or
C++ source files. This is called the IML source file for the purpose of this
discussion, however, the IML source file is a regular C source file with IML
contained within C comments. The IML source file must be processed by the
IzoT Interface Interpreter prior to processing the file with your C or C++
compiler.

The IzoT Interface Interpreter generates the following output files:

• ShortStackDev.h must be included in all your application source code
which uses the ShortStack API or accesses portions of the device
application’s network interface, such as datapoints or blocks. The IML
source file must also include the ShortStackDev.h file.

• ShortStackDev.c includes all code generated by the IzoT Interface
Interpreter. This file must be compiled and linked with your application
after the IzoT Interface Interpreter finished with success.

• A device interface file is also generated. This file shares the basename of
the IML source file and carries a .XIF file extension. The .XIF file is used
for integration with some network tools, and plays no role in the C
compilation and link process.

Pre-build Step or Script Method
The easiest method to integrate the IzoT Interface Interpreter with your
development environment is to configure the interface interpreter as a pre‐build
step, for example, when using a script‐driven build process. Many integrated
development environments such as the Eclipse IDE also support user‐defined
pre‐build steps.

To launch the IzoT Interface Interpreter as a pre‐build step, configure your build
steps to point to iii.exe and execute with the --target shortstack-classic
option, followed by the path to the IML source file, as shown in the following
example:

iii.exe --target shortstack-classic main.c

The Interface Interpreter generates output in the location of the IML source file.

The IzoT Interface Interpreter is installed into the bin sub‐folder of your
LONWORKS folder, C:\Program Files (x86)\LonWorks by default for 64-bit
versions of Windows.

ShortStack User’s Guide 33

Makefile Method
Projects using explicitly declared makefiles (or similar build managers) can link
ShortStackDev.o with the other object files, but use special rules to implement
a make‐driven pre‐compilation execution of the IzoT Interface Interpreter.

The principle of operation is outlined in the following sketch:
all: pre-build main-build
main-build: myapp.elf

III output
pre-build: rm ShortStackDev.c ShortStackDev.h myapp.xif

myapp.elf: ShortStackDev.o $(OTHER_OBJS)
 # link

ShortStackDev.o: ShortStackDev.c
 # compile

IML source
ShortStackDev.c:
 iii.exe --target shortstack-classic myapp.c

%.o: %.c

compileOutput Files in Detail
The IzoT Interface Interpreter takes all of the information that you provide and
automatically generates the following files that are needed for your ShortStack
application:

• ShortStackDev.h

• ShortStackDev.c

• main.xif

Together, the generated files and the files for API and driver code form the
ShortStack application framework, which includes everything you need to begin
device development.

To include these files in your application, include the ShortStackDev.h file in
your ShortStack application using an ANSI C #include statement, and add the
ShortStackDev.c file to your project so that it can be compiled and linked.

You do not normally need to edit any of the generated files.

The following sections describe the generated files.

ShortStackDev.h
The ShortStackDev.h file is the main header file that the IzoT Interface
Interpreter produces. This file provides the definitions that are required for your
application code to interface with the application framework and the ShortStack
LonTalk/IP Compact API, including C extern references to public functions,
variables, and constants generated by the IzoT Interface Interpreter.

34 Integrating the IzoT Interface Interpreter

Include this file with all source files that make your application. You do not
normally have to edit this file. Any manual changes to this file are not retained
when you re-run the IzoT Interface Interpreter. The file contains comments
about how you can override some of the preferences and assumptions made by
the utility.

ShortStackDev.c
The ShortStackDev.c file is the main source file that the IzoT Interface
Interpreter produces. This file includes the ShortStackDev.h file header file,
declares the network variables, configuration properties, and blocks, event
dispatchers and initialization functions.

It defines variables and constants, including the network variable table and the
device’s initialization data block, and a number of utility functions.

The ShortStackDev.c file also defines the appInitData structure, which
contains data that is sent to the Micro Server during initialization (in the
LonNiAppInit and LonNiNvInit messages). Table 6 describes the fields of this
data structure.

Although you can modify this data structure, you should not need to unless you
are developing an application that supports multiple device interfaces. If you do
modify this data, you must ensure that other control data remains consistent
with your changes, including the siData array and the nvTable (both in
ShortStackDev.c), and the device interface files (XIF and XFB file extensions).
Other data that also must remain consistent with your preferences are
definitions contained in the ShortStackDev.h file, including those that
configure the API options.

Table 6. Fields of the appInitData Structure

Field Description

appInitData.signature A 16-bit number that identifies the current
application. The IzoT Interface Interpreter
generates a new number whenever you regenerate
the application framework. The Micro Server uses
this number to distinguish repeated initialization
of the same application from initialization of a new
application.

The example implementations also use the
signature to sign persistent data to ensure the
applicability of this data when loaded into the
application at startup.

appInitData.programId The 48-bit program ID in binary form.

ShortStack User’s Guide 35

Field Description

appInitData.communication The 96-bit communication parameter record that
is used to correctly initialize communications with
the LonTalk/IP or LON network.

This data is optional in the IzoT ShortStack SDK,
and normally set to all zeroes. All-zero
communication parameters have no effect, causing
the Micro Server to use its default parameters.

A new
LonCustomCommunicationParameters()
callback is supported in ShortStackHandlers.c
which allows advanced applications to select a
communication parameter record for use with the
Micro Server.

This is controlled with the 0x40 flag in the
preferences byte.

appInitData.preferences An 8-bit vector of flags. Includes 0x20 to enable
explicit addressing, 0x40 to select the Micro
Server’s default communication parameters, and a
5-bit value for the service-pin-held delay in
seconds (mask 0x1F), where zero disables the
feature.

The remaining flag 0x80 is reserved for future use,
and should be kept cleared (zero).

appInitData.nvCount One byte for the total number of network variables
in the application. This number should not exceed
the Micro Server’s maximum network variable
count (also known as the Micro Server’s network
variable capacity).

appInitData.nvData[] One byte for each network variable. Each byte
includes the following flags: priority (0x80),
output (0x40), service type (acknowledged [0x00],
repeated [0x10], unacknowledged [0x20]), and
authenticated (0x08).

Compile and link the ShortStackDev.c file with your application, but you do not
normally have to edit this file. Any manual changes to this file are not retained
when you rerun the IzoT Interface Interpreter, but the file contains comments
about how you can override some of the preferences and assumptions made by
the utility.

main.xif
The IzoT Interface Interpreter generates the device interface file for your project
in the XIF format.

36 Integrating the IzoT Interface Interpreter

For this file, main is the name of the C source file which is processed by the IzoT
Interface Interpreter.

These files comply with the LONMARK device interface format.

Important: If your device is defined with a non-standard program ID, the device
interface file cannot contain interoperable LONMARK constructs.

ShortStack User’s Guide 37

5

Selecting and Creating a
ShortStack Micro Server

This chapter describes how to create a ShortStack Micro Server using
one of the standard ShortStack Micro Server images that are included
with the IzoT ShortStack SDK, and how to load them into a Smart
Transceiver or Neuron Chip.

38 Selecting and Creating a ShortStack Micro Server

Overview
This chapter describes how to select a Micro Server, how to load the ShortStack
firmware image into the Micro Server, how to initialize the Micro Server, and
how to work with non-volatile memory within the Micro Server. For information
about creating a custom Micro Server, see Custom Micro Servers.

Selecting the Micro Server Hardware
You can build a ShortStack Micro Server using any Echelon Smart Transceiver
or Neuron Chip. The Echelon Smart Transceiver integrate a Neuron core with a
free topology (FT) twisted pair transceiver or a power line (PL) transceiver. The
Echelon FT Smart Transceivers include the FT 6050, FT 6010, FT 5000, FT 3150,
and FT 3120. The Echelon PL Smart Transceivers include the PL 3170, PL 3150,
and PL 3120. The Echelon Neuron Chips include a Neuron core and do not
include an integrated transceiver. The Neuron Chips can be used with other
transceivers such as RS-485 transceivers. The Echelon Neuron Chips include the
Neuron 6050 and the Neuron 5000.

You can develop custom hardware using an Echelon Smart Transceiver or
Neuron Chip. For device evaluation and development with the Smart
Transceivers, you can use the Echelon FT 6000 EVB or FT 5000 EVB evaluation
boards, which include optional Electronic Industries Alliance (EIA) standard RS-
232-C level shifters, jumpers, and I/O connectors that you can use to prototype a
ShortStack interface to a host with an RS-232 interface.

More information about Echelon’s evaluation boards is available from the
Echelon Web site at echelon.com.

If you are developing a new FT device that must be compatible with existing
LON FT devices, the FT 6050 provides the best performance and lowest
implementation cost, and requires the smallest board space. If you are
developing a new FT device that does not require interoperability with existing
LON FT devices, the FT 6010 provides the best performance and lowest
implementation cost, and requires the smallest board space. If you are
developing a new PL device, the PL 3120 provides the best performance and
lowest implementation cost for applications that do not require a large number of
network variables. For applications that require many network variables, the PL
3150 provides the best performance and lowest implementation cost. If you are
developing a new device that will not be using an FT or PL interface, the Neuron
6050 provides the best performance and lowest implementation cost, and
requires the smallest board space.

Micro Server Clock Rate
The Micro Server clock rate determines the available bit rate for the link-layer
transfer and the overall performance of the Micro Server. For Series 6000 or
5000 devices, the clock rate is determined by the internal system clock rate. You
can specify a Series 6000 or 5000 device’s internal system clock rate within the
device’s hardware template when you create a custom Micro Server. For Series
3100 devices, the clock rate is determined by the external crystal or oscillator.
For the standard Micro Servers, the internal system clock rate is fixed. Each
device type has its own clock rate maximum:

http://www.echelon.com/

ShortStack User’s Guide 39

• For PL 3120, PL 3150, and PL 3170 Smart Transceivers, the highest
possible external clock rate is 10 MHz. Typical PL 3120, PL 3150, or PL
3170 ShortStack devices use a 10 MHz crystal.

• For FT 3120 Smart Transceivers, the highest possible external clock rate
is 40 MHz. Typical FT 3120 ShortStack devices use a 20 MHz crystal.

• For FT 3150 Smart Transceivers, the highest possible external clock rate
is 20 MHz. However, using a flash memory device for off-chip storage
limits the Micro Server’s clock rate to 10 MHz. Thus, typical FT 3150
ShortStack devices use a 10 MHz crystal.

• For FT 6050 or FT 5000 Smart Transceivers, the external clock rate is
always 10 MHz, from which the chips generate an on-chip system clock
rate (the clock multiplier is configurable). The highest possible system
clock rate is 80 MHz. For this highest system clock rate, the link-layer
transfer speed is very high, and generally non-standard for most UARTs
and USARTs. That is, not all host processors will support all possible bit
rates for the highest system clock rates. The standard Micro Server uses
a 20 MHz system clock rate, which allows standard bit rates to be used.

See Selecting the Link-Layer Bit Rate for more information about requirements
for the bit rate.

Micro Server Memory Map
The Micro Server needs its own data storage, which it maintains in mapped non-
volatile memory. For an FT 3120, PL 3120, or PL 3170 Smart Transceiver the
memory map is fixed, but Micro Servers that are based on FT 3150, PL 3150, or
FT 5000 Smart Transceivers can use a variety of memory maps. The Series 6000
Smart Transceivers use an auto-tuning link algorithm which automatically
configures the effective memory map to meet the application requirements. The
memory map for all standard Micro Servers is fixed, but you can create a custom
Micro Server to provide a different memory map.

For example, additional RAM can be used for creating 3150 Micro Servers that
support ISI-DAS devices or other advanced Micro Server configurations.

A Micro Server with large off-chip flash memory can store additional Micro
Server code, which allows the device to embed feature-rich versions of the ISI
self-installation protocol, or to implement a feature-rich custom Micro Server. A
Micro Server with smaller off-chip flash memory areas leave larger areas of
unused memory in the Micro Server’s physical memory map, which allows the
application to use direct memory files (DMF). Larger areas of such unused
memory allow the application to store configuration property files in the direct
memory files.

A 3120 or 3170 Smart Transceiver provides up to 4 KB of on-chip non-volatile
memory, whereas a 6050, 5000, or 3150 Smart Transceiver uses off-chip flash
memory which can provide 32 KB or more of non-volatile memory. For many
applications, the memory provided with the FT 3120, PL 3120, or PL 3170 Smart
Transceivers is sufficient, but more complex ShortStack applications that
implement a large number of network variables, include a feature-rich self-
installation library, or require an increased buffer configuration, could require a
Micro Server based on an FT 6050, FT 5000, FT 3150, or PL 3150 Smart
Transceiver.

40 Selecting and Creating a ShortStack Micro Server

For FT 3150 and PL 3150 devices, the standard ShortStack Micro Server images
require a flash device that supports a 128-byte sector size, such as the Atmel
AT29C512 (64 KB) or AT29C010A (128 KB) flash device. The memory map used
in the Micro Server images is declared for a 32 KB flash device, with a 128-byte
sector size (which yields a memory map of 0x0000 to 0x7FFF). This memory map
leaves significant memory available for applications to use the direct memory file
access method; see Supporting Direct Memory Files for more information.

For FT 5000 devices, the standard ShortStack Micro Server images require an
SPI or I2C EEPROM or SPI flash memory device; see the Series 5000 Chip Data
Book for additional information about the external memory requirements for an
FT 5000 Smart Transceiver. The memory map used in the Micro Server images
is declared for a 32 KB EEPROM device. This memory map leaves significant
memory available for applications to use the direct memory file access method;
see Supporting Direct Memory Files for more information.

For devices based on a Series 6000 chip such as the FT 6050 Smart Transceiver,
a serial flash memory part is required Echelon’s Series 6000 Chip Data Book
provides detailed specifications on the electrical interfaces, mechanical
interfaces, and operating characteristics for the FT 6050 Smart Transceiver, FT
6010 Smart Transceiver, and Neuron 6050 Processor.

Preparing the ShortStack Micro Server
You need to load the Micro Server executable image into the Micro Server
hardware before you can use it as a ShortStack device. After you complete
development, you can load the Micro Server image into your ShortStack device as
part of your manufacturing process.

You typically load the Micro Server only once. However, if you load a new
version of the Neuron firmware into a Smart Transceiver, be sure to load an
updated Micro Server image into the Smart Transceiver at the same time.

After you load a new Micro Server image, the first initialization of the Micro
Server, together with the initialization of the host application, can take up to one
minute to complete. The Micro Server is unresponsive to the network until this
initialization is complete. After the initialization is complete, resetting or power-
cycling the Micro Server with the same host application completes much more
quickly.

Reloading a Micro Server with an updated version of the Micro Server firmware
could require changes in the serial driver or the API that resides in your host
processor. For example, migrating an application from the an earlier version of
the ShortStack Developer’s Kit to the IzoT ShortStack SDK requires some
changes to the serial driver because you use an updated ShortStack Micro
Server. Loading a Micro Server with a version that is incompatible with the
current host application can sever link-layer communications.

The serial link layer communications used with IzoT Shortstack are compatible
with ShortStack FX.

Table 7 summarizes the processor and memory combinations that you can use
with the standard, pre-compiled, Micro Server images, along with the files and
tools that you use to program each. See Firmware Image File Names for a
description of the Micro Server image file extensions and file naming convention.

ShortStack User’s Guide 41

Table 7. Loading the Micro Server Executable Image

Smart
Transceiver

Memory
Type

Micro
Server
Image File
Extension

Micro Server
Image
Programming
Tool

Example
Programming
Tools

FT 3120, PL
3120, or PL
3170 Smart
Transceiver

On-chip
EEPROM

APB, NDL,
or NEI

Network
management
tool

NodeLoad utility

IzoT
Commissioning
Tool

NFI PROM
programmer

A universal
programmer, such
as one from BPM
Microsystems or
HiLo Systems

FT 3150 or
PL 3150
Smart
Transceiver

Off-chip
flash

APB or
NDL

Network
management
tool

NodeLoad utility

IzoT
Commissioning
Tool

NEI Universal chip
programmer
or in-circuit
flash
programmer

A universal
programmer, such
as one from BPM
Microsystems or
HiLo Systems

FT 5000
Smart
Transceiver

Off-chip
EEPROM
or flash

APB or
NDL

Network
management
tool

NodeLoad utility

IzoT
Commissioning
Tool

NME or
NMF

EEPROM or
flash
programmer

A universal
programmer, such
as one from BPM
Microsystems or
HiLo Systems

In-circuit
programmer, such
as Total Phase™
Aardvark™
I2C/SPI Host
Adapter

FT 6050
Smart
Transceiver

Off-chip
flash
memory

APB or
NDL

Network
management
tool

NodeLoad utility

IzoT
Commissioning
Tool

42 Selecting and Creating a ShortStack Micro Server

Smart
Transceiver

Memory
Type

Micro
Server
Image File
Extension

Micro Server
Image
Programming
Tool

Example
Programming
Tools

NMF

Flash
programmer

A universal
programmer, such
as one from BPM
Microsystems or
HiLo Systems

In-circuit
programmer, such
as Total Phase™
Aardvark™
I2C/SPI Host
Adapter

Notes:

• Information about the NodeLoad utility and the IzoT Commissioning tool
is available from echelon.com.

• Information about BPM Microsystems programmer models is available
from bpmicro.com. The Forced Programming option in the menu is
provided only to refresh the internal memory contents and should not be
used to program new devices. In this mode, the programmer simply
reads out the contents of the memory and rewrites them.

• Information about HiLo Systems manual programmer models is available
from hilosystems.com.tw.

• Information about TotalPhase programmers is available from
totalphase.com.

For device production, you typically use a universal chip programmer (where the
chip is programmed prior to soldering it to the device circuit board) or an in-
circuit programmer. For development, you typically use in-circuit programming
(where the chip is part of the device during programming) for simplicity rather
than programming speed.

Firmware Image File Names
The base file names for the standard Micro Server firmware images use the
following naming convention:

SS430_ + image base file name + _ + 5-digit clock speed + kHz + file extension

For a Series 3100 device, the clock speed figure contained in the file name refers
to the external clock speed (for example, 10000kHz for a 10 MHz crystal). For
Series 5000 or Series 6000 devices, because the external clock speed is fixed at 10
MHz, the clock speed figure embedded in the image file name refers to the
internal system clock frequency. The system clock rate is prefixed with SYS to
highlight this difference. Micro Servers created for pre-production parts include
ES (to signify Engineering Sample) in the name.

http://www.echelon.com/
http://www.bpmicro.com/
http://www.hilosystems.com.tw/
http://www.totalphase.com/

ShortStack User’s Guide 43

Examples:

• The universal chip programmer standard image for the PL 3120-E4
Smart Transceiver has the following name:
SS430_PL3120E4_10000kHz.nfi.

• The NodeLoad standard image for the ISI-enabled FT 6050 Smart
Transceiver has the following name:
SS430_FT6050ISI_SYS20000kHz.ndl.

The firmware images with these names are located in the
[ShortStack]\microserver\standard directory.

When you use the LonTalk Interface Developer utility, it selects the appropriate
set of Micro Server image files based on your preferences, and copies them to the
project’s output folder. These image files have the project’s base name (rather
than the image’s base name) and the appropriate file extension.

The IzoT Interface Interpreter does not copy or rename the Micro Server image
files. Instead, the IzoT Interface Interpreter assumes that you provide the
repository of applicable Micro Server image files in a suitable location, and that
your application’s C source code references the chosen Micro Server. The IzoT
Interface Interpreter supports a project-specific Micro Server repository as well
as one or more repositories in different locations on your computer or computer
network.

Table 8 lists the valid file extension values for the firmware image files.

Table 8. Micro Server Image File Extensions

Extension Description

APB Micro Server firmware image file for network management
tools, such as the IzoT Commissioning tool. Applies to all
Smart Transceivers.

NDL Micro Server firmware image file for the Nodeload utility.
Applies to all Smart Transceivers.

NEI, NXE Micro Server firmware image file for a universal chip
programmer (for 3150 or 5000 Smart Tranceivers) or for image
download tools (for 3120 or 3170 Smart Transceivers).

NFI Micro Server programmable firmware image file for a
universal chip programmer. Applies only to 3120 and 3170
Smart Transceivers.

NME, NMF Micro Server programmable firmware image file for a
universal chip programmer. Applies only to Series 5000 or
6000 chips.

In addition, the [ShortStack]\microserver\standard directory includes files
with the following file extensions for each Micro Server:

• XIF – The Micro Server’s device interface (XIF) file (used by the IzoT
Interface Interpreter and the LonTalk Interface Developer tools)

44 Selecting and Creating a ShortStack Micro Server

• SYM – The Micro Server’s device symbol file (used by the IzoT Interface
Interpreter and the LonTalk Interface Developer tools)

• H – A C header file that is shared between the Micro Server and the host
application to define the location of ISI callbacks and other
implementation details for an ISI application (present only for Micro
Servers that support the ISI protocol)

Loading an FT 3120, PL 3120, or PL 3170 Smart
Transceiver

Because a 3120 or 3170 Smart Transceiver does not support external memory,
the only memory to program is on-chip EEPROM, which you program over the
network or with a universal chip programmer that supports the 3120 or 3170
Smart Transceiver.

To load the ShortStack Micro Server firmware using a universal chip
programmer or in-circuit programmer, you can use:

• A 3120 chip programmer to load a ShortStack Micro Server’s NEI file into
the 3120 or 3170 Smart Transceiver’s non-volatile memory.

• A general-purpose programmer that supports the 3120 or 3170 Smart
Transceiver, such as a BPM Microsystems or Hi-Lo Systems universal
programmer, to load a ShortStack Micro Server’s NFI file into the 3120 or
3170 Smart Transceiver’s non-volatile memory.

To load the ShortStack Micro Server firmware using in-circuit programming, use
the NodeLoad utility or the IzoT Commissioning tool. See Using a Network
Management Tool for In-Circuit Programming for information about using these
tools to load a ShortStack Micro Server.

Do not use the IzoT Commissioning tool for the initial load of a ShortStack Micro
Server into a power line Smart Transceiver. You can use the IzoT
Commissioning tool for any subsequent loads as long as the channel type does not
change (for example by adding or removing support for the CENELEC protocol).
See Using the IzoT Commissioning Tool with ShortStack.

Loading an FT 3150 or PL 3150 Smart Transceiver
A device based on a 3150 Smart Transceiver always has non-volatile off-chip
memory (PROM, EEPROM, or flash memory), and might also have off-chip RAM.
The ShortStack firmware must reside in the non-volatile memory. The standard
Micro Servers for FT 3150 and PL 3150 Smart Transceivers support offchip flash
memory with at least 32 KB and 128 bytes per sector.

You can load the ShortStack Micro Server firmware into a flash memory device,
such as an Atmel AT29C512 or AT29C010A flash memory device, for an Echelon
FT 3150 Smart Transceiver or PL 3150 Smart Transceiver.

To load the ShortStack firmware use an appropriate flash programmer to load a
ShortStack Micro Server’s NEI file into the 3150 Smart Transceiver’s off-chip
memory.

Although you can reload the FT 3150 or PL 3150 Micro Server using in-circuit
programming, you need to perform an initial load for the Micro Server firmware

ShortStack User’s Guide 45

using a universal chip programmer or in-circuit programmer. This initial load is
required because the 3150 Smart Transceiver does not contain boot loader code
on chip.

After the off-chip non-volatile memory part has been initially programmed and
inserted into the device, you can reload the Micro Server image using in-circuit
programming using network management tools such as the NodeLoad utility or
the IzoT Commissioning tool. See Using a Network Management Tool for In-
Circuit Programming for information about using these tools to load a
ShortStack Micro Server.

Loading a Blank Application
IzoT ShortStack SDK device development does not require the loading of an
initially blank application into the Smart Transceiver. However, for FT 3150 or
PL 3150 Smart Transceivers, you can load a blank application into off-chip
memory to clear the off-chip memory.

Although a device normally performs initialization once for a given firmware
image, it is possible to force this process to occur again with the same firmware
image by resetting the 3150 Smart Transceiver to the blank state (the initial
state of the EEPROM on a newly manufactured Smart Transceiver) using the
EEBLANK utility.

This utility is available as a free download from echelon.com/downloads, in the
Development Tools category. To reset a 3150 chip's state, program the
appropriate EEBLANK image (there is an image for each Smart Transceiver
clock rate) into a 3150 flash memory chip and power up the device. For a short
period, the service LED flashes, then it changes to full on to indicate that the
chip has been returned to the blank state. The next time that any image is
loaded into the flash memory for this device, the on-chip EEPROM is re-
initialized.

Loading an FT 5000 Smart Transceiver
A device based on a Series 5000 Chip always has non-volatile off-chip memory
(EEPROM or flash memory). The ShortStack firmware must reside in the non-
volatile memory. The standard Micro Server for an FT 5000 Smart Transceiver
supports a 32 KB EEPROM memory part. ShortStack devices that use an FT
5000 Smart Transceiver with a different memory map or different non-volatile
memory types (such as flash memory), need to use a custom Micro Server for the
intended configuration. Note that there is no standard Micro Server image for a
Neuron 5000 Processor.

To load the ShortStack firmware use an appropriate EEPROM or flash
programmer (such as the Total Phase Aardvark I2C/SPI Host Adapter) to load a
ShortStack Micro Server’s NME or NMF file into the FT 5000 Smart
Transceiver’s off-chip memory. For the FT 5000 EVB, connect the programmer to
the JP23 header, as described in the FT 5000 EVB Hardware Guide.

To load the Micro Server image using in-circuit programming, use network
management tool such as the NodeLoad utility or the IzoT Commissioning tool.
See Using a Network Management Tool for In-Circuit Programming for
information about using these tools to load a ShortStack Micro Server.

http://www.echelon.com/downloads

46 Selecting and Creating a ShortStack Micro Server

Do not use the IzoT Commissioning Tool for the initial load of a ShortStack Micro
Server into an FT 5000 Smart Transceiver or Neuron 5000 Processor. You can
use the IzoT Commissioning tool for any subsequent loads as long as the Micro
Server’s system clock multiplier does not change. See Using the IzoT
Commissioning Tool with ShortStack.

Loading an FT 6050 Smart Transceiver
A device based on a Series 6000 Chip always has non-volatile off-chip serial flash
memory. The ShortStack firmware needs to reside in the non-volatile memory.
The standard Micro Server for an FT 6050 Smart Transceiver supports all of the
supported flash memory parts listed in the Series 6000 Data Book.

To load the ShortStack firmware use an appropriate flash programmer (such as
the Total Phase Aardvark I2C/SPI Host Adapter) to load a ShortStack Micro
Server’s NMF file into the FT 6050 Smart Transceiver’s off-chip memory. For the
FT 6050 EVB, connect the programmer to the JP23 header, as described in the
FT 6050 EVB Hardware Guide.

To load the Micro Server image using in-circuit programming, use network
management tool such as the NodeLoad utility or the IzoT Commissioning tool.
See Using a Network Management Tool for In-Circuit Programming for
information about using these tools to load a ShortStack Micro Server.

Do not use the IzoT Commissioning Tool for the initial load of a ShortStack Micro
Server. You can use the IzoT Commissioning tool for any subsequent loads as
long as the Micro Server’s system clock multiplier does not change. See Using the
IzoT Commissioning Tool with ShortStack.

Using a Network Management Tool for In-Circuit
Programming

To load the ShortStack firmware images using in-circuit programming, you can
use network management tools such as Echelon’s NodeUtil or NodeLoad utilities,
or the IzoT Commissioning tool.

Network management tools load Smart Transceiver application images (for a
ShortStack device, this image is the Micro Server firmware) and normally
complete the load process by resetting the device, waiting for the device to
complete its boot sequence, and confirming a healthy device state.

However, for the initial loading of a ShortStack Micro Server, this health check is
likely to fail. Following the device reset, the Micro Server enters quiet mode, in
which all network interaction is suspended, and it waits for the host processor to
complete the ShortStack initialization sequence. The Micro Server enters quiet
mode in this case to prevent an incomplete implementation of the LonTalk
protocol stack from attaching to the network, but in this state it also prevents the
loader from confirming the successful load completion.

The NodeLoad utility provides a parameter that suppresses the final reset and
health check (the -M parameter) that allows an automated load process to
complete without error.

For the IzoT Commissioning Tool, you might see an error during the load process;
if you reset the physical device and re-commission the device from the drawing,

ShortStack User’s Guide 47

the error should resolve itself. However, you should not use the IzoT
Commissioning Tool for the initial load of a ShortStack Micro Server. You can
use the IzoT Commissiong Tool for any subsequent loads as long as the Micro
Server’s system clock multiplier does not change.

After the Micro Server image has been loaded, and while the Micro Server is in
quiet mode, the Micro Server performs an extensive one-time initialization. This
initialization period can take as long as one minute. The tasks performed during
initialization depend on the chosen Micro Server hardware and clock settings, as
well as the features and limits supported by the chosen Micro Server.

Using the NodeLoad Utility with ShortStack
You can use the NodeLoad utility to load an NDL file into the Smart
Transceiver’s non-volatile memory over a LONWORKS network. To use the
NodeLoad utility, you need a LONWORKS network interface, such as the U10,
U20, or U60 DIN Network Interface or the PCLTA-21 PCI Network Interface.

The NodeLoad utility is designed for loading known and tested application
images. If you use the utility to load a custom Micro Server image, or an
incorrect Micro Server image for the hardware, the NodeLoad utility might not
prevent you from loading an incompatible image into the Smart Transceiver. For
a 3120 Smart Transceiver, it can be difficult to recover from such an
incompatibility. For example, if you load an FT Micro Server image into a PL
Smart Transceiver, you might not be able to recover without desoldering the 3120
chip and reprogramming it with a device programmer.

Be sure to specify the -M switch for the nodeload command when you load a
Micro Server image into a Smart Transceiver for the first time. This switch
specifies that a Micro Server image is to be loaded.

For loading application images during development or manufacture, use the -X
switch for the nodeload command, combined with the -L switch, to ensure that
the correct communication parameter and clock multiplier settings are loaded.
However, you should generally not use the -X switch for devices in field (after
device deployment) because uploading incompatible communication parameters
or clock multiplier settings can render the device inoperable or unresponsive to
network communication.

Use the NodeLoad utility only for NDL files. Do not use the utility to load other
files into a Smart Transceiver.

Example
To load an NDL file called SS430_FT6050ISI_SYS20000kHz.ndl over a
LON network interface named LON1, allowing 20 seconds to press the
service pin on the destination device, specifying that the utility load a Micro
Server image file, and specifying that the load use the communication
parameters included in the NDL file, use the following command:
nodeload –DLON1 –W20 –M –X –LSS430_FT6050ISI_SYS20000kHz.ndl

If you copy this command and paste it to a Windows command prompt and it
does not work, try re-typing the dashes before the command switches. The
NodeLoad utility might not recognize the dashes as copied from this PDF

The result of running the NodeLoad utility should look similar to the
following:

48 Selecting and Creating a ShortStack Micro Server

nodeload -DLON1 -W20 -M –X –LSS430_FT6050ISI_SYS20000kHz.ndl
Echelon NodeLoad Release 1.20
Received uplink local reset
Received an ID message from device 1.
Program ID is 9FFFFF0000000400
Received uplink local reset
Resetting node
Successfully loaded SS430_FT6050ISI_SYS20000KHZ.NDL
NodeLoad Result: Success; NID=04c5c5e20100.

The Nodeload utility is available as a free download from echelon.com/downloads,
in the Development Tools category.

See the NodeLoad Utility User’s Guide for more information about the NodeLoad
utility.

Using the IzoT Commissioning Tool with
ShortStack
You can use the IzoT Commissioning Tool to load the ShortStack firmware into a
Smart Transceiver, or upgrade it. A blank FT 3120 Smart Transceiver has a
TP/FT-10 twisted-pair compatible communications interface initialized for a 10
MHz input clock, and its Neuron firmware state is applicationless. Likewise, a
blank PL 3120 Smart Transceiver has a PL-20 power line compatible
communications interface initialized for a 10 MHz input clock, and its Neuron
firmware state is applicationless. If your device uses the appropriate
communications parameters with a 10 MHz clock, you can load the Micro Server
and network configuration over the network, using a network management tool,
such as the IzoT Commissioning tool. Otherwise, you need to load the Smart
Transceiver using a Universal chip programmer or in-circuit programmer.

You cannot use the IzoT Commissioning Tool for the initial load of a Micro
Server. Because IzoT Commissioning Tool cannot adjust the device’s on-chip
system clock multiplier (just as it would not adjust a Series 3100 device’s
external crystal speed) or a power line Smart Transceiver’s channel
characteristics (such as addition or removal of support for the CENELEC
protocol), a blank or recently changed device could become inoperative after
loading. After you load the device with the correct properties (either by using a
Universal chip programmer or the NodeLoad utility), you can use the IzoT
Commissioning Tool for subsequent loading as long as the system clock
multiplier or transceiver selection remains unchanged.

Use a universal chip programmer or in-circuit programmer to perform the initial
load for the Micro Server. You can use a universal chip programmer, in-circuit
programmer, or in-circuit network management tool for subsequent loads. For
the initial load for the Micro Server, an in-circuit network management tool can
report a failed load because the Micro Server enters quiet mode after an initial
load. In this mode, the network management tool cannot communicate with the
Micro Server. However, for subsequent loads, the Micro Server exits quiet mode
quickly as initialization completes much faster than the first time.

http://www.echelon.com/downloads

ShortStack User’s Guide 49

To load the ShortStack firmware using in-circuit programming using IzoT
Commissioning Tool:

1. Add a Device shape to your IzoT Commissioning Tool drawing.

2. Optional: Ensure that the host processor is loaded with the ShortStack
LonTalk/IP Compact API, the appropriate application program and serial
driver. This step ensures that the host application, serial driver, and
Micro Server synchronize after the load.

3. Ensure that the Smart Transceiver and the host processor are connected
and able to communicate with one another.

4. Ensure that the device is connected to the LonTalk/IP or LON network.

5. Complete the information required by the IzoT Commissioning Tool
Device Wizard.

Do not select the Commission device checkbox (or use the
Commissioning Device Wizard).

After you add the device to the IzoT Commissioning Tool drawing, load the Micro
Server firmware into the device. When prompted for the device application
image name, specify the ShortStack Micro Server image in the Image Name
field, and specify the device’s interface file that was generated by the IzoT
Interface Interpreter or the LonTalk Interface Developer utility in the XIF
Name field. Do not use the Micro Server’s XIF file.

In the Image name field, be sure to select the correct Micro Server image for
your Smart Transceiver. The IzoT Commissioning Tool can prevent some
incompatibilities between the hardware, firmware, and Micro Server image, but
some incorrect configurations are still possible.

To verify that the entire device is operational, do not import the device’s XIF
prior to commissioning, but instead specify Upload From Device for the
External Interface Definition in either the New Device Wizard or the Commission
Device Wizard. Because the SI data is located on the host, reading the SI data
requires communications with the Micro Server through the link layer. If the
device can perform such communication successfully, the device is likely to be
fully operational. See Performing an Initial Micro Server Health Check for
additional information about verifying the operational status of the Micro Server.

To test the device within IzoT Commissioning Tool, right-click the device’s shape
in the drawing and select Manage. From the Device Manager window, select
Test.

See the IzoT Commissioning Tool User’s Guide for more information about using
this tool.

Working with FT 6000 EVB or FT 5000 EVB
Evaluation Boards

You can use an Echelon FT 6000 EVB or FT 5000 EVB evaluation board to
develop your ShortStack application. However, you need to set the jumpers to
configure the Smart Transceiver for the ShortStack Micro Server and to set the
appropriate link-layer bit rate.

50 Selecting and Creating a ShortStack Micro Server

You can connect the host processor board to an FT 6000 or FT 5000 EVB through
either of the following connectors:

• The evaluation board’s general-purpose peripheral I/O connector P201
(the Gizmo and MiniGizmo connector). This connection allows the
ShortStack Micro Server and the host processor to use a common power
supply with either a 3.3 V or a 5 V signal level. If the ShortStack Micro
Server and the host processor use separate power supplies, you must
ensure that they share a common ground for the link-layer; use the P201
connector to provide the ground connection. This connection supports
either an SCI or an SPI serial driver connection. See Using the Gizmo
Interface (SCI or SPI).

For specific wiring instructions between an Echelon FT 6000 or FT 5000
EVB and a Raspberry Pi mini-computer (or compatible device) see the
wiring instructions located in [ShortStack]/example/rpi/doc, where
[ShortStack] is your local folder into which you cloned the IzoT
ShortStack SDK repository.

• The on-board EIA-232 connector J201. This connection includes a Maxim
Integrated Products MAX3387E AutoShutdown Plus RS-232 Transceiver
that allows ShortStack link-layer drivers to use standard EIA-232
communications levels, with handshake signals, and maintain separate
power supplies. This connection supports only SCI serial driver
connections. See Using the EIA-232 Interface (SCI).

To enable the FT 5000 EVB or FT 6050 EVB to support a ShortStack application,
you need to mount or dismount jumpers on the following headers: JP31, JP32,
JP201, and JP203. In addition, you should verify the settings for the JP1,
JP33, JP202, JP204, and JP205 jumpers. See the FT 6000 EVB Hardware
Guide for more information about these jumpers.

General Jumper Settings for the FT 5000
EVB and FT 6000 EVB
Verify and set the following jumpers to run a ShortStack Micro Server on an FT
6000 EVB or FT 5000 EVB

Although the jumper settings for headers JP1, JP33, and JP202 are not specific
to running a ShortStack Micro Server on these evaluation boards, they are
included so that you can verify the settings for all of the headers on the board.

JP1

For the FT 5000 EVB only, leave the jumpers for the JP1 header mounted as
shown in Figure 5. This header connects the Smart Transceiver to the
onboard serial flash and serial EEPROM memory.

JP1

Figure 5. EVB Serial Memory Connections Header (JP1)

ShortStack User’s Guide 51

JP31

Dismount all of the jumpers from the JP31 header, as shown in Figure 6.
The settings shown in the figure disconnect the Smart Transceiver’s I/O lines
from the onboard I/O.

JP31
0

SC
L

0
SC

L
L

1
SD

A

1
SD

A
L

2
LE

D
1

SW
C

LK

SW
IN

3
LE

D
2

Figure 6. EVB I/O Connections Header (JP31)

JP33

The ShortStack Micro Server does not use the onboard LCD display, so you
can dismount jumper on the JP33 header to remove power to the LCD
display, as shown in Figure 7. This jumper setting is optional.

JP33

Figure 7. EVB LCD Display Power Header (JP33)

Using the Gizmo Interface (SCI or SPI)
To use the P201 Gizmo interface on an FT 6000 EVB or FT 5000 EVB for a
ShortStack application, set the following jumpers as described below.

JP32

Dismount all of the jumpers from the JP32 header, as shown in Figure 8 and
Figure 9. The settings for pins 1-10 of the header shown in the figure
disconnect the Smart Transceiver’s I/O lines from the onboard I/O.

The 3 PD jumper setting in Figure 10 specifies the SCI interface for the
ShortStack Micro Server. The 3 PD jumper setting in Figure 11 specifies the
SPI interface for the ShortStack Micro Server.

For SCI, if your ShortStack serial driver does not use the HRDY~ signal,
mount the jumper for 1 PD to tie the HRDY~ signal low. For SPI, leave the 1
PD jumper un-mounted, as shown in the figures.

If you use a standard Micro Server or a custom ShortStack Micro Server that
does not use the IO9 pin, you can dismount the 9 PD jumper to engage the
R226 pull-up. If you use a custom ShortStack Micro Server that uses the IO9
pin, you can mount or dismount the 9 PD jumper as needed.

52 Selecting and Creating a ShortStack Micro Server

JP32

6
S

W
S

H

7
TE

M
P

8
R

X
U

S
B

9
S

W
1

10
 T

X
U

S
B

1
P

D

9
P

D

3
P

D

Figure 8. EVB I/O Connections Header (JP32) – SCI

JP32

6
S

W
S

H

7
TE

M
P

8
R

X
U

S
B

9
S

W
1

10
 T

X
U

S
B

1
P

D

9
P

D

3
P

D

Figure 9. EVB I/O Connections Header (JP32) – SPI

JP201

Dismount all of the jumpers on the JP201 header, except the 10T1IN
jumper, as shown in Figure 10. Although this header enables the EIA-232
interface, and is not needed for the Gizmo interface, the 10T1IN jumper
connects the R213 pull-up resistor for the Micro Server’s IO10 pin (TXD for
SCI or HRDY~ for SPI).

8
R

10

4
R

20

1
R

30

10
 T

1 I
N

JP201

Figure 10. EVB EIA-232 Communications Header (JP201)

ShortStack User’s Guide 53

JP202

Mount the jumper for the JP202 header to determine the external power
source for the EVB, as shown in Figure 11.

JP202JP202

Power comes
from J202

(default setting)

Power comes
from P201

Figure 11. EVB Power Selector Header (JP202)

To use the Echelon power supply that ships with the EVB, mount the jumper
so that power comes from the J202 connector. This is the factory-default
setting.

To allow the EVB to share a common 5V power supply with your host board,
mount the jumper so that power comes from pin 25 of the P201 Gizmo
header.

When possible, use a single power domain for both the host processor board
and the EVB:

1. Important: Do not connect the external power supply to J202
connector of the EVB.

2. Set the EVB’s JP202 jumper to use power from the P201 Gizmo
header (the left-hand image of Figure 12).

3. Connect power from the host board to pin 25 of the P201 Gimzo
header.

4. Connect the two boards to a common ground (you can use pin 20 or 23
of the P201 Gizmo header to provide ground to the EVB).

5. Supply power to the host processor board.

JP203

Dismount the 0 T2IN and FON PD jumpers, as shown in Figure 12. These
jumpers apply to the EIA-232 interface only.

The figure also shows the 5 PD and 6 PD jumpers configured to specify the
serial bit rate for the standard 20 MHz Micro Server (76800 bps for SCI;
76700 bps uplink and 38600 bps downlink for SPI).

54 Selecting and Creating a ShortStack Micro Server

5
P

D

6
P

D

0
T2

IN

FO
N

 P
D

Figure 12. EVB ShortStack Header (JP203)

To set the link-layer bit rate for the Micro Server, determine the correct bit
rate for your device according to Selecting the Link-Layer Bit Rate, and then
mount the EVB’s 5 PD and 6 PD jumpers on the JP203 header
appropriately to match the correct settings for the IO5 and IO6 pins on the
Smart Transceiver. Depending on which serial driver you use, see either
Setting the SCI Bit Rate or Setting the SPI Bit Rate for the correct settings for
the IO5 and IO6 pins.

JP204

Mount the jumper for the JP204 header, as shown in Figure 13, to determine
whether power is supplied to pin 19 of the P201 Gizmo header. The default
setting is to provide no power to pin 19, but you can supply either +5 V or
+3.3 V.

JP204 JP204

No power to
Gizmo pin 19

(default setting)

+5V power to
Gizmo pin 19

JP204

+3.3V power to
Gizmo pin 19

Figure 13. EVB Gizmo Pin 19 Power Selector Header (JP204)

JP205

Mount the jumper for the JP205 header to determine whether power is
supplied to pin 17 of the P201 Gizmo header, as shown in Figure 14. The
default setting is to provide no power to pin 17, but you can supply +3.3 V.

JP205 JP205

No power to
Gizmo pin 17

(default setting)

+3.3 V power to
Gizmo pin 17

Figure 14. EVB Gizmo Pin 17 Power Selector Header (JP205)

P201

To connect your host evaluation board or Micro Server custom board to the
P201 Gizmo header, you need to create a custom connection cable. For rapid
prototyping, you can use short 0.25” (0.635 mm) square socket test leads for
these connections. Figure 15 shows the Gizmo header (P201) on the FT 5000

ShortStack User’s Guide 55

EVB. The figure shows the signal names as used by the FT 6000 EVB and
FT 5000 EVB, and also shows the signal names for the first 12 pins as used
by the SCI and SPI interfaces for a ShortStack Micro Server (signal names
are from the Micro Server’s point of view).

When connecting an FT 6000 or FT 5000 EVB to a host processor board, be
sure to provide a solid ground connection between the two boards. You can
use pin 20 or 23 of the P201 Gizmo header for this ground connection.

3432302826242018161412108642
1 3 5 7 9 11 13 15 17 19 23 25 27 29 31 33

IO
0

IO
2

IO
4

IO
6

IO
8

IO
10

S
V

C
~

G
IZM

O
_P

17

V
D

D
_G

IZM
O

G
N

D

V
D

D
_E

X
T

C
P

4

C
P

2_TX

C
P

0

N
C

IO
1

IO
3

IO
5

IO
7

IO
9

IO
11

R
S

T~

G
N

D

N
C V
A

N
C

C
P

3_R
X

C
P

1

N
C

N
C

P201

N
C

N
C

12

10

8

6

4

2 1

3

5

7

9

11

CTS~

NC

RTS~

SBRB1

RXD

TXD

HRDY~

GND

SBRB0

NC

IO9

NC

P201 - SCI

12

10

8

6

4

2 1

3

5

7

9

11

R/W~

SS~

TREQ~

SBRB1

MISO

HRDY~

SCLK

VDD

SBRB0

MOSI

IO9

NC

P201 - SPI

Figure 15. The Gizmo Header (P201) with the SCI and SPI Micro Server Signals

Using the EIA-232 Interface (SCI)
To use the EIA-232 interface on the FT 6000 or FT 5000 EVB for a ShortStack
application, set the following jumpers as described below.

JP32

Dismount all of the jumpers from the JP32 header, as shown in Figure 16.
The settings for pins 1-10 of the header shown in the figure disconnect the
Smart Transceiver’s I/O lines from the onboard I/O.

The 3 PD jumper setting specifies the SCI interface for the ShortStack Micro
Server. If your ShortStack serial driver does not use the HRDY~ signal,
mount the jumper for 1 PD to tie the HRDY~ signal low.

If you use a standard Micro Server or a custom ShortStack Micro Server that
does not use the IO9 pin, you can dismount the 9 PD jumper to connect the
R226 pull-up. If you use a custom ShortStack Micro Server that uses the IO9
pin, you can mount or dismount the 9 PD jumper as needed.

56 Selecting and Creating a ShortStack Micro Server

JP32

6
S

W
S

H

7
TE

M
P

8
R

X
U

S
B

9
S

W
1

10
 T

X
U

S
B

1
P

D

9
P

D

3
P

D

Figure 16. EVB I/O Connections Header (JP32)

JP201

Mount all of the jumpers on the JP201 header, as shown in Figure 17. These
jumper settings connect the Micro Server’s IO1 (HRDY~), IO4 (RTS~), IO8
(RXD), and IO10 (TXD) signals to the EIA-232 connector. If your ShortStack
serial driver does not use the HRDY~ signal, you can dismount the jumper
for 1 R30.

8
R

10

4
R

20

1
R

30

10
 T

1I
N

JP201

Figure 17. EVB EIA-232 Communications Header (JP201)
JP203

Mount the 0 T2IN and FON PD jumpers on the JP203 header, as shown in
Figure 18. The figure also shows the 5 PD and 6 PD jumpers configured to
specify a 76800 bps serial bit rate for the standard 20 MHz Micro Server.

5
P

D

6
P

D

0
T2

IN

FO
N

 P
D

JP203

Figure 18. EVB ShortStack Header (JP203)

ShortStack User’s Guide 57

The MAX3387E RS-232 transceiver that is used on the FT 5000 EVB is
configured to enter autoshutdown mode after inactivity of approximately 30
seconds. For applications that use high link-layer bit rates, the time required for
the transceiver to become fully active (approximately 100 µs) might be long
enough to cause a framing error on the serial link-layer signals.

To prevent the MAX3387E RS-232 transceiver from entering autoshutdown
mode, you can mount the FON PD jumper on the JP203 header connect the
chip’s FORCEON pin (pin 11) to GND, as shown in Figure 18. Alternatively,
your SCI serial driver can briefly toggle the ShortStack Micro Server’s HRDY~
signal every 10 to 20 seconds during periods of idleness. This toggle causes the
MAX3387E transceiver to detect transmission activity and not enter
autoshutdown mode.

To set the link-layer bit rate for the Micro Server, determine the correct bit rate
for your device according to Selecting the Link-Layer Bit Rate, and then mount
the EVB’s 5 PD and 6 PD jumpers on the JP203 header appropriately to match
the correct settings for the IO5 and IO6 pins on the Smart Transceiver. See
Setting the SCI Bit Rate for the correct settings for the IO5 and IO6 pins.

The EIA-232 interface requires a null-modem cable for the D-SUB9 EIA-232
connector (J201) on the EVB. To define the null-modem EIA-232 interface, use
the pin connections listed in Table 9. Keep the total cable length to a maximum
of 24 inches (0.6 meters).

Table 9. EIA-232 Header to D-SUB9 Connector Pin Connections

D-SUB9 Connector Pin Micro Server SCI Signal

1 N/A

2 TXD

3 RXD

4 HRDY~

5 GND

6 N/A

7 RTS~

8 CTS~

9 N/A

Clearing the Non-Volatile Memory
In general, if you have a working device, you should not need to clear the onboard
non-volatile memory. For a working device, you can receive a Service message
and reload the non-volatile memory as needed.

However, if it should become necessary to clear the non-volatile memory:

58 Selecting and Creating a ShortStack Micro Server

For the FT 5000 EVB
See External Serial Non-Volatile Memory Device Connection (JP1) in the FT 5000
EVB Hardware Guide.

At this point, you can reload the board with whatever application is required (for
example, a ShortStack Micro Server or a Neuron C application). Because the
device has returned to its default (empty) state and default settings, use the
NodeLoad utility with the -X switch when loading an application or Micro Server
image (see Using the NodeLoad Utility with ShortStack). Never use the IzoT
Commissioning Tool to load an image following this procedure

For the FT 6000 EVB
Reload the .NMF file using a suitable in-circuit SPI flash programmer. See
Performing In-Circuit Programming of the External Serial Memory Device in the
FT 6000 EVB Hardware Guide.

Using a Logic Analyzer
During device development, you can use a logic analyzer, such as the TechTools
DigiView™ Logic Analyzer, to verify the link-layer signals. For an example, see
Performing an Initial Micro Server Health Check. You can use the JP24 header
(see Figure 19) on the EVB to connect a logic analyzer to the EVB.

161412108642
1 3 5 7 9 11 13 15

IO
0

IO
2

IO
4

IO
6

IO
8

IO
10

S
V

C
~

IO
1

IO
3

IO
5

IO
7

IO
9

IO
11

R
S

T~

JP24

G
N

D
G

N
D

Figure 19. Logic Analyzer Header (JP24)

Working with Mini EVB Evaluation Boards
You can use an Echelon Mini FX or Mini EVK evaluation board to develop your
ShortStack application. However, you need to set the jumpers to configure the
Smart Transceiver for the ShortStack Micro Server and to set the appropriate bit
rate.

You can connect the host processor to a Mini EVB through either of the following
connectors:

• The evaluation board’s general-purpose peripheral I/O connector P201
(the Gizmo and MiniGizmo connector). This connection allows the
ShortStack Micro Server and the host processor to use a common power
supply with a 5V signal level. By default, this connection supports only
SCI serial driver connections. To use the SPI interface, you must drive
the IO3 (SPI/SCI~) pin high with a 10 kΩ pull-up resistor through the
Gizmo (P201) header. See Using the Gizmo Interface (SCI).

ShortStack User’s Guide 59

• The on-board EIA-232 connector J201. This connection includes a
Maxim Integrated Products MAX3387E AutoShutdown Plus RS-232
Transceiver, which allows ShortStack link-layer drivers to use standard
EIA-232 communications levels and maintain separate power supplies.
This connection supports only SCI serial driver connections. See Using
the EIA-232 Interface (SCI).

When connecting a Mini EVB to a host processor board, be sure to provide a solid
ground connection between the two boards.

To enable the Mini EVB to support a ShortStack application, you must mount or
dismount jumpers on the following headers: JP201 and JP203. See the Mini FX
PL Hardware Guide for more information about these jumpers.

Using the Gizmo Interface (SCI)
To use the P201 Gizmo interface on a Mini EVB for a ShortStack application, set
the following jumpers as described below.

JP201

Dismount all of the jumpers on the JP201 header, as shown in Figure 20.
This header enables the EIA-232 interface, which is not needed for the Gizmo
interface. In the figure, the jumpers for the FT 3120 and 3150 boards are on
the left, and the jumpers for the PL 3120, 3150, and 3170 boards are on the
right.

JP201
(FT 31xx)

IO
8

IO
4

IO
1

IO
10

JP201
(PL 31xx)

IO8

IO4

IO1

IO10

Figure 20. Mini EVB EIA-232 Enable Jumpers (JP201)

JP203

Dismount the IO0 jumper as shown in Figure 21; this jumper applies to the
EIA-232 interface only. The figure also shows the IO5 and IO6 jumpers
configured to specify a 38 400 bit rate on a Mini FX PL 3150 Evaluation
Board for a 10 MHz Micro Server.

60 Selecting and Creating a ShortStack Micro Server

IO
5

IO
6

IO
0

JP203

Figure 21. PL 3150 Mini FX ShortStack Enable Jumper (JP203)

To set the link-layer bit rate for the Micro Server, determine the correct bit
rate for your device according to Selecting the Link-Layer Bit Rate and then
mount the Mini EVB’s JP203 jumpers appropriately to match the correct
settings for the IO5 and IO6 pins on the Smart Transceiver. See Setting the
SCI Bit Rate for the correct settings for the IO5 and IO6 pins.

The PL 3170 Smart Transceiver supports the 38400 bit rate only. Therefore,
the JP203 jumper settings for the IO5 and IO6 pins do not apply to the Mini
FX PL 3170 Evaluation Board.

When possible, use a single power domain for both the host processor board
and the Mini EVB. If you use the Pyxos FT EV Pilot EVB as your host
processor board, you can allow the Mini EVB to provide 5V power:

1. Important: Do not connect the external power supply to either the
JP201 connector or the J31 connector of the Pyxos FT EV Pilot EVB.

2. Connect pin 26 (VDD5) of the P201 Gimzo header on the Mini EVB to pin
2 of the JP33 header on the Pyxos FT EV Pilot EVB. The JP33 header is
near the center of the EVB, to the right of the JP512 and JP510 headers.
By default, there is a jumper that connects pins 1-2 of the JP33 header;
remove this jumper to connect to pin 2 of the header.

3. Connect the two boards to a common ground: Use pin 20 or 23 of the
P201 Gizmo header to provide ground from the Mini EVB, and use pin 43
or 44 of the JP505 header to provide ground to the Pyxos FT EV Pilot
EVB.

4. Supply power to the Mini EVB.

If you use a host processor board other than the Pyxos FT EV Pilot EVB, you
should still use a common power domain. In this case, you should use a common
power supply that meets the input power requirements of both the host processor
board and the Mini EVB (note that the power line EVBs have different power
requirements from the FT EVBs).

To connect your host evaluation board or Micro Server custom board to the P201
Gizmo header, you need to create a custom connection cable. For rapid
prototyping, you can use short 0.25” (0.635 mm) square socket test leads for these
connections. Figure 22 shows the Gizmo header (P201) on the PL 3170 EVB.
The figure shows the signal names as used by the PL 3170 EVB, and also shows
the signal names for the first 12 pins as used by the SCI and SPI interfaces for a
ShortStack Micro Server (signal names are from the Micro Server’s point of
view).

ShortStack User’s Guide 61

34

32

30

28

26

24

20

18

16

14

12

10

8

6

4

2 1

3

5

7

9

11

13

15

17

19

23

25

27

29

31

33

IO0

IO2

IO4

IO6

IO8

IO10

SVC~

NC

NC

GND

VDD_EXT

BIU

TXON

NC

NC

IO1

IO3

IO5

IO7

IO9

IO11

RST~

GND

NC

VA

VDD5

PKD

NC

NC

NC

P201

NC

NC

12

10

8

6

4

2 1

3

5

7

9

11

CTS~

NC

RTS~

SBRB1

RXD

TXD

HRDY~

GND

SBRB0

NC

IO9

NC

P201 - SCI

12

10

8

6

4

2 1

3

5

7

9

11

R/W~

SS~

TREQ~

SBRB1

MISO

HRDY~

SCLK

VDD

SBRB0

MOSI

IO9

NC

P201 - SPI

Figure 22. The Gizmo Header (P201) with the SCI and SPI Micro Server Signals

Using the EIA-232 Interface (SCI)
To use the EIA-232 interface on a Mini EVB for a ShortStack application, set the
following jumpers as described below.

JP201

To enable the EIA-232 communications on a Mini EVB, mount all of the
jumpers on the JP201 header, as shown in Figure 23. In the figure, the
jumpers for the FT 3120 and 3150 boards are on the left, and the jumpers for
the PL 3120, 3150, and 3170 boards are on the right.

JP201
(FT 31xx)

IO
8

IO
4

IO
1

IO
10

JP201
(PL 31xx)

IO10

IO8

IO4

IO1

Figure 23. Mini EVB EIA-232 Enable Jumpers (JP201)

The MAX3387E RS-232 transceiver that is used on the Mini EVBs is
configured to enter autoshutdown mode after inactivity of approximately 30

62 Selecting and Creating a ShortStack Micro Server

seconds. For applications that use high link-layer bit rates, the time required
for the transceiver to become fully active (approximately 100 µs) might be
long enough to cause a framing error on the serial link-layer signals.

To prevent the MAX3387E RS-232 transceiver from entering autoshutdown
mode, your serial driver can briefly toggle the ShortStack Micro Server’s
HRDY~ signal every 10 to 20 seconds during periods of idleness. This toggle
causes the MAX3387E transceiver to detect transmission activity and not
enter autoshutdown mode. Alternatively, you can connect the FORCEON pin
(pin 11) either to VDD5 or to the VL pin (pin 15).

JP203

Mount the IO0 jumper as shown in Figure 24 to connect the CTS~ signal to
the MAX3387E RS-232 transceiver. The figure also shows the IO5 and IO6
jumpers configured to specify a 19 200 bit rate on a Mini FX PL 3170
Evaluation Board for a 10 MHz Micro Server.

IO
5

IO
6

IO
0

JP203

Figure 24. PL 3170 Mini FX ShortStack Enable Jumper (JP203)
To set the link-layer bit rate for the Micro Server, determine the correct bit
rate for your device according to Selecting the Link-Layer Bit Rate, and then
mount the Mini EVB’s JP203 jumpers appropriately to match the correct
settings for the IO5 and IO6 pins on the Smart Transceiver. See either
Setting the SCI Bit Rate for the correct settings for the IO5 and IO6 pins.

The EIA-232 interface requires a null-modem cable for the D-SUB9 EIA-232
connector (J201) on the Mini EVB. To define the null-modem EIA-232 interface,
use the pin connections listed in Table 10. Keep the total cable length to a
maximum of 24 inches (0.6 meters).

Table 10. EIA-232 Header to D-SUB9 Connector Pin Connections

D-SUB9 Connector Pin Micro Server SCI Signal

1 N/A

2 TXD

3 RXD

4 HRDY~

5 GND

6 N/A

ShortStack User’s Guide 63

7 RTS~

8 CTS~

9 N/A

ShortStack Device Initialization
A ShortStack device performs the following tasks during initialization:

1. Upon power-up or return from reset, the Micro Server performs initial
health checks, and initializes itself.

Depending on the chosen hardware and the Micro Server’s properties,
this step can take a while (several tens of seconds) the first time the
Micro Server initializes; however, this step completes almost instantly for
all subsequent resets.

The Micro Server also enters quiet mode at the beginning of this step.

2. While the Micro Server performs initialization step 1, the host
application runs its own local initialization code.

3. When the host application’s initialization is complete, and its serial
driver is ready to receive messages from the Micro Server, it must assert
the HRDY~ signal. This assertion must occur before the Micro Server’s
watchdog timer expires (840 ms after reset for a Series 5000 or 6000
device; 210 to 840 ms after reset for a Series 3100 device, depending on
the external clock rate). For some host platforms, you can tie the
HRDY~ signal low, so that the Micro Server assumes that the host is
always ready to receive messages. However, your host-side circuitry
must ensure that the HRDY~ signal is reliably high (deasserted) during
power-up and host initialization.

4. When the Micro Server’s initialization is complete and the host signals its
readiness to receive packets (by asserting the HRDY~ signal), the Micro
Server sends an uplink reset message. This message includes
information about the Micro Server, including its current state, last
known error condition, and its initialization state.

The ShortStack host application must register with the Micro Server to complete
the initialization of the ShortStack device (the Micro Server together with the
host processor) before it can communicate as a LonTalk/IP or LON device. Before
the application is correctly registered with the Micro Server, the Micro Server is
in quiet mode and does not respond to network events and appears inoperative to
the network. In addition, after you load a new Micro Server image, the first
initialization of the Micro Server, together with the initialization of the host
application and its registration with the Micro Server, can take up to one minute
to complete. Subsequent initializations complete much more quickly.

The ShortStack host application sends registration information to the ShortStack
Micro Server on startup. The registration information includes the device’s
program ID, optional communication parameters, network variable configuration
data, and miscellaneous preferences.

64 Selecting and Creating a ShortStack Micro Server

The ShortStack LonTalk/IP Compact API automatically resends this registration
data whenever the Micro Server reports a reset and indicates that no application
is registered.

After the registration data has been accepted and successfully processed by the
Micro Server, the Micro Server leaves quiet mode, and thus allows the device to
communicate as a LonTalk/IP or LON device.

See Initializing the ShortStack device for more information about the
initialization ShortStack LonTalk/IP Compact API function and the IzoT
Markup Language section of the IzoT Manual at echelon.com/docs/izot.for more
information about generating the self-identification, self-documentation, and
initialization data.

Using the ShortStack Micro Server Key
Each ShortStack Micro Server firmware image has a version number and a key
value that identifies it. The key value identifies the Micro Server in terms of its
Smart Transceiver chip type, its clock rate, whether it supports ISI, and its
channel type. The key value is a 16-bit number that is reported to the host
whenever the Micro Server sends a reset notification; Table 11 defines the bit
values that comprise the key for standard Micro Servers.

Table 11. Micro Server Key Bit Values

Micro
Server
Type

Bit Values

Key
Value Custom Revision

Chip
Type

Clock
Speed

ISI
Support

Channel
Type

FT 3120 @
10 MHz 0 0001 0000 001 0 000 0x0010

FT 3120 @
20 MHz 0 0001 0000 010 0 000 0x0020

FT 3120 @
40 MHz 0 0001 0000 011 0 000 0x0030

FT 3150 @
10 MHz 0 0001 0001 001 0 000 0x0090

FT 3150 @
10 MHz 0 0001 0001 001 1 000 0x0098

PL 3120 @
10 MHz 0 0001 0010 001 0 001 0x0111

http://www.echelon.com/docs/izot

ShortStack User’s Guide 65

Micro
Server
Type

Bit Values

Key
Value Custom Revision

Chip
Type

Clock
Speed

ISI
Support

Channel
Type

PL 3150 @
10 MHz 0 0001 0011 001 0 001 0x0191

PL 3150 @
10 MHz 0 0001 0011 001 1 001 0x0199

PL 3170 @
10 MHz 0 0001 0100 001 1 001 0x0A19

FT 5000
ES 0 0000 0101 011 1 000 0x02B8

FT 5000 0 0001 0101 011 1 000 0x0AB8

FT 5000 0 0001 0101 011 0 000 0x0AB0

FT 6050 0 0001 0111 011 1 000 0x0BB8

FT 6050 0 0001 0111 011 0 000 0x0BB0

In the table:

• Custom is a one-bit field that identifies whether the Micro Server is a
standard Echelon-supplied Micro Server or a custom Micro Server. 0b01
indicates standard; 0b1 indicates custom.

• Revision is a four-bit field that can distinguish otherwise-identical Micro
Servers:

o 0b0000 indicates the initial version.

o 0b0001 indicates the first revision level.

• Chip type is a four-bit field that identifies the chip type:

o 0b0000 indicates an FT 3120 Smart Transceiver

o 0b0001 indicates an FT 3150 Smart Transceiver

o 0b0010 indicates a PL 3120 Smart Transceiver

o 0b0011 indicates a PL 3150 Smart Transceiver

o 0b0100 indicates a PL 3170 Smart Transceiver

o 0b0101 indicates an FT 5000 Smart Transceiver

o 0b0110 indicates a Neuron 5000 Processor2

1 “0b0” represents a binary literal or constant value of 0 (zero).

66 Selecting and Creating a ShortStack Micro Server

o 0b0111 indicates a Series 6000 chip

• Clock speed is a three-bit field that identifies the clock speed for the
Smart Transceiver or Neuron Processor3:

o 0b000 indicates 5 MHz

o 0b001 indicates 10 MHz

o 0b010 indicates 20 MHz

o 0b011 indicates 40 MHz

o 0b100 indicates 80 MHz

o 0b101 indicates 160 MHz

• ISI support is a one-bit field that identifies whether the Micro Server
supports Interoperable Self-Installation (ISI):

o 0b0 indicates no ISI support

o 0b1 indicates ISI support.

• Channel type is a three-bit field that identifies the LONWORKS network
type:

o 0b000 indicates a TP/FT-10 channel

o 0b001 indicates a PL-20C channel

o 0b010 indicates a PL-20N channel

o 0b111 indicates all other channel types

A ShortStack host application could use this key value to determine whether its
Micro Server is running with an FT or PL transceiver, and perform an
appropriate initialization for that transceiver type. Alternatively, a host
application could use this key to bypass initialization for ISI for a Micro Server
that does not support ISI.

If you develop a custom Micro Server, you can set the key to any value that has
meaning for your application, however, you must set the most-significant bit to 1
to signify that the key applies to a custom Micro Server. The key is defined in
the [ShortStack]\microserver\custom\MicroServer.h header file:

#define MICRO_SERVER_KEY 0x8000ul

The key is a 16-bit number as defined in the context of Neuron C’s unsigned long
type.

2 The Neuron 5000 or 6050 Processor is not supported by the standard Micro Servers that are
included with the IzoT ShortStack SDK. You need to create a custom Micro Server to support a
Neuron 5000 Processor.
3 For a Series 3100 Smart Transceiver, this value is the external crystal or oscillator frequency
value. For a Series 5000 or 6000 chip, this value is twice its system clock value (from the device’s
hardware template), to represent an equivalent Series 3100 clock rate.

ShortStack User’s Guide 67

6

Selecting the Host Processor

This chapter describes considerations for selecting a new
host processor for a ShortStack device, and for evaluating an
existing host processor. It also describes considerations for
selecting the host programming environment.

68 Selecting the Host Processor

Selecting a Host Processor
For most applications, the choice of the host processor is determined by the
overall needs of the application, rather than the needs of the ShortStack Micro
Server. Other considerations for choosing the host processor include prior
experience with the processor or architecture, cost, performance, memory
support, power requirements, I/O support, and availability of development tools.

The Micro Server has few requirements for the host processor. The following
sections describe considerations that can help you choose a host processor or
determine the suitability of your current host processor.

Serial Communications
The host processor must be able to connect to the ShortStack Micro Server
through either the four (or five) line Serial Communications Interface (SCI) or
the six (or seven) line Serial Peripheral Interface (SPI). In addition, the host
processor’s implementation of the serial interface must support at least one of the
bit rates listed in Setting the SCI Bit Rate or Setting the SPI Bit Rate.

An existing serial driver, which might be available as part of an embedded
operating system’s services, may allow for flow control that complies with the
ShortStack link layer protocol. Alternatively, you can supply your own serial
driver that implements the required protocol. See SCI Interface or SPI Interface
for information about the required protocol.

If your application uses SPI, the host processor needs to support SPI Slave mode,
because the Micro Server always operates as the SPI Master.

Both the SCI and SPI interfaces provide a host ready (HRDY~) signal. Your
application can use this signal to prevent new link layer uplink transfers to the
host processor, but because Micro Server has limited buffering capabilities, the
application must assert the HRDY~ signal briefly. A typical driver
implementation deasserts this signal briefly while it enqueues a received packet,
to protect the temporarily busy receiver routine from an input data buffer
overflow. The host must ensure that this signal is deasserted reliably through
the entire power-up and initialization phase, until the host asserts it after the
host application and serial driver are fully initialized and ready to exchange link-
layer data.

If your ShortStack application makes no requirements for which interface to use,
the SCI interface is easier to implement. The SCI interface requires fewer I/O
lines, and is more standardized, which allows for easier possible future transition
to a different host platform. In addition, the ShortStack SCI driver is easier to
port because of its simpler link-layer protocol.

Byte Orientation
 A processor with a big-endian (most significant byte at low address) architecture
is easier to implement than a processor with a little-endian (least significant byte
at low address) for a ShortStack device. Network data in a LonTalk/IP or LON
network uses big-endian byte orientation.

ShortStack User’s Guide 69

A big-endian host processor does not need to change byte orientation, and thus
requires fewer processing instructions and machine cycles to access network
data. If you use a little-endian host processor, you might need to implement code
for byte re-ordering on the uplink and downlink. Some processor architectures,
such as that used in the ARM processor family, are bi-endian, and feature
switchable “endianness”.

The ShortStack LonTalk/IP Compact API and application framework provide
utilities to handle the byte orientation correctly.

Processing Power
The processing power required by the ShortStack host processor is generally
determined by the application’s control algorithm. ShortStack has minimal
processing requirements.

However, the ShortStack LonTalk/IP Compact API requires frequent periodic
servicing through the LonEventHandler() API function (see Periodically
Calling the Event Handler). Different host processors take different amounts of
time to run this function. The time required to run this function also depends on
the incoming and outgoing network traffic.

Most modern microprocessors can run this function without impacting the
application’s control algorithm. However, a device with a very demanding control
algorithm, or a device with a performance-limited host processor might need
additional RAM to buffer link-layer packets to avoid loss of data.

Volatile Memory
Although every application is different, a general bare-metal ShortStack device
requires about 800 bytes of RAM (as well as approximately 4 to 6 KB of memory
for the application program plus application framework [serial driver and
ShortStack LonTalk/IP Compact API]). See API Memory Requirements for a
description of the memory requirements for the ShortStack LonTalk/IP Compact
API and optional APIs.

If your application uses large network variables, application messages, or foreign
frame messages, which include larger payload data and therefore require larger
buffers or additional buffers in the host application, the RAM requirement could
increase significantly.

Modifiable Non-Volatile Memory
Although the ShortStack LonTalk/IP Compact API does not require modifiable
non-volatile memory, most interoperable ShortStack devices require a small
amount of modifiable non-volatile data storage. This data includes configuration
property values, which control and configure the interoperability and networking
aspects of the ShortStack device.

The total amount of such data depends on your application, and can range from
zero bytes to several kilobytes. Many simple interoperable devices require no
more than a few hundred bytes of modifiable non-volatile memory. Devices
typically use flash or EEPROM memory to store such data, but ShortStack
makes no requirement for the type of memory.

70 Selecting the Host Processor

How the application accesses this memory depends on the application’s
requirements. The ShortStack LonTalk/IP Compact API provides tools and code
that can help manage non-volatile memory.

Compiler and Application Programming Language
The IzoT ShortStack SDK provides the ShortStack LonTalk/IP Compact API and
application framework as portable ANSI C source code. A standard ANSI C (or
C++) compiler for application development is appropriate. Other development
tools and languages are possible, but you need to then port the driver, API, and
application framework to the other language.

You can use the ShortStack LonTalk/IP Compact API and application framework
with most ANSI C compilers with little or no changes. The LonPlatform.h file
provides a set of common definitions for various compilers.

The ShortStack LonTalk/IP Compact API and application framework use many
data structures and unions, some of which are deeply nested types. All of these
structures are based on byte-sized entities (and combinations of multiple single-
byte entities, rather than multi-byte entities), so the application compiler can
generate the exact memory image of these structures and unions without
inserting any padding bytes. By exclusively using single-byte entities, the
ShortStack LonTalk/IP Compact API allows most compilers to be used with an
IzoT ShortStack SDK application.

See Porting the ShortStack LonTalk/IP Compact API for more information,
including considerations for porting a ShortStack application to a host
development environment and embedded operating system.

Selecting the Development Environment
The ShortStack LonTalk/IP Compact API and framework have no requirement
for an embedded operating system, and use only a few basic routines from the
standard ANSI C toolkit, such as the memcpy() or memset() functions.

Many simple ShortStack devices do not include an embedded operating system.
These devices typically call the ShortStack LonTalk/IP Compact API from the
application’s main loop.

Devices that use an embedded operating system can use dedicated threads, tasks,
or processes to call and process data from the ShortStack LonTalk/IP Compact
API. Other solutions can call and process data from the API from a timer-based
interrupt service handler routine.

Although the ShortStack LonTalk/IP Compact API and application framework
support all of these approaches, the ShortStack model is single-threaded and not
re-entrant. An application that uses a multi-tasking (or multi-threaded) or
interrupt-driven ShortStack LonTalk/IP Compact API should ensure that all
ShortStack LonTalk/IP Compact API access is within a single thread (or task or
interrupt context).

See Appendix A, ShortStack LonTalk/IP Compact API for additional
considerations and recommendations regarding threading and execution context.

ShortStack User’s Guide 71

7

Designing the Hardware Interface

This chapter describes what you need to design the
hardware interface between your ShortStack host processor
and the ShortStack Micro Server.

72 Designing the Hardware Interface

Overview of the Hardware Interface
The hardware interface for a ShortStack Micro Server consists of the 11 or 12
I/O-pin interface of an Echelon Smart Transceiver or Neuron Chip. However, a
ShortStack Micro Server does not use all 11 or 12 pins. The ShortStack Micro
Server supports two serial interfaces for communications with the host processor:
the Serial Communications Interface (SCI) and the Serial Peripheral Interface
(SPI). One I/O pin selects the serial interface, two pins set the interface bit rate,
and five to seven I/O pins comprise the interface. One pin (IO9) is optionally
available to the host processor, and the remaining I/O pins are not used.

This chapter describes the hardware interface, including the requirement for
pull-up resistors, checking the status of the optional IO9 pin, selecting a
minimum communications interface bit rate, considerations for host latency,
specifying the SCI interface, specifying the SPI interface, and how to perform an
initial health check of the Micro Server.

Reliability
A ShortStack Micro Server considers the serial link reliable, similar to other
serial interfaces that are commonly used within computing equipment and
embedded devices, such as an inter-integrated circuit (I2C) bus connection to a
serial EEPROM device.

The ShortStack link layer protocol does not include error detection or error
recovery. Instead, error detection and recovery are implemented by the LonTalk
protocol, and this protocol detects and recovers from errors.

To minimize possible link-layer errors, be sure to design the hardware interface
for reliable and robust operations. For example, use a star-ground configuration
for your device layout on the device’s printed circuit board (PCB), limit entry
points for electrostatic discharge (ESD) current, provide ground guarding for
switching power supply control loops, provide good decoupling for VDD inputs, and
maintain separation between digital circuitry and cabling for the network and
power. See the FT 3120 / FT 3150 Smart Transceiver Data Book, the PL 3120 /
PL 3150 / PL 3170 Power Line Smart Transceiver Data Book, the Series 5000
Chip Data Book or the Series 6000 Chip Data book for more information about
PCB design considerations for a Smart Transceiver.

The example applications contain example implementations of the link layer
driver, including examples and recommendations for time-out guards within the
various states of that driver. See the examples folder of the IzoT ShortStack
SDK repository on github.com/izot/shortstack for example code and
documentation. The optional local utility API functions also include health-check
features, such as the facility to ‘ping’ the Micro Server or to echo data across the
serial link layer, to help your application to prevent and detect unrecoverable
link-layer errors.

Serial Communication Lines
For both serial interfaces (SCI and SPI), you must add 10 kΩ pull-up resistors to
all communication lines between the host processor and the ShortStack Micro
Server (including those marked as N/A in Table 11 and Table 13, and not

https://github.com/izot/shortstack

ShortStack User’s Guide 73

connected to the host processor). These pull-up resistors prevent invalid
transactions on start-up and reset of the host processor or the Micro Server.
Without a pull-up resistor, certain I/O pins can revert to a floating state, which
can cause unpredictable results.

If your link-layer driver does not use the HRDY~ signal, you can tie it to GND.
However, you can have the host drive the HRDY~ signal, even if the host
processor is fast and always ready to receive uplink data, to assist with a
synchronized start-up after power-up or reset.

High-speed communication lines must also include proper back termination.
Place a series resistor with a value equal to the characteristic impedance (Z0) of
the PCB trace minus the output impedance of the driving gate (the resistor value
will be approximately 50 Ω) at the driving pin. In addition, the trace must run on
the top layer of the PCB, over the inner ground plane, and cannot have any vias
to the other side of the PCB. Low-impedance routing and correct line
termination is increasingly important with higher link layer bit rates, so
carefully check the signal quality for both the Micro Server and the host when
you design and test new ShortStack device hardware, or when you change the
link-layer parameters for existing ShortStack device hardware.

The RESET~ Pin
The ShortStack Micro Server has no special requirements for the Smart
Transceiver’s or Neuron Chip’s RESET~ (or RST~) pin. See the FT 3120 / FT
3150 Smart Transceiver Data Book, the PL 3120 / PL 3150 / PL 3170 Power
Line Smart Transceiver Data Book, the Series 5000 Chip Data Book, or the Series
6000 Chip Data book for information about the requirements for this pin.

However, because a ShortStack device uses two processor chips, the Smart
Transceiver or Neuron Chip and the host processor, you have an additional
consideration for the Smart Transceiver’s RESET~ pin: Whether to connect the
host processor’s reset pin to the Smart Transceiver’s RESET~ pin.

For most ShortStack devices, you should not connect the two reset pins to each
other. It is usually better for the Micro Server and the host application to be able
to reset independently. For example, when the Micro Server encounters an error
that causes a reset, it logs the reset cause (see Querying the Error Log); if the
host processor resets the Micro Server directly, possibly before the Micro Server
can detect and log the error, your application cannot query the Micro Server’s
error log after the reset to identify the problem that caused the reset. The Micro
Server also resets as part of the normal process of integrating the device within a
network; there is normally no need for the host application to reset at the same
time.

In addition, the host processor should not reset the Micro Server while the Micro
Server is starting up (that is, before the Micro Server sends the uplink reset
message, LonResetNotification, to the host processor).

For devices that require the host application to be able to control all operating
parameters of the Micro Server, including reset, you can connect one of the host
processor’s general-purpose I/O (GPIO) output pins to the Smart Transceiver’s
RESET~ pin, and drive the GPIO pin to cause a Micro Server reset from within
your application or within your serial driver. Alternatively, you can connect one
of the host processor’s GPIO input pins to the Smart Transceiver’s RESET~ pin
so that the host application can be informed of Smart Transceiver resets.

74 Designing the Hardware Interface

A host processor’s GPIO output pin should not actively drive the Smart
Transceiver’s RESET~ pin high, but instead should drive the pin low. You can
use one of the following methods to ensure that the GPIO pin cannot drive the
RESET~ pin high:

• Ensure that the GPIO pin is configured as an open-drain (open-collector)
output

• Ensure that the GPIO pin is configured as a tri-state output

• Place a Schottky diode between the GPIO pin and the RESET~ pin, with
the cathode end of the diode connected to the GPIO pin

Configuring the GPIO pin as either open drain or tri-state ensures that the GPIO
pin is in a high-impedance state until it is driven low. Using a Schottky diode is
preferable to using a regular diode because a Schottky diode has a low forward
voltage drop (typically, 0.15 to 0.45 V), whereas a regular diode has a much
higher voltage drop (typically, 0.7 V); thus, the Schottky diode ensures that the
voltage drop is low enough to ensure a logic-low signal.

Host-driven reset of the Micro Server should only be an emergency means to
recover from some serious error. In addition, the host application or serial driver
should always log the reason or cause for the reset, along with timestamp
information. An unrecoverable error that requires a reset of the Micro Server is
generally evidence of a malfunction in the host driver, the Micro Server, or the
physical link layer, and should be investigated.

Using the IO9 Pin
Neither of the standard serial interfaces for a ShortStack Micro Server uses the
IO9 pin of the Smart Transceiver chip. However, an application can read the
static input signal that is available to the IO9 pin.

To make this signal available to the application, the Micro Server includes the
following information in each uplink reset notification:

• Whether the IO9 input signal is available for application use (always
TRUE for a IzoT ShortStack SDK Micro Server)

• The logic state of the IO9 static input

Applications can use this information for automatic configuration of the Micro
Server. For example, your ShortStack device can use a jumper or configuration
switch to select, or deselect, CENELEC media access protocol for power line use,
thus potentially allowing the device to use a single application image for use in
CENELEC member states as well as in countries that are not governed by the
CENELEC committee.

Selecting the Link-Layer Bit Rate
The minimum bit rate for the serial link between the ShortStack Micro Server
and the host processor is most directly determined by the expected number of
packets per second, the type of packets, and the size of the packets. Another
factor that can influence the required bit rate is support for explicit addressing,
an optional feature that the ShortStack application can enable and disable.

The following minimums apply to general-use LONWORKS devices:

ShortStack User’s Guide 75

• ShortStack Micro Server external clock frequency

o 10 MHz or higher for TP/FT-10 devices (for Series 5000 or 6000
devices, specify a minimum 5 MHz system clock rate)

o 5 MHz or higher for power-line devices

• Bit rate

o 38400 bps or higher for TP/FT-10 devices

o 9600 bps or higher for power-line devices

To generate a more precise estimate for the minimum bit rate for the serial
interface, use the following formula:

() exp**5 PPSBPTPEAPMinBitRate Interfacesizetype +++=

where:

• The constant 5 represents general communications overhead

• typeP is the packet-type overhead, and has one of the following values:

o 3 for network-variable messages

o 1 for application messages

• EA is the explicit-addressing overhead, and has one of the following
values:

o 0 for no explicit-addressing support

o 11 for explicit-addressing support enabled

• sizeP is the packet size of the payload, and has one of the following values:

o sizeof(network_variable)

o sizeof(message_length)

• InterfaceBPT represents data transfer overhead for the serial interface, and
has one of the following values:

o 1 bit per transfer for SPI

o 10 bits per transfer for SCI

• expPPS is the expected packet-per-second throughput value

Example: For an average network variable size of 3 bytes, no explicit messaging
support, and a TP/FT-10 channel that delivers up to 180 packets per second, the
minimum bit rate for an SCI interface is 19 200 bps. To allow for larger NVs,
channel noise, and other systemic latency, set the device bit rate at a value above
the minimum calculated from the formula. Thus, for this example, a bit rate of at
least 38 400 or 76 800 bps is recommended.

To calculate the expected packet-per-second throughput value for a channel, you
can use the Echelon Perf utility, available from echelon.com/downloads.

However, the bit rate is not the only factor that determines the link-layer transit
time. Some portion of the link-layer transit time is spent negotiating handshake
lines between the host and the Micro Server. For faster bit rates, the

http://www.echelon.com/downloads

76 Designing the Hardware Interface

handshaking overhead can increase, thus your application might require a faster
clock speed for the Micro Server to handle the extra processing.

Example: For a Series 3100 Micro Server running at 10 MHz and an ARM7 host
running at 20 MHz, the link-layer transit for a 4-byte network variable fetch, the
handshaking overhead can be as much as 22% of the total link-layer transit time
at 19 200 bps, and as much as 40% at 38 400 bps.

FT 3150 and PL 3150-based Micro Servers using off-chip flash memory are
limited to 10 MHz operation, but faster operation might be possible with FT 3120
or FT 3150-based Smart Transceivers. FT 5000 or FT 6050 Smart Transceivers
can operate with up to an 80 MHz system clock rate, but the standard Micro
Server for Series 5000 and 6000 chips use a 20 MHz system clock, making its
performance equivalent to that of an FT 3120 Smart Transceiver with an
external 40 MHz crystal. The selection of the 20 MHz clock rate is a compromise
between processing performance and the availability of standard bit rates.

For a performance test application that attempts to maximize the number of
propagated packets, the application is likely to show approximately 3% increased
throughput when operating with a 40 MHz Series 3100 Micro Server compared to
a 10 MHz Series 3100 Micro Server (for Series 5000 or 6000 Micro Servers, the
comparison is between the 20 MHz system clock setting and the 5 MHz system
clock setting). However, for a production application, which only occasionally
transmits to the network and has unused output buffers available on the Micro
Server, a faster Micro Server reduces the time required for the handshake
overhead (by up to a factor of 4 for Series 3100 devices – or up to a factor of 16 for
Series 5000 or 6000 devices, compared to Series 3100 devices) so that a downlink
packet can be delivered to the Micro Server more quickly, which can improve
overall application latency. Thus, depending on the needs of your application,
you can use a slower or faster Micro Server, but a faster Micro Server will
provide the best performance.

Host Latency Considerations
The processing time required by the host processor for a ShortStack Micro Server
can have a significant impact on link-layer transit time for network
communications and on the total duration of network transactions. This impact
is the host latency for the ShortStack application.

To maintain consistent network throughput, a host processor must complete each
transaction as quickly as possible. Operations that take a long time to complete,
such as flash memory writes, should be deferred whenever possible. For
example, an ARM7 host processor running at 20 MHz can respond to a network-
variable fetch request in less than 60 µs, but typically requires 10-12 ms to erase
and write a sector in flash memory.

The following formula shows the overall impact of host latency on total
transaction time:

()() hostlinklayerrMicroServechanneltrans ttttt +++= *2

where:

• transt is the total transaction time

• channelt is the channel propagation time

ShortStack User’s Guide 77

• rMicroServet is the Micro Server latency (approximately 1 ms for a Series
3100 Micro Server running at 10 MHz; approximately 65 µs for a Series
5000 or 6000 Micro Server running with an 80 MHz system clock)

• linklayert is the link-layer transit time

• hostt is the host latency

The channel propagation time and the Micro Server latency are fairly constant
for each transaction. However, link-layer transit time and host latency can be
variable, depending on the design of the host application.

You must ensure that the total transaction time for any transaction is much less
than the LONWORKS network transmit timer. For example, the typical transmit
timer for a TP/FT-10 channel is 64 ms, and the transmit timer for a PL-20
channel is 384ms.

Typical host processors are fast enough to minimize link-layer transit time and
host latency, and to ensure that the total transaction time is sufficiently low.
Nonetheless, your application might benefit from using an asynchronous design
of the host serial driver and from deferring time-consuming operations such as
flash memory writes.

SCI Interface
The ShortStack Serial Communications Interface (SCI) is a half-duplex
asynchronous serial interface between the ShortStack Micro Server and the host
processor. The communications format is:

• 1 start bit

• 8 data bits (least-significant bit first)

• 1 stop bit

The SCI link-layer interface uses two serial data lines: RXD (receive data) and
TXD (transmit data). The signal directions are from the point of view of the
Micro Server. An uplink transaction describes data exchange from the Micro
Server to the host processor, and uses the TXD line. A downlink transaction
refers to data exchange from host processor to the Micro Server, and uses the
RXD line.

The SCI interface includes three flow-control lines: the RTS~ (request to send)
signal that informs the Micro Server of a pending downlink, the CTS~ (clear to
send) signal that allows a downlink transfer to begin, and an optional HRDY~
(host ready) signal that can be used to temporarily prevent uplink transfers.
These three signals are all active low.

The interface also includes two bit-rate selection signals and an interface type
selection signal. You can connect these signals to the host processor, but they do
not have to be. However, if the host processor does not control the bit-rate
selection signals, you must ensure that the host processor and the Micro Server
run at the same SCI bit rate.

78 Designing the Hardware Interface

ShortStack Micro Server I/O Pin Assignments for SCI
A ShortStack Micro Server has 11 or 12 I/O pins that control the configuration of
the Micro Server and provide the interface to the host processor. The IO3 input
pin selects the serial interface: SCI or SPI. The serial interface also determines
the usage of the other I/O pins. Table 12 summarizes these pin assignments for
the SCI interface.

If your host processor can support both the SCI and SPI interfaces, use the SCI
interface because it is typically faster and easier to implement, both in hardware
and software.

Table 12. ShortStack Micro Server Pin Assignments for the SCI Interface

Smart Transceiver
Pin

Signal Name Direction

IO0 CTS~ Output

IO1 HRDY~ Input

IO2 N/A No connection

IO3 SPI/SCI~ Input (tie to GND for
SCI)

IO4 RTS~ Input

IO5 Serial Bit Rate Bit 0
(SBRB0; LSB)

Input

IO6 Serial Bit Rate Bit 1
(SBRB1; MSB)

Input

IO7 N/A No connection

IO8 RXD Input

IO9 N/A No connection (but see
Using the IO9 Pin)

IO10 TXD Output

IO11 N/A No connection

Notes:

• Signal direction is from the point of view of the Smart Transceiver or
Neuron Chip (Micro Server).

• N/A = Not applicable.

ShortStack User’s Guide 79

Setting the SCI Bit Rate
You select the SCI interface by setting the ShortStack Micro Server’s IO3 input
pin to logic 0 (ground). The settings for pins IO5 and IO6 determine the SCI
serial bit rate, as listed in Table 13. The rates are listed as bits per second; the
values are also approximate and rounded to the nearest 100 bits per second.

Table 13. SCI Serial Bit Rates

Series
3100

External
Clock

Series
5000 or

6000
System
Clock

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

GND GND GND VDD VDD GND VDD VDD

5 MHz — 38400 19200 9600 4800

10 MHz 5 MHz 76800 38400 19200 9600

20 MHz 10 MHz 153600 76800 38400 19200

40 MHz 20 MHz 302100 153600 76800 38400

— 40 MHz 604200 302100 153600 76800

— 80 MHz 1208400 604200 302100 153600

Note: Specify the Series 5000 or 6000 system clock rate in the hardware template for a
custom Micro Server. The standard Series 5000 or 6000 Micro Server images use a 20 MHz
system clock. The external crystal clock frequency for a Series 5000 or 6000 chip is 10 MHz.

The standard Series 3100 ShortStack Micro Server images support only the 10
MHz, 20 MHz, and 40 MHz clock rates; you need to create a custom Micro Server
image to use the 5 MHz clock rates listed in Table 13. The standard Series 5000
or 6000 ShortStack Micro Server images support only the 20 MHz system clock
rate; you need to create a custom Micro Server image to use one of the other
system clock rates. See Custom Micro Servers for more information about
creating a custom Micro Server image.

Some of the higher bit rates listed in Table 13 are not standard SCI bit rates,
therefore, some host processors or UART/USART implementations might not be
able to communicate at the specific rate listed in the table. In this case, modify
the UART/USART setting to the closest bit rate to the desired value in the table,
or modify the Micro Server’s bit rate setting.

For implementations with higher bit rates, be sure that the link-layer hardware
provides low impedance and correct termination. Also add extra ground
connections between the data signals. If a high-bit rate application presents link-
layer problems, be sure to analyze the waveform with an oscilloscope to be sure it
has the correct shape before proceeding to other debugging procedures.

The PL 3170 Smart Transceiver supports the 38400 bit rate only.

80 Designing the Hardware Interface

SCI Communications Interface
The SCI communications interface shown in Figure 25 is implemented with the
following inputs and outputs:

• Interface Selector (SPI/SCI~): Tied to GND to specify the SCI interface.

• Request to Send (RTS~): When asserted, indicates that the host
processor has data to send. The serial driver asserts this signal low if the
CTS~ signal is deasserted (high), and waits for the Micro Server to assert
CTS~.

• Clear to Send (CTS~): When asserted, informs the host processor that
Micro Server is ready to receive data from the serial driver. Set by the
Micro Server after the host has asserted RTS~. The Micro Server keeps
CTS~ asserted until it receives the expected number of bytes. The host
must deassert RTS~ after the CTS~ acknowledgement has been
received, and must start transmitting the related data with minimal
delay.

• Host Ready (HRDY~): When deasserted, indicates that the host
processor is temporarily not able to accept data transfers from the Micro
Server. This signal is optional; if your application does not use this
signal, tie it low so that it is continually asserted (to specify that the host
is always ready to accept data transfers). See Serial Communications for
additional considerations for the HRDY~ signal. Typical host
applications deassert the HRDY~ signal in the following situations:

o During power-up and initialization following a reset (until the
serial driver is ready to receive data from the Micro Server)

o When enqueuing received data, following a completed uplink
transfer

• Receive Data (RXD): Transfers data from the host processor to the Micro
Server.

• Transmit Data (TXD): Transfers data from the Micro Server to the host
processor.

• Serial Bit Rate Bit 0 (SBRB0) and Serial Bit Rate Bit 1 (SBRB1):
Together set the communications bit rate (see Table 13).

ShortStack User’s Guide 81

ShortStack
Micro Server

RTS~

CTS~
IO0

IO4

IO8

IO10

IO1
HRDY~

RXD

TXD IO3

IO5

IO6

GND

SBRB0

SBRB1

Figure 25. ShortStack SCI Communications Interface

SCI Micro Server to Host (Uplink) Control Flow
The host must assert the HRDY~ pin low to indicate that it is ready to receive
data. Because the Micro Server has a limited set of buffers, the host processor
must deassert the HRDY~ pin for only a short duration. A typical application
deasserts the HRDY~ signal during its power-up and initial initialization
following a reset, and after an uplink data packet has been completely received,
while the packet data is enqueued for further processing, then reasserts the
signal.

If your host processor is always able to receive data, you can hardwire the
HRDY~ input low.

Figure 26 shows an example for the Micro Server to host SCI control flow,
including the states of the various I/O pins.

Figure 26. SCI Micro Server to Host Transfer Control Flow Diagram

SCI Host to Micro Server (Downlink) Control Flow
The Micro Server uses the CTS~ pin to enforce a half-duplex interface. Every
downlink transfer needs to be guarded with a complete RTS~ / CTS~ handshake
between the host processor and the Micro Server, by implementing the following
simple protocol:

82 Designing the Hardware Interface

1. The serial link-layer driver awaits the completion of the previous
transaction. That is, it monitors the CTS~ line and waits until the Micro
Server has deasserted this signal.

2. The serial link-layer driver asserts the RTS~ line to indicate the
availability of downlink data.

3. The driver awaits confirmation from the Micro Server, which it indicates
by asserting the CTS~ line. Depending on the type of operation and the
current availability of buffers within the Micro Server, the driver could
wait for a significant amount of time. The driver must include a timeout
guard that can accommodate this wait period, even though the CTS~
assertion will usually occur much sooner.

4. After the driver detects that the CTS~ line is asserted (low), it releases
(deasserts) the RTS~ line.

5. The driver transmits the data.

6. After the Micro Server receives the number of bytes of data (indicated in
the message header), it releases (deasserts) the CTS~ line.

See Creating a ShortStack Serial Driver, for more information about the serial
driver.

The IzoT ShortStack SDK application and driver example for use with the
Raspberry Pi -computer and the Raspbian Linux operating system includes an
example SCI driver, which implements the recommended timeout guards. See
[ShortStack]/example/rpi/driver/rpi.c for the implementation of those
timeouts, and for extensive discussion about each timeout’s duration.

Figure 27 shows an example for the host to Micro Server SCI control flow. The
figure also shows the transfer of the two-byte header, followed by the payload.

Figure 27. SCI Host to Micro Server Transfer Control Flow Diagram

SPI Interface
The ShortStack Serial Peripheral Interface (SPI) is a half-duplex synchronous
serial interface between the ShortStack Micro Server and the host processor.
The Micro Server is configured as the SPI master. The host processor is
configured as the SPI slave.

If the host processor does not control the bit-rate selection signals, you must
ensure that the host processor and the Micro Server run at the same SPI bit rate.

ShortStack User’s Guide 83

ShortStack Micro Server I/O Pin Assignments for SPI
A ShortStack Micro Server has 11 or 12 I/O pins that control the configuration of
the Micro Server and provide the interface to the host processor. The IO3 input
pin selects the serial interface: SCI or SPI. The serial interface also determines
the usage of the other I/O pins. Table 14 summarizes these pin assignments for
the SPI interface.

If your host processor can support both the SCI and SPI interfaces, use the SCI
interface because it is typically faster and easier to implement, both in hardware
and software.

Table 14. ShortStack Micro Server Pin Assignments for an SPI Interface

Smart Transceiver
Pin

Signal Name Direction

IO0 R/W~ Output

IO1 SCLK Output

IO2 SS~ Output

IO3 SPI/SCI~ Input (tie to VDD for SPI)

IO4 TREQ~ Input

IO5 Serial Bit Rate Bit 0
(SBRB0; LSB)

Input

IO6 Serial Bit Rate Bit 1
(SBRB1; MSB)

Input

IO7 MOSI Output

IO8 MISO Input

IO9 N/A No connection (but see
Using the IO9 Pin)

IO10 HRDY~ Input

IO11 N/A No connection

Notes:

• Signal direction is from the point of view of the Smart Transceiver
(Micro Server).

• N/A = Not applicable.

84 Designing the Hardware Interface

Setting the SPI Bit Rate
You select the SPI interface by setting the ShortStack Micro Server’s IO3 input
pin to logic 1 (VDD) with a 10 kΩ pull-up resistor. You control the effective SPI bit
rate with the SCLK output from the ShortStack Micro Server, but you preselect
the desired bit rate using the SBRB0 and SBRB1 (IO5 and IO6) input signals.
For the SPI interface, there are different bit rates for uplink transfers and
downlink transfers. The settings for pins IO5 and IO6, and the resulting link
layer bit rates, are listed in Tables 15 and 16. The rates in the tables are listed
as bits per second; the values are also approximate and rounded to the nearest
100 bits per second.

Table 15. SPI Serial Bit Rates for Uplink

Series
3100

External
Clock

Series
5000 or

6000
System
Clock

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

GND GND GND VDD VDD GND VDD VDD

5 MHz — 29200 16600 10200 5100

10 MHz 5 MHz 58300 33200 20300 10300

20 MHz 10 MHz 116700 66300 40600 20500

40 MHz 20 MHz 226600 129500 76700 40900

— 40 MHz 453100 258900 153300 81900

— 80 MHz 906200 517900 306600 163700

Note: Specify the Series 5000 or Series 6000 system clock rate in the hardware template for
a custom Micro Server. The standard Series 5000 or 6000 Micro Server images use a 20
MHz system clock. The external crystal clock frequency for a Series 5000 or 6000 chip is 10
MHz.

Table 16. SPI Serial Bit Rates for Downlink

Series
3100

External
Clock

Series
5000 or

6000
System
Clock

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

GND GND GND VDD VDD GND VDD VDD

5 MHz — 21700 9200 4800 2900

10 MHz 5 MHz 43400 18400 9700 5700

20 MHz 10 MHz 86800 36800 19300 11500

ShortStack User’s Guide 85

Series
3100

External
Clock

Series
5000 or

6000
System
Clock

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

GND GND GND VDD VDD GND VDD VDD

40 MHz 20 MHz 172600 73300 38600 22800

— 40 MHz 345200 146700 77100 45600

— 80 MHz 690500 293400 154300 91300

The standard Series 3100 ShortStack Micro Server images support only the 10
MHz, 20 MHz, and 40 MHz clock rates; you must create a custom Micro Server
image to use the 5 MHz clock rates listed in Tables 15 and 16. The standard
Series 5000 or 6000 ShortStack Micro Server images support only the 20 MHz
system clock rate; you must create a custom Micro Server image to use the other
clock rates listed in Tables 15 and 16. See Custom Micro Servers for more
information about creating a custom Micro Server image.

Some host processors or UART/USART implementations might not be able to
process data at some of the higher bit rates listed in Tables 15 and 16. In this
case, modify the UART/USART setting to the closest bit rate to the desired value
in the table, or modify the Micro Server’s bit rate setting. Most host processors
should be able to process uplink data at up to 129500 bps and downlink data at
up to 73300 bps.

For implementations with higher bit rates, be sure that the link-layer hardware
provides low impedance and correct termination. Also add extra ground
connections between the data signals. If a high-bit rate application presents link-
layer problems, be sure to analyze the waveform with an oscilloscope to be sure it
has the correct shape before proceeding to other debugging procedures.

SPI Communications Interface
The SPI communications interface shown in Figure 28 is implemented with the
following inputs and outputs:

• Interface Selector (SPI/SCI~): Tied to VDD to specify the SPI interface.

• Host Ready (HRDY~): When deasserted, indicates that the host
processor is temporarily not able to accept any data transfers from the
Micro Server. This signal is optional; if your application does not use this
signal, you must tie it low so that it is continually asserted (to specify
that the host is always ready to accept data transfers). Typical host
applications deassert the HRDY~ signal in the following situations:

o During power-up and initialization following a reset (until the
serial driver is ready to receive data from the Micro Server)

o When enqueuing received data, following a completed uplink
transfer

• Master Input Slave Output (MISO): Transmits control and data bytes
from the host to the Micro Server. Data is presented at the falling clock
edge, and sampled at the rising edge, MSB first, 8 bit.

86 Designing the Hardware Interface

• Master Output Slave Input (MOSI): Transmits control and data bytes
from the Micro Server to the host. Data is presented at the rising clock
edge, and sampled at the falling edge, MSB first, 8 bit.

• Serial Clock (SCLK): Provides a clock signal for all data transfers. Data
is presented at the falling clock edge, and sampled at the rising edge.

• Slave Select (SS~): When asserted, selects the host SPI interface for SPI
communications. This signal can be used to drive a (low-active) Enable
signal on the host’s SPI interface, when necessary.

• Transmit Request (TREQ~): When asserted, indicates that the host
processor is ready to send data. The host asserts this signal low and
waits for the Micro Server to deassert the R/W~ signal.

• Read/Write (R/W~): Indicates which direction is active during a byte
transfer (low indicates write). The R/W~ signal is low during a transfer
from the Micro Server to the host (MOSI); the R/W~ signal is high during
a transfer from the host to the Micro Server (MISO). See SPI Host to
Micro Server Control Flow (MISO) for more information about the MISO
flow.

• Serial Bit Rate Bit 0 (SBRB0) and Serial Bit Rate Bit 1 (SBRB1):
Together set the communications bit rate.

The ShortStack SPI interface supports only one host processor on the bus; it does
not support any other devices or microprocessors on the bus.

ShortStack
Micro Server

TREQ~

R/W~

MISO

MOSI

SCLK

SS~
IO2

IO1

IO8

IO7

IO0

IO4

IO10
HRDY~

IO3

IO5

IO6

VDD

SBRB0

SBRB1

Figure 28. ShortStack SPI Communications Interface

SPI Micro Server to Host Control Flow (MOSI)
The host driver asserts the HRDY~ signal low to indicate that it is ready to
receive data. Because the Micro Server has a limited set of buffers, the host
driver must deassert the HRDY~ signal for only a short duration. A typical
driver deasserts the HRDY~ signal during its power-up and initial initialization

ShortStack User’s Guide 87

following a reset, and after an uplink data packet has been completely received,
while the packet data is enqueued for further processing, then reasserts the
signal.

If your driver is always able to receive data, you can hardwire the HRDY~ input
low.

Before sending a byte to the host, the Micro Server waits for the HRDY~ signal
to be asserted low, then it sets the R/W~ signal low to indicate the direction of
the data transfer. The Micro Server presents data on each rising edge of the
SCLK signal; the host samples the data on each falling edge.

During MOSI transmissions, the MISO signal is ignored, and any data
transferred to the Micro Server during this time is discarded. The SCLK period
and duty cycle can vary during MISO and MOSI transmissions; the SCLK signal
cannot be used for any other purpose than ShortStack SPI interface data
transfers.

Figure 29 shows an example for the Micro Server to host SPI control flow.

MSB1 LSB1 MSB2 LSB2

SCLK

MOSI

Presentation Edge

Sample Edge

R/W

Byte Received InterruptByte Received Interrupt

R/W Sampled

Figure 29. SPI Micro Server to Host (MOSI) Transfer Control Flow Diagram

SPI Host to Micro Server Control Flow (MISO)
Because the Micro Server is the SPI master, the host processor loads the first
byte to be transmitted and asserts the TREQ~ signal. Asserting the TREQ~
signal causes the Micro Server to start the data transfer by driving the SCLK
signal. Loading the data byte before asserting the TREQ~ signal ensures that:

• The data is transmitted as soon as the Micro Server begins sending a
clock signal (the SCLK signal)

• The data is sampled on the rising edge of the SCLK signal

After the byte-received interrupt in the host’s SPI status register is set, the host
tests the R/W~ signal to determine if the transmission was successful. If the
R/W~ signal is low (indicating a write operation by the Micro Server), the host
must save the incoming byte as part of an uplink transfer and retry transmission
until the R/W~ signal is high. When the host attempts to write data while the
Micro Server is already writing data, this condition is known as a write collision.

After the host samples the R/W~ signal and it is still high after the transfer of
the first byte, it immediately de-asserts the TREQ~ signal before it loads the
second byte of the burst transfer into its SPI transmission data register.

Because the host samples the R/W~ signal between the transmission of the first
and second byte, the minimum length for a transfer in either direction is two
bytes. This requirement is inherently met by the ShortStack SPI interface
message structure because each link layer packet is two or more bytes in length.

88 Designing the Hardware Interface

For some packets with only one byte of payload, an extra padding byte (zero) is
added. In addition, the Micro Server keeps the R/W~ signal high for the duration
of one byte; this extra time allows the host to confirm transfer direction.

The Micro Server samples data on the rising edge of the SCLK signal. The host
presents data on the falling edge of the SCLK signal, because the SCLK signal is
high between bytes (idle line). For most SPI implementations, this idle state is
achieved by setting the Clock Polarity Bit (CPOL) to one and the Clock Phase Bit
(CPHA) to one.

Figure 30 shows an example for the host to Micro Server SPI control flow,
without a write collision. The figure also shows the transfer of the two-byte
header.

MSB1 LSB1 MSB2 LSB2

SCLK

MISO

TREQ

R/W

Presentation Edge

Sample Edge Byte Transmitted Interrupt

R/W Sampled

Figure 30. SPI Host to Micro Server (MISO) Transfer Control Flow Diagram without Write
Collision

Figure 31 shows the sequence for a MISO transaction when there is a write
collision with a MOSI transmission. The host tests the R/W~ signal after loading
the first byte to be transmitted to determine if the transmission was successful.
Because the R/W~ signal is low, indicating that the ShortStack Micro Server is
currently performing a MOSI transfer, the host saves the incoming byte and
retries transmission until the R/W~ signal is high after the attempted transfer of
the first byte. The figure shows that the host successfully transmits the data on
the second attempt.

MSB1 LSB1 MSB1 LSB1 MSB2 LSB2

SCLK

MISO

TREQ

R/W

Presentation Edge

Sample Edge Byte Transmitted Interrupt

R/W Sampled

Byte Transmitted Interrupt

R/W Sampled

MSB2 LSB2MOSI LSB1

Figure 31. SPI Host to Micro Server (MISO) Transfer Control Flow Diagram with Write

Collision

ShortStack User’s Guide 89

SPI Resynchronization
The Micro Server resynchronizes the ShortStack SPI interface by de-asserting
the SS~ signal during a byte transfer, or by de-asserting the SS~ signal and
issuing several SCLK pulses. This resynchronization occurs during Micro Server
start-up and when the Micro Server resets.

Performing an Initial Micro Server Health Check
After you load the ShortStack Micro Server image into a Smart Transceiver, the
Micro Server enters quiet mode (also known as flush mode). While the Smart
Transceiver is in quiet mode, all network communication is paused.

The Smart Transceiver enters quiet mode to ensure that only complete
implementations of the LonTalk protocol stack attach to a LonTalk/IP or LON
network. In a functioning ShortStack device, the application initializes the Micro
Server. After that initialization is complete, the Micro Server leaves quiet mode
and enables regular network communication.

To check that the Micro Server is functioning correctly before the host processor
has initialized it, you can use an oscilloscope or a logic analyzer to observe the
activity on the TXD (IO10) signal or MOSI (IO7) signal that reflects the uplink
LonNiReset message transfer that follows a Micro Server reset, as shown in
Figure 32 for SCI and Figure 33 for SPI.

(SCI)

Micro Server

HRDY~

RTS~

CTS~

TXD

RXD

SBRB0

SBRB1

RESET~

VDD

9 x 10 kΩ

GND

SPI/SCI~

GND

Figure 32. Uplink LonNiReset Message Transfer – SCI

90 Designing the Hardware Interface

(SPI)

Micro Server

HRDY~

SS~

SCLK

R/W~

TREQ~

SBRB0

SBRB1

RESET~

VDD

11 x 10 kΩ

GND

SPI/SCI~

MISO

MOSI

Figure 33. Uplink LonNiReset Message Transfer – SPI
The Micro Server’s service LED flashes slowly (which indicates that the Smart
Transceiver is in the unconfigured state), and all network communications are
disabled while it is in quiet mode.

Ensure that all communication and handshake lines are connected to VDD with
10kΩ pull-up resistors. For the initial hardware test, the HRDY~ input signal
should be grounded (asserted). If you use the SCI interface, the SPI/SCI~ input
signal should also be grounded; if you use the SPI interface, the SPI/SCI~ input
signal must be connected to VDD. Your hardware design can include a button
that connects the RESET~ pin to ground; you press this button to reset the
Micro Server.

When you press the Reset button for a ShortStack device, the Smart Transceiver
firmware performs reset processing, as described in the data books for the Smart
Transceiver chips. Then, the Micro Server performs reset processing that is
generally independent of the host processor. See ShortStack Device Initialization
for more information about the Micro Server’s reset processing.

After the Micro Server is fully initialized, it transmits the uplink
LonResetNotification message to the host. The host normally registers (or re-
registers) its application with the Micro Server; the host application (through the
ShortStack LonTalk/IP Compact API) begins application registration with the
Micro Server, in which the driver sends the following messages to the Micro
Server (in the LonInit() function and interrupt service routine for either the
CTS~ signal or the SPI signals):

• The LonNiAppInit message

• One or more LonNiNvInit messages (how many depends on the number
of network variables that are defined for the device)

• The LonNiReset message

After the Micro Server completes processing for the LonNiReset message, it
sends the uplink reset message (LonResetNotification) to the host processor.
After the host application processes this message, the host application can begin
processing. If the message (in the Flags field) indicates that the Micro Server is
not initialized, the host application should re-run the LonInit() function.

ShortStack User’s Guide 91

Setting Up a Logic Analyzer for ShortStack
Within your logic analyzer software, specify the capture options for each signal,
as shown in Table 17 for SCI and Table 18 for SPI.

Table 17. Logic Analyzer Signal Definitions for SCI

Signal Name Signal Type Communications Settings

IO1 – HRDY Boolean ―

IO0 – CTS~ Boolean ―

IO4 – RTS~ Boolean ―

IO8 – RXD Asynchronous Data Bits: 8

Parity: None

Baud Rate: Depends on
SBRB0 and SBRB1 settings

IO10 – TXD Asynchronous Data Bits: 8

Parity: None

Baud Rate: Depends on
SBRB0 and SBRB1 settings

92 Designing the Hardware Interface

Table 18. Logic Analyzer Signal Definitions for SPI

Signal Name Signal Type Communications Settings

IO2 – SS Boolean ―

IO10 – HRDY Boolean ―

IO1 – SCLK Boolean ―

IO4 – TREQ Boolean ―

IO0 – RW Boolean ―

IO8 – MISO Synchronous:

CLK = IO1 – SCLK

DATA = IO8 – MISO

ENABLE = IO0 – RW

Data Bits: 8

Enable State: High

Clock Edge: Rising

MSB first

IO7 – MOSI Synchronous:

CLK = IO1 – SCLK

DATA = IO7 – MOSI

ENABLE = IO0 – RW

Data Bits: 8

Enable State: Low

Clock Edge: Falling

MSB first

For both IO7 – MOSI and IO8 – MISO, the synchronous clock is the IO1 – SCLK
signal and the enable signal is the IO0 – RW signal.

Example Health Check for SCI
Figure 34 through Figure 38 show sample logic analyzer traces4 for the
communications activity between the host processor and the Micro Server during
the initialization sequence after device reset. This example assumes an SCI
setup for a 10 MHz Series 3100 Micro Server, with both the SBRB0 and SBRB1
signals connected to GND to set the bit rate at 76800 bps. The data transmission
signals (RXD and TXD) in the figures are labeled from the host’s point of view.
This example shows the reset behavior of the serial driver for an ARM7 example
port.

Figure 34 shows a high-level logic analyzer trace for this initialization sequence:

• The boxed area labeled A represents sending the LonNiAppInit message

• The boxed area labeled B represents sending the LonNiNvInit message

• The boxed area labeled C represents sending the LonNiReset message

4 The logic analyzer traces were captured using the TechTools DigiView™ Logic Analyzer.

ShortStack User’s Guide 93

The trace also shows the handshake protocol (the RTS~ and CTS~ signals) that
the serial driver and the Micro Server use to negotiate communications. The
handshake interaction is described in the subsequent figures.

Figure 34. High-Level Logic Analyzer Trace for ShortStack Device Reset

Figure 35 shows the detailed trace for the serial driver and Micro Server
interactions for sending the LonNiAppInit message.

Figure 35. Detailed Logic Analyzer Trace for Sending the LonNiAppInit Message

The figure shows the following actions by the host processor and the Micro
Server:

1. After a device reset, the operating system, application, and driver load
and initialize.

2. When the driver is ready to receive data, it asserts the HRDY~ signal.

3. Because the driver needs to send the initialization messages, it confirms
that the CTS~ signal is not asserted, and then it asserts the RTS~ signal
to inform the Micro Server that the driver has data to send to the Micro
Server (in this case, the header packet for the LonNiAppInit message).

4. The Micro Server asserts the CTS~ signal to inform the driver that the
Micro Server is ready to receive data.

5. The driver deasserts the RTS~ signal. The handshake between the
driver and the Micro Server is complete, so the driver deasserts the RTS~
signal so that the signal can be asserted when the driver needs to send
more data to the Micro Server. It is important that the driver deassert
the RTS~ signal before the last byte of data is transmitted, and deasserts
the RTS~ signal as soon as the CTS~ signal is asserted.

94 Designing the Hardware Interface

6. The driver sends the two-byte header packet to the Micro Server. In this
case, the length byte is 0x1C (decimal 28) and the command byte is 0x08,
which specifies the LonNiAppInit message.

7. After the Micro Server receives the header packet, it deasserts the CTS~
signal to inform the driver that the Micro Server is no longer receiving
data. The Micro Server is always aware of the number of bytes that it
expects to receive from the driver. In this case, because the packet is the
header, the Micro Server knows that the driver will send only 2 bytes, so
it deasserts the CTS~ signal after it has received the 2 bytes.

8. The driver confirms that CTS~ is deasserted, and again asserts the
RTS~ signal to inform the Micro Server that the driver has data to send
to the Micro Server (in this case, the payload packet for the
LonNiAppInit message).

9. After the Micro Server has processed the header information for the
LonNiAppInit message, it asserts the CTS~ signal to inform the driver
that the Micro Server is ready to receive the payload data.

10. The driver deasserts the RTS~ signal. The handshake between the
driver and the Micro Server is complete.

11. The driver sends the 28-byte payload packet for the LonNiAppInit
message to the Micro Server. The size of this message may vary.

12. Once the Micro Server received all payload data (according to the payload
length transmitted with the header segment), it de-asserts CTS~, then
acts on the contents of that message (not shown in the above illustration).

Figure 36 shows the detailed trace for the serial driver and Micro Server
interactions for sending the LonNiNvInit message. The figure also includes the
end of the transaction for the LonNiAppInit message.

Figure 36. Detailed Logic Analyzer Trace for Sending the LonNiNvInit Message

The figure shows the following actions by the host processor and the Micro
Server:

1. The driver confirms that the CTS~ signal is not asserted, and then
asserts the RTS~ signal to inform the Micro Server that the driver has
more data to send to the Micro Server (in this case, the header packet for
the LonNiNvInit message).

2. The Micro Server asserts the CTS~ signal to inform the driver that the
Micro Server is ready to receive data. During the long delay between the

ShortStack User’s Guide 95

driver’s asserting RTS~ and the Micro Server’s asserting CTS~, the
Micro Server processes the LonNiAppInit message.

3. The driver deasserts the RTS~ signal. The handshake between the
driver and the Micro Server is complete.

4. The driver sends the two-byte header packet to the Micro Server. In this
case, the length byte is 0x08 and the command byte is 0x0B, which
specifies the LonNiNvInit message.

5. After the Micro Server receives the header packet, it deasserts the CTS~
signal. The Micro Server is always aware of the number of bytes that it
expects to receive from the driver. In this case, because the packet is the
header, the Micro Server knows that the driver will send only 2 bytes, so
it deasserts the CTS~ signal after it has received the 2 bytes.

6. After confirming that CTS~ is deasserted, the driver again asserts the
RTS~ sigal to inform the Micro Server that the driver has data to send to
the Micro Server (in this case, the payload packet for the LonNiNvInit
message).

7. After the Micro Server has processed the header information for the
LonNiNvInit message, it asserts the CTS~ signal to inform the driver
that the Micro Server is ready to receive the payload data.

8. The driver deasserts the RTS~ signal. The handshake between the
driver and the Micro Server is complete.

9. The driver sends the eight-byte payload packet for the LonNiNvInit
message to the Micro Server. The size of this message depends on the
number of network variables defined for the device.

10. The Micro Server de-asserts CTS~ once it received the expected number
of bytes.

When necessary (depending on the application’s set of network variables), steps 1
to 9 can be repeated several times to transfer additional LonNiNvInit data to
the Micro Server.

The last LonNiNvInit packet signals the end of the registration sequence. The
Micro Server completes the final registration steps, and leaves quiet mode. Quiet
mode ensures that only a complete and fully functioning protocol stack attaches
to the network. While in quiet mode, the host processor can use local commands
to communicate with the Micro Server, such as query status or ping, but cannot
communicate with other devices on the network.

Although the figure does not show it, after the Micro Server receives the last byte
of the payload data for the LonNiNvInit message, it deasserts the CTS~ signal.
Because it parses the data in the link-layer header to read the length byte, the
Micro Server is always aware of the number of bytes that it expects to receive
from the driver.

Figure 37 shows the detailed trace for the serial driver and Micro Server
interactions for sending the LonNiReset message. The figure also includes the
end of the transaction for the LonNiNvInit message.

96 Designing the Hardware Interface

Figure 37. Detailed Logic Analyzer Trace for Sending the LonNiReset Message

The figure shows the following actions by the host processor and the Micro
Server:

1. The driver confirms that the CTS~ signal is not asserted, and then
asserts the RTS~ signal to inform the Micro Server that the driver has
more data to send to the Micro Server (in this case, the header packet for
the LonNiReset message).

2. The Micro Server asserts the CTS~ signal to inform the driver that the
Micro Server is ready to receive data. During the long delay between the
driver’s asserting RTS~ and the Micro Server’s asserting CTS~, the
Micro Server processes the LonNiNvInit message.

3. The driver deasserts the RTS~ signal. The handshake between the
driver and the Micro Server is complete.

4. The driver sends the two-byte header packet to the Micro Server. In this
case, the length byte is 0x00 (there is no payload for this message) and
the command byte is 0x50, which specifies the LonNiReset message.

5. After the Micro Server receives the header packet, it deasserts the CTS~
signal to inform the driver that the Micro Server is no longer ready to
receive data.

6. Because the Micro Server received the LonNiReset message, it resets.

As shown in Figure 38, the driver does not re-assert the RTS~ signal. For this
example, the host processor has no more data to send to the Micro Server because
there is no payload for the LonNiReset message. The Micro Server deasserts
the RESET~ signal as it completes reset processing.

Approximately 1 second (for a Series 3100 Smart Transceiver running at 10
MHz) after the Micro Server receives the LonNiReset message, the Micro Server
sends the uplink reset message (LonResetNotification) to the host processor.
The LonNiReset message is shown on the RXD line because the signals are
labeled from the host’s point of view.

IzoT Micro Servers enforce an artificial post-reset pause after transmitting the
uplink reset message. The Micro Server does not interact with the host in any
way for the duration of this pause. The post-reset pause is 50 ms by default, and
can be configured from your host application for most Micro Servers (disabled, or
re-adjusted in a 1..255 ms range). The PL 3170 Micro Servers support a non-
configurable 50 ms post-reset delay.

ShortStack User’s Guide 97

The post-reset delay grants more processing time to the host after it received the
reset notification, which generally requires that the host aborts pending
downlink operation and re-synchronizes its link layer driver.

Figure 38. Detailed Logic Analyzer Trace for Receiving the Uplink Reset Message

There is no handshake through the RTS~ and CTS~ control signals for an uplink
message, and the message includes both the two-byte header and the message
payload in a single message transfer. In this case, length byte is 0x10 (decimal
16) and the command byte is 0x50, which specifies the LonNiReset message.
This message is always the first message a Micro Server should send to the host
processor after a reset. The actual content of this message depends on the
characteristics of the Micro Server.

Although it is not likely during Micro Server initialization, an uplink transfer can
interrupt the downlink transmission between the sending of the header and the
sending of the related payload. If the header has been transmitted and an uplink
occurs before the payload can be delivered, the driver accepts the uplink data
before it continues with handshake negotiations for the downlink payload
transfer.

The example described in this section showed the Micro Server initialization
sequence, which consists of two separate message transfers: a two-byte header
and the related payload, both of which require a complete handshake. However,
a link-layer downlink operation for polling or propagating output network
variables with indices larger than 62 consists of three message transfers: a two-
byte header, a second two-byte extended header, and the related payload, all of
which require a complete handshake. See Overview of the ShortStack Serial
Driver for more information about the link-layer header.

Example Health Check for SPI
 Figure 39 and 40 show sample logic analyzer traces5 for the communications
activity between the host processor and the Micro Server during the initialization
sequence after device reset. Figure 39 shows the messages from the host to the
Micro Server; Figure 40 shows the response from the Micro Server after device
reset is complete. This example assumes an SPI setup for a 20 MHz Series 5000
Micro Server, with both SBRB0 and SBRB1 connected to GND to set the bit
rate at 172600/226600 bps. The data transmission signals (MISO and MOSI) in

5 The logic analyzer traces were captured using the TechTools DigiView Logic Analyzer.

98 Designing the Hardware Interface

the figures are labeled from the Micro Server’s point of view as the SPI master.
This example shows the reset behavior of the serial driver for the ARM7 example
port SPI driver that is available from the Echelon Knowledge Base:
echelon.com/support.

Figure 39. LonInit Communications Flow for SPI, Part 1

The basic communications flow shown in Figure 40 includes the following steps:

1. When the host application is ready, the driver asserts the HRDY~ signal.
A low HRDY~ signal indicates that the host is available to receive data
from the Micro Server.

2. Because the LonInit() function needs to send data to the Micro Server,
the driver asserts the TREQ~ signal. A low TREQ~ signal indicates that
the host has data to send to the Micro Server.

3. When the Micro Server is ready to receive the host’s data, it deasserts the
R/W~ signal. A high R/W~ signal allows the host to send data. When the
Micro Server sees the low TREQ~ signal while the R/W~ signal is high, it
drives the SCLK signal to allow the data transfer to begin.

4. The host sends the header byte for the first message (the LonNiAppInit
message). The data appears on the MISO signal.

5. As soon as the first header byte is placed within the driver’s output
buffer, the driver deasserts the TREQ~ signal.

6. After the Micro Server receives the two-byte header, it stops driving the
SCLK signal to end the data transfer. As the header byte is received by
the Micro Server, it asserts the R/W~ signal. A low R/W~ signal
indicates either a write by the Micro Server or that the Micro Server is
not ready to receive data from the host.

7. Steps 2 through 6 repeat for sending the payload for the first message
(the LonNiAppInit message).

8. Steps 2 through 7 repeat for sending the second message (the
LonNiNvInit message) and the third message (the LonNiReset
message), although the third message has no payload.

https://support.echelon.com/hc/en-us/articles/201877620-Does-Echelon-have-an-example-SPI-driver-for-ShortStack-2-1-or-ShortStack-FX-KB635-

ShortStack User’s Guide 99

After the Micro Server receives the LonNiReset message, it resets. After the
reset is complete, the Micro Server sends an uplink reset message
(LonResetNotification) to the host processor, as shown in Figure 40.

Figure 40. LonInit Communications Flow for SPI, Part 2

IzoT ShortStack Micro Servers enforce a configurable post-reset pause after the
uplink reset message is sent. The Micro Server does not interact with the host in
any way for the duration of this pause. The post-reset pause is 50 ms by default,
and can be configured from your host application for most Micro Servers
(disabled, or re-adjusted in a 1..255 ms range). The PL 3170 Micro Servers
support a non-configurable 50 ms post-reset delay.

The post-reset delay grants more processing time to the host after it received the
reset notification, which generally requires that the host aborts pending
downlink operation and re-synchronizes its link layer driver.

Because the message originates with the Micro Server (an uplink message), it
asserts the R/W~ signal and drives the SCLK signal when it is ready to send the
data. The message includes both the two-byte header and the message payload
in a single message transfer.

100 Designing the Hardware Interface

ShortStack User’s Guide 101

8

Creating a ShortStack Serial Driver

This chapter describes the link-layer serial driver and how
to develop a ShortStack serial driver for your host processor.
This driver manages the handshaking and data transfers
between the host and the ShortStack Micro Server. The
driver also manages the buffers in the host for
communication with the ShortStack Micro Server.
If a ShortStack driver is available for your host processor
that matches your buffer memory and I/O configuration, you
can skip this chapter.

102 Creating a ShortStack Serial Driver

Overview of the ShortStack Serial Driver
Each data exchange on the serial link layer consists of one or more segments.
For downlink messages, the serial driver and Micro Server perform a handshake
for each segment. For uplink messages, there is no handshake.

The link-layer message consists of the following segments:

• A two-byte link-layer header

• A two-byte link-layer extended header (applies only to downlink
messages for network variable updates or polls where the network
variable index is greater than 62)

• The message payload, if any

The link-layer header consists of two parts:

• The length byte. This value describes the length of the message payload.
This value is 0x00 if there is no message payload, and is at least 0x02 if
there is a message payload.

• The command byte. This value determines the command being sent to
the Micro Server or being received from the Micro Server.

The link-layer extended header consists of two parts:

• The info byte. This value is the actual network variable index for the
update or poll request. The command byte of the link-layer header
contains a network variable index of 0x3F (decimal 63) to inform the
Micro Server and the serial driver that an extended header is required to
process the command.

• A reserved byte. For all current ShortStack Micro Servers, the value of
this byte is 0x00.

Figure 41 shows the structure of the link-layer message.

ShortStack User’s Guide 103

Length Command

Header

Length Command

Payload[Length]Header

Length Command

Payload[Length]Header

Info Byte Reserved

Extended
Header

Single link-layer
segment for

commands with no
payload

Two link-layer
segments for

commands with
payload

Three link-layer
segments for network
variable commands

with network variable
index > 62

Figure 41 Link-Layer Message Structure

Thus, for a typical link-layer message, the link-layer message includes the link-
layer header and the data payload. Not all link-layer messages include payload,
but all use the same two-byte header. For network variable polls or updates, the
link-layer message can include three segments: the link-layer header, the link-
layer extended header, and the data payload.

For both the SCI and SPI interfaces, each link-layer downlink transmission
consists of the link-layer header transmission, followed by the link-layer
extended header transmission (if applicable), followed by the optional payload
transmission. For downlink messages, all segments are individually verified
with the handshake procedure between the host and Micro Server that is
described in Designing the Hardware Interface.

However, there is no handshake process for an uplink transfer. If uplink data is
ready in the Micro Server, and the host processor signals its readiness by
asserting the HRDY~ signal (or has its HRDY~ signal permanently tied low),
the Micro Server transfers the link layer header, immediately followed by the
payload data (if any). In addition, for uplink transfers, the link-layer extended
header is not required.

After each downlink transfer, an uplink transfer can occur. If an uplink transfer
occurs after sending one segment, but prior to sending the next segment, the
subsequent segment transmission needs to wait for the uplink to complete.

After the uplink is complete, it is enqueued within the serial driver, and the
pending downlink is completed before processing the newly arrived packet.

104 Creating a ShortStack Serial Driver

The actual payload length must match the specified length in the header byte of
the link-layer message. If the actual length exceeds the specified length, extra
bits are ignored, but may cause problems for subsequent transactions.
Transmitting fewer bits than specified in the link-layer header’s length byte
causes the Micro Server to wait for the missing bits, and then reset when its
watchdog timer expires.

Role of the ShortStack LonTalk/IP Compact API
One of the most important tasks performed by the ShortStack LonTalk/IP
Compact API is the processing of uplink link-layer packets into pre-parsed data
packets that it passes to the appropriate callback handler function defined by
your application.

The application periodically calls the LonEventHandler() API function, which
queries the serial driver’s uplink queue and, upon availability of an uplink
packet, dequeues and processes this packet.

For any downlink operation, typically initiated by your application’s calling one
of the ShortStack LonTalk/IP Compact API functions, such as
LonPropagateNv(), the API translates the application-friendly data used with
the API call into the corresponding link-layer packet, and enqueues this packet
for downlink transfer.

Some link-layer transfers can occur without any interaction of your application;
for example, a network variable poll or fetch request can typically be satisfied by
the API alone, without intervention by your application.

Role of the ShortStack Serial Driver
The ShortStack serial driver provides a hardware-specific interface between the
ShortStack LonTalk/IP Compact API and the ShortStack Micro Server. The
driver exchanges link-layer messages with ShortStack Micro Server, and
implements the host-side of the link-layer protocol.

The serial driver includes buffer management for incoming and outgoing
messages, and typically allows for non-blocking operation.

ShortStack LonTalk/IP Compact API Interface
Typically, the ShortStack serial driver implements a set of interrupt handlers
that respond to USART events such as transmit buffer empty or receive buffer full
when bare-metal designs are used. Implementations that use an operating
system may find operating system support for basic serial communication, but
may need to add support for some of the ShortStack link layer signals. These
applications will typically use a worker thread or some other suitable means of
concurrent processing to exchange data between an input and output message
queue pair on the side of your application, and the Micro Server.

The ShortStack LonTalk/IP Compact API uses the functions listed in Table 19
that communicate between the API and the driver, including handling all uplink
and downlink data transfers. Your ShortStack serial driver must support these
functions. These functions are declared in the ldv.h file.

ShortStack User’s Guide 105

For more information about these interface functions, see an example port’s
implementation of the functions; for example, see the IzoT ShortStack SDK
Examples repository on github.com/izot/shortstack for example code and
documentation.

Table 19. Interface Functions for the ShortStack LonTalk/IP Compact API

Function Description

LdvOpen() Initializes the ShortStack serial driver and the
underlying communication interface.

This API was previously known as LdvInit().

LdvClose() Completes all pending downlink traffic and closes the
driver.

This API is new with the IzoT ShortStack SDK.

LdvAllocateMsg() Allocates a transmit buffer in the ShortStack serial
driver.

LdvAllocateMsgWait() Allocates a transmit buffer in the ShortStack serial
driver in a blocking operation (until a fatal timeout
occurs).

This API is new with the IzoT ShortStack SDK.

LdvPutMsg() Submits a downlink message to the driver.

This is a non-blocking function.

This API will typicall return to the caller before the
related message transmission is complete.

LdvGetMsg() Gets an incoming message (if any) from the
ShortStack serial driver’s receive buffer.

LdvReleaseMsg() Releases a message buffer back to the ShortStack
serial driver after receiving and processing a message.

LdvReset() Resets the serial driver.

LdvSuspend() Temporarily suspends the serial driver. The driver
can be suspended, synchronized to the end of the next
segment, or the end of the next multi-segmented
frame.

This API is new with the IzoT ShortStack SDK.

The API is optional; your implementation of the driver
can indicate whether support for this API is provided.
The ShortStack API does not require this API.

https://github.com/izot/shortstack

106 Creating a ShortStack Serial Driver

Function Description

LdvResume() Resume a suspended driver.

This API is new with the IzoT ShortStack SDK.

The API is optional; your implementation of the driver
can indicate whether support for this API is provided.
The ShortStack API does not require this API.

Creating an SCI ShortStack Driver
This section describes how to implement an SCI ShortStack driver. The SCI
hardware interface is described in SCI Interface.

A ShortStack Micro Server considers the serial link reliable. An inter-byte time-
out (or any other time-out condition) is considered a serious error, and recovery
generally requires resetting the Micro Server and the host driver state. To
minimize the effects of such a time out, set a large time-out interval based on the
communications bit rate or use another appropriate large value (such as 3 or 5
seconds).

The [ShortStack]/example/rpi/driver/rpi.c example source file contains
definitions and discussion of suggested values for various timeout conditions.

SCI Uplink Operation
In an SCI uplink operation, data is transferred from the ShortStack Micro Server
to the host processor. Figure 42 and Figure 43 show the activity that the driver
should manage for an uplink operation. The figures also show how the Micro
Server, serial driver, LonTalk/IP Compact API, and the application interact to
process an uplink message.

The host processor uses the HRDY~ handshake signal to inform the Micro
Server when it is ready to receive uplink data. The Micro Server does not send
uplink data unless the HRDY~ signal is asserted. While an uplink transfer is in
progress, the Micro Server does not re-sample the HRDY~ signal. To prevent
loss of uplink data, the host must assert this handshake signal whenever
possible, and de-assert it for the shortest time possible.

An uplink transfer can occur between the two or three segments of a downlink
transfer. Your driver must be able to receive uplink data at this time to avoid a
possible deadlock condition.

ShortStack User’s Guide 107

Processing

DriverMicro Server

Send packet Receive packet

High

Low

Input buffer
available?

No Yes

API

Assert HRDY~
(if implemented)

Application

De-assert HRDY~
(if implemented)

Signal error and
drop packet Enqueue packet

Notify application
(optional)

Check HRDY~

A

Figure 42. SCI Uplink Operation (Part 1)

108 Creating a ShortStack Serial Driver

DriverMicro Server

Cleanup

API Application

Release input
buffer

Call
LonEventHandler()

LdvGetMsg()

A

LonEventhandler()

Packet
available?

Yes

No
LdvReleaseMsg()

Callback

Processing

Parse packet
(possibly also call

one or more
callbacks)

Figure 43. SCI Uplink Operation (Part 2)

SCI Downlink Operation
In an SCI downlink operation, data is transferred from the host processor to the
ShortStack Micro Server. Figure 44 shows the activity that the driver should
manage for a downlink operation. Figure 45 shows the SCI handshake and data
transfer for the header, extended header, or payload.

To send a message downlink, the driver must initiate a downlink operation for
each link-layer message segment: one for the link-layer message header, one for
the extended header (if applicable), and one for the message payload (if any):

1. The driver first initiates the transfer of the link-layer message header,
then, if allowed, transfers the header.

2. If the message applies to a network variable with index greater than 62,
the driver then initiates the transfer of the link-layer extended header,
then, if allowed, transfers the extended header.

3. Then, if payload data exists (indicated by the non-zero length byte in the
header), the driver initiates the transfer of the message payload, and, if
allowed, transfers the message payload.

ShortStack User’s Guide 109

When the host asserts the RTS~ signal for the first time, the Micro Server
assumes that the assertion is for the 2-byte header. It asserts the CTS~ signal
until it has read the two bytes. It then extracts the length of the payload from
the header and parses the command byte to determine if an extended header is
needed. When the host asserts the RTS~ signal a second time, the Micro Server
asserts the CTS~ signal until it receives either the extended header or the entire
payload (based on its length and command byte, as indicated in the header),
depending on which is expected. Some messages have no payload (for example,
the reset message), thus the payload length for these messages is zero.

Before beginning a transfer, or after having transferred the entire transaction
payload, the host needs to wait for the CTS~ signal to become inactive (high)
again. The Micro Server deasserts this signal after it receives all bytes of the
current transaction, and after it has completed any immediate processing that
might be required. If the application does not query this signal state, error states
can occur. For example, the host might attempt to transfer a new transaction
because it would assume that the CTS~ signal’s being asserted is the
acknowledgment of the new transfer request rather than the acknowledgment
from the previous transfer.

It is possible for an uplink transfer to occur after the Micro Server receives the
downlink header, but before it is ready to receive the downlink payload. Your
host driver must allow for such an uplink. Blocking such an uplink, for example
by de-asserting the HRDY~ signal, can cause a fatal deadlock to occur.

No uplink can occur while the CTS~ signal is asserted.

110 Creating a ShortStack Serial Driver

Start

HostMicroServer

Processing

Msg len > 0 ?

Yes

NoMsg len > 0 ?

Yes

No

Handshake and Transfer for Header

Handshake and Transfer for Payload

NV Index >
62?

No

NV Index >
62?

Yes

No

Yes

Handshake and Transfer for Extended Header

Figure 44. Downlink Operation

ShortStack User’s Guide 111

HostMicroServer

Assert RTS~

Assert CTS~

Yes

Enter serial
receive

subroutine

Receive Send

Yes

Yes

De-assert RTS~

RTS~ Low?

CTS~ Low?

No

No (1)

De-assert CTS~

CTS~ High?

No

Figure 45. SCI Handshake and Data Transfer

When the Micro Server checks the RTS~ signal for most commands (in the
“RTS~ Low?” decision box), if the signal remains high without data transfer for
longer than the watchdog timer setting for the Smart Transceiver (approximately
840 ms for a Series 3100 Smart Transceiver at 10 MHz or for a Series 6000 or
5000 Smart Transceiver), the Micro Server performs a watchdog reset.

Prior to receiving the payload (if any), the Micro Server prepares to receive the
payload data. For most downlink operations, this preparation includes allocating
an output buffer. If no buffers are available, acknowledgement for the RTS~
signal with CTS~ assertion could take a significant amount of time, depending
on the local channel type, channel usage, the types of transactions that are
holding the buffers, and transport and transaction control properties. Your
driver must be able to handle such delays.

112 Creating a ShortStack Serial Driver

Your driver must be prepared to accept uplink transaction while it awaits
approval of a pending downlink handshake. This is crucial, because the uplink
transfer of data might be required to make a buffer available for use by the
pending downlink, and failure to accept uplink data at this time could lead to a
fatal link layer deadlock situation.

Network Variable Fetch Example
You can use a logic analyzer or oscilloscope to observe the interactions between
the host and Micro Server during network operations, such as a fetch of a
network variable. A logic analyzer trace can be a helpful tool to verify that the
serial driver works as expected.

Figure 46 shows an example logic analyzer trace after the Micro Server receives a
network variable fetch request from the network. The timing for the logic
analyzer trace is 5 ms per division. The example used an FT 3150 Micro Server
running at 10 MHz with an ARM7 host running at 20 MHz.

The figure illustrates that the host waits for the CTS~ signal to become inactive
before it starts a new transfer by asserting the RTS~ signal.

D

E

F

G

H

I

J

B

C

A

Figure 46. Logic Analyzer Trace for an NV Fetch

The figure shows the following events:

A. The Micro Server samples the HRDY~ signal. If it is asserted, which it is
in this example, the Micro Server begins to transfer the uplink data.

B. The TXD signal shows the uplink data transfer.

C. The host briefly de-asserts the HRDY~ signal while it stores the packet
in an incoming queue (if the host has buffers available, it need not de-
assert the HRDY~ signal). The host can optionally notify the application
of the available data for asynchronous processing.

D. The host prepares its response, waits for the CTS~ signal to be inactive,
asserts the RTS~ signal, then waits for the CTS~ signal to be asserted.

E. The Micro Server asserts the CTS~ signal.

F. The host de-asserts the RTS~ signal and transmits the message header
(shown on the RXD signal).

G. The host waits for the CTS~ signal to become inactive, re-asserts the
RTS~ signal, and waits for the CTS~ signal to be asserted again.

H. The Micro Server is ready for the payload, and asserts the CTS~ signal.

I. The host de-asserts (releases) the RTS~ signal and begins the payload
transfer.

J. The RXD signal shows the payload transfer (the downlink response
containing the requested NV value).

ShortStack User’s Guide 113

Creating an SPI ShortStack Driver
This section describes how to implement an SPI ShortStack driver. The SPI
hardware interface is described in SPI Interface.

SPI Uplink Operation
In an SPI uplink operation, data is transferred from the ShortStack Micro Server
to the host processor. Figure 47 and Figure 48 show the activity that the driver
needs to manage for an uplink operation. The figures also show how the Micro
Server, serial driver, ShortStack LonTalk/IP Compact API, and the application
interact to process an uplink message. The driver must sense the R/W~ signal
low between the arrivals of the first and second bytes in the burst when it is
receiving a packet.

The host processor uses the HRDY~ handshake signal to inform the Micro
Server when it is ready to receive uplink data. The Micro Server does not send
uplink data unless the HRDY~ signal is asserted. To prevent loss of uplink data,
the host must assert this handshake signal whenever possible, and de-assert it
for the shortest time possible.

114 Creating a ShortStack Serial Driver

Processing

DriverMicro Server

Send packet Receive packet

High

Low

Input buffer
available?

No Yes

API

Assert HRDY~
(if implemented)

Application

De-assert HRDY~
(if implemented)

Signal error and
drop packet Enqueue packet

Notify application
(optional)

Check HRDY~

A

Set R/W~ Low

Set R/W~ High

Figure 47. SPI Uplink Operation (Part 1)

ShortStack User’s Guide 115

DriverMicro Server

Cleanup

API Application

Release input
buffer

Call
LonEventHandler()

LdvGetMsg()

A

LonEventhandler()

Packet
available?

Yes

No
LdvReleaseMsg()

Callback

Processing

Parse packet
(possibly also call

one or more
callbacks)

Figure 48. SPI Uplink Operation (Part 2)

SPI Downlink Operation
In an SPI downlink operation, data is transferred from the host processor to the
ShortStack Micro Server. To send a link-layer message downlink, the driver
initiates two downlink operations: one for the link-layer message header, and the
other for the message payload. Figure 49 shows the activity that the driver needs
to manage for a downlink operation (this figure is the same as Figure 44). Figure
50 shows the SPI handshake and data transfer for the header, extended header,
or payload. The driver needs to sense the R/W~ signal high between
transmissions of the first and second bytes in the burst when it is transmitting a
packet. In addition, the Micro Server keeps the R/W~ signal high for an
additional byte time; this extra time allows the host to confirm transfer direction.

As described in SPI Host to Micro Server Control Flow (MISO), the host must
detect possible write collisions during data transfer.

116 Creating a ShortStack Serial Driver

Start

HostMicroServer

Processing

Msg len > 0 ?

Yes

NoMsg len > 0 ?

Yes

No

Handshake and Transfer for Header

Handshake and Transfer for Payload

NV Index >
62?

No

NV Index >
62?

Yes

No

Yes

Handshake and Transfer for Extended Header

Figure 49. Downlink Operation

ShortStack User’s Guide 117

HostMicroServer

Transmit First
Byte

De-assert R/W~

Yes

Enter serial
receive

subroutine

Receive Send

No

No

Yes

De-assert TREQ~

TREQ~ Low?

R/W~ Low?

Yes

Assert R/W~

SCLK
Clocking?

No

Load First Byte
into Transmit

Register

Assert TREQ~

Write
Collision

Begin Clocking
SCLK

Figure 50. SPI Handshake and Data Transfer

Prior to receiving the payload (if any), the Micro Server prepares to receive the
payload data. For most downlink operations, this preparation includes allocating
an output buffer. If no buffers are available, the Micro Server could take a

118 Creating a ShortStack Serial Driver

significant amount of time to de-assert the R/W~ signal after the host asserts the
TREQ~ signal, depending on the local channel type, channel usage, the types of
transactions that are holding the buffers, and transport and transaction control
properties. Your driver must handle such delays.

Transmit and Receive Buffers
The ShortStack serial driver must define the number and size of the transmit
and receive buffers in the host processor. More buffers require more memory, but
can also increase performance and minimize the potential for lost messages.

Set the serial driver’s buffer count for both transmit and receive buffers to the
number of application buffers defined for the Micro Server, and adjust upward as
necessary for the application. For example:

#define LDV_TXBUFCOUNT 5
#define LDV_RXBUFCOUNT 5

The transmit and receive buffers within the host cannot be smaller than those
defined in the Micro Server.

The IzoT ShortStack SDK example application and driver for use with a
Raspberry Pi computer and the Raspbian Linux operating system includes the
implementation of a simple protected queue (ldvq.h, ldvq.c) with configurable
limits similar to those discussed. See the source code in the ldvq.c file for a
discussion of implementation details, configuration options, and ramifications.

Link-Layer Error Detection and Recovery
The ShortStack Micro Server and the ShortStack LonTalk/IP Compact API both
assume that the serial communication between the host microprocessor and the
ShortStack Micro Server is a reliable link. To maximize performance, the
ShortStack Micro Server uses a simple link layer protocol with minimal error
detection. Your hardware design for the interface between your host and the
ShortStack Micro Server must provide this reliable link.

When either the Micro Server or the host processor resets, your serial driver
must synchronize with the ShortStack Micro Server. Your serial driver must
also implement an inter-byte timeout for both the serial receiver and transmitter.
If the receiver timer expires, the current message is discarded. If the transmitter
timer expires, the current message is resent later.

Your serial driver must implement appropriate timeout guards. For example,
when your driver waits for an SCI CTS~ assertion by the Micro Server, or for the
byte-transmitted interrupt after asserting the SPI TREQ~ signal, a timeout
period of 5 seconds can help to detect serious malfunction.

Likewise, when the driver expects a predetermined number of bytes to arrive
from the Micro Server, an inter-byte timeout of 1 second, or a total packet
timeout that is a function of the expected byte count, is required.

The IzoT ShortStack SDK example applications and driver for use with the
Raspberry Pi computer and the Raspbian Linux operating system include several
configurable timeout values and extensive discussion, embedded within the rpi.c
implementation file.

ShortStack User’s Guide 119

Review this example driver and the embedded commentary even if you do not
plan on using a Raspberry Pi or a Linux operating system.

If the link-layer is idle for a period of time, the serial driver or host application
can issue a ping command (the LonSendPing() function with the
LonPingReceived() callback handler function) to verify that the Micro Server is
still running properly and has an operational link layer. The ping command is a
short link-layer message that is echoed by the Micro Server; no other action is
triggered by this command.

You can also use the echo command (the LonRequestEcho() function with the
LonEchoReceived() callback handler function) to test the link layer. The echo
command provides more functionality than the ping command, but at the cost of
additional bytes and transfer time. Using the echo command, the application can
send six arbitrary bytes to the Micro Server. The Micro Server receives the data,
increments each of the six bytes (using unsigned 8-bit arithmetic, ignoring any
overflow conditions), and returns the entire data packet to the host.

You can use the echo command when the device is idle to verify that the link
layer and the Micro Server are operational. You can also use the echo command
during device stress testing to verify robust link-layer operations under high
traffic conditions. For such a stress test, an application repeatedly sends echo
requests with different data and confirms that the data received meets
expectations. Data errors detected during such a test may indicate poor link-
layer line termination, excessive crosstalk on the link-layer lines, out-of-sync bit
rates (for SCI), or excessive bit rates (for SPI).

Because the echo command can be processed before the application registers with
the Micro Server, it can be a good early indicator for correct implementation of
both the serial driver and the link-layer protocol.

See Local Utility Functions, Local Utility Callback Handler Functions, or the
HTML API documentation for more information about the ping command and the
echo command.

When a serious error condition is detected, your application can log an error and
signal the event to the user. You can also optionally assert the Micro Server’s
reset line in an attempt to recover from the error condition, but such a reset is
not normally necessary.

Loading the ShortStack Application into the Host
Processor

Before you can test and debug your ShortStack device, you must load the
ShortStack application into the host processor.

How you load the ShortStack application into the host processor depends on the
host processor that your ShortStack device uses. Typically, you use a device
programmer for in-circuit flash programming through a JTAG connection to the
host processor, or a secure shell (SSH) connection to the target device. In some
cases, you may even create, manage and compile your source code on the device
itself.

The IzoT ShortStack SDK examples for use with the Raspberry Pi, for example,
assume that you either work locally on the Raspberry Pi, or use a cross-
compilation toolchain and remote debugger from another computer.

120 Creating a ShortStack Serial Driver

Performing an Initial Host Processor Health Check
To check that the host processor and the serial driver implementation are
working properly, connect the host to a ShortStack Micro Server. To ensure that
an initial health check of the host tests only the host, use a Micro Server that is
already known to work properly.

For an initial health check of the host, use a Micro Server that you tested
according to the test described in Performing an Initial Micro Server Health
Check .

To do a basic health check for the host, follow these steps:

1. When using SCI, disconnect the host from the Micro Server, and verify
that your serial driver can transmit data correctly.

Add a jumper wire or pushbutton to simulate the Micro Server’s assertion
of the CTS~ signal for this test.

2. When using SCI, connect your host’s transmit and receive signal and
verify that your serial driver can receive the data it sent.

Add a jumper wire or pushbutton to simulate the Micro Server’s assertion
of the CTS~ signal for this test.

3. Connect the host to the Micro Server, and supply power to both

4. Issue a downlink reset command (command code 0x50)

5. Observe that the Micro Server resets

6. Observe the uplink reset notification

The Reset pulse on the Micro Server is typically very short, and often not
noticeable when visually monitoring the Reset LED. Boards with external flash
memory include pulse-stretching devices that enforce a longer Reset pulse, which
may provide a more visible state change on the Reset LED. You can use an
oscilloscope or logic analyzer to capture the Reset pulse.

During this and similar tests in the early stages of development, you can also
monitor the Reset signal, because errors in the host-side driver implementation
can cause the Micro Server to reset. For example, if the host asserts the RTS~
signal, but fails to deliver data in time, or if the host fails to deliver the entire
packet, or if the host fails to assert the HRDY~ signal in a timely fashion, the
Micro Server may reset due to a watchdog timer timeout. A Smart Transceiver
Chip’s watchdog timer expires in approximately 840 ms (for a Series 3100 Smart
Transceiver at 10 MHz or for a Series 6000 or 5000 Smart Transciever).

Prior to initialization, the Micro Server is in quiet mode, which prevents all
network communication, until the downlink initialization is complete. However,
the basic host health check described in this section works while the Micro Server
is in quiet mode, and can thus be used for an initial health check before the
application framework (which includes the initialization data structure) is
complete.

When you power-up the Micro Server for the first time, allow up to a minute for it
to complete its first-time boot sequence. The duration for the first-time boot
varies with the Micro Server hardware and software configuration, but

ShortStack User’s Guide 121

subsequent boots require much less time. See ShortStack Device Initialization
for more information about the Micro Server’s reset processing.

Then, use a simple test application and your serial driver to issue a downlink
Reset command. This is a simple command without a payload; it consists only of
two header bytes: 0x00 for the payload length, and 0x50 for the command
(LonNiReset). The LonNiReset command instructs the Micro Server to reset.
You can observe the Smart Transceiver’s reset line’s being asserted for a brief
moment.

When the Micro Server completes the reset sequence, it notifies the host
processor of the event. The uplink reset message also uses the LonNiReset
(0x50) command in the link-layer header, but includes 16 payload bytes.

The uplink reset message contains information about the state, version, and type
of the Micro Server, its capacity for various system resources, and whether it is
initialized. The message can be helpful to diagnose problems (or success) during
early stages of development.

Before your application attempts to register with the Micro Server for the first
time, it can execute an echo command (the LonRequestEcho() function with the
LonEchoReceived() callback handler function). Repeated use of this command
provides an early link-layer stress test, and can provide early indication of errors
in the physical design of the link layer.

122 Creating a ShortStack Serial Driver

ShortStack User’s Guide 123

9

Porting the ShortStack LonTalk/IP
Compact API

If you are using a host processor and development
environment that does not have an available IzoT
ShortStack SDK example port, you must port the
ShortStack LonTalk/IP Compact API files to work with your
chosen host processor and development environment. A
minimal port requires you to provide definitions that control
the portable code, but a more substantial port might be
required. A completed port applies to all applications that
use the same hardware and software configuration.

This chapter describes the steps and considerations for
porting the ShortStack LonTalk/IP Compact API.

124 Porting the ShortStack LonTalk/IP Compact API

 Portability Overview
The ShortStack LonTalk/IP Compact API is implemented in ANSI C. Although
ANSI C is a standard programming language, different implementations are
required to meet the requirements of different target processors. To support the
largest possible number of target processors and compilers, the ShortStack
LonTalk/IP Compact API implements the following portability features:

• Host-side types and interfaces use standard ANSI C types and style. For
example, the LonPropagateNv() function, which takes a network
variable’s index as an argument, expects this argument to be of the
standard C type unsigned.

• All data types that interface with the Micro Server or the LONWORKS
network are based on streams of bytes, and do not use multi-byte scalar
types such as 16 or 32-bit integers. Using streams of bytes helps to
control byte padding and packing issues within structures.

All types are based on the LonByte type. Multibyte scalars are
composed of multiple LonByte members in big-endian byte order, such
as the LonWord type.

Optionally, you can use macros such as LON_GET_UNSIGNED_WORD
or LON_SET_UNSIGNED_WORD to assist in transforming those types
into the host processor’s native types. Native types can be more efficient
in numeric algorithms.

• Structures and unions are declared using macros because some compilers
allow you to control packing and alignment of aggregates for each type
definition individually through non-standard keyword extensions. These
macros are LON_BEGIN_STRUCT, LON_END_STRUCT,
LON_BEGIN_UNION, and LON_END_UNION.

Example: For the GNU C Compiler, the following macros control
structure declarations:

#define LON_STRUCT_BEGIN(n) struct
__attribute__((__packed__))
#define LON_STRUCT_END(n) n

• Structures and unions that are embedded in other structures or unions
use another set of macros to provide further support for non-standard
keywords that control packing and alignment of aggregates. These
macros are LON_BEGIN_NESTED_STRUCT,
LON_END_NESTED_STRUCT, LON_BEGIN_NESTED_UNION, and
LON_END_NESTED_UNION.

• Because some compilers might not allow control over packing and
alignment though non-standard keyword extensions, but do support
compiler directives (pragmas) for this purpose, the IzoT ShortStack SDK
includes two optional include files: LonBegin.h and LonEnd.h. The
LonBegin.h file can be optionally (and automatically) inserted prior to
any type definition made by the ShortStack LonTalk/IP Compact API
files, and the LonEnd.h file can be optionally (and automatically)
included following the last type definition made by the ShortStack

ShortStack User’s Guide 125

LonTalk/IP Compact API. This method allows you to use one set of
packing and alignment preferences for the ShortStack LonTalk/IP
Compact API, and another set of preferences for the remainder of your
application.

Example: The LonBegin.h file may contain the following directive:

#pragma pack(push,1)

And the LonEnd.h file may contain the following directive:

#pragma pack(pop)

Refer to your compiler’s documentation to determine which directives or
other methods for packing and alignment control are supported.
Compiler directives (pragmas) are implementation-specific for each ANSI
C compiler.

• Enumerations are used to provide literals for many types. Although
ANSI C enumerations are derived from a signed integer type,
enumerations for a ShortStack application (or a LONWORKS network)
need to be based on a signed character type (or a signed eight-bit integer).
The ShortStack LonTalk/IP Compact API provides a set of macros that
allows you to define enumerated types with the possible use of non-
standard keyword extensions. It also provides another macro that
references an enumerated type so that the reference consumes only a
single byte.

Example: For a compiler that supports a non-standard syntax extension
to force an enumeration to fit into a user-defined compound (other than
“int”), these macros may defined as:

 #define LON_ENUM_BEGIN(n) enum : LonByte
 #define LON_ENUM_END(n) n
 #define LON_ENUM(n) n

• The ShortStack LonTalk/IP Compact API does not use bit fields. For
ANSI C, the standard compound for bit fields is the native word size of
the target processor (equivalent to int). However, for a ShortStack
application (or a LONWORKS network), bit fields must be packed into
byte-sized entities. This packing requires non-standard keywords, and
another set of implementation-specific controls to determine the
placement of the individual bits within each byte. Not all compilers for
embedded development support bit fields, or standard ways to control bit
fields (for example, anonymous bit fields and zero-length bit fields).

See LonPlatform.h which resides in the api folder within your IzoT ShortStack
SDK source code repository for complier-specific definitions used by the LonTalk
Interface Developer.

The definition of unions, structures, and enumerations using the LON_BEGIN_*
and LON_END_* macros introduced above provide a hook to accomplish the
correct definition of those items as required by the IzoT ShortStack SDK,
however, these definitions can confuse other source code parsers such as
automated source code formatting tools or other non-standard source code
processors.

126 Porting the ShortStack LonTalk/IP Compact API

Use automatic source code formatting tools with caution in context with your
IzoT ShortStack SDK application’s source code.

Bit Field Members
For portability, none of the types that the IzoT Interface Interpreter or LonTalk
Interface Developer generates use bit fields. Instead, the tools define bit fields
with their enclosing bytes, and provide macros to extract or manipulate the bit
field information.

By using macros to work directly with the bytes of the bit field, your code is
portable to both big-endian and little-endian platforms (that is, platforms that
represent the most-significant bit in the left-most position and platforms that
represent the most-significant bit in the right-most position). The macros also
reduce the need for anonymous bit fields to achieve the correct alignment and
padding.

Example: The following macros and structure define a simple bit field of two
flags, a 1-bit flag alpha and a 4-bit flag beta:

typedef LON_STRUCT_BEGIN(Example) {
 LonByte flags_1; // contains alpha, beta
} LON_STRUCT_END(Example);

#define LON_ALPHA_MASK 0x80
#define LON_ALPHA_SHIFT 7
#define LON_ALPHA_FIELD flags_1
#define LON_BETA_MASK 0x70
#define LON_BETA_SHIFT 4
#define LON_BETA_FIELD flags_1

When your program refers to the flags_1 structure member, it can use the bit
mask macros (LON_ALPHA_MASK and LON_BETA_MASK), along with the
bit shift values (LON_ALPHA_SHIFT and LON_BETA_SHIFT), to retrieve the
two flag values. These macros are defined in the LonNvTypes.h file. The
LON_STRUCT_* macros enforce platform-specific byte packing.

To read the alpha flag, use the following example assignment:
Example var;
alpha_flag = (var.LON_ALPHA_FIELD & LON_ALPHA_MASK) >>
 LON_ALPHA_SHIFT;

You can also use the LON_GET_ATTRIBUTE() and
LON_SET_ATTRIBUTE() macros to access flag values. For example, for a
variable named var, you can use these macros to get or set the attributes for the
alpha flag:

alpha_flag = LON_GET_ATTRIBUTE(var, LON_ALPHA);
…
LON_SET_ATTRIBUTE(var, LON_ALPHA, alpha_flag);

These macros are defined in the ShortStackTypes.h file.

Enumerations
The IzoT Interface Interpreter and the LonTalk Interface Developer utility do not
produce enumerations. The ShortStack LonTalk/IP Compact API requires an

ShortStack User’s Guide 127

enumeration to be of size byte. The ANSI C standard requires that an
enumeration be an int, which is larger than one byte for many platforms.

A ShortStack enumeration uses the LON_ENUM_BEGIN and
LON_ENUM_END macros. For many compilers, these macros can be defined to
generate native enumerations:

#define LON_ENUM_BEGIN(name) enum
#define LON_ENUM_END(name) name

Some compilers support a colon notation to define the enumeration’s underlying
type:

#define LON_ENUM_BEGIN(name) enum : signed char
#define LON_ENUM_END(name)

When your program refers to an enumerated type in a structure or union, it can
use the LON_ENUM_* macros instead of the enumeration’s name.

For those compilers that support byte-sized enumerations, it can be defined as:
#define LON_ENUM(name) name

For other compilers, it can be defined as:
#define LON_ENUM(name) signed char

Example: Table 20 shows an example enumeration using the ShortStack
LON_ENUM_* macros, and the equivalent ANSI C enumeration.

Table 20. Enumerations in ShortStack

ShortStack Enumeration Equivalent ANSI C Enumeration

typedef LON_ENUM_BEGIN(Color) {
red, green, blue

} LON_ENUM_END(Color);

typedef LON_STRUCT_BEGIN(Example) {

…
LON_ENUM(Color) color;
…

} LON_STRUCT_END(Example);

enum {
red, green, blue

} Color;

typedef struct {

…
Color color;
…

} Example;

LonPlatform.h
The file within the ShortStack LonTalk/IP Compact API that helps implement
the portability concepts described in Portability Overview is the LonPlatform.h
include file. The ShortStack LonTalk/IP Compact API and application
framework automatically include this file before any other ShortStack
LonTalk/IP Compact API-specific definition or file inclusion.

The LonPlatform.h file uses conditional compilation to detect the specific
compiler and to set various preferences and definitions for portability.

Before you begin porting the ShortStack LonTalk/IP Compact API, ensure that
the LonPlatform.h file includes support for your compiler. LonPlatform.h
resides in the api folder within your IzoT ShortStack SDK source code repository.

128 Porting the ShortStack LonTalk/IP Compact API

After you make the appropriate modifications to the LonPlatform.h file, you can
compile the ShortStack LonTalk/IP Compact API files and the application
framework generated by the IzoT Interface Interpreter.

Testing the Ported API Files
After the ShortStack LonTalk/IP Compact API files and the application
framework generated by the IzoT Interface Interpreter compile without errors or
significant warnings, you can perform a simple test to ensure that the port works
correctly.

For this simple test, use your driver and API port with a very basic test
application, such as the Simple application example located in your
example/rpi/simple folder within your IzoT ShortStack SDK project folder.

ShortStack User’s Guide 129

10

Developing a ShortStack
Application

This chapter describes how to develop a ShortStack
application. It also describes the various tasks performed by
the application.

130 Developing a ShortStack Application

Overview of a ShortStack Application
This chapter describes how to use the ShortStack LonTalk/IP Compact API and
the device interface data produced by the IzoT Interface Interpreter to perform
the following tasks:

• Use the ShortStack LonTalk/IP Compact API
• Use the API with a multitasking operating system
• Initialize the ShortStack LonTalk/IP Compact API
• Periodically call the ShortStack event handler
• Exchange network variable data with other devices
• Communicate with other devices using application messages
• Handle network management commands
• Handle Micro Server reset events
• Query the error log
• Reinitialize the Micro Server
• Provide persistent storage for non-volatile data

Most ShortStack applications perform only the tasks that relate to persistent
storage, initialization, periodically calling the LonEventhandler() function,
sending and receiving network variables, and handling network management
commands.

This chapter assumes that you have completed the device development described
in the preceding chapters. This chapter shows the basic control flow for each of
the above tasks. It also provides a simple code example to illustrate some of the
basic tasks.

Using the ShortStack LonTalk/IP Compact API
Within the seven-layer OSI Model protocol, the ShortStack LonTalk/IP Compact
API forms the majority of the Presentation layer, and provides the interface
between the serial driver in the Session layer and the host application in the
Application layer, as shown in Figure 51.

Micro Server

FT 3120, PL 3120,
FT 3150, PL 3150,
PL 3170, FT 5000

ISO/IEC 14908 control network

Host Application

ShortStack API

Application framework

Driver API

SCI/SPI Driver

ShortStackApi.c
ShortStackApi.c
ShortStackTypes.h
ShortStackInternal.c

Figure 51. The ShortStack LonTalk/IP Compact API within the OSI Model

ShortStack User’s Guide 131

The ShortStack LonTalk/IP Compact API is implemented primarily in the
following two ANSI C source files:

• [ShortStack]\api\ShortStackApi.c

• [ShortStack]\api\ShortStackHandlers.c

The ShortStackApi.c source file contains the core of the ShortStack LonTalk/IP
Compact API, which includes functions for handling network events, propagating
network variables, and responding to network variable poll requests.

A ShortStack application must call the LonEventHandler() API function
periodically to process any pending uplink messages. This function calls specific
API functions based on the type of event, and then calls callback functions to
notify the application layer of these network events.

Generally, you will not have to modify the ShortStack API files for each of your
applications, but you may have to make some changes when porting the API
source code to your target platform and environment.

The ShortStack application framework connects the ShortStack API with your
application, as shown in Figure 52.

Micro Server

FT 3120, PL 3120,
FT 3150, PL 3150,
PL 3170, FT 5000

ISO/IEC 14908 control network

Host Application

ShortStack API

Application framework

Driver API

SCI/SPI Driver

ShortStackDev.h
ShortStackDev.c
ShortStackHandlers.c

Figure 52. The ShortStack Application Framework

Figure 51 and Figure 52 do not show the API or framework files that are required
for ShortStack ISI applications; see Developing a ShortStack Application with
ISI, for information about supporting ISI in your ShortStack application.

Your main C source file contains the definition of datapoints (network variables),
properties and blocks, general preferences related to your ShortStack device, and
handlers for most common event types.

The ShortStackHandlers.c source file contains stubs for handler functions for
the less common event types. Review these handlers and add code to these
callback stubs if necessary.

132 Developing a ShortStack Application

Using Multiple System Execution Contexts
Although a ShortStack application does not require an operating system, you can
use the ShortStack LonTalk/IP Compact API with an operating system that
supports multiple system execution contexts. A context could be a process,
thread, task, interrupt service routine, or the operating system’s main thread of
execution, as defined by the operating system.

A typical ShortStack application may use one or more execution contexts for the
link-layer driver, and may use a different execution context for both the
ShortStack LonTalk/IP Compact API functions and callback handler functions.

The ShortStack LonTalk/IP Compact API is a non-reentrant, single-threaded
API. If your application uses a multi-tasking (or multi-threading) environment
or interrupt service routines to access the ShortStack LonTalk/IP Compact API,
you must ensure that only one task (or thread or interrupt) accesses the
ShortStack LonTalk/IP Compact API. The same task that calls the LonInit()
and LonEventHandler() functions must also be the only task that calls the
ShortStack LonTalk/IP Compact API.

In a multi-tasking environment, the link-layer driver typically consists of USART
transmit and receive interrupts or threads, possibly also using interrupts that
respond to changes on the link-layer handshake lines.

The IzoT ShortStack SDK example applications use a single execution thread for
the driver, serving both uplink and downlink network communications. A pair of
protected input (uplink) and output (downlink) queues and a pipe is used to
communicate between the main application thread and the driver.

If your application requires the use of multiple contexts, you can provide one
execution context that calls the LonEventHandler() function. You can also
supply appropriate inter-context communication and synchronization tools to
guard every API function, for example by implementing a mutex requested by the
LonEventHandler support context and by any other context which might call any
of the API functions.

Events and callbacks execute in the context which calls the LonEventHandler()
function. You must take additional precautions to prevent a deadlock when an
event handler itself calls a protected API.

Tasks Performed by a ShortStack Application
The general ShortStack application life cycle includes two phases:

• Initialization

• Normal processing

The initialization phase of a ShortStack application typically occurs during each
power-up or reset of the host application, but can also be repeated as necessary.
The initialization phase defines basic parameters for the LonTalk/IP or LON
network communication, such as the communication parameters for the physical
transceiver in use, and defines the application’s device interface: its functional
blocks, network variables, configuration properties, and self-documentation data.
Successful completion of the initialization phase causes the Micro Server to leave
quiet mode, after which it can send and receive messages over the network.

ShortStack User’s Guide 133

Your application does not always have to run its initialization code when the
Micro Server is reset. For example, the Micro Server can be reset by the network
management tool to change the device’s state. Your application can use the
LonResetNotification message provided to the LonReset() callback handler
function to determine the Micro Server’s state and last reset cause. The
ShortStack LonTalk/IP Compact API automatically determines whether re-
initialization is required.

The Micro Server might also reset during normal operation when a configuration
property (declared with the reset_required modifier) value changes. This
change acts as a notification that the application, but not necessarily the Micro
Server and the ShortStack device as a whole, must reinitialize.

When the host processor powers-up or resets, you must reinitialize the
ShortStack device.

When your driver recognizes an uplink reset message, ensure that any in-
progress downlink activity is immediately aborted. This is required to prevent a
synchronization failure for the link layer. The link layer is said to be out of
synchronization when the Micro Server and host disagree on the type of the next
downlink segment. The Micro Server might expect a header while the host
transmits payload corresponding to a header sent prior to the Micro Server reset.

Be prepared to receive uplink data at all times, and particulary between the
segments of a downlink transfer. The ShortStack link layer is half-duplex so that
data is only transferred into one direction at a time, but a two- or three-
segmented downlink transfer is not atomic, and may be interrupted by uplink
transfers.

These uplink messages can be crucial for continued operation. For example, one
such uplink message could deliver a completion code for a transaction started
earlier. Delivery of this completion code could be required to unlock a buffer
required for the next transaction.

During normal processing, the application periodically calls the
LonEventHandler() API function, which calls the serial driver API and might
call callback functions and event handlers (such as the onUpdate events). Other
API functions allow the ShortStack application to initiate transactions. Such a
transaction might in turn lead to other events, such as the onComplete event.

The following sections describe the tasks that an IzoT ShortStack SDK
application performs during its life cycle.

Initializing the ShortStack device
Your application must call the LonInit() function once during device startup.
This function initializes the ShortStack LonTalk/IP Compact API, driver, and
Micro Server.

The LonInit() function copies the ShortStack device interface data to the
ShortStack Micro Server. This data defines the network parameters and device
interface for the ShortStack Micro Server. Your application can call this function
after device startup to reinitialize and restart the ShortStack Micro Server, to
change the network parameters, or to change the device interface.

Add a call the LonInit() function in the main() function of your application (or
to your host platform equivalent of that function).

134 Developing a ShortStack Application

During initialization, the Micro Server enters quiet mode until the initialization
is complete. Quiet mode ensures that only a complete and fully functioning
protocol stack attaches to the network. While the Micro Server is in quiet mode,
the host processor can use local commands to communicate with the Micro
Server, such as Query Status or Ping, but the Micro Server cannot communicate
with other devices on the network.

Example:
void main(void) {
 // Initialize host-side hardware
 ...
 // Initialize host software
 ...
 LonInit();

 // Enter the main loop:
 while (TRUE) {
 LonEventHandler();
 // Process your application
 ...
 }
}

Periodically Calling the Event Handler
Your ShortStack application must periodically call the LonEventHandler()
function to check if there are any LonTalk/IP or LON events to process. You can
call this function from your application’s control (or idle) loop, or from any point
in your application that is processed periodically (if your application meets the
execution context requirements described in Using the ShortStack LonTalk/IP
Compact API).

The host application must be prepared to process the maximum rate of
LonTalk/IP or LON traffic delivered to the device. To prevent any possible
backlog of incoming messages, use the following formula to determine the
minimum call rate for the LonEventHandler() function:

1−
=

rCountInputBuffe
ateMaxPacketRrate

where MaxPacketRate is the maximum number of packets per second arriving for
this device, and InputBufferCount is the number of input buffers defined for your
application (that is, buffers that hold incoming data until your application is
ready to process it). The formula subtracts one from the number of available
buffers to allow new data to arrive while other data is being processed. However,
the formula also assumes that your application has more than one input buffer;
having only one input buffer is not sufficient.

In the absence of measured data for the network, assume 90 packets per second
arriving for a TP/FT-10 ShortStack device, or 9 packets arriving per second for a
PL-20 ShortStack device. These packet rates meet the channels’ throughput
figures, assuming that most traffic uses the acknowledged or request/response
service. Use of other service types will increase the required packet rate, but not
every packet on the network is necessarily addressed to the ShortStack device.

ShortStack User’s Guide 135

Using the formula, devices that implement two input buffers and are attached to
a TP/FT-10 channel that expect high throughput can call the
LonEventHandler() function approximately once every 10 ms.

Again using the formula, a typical PL-20 power-line device can call the
LonEventHandler() function once every 100 ms. However, to ensure low
network latency, all ShortStack devices can call the LonEventHandler()
function at least once every 10 ms.

When an event occurs during a call to the LonEventHandler() function, the
function calls the appropriate callback function for your host application to
handle the event. Your callback handler functions must be designed for this
minimum call rate, and must defer time-consuming operations (such as lengthy
flash writes) whenever possible.

Exchanging NV Data with Other Devices
Your application implements input and output datapoints, either as members of
blocks, or as simple device datapoints. Each datapoint implements a network
variable, and provides additional properties such as the global_index member.

Example
This example implements a generic standard closed loop actuator profile in a
block called act. The profile has one mandatory input and one mandatory
output, called nviValue and nvoValueFb, but no particular data type is
stipulates for these. The following example uses the SNVT_volt standard
data type to implement the actuator. It also declares an onUpdate event,
which executes whenever the input received new data. Within that event,
the algorithm assigns 3 plus the value of the input to the output, then
triggers propagation of the output to the network and connected devices.

SFPTclosedLoopActuator(a, SNVT_volt) act; //@IzoT Block \
//@IzoT onUpdate(nviValue, onActuatorUpdate)

void onActuatorUpdate(
 const unsigned index,
 const LonReceiveAddress* const pSourceAddress
) {
 LON_SET_UNSIGNED_WORD(
 act.nvoValueFb.data,
 3 + LON_GET_UNSIGNED_WORD(act.nviValue.data)
);
 LonPropagateNv(act.nvoValueFb.global_index);
}

Communicating with Application Messages
You can use application messages to exchange data or requests with other
LonTalk/IP or LON devices. Application messages are used by applications
requiring a different data interpretation model that the one used for network
variables. An application message is a message packet with a 6-bit message code
that identifies the packet to the receiving application or applications. The
applications exchanging application messages must agree on the interpretation of

136 Developing a ShortStack Application

the message codes. For example, you can use application messages to implement
a manufacturing-test interface that is only used during manufacturing test of
your device. You can also use the same mechanism that is used for application
messaging to create foreign-frame messages (for encapsulating packets using
other protocols), network management messages, network diagnostic messages,
and explicitly addressed network variable messages.

There are two interoperable uses for application messages: the Interoperable
Self-Installation (ISI) protocol and the LONWORKS file transfer protocol (LW-
FTP). The ISI protocol is used in self-installed networks; see Developing a
ShortStack Application with ISI, for more information about ISI. LONWORKS
FTP is used to exchange large blocks of data between devices or between devices
and tools, and is also used to access configuration files on some devices.

The content of an application message is defined by a message code that is sent as
part of the message. Message code values are listed in Table 21. For user-
defined application messages, you can use message codes 0 to 47 (0x0 to 0x2F).
Your application must define the meaning of each user-defined message code.
Standard application messages are defined by LONMARK International, and use
message codes 48 to 62 (0x30 to 0x3E).

Table 6. Message Code Values

Message Type
Message

Code Description

User Application
Messages

0 to 47

(0x0 to
0x2F)

Generic application messages. The
interpretation of the message code is left to
the application.

Reserved for
Standard
Application
Messages

48 to 60

(0x30 to
0x3C)

Standard application messages defined by
LONMARK International.

ISI Messages 61

(0x3D)

Standard application messges defined by the
Interoperable Self Installation (ISI) protocol

FTP Messages 62

(0x3E)

Standard applications messages defined by
the LONWORKS File Transfer Protocol (LW-
FTP)

Responder Offline 63

(0x3F)

Used by application message responses.
Indicates that the sender of the response was
in an offline state and could not process the
request.

Foreign Frames 64 to 78

(0x40 to
0x4E)

Used by application-level gateways to other
networks. The interpretation of the message
code is left to the application.

ShortStack User’s Guide 137

Message Type
Message

Code Description

Foreign Responder
Offline

79

(0x4F)

Protocol
V0

Used by foreign frame responses. Indicates
that the sender of the response was in an
offline state and could not process the
request.

LonTalk/IP UDP
Messages

79

(0x4F)

Protocol
V2

Used for LonTalk/IP UDP messages that are
not encoded with the LonTalk/IP Control
Services defined by the ISO/IEC 14908-1
Control Networking Protocol

Network Diagnostic
Messages

80 to 95

(0x50 to
0x5F)

Used by network tools for network
diagnostics.

Network
Management
Messages

96 to 115

(0x60 to
0x73)

Used by network tools for network
installation and maintenance.

Router
Configuration
Messages

116 to 124

(0x74 to
0x7C)

Used by networks tools for router
management

Network
Management
Escape Code

125

(0x7D)

Used by network management tools for inter-
component communication

Router Far Side
Escape Code

126

(0x7E)

Used by network tools to address
management messages to the far side of a
router

Service Messages 127

(0x7F)

Used for reporting the Neuron ID or MAC ID
of a device

Network Variables 128 to 255

(0x80 to
0xFF)

The lower six bits of the message code
contain the upper six bits of the network
variable selector. The first data byte
contains the lower eight bits of the selector.

The message code is followed by a variable-length data field, that is, a message
code may have one byte of data in one instance and 25 bytes of data in another
instance.

Each message tag is created with a tag IML directive. The IzoT Interface
Interpreter assigns individual values to all tags during initialization.

138 Developing a ShortStack Application

Example
LonTag myTag; //@IzoT Tag

Sending an Application Message
You can send an application message by calling the LonSendMsg() function.
This function forwards the message to the ShortStack Micro Server, which in
turn transmits the message on the network. After the message is sent, the
ShortStack Micro Server informs the LonEventHandler() function in the
ShortStack LonTalk/IP Compact API, which in turn calls your
LonMsgCompleted() callback handler function. This function notifies your
application of the success or failure of the transmission. You can use this
function for any application-specific processing of message transmission
completion.

To be able to send an application message, the ShortStack device must be
configured and online. If the application calls the LonSendMsg() function when
the device is either not configured or not online, the function returns the
LonApiOffline error code.

You can send an application message as a request message that causes the
generation of a response by the receiving device or devices. If you send a request
message, the receiving device (or devices) sends a response (or responses) to the
message. When the ShortStack Micro Server receives a response, it forwards the
response to the LonEventHandler() function in the ShortStack LonTalk/IP
Compact API, which in turn calls your LonResponseArrived() callback handler
function for each response it receives.

Figure 53 shows the control flow for sending an application message.

ShortStack User’s Guide 139

LonEventHandler()
(API function)

LonResponseArrived()
(callback function)

application-specific action

LonEventHandler()
(API function)

LonMsgComplete()
(callback function)

application-specific action

LlonSendMsg()
(API function)

The process that occurs on
success or failure of delivery of

message to a device

The process that occurs if and
when a device sends a

response to a message. This
will only occur for those
messages with request/

response service.

ShortStack application Micro Server
Receives
message,
transmits

message to
the network,

informs
ShortStack
application

of
completion

Receives an
application
message
response
from the
network

Figure 53. Control Flow for Sending an Application Message

Receiving an Application Message
When the ShortStack Micro Server receives an application message from the
network, it forwards the message to the LonEventHandler() function in the
ShortStack LonTalk/IP Compact API, which in turn calls your
LonMsgArrived() callback handler function. Your implementation of this
function must process the application message, and can optionally notify your
ShortStack application about the message.

The ShortStack Micro Server does not call the LonMsgArrived() callback
handler function if an application message is received while the ShortStack
device is either unconfigured or offline.

If the message is a request message, your implementation of the
LonMsgArrived() callback handler function must determine the appropriate
response and send it using the LonSendResponse() function.

Figure 54 shows the control flow for receiving an application message.

140 Developing a ShortStack Application

LonEventHandler()
(API function)

LonMsgArrived()
(callback function)

application-specific action

LonSendResponse()
(API function)

Receives an
application
message
from the
network

ShortStack application Micro Server

Figure 54. Control Flow for Receiving an Application Message

Handling Management Tasks and Events
LonTalk/IP and LON installation and maintenance tools use network
management commands to set and maintain the network configuration for a
device. The ShortStack Micro Server automatically handles most network
management commands that are received from these tools. A few network
management commands are application-specific, and are forwarded by the Micro
Server to the LonEventHandler() function in the ShortStack LonTalk/IP
Compact API, which in turn forwards the request to your application through the
network management callback handler functions. These commands are requests
for your application to wink, go offline, go online, handle pressed or held service
pin events, or reset, and must be handled by your LonWink(), LonOffline(),
LonOnline(), LonServicePinPressed(), LonServicePinHeld(), and
LonReset() callback handler functions.

The IzoT Interface Interpreter supports several event types, and automatically
implements the corresponding callback functions. These are
LonNvUpdateOccurred(), LonNvUpdateCompleted(), LonWink(),
LonOffline(), LonOnline(), LonReset(), LonServicePinPressed(),
LonServicePinHeld() and LonGetCurrentNvSize().

All other callback handers are defined as empty skeletons within
ShortStackHandlers.c, which is located in your api source folder.

You can add your callback handler code to this file, and you can provide
application-specific implementations of callback functions outside the standard
ShortStackHandler.c file.

To indicate that you supply the implementation of callback X, define the
X_HANDLED preprocessor symbol in your project preferences. For example, to
indicate that you supply the LonNvConfigReceived() callback outside
ShortStackHandlers.c, define the LONNVCONFIGRECEIVED_HANDLED
preprocessor symbol in your project preferences.

Handling Local Network Management Tasks
There are various network management tasks that a device can choose to initiate
on its own. These are local network management tasks, which are initiated by

ShortStack User’s Guide 141

the ShortStack application and implemented by the ShortStack Micro Server.
Local network management tasks are never propagated to the network. The
optional Network Management Query and Update ShortStack APIs allow you to
include handling of these local network management commands if your
ShortStack application requires it.

Many of these commands are called by your ShortStack application and then
handled by the ShortStack Micro Server with no additional notification through
callback handler functions. These functions include: LonClearStatus(),
LonSetNodeMode(), LonUpdateAddressConfig(),
LonUpdateAliasConfig(), LonUpdateConfigData(),
LonUpdateNvConfig(), and LonUpdateDomainConfig().

A few of the extended local network management commands are requests for
information. After the ShortStack Micro Server receives these requests, it makes
the response information available to the ShortStack LonTalk/IP Compact API.
When the Micro Server makes this information available, the
LonEventHandler() function calls the appropriate callback handler function,
which you can customize to handle the information in an application-specific way.
Figure 55 through 58 show the control flow for handling these kinds of network
management commands.

LonQueryDomain()
(API function)

LonEventHandler()
(API function)

LonDomainConfigReceived()
(callback function)

application-specific action

ShortStack application Micro Server

Obtains
domain

information
and makes
available to

the
ShortStack
application

Figure 55. Control Flow for Query Domain Network Management Command

142 Developing a ShortStack Application

LonQueryConfigData()
(API function)

LonEventHandler()
(API function)

LonConfigDataReceived()
(callback function)

application-specific action

ShortStack application Micro Server

Obtains
configuration
information
and makes
available to

the
ShortStack
application

Figure 56. Control Flow for Query Configuration Data Local Network

Management Command

LonQueryStatus()
(API function)

LonEventHandler()
(API function)

LonStatusReceived()
(callback function)

application-specific action

ShortStack application Micro Server

Obtains
status

information
and makes
available to

the
ShortStack
application

Figure 57. Control Flow for Query Status Local Network Management

Command

LonQueryTransceiverStatus()
(API function)

LonEventHandler()
(API function)

LonTransceiverStatusReceived()
(callback function)

application-specific action

ShortStack application Micro Server

Obtains
transceiver

status
information
and makes
available to

the
ShortStack
application

Figure 58. Control Flow for Query Transceiver Status Local Network

Management Command

ShortStack User’s Guide 143

Handling Reset Events
A ShortStack Micro Server can reset for a variety of reasons. To determine the
cause of a Micro Server reset, you can use the LonGetLastResetNotification()
function of the ShortStack Network Management Query API. This function
returns a pointer to the LonResetNotification structure, which is defined in
the ShortStackTypes.h file. The LonResetNotification structure is also
provided with the LonReset() callback handler function.

The IzoT Interface Interpreter supplies reset notifications to the optional onReset
event.

The LonResetNotification structure contains the following information:

• The State of the Micro Server

• The Version of the link layer protocol (3 for the ShortStack 2.1 SDK; 4 for
the IzoT ShortStack SDK and ShortStack FX SDK)

• Information about availability and state of the static IO9 input signal on
the Micro Server (see Using the IO9 Pin)

• Information about whether the Micro Server is initialized

• Information whether the Micro Server supports an extended address
table (the Micro Server must be running on a Series 6000 processor to
support an extended address table)

• The Micro Server Key (see Using the ShortStack Micro Server Key)

• The cause for the most recent reset, encoded in a value from the
LonResetCause enumeration

• The most recent system error, encoded in a value from the
LonSystemError enumeration

• The Micro Server’s 48-bit unique ID (also known as its Neuron ID, or a
MAC ID for Series 6000 processors)

• The current number of address table records, domains, and aliases
supported by the Micro Server

Querying the Error Log
The ShortStack Micro Server writes application errors to the system error log.
The reset notification contains the most recent system error code, but you can use
the LonQueryStatus() function to query the complete error and statistics log.

The LonStatus structure, which is provided in response to the
LonQueryStatus() call through the LonStatusReceived() callback handler
function, contains complete statistics information, such as the number of
transmit errors, transaction timeouts, missed and lost messages.

In addition to the standard system error codes (129 and above), a ShortStack
Micro Server can log ShortStack-specific system error codes that help you
diagnose problems.

Table 22 lists the ShortStack-specific system error codes. All system error codes
are provided by the LonSystemError enumeration in ShortStackTypes.h.

144 Developing a ShortStack Application

Table 7. LonSystemError Enumeration Values for ShortStack

Value Condition Description

1 Smart Transceiver
lock

Unsupported Micro Server hardware. Use an Echelon Smart
Transceiver for the Micro Server.

This error condition also changes the Micro Server’s state to
applicationless.

2 niSiData message
received

This message is unsupported for the IzoT ShortStack SDK.

3 Network variable
processing with
host selection is not
supported

The Micro Server was created with the #pragma
netvar_processing_off directive, which is not supported.

This error condition also changes the Micro Server’s state to
applicationless.

4 Transceiver not
supported

This error occurs when the host tries to configure the Micro
Server for a transceiver that is neither special-purpose mode,
nor single-ended at 78 kbps.

Unlike the Smart Transceiver lock, the Micro Server is not
changed to the applicationless state. This error is logged and
the node enters quiet mode.

5 Message too big An outgoing message cannot be sent because it exceeds the
available buffer size.

6 Unknown link-layer
command

The Micro Server received an unknown link-layer command
from the host.

7 Malformed NVINIT
message

The NVINIT message specified a number of network
variables, but provided data for fewer network variables.

64 RPC callback
timeout

The Micro Server attempted a remote procedure call to call
an ISI callback on the host, but the host failed to
acknowledge the uplink message for 15.5 seconds (31*500
ms).

65 RPC callback
NACK

The Micro Server attempted a remote procedure call to call
an ISI callback on the host, but the host replied with an
unexpected negative response.

66 RPC out of
sequence

An out-of-sequence reply from the host has been received.
The out-of-sync reply is ignored.

67 RPC nothing to
acknowledge

A positive or negative RPC acknowledgement has been
received, but was unexpected. The acknowledgement is
ignored.

68 Interleaving RPC
call attempted

An RPC call to the host was attempted while a previous call
was still outstanding. The Micro Server resets.

ShortStack User’s Guide 145

Error conditions that change the state to applicationless also invalidate the
cached signature, thus enforcing a complete re-initialization after Micro Server
reload.

Runtime Interface Selection
Most IzoT applications have one static interface; that is, the set of datapoints,
properties and blocks, their attributes and relations, and a number of related
aspects are defined by you when you create the application. The interface data
changes during the lifetime of your application, for example, by exchanging
datapoint values with other devices in the network. However, the interface itself
remains static; no datapoint or block is added or removed during the lifetime of
your device.

Some advanced devices implement dynamic interfaces, which support the
addition, modification, and removal of datapoints or blocks either at installation
time or during the lifetime of the application. Dynamic interfaces are an
advanced feature and require an advanced protocol stack. The IzoT ShortStack
SDK does not support creating devices with dynamic interfaces.

Applications with runtime interface selection fill the gap between static and
dynamic interfaces. For example, an application which supports five different
interfaces subject to different purchase options, but supports only one interface at
any one time. The same application may support a low-cost entry-level model
while a higher priced variant adds premium features and exposes a different
interface. Alternatively, the application may support expansion with external
hardware modules that require a different interface for each module.

This application could be configured at manufacture time, for example, with a
sealed hardware jumper or an application message. Another application could
allow the user to install node-locked license files and purchase additional
features over time.

The IzoT ShortStack SDK and the IzoT Interface Interpreter do not require a
specific method in which those are runtime-selectable interfaces are licensed or
managed. However, the IzoT Interface Interpreter can help you define and
manage applications with multiple interfaces where exactly one interface is
active at any one time.

This architecture and related considerations are discussed in the remainder of
this section.

The IzoT ShortStack SDK includes an application example in the
examples/rpi/ris folder which demonstrates the features discussed here.

Static Interface Framework
The structure of a typical static interface is illustrated with the Simple example
included in the IzoT ShortStack SDK examples/rpi/simple folder.

This application has a main C source file, rpi-simple.c in this example. This file
contains the declaration of the interface in the IzoT Markup Language, and it
contains the standard C main() function. Within the main() function, the code

146 Developing a ShortStack Application

calls the LonInit() API function, then makes periodic calls to the
LonEventPump() API.

The following illustration shows some of the function call sequences in this
process. The illustration is neither accurate nor complete, but is used to
demonstrate the principle of operation between your source code, the ShortStack
API code, and the framework code generated by IzoT Interface Interpreter.

The illustration shows how your main() function calls the LonInit() API, which
in turn calls a LonFrameworkInit() function generated by the IzoT Interface
Interpreter. This function initializes the boiler block defined in the example
main C file.

Likewise, your application makes periodic calls to the LonEventPump() API.
When this API detects that a network variable update occurred, it invokes the
corresponding callback function, LonNvUpdateOccurred(), which the IzoT
Interface Interpreter generates. This callback dispatches the update
notifications into your event handlers, onBoiler in this example.

A similar mechanism applies to all other events supported by the IzoT Markup
Language, and to a number of additional callbacks related to application lifetime
management and initialization. For example, the data required to register your

ShortStack User’s Guide 147

application with the ShortStack Micro Server is defined within the framework
files generated by IzoT Interface Interpreter.

Key to the the static interface framework is that the framework generated by
IzoT Interface Interpreter resides in the ShortStackDev.h and
ShortStackDev.c files, and includes the callback functions required by the
ShortStack API.

Runtime Interface Selection Framework Architecture
The architecture of an application with runtime interface selection expands on
that of a static interface application.

In an application with runtime interface selection, each interface is defined in its
own source file. For example, the Runtime Interface Selection (RIS) application
example defines a simple interface in regular.c and the premium interface
version in deluxe.c.

Each interface contains the complete definition of the interface, including block
declarations and event handlers, and each of these source files is processed by the
IzoT Interface Interpreter prior to compilation.

For example, the RIS example in the IzoT ShortStack SDK configures the pre-
build step, normally defined as iii “${ProjDirPath}/${ProjName}.c”, as

cmd /C iii “$(ProjDirPath}\regular.c” && iii
“$(ProjDirPath}\deluxe.c”

This passes the regular interface and the deluxe interface through the IzoT
Interface Interpreter as two separate interfaces.

Because each interface is different, you must specify a unique program ID for
each interface. The IzoT Interface Interpreter also generates device interface
files (.XIF file extension) for use with network tools, one for each interface. The
device interface files share the interface name. In this example, you will obtain
regular.xif and deluxe.xif.

Option Output
All but one of the interfaces include the IML option output directive to request
that the pair of generated output be named different than the ShortStackDev
default.

Example

//@IzoT Option output(“regularDev”)

The most complex of your interfaces, however, does not use option output. The
framework for the most complex interface will be located in the
ShortStackDev.c and .h files. The ShortStack API requires that the
ShortStackDev.h file exists, and is subject to conditional compilation and
compile-time configuration based on symbols defined in this file.

148 Developing a ShortStack Application

In order to obtain an API configured for the superset of all features required by
all your interfaces, the most complex of your interfaces will usually be a good
choice for generating ShortStackDev.c and .h files.

Make sure not to re-use the interface file’s name in the option output directive,
because the IzoT Interface Interpreter will parse your interface and then
overwrite it with the generated framework. The above example uses the name of
the interface followed by Dev in analogy to ShortStackDev.

Option Namespace

All interfaces select a non-default namespace.

Example

//@IzoT Option namespace(“regular”)

The namespace is a prefix used with the generated callback functions. Without
option namespace (the default), the IzoT Interface Interpreter generates callback
functions including LonResetOccurred, LonWink, and
LonNvUpdateOccurred.

Only one of each can exist in any single application, as linker errors would
otherwise occur. The Option namespace directive solves this problem. For
example, option namespace(“regular”) yields callbacks named
regularLonResetOccurred, regularLonWink, and
regularNvUpdateOccurred.

Another interface in the same application can specify the deluxe namespace with
option namespace(“deluxe”) and thus yield deluxeLonResetOccurred,
deluxeLonWink, or deluxeLonNvUpdateOccurred.

Callback Dispatch
The ShortStack API requires that you present implementations of the standard
ShortStack API callback functions with their native names, e.g.
LonResetOccurred, LonWink, or LonNvUpdateOccurred. You must
implement all these functions with their correct native names and correct
prototypes.

For applications with runtime interface selection, the option namespace
directive redirects the implementations of these callbacks to differently named
entry points, and you must provide the regular callback functions.

In your implementation of these callbacks, you select which interface’s
implementation to call, based on your knowledge of the currently selected
interface type. For example, your callback dispatcher may sample a hardware
input pin to select between the regular and the deluxe interface, and route the
callback accordingly.

ShortStack User’s Guide 149

Example

void LonWink(void)
{
 if (is_deluxe_enabled()) {
 deluxeLonWink();
 } else {
 regularLonWink();
 }
}

The RIS application example included with the IzoT ShortStack SDK contains an
example dispatcher implementation in the dispatch.c file.

This illustration shows how the callback dispatcher intercepts and re-routes the
callbacks.

Interface Selection
The IzoT Interface Interpreter and the ShortStack LonTalk/IP Compact API have
no requirements on how you select, license, or manage your interfaces, except the
following standard requirements of all interoperable devices:

• Every interface needs to implement its own, unique, program ID
• Exactly one and only one interface can be active at all times on each

device

150 Developing a ShortStack Application

The RIS application example, which is part of the IzoT ShortStack SDK, uses an
insecure simple console input to change the interface, and stored the current
interface selection in an unprotected file.

The following non-exhaustive list offers some suggestions for other methods of
selecting the active interface:

• Use a simple hardware input such as a DIP switch.

• Use a software configuration tool to set a configuration property to select
an alternate interface.

• Use a concealed hardware input, conditioned and sealed at production
time, to select one of these interfaces.

• Automatically sense the configuration based on hardware configuration,
for example by detecting which I/O modules have been installed, and
automatically present the matching interface.

• Support node-locked license keys. For example, those could consist of a
combination of the device’s MAC-ID or the Micro Server’s Neuron ID and
an encoded selection of enabled application features, stored in an
encrypted form using a secret algorithm and key such that the license
cannot be moved to a different device.

Interface Switchover
You device can select an interface on initial startup, or at any time while running.
To select the interface on initial startup, you will select the interface type prior to
calling LonInit(). To change the interface after the LonInit() function has been
called, use the LonReinit() function.

Any change of the interface requires that the device enters the unconfigured state.
The device loses all information about network connections it was previously
engaged with, and will generally obtain a new network address after being re-
commissioned by the network tool when used in a managed network.

Further Steps
Much of each interfaces’ functionality will be encoded within your interface source
files, but you can share the same code for implementation of your interfaces’ base
functionality among all your interfaces, and you can support other aspects of your
application’s behavior as a function of the currently selected interface.

Sharing Code

You cannot share IML definitions between different interfaces, but you can share
the runtime code which executes in relation to some of the interfaces’ aspects.

To do so, implement a suitable processing function in any of your C source files,
import the prototype of your functions into your interface definitions using the
standard C extern keyword, and call your shared code from each of your interface
definitions as required.

ShortStack User’s Guide 151

For example, each interface can declare an onWink event. You do not have to
include the corresponding onWink event handler with your interface code so long
as you present a function with the correct name and prototype to the linker.

The following illustrates a shared onWink event handler:

Other interfaces might share portions of the application’s algorithm by calling into
common functions, as illustrated in the following example.

152 Developing a ShortStack Application

Dispatcher Extensions
Your callback dispatcher must ensure that all callback functions required by the
ShortStack LonTalk/IP Compact API and application framework are
implemented. However, the dispatcher is not limited to those callbacks.

Some applications might use common code, for example to sample physical input.
In the event of a significant change to such an input, your common input handler
can call the current interface through a new dispatch interface defined within
your application.

Use the following illustration to see the approach for a hypothetical zero-crossing
detector.

ShortStack User’s Guide 153

Dispatched Callbacks

Here are the callbacks which need to be dispatched.

Framework Callbacks
void LonFrameworkInit(void);
const LonByte* LonGetSiData(unsigned* pLength);
const LonByte* LonGetAppInitData(void);
void* LonGetNvTable(void);
unsigned LonGetNvCount(void);
unsigned LonGetMtCount(void);
LonUbits32 LonGetSignature(void);

154 Developing a ShortStack Application

API Callbacks

void LonResetOccurred(
 const LonResetNotification* const pResetNotification
);
void LonWink(void);
void LonOffline(void);
void LonOnline(void);
void LonServicePinPressed(void);
void LonServicePinHeld(void);
void LonNvUpdateOccurred(
 const unsigned index,
 const LonReceiveAddress* const pSourceAddress
);
void LonNvUpdateCompleted(const unsigned index, const LonBool
success);
const unsigned LonGetCurrentNvSize(const unsigned nvIndex);

Persistent NVs
If your device interface includes any properties or non-volatile network variables,
your application must provide functions for reading and writing non-volatile data
for properties.

During processing for the LonInit() function, the ShortStack LonTalk/IP
Compact API calls the LonNvdDeserializeNvs() callback function. This
function has the following signature:

const LonApiError LonNvdDeserializeNvs(void);

Whenever the application receives an update to a persistent network variable,
the ShortStack LonTalk/IP Compact API automatically calls the
LonNvdSerializeNvs() callback function to store the new data persistently.

The IzoT ShortStack SDK’s ShortStackHandlers.c API source file includes an
example implementation for the LonNvdSerializeNvs() and
LonNvdDeserializeNvs() callbacks.

When deserializing, your application must obtain the most recent value for the
network variable with the given index from non-volatile memory, and store it in
the location provided by the LonGetNvValue() function. For changeable-type
network variables, the application must always retrieve network-variable data
that equals the initial network variable type in size. If the current size of a
changeable-type network variable is less than its maximum (and initial) size,
supply zeroes to fill the remaining, currently unused, memory. You can obtain
the size of the initial network variable from the network variable table or by
using the sizeof() operator with the initial (declared) network variable type,
(rather than using the LonGetNvSize() callback handler function, which
returns the current size of the network variable).

Whenever a CNV or non-volatile network variable is updated over the network,
your implementation of the LonNvsSerializeNvs() callback must write the
CNV or network variable data to non-volatile memory.

ShortStack User’s Guide 155

Application Start-Up and Failure Recovery
Typical applications load all persistent data into RAM during startup. The
ShortStack LonTalk/IP Compact API handles that process for persistent network
variables by calling the LonNvdDeserializeNvs() function from the LonInit()
function, but your application must take appropriate steps to ensure correct data
for all other persistent data.

Because your application is responsible for loading and modifying applicable data
in non-volatile memory, you can use the application signature generated by the
IzoT Interface Interpreter to ensure that the application manages its own data,
rather than another application’s data. Use the LonGetSignature() function
implemented in ShortStackDev.c to retrieve the current application’s
signature.

Writing non-volatile data can be error-prone and slow, depending on the type and
organization of the memory. Your application must detect any failures during
the write process, and ensure that the write process completes in a timely a
fashion.

If the write process takes too long to complete within the API’s timing
requirements (see Periodically Calling the Event Handler), your application must
use queues or caches to minimize both latencies and the number of modifications.

The application must also detect data corruption. If, for example, the device
incurs a power loss during a write operation to non-volatile data, that data can be
invalid. When the application starts up after the failure, and attempts to re-load
that data, it must detect that the data is not valid. If invalid data is found, the
application can recover, or can cease operation and put the Micro Server into the
unconfigured state.

Applications can implement any method to ensure reliable persistence of data, or
to ensure detection of failure, such as hardware support (for example, battery
backup, or early power-out interrupts to flush any pending write requests).
Typical software support includes management of “dirty” flags and checksum
protection for persistent data.

156 Developing a ShortStack Application

ShortStack User’s Guide 157

11

Developing a ShortStack
Application with ISI

This chapter describes how to develop a ShortStack
application with Interoperable Self-Installation (ISI)
support. It also describes the various tasks performed by
the application when using ISI.

158 Developing a ShortStack Application with ISI

Overview of ISI
A control network may be a small, simple network in a small retail store or in a
machine consisting of a few devices, or it may be a large network in a building,
factory, or ship consisting of tens of thousands of devices. The devices in the
network must be configured to become part of the common network and to
exchange data. The process of configuring devices in a control network is called
network installation.

There are two main categories of networks:

• Managed networks

• Self-installed networks

A managed network is a network where a shared network management server
performs network installation. A user typically uses a tool to interact with the
server and to define how the devices are configured and how they communicate.
Such a tool is called a network management tool. For example, Echelon’s IzoT
Commissioning Tool (CT) is a network management tool that uses the IzoT Net
Server network management server to install devices in a network. Although a
network management tool and a server are used to establish initial network
communication, they need not be present for the network to function. The
network management tool and server are required only to make changes to the
network’s configuration.

In a managed network, the network management tool and server together
allocate various network resources, such as device and data point addresses. The
network management server is also aware of the network topology, and can
configure devices for optimum performance within the constraints of that
topology.

The alternative to a managed network is a self-installed network. There is no
central tool or server that manages the network configuration in a self-installed
network. Instead, each device contains code that replaces parts of the network
management server’s functionality, which results in a network that does not
require a special tool or server to establish network communication or to change
the configuration of the network.

Because each device is responsible for its own configuration, a common standard
is required to ensure that devices configure themselves in a compatible way. The
standard protocol for performing self-installation in LonTalk/IP and LON
networks is called the LONWORKS Interoperable Self-Installation (ISI) Protocol.
The ISI protocol can be used for networks of up to 300 devices.

Larger or more complex networks need to either be installed as managed
networks, or should be partitioned into multiple smaller subnetworks, where
each subnetwork has no more than 300 devices and meets the ISI topology and
connection constraints. Devices that conform to the LONWORKS ISI protocol are
called ISI devices.

An ISI device manages its network identity (its address) and its network variable
connections with minimum impact on the network performance. These two
groups of services are supported through a set of API calls, callback handlers,
and notification events. See Managing the Network Address and Managing
Network Variable Connections for more information about these services.

ShortStack User’s Guide 159

The IzoT ShortStack SDK includes standard Micro Servers that can be used to
create ISI devices, and allows the creation of custom Micro Servers that support
the ISI protocol. Such an ISI-enabled Micro Server can be used in self-installed
or managed networks, but a Micro Server without built-in support for the ISI
protocol cannot be used in an ISI network (unless you implement the required
portions of the ISI protocol as part of your host application using the standard
ShortStack messaging and self-installation APIs provided). For a detailed
description of the ISI protocol, see the LONWORKS ISI Protocol Specification.

The ISI protocol is a licensed protocol that does not require any licensing fees. In
addition to the IzoT ShortStack SDK, the IzoT SDK, CPM 4200 Wi-Fi SDK, and
IzoT NodeBuilder Software each include a license for development use of the ISI
protocol.

Using ISI in an IzoT ShortStack SDK Application
Using the ISI protocol in a ShortStack application is similar to using the ISI
protocol in a Neuron C-based application (such as ones developed with the IzoT
NodeBuilder Software). The application calls ISI functions and implements some
or all of the ISI callback handler functions to produce the desired ISI behavior.

There are two ways to modify the ISI behavior of a Micro Server:

• If your ShortStack device uses a Micro Server that supports the ISI
protocol, you can implement most of the ISI callback handler functions
within your host application. Overriding ISI callback handler functions
is an important part of creating an ISI application, because these callback
handlers provide essential, and typically application-specific, details to
the ISI engine.

• If you create an ISI-enabled custom Micro Server, you can determine the
location of most of the ISI callback handler functions. If there is
sufficient space in the Smart Transceiver, you can put enough
intelligence into the Micro Server Neuron C application to have a large
percentage of the ISI logic in the Smart Transceiver. Alternatively, you
can let the Micro Server use the ShortStack ISI RPC protocol to call
callback handler functions located on the host processor.

See Comparing ShortStack ISI and Neuron C ISI Implementations for
information about the similarities and differences between ShortStack ISI
applications and Neuron C ISI applications. See Creating a Custom Micro Server
with ISI Support for information about customizing an ISI-enabled Micro Server.

Running ISI on a 3120 Device
A standard ShortStack Micro Server on a 3120 Smart Transceiver does not
include support for ISI because of resource limitations. For 3120 devices, the
ShortStack LonTalk/IP Compact API allows you to implement ISI support on the
host processor.

Running ISI on a 3150 Device
A standard ShortStack Micro Server on a 3150 Smart Transceiver can be
installed in an ISI-S or ISI-DA network. Support for ISI is largely handled by the
Micro Server itself. However, you can also use the ShortStack LonTalk/IP

160 Developing a ShortStack Application with ISI

Compact API to implement ISI support on the host processor. In addition, you
can create a custom Micro Server to provide custom ISI support, including
support for ISI-DAS applications.

Running ISI on a PL 3170 Device
A standard ShortStack Micro Server on a PL 3170 Smart Transceiver can be
installed in an ISI-S or ISI-DA network. Support for ISI is largely handled by the
Micro Server itself. However, you can also use the ShortStack LonTalk/IP
Compact API to implement ISI support on the host processor. In addition, you
can create a custom Micro Server to provide custom ISI support. However, a
Micro Server on a 3170 Smart Transceiver cannot support ISI-DAS applications.

An ISI-enabled Micro Server for the PL 3170 Smart Transceiver has several
limitations, compared to other ISI-enabled standard Micro Servers. The
following limitations are permanent and cannot be overcome by creating a
custom, ISI-enabled, Micro Server:

• The link layer supports SCI at the fixed bit rate of 38400 bps. In
addition, the SPI/SCI~, SBRB0, and SBRB1 signals are ignored.

• The utility functions, which include local operations such as the ping or
echo command, are not supported by the Micro Server.

• The post-reset pause is fixed at 50 ms and cannot be configured.

• ISI-S and ISI-DA modes are supported, but ISI-DAS mode is not.

The following limits can be changed by creating a custom, ISI-enabled, Micro
Server, and adjusting the Micro Server’s properties as needed:

• Capacity is limited to 120 network variables and 75 aliases.

• The ISI connection table is 24 records, local to the Micro Server.

• Controlled enrollment is supported.

Running ISI on an Series 6000 or 5000 Device
A standard ShortStack Micro Server on an Series 6000 or Series 5000 Smart
Transceiver or Neuron Chip, such as the FT 6050 Smart Transceiver, can be
installed in an ISI-S or ISI-DA network. Support for ISI is largely handled by the
Micro Server itself. However, you can also use the ShortStack LonTalk/IP
Compact API to implement ISI support on the host processor. In addition, you
can create a custom Micro Server to provide custom ISI support, including
support for ISI-DAS applications.

Tasks Performed by a ShortStack ISI Application
A ShortStack ISI application must determine when to start the ISI engine (based
on the SCPTnwrkCnfg configuration property), call ISI services as needed,
handle ISI events, and recover from failures.

After the ISI engine starts, it manages various aspects of your device, and makes
services available to you through the ISI API. The two major aspects managed
include: managing the device’s network address and managing its network
variable connections.

ShortStack User’s Guide 161

Starting and Stopping ISI
Use the IsiStart() function to start the ISI engine for any supported ISI type.
Typically, because the ISI engine is stopped after a Micro Server reset, you start
the ISI engine in your onReset event handler when self-installation is enabled.

The IsiStart() function accepts two arguments: the ISI mode of operation
(defined by the IsiType enumeration) and a bit vector with various flags (defined
by the IsiStartFlags enumeration).

The LonTalk/IP ISI API does not support, or require, the host application to call
the IsiPreStart() function. Micro Servers that support hardware which requires
the use of this function automatically call this API during power-up and reset.

Use the IsiStop() function to explicitly stop the ISI engine at any time.
Typically, you stop the ISI engine when self-installation is disabled. Because the
ISI engine is always off after a power-up or reset, and must be started explicitly
with each reset, this function is not widely used.

When you stop the ISI engine, ISI callbacks into the application no longer occur.
Because most ISI functions behave appropriately when the engine is stopped, the
ShortStack application does not have to track the engine’s state and can issue the
same set of ISI API calls in any state.

Implementing a SCPTnwrkCnfg Property
ISI applications must implement a SCPTnwrkCnfg configuration property that
is implemented as a configuration network variable. This configuration property
must apply to your application’s Node Object functional block, if available, or
apply to the entire device if there is no Node Object.

This configuration property provides an interface for network management tools
to disable self-installation on an ISI device. By using this configuration property,
the same device can be used in both self-installed and managed networks.

The configuration property has two values: CFG_LOCAL and
CFG_EXTERNAL. When set to CFG_LOCAL, your application must enable
self installation. When set to CFG_EXTERNAL, your application must disable
self installation. Network management tools automatically set this value to
CFG_EXTERNAL to prevent conflicts between self-installation functions and
the network management tool.

For a device that will use self-installation, during the first start (only) with a new
application image, set the value for the SCPTnwrkCnfg configuration property
as CFG_LOCAL so that the ISI engine can come up running with the first
power-up. Subsequent starts use the default value of CFG_EXTERNAL.

Example
SFPTnodeObject(node) nodeObject; //@IzoT block \
//@izot implement(nciNetConfig, flags=Reset, init=CFG_LOCAL) \
//@izot onUpdate(nciNetConfig, onNetConfigChange)

//@IzoT Event onReset(onResetHandler)

void onResetHandler(
 const LonResetNotification* const pResetNotification
) {
 if (*nodeObject.nciNetConfig == CFG_LOCAL) {

162 Developing a ShortStack Application with ISI

 /* Start the ISI engine */
 IsiStart(IsiTypeS, IsiFlagExtended);
 }
}

void onNetConfigChange(
 const unsigned index,
 const LonReceiveAddress* const pSourceAddress
) {
 if (*nodeObject.nciNetConfig == CFG_LOCAL) {
 /* The device is returned to self-installation.
 * Clear old configuration data and start again.
 * This task can take a significant amount of time,
 * after which the Micro Server resets. */
 IsiReturnToFactoryDefaults();
 }
}

Managing the Network Address
After the ISI engine is started, it manages the device’s network address. The
network address consists of a subnet and node ID pair plus a domain identifer.

The subnet and node ID pair is managed automatically: ISI chooses a suitable
value pair, and ensures the uniqueness of that value pair within the network,
making changes to that value pair as needed while the device is running.

The domain identifier and its length (generally referred to collectively as the
domain) define the logical network to which the device belongs. Several devices
can share the same physical network media, for example a power line
communications channel, but can be logically isolated into distinct logical
networks, each with a unique domain. Each logical network is also referred to as
a domain.

ISI devices can be part of one primary domain. All ISI devices are also part of a
secondary domain for administrative purposes, but all application-specific
communication is limited to the primary domain.

There are four methods to assign a domain to an ISI device:

1. The domain can be pre-defined and assigned by the device application or
by the ISI implementation. All ISI devices must initially support this
method because an initial application domain is assigned prior to
acquiring a domain using one of the other methods. This method enables
all devices to be used in an ISI-S network, the smallest form of an ISI
network, which uses this method by default. All ISI-enabled ShortStack
Micro Servers support installation in an ISI-S network.

2. A device that supports domain acquisition can acquire a unique domain
address from a domain address server. If a domain address server is not
available, domain acquisition fails, and the ISI engine continues to use
the most recently assigned domain (initially, the default domain).
Devices that support domain acquisition also support multiple,
redundant, domain address servers. Domain address acquisition is
initiated by the user and controlled by the device acquiring the domain,
not by the domain address server. This method allows the device to make
intelligent decisions about retries, and prevents enrollment during
domain acquisition. It also allows the device to increase automatic
enrollment performance following the completion of domain acquisition.

ShortStack User’s Guide 163

All standard ISI-enabled ShortStack Micro Servers support domain-
acquisition services, but custom ISI-enabled Micro Servers can choose not
to support them.

3. A domain address server can assign a domain to a device without a
request from the device. This method minimizes the code required in the
device, and can be used with all devices. This process is called fetching a
device. All ISI-enabled devices and all ISI domain address servers
support this method. This method simplifies the implementation of the
ISI application, but control of the process is no longer within the ISI
application.

4. A domain address server can fetch the domain from any of the devices in
a network and assign it to itself. This method keeps multiple domain
address servers in a network synchronized with each other, or allows a
replacement domain address server to join an existing ISI network. This
process is called fetching a domain. All ISI-enabled devices and all ISI
domain address servers support this method.

A domain address server typically supports all four methods. That is, it can
supply a pre-defined domain (which is typically used as the domain address
server’s default domain), it can support a device that requests a domain (domain
acquisition), it can fetch any ISI device, and it can fetch a domain from another
device.

Supporting a Pre-Defined Domain
While its ISI engine is running, any ISI device is always a member of two
domains: the administrative secondary domain that uses a pre-defined and fixed
domain, and the application-specific primary domain.

The primary domain uses a three-byte domain ID with value 0x49.53.00 (ASCII
codes for “IS\0”) by default. An IsiGetPrimaryDid() callback function is
supported, which allows applications to provide a different default for the
primary domain. This alternate default can be used by some devices to start in a
closed, non-interoperable, ISI network. The same method can also be used by
domain address servers to assign a unique domain identifier to the server’s
default primary domain (typically equal to the server’s own unique ID).

Acquiring a Domain from a DAS
To acquire a domain from a domain address server using domain acquisition
services, start the ISI engine using the IsiStart() function with the isiTypeDa
type.

A domain address server must be in device acquisition mode to respond to
domain ID requests. To start device acquisition mode on a domain address
server, call the IsiStartDeviceAcquisition() function.

To start domain acquisition on a device that supports domain acquisition, call the
IsiAcquireDomain() function.

A typical implementation starts the domain acquisition process when the
Connect button is activated and a domain is not already assigned. If
SharedServicePin is set to FALSE, the IsiAcquireDomain() function also
issues a standard Service message, thus allowing the same installation paradigm

164 Developing a ShortStack Application with ISI

in both a managed and an unmanaged environment. If the application uses the
physical Service pin to trigger calls to the IsiAcquireDomain() function, the
system image will have issued a Service message automatically, and the
SharedServicePin flag should be set to TRUE in this case.

When calling IsiAcquireDomain() with SharedServicePin set to FALSE
while the ISI engine is not running, a standard Service message is issued
nevertheless, allowing the same installation paradigm and same application code
to be used in both self-installed and the managed networks.

After domain acquisition has been enabled by calling
IsiStartDeviceAcquisition() on the domain address server and it has been
started on the device by calling IsiAcquireDomain(), the device responds to the
isiWink ISI event with a visible or audible response. For example, a device may
flash its LEDs. The user confirms that the correct device executed its wink
routine by activating an appropriate user interface control on the domain address
server that calls the server’s IsiStartDeviceAcquisition() function again.
When confirmed, the domain address server grants the unique domain ID to the
device. The device notifies its application with ISI events accordingly.

The device automatically cancels domain acquisition if it receives multiple, but
mismatching, domain response messages. This mismatch can happen if multiple
domain address servers with different domain addresses are in device acquisition
mode, and all respond to the device’s query.

Devices can support domain acquisition to provide more robust device
installation with automatic retries and automatic connection reminders.

The IsiCancelAcquisition() function causes a device to cancel domain
acquisition. The cancellation applies to both device and domain acquisition.
After this function call is completed, the ISI engine calls
IsiUpdateUserInterface() with the IsiNormal event. On a domain address
server, use the IsiCancelAcquisitionDas() function instead.

Example 1

The following example starts domain acquisition on a domain address server
when the user presses a Connect button on the server. if
(connect_button_pressed) {
 IsiStartDeviceAcquisition();
}

When started, the domain address server remains in this state for five minutes,
unless cancelled with an IsiCancelAcquisitionDas() call. Each successful
device acquisition retriggers this timeout.

Example 2

The following example starts domain acquisition on a device when the user
pushes a Connect button on the device.
if (connect_button_pressed) {
 IsiAcquireDomain(FALSE);
}

ShortStack User’s Guide 165

Fetching a Device from a Domain Address
Server
A domain address server can use the IsiFetchDevice() function to assign the
DAS’ unique domain ID to any device. Unlike the IsiAcquireDomain()
function, the IsiFetchDevice() function does not require any action, or special
library code, on the device. To fetch a device, call the IsiFetchDevice() function
on the domain address server.

DAS devices can make this feature available to the user. With this feature, it is
not required that devices support domain acquisition in order to participate in an
ISI network that uses unique domain IDs.

Similar to the domain acquisition process, fetching a device also requires a
manual confirmation step to ensure that the correct device is paired with the
correct domain address server.

Example

The following example fetches a device on a domain address server when the
user presses the Connect button on the server.
if (connect_button_pressed) {
 IsiFetchDevice();
}

Fetching a Domain for a DAS
A domain address server can use the IsiFetchDomain() function to obtain a
domain ID. Unlike the IsiAcquireDomain() function, the IsiFetchDomain()
process does not require a domain address server to provide the domain ID
information, and does not use the DIDRM, DIDRQ, and DIDCF standard ISI
messages. Instead, the domain address server uses the IsiFetchDomain()
function to obtain the current domain ID from any device in the network, even
from those that do not implement or execute ISI at all. This is typically used
when installing replacement or redundant domain address servers in a network:
a domain address server normally uses the IsiGetPrimaryDid() override to
specify a unique, non-standard, primary domain ID. A replacement domain
address server (or a redundant domain address server) must override this
preference by using the domain ID that is actually used in the network. This
override is provided with the IsiFetchDomain() function.

Example

The following example fetches a domain on a domain address server when
the user presses the Connect button on the server.
if (connect_button_pressed) {
 IsiFetchDomain();
}

If no unambiguous domain ID is already present on the network, the domain
address server uses its default domain ID, as advised with the
IsiGetPrimaryDid() callback, as a unique domain ID.

166 Developing a ShortStack Application with ISI

Managing Network Variable Connections
You can exchange data between devices by creating connections between network
variables on the devices. Connections are like virtual wires, replacing the
physical wires of traditional hard-wired systems. A connection defines the data
flow between one or more output network variables to one or more input network
variables. The process of creating a self-installed connection is called enrollment.
Inputs and outputs join a connection during open enrollment, much like students
join a class during open enrollment. Following the sucessful completion of an ISI
enrollment, the ISI engines on the devices in the connection automatically create
and manage the network variable connection, assign the network variable
selectors and other protocol resources, monitor their suitability, and change these
values as needed while the connection is active.

Other connection-related ISI services include deleting an entire connection,
removing individual devices from a connection, or extending a connection by
adding new participants.

Because an ISI network uses unbounded groups (group size 0), your application
should not poll network variable values. Using a request-response service with
unbounded groups can significantly degrade network performance.

This section describes the ISI connection model and describes the procedures
required to create a connection.

ISI Connection Model
Connections are created during an open enrollment period that is initiated by a
user, a connection controller, or a device application. When initiated, a device is
selected to open enrollment—this device is called the connection host. Any device
in a connection can be the connection host; the connection host is responsible for
defining the open enrollment period and for selecting the connection address to
be used by all network variables within the connection. Connection address
assignment and maintenance is handled by the ISI engine, and is transparent to
your application.

Even though any device in a connection can be the connection host, if you have a
choice of connection hosts, pick the natural hub as the connection host. For
example, in a connection with one switch and multiple lights, the switch is the
natural hub, whereas in a connection with one light and multiple switches, the
light is the natural hub. If there is no natural hub—multiple switches connected
to multiple lights for example—you can pick any of the devices (preferably one
with easy access).

A connection host opens enrollment by sending a connection invitation. After a
connection host opens enrollment, any number of devices can join the connection.

Connections are created among connection assemblies. A connection assembly is
a block of functionality, a grouping of one or more network variables, much like a
Neuron C functional block. A simple assembly refers to a single network
variable, as shown in Figure 59.

ShortStack User’s Guide 167

Figure 59. A Simple Assembly

A connection assembly that consists of a single network variable is called a
simple assembly.

A single assembly can include multiple network variables in a functional block,
can include multiple network variables that span multiple functional blocks, or
can exist on a device that does not have any functional blocks; an assembly is a
collection of one or more network variables that can be connected as a unit for
some common purpose.

A connection assembly that consists of more than one network variable is called a
compound assembly, as shown in Figure 60.

Figure 60. A Compound Assembly

For example, a combination light-switch and lamp ballast controller can have
both a switch and a lamp functional block, which are paired to act as a single
assembly in an ISI network, but could be handled as independent functional
blocks in a managed network, as shown in Figure 61.

168 Developing a ShortStack Application with ISI

Figure 61. Multiple Functional Blocks as a Single Compound Assembly

To communicate and identify an assembly to the ISI engine, the application
assigns a unique number to each assembly. This assembly number must be in
the 0 to 254 range, sequentially assigned starting at 0. Required assemblies for
standard profiles must be first, assigned in the order that the profiles are
declared in the application. Standard ISI profiles that define multiple assemblies
typically specify the order in which the assemblies are to be assigned.

Each assembly has a width, which is equal to the number of network variable
selectors used in the enrollment. Typically, but not necessarily, the number of
network variable selectors in an enrollment equals the number of network
variables in the assembly. In the previous figures, for example, assembly 0 has a
width of 1, assembly 1 typically has a width of 2, and assembly 2 typically has a
width of 4. All assemblies need to have a width of at least 1. Simple assemblies
have a width of 1; compound assemblies typically have a width greater than 1.

Keep the width of an assembly as small as possible while maintaining the
functionality of the application. For example, keep the width below 10.

One of the network variables in a compound assembly is designated as the
primary network variable. If the primary network variable is part of a functional
block, that functional block is designated as the primary functional block.
Information about the primary network variable can be included in the
connection invitation.

To open enrollment, the connection host broadcasts a connection invitation that
can include the following information about the assembly:

• The network variable type of the primary network variable in the
assembly

• The functional profile number of the primary functional profile in the
assembly

• The connection width

ShortStack User’s Guide 169

Other devices on the network receive the invitation and interpret the offered
assembly to decide whether they could join the new connection.

In the case of assembly 0 in Figure 59, the connection invitation can specify a
width of one and the network variable type. This is a case similar to the one
employed by a generic switch device where the switch offers a SNVT_switch
network variable that is not tied to a specific functional profile.

Assembly 1 in Figure 60 demonstrates a more specialized example. A switch can
offer this assembly and describe it as an implementation of the
SFPTclosedLoopSensor profile, with a width of two, and a SNVT_switch
input and output. The ISI protocol defines how multiple network variable
selectors are mapped to the individual network variables offered.

Because the invitation includes no more than one functional profile number, a
compound assembly is typically limited to a single functional block on each
device. To include multiple functional blocks in an assembly, a variant can be
specified. A variant is an identifier that customizes the information specified in
the connection invitation. Variants can be defined for any device category or any
functional profile-member number pair.

For example, a variant can be specified with the SFPTclosedLoopSensor
functional block offered in assembly 2 in Figure 61, above, to specify that the
SFPTclosedLoopActuator functional block is included in the assembly.
Standard variant values are defined in standard functional profiles that are
published by LONMARK International, and manufacturers can specify
manufacturer-specific variant values for manufacturer-specific assemblies.

Each assembly on a device has a unique number that is assigned by the
application. Each network variable on a device can be assigned to an assembly.
The ISI engine calls the IsiGetNvIndex() and IsiGetNextNvIndex() callback
functions to map a member of an assembly to a network variable on the device.

Opening Enrollment
You can create a connection using automatic, controlled, or manual enrollment.
When you use controlled or manual enrollment, user intervention is required to
identify devices or assemblies to be connected. Controlled enrollment is initiated
by a centralized tool, such as a controller or user interface panel. This
centralized tool is called the connection controller. Most of the standard ISI
profiles require support for controlled enrollment. Manual enrollment is initiated
from the devices to be connected, typically with a push button called the
Connect button. When you use automatic enrollment, connections are
automatically created, and no user intervention is required.

The standard Micro Server images support controlled enrollment.

To join a connection, a device needs to support at least one type of enrollment. A
device can support multiple types of enrollment, or a device can support all three
types of enrollment. For example, a lamp actuator can support automatic
enrollment to a gateway, controlled enrollment configured by a user interface
panel, and manual enrollment with switch devices. Devices that support
controlled enrollment need also to support connection recovery as described in
Recovering Connections. Standard functional profiles can require support for
specific types of enrollment.

170 Developing a ShortStack Application with ISI

An event triggers your application to open enrollment. The type of event depends
on the type of enrollment:

• Manual enrollment: A user input on the device itself typically triggers
manual enrollment. The input can be a simple button push, or a device
could have a more complex user interface that allows the user to request
a connection.

• Controlled enrollment: A request from a connection controller typically
triggers controlled enrollment. This request is typically initiated by some
user input to the connection controller and arrives in a control request
(CTRQ) message. The CTRQ message identifies an ISI function and an
optional parameter.

• Automatic enrollment: The isiWarm event in the
IsiUpdateUserInterface() callback function typically triggers
automatic enrollment.

To open manual enrollment, call the IsiOpenEnrollment() function on the
connection host, passing in the assembly number to be offered for this connection.
The ISI engine then sends a connection invitation by broadcasting an open
enrollment message (CSMO). The CSMO message is the invitation for other
devices to join this connection, and signals an open enrollment period. The ISI
protocol also provides extended versions of the CSMO messages, which add fields
to determine if the connection is acknowledged or polled, the scope of the
connection and parts of the program ID, and the primary network variable
member.

The ISI engine creates the CSMO message by calling the IsiCreateCsmo()
function, which fills the relevant fields of an IsiCsmoData data structure with
the values needed to describe the connection type and data that is offered to the
network. The default implementation of this function, which is provided with the
ISI libraries and is available to Neuron C applications, is not available to
ShortStack devices. However, you can implement this function either within the
host application or within a custom Micro Server.

After calling the IsiCreateCsmo() function, the ISI engine constructs the
remainder of the CSMO message and broadcasts the connection invitation to the
network. To create a compound connection (one with an assembly width larger
then 1), you must override the IsiGetWidth() callback function. Sending
reminders of this message also calls several callback functions, including
IsiCreateCsmo() and IsiGetWidth().

Controlled enrollment is initiated and controlled by the connection controller,
which opens the controlled enrollment by sending a CTRQ message specifying
the IsiOpenEnrollment() function, and also specifying the assembly number to
be offered. The application responds to the CTRQ message with a control
response (CTRP) message indicating that it implements the requested operation.

If your ShortStack device supports controlled enrollment, you can create a
custom Micro Server that includes it.

To open automatic enrollment, wait for the IsiWarm event from the
IsiUpdateUserInterface() callback function, and then call the
IsiInitiateAutoEnrollment() function, passing a pointer to an IsiCsmoData
structure containing the invitation, and an the assembly number to be offered for
this connection. The ISI engine then sends a connection invitation by
broadcasting an automatic enrollment (CSMA) message. The ISI engine also

ShortStack User’s Guide 171

sends periodic reminders about the automatic connection by sending CSMR
messages. The reminder ensures that new devices have an opportunity to join
the automatic connections.

Whenever a CSMR is due, the ISI engine calls IsiCreateCsmo() to create the
message. The CSMA and CSMR messages are the invitations for other devices to
enroll in this connection automatically. Opening automatic enrollment through
IsiInitiateAutoEnrollment() is an immediate action, and after the call is
made, the connection is implemented for the assembly that the call was made
with, regardless of whether there are any members for the connection.

The ISI engine automatically transmits the extended CSMOEX, CSMAEX, or
CSMREX message (as appropriate) if isiFlagExtended was specified during the
start of the engine. Otherwise, the ISI engine automatically clips the Extended
sub-structure of the IsiCsmoData structure and issues the regular CSMO,
CSMA, or CSMR message.

You can provide feedback to the user while enrollment is open, for example by
starting a Connect light to flash. This is typically only done with manual
enrollment. The ISI engine informs your application of significant ISI events by
calling an IsiUpdateUserInterface() callback function.

Example 1

This example opens automatic enrollment.
void IsiUpdateUserInterface(IsiEvent event, unsigned
 parameter) {
 if (event == IsiWarm && !myIsiGetIsConnected(myAssembly))
 {
 IsiInitiateAutoEnrollment(&myCsmoData, myAssembly);
 }
}

In this example, the Event is compared to IsiWarm and to the value
returned by the myIsiGetIsConnected() function. Your application
implements this function, which returns TRUE if the status for the specified
assembly (myAssembly) is connected, and returns FALSE otherwise. To
maintain the connection status for each assembly, the application
periodically calls the IsiQueryIsConnected() function. Then, within the
IsiIsConnectedReceived() callback handler function, you can update the
connection status for each assembly.

The IsiWarm event signals that a sufficient amount of time has passed since
the ISI engine has been started. This interval includes a random component
to prevent all devices in the network from simulatenously starting the
automatic enrollment processes and thus colliding in the event of a site-wide
return to power.

Example 2

This example opens manual enrollment for a simple assembly with one
network variable, using the network variable’s global index as the
application-specific assembly number. This example runs within your host
application.
void startEnrollment(void) {
 IsiOpenEnrollment(nvoValue.global_index);
}

172 Developing a ShortStack Application with ISI

Example 3

This controlled enrollment example instructs a remote device with a specified
unique ID (Neuron ID) to open enrollment for its assembly number 5. The
first part of this example runs within your host application, which initiates
the controlled enrollment request (the host application implements an ISI
connection controller), and the second part of this example runs within a
custom Micro Server that is used by the targeted remote device.

See the Interoperable Self-Installation Protocol Specification for information
about the ISI Protocol, including its message codes and structures. For
example, the IsiControl enumeration and the IsiMessage data structure
are not included in the ShortStackIsiTypes.h file.
LonTag isiTag; //@IzoT Tag bindable(No)

const LonApiError controlEnrollment(IsiControl control,
 unsigned parameter, LonUniqueId* pUniqueId) {

 LonSendUniqueId target;
 IsiMessage message;

 /* Use Neuron ID addressing with one of the addresses
 * gathered during device discovery */
 target.Type = LonAddressNeuronId;
 target.Domain = 0;
 target.RepeatRetry = 3 |
 (LonRpt192<<LON_SENDNID_REPEAT_TIMER_SHIFT);
 target.RsvdTransmit = LonTx96;
 target.subnet = 0;
 memcpy(target.NeuronId, pUniqueId,
 sizeof(target.NeuronId));

 /* Prepare the ISI message */
 message.Header.Code = IsiCtrq;
 message.Msg.Ctrq.Control = control;
 message.Msg.Ctrq.Parameter = parameter;

 return LonSendMsg(isiTag, FALSE,
 LonServiceRequest, FALSE,
 (const LonSendAddress*)&target,
 IsiApplicationMessageCode, &message,
 sizeof(IsiMessageHeader) + sizeof(IsiCtrqMessage));
}

void myEnroll(...) {
 LonApiError error = controlEnrollment(IsiOpen, 5, ...);
}

Your application can evaluate success or failure of the request by using the
LonResponseArrived() callback handler function. When the controlled
enrollment request completes, the target device replies with an ISI CTRP
response message, which indicates success or failure. The CTRP message
includes the target device’s unique ID, which allows you to correlate it with the
outstanding request.

If the device fails to provide a CTRP response message, you can generally assume
that the target device does not implement controlled enrollment. As the example

ShortStack User’s Guide 173

shows, you can use network protocol features, such as the repeat counter and
timer values, to configure repeated communication attempts.

On the receiving device, a controlledEnrollmentDispatcher() function and a
sendControlResponse() utility function are implemented to process the
controlled enrollment request.

To ensure that your custom Micro Server can control enrollment, add a call to the
controlledEnrollmentDispatcher() function within the IsiMsgHandler()
function in the MicroServer.nc file. An example for the calling the
controlledEnrollmentDispatcher() function is provided in Example 2 in
Accepting a Connection Invitation.

boolean IsiMsgHandler(void) {
 boolean result, preemptionMode;
 boolean enrolled;

 result = FALSE;
 preemptionMode = shortStackInPreempt();

 enrolled = controlledEnrollmentDispatcher();

 switch(isiType) {
#ifdef SS_SUPPORT_ISI_S
 case isiTypeS:
 result = IsiApproveMsg() &&
 (preemptionMode
 || !IsiProcessMsgS()
 || controlledEnrollmentDispatcher());
 break;
#endif // SS_SUPPORT_ISI_S
#ifdef SS_SUPPORT_ISI_DA
 case isiTypeDa:
 result = IsiApproveMsg() &&
 (preemptionMode ||
 !IsiProcessMsgDa() ||
 controlledEnrollmentDispatcher());
 break;
#endif // SS_SUPPORT_ISI_DA
#ifdef SS_SUPPORT_ISI_DAS
 case isiTypeDas:
 result = IsiApproveMsgDas() &&
 (preemptionMode
 || !IsiProcessMsgDas()
 || controlledEnrollmentDispatcher());
 break;
#endif // SS_SUPPORT_ISI_DAS
 }
 return result;
}

Example 4

This example opens manual enrollment for a compound assembly with four
selectors. The IsiGetWidth() returns the library’s default value. In this
example, enrollment is being opened in response to the user’s pressing a
Connect button. Enrollment can only be opened when the ISI engine is in the

174 Developing a ShortStack Application with ISI

normal state. The ProcessIsiButton() function is called in response to the
Connect button’s being pressed.

This example runs within your host application.
IsiEvent isiState = IsiNormal;

void IsiCreateCsmo(....) {
 // set pCsmoData as desired
}

unsigned IsiGetWidth(unsigned assembly) {
 return 4;
}

void ProcessIsiButton(unsigned assembly) {
 switch(isiState) {
 ...
 case IsiNormal:
 IsiOpenEnrollment(assembly);
 break;
 ... //Processing for other states
 } // end of switch(isiState)
}

The example assumes that the IsiCreateCsmo() and IsiGetWidth()
callback handler functions are implemented in the same location, and implies
that both are implemented in the location of the ProcessIsiButton()
function (presumably, within your host application). When you create an ISI-
enabled custom Micro Server, you can choose whether the IsiCreateCsmo()
and IsiGetWidth() callback handler functions should be implemented local
to the Micro Server or on the host, but these two callback handler functions
would typically be implemented in the same location.

Example 5

This example refines example 1 and provides a more comprehensive example
of opening automatic enrollment for a simple assembly with one network
variable.

This example runs within your host application.
// MyCsmoData defines the enrollment details for the
// automatic ISI network variable connection offered by
// this device.
static const IsiCsmoData MyCsmoData = {
 // group
 ISI_DEFAULT_GROUP,
 // direction and width:
 IsiDirectionOutput << ISI_CSMO_DIR_SHIFT) | 1,
 // Profile number
 { 0, 2 },
 // NV type index (76: SNVT_freq_hz)
 76,
 // Variant:
 0
};

// Call InitiateAutoEnrollment in response to isiWarm

ShortStack User’s Guide 175

void IsiUpdateUserInterface(IsiEvent event, unsigned
 parameter) {
 if (event == IsiWarm &&
 !myIsiGetIsConnected(myAssemblyNumber)) {
 // We waited long enough and we are not connected
 // already, so let's open an automatic connection:
 IsiInitiateAutoEnrollment(&MyCsmoData,
 myAssemblyNumber);
 }
}

void IsiCreateCsmo(unsigned assembly, IsiCsmoData* pCsmo) {
 if (assembly == myAssemblyNumber) {
 memcpy(pCsmo, &MyCsmoData, sizeof(IsiCsmoData));
 }
}

unsigned IsiGetWidth(unsigned assembly) {
 unsigned result = 0;
 if (assembly == myAssemblyNumber) {
 result = LON_GET_ATTRIBUTE(MyCsmoData, ISI_CSMO_WIDTH);
 }
 return result;
}

In this example, the Event is compared to IsiWarm and to the value
returned by the myIsiGetIsConnected() function. Your application
implements this function, which returns TRUE if the status for the specified
assembly (myAssembly) is connected, and returns FALSE otherwise. To
maintain the connection status for each assembly, the application
periodically calls the IsiQueryIsConnected() function. Then, within the
IsiIsConnectedReceived() callback handler function, you can update the
connection status for each assembly.

Example 6

This example opens automatic enrollment for a compound assembly with four
selectors, offering enrollment for member network variables 1 to 4 of an
implementation of the SFPTsceneController profile (the nviScene,
nvoSwitch, nviSetting, and nviSwitch members).

This example runs within your host application.
// MyCsmoData defines the enrollment details for the
// automatic ISI network variable connection offered by
// this device
static const IsiCsmoData MyCsmoData = {
 // group
 ISI_DEFAULT_GROUP,
 // direction and width:
 (isiDirectionVarious << ISI_CSMO_DIR_SHIFT) | 4,
 // Profile number in big-endian notation:
 { 3251 / 256, 3251 % 256 },
 // NV type index (0: determined by SFPT)
 0,
 // Variant:
 0
};

176 Developing a ShortStack Application with ISI

// Call InitiateAutoEnrollment in response to isiWarm
void IsiUpdateUserInterface(IsiEvent event, unsigned
 parameter) {
 if (event == IsiWarm &&
 !myIsiGetIsConnected(myAssemblyNumber)) {
 // We waited long enough and we are not connected
 // already, so let's open an automatic connection:
 IsiInitiateAutoEnrollment(&MyCsmoData,
 myAssemblyNumber);
 }
}

void IsiCreateCsmo(unsigned assembly, IsiCsmoData* pCsmo) {
 if (assembly == myAssemblyNumber) {
 memcpy(pCsmo, &MyCsmoData, sizeof(IsiCsmoData));
 }
}

unsigned IsiGetWidth(unsigned assembly) {
 unsigned result = 0;
 if (assembly == myAssemblyNumber) {
 result = LON_GET_ATTRIBUTE(MyCsmoData, ISI_CSMO_WIDTH);
 }
 return result;
}

As in the previous example, the Event is compared to IsiWarm and to the
value returned by the myIsiGetIsConnected() function. Your application
implements this function, which returns TRUE if the status for the specified
assembly (myAssembly) is connected, and returns FALSE otherwise. To
maintain the connection status for each assembly, the application
periodically calls the IsiQueryIsConnected() function. Then, within the
IsiIsConnectedReceived() callback handler function, you can update the
connection status for each assembly.

Example 7

For a complete example that implements connection management for
multiple assemblies, see the self-installation example application that
included with the ShortStack FX SDK ARM7 Example Port, which is
available for free download from echelon.com/downloads.

Receiving an Invitation
You can receive a connection invitation and specify which assemblies are eligible
to join the ISI connection. When an ISI device receives a CSMO, CSMA, or
CSMR connection invitation message, the ISI engine first checks the availability
of the device resources that are required to implement the connection. If any of
these resources is missing or insufficient, such as address or connection table
space, the invitation is dropped.

If the ISI engine determines that there are sufficient resources, it calls the
IsiGetAssembly() and IsiGetNextAssembly() callback handler functions with
the received CSMO, CSMA, or CSMR message. These functions return all
assembly numbers that are provisionally approved to join the connection. The
automatic argument of IsiGetAssembly() and IsiGetNextAssembly()

http://echelon.com/software-downloads?ele=153-0296-01A

ShortStack User’s Guide 177

indicates whether the enrollment is manual or controlled (CSMO) or
automatically (CSMA or CSMR) initiated, with FALSE meaning that the
enrollment was initiated manually or by a connection controller. On devices that
do not support connection removal, the assembly is ignored if it is already
engaged in another connection.

When a device receives an extended CSMOEX, CSMAEX, or CSMREX message,
all fields of the IsiCsmoData structure are passed to the application, and the
fields in the Extended sub-structure are all valid.

When a device receives a regular CSMO, CSMA, or CSMR message, the extended
fields are automatically set to all zeros, with exception of the
Extended.Member field, which is set to one.

Applications do not need to distinguish between regular and extended incoming
messages.

You can provide feedback to the user when an invitation is received and
provisionally approved, for example by causing a Connect light to flash while
enrollment is open. Such feedback is typically only provided for a manual
connection. The ISI engine informs your application that an eligible invitation
has been received and provisionally approved by calling the
IsiUpdateUserInterface() callback function (with the IsiPending event code)
for each assembly that is provisionally approved to join the connection. The
application can indicate provisionally approved, but not yet accepted, connection
invitations.

Example

This example receives and provisionally approves a connection invitation,
and blinks a Connect light until the invitation is accepted, or the connection
is confirmed or canceled.

This example runs within your host application.
// IsiUpdateUserInterface is called with IsiPending as the
// IsiEvent parameter in response to receiving a CSMO
void IsiUpdateUserInterface(IsiEvent event, unsigned
 parameter) {
 ... //Optional event processing
 isiState = (event == IsiPending || event == IsiApproved
 || event > IsiWarm) ? event : IsiNormal;
}

unsigned IsiGetAssembly(const IsiCsmoData* pCsmo,
 LonBool automatic) {
 unsigned result = ISI_NO_ASSEMBLY;
 if (pCsmo->Group == ISI_LIGHTING_CATEGORY
 && pCsmo->Extended.Scope == isiScopeStandard
 && pCsmo->NvType == SNVT_SWITCH_2_INDEX
 && !(pCsmo->Variant & 0x60)
 && !LON_GET_ATTRIBUTE(pCsmo->Extended, ISI_CSMO_ACK)
 && !LON_GET_ATTRIBUTE(pCsmo->Extended,
 ISI_CSMO_POLL)) {
 // Recognized CSMO, return appropriate assembly
 // number
 result = myAssemblyNumber;
 }
 return result;

178 Developing a ShortStack Application with ISI

}

unsigned IsiGetNextAssembly(const IsiCsmoData* pCsmo,
 LonBool automatic, unsigned assembly) {
 unsigned result = ISI_NO_ASSEMBLY;

 if (assembly == myAssemblyNumber) {
 result = myAssemblyNumber + 1;
 }
 return result;
}

The example identifies the enrollment and specifies myAssemblyNumber
as the first local applicable assembly for the enrollment. The
GetNextAssembly() callback handler function then adds a second local
applicable assembly to the list. Unacceptable enrollment data, or requests for
additional local assemblies, receive the ISI_NO_ASSEMBLY constant.

Accepting a Connection Invitation
You can accept a connection invitation to join the offered connection. When you
accept a connection invitation, the ISI engine sends an enrollment acceptance
message (CSME) to the connection host. Accepting an invitation only sends an
acceptance to the connection host; the connection is not implemented until the
connection host confirms the new connection.

You can only accept enrollment for an assembly that has been provisionally
approved. To provisionally approve an assembly, the IsiGetAssembly() or
IsiGetNextAssembly() function must return the assembly number for the
current IsiCsmoData structure, and the IsiUpdateUserInterface() callback
function must identify the current assembly as being in the IsiPending state.

For manual enrollment, a connection invitation is typically accepted based on
user input. For example, LEDs blink on a device when invitations are received
and provisionally approved, and the user then pushes the related Connect button
to accept a specific invitation.

For a controlled enrollment, a connection invitation is typically accepted based on
a request from a connection controller. This request is typically initiated by some
user input to the connection controller.

For automatic enrollment, a connection invitation is typically accepted based on
some application-specific criteria. For example, a home gateway opens automatic
enrollment for its inputs and outputs, and newly installed home devices
automatically accept all eligible connection invitations from the home gateway.

The actual establishment of an automatic connection is handled by the ISI
engine, and requires a call to IsiCreateEnrollment() or
IsiExtendEnrollment(). The ISI engine extends the connection if the library
supports connection extension, or creates the extension if the library does not
support connection extension and the assembly is not already connected, or if the
library supports connection removal. The ISI libraries that are used with the
standard, ISI-enabled, ShortStack Micro Servers support connection extensions
and connection removal procedures. You can use different ISI libraries with
custom Micro Server implementations; see Creating a Custom Micro Server with
ISI Support.

ShortStack User’s Guide 179

For devices that support connection removal, you can create a connection that
replaces all existing connections for an assembly. For devices that support
connection extension, you can add a new connection to an assembly that might
already be enrolled in other connections.

To create a connection that replaces all existing connections for an assembly, call
IsiCreateEnrollment(). To add a connection to an assembly without overriding
any existing connections associated with the same assembly, call
IsiExtendEnrollment(). You can extend a nonexistent connection;
IsiExtendEnrollment() has the same functionality as IsiCreateEnrollment()
if no connection exists for the assembly.

Extending a connection consumes additional device and network resources,
compared with the initial connection. Each extension to a connection requires
one or more new aliases and connection table entries, and results in additional
network transactions for every update to the connection. You can eliminate this
additional resource usage by deleting and re-creating a connection instead of
extending it.

You can provide feedback to the user when an invitation is accepted, for example
by changing the state of the Connect light when the connection invitation is
accepted from flashing to solid on. Such feedback is typically only provided for
manual enrollment. The ISI engine informs your application that a connection
invitation has been accepted by calling the IsiUpdateUserInterface() callback
function, assigning the IsiApproved or IsiApprovedHost state to the
respective assembly. The application indicates the accepted connection
invitation.

Example 1

This manual enrollment example accepts a connection invitation when the
user presses a Connect button.

This example runs within your host application.
IsiEvent isiState;

void ProcessIsiButton(unsigned assembly) {
 switch(isiState) {
 ...
 case IsiPending:
 IsiCreateEnrollment(assembly);
 break;
 ... //Processing for other states
 } // end of switch(state)
}

After the host accepts the connection, your application receives the
IsiUpdateUserInterface() callback with the Event set to IsiApproved.
Your application can use this event status to update the device interface, for
example, by illuminating an LED.

Example 2

The following example opens controlled enrollment when requested by the
connection controller.

This example runs within a custom Micro Server.
void sendControlResponse(boolean success) {

180 Developing a ShortStack Application with ISI

 IsiMessage ctrlResp;

 ctrlResp.Header.Code = isiCtrp;
 ctrlResp.Ctrp.Success = success;
 memcpy(ctrlResp.Ctrp.NeuronID, read_only_data.neuron_id,
 NEURON_ID_LEN);

 resp_out.code = isiApplicationMessageCode;
 memcpy(resp_out.data, &ctrlResp,
 sizeof(IsiMessageHeader)+sizeof(IsiCtrp));
 resp_send();
}

boolean controlledEnrollmentDispatcher(void) {
 boolean isProcessed;
 IsiMessage inMsg;

 isProcessed = FALSE;
 memcpy(&inMsg, msg_in.data, sizeof(IsiMessage));

 if (inMsg.Header.Code == isiCtrq) {
 if (inMsg.Ctrq.Control == isiOpen) {
 sendControlResponse(TRUE);
 IsiOpenEnrollment(inMsg.Ctrq.Parameter);
 isProcessed = TRUE;
 } else if (inMsg.Ctrq.Control == isiCreate) {
 sendControlResponse(TRUE);
 IsiCreateEnrollment(inMsg.Ctrq.Parameter);
 } else if (inMsg.Ctrq.Control == isiFactory) {
 sendControlResponse(TRUE);
 IsiReturnToFactoryDefaults();
 } else {
 sendControlResponse(FALSE);
 }
 } else {
 // Other requests deleted for this example
 ...
 }
 return isProcessed;
}

Implementing a Connection
In a manual or controlled enrollment, when a connection host sends a connection
invitation by broadcasting an open enrollment message, one or more devices can
accept the connection invitation and respond with an enrollment acceptance
message (CSME). When the connection host receives at least one CSME
message, the host application receives the IsiApprovedHost event through the
IsiUpdateUserInterface() callback function. Typically, the application
changes the state of the related Connect light from flashing to solid on.

When the connection host’s assembly is in the IsiApprovedHost state, the
connection can be cancelled or implemented. See Canceling a Connection for
information about cancellation.

ShortStack User’s Guide 181

To implement a connection on a connection host, call either
IsiCreateEnrollment() or IsiExtendEnrollment(). The connection host joins
the connection and issues a connection enrollment confirmation message
(CSMC). When calling IsiCreateEnrollment(), any connection that exists for
the same assembly is removed; see Deleting a Connection for more information.
When calling IsiExtendEnrollment(), the new connection is added to any
existing connections for the same assembly, consuming an alias table entry for
each NV in the assembly.

After the connection host confirms the connection, devices that have previously
accepted the connection invitation join the connection by replacing or extending
an existing connection, depending on the function that was used to accept the
invitation.

When a device joins a connection, the ISI engine on that device updates the
network configuration for the device, and the accepted connection becomes active.

The ISI engine automatically implements the connections for the accepted
assembly. To determine the network variables to be connected, the ISI engine
calls the IsiGetNvIndex() and IsiGetNextNvIndex() functions for each
selector used with the connection.

You can provide feedback to the user when a connection has been joined, for
example by turning off the Connect light. Such feedback is typically only
provided for manual connections. The ISI engine informs your application that a
connection has been implemented by providing the IsiImplemented event
through the IsiUpdateUserInterface() callback function. The application
indicates the new connection. Your application will receive one IsiImplemented
event for each network variable that belongs to the assembly.

Example

This manual enrollment example implements a connection on a connection
host when the user presses the Connect button a second time. The complete
application also turns off the Connect light to indicate the acceptance on the
host.
void ProcessIsiButton(unsigned assembly) {
 switch(isiState) {
 ...
 case IsiApprovedHost:
 if (bCancelEnrollment)
 IsiCancelEnrollment();
 else
 IsiCreateEnrollment(assembly);
 break;
 ... // Processing for other states
 } // End of switch(state)
}

After the host accepts the connection, your application receives the
IsiImplemented event through the IsiUpdateUserInterface() callback
handler function once for each local network variable associated with the
assembly. Your application can use this event status to update the device
interface, for example, by illuminating an LED.

182 Developing a ShortStack Application with ISI

Canceling a Connection
You can cancel a pending enrollment on the connection host at any stage, and on
any device that has accepted the connection invitation. However, cancellation is
no longer possible after the connection is implemented; see Deleting a Connection
for information about deleting an implemented connection.

Pending enrollment sessions are automatically cancelled if:

• On the connection host, if no connection enrollment acceptance message
(CSME) is received within the open enrollment period after the
IsiOpenEnrollment() function call.

• On the connection host, if the connection is not implemented by a
IsiCreateEnrollment() or IsiExtendEnrollment() function call within
the open enrollment period after the receipt of a connection enrollment
confirmation message (CMSE).

• On an accepting device, if the connection has been accepted and no
connection enrollment confirmation message (CMSC) has been received
within the open enrollment period after the acceptance.

To explicitly cancel a pending enrollment, call the IsiCancelEnrollment()
function.

When a connection host cancels a pending enrollment session, it issues a
connection enrollment cancellation message (CSMX). Devices that have accepted
the related connection invitation automatically cancel when they receive a
related CSMX message.

When a connection member cancels a pending enrollment session, the
cancellation only has local effect—the approved assembly changes to the
IsiCancelled state. Because the connection host can re-send invitation
messages (CSMOs), the same device can, once again, conditionally approve the
assembly and move it to the IsiPending state. The user can now accept the
connection invitation again (by causing the application to call
IsiCreateEnrollment() or IsiExtendEnrollment()), or simply do nothing. The
pending assembly remains pending until the enrollment is closed, and
automatically returns to the IsiNormal state.

Deleting a Connection
You can delete an implemented connection using one of the following three
methods:

• The device can restore factory defaults by calling the
IsiReturnToFactoryDefaults() function. This function clears all
system tables, stops the ISI engine, and resets the Micro Server. See
Deinstalling a Device for more information about this function.

• The device can delete a connection by calling the IsiDeleteEnrollment()
function. This function causes the connection information to be removed
from the local device, as well as on all other devices that are members of
the same connection. The IsiDeleteEnrollment() function can be called
on the connection host, and on any other device that has joined the
connection.

ShortStack User’s Guide 183

• The device can opt out of an existing connection, leaving other devices
that have joined the same connection unchanged. To leave a connection
locally, call the IsiLeaveEnrollment() function. Calling this function on
the connection host has the effect of IsiDeleteEnrollment(), that is, a
connection host cannot leave a connection, but should always delete the
connection.

The ISI engine calls the IsiUpdateUserInterface() function with the
IsiDeleted event to notify the application of the completion of a deletion.

Handling ISI Events
You can signal the progress of the enrollment process to the device user. Such
feedback is typically only provided for devices that use manual connections,
because automatic and controlled connections do not require user interaction
from the connected devices. User feedback may be as simple as a single Connect
light and button, possibly shared with the Service light and button. A more
complex gateway or controller may have a more sophisticated user interface.

To receive status feedback from the ISI engine, override the
IsiUpdateUserInterface() callback function. The ISI engine calls this function
with the IsiEvent parameter set to one of the values listed in Table 23 when the
associated event occurs. Some of these events carry a meaningful value in the
numeric parameter, as shown in the table.

Table 8. ISI Event Types

IsiEvent Value Description

IsiNormal 0 The ISI engine has returned to the normal, or idle, state for an
assembly. The related assembly is encoded in the parameter; a
parameter value of ISI_NO_ASSEMBLY indicates that the
event applies to all assemblies.

IsiRun 1 The ISI engine has been successfully started (parameter is
TRUE) or stopped (parameter is FALSE).

IsiPending 2 The connection related to the assembly given with the numerical
parameter has entered the pending state. The event means that
the device has received, and provisionally approved, a connection
invitation, but has not yet accepted the connection invitation.

This event only applies to a connection member. For a
connection host, see IsiPendingHost.

Devices often signal the IsiPending (or IsiPendingHost) state
with a flashing LED.

184 Developing a ShortStack Application with ISI

IsiEvent Value Description

IsiApproved 3 The connection related to the assembly given with the numerical
parameter changed from the pending state to the approved
state. This event occurs when a connection invitation has been
provisionally approved and accepted.

This event only applies to a connection member. For a
connection host, see IsiApprovedHost.

Devices often signal the IsiApproved (or IsiApprovedHost)
state by turning on an LED (which was flashing before, coming
from the IsiPending or IsiPendingHost state).

IsiImplemented 4 The connection related to the assembly given with the numerical
parameter has been implemented. This event occurs on a
connection host after calling IsiCreateEnrollment() or
IsiExtendEnrollment() to implement a connection and close
enrollment, and on a connection member after receiving an
enrollment confirmation message (CSMC).

The application receives one IsiImplemented event for each
network variable that is part of the assembly.

IsiCancelled 5 The connection related to the assembly given with the numerical
parameter has been cancelled by a timeout, user intervention, or
network action. An assembly number of ISI_NO_ASSEMBLY
indicates that all pending enrollments are cancelled.

IsiDeleted 6 The connection related to the assembly given with the numerical
parameter has been deleted.

IsiWarm 7 The ISI engine has warmed up (that is, a predetermined time,
with a random component, has passed since the last reset).
After this time, the application can call the
IsiInitiateAutoEnrollment() function.

This event occurs no sooner than the expiry of the Tauto ISI
protocol timer, but can occur later.

IsiPendingHost 8 The connection related to the assembly given with the numerical
parameter has entered the pending state. This event occurs on a
connection host after it has issued a connection invitation
(CSMO), but not yet received any enrollment acceptance
messages (CSMEs).

This event only applies to a connection host. For a connection
member, see IsiPending.

ShortStack User’s Guide 185

IsiEvent Value Description

IsiApprovedHost 9 The connection indicated with the numerical parameter changed
from the pending state to the approved state. This event occurs
on a connection host at the receipt of the first connection
enrollment acceptance message (CSME).

This event only applies to a connection host. For a connection
member, see IsiApproved.

IsiAborted 10 The device stopped domain or device acquisition. The parameter
is a member of the IsiAbortReason enumeration, and indicates
the reason for the abort.

IsiRetry 11 The device is retrying the device acquisition procedure. The
parameter is the remaining number of retries.

IsiWink 12 The device should perform its wink function. The specific
function is application-dependent, but should provide some
visible or audible feedback to the user. For example, the
application blinks an LED on the device.

IsiRegistered 13 This event indicates either acquisition start or successful
acquisition completion on either a device that supports domain
acquisition or a domain address server. The parameter indicates
either a successful start (parameter = 0) or completion
(parameter = 0xFF).

You typically override the IsiUpdateUserInterface() callback function with an
application-specific function to provide application-specific user feedback. The
default implementation of this function does nothing, and is only useful for
devices that exclusively use automatic enrollment.

Figure 62 summarizes the typical sequence of events for a connection host using
manual or controlled enrollment. The sequence of events is similar for a
connection host using automatic enrollment, except that the connection host
skips the IsiApprovedHost event and goes straight to the IsiImplemented
event. Although the sequence of events shown in this figure is typical, the actual
sequence of events passed to the IsiUpdateUserInterface() callback can vary.

186 Developing a ShortStack Application with ISI

Normal

Cancelled

ApprovedHost

PendingHostImplemented

IsiOpenEnrollment()

IsiCancelEnrollment()
or timeout

IsiCancelEnrollment()
or timeout

IsiCreateEnrollment(),
IsiExtendEnrollment() CSME

Figure 62. Sequence of Events for a Connection Host

Figure 63 summarizes the typical sequence of events for a connection member.
Although the sequence of events shown in this figure is typical, the actual
sequence of events passed to the IsiUpdateUserInterface() callback can vary.

Normal

Cancelled

Approved

PendingImplemented

CSMO and
IsiGet[Next]Assembly()

IsiCancelEnrollment()
or timeout
or CSMX

IsiCancelEnrollment()
or timeout
or CSMX

IsiCreateEnrollment(),
IsiExtendEnrollment()CSMC

Figure 63. Sequence of Events for a Connection Member

ShortStack User’s Guide 187

Domain Address Server Support
None of the standard ShortStack Micro Servers supports the creation of an ISI
domain address server (DAS) because of resource limitations on all supported
hardware platforms.

To implement a domain address server as a ShortStack device, perform either of
the following tasks:

• Create a custom Micro Server on a 3150 Smart Transceiver that supports
more RAM through the external memory interface, or create a custom
Micro Server on an FT 5000 or 6050 Smart Transceiver. The ISI memory
requirement is approximately 0.5 KB.

Ensure that this Micro Server has sufficient external RAM for buffers (a
DAS typically needs fairly large buffer counts) and any DAS-specific code
that requires external RAM (such as device lists and lookup-tables on the
Micro Server). Typically, external RAM of a few kilobytes suffices.

• Use a standard Micro Server on a 3120 or 3170 Smart Transceiver, or a
custom Micro Server on a 3150, Series 6000 or 5000 Smart Transceiver or
Neuron Chip, that does not have built-in ISI support, and implement ISI
with DAS-features on the host processor.

Discovering Devices
You can discover all devices in an ISI network. All devices in an ISI network
periodically broadcast their status by sending out Domain Resource Usage
Message (DRUM) messages. To discover devices, you can monitor these status
messages. Gateways and controllers that need to maintain a table of all devices
in a network, or provide unique capabilities for specific types of devices in a
network, should monitor these messages.

To discover devices, monitor the DRUM messages being sent on the network by
other devices and store the relevant information in a device table. A device table
is a table that contains a list of devices and their attributes including their
network addresses. The DRUM messages contain all of the relevant information
for explicit messaging. To create a device table, store the relevant DRUM fields,
such as subnet ID, node ID, and Neuron ID, in a table that you can use to
communicate directly with other devices. To detect deleted devices, monitor the
time of the last update for each entry in the table and detect devices that have
not recently sent a DRUM.

You can implement the code to maintain the device table within a custom Micro
Server or within the host application. For either implementation, you need to
create a custom Micro Server.

Maintaining a Device Table within the Micro
Server
To implement device discovery local to the Micro Server, perform the following
steps:

1. Add code to the MicroServer.nc file that defines a data structure for the
device table.

188 Developing a ShortStack Application with ISI

2. Implement the ProcessDrum() function.

3. Create a function that decrements credits from each device in the device
table.

4. In the ShortStackIsiHandlers.h file, define the
IsiCreatePeriodicMsg() callback handler function to be implemented
within your custom Micro Server.

5. In the MicroServerIsiHandlers.c file, call the function that decrements
credits from the IsiCreatePeriodicMsg() callback handler function.

6. In the MicroServer.nc file, modify the IsiMsgHandler() function to
call your DRUM dispatcher.

7. Create a utility function that informs the host of newly discovered or
removed devices.

8. Add code to your host application to process the user-defined remote
procedure call for the utility function.

Each of these steps is described in the following sections.

Define the Data Structure
Define a Device data structure to hold information about a discovered device,
and create a devices table to hold information about all discovered devices. You
can add the following code to the MicroServer.nc file or add it to a separate file
(perhaps called DeviceDiscovery.c) that you reference (#include) from
MicroServer.nc.

#include <mem.h>

#define MAX_DEVICES 16
#define MAX_CREDITS 5

unsigned deviceCount;

// Struct to hold device information
typedef struct {
 unsigned credits;
 unsigned subnetId;
 unsigned nodeId;
 unsigned neuronId[NEURON_ID_LEN];
} Device;

Device devices[MAX_DEVICES];

Implement the ProcessDrum() Function
Add the ProcessDrum() function to MicroServer.nc (or to your
DeviceDiscovery.c). This function is called from the ISI message handler
whenever it sees an ISI DRUM message. We’ll add the code that makes this call
later.

The function also uses a utility function, ReportDevice(), that is described in
The ReportDevice() Utility Function.

void ProcessDrum(const IsiDrum* pDrum) {
 unsigned i;

ShortStack User’s Guide 189

 extern ReportDevice(boolean, unsigned);

 // Iterate through the device list and see if the Neuron
 // ID of the stored device matches that of the new
 // device; if it does, then update the related details
 for (i = 0; i < deviceCount; i++) {
 if (memcmp(devices[i].neuronId, pDrum->NeuronId,
 NEURON_ID_LEN) == 0) {
 devices[i].credits = MAX_CREDITS;
 devices[i].subnetId = pDrum->SubnetId;
 devices[i].nodeId = pDrum->NodeId;
 break;
 }
 }

 // If i is equal to the device count, then the device
 // was not found, so add it to the device table if
 // possible
 if (i == deviceCount && deviceCount < MAX_DEVICES) {
 memcpy(devices[i].neuronId, pDrum->NeuronId,
 NEURON_ID_LEN);
 deviceCount++;
 devices[i].credits = MAX_CREDITS;
 devices[i].subnetId = pDrum->SubnetId;
 devices[i].nodeId = pDrum->NodeId;

 ReportDevice(TRUE, i);
 }
}

Create the Decrement Function
Add the DetectStale() function to MicroServer.nc (or to your
DeviceDiscovery.c). This function slowly decrements credits from each device
in the devices table.

If the device is functioning, it continues to send DRUM messages, and thus is
maintained in the table. If a device disappears from the network, it is eventually
removed from the table.

The function also uses a utility function, ReportDevice(), that is described in
The ReportDevice() Utility Function.

void DetectStale(void) {
 unsigned i;
 extern ReportDevice(boolean, unsigned);

 for (i = 0; i < devicecount; i++) {
 devices[i].credits--;
 if (devices[i].credits == 0) {
 ReportDevice(FALSE, i);
 devicecount--;
 if (devicecount != i) {
 // Move device from end to this spot's location
 memcpy(devices+i, devices+devicecount,
 sizeof(Device));
 }
 }

190 Developing a ShortStack Application with ISI

 }
}

Call the DetectStale() function at a rate roughly equal to the expected DRUM
rate. One way to ensure an appropriate call rate is to call this function from the
IsiCreatePeriodicMsg() callback handler function, although in this case, you
should implement the IsiCreatePeriodicMsg() callback handler function local
to the Micro Server.

Define IsiCreatePeriodicMsg() in ShortStackIsiHandlers.h
In the ShortStackIsiHandlers.h file, define the IsiCreatePeriodicMsg()
callback handler function to be implemented within your custom Micro Server.

/*
 * Callback: IsiCreatePeriodicMsg
 * Standard location: default
 *
 * The IsiCreatePeriodicMsg() callback enabled an optional
 * and advanced feature, through which the application can
 * claim a slot in the ISI broadcast scheduler.
 * This callback is rarely overridden.
 */
/*#define ISI_DEFAULT_CREATEPERIODICMSG */
#define ISI_SERVER_CREATEPERIODICMSG
/*#define ISI_HOST_CREATEPERIODICMSG */

Call the Decrement Function
Within the MicroServerIsiHandlers.c file, locate the implementation of the
IsiCreatePeriodicMsg() callback handler function, and call the DetectStale()
function from this callback handler function.

// --
// Callback: IsiCreatePeriodicMsg
// --
#ifndef ISI_DEFAULT_CREATEPERIODICMSG
boolean IsiCreatePeriodicMsg(void) {
#ifdef ISI_SERVER_CREATEPERIODICMSG

 extern void DetectStale(void);

 boolean result;
 result = FALSE;

 DetectStale();

 // TODO: Add code implementing the actual
 // IsiCreatePeriodicMsg() callback, if needed.

 return result;

#else
#ifdef ISI_HOST_CREATEPERIODICMSG
 // DO NOT MODIFY - This code redirects the callback to
 // the host
 return IsiRpc(LicIsiCreatePeriodicMsg, 0, 0, NULL, 0);

ShortStack User’s Guide 191

#endif // ISI_HOST_CREATEPERIODICMSG
#endif // ISI_SERVER_CREATEPERIODICMSG
} // IsiCreatePeriodicMsg
#pragma ignore_notused IsiCreatePeriodicMsg
#endif // ISI_DEFAULT_CREATEPERIODICMSG

Call Your DRUM Dispatcher from IsiMsgHandler()
Within the MicroServer.nc file, locate the IsiMsgHandler() function. After
each message has been approved, and you have confirmed that
preemptionMode is FALSE, call your DRUM dispatcher. This function
determines whether the newly arrived ISI message is a DRUM message, and
calls ProcessDrum() if necessary.

The ProcessDrum() function is defined to return FALSE so that it can easily be
inserted into the IsiMsgHandler() routine.

boolean ProcessDrum(void) {
 IsiMessage message;

 memcpy(&message, msg_in.data, sizeof(IsiMessage));
 if (message.Header.Code == isiDrum ||
 message.Header.Code == isiDrumEx) {
 ProcessDrum(&message.Msg.Drum);
 }
 return FALSE;
}

// IsiMsgHandler() is a utility function used by the
// ShortStack Micro Server core to identify and process ISI
// messages. This function returns true if the message was
// handled by this function.

extern boolean shortStackInPreempt(void);

boolean IsiMsgHandler(void) {
 boolean result, preemptionMode;

 result = FALSE;
 preemptionMode = shortStackInPreempt();

 switch(isiType) {
#ifdef SS_SUPPORT_ISI_S
 case isiTypeS:
 result = IsiApproveMsg() && (preemptionMode ||
 ProcessDrum() || !IsiProcessMsgS());
 break;
#endif // SS_SUPPORT_ISI_S
#ifdef SS_SUPPORT_ISI_DA
 case isiTypeDa:
 result = IsiApproveMsg() && (preemptionMode ||
 ProcessDrum() || !IsiProcessMsgDa());
 break;
#endif // SS_SUPPORT_ISI_DA
#ifdef SS_SUPPORT_ISI_DAS
 case isiTypeDas:
 result = IsiApproveMsgDas() && (preemptionMode ||

192 Developing a ShortStack Application with ISI

 ProcessDrum() || !IsiProcessMsgDas());
 break;
#endif // SS_SUPPORT_ISI_DAS
 }
 return result;
}
#pragma ignore_notused IsiMsgHandler

The ReportDevice() Utility Function
The ReportDevice() utility function informs the host application of newly
discovered or removed devices by implementing a user-defined remote-procedure
call (RPC). This call is handled by the IsiRpc() function, which supplies the
related Device data structure and the information about whether this device
was newly added or removed from the devices table. To reduce overhead, this
remote procedure call is implemented as an unacknowledged call.

void ReportDevice(boolean added, unsigned index) {
 (void)IsiRpc(LicIsiUserCommand|LicIsiNoAck, added, index,
 devices+index, sizeof(Device));
}

Process Your User-Defined RPC
Your host application must process the information about newly discovered or
removed devices. The Micro Server’s IsiRpc() function supplies this information
to your host application. You add code to your host application to process this
information by extending the IsiUserCommand() callback handler function in
the ShortStackIsiHandlers.c file.

A typical use for this callback is to update an advanced device’s graphical user
interface with a representation of all devices that are located on the same ISI
network. The same device table information can also be used to implement
advanced connection scenarios with ISI.

Maintaining a Device Table within a Host
Application
As an alternative to implementing the device table within the Micro Server, you
can implement most of the device discovery process within the host application.
For this implementation, the host receives a DRUM message through a user-
defined remote procedure call (RPC) and maintains the device table on the host.
You must create a custom Micro Server to forward DRUM messages to the host.

To implement device discovery local to the host application, perform the following
steps:

1. Add code to the host application that receives a DRUM message through
a user-defined remote procedure call

2. Add code to your host application to process the user-defined remote
procedure call

Each of these steps is described in the following sections.

ShortStack User’s Guide 193

Implement the ProcessDrum() Function
Within the MicroServer.nc file, locate the IsiMsgHandler() function. After
each message has been approved, and you have confirmed that
preemptionMode is FALSE, call your DRUM dispatcher. This function
determines whether the newly arrived ISI message is a DRUM message, and
forwards the DRUM message to the host application, using a user-defined
unacknowledged remote procedure call.

The ProcessDrum() function is defined to return FALSE so that it can easily be
inserted into the IsiMsgHandler() routine.

boolean ProcessDrum(void) {
 IsiMessage message;

 memcpy(&message, msg_in.data, sizeof(IsiMessage));
 if (message.Header.Code == isiDrum ||
 message.Header.Code == isiDrumEx) {
 (void)IsiRpc(LicIsiUserCommand|LicIsiNoAck, 0, 0,
 &message.Msg.Drum, sizeof(IsiDrum));
 }
 return FALSE;
}

// IsiMsgHandler() is a utility function used by the
// ShortStack Micro Server core to identify and process ISI
// messages. This function returns true if the message was
// handled by this function.

extern boolean shortStackInPreempt(void);

boolean IsiMsgHandler(void) {
 boolean result, preemptionMode;

 result = FALSE;
 preemptionMode = shortStackInPreempt();

 switch(isiType) {
#ifdef SS_SUPPORT_ISI_S
 case isiTypeS:
 result = IsiApproveMsg() && (preemptionMode ||
 ProcessDrum() || !IsiProcessMsgS());
 break;
#endif // SS_SUPPORT_ISI_S
#ifdef SS_SUPPORT_ISI_DA
 case isiTypeDa:
 result = IsiApproveMsg() && (preemptionMode ||
 ProcessDrum() || !IsiProcessMsgDa());
 break;
#endif // SS_SUPPORT_ISI_DA
#ifdef SS_SUPPORT_ISI_DAS
 case isiTypeDas:
 result = IsiApproveMsgDas() && (preemptionMode ||
 ProcessDrum() || !IsiProcessMsgDas());
 break;
#endif // SS_SUPPORT_ISI_DAS
 }
 return result;
}
#pragma ignore_notused IsiMsgHandler

194 Developing a ShortStack Application with ISI

Process Your User-Defined RPC
The Micro Server’s IsiRpc() function supplies DRUM messages to your host
application, which needs to evaluate these DRUM messages to maintain an
accurate list of devices that are available on the ISI network at any given time.
You add code to your host application to process this information by extending
the IsiUserCommand() callback handler function in the
ShortStackIsiHandlers.c file.

A typical use for this callback is to update an advanced device’s graphical user
interface with a representation of all devices that are located on the same ISI
network. The same device table information can also be used to implement
advanced connection scenarios with ISI.

Recovering Connections
A connection controller can display connections that it created but that are no
longer in its database, and it can display connections that it did not create. To
recover connections, a connection controller first discovers all the devices in the
network, as described in Discovering Devices. To recover the connections, the
controller uses the read connection table request (RDCT) message, which allows
it to read a device’s connection table over the network. Support for this message
is required for devices that support controlled enrollment, and is optional for
other devices.

The RDCT message includes optional host and member assembly fields that
specify which connection table entries are requested:

• If the host and member assembly fields are not supported by the device,
or are both set to 0xFF, the connection table entry indicated by the index
is requested.

• If the host and member assembly fields are supported by the device, and
the host or member field is not 0xFF, the index provided is the starting
index. The first matching connection table entry is returned, if any.

• If both host and member fields are set to a value different from 0xFF,
connection table entries are returned that match either the host or the
member fields, if any.

This message allows a connection controller to read the entire connection table,
or to read the table selectively to provide quick answers to questions like “is
assembly Z on device X connected, and is it the host of the connection?”

If the requested data is available, the response to an RDCT message is a read
connection table success (RDCS) message. This message contains the requested
connection table index and data. If the connection table index does not exist, or if
the requested assemblies do not exist, the response is a read connection table
failure (RDCF) message.

A connection controller can determine if a device does not support the optional
host and member assembly fields by comparing the assembly numbers in the
read response to the requested assembly number, or by receiving an RDCF
message that indicates a failed read. If a device does not support the host and
member assembly fields, the connection controller needs to read every entry in
the connection table individually. Reading every entry has minimal impact for

ShortStack User’s Guide 195

devices with one or two connection table entries, but increases network traffic for
devices with many connection table entries.

You can implement much of the code for ISI connection recovery either within
your custom Micro Server or in your host application.

The following sections describe example implementations for supporting
connection recovery. The first example shows a custom Micro Server
implementation, where the Micro Server recovers the ISI connections and relays
the results to the host application. The second example shows a host-based
implementation.

Example 1: Custom Micro Server
Implementation
The following connection controller example uses code implemented within a
custom Micro Server to recover all the connections from a device.

Add the following code to the MicroServer.nc file or add it to a separate file
(perhaps called ConnectionRecovery.c) that you reference (#include) from
MicroServer.nc.

#include <msg_addr.h>
#include <isi.h>

#define RETRY_COUNT 3
#define ENCODED_TX_TIMER 11 // 768ms
#define ENCODED_RPT_TIMER 2
#define PRIMARY_DOMAIN 0

// This structure holds information required while reading
// a remote device's connection table
struct {
 unsigned neuronId[NEURON_ID_LEN];
 unsigned index;
} recoveryJob;

// Issue one read connection table request using the global
// recoveryJob variable for destination address and current
// connection table index information. Increment the index
// kept in that global variable.
void RequestConnectionTable(void) {
 IsiMessage request;
 msg_out_addr destination;

 request.Header.Code = isiRdct;
 request.Msg.Rdct.Index = recoveryJob.index++;
 request.Msg.Rdct.Host = request.Msg.Rdct.Member =
 ISI_NO_ASSEMBLY;

 destination.nrnid.type = NEURON_ID;
 destination.nrnid.domain = PRIMARY_DOMAIN;
 destination.nrnid.rpt_timer = ENCODED_RPT_TIMER;
 destination.nrnid.subnet = 0;
 destination.nrnid.retry = RETRY_COUNT;
 destination.nrnid.tx_timer = ENCODED_TX_TIMER;

196 Developing a ShortStack Application with ISI

 memcpy(destination.nrnid.nid, recoveryJob.neuronId,
 NEURON_ID_LEN);

 IsiMsgSend(&request,sizeof(IsiMessageHeader)
 +sizeof(IsiRdct), REQUEST, &destination);
}

// Handle receipt of incoming responses. This example
// focuses on isiRdcs and isiRdcf responses.
boolean processRdc(void) {
 boolean processed;
 IsiMessage response;

 processed = FALSE;

 if (resp_in.code == isiApplicationMessageCode) {
 // This is an ISI response
 memcpy(&response, resp_in.data, resp_in.len);
 if (response.Header.Code == isiRdcf) {
 // The remote device rejected our request, probably
 // because we have queried all available connection
 // table entries already (bad index). Notify the user
 // interface, if needed.
 ...
 processed = TRUE;
 } else if (response.Header.Code == isiRdcs) {
 // The remote device replied to our request with the
 // connection table entry requested, in
 // response.Msg.Rdcs. Notify the UI and/or process
 // this data further, as needed by the application:
 (void)IsiRpc(LicIsiUserCommand|LicIsiNoAck,);

 // Because we received a positive response, let's try
 // for the next index
 RequestConnectionTable();
 processed = TRUE;
 }
 return processed;
}

In the processRdc() function, use the IsiRpc() function to notify your host
application of any results. If you have already used the IsiRpc() function with
the LicIsiUserCommand code for device discovery, use the first numerical
parameter to this function to specify a sub-command so that your host
application can correctly interpret the data delivered.

When you notify the host application about a connection recovery, you also have
to include information about the remote device, the connection table index, and
the remote connection table record. Add that information to a structure (that you
define) that is shared between your host application and your custom Micro
Server. The call to the IsiRpc() function should include the data within that
structure to the host application.

The processRdc() function returns TRUE to allow for simple integration within
the Micro Server code, as shown below.

// Initiate the process of reading a remote device's
// connection table. The function kick-starts the process,

ShortStack User’s Guide 197

// where the majority of the work is done in the processRdc
// function. Calling this function before the previous
// connection table read job completes causes the previous
// job to abort, and the new one to start
void ReadRemoteConnectionTable(const unsigned*
 remoteNeuronId) {
 memcpy(recoveryJob.neuronId, remoteNeuronId,
 NEURON_ID_LEN);
 recoveryJob.index = 0;
 RequestConnectionTable();
}

Most likely, you call the ReadRemoteConnectionTable() function from within
your code that implements device discovery, either when device discovery is
complete or whenever a new device is discovered.

Finally, within the IsiRespHandler() function in the Micro Server.nc file, add
a call to the processRdc() function.

boolean IsiRespHandler(void) {
 boolean processed;
 processed = processRdc();

#ifdef SS_SUPPORT_ISI_DAS
 return processed || (isiType == isiTypeDas &&
 !IsiProcessResponse());
#else
 return processed;
#endif // SS_SUPPORT_ISI_DAS
}

Example 2: Host Implementation
You can use the standard ShortStack LonTalk/IP Compact API to implement ISI
connection recovery within your host application. If your application has
knowledge of other ISI devices within the same network, for example as a result
of device discovery, you can issue RDCT requests using the standard
LonSendMsg() API function, using the remote device’s unique ID (Neuron ID)
or its current subnet and node ID for addressing. See the Interoperable Self-
Installation Protocol Specification for more information about the RDCT, RDCS,
and RDCF message codes and formats.

One of the parameters that the LonSendMsg() function requires is the message
data to send. In this case, the message data to send is an IsiMessage structure,
using the isiRdct command and the RDCT data block. To send this message,
port the IsiMessage structure and fill in the RDCT data block and ISI message
header, as appropriate. Then, in the LonSendMsg() function, use IsiMessage
&msg instead of LonByte *pData for the message data.

An example for calling the LonSendMsg() function is shown below. The
message code for ISI messages is 0x3D. The actual data to send and the remote
address to send it to are dependent on the application.

LonTag isiTag; //@IzoT Tag bindable(No)

LonBool msgPriority = FALSE;
LonBool msgAuth = FALSE;
LonByte msgCode = 0x3d;

198 Developing a ShortStack Application with ISI

IsiMessage msg;
msg.Header = ...
msg.Rdct = ...

LonSendUniqueId remoteAdr;
remoteAdr.Type = LonAddressNeuronId;
remoteAdr.... = ...

LonApiError msgResp;

msgResp = LonSendMsg(isiTag, msgPriority,
 LonServiceType.LonServiceRequest, msgAuth,
 (LonSendAddress*)&remoteAdr, msgCode, &msg,
 sizeof(IsiMessageHeader)+sizeof(IsiRdct));

if (msgResp != LonApiNoError) {
 /* do something about the error */
}

In this case, the IsiRespHandler() function that runs on the Micro Server will
not recognize the response, or pass it to your LonResponseArrived() callback
handler function, implemented in ShortStackHandlers.c.

Deinstalling a Device
You can deinstall a device to remove all network configuration data, including
the domain addresses, network addresses, and connection configurations. For
devices that do not provide direct connection removal, this is the only way to
remove a device from a connection. You can use this procedure to re-enable self-
installation for an ISI device that was installed in a managed network. You can
also use this procedure to return a device to a known state. You can deinstall a
device to move it from a managed network to a self-installed network, or to move
a self-installed device to a new self-installed network. All ISI devices must
support deinstallation.

To deinstall a device, set the SCPTnwrkCnfg configuration property to
CFG_LOCAL to enable self-installation and then call the
IsiReturnToFactoryDefaults() function. You typically deinstall a device in
response to an explicit user action. For example, the user might be required to
press and hold the service pin for five seconds to trigger deinstallation.

The IsiReturnToFactoryDefaults() function clears and reinitializes all system
tables, stops the ISI engine, and resets the Micro Server. Because of the Micro
Server reset, the call to the IsiReturnToFactoryDefaults() function never
returns when it runs on the Micro Server. When it runs in the host application,
the ISI host API’s implementation of IsiReturnToFactoryDefaults() does
return to the caller, but the Micro Server can take up to one minute to re-
initialize. When initialization is complete, the Micro Server resets and
establishes communications with the host application.

Example

This following example deinstalls a device after the service pin is held for a
long period.

ShortStack User’s Guide 199

//@IzoT Option servicebutton_held(12)
//@IzoT Event onService(onServiceHandler)

void onServiceHandler(LonBool held) {
 if (held) {
 nodeObject->nciNetConfig = CFG_LOCAL;
 IsiReturnToFactoryDefaults();

 }
}

Comparing ShortStack ISI and Neuron C ISI
Implementations

The ShortStack ISI implementation differs from the Neuron C ISI
implementation in the following ways:

• A ShortStack ISI device must have at least two application output
buffers.

• The ISI types and definitions follow the ShortStack rules for portable
types (see ShortStackIsiTypes.h), and are binary compatible with the
equivalent data structures defined in isi.h.

• All LonTalk/IP ISI API functions return a LonApiError code for success
or failure of the remote procedure call request. This code does not
indicate successful completion of the requested function; see
IsiApiComplete() for more information.

• The IsiApiComplete() callback handler function is supported with the
LonTalk/IP ISI API to provide success or failure completion codes, and
possible results, of previous ISI API calls. A negative completion code
indicates that the function could not be called, either at that time or
within the current context. The ISI operation itself signals its success or
failure through state changes, indicated with the
IsiUpdateUserInterface() callback handler function (as in the Neuron
C implementation).

• Most ISI callback handler functions are synchronous. That is, they
cannot return to their caller until the return value is known. In many
cases, the ISI function requires interaction with the host processor.
While waiting for a function call to complete, the Micro Server can handle
only one ISI request from the host processor. Similarly, all ISI requests
from the host are also synchronous. That is, the host waits for a response
to an ISI request before it can issue another one.

• Predicates are synchronous in the Neuron C implementation, but are
necessarily asynchronous in the LonTalk/IP ISI API. Affected predicates
are: IsiQueryIsConnected(), IsiQueryImplementationVersion(),
IsiQueryProtocolVersion(), IsiQueryIsRunning(), and
IsiQueryIsBecomingHost(). The predicates’ results are delivered
asynchronously through: IsiIsConnectedReceived(),
IsiImplementationVersionReceived(),
IsiProtocolVersionReceived(), IsiIsRunningReceived(), and
IsiIsBecomingHostReceived().

200 Developing a ShortStack Application with ISI

• The following functions and callback handler functions that are included
with the Neuron C implementation are not supported by the LonTalk/IP
ISI API: IsiMsgDeliver(), IsiMsgSend(), IsiUpdateDiagnostics(),
IsiGetAlias(), IsiSetAlias(), IsiGetNv(), IsiSetNv(), IsiSetDomain(),
IsiGetFreeAliasCount(), and IsiIsConfiguredOnline().

• The following functions and callback handler functions that are included
with the Neuron C implementation are supported by (but not exposed to)
the LonTalk/IP ISI API: IsiStart*(), IsiTick*(), IsiProcessMsg*(), and
IsiApproveMsg*(). Wrapper functions and ShortStack-specific handler
functions are provided in the MicroServer.nc file; you can edit these
handler functions to allow a custom Micro Server to intercept ISI
messages, if needed.

• The IsiPreStart() function is not supported because the Micro Server
automatically handles calls to IsiPreStart() as needed.

• The IsiCancelAcquisitionDas() function is not supported. Use the
IsiCancelAcquisition() function when calling from your host
application, even when operating an ISI-DAS device.

• Callback forwardees are only available to callback overrides that are local
to the Micro Server. Callback overrides that reside on the host processor
should provide a complete implementation, and cannot fall back to the
forwardee.

• Do not call the ISI API from within an ISI callback override. With the
LonTalk/IP ISI API, you can call exactly one ISI API function from within
a callback override that runs on the host processor. The API call is
buffered, and runs after the callback itself completes. The Micro Server
rejects subsequent API calls from within the callback override, and
returns a negative response.

Because most of the LonTalk/IP ISI API is asynchronous, your host application
typically receives control from a ShortStack host API function while the Micro
Server is still busy executing the related action. While most ISI operations
complete quickly, some operations can take a significant amount of time. For
example, calls to the IsiCreateEnrollment() or IsiExtendEnrollment()
functions on an enrollment host for a connection that involves a large number of
network variables are time-consuming operations.

The Micro Server can appear unresponsive while performing the requested task.
However, most ISI operations include a series of callbacks, including remote
procedure calls to callback overrides implemented within your host application.
The Micro Server processes most of its normal tasks in this state, and honors
incoming and outgoing message queues.

However, you can monitor the IsiApiComplete() callback handler function
(implemented in ShortStackIsiHandlers.c) to determine completion of the
more complex ISI operations, and suspend network communications until the
task completes. Failure to suspend network operations in this case could cause
inconsistent results.

As an example of such an inconsistency, consider the case of a very wide
connection. The enrollment host initiates the implementation of a network
variable connection including, for example, ten output network variables. While
the Micro Server performs all the necessary steps to implement that connection,
the host application could enqueue ten network variable updates in an attempt to

ShortStack User’s Guide 201

inform the newly connected destination devices of the output network variables’
current values.

If the Micro Server has not yet completed the implementation of the connection
(as signalled through the IsiApiComplete() callback handler function), some of
the related network variables will not yet be bound at the time that the host
application attempts to send the network variable update messages. Only
devices that are already connected will receive the update messages, and update
messages for output network variables that are not yet connected will not be sent
on the network.

Any network device must be designed to handle partial and transient failures.
Thus, the remote device connected to these output network variables cannot rely
on updates to network variables to occur within a specific time or order.
However, a robust ShortStack ISI application monitors the completion of the
operation, and avoids producing inconsistent and potentially confusing data.

ShortStack User’s Guide 203

12

Custom Micro Servers

This chapter describes custom Micro Servers and how to
create and use one. Using a custom Micro Server allows you
to modify the operating parameters for the Micro Server.
The IzoT NodeBuilder Software is required to create a
custom Micro Server.

204 Custom Micro Servers

Overview
The IzoT ShortStack SDK includes standard Micro Server firmware images for
3120 and 3150 Smart Transceivers running on TP/FT-10 or PL-20 channels, PL
3170 Smart Transceivers, FT 6050 Smart Transceivers and FT 5000 Smart
Transceivers, in some common hardware configurations (see Table 5 in
Standard ShortStack Micro Server Firmware Images for a list of the standard
Micro Server images).

If your ShortStack device requires support for different operating parameters
from those provided by the standard Micro Server images, you can create a
custom Micro Server for the device. See Custom Micro Server Benefits and
Restrictions for a description of the kinds of parameters that you can modify.

Because a ShortStack Micro Server can run only on an Echelon Smart
Transceiver or the Echelon Neuron 6050 and Neuron 6010 Processors, the
modifications that you make to the operating parameters for a custom Micro
Server must be supported by the Smart Transceiver or Neuron Processor that
your device uses.

The IzoT NodeBuilder Software is required to create a custom Micro Server. The
IzoT NodeBuilder Software is included with the FT 6000 EVK, and is available as
a free download for developers with the NodeBuilder Development Tool.

Custom Micro Server Benefits and Restrictions
When you create a custom Micro Server, you can provide support for any of the
following operating parameters:

• Custom hardware configurations, such as different clock speeds or
memory maps. For example, you can support off-chip RAM for an FT
3150 or PL 3150 device, which can increase the number of buffers that
the device supports. You can also support a Neuron 6050 or 5000 device.

• Increased buffer counts or alternate buffer sizes for network and
application buffers (within the limits of available hardware resources)

• Maximum number of network variables or network variable aliases. For
example, you could support a lower maximum to optimize processing
speed. However, you cannot support more than 254 network variables
and 127 aliases.

• Maximum number of address table entries. Most Micro Servers support
no more than 15 address table entries, but Micro Servers for Series 6000
chips support an extended address table with up to 254 address table
entries.

• Alternate levels of support for direct memory files (DMF), including
enabling or disabling DMF. If DMF is enabled, you can define the
maximum size of the DMF window to customize the code and data space
that is local to the Micro Server.

• Alternate levels of support for ISI and ISI network types. You can
customize the implementation of many ISI callback functions, which

ShortStack User’s Guide 205

allows you to create both general-purpose Micro Servers and application-
specific Micro Servers.

When you create a custom Micro Server, there are certain operating parameters
that you cannot control or change:

• The firmware’s core algorithms or basic behaviour.

• The link-layer protocol for communications between the Micro Server and
the host processor.

• The Micro Server’s processing for network variables or application
messages. That is, you cannot provide application-specific processing
within the Micro Server for network variables or application messages.

• Support for transceivers other than Echelon Smart Transceivers and the
Echelon Neuron 6050 or 5000 Processor. A ShortStack Micro Server can
only run on an FT 3120, PL 3120, FT 3150, PL 3150, PL 3170, or FT 5000
Smart Transceiver, or a Series 6000 chip, or the Echelon Neuron 5000
Processor.

• Capacity for more network variables, aliases, domains, or address tables
than are supported by the Micro Server hardware and firmware. That is,
a custom Micro Server cannot support more than 254 network variables,
127 network variable aliases, 2 domains. Most Micro Servers are limited
to 15 address table entries, but those using a Series 6000 chip can
support up to 254.

Configuring and Building a Custom Micro Server
To configure and build a custom Micro Server, create a project for the IzoT
NodeBuilder Software. This project will include the main Micro Server Neuron C
application and associated source files, and the ShortStack library. The
ShortStack library contains the majority of ShortStack Micro Server executable
code.

Table 24 lists the files that are included with the IzoT ShortStack SDK for
custom Micro Server development. These files are located in the
microserver/custom folder within your IzoT ShortStack SDK repository.

Table 9. Files for Custom Micro Server Development

File Name Description

ShortStack430.lib This C library contains the majority of the Micro Server
implementation.

ShortStack430Isi.lib This C library provides the same basic functionality as the
ShortStack430.lib library, but this library also includes ISI
support.

Use this library when you create a custom Micro Server with
ISI support. For a custom Micro Server without ISI support,
use the ShortStack430.lib library instead.

206 Custom Micro Servers

File Name Description

ShortStack430CptIsi.lib This C library provides the same basic functionality as the
ShortStack430Isi.lib library, but with the following
limitations:

• ISI-DAS mode is not supported. Also, all API calls
related to DAS mode are not available.

• The link-layer uses the SCI protocol at a 38400 bit
rate. Therefore, you must use either a Series 3100
device with a 10 MHz external clock or a Series 5000
or Series 6000 device with a 5 MHz system clock.

• The post-reset pause is set to 50 ms and is not
configurable.

• The local utility functions (and their callback handler
functions) are not available. See Local Utility
Functions for more information about these functions.

Use this library when you create a custom Micro Server with
ISI support for a PL 3170 Smart Transceiver, or other
resource-constrained device.

MicroServer.nc This file is the main Neuron C source file for developing a
custom Micro Server.

Although you can edit this file, you typicall will not have to
edit it unless you implement modified ISI behavior locally in
your Micro Server.

MicroServer.h This header file adjusts the features and capabilities of the
custom Micro Server. This file contains compiler #pragma
directives and macro definitions (with descriptive comments
to describe their functions), such as:

• Compiler directives to set application and network
buffer counts and sizes

• Compiler directives to set the size of the receive
transaction database

• Compiler directives to set the maximum number of
network variables (0..254), aliases (0..127), address
table entries (1..15 or 1..254), and domain table
entries (1..2)

• Macros for conditional compilation

This file includes all of the preferences for a custom Micro
Server that you might need to modify, except those included
in the ShortStackIsiHandlers.h file.

ShortStack User’s Guide 207

File Name Description

ShortStackIsiHandlers.h This header file adjusts the implementation details for the
various ISI callback handler functions.

You will only require this file if your custom Micro Server
supports ISI.

MicroServerIsiHandlers.c This file contains the override callback handler function
implementations for ISI support.

You may have to edit this file for a custom Micro Server to
match the changes you make to the
ShortStackIsiHandlers.h file.

You wll only require this file only if your custom Micro Server
supports ISI.

Overview of Custom Micro Server Development
A custom Micro Server can include or exclude support for the ISI protocol. A
Micro Server that includes support for the ISI protocol does not necessarily have
to use the ISI protocol, but to use the ISI protocol through the LonTalk/IP ISI
API, the Micro Server must support the ISI protocol. Applications that are
designed to work with a variety of Micro Servers can determine the level of ISI
support needed by inspecting the Micro Server’s uplink reset notification; see
Handling Reset Events.

A Micro Server that does not include support for the ISI protocol requires less
space and can support some of the more resource-limited hardware platforms.
However, if your target hardware provides sufficient resources, you can include
support for the ISI protocol within your custom Micro Server, even if you do not
immediately plan to use ISI. If the Micro Server supports the ISI protocol, you
have the flexibility to add ISI support to your host application at a later time,
without requiring an update to your Micro Server firmware image. The
processing overhead for the ISI protocol within the Micro Server is minimal if the
ISI processing engine is not running (which is its default state).

The process of creating a custom Micro Server without ISI support is simpler
than creating one with ISI support.

The general process of creating a custom Micro Server involves the following
tasks:

1. Locate the microserver\custom directory within your local IzoT
ShortStack SDK repository.

2. Edit the MicroServer.h file to define your custom Micro Server’s
operating parameters.

3. Edit the MicroServer.nc file as necessary. Generally, you do not have
to edit this file, unless you implement modified ISI behavior locally
within your Micro Server.

4. For a Micro Server that supports ISI, edit the
MicroServerIsiHandlers.c file and ShortStackIsiHandlers.h files as
necessary.

208 Custom Micro Servers

5. Compile the project and link with the ShortStack430.lib,
ShortStack430Isi.lib, or ShortStack430CptIsi.lib library. For a
Micro Server that supports ISI, you also link the project with the
appropriate ISI library, such as the Isi6000.lib, IsiFull.lib or
IsiCompactS.lib library.

The generated image and interface files define your custom Micro Server. The
image files can be loaded into an appropriate Smart Transceiver, as described in
Preparing the ShortStack Micro Server.

The following sections describe the process for creating a custom Micro Server in
more detail.

Creating a Custom Micro Server without ISI Support
 Figure 64 shows the files that are required to create a custom Micro Server that
does not support the ISI protocol. You edit the MicroServer.h and
MicroServer.nc files, and compile and link the project with the
ShortStack430.lib library to create your custom Micro Server.

Micro Server without ISI Support

// #define SS_SUPPORT_ISI

MicroServer.h

+

#include “MicroServer.h”

MicroServer.nc

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

ShortStack430.lib

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

Generated

Supplied, fixed content

Supplied, user-edited

Figure 64. Files for Creating a Custom Micro Server without ISI Support
To configure and build a custom Micro Server without ISI support, perform the
following tasks:

• Create a NodeBuilder project, using the files described in Table 24.

Expand the Device Templates folder in the Workspace window,
right-click the Release target folder (debugging the ShortStack
firmware is not supported, so you cannot use the Development
target), and select Settings to open the NodeBuilder Device
Template Target Properties dialog.

o Select the Linker tab. Select Generate symbol file.

ShortStack User’s Guide 209

o Also from the Linker tab, you can optionally select
Generate map file and select Verbose. A map file is
optional, but useful.

o Select the Exporter tab. Select Automatic for boot ID
generation. Also select Checksum all code. For the reboot
options, select Communications Parameters from the
Category dropdown list box to select what should be
rebooted, and select Type/rate mismatch to specify when a
reboot should occur. However, do not enable rebooting of
communication parameters on communication parameter
mismatch for Micro Servers that use a PL 3120, PL 3150, or
PL 3170 Smart Transceiver, unless you are certain that the
optional features of the PL-20 transceiver will not change
(such as CENELEC mode or low-power mode).

o If you use an off-chip flash memory part for the ShortStack
and system firmware, do not enable rebooting the EEPROM,
and do not enable rebooting on a fatal application error. If
you are using a ROM (PROM or EPROM) part for the
ShortStack and system firmware, you can enable these reboot
options to allow possible recovery in the event of a fatal error.

o Select the Configuration tab. Ensure that Export
configured is not selected. The option to export a device
with a pre-defined configuration does not apply to a
ShortStack Micro Server.

• Click OK to save the settings and close the NodeBuilder Device
Template Target Properties dialog.

2. Specify an appropriate program ID. The program ID is not exposed to the
network, because the Micro Server remains in quiet mode until the
application initialization (which includes the application’s program ID) is
complete, but a mismatching channel type identifier might trigger
warnings when using your Micro Server with the IzoT Interface
Interpreter.

Within the IzoT NodeBuilder Software, right-click the device template
and select Settings to open the NodeBuilder Device Template Properties
dialog. From the Program ID tab, specify an appropriate program ID.

3. Specify your target hardware correctly:

• Always build your Micro Server for the correct clock speed. If your
hardware supports multiple clock rates, build one Micro Server for
each. Mismatching clock rates can cause problems during the initial
link-layer connection.

• Always build your Micro Server for the correct transceiver family. If
your hardware supports both TP/FT-10 and PL-20 power line
transceivers, build one Micro Server for each. Within each
transceiver family, the exact details can be configured during
ShortStack application initialization.

• Select the memory map that meets your direct memory files
requirements. See Supporting Direct Memory Files for more
information about direct memory files.

210 Custom Micro Servers

4. Review the preferences specified in the MicroServer.h file. See
Managing Memory for information about configuring the Micro Server’s
resources within the MicroServer.h file.

5. Build the Micro Server. Link your project with the ShortStack430.lib
library.

Be sure to keep the following files for the custom Micro Server:

• The Micro Server’s device interface file (XIF file extension)

• The Micro Server’s symbol table (SYM file extension)

• The Micro Server’s application image files (APB, NDL, NEI, NFI, NXE,
NME, or NMF file extensions)

All Micro Server files must share the same base name, which can be any valid set
of characters. However, to avoid confusion with standard Micro Server images,
do not use names that start with SS430_ or a similar pattern.

Creating a Custom Micro Server with ISI Support
You can create a custom Micro Server that supports the ISI protocol. However, a
custom Micro Server with ISI support can run only on an FT 3150, PL 3150, PL
3170, or FT 5000 Smart Transceiver, or a Series 6000 chip. An FT 3120 or PL
3120 Smart Transceiver does not have sufficient memory to accommodate a
Micro Server with ISI support.

For an ISI device that is not a domain address server, you can use a standard
Micro Server with an FT 3150, PL 3150, PL 3170, or FT 5000 Smart Transceiver
or Series 6000 chip. For a domain address server, you must create a custom
Micro Server. A DAS-enabled Micro Server needs to run on hardware with at
least 512 bytes of additional, off-chip RAM (or extended RAM for FT 5000 Smart
Transceivers and Series 6000 chips). For more flexibility, supply at least 2 KB
RAM (or extended RAM for FT 5000 Smart Transceivers) for a DAS Micro Server
to provide sufficient buffer configurations.

The process for creating a custom Micro Server that supports ISI is similar to the
process described in Creating a Custom Micro Server without ISI Support, but
includes additional files and additional considerations. Figure 65 shows the files
that are required to create a custom Micro Server that supports the ISI protocol.

ShortStack User’s Guide 211

Micro Server with ISI Support

#define SS_SUPPORT_ISI

MicroServer.h

+

#include “MicroServer.h”

MicroServer.nc

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

ShortStack430Isi.lib

...

MicroServerIsiHandlers.c

+

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

IsiXYZ.lib

...

ShortStackIsiHandlers.h

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

Also #included
with the host API

Generated

Supplied, fixed content

Supplied, user-edited

(Use ShortStack430IsiCpt.lib
for PL 3170 devices)

Figure 65. Files for Creating a Custom Micro Server with ISI Support

You edit the MicroServer.h, MicroServer.nc, ShortStackHandlers.h, and
MicroServerIsiHandlers.c files, and compile and link the project with the
ShortStack430Isi.lib (or ShortStack430IsiCpt.lib) library and an appropriate
ISI library (typically, Isi6000.lib or IsiFull.lib) to create your custom Micro
Server. Be sure to select an ISI library that supports all of the functionality that
your device requires; for example, if your device requires that automatic
enrollment be able to replace connections, do not select a small ISI library that
does not support connection removal.

To configure and build a custom Micro Server with ISI support, perform the
following tasks:

1. Create a NodeBuilder project, using the files described in Table 24.

• Expand the Device Templates folder in the Workspace window, and
right-click one of the target folders (such as Development or
Release), and select Settings to open the NodeBuilder Device
Template Target Properties dialog. In this dialog, select the Linker
tab and select Generate symbol file. Click OK to save the setting
and close the dialog.

• Also in the Linker tab of the NodeBuilder Device Template Target
Properties dialog, you can optionally select Generate Map File. A
map file is optional, but recommended.

• For Micro Servers that support authentication, you should export a
configured custom Micro Server, including pre-defined authentication
keys. In the NodeBuilder Device Template Target Properties dialog,
select the Configuration tab and select Export Configured. See
the IzoT NodeBuilder User’s Guide for information about exporting a
configuration.

212 Custom Micro Servers

2. Specify your target hardware correctly:

• Always build your Micro Server for the correct clock speed. If your
hardware supports multiple clock rates, build one Micro Server for
each. Mismatching clock rates can cause problems during the initial
link-layer connection.

• Always build your Micro Server for the correct transceiver family. If
your hardware supports both TP/FT-10 and PL-20 transceivers, build
one Micro Server for each. Within each transceiver family, the exact
details can be configured during the ShortStack initialization phase.

• Select the memory map to meet your direct memory file
requirements. See Supporting Direct Memory Files for more
information about direct memory files.

3. Review the preferences in the MicroServer.h file. In particular, you
must uncomment the #define SS_SUPPORT_ISI macro. See
Configuring MicroServer.h for ISI for more information.

4. Review the preferences in the ShortStackIsiHandlers.h file.

5. If you implement one or more ISI callback handler functions local to the
Micro Server, review and edit the callback handler functions in the
MicroServer.nc file, as needed.

6. Build the Micro Server:

• Link your project with the ShortStack430Isi.lib (or
ShortStack430IsiCpt.lib) library.

• Link your project with a suitable standard ISI library, such as
Isi6000.lib, IsiFull.lib or IsiCompactDaHb.lib. If resources
permit, use the Isi6000.lib for Series 6000 devices or use the
IsiFull.lib library otherwise.

You can use a custom Micro Server that supports the ISI protocol either with an
application that supports ISI or with one that does not. If the application does
not support ISI, it does not start the ISI engine (that is, it does not call the
IsiStart() API function). There is minimal performance penalty for a Micro
Server to support a disabled ISI engine.

Be sure to keep the following files for the custom Micro Server:

• The Micro Server’s device interface file (XIF file extension)

• The Micro Server’s symbol table (SYM file extension)

• The Micro Server’s application image files (APB, NDL, NEI, NFI, NXE,
NME, or NMF file extensions)

• The ShortStackIsiHandlers.h file, but rename it to match the Micro
Server image file (be sure to keep the .h extension)

All Micro Server files need to share the same base name, which can be any valid
set of characters. However, to avoid confusion with standard Micro Server
images, do not use names that start with SS430_ or a similar pattern.

ShortStack User’s Guide 213

Configuring MicroServer.h for ISI
The MicroServer.h configuration file includes comments that describe how to
use the file. The file provides five ISI-related preferences:

• The SS_SUPPORT_ISI macro enables ISI support.

• The SS_SUPPORT_ISI_S macro controls inclusion of support for an
application that does not support domain acquisition.

• The SS_SUPPORT_ISI_DA macro controls inclusion of support for an
application that supports domain acquisition.

• The SS_SUPPORT_ISI_DAS macro controls inclusion of support for a
domain address server (DAS) application.

• The SS_COMPACT macro specifies that the Micro Server will use the
ShortStack430IsiCpt.lib library, and will have the limitations
described in Table 24.

• The SS_CONTROLLED_ENROLLMENT macro specifies that the
Micro Server will support controlled enrolment.

• The SS_ISI_IN_SYSTEM_IMAGE macro indicates that the Micro
Server firmware includes ISI support as part of the Smart Transceiver's
system image. This macro is independent of the SS_SUPPORT_ISI
macro, and is relevant even if ISI support is not configured.

• The SS_5000 macro indicates that the Micro Server will be used with an
FT 5000 Smart Transceiver or Neuron 5000 Processor.

• The SS_6000 macro indicates that the Micro Server will be used with a
Series 6000 Smart Transceiver or Neuron Processor.

In addition to the SS_SUPPORT_ISI macro, specify both the
SS_SUPPORT_ISI_S and the SS_SUPPORT_ISI_DA macros to support ISI
applications with or without domain acquisition. Because ISI domain address
servers require additional hardware resources (primarily more RAM), specify the
SS_SUPPORT_ISI_DAS macro only if it is needed.

See Managing Memory for additional information about configuring the Micro
Server’s resources within the MicroServer.h file.

Configuring ShortStackIsiHandlers.h
For an ISI callback handler function, you can control the location of its
implementation. Specifically, you can choose one of the following actions for
almost every ISI callback handler function:

• Use its default implementation (delivered with the ISI library), and not
override the callback handler function.

Using the default implementation for a callback handler function is the
simplest option, but provides the least customized behavior.

• Implement the callback override within a copy of the
[ShortStack]\Custom MicroServer\MicroServerIsiHandlers.c file
(which runs on the Micro Server).

214 Custom Micro Servers

Implementing a callback override local to the Micro Server can provide
the most responsive ISI implementation, but such a specialized Micro
Server might work only with your specific ISI-enabled host application.

• Implement the callback override within a copy of the
[ShortStack]\Api\ShortStackIsiHandlers.c file (which is part of your
host application).

Implementing a callback override on the host allows you to create a
general-purpose Micro Server, but can require more traffic across the
ShortStack link layer because the Micro Server routes callbacks to the
host using a simple remote procedure call protocol (ISI-RPC).

You control the location of each of the supported ISI callback handler functions in
the [ShortStack]\Custom MicroServer\ShortStackIsiHandlers.h file. This
file includes comments that describe how to override a callback handler function,
and includes recommendations for each callback handler function’s location.
Some callback handler functions are subject to certain restrictions, which are
described in the ShortStackIsiHandlers.h file. For example, some callbacks
have fewer choices for the location of the callback handler, and certain callback
handlers form groups that should always reside in the same location.

Implement the ISI connection table local to the Micro Server. The ISI connection
table is a fairly frequently accessed resource; implementing this table on the host
processor can require a high number of ISI-RPC messages to access this table.

Implement the IsiUpdateUserInterface() callback handler function within
your host application, so that your application can synchronize its user interface
with the ISI engine.

The IsiGetNvValue() callback handler function needs to be overridden within
the host application.

The LonTalk Interface Developer utility copies the ShortStackIsiHandlers.h
file to your project directory only if you select a standard Micro Server from the
ShortStack Micro Server Selection. If you edit this file and re-run the utility,
changes to the file are overwritten. However, if your project directory has a
ShortStackIsiHandlers.h file that you created for a custom Micro Server, the
LonTalk Interface Developer utility does not overwrite the file.

Implementing ISI in
MicroServerIsiHandlers.c
The MicroServerIsiHandlers.c file contains implementations for the Micro
Server-side ISI callback overrides. For callback overrides that run on the host,
the code in the MicroServerIsiHandlers.c file is complete, and contains all the
processing required for the remote procedure call. You need to implement the
override within your host application (in ShortStackIsiHandlers.c), but you do
not need to edit the MicroServerIsiHandlers.c file.

For callback overrides that run on Micro Server, you typically need to provide
application-specific code in the MicroServerIsiHandlers.c file. Only those
callback functions that relate to the connection table have a meaningful default
implementation (which implements an ISI connection table with 32 records).

ShortStack User’s Guide 215

See Option Server in the IzoT Markup Language section of the IzoT Manual at
echelon.com/docs/izot for more information.

Supporting Direct Memory Files
To allow a custom Micro Server to support the direct memory file (DMF) access
method, specify the #pragma enable_dmf compiler directive when you create
the custom Micro Server. Specify this directive, along with other preferences, in
the MicroServer.h configuration file.

A Micro Server can receive a memory read or write network management request
that relates either to its own local memory or to non-existent memory (memory
that corresponds to a gap in the Micro Server’s own memory map).

When the Micro Server receives a memory read or write network management
request that can be satisfied from the Micro Server’s own local memory, the
Micro Server responds to the request by accessing its memory. These kinds of
requests allow for normal management tasks, including the loading of a revised
Micro Server image over the network.

For a memory read or write request that does not relate to local memory, but
instead relates to a “gap” in the hardware memory map or to an area declared as
memory-mapped I/O, the Micro Server can have two responses:

• With the DMF access method disabled (or not supported), the Micro
Server replies to such a request with a negative response.

• With the DMF access method enabled, these requests are relayed to the
host processor. It is the responsibility of the host processor to satisfy the
request, or to reply with a failure code.

To allow a custom Micro Server to use the DMF access method, leave an area
within the Smart Transceiver’s 64 KB memory space unused. Define your
hardware memory map such that it contains an area of undeclared memory. The
standard Micro Servers use the 0xA100..0xCEFF area, but you can change the
size or location of this DMF window in your hardware design.

ShortStack supports only one DMF window. The Micro Server relays all memory
read or write requests that cannot be satisfied locally to the host (if the DMF
access method is enabled), including those relating to disjoint gaps in the memory
map, but the DMF presentation and address translation provided by the LonTalk
Interface Developer utility supports only one DMF window.

The DMF access method requires Version 16 Neuron firmware or later, and is not
available for current PL 3120 Smart Transceivers, which are based on Version 14
firmware. All other standard Micro Server images have this feature enabled.
For custom Micro Servers, if you attempt to enable the DMF access method for a
Smart Transceiver running Version 15 or earlier firmware, the Neuron C
compiler issues a linker error.

Managing Memory
The IzoT Interface Interpreter and the LonTalk Interface Developer utility’s
Neuron C compiler generates four tables that affect memory usage in on-chip
EEPROM within a Smart Transceiver. The ShortStack Micro Server firmware
and network management tools use these tables to define the network
configuration for a device. The four tables include:

http://www.echelon.com/docs/izot

216 Custom Micro Servers

• The address table.
By default, this table is generated at its maximum size, which is 15
entries for Series 3100 and 5000 chips. Standard Micro Servers for Series
6000 chips, which support an extended address table with up to 254
records, are configured to support 32 address table entries.

• The alias table.
This table has no default size, and you need to specify a size using the
#pragma num_alias_table_entries compiler directive. You can set the
size of the alias table to zero, or any value up to 127.

• The domain table.
By default, this table is generated at its maximum size, which is 2
entries.

• The network variable configuration table.
This table contains one entry for each network variable that is declared
in the model file. Each element of a network variable array counts
separately.

See the FT 3120 / FT 3150 Smart Transceiver Data Book, the PL 3120 / PL 3150
/ PL 3170 Power Line Smart Transceiver Data Book, the Series 5000 Chip Data
Book, or the Series 6000 Chip Data book for detailed descriptions of these tables.

Address Table
The address table contains the list of network addresses to which the device
sends implicitly addressed network variable updates or polls, or sends implicitly
addressed application messages. You can configure the address table through
network management messages from a network management tool.

By default, the address table contains 32 entries for Micro Servers using a Series
6000 chip, and 15 entries for all others. Each address table entry uses five bytes
of on-chip EEPROM (extended RAM for a Series 6000 or 5000 Micro Server). Use
the following compiler directive to specify the number of address table entries:

#pragma num_addr_table_entries nn

where nn can be any value from 0 to 15, 0 to 254 for Series 6000 chips.

Whenever possible, specify at least 15 entries for the address table. For Series
6000 chips, large address tables with over 100 entries and up to the 254 entry
maximum may impact network performance due to linear address table searches
performed by the Neuron firmware when network messages are received.

Alias Table
An alias is an abstraction for a network variable that is managed by network
management tools, the ISI engine, and the Micro Server firmware. Network
management tools and the ISI engine use aliases to create connections that
cannot be created solely with the address and network variable tables. Aliases
provide network integrators flexibility for how devices are installed into
networks.

The alias table has no default size, and can contain between 0 and 127 entries.
Each alias entry uses four bytes of on-chip EEPROM (extended RAM for a Series

ShortStack User’s Guide 217

5000 Micro Server). Use the following compiler directive to specify the number of
alias table entries:

#pragma num_alias_table_entries nnn

where nnn can be any value from 0 to 127 (or 0 to 62 for PL 3120 Micro Servers
with Version 14 firmware). Subject to the Micro Server’s preferences and
hardware capabilities, it might not be possible to implement the maximum
number of aliases.

Specify the number of entries for the alias table, within the amount of available
on-chip EEPROM. The number of required entries is typically fewer than the
maximum of 127. The following calculation provides a useful starting point for
the alias table size, nnn:

nnn = 0; for nv_count = 0

nnn = 10 + (nv_count / 3); for nv_count > 0

The number of aliases defined here is fixed, and cannot be changed from the
ShortStack application. You can use any special knowledge that you have about
the application to set the size of the alias table appropriately. A small number of
aliases can prevent you from using the device in a complex network, but a large
number of unused aliases can reduce the Micro Server’s throughput and the
overall device performance.

Domain Table
By default, the domain table is configured for two domains. Each domain uses 15
bytes of on-chip EEPROM (extended RAM for a Series 5000 Micro Server). The
number of domain table entries is dependent on the network in which the device
is installed; it is not dependent on the application.

Use the following compiler directive to specify the number of domain table
entries:

#pragma num_domain_entries n

where n can be either 1 or 2.

Specify the maximum of 2 domain table entries. LONMARK International
requires all interoperable LONWORKS devices to have two domain table entries.
Reducing the size of the domain table to one entry will prevent certification.

Network Variable Configuration Table
This table contains one entry for each network variable that is declared in the
model file. Each element of a network variable array counts separately.

The maximum size of the network variable configuration table is 254 entries,
provided that there are sufficient available EEPROM resources (extended RAM
resources for a Series 6000 or 5000 Micro Server). Each entry uses three bytes of
EEPROM (or extended RAM). You cannot change the size of this table, except by
adding or deleting network variables in your application.

You can use the following compiler directive to specify the maximum number of
network variables that the Micro Server supports, which in turn, affects the size
of the network variable configuration table:

218 Custom Micro Servers

#pragma set_netvar_count nnn

where nnn can be any value from 0 to 254 (or 0 to 62 for PL 3120 Micro Servers
with Version 14 firmware). Subject to the Micro Server’s preferences and
hardware capabilities, it might not be possible to implement the maximum
network variable capacity.

The actual number of network variables is set by the application. Unlike for the
alias table, providing support for more network variables than are needed does
not affect the device’s throughput. However, the total number of network
variables declared for a device does affect its overall throughput and the time
that the device might require for reset; also the maximum number of network
variables declared with this directive affects the amount of memory required by
your custom Micro Server.

ShortStack User’s Guide 219

13

Application Migration from
ShortStack FX to IzoT ShortStack

You can upgrade an existing ShortStack FX project to IzoT
ShortStack and the IzoT Interface Interpreter.

220 Application Migration from ShortStack FX to IzoT ShortStack

Who Should Upgrade
You can use the IzoT ShortStack SDK and the IzoT Interface Interpreter for new
projects, but developers with existing LID-based projects for the ShortStack FX
SDK may not have to upgrade those, or may opt to upgrade those existing
projects only in certain aspects.

Using an IzoT ShortStack SDK 4.30 Micro Server with
the ShortStack FX SDK

Existing LID-based ShortStack FX SDK projects can take advantage of new IzoT
ShortStack SDK 4.30 Micro Servers, and can use the FT 6050 standard Micro
Server and take advantage of other general Micro Server enhancements.

These general enhancements include improved resilience for misconfiguration in
certain error cases and an enforced delay after transmitting the uplink reset
notification.

IzoT ShortStack SDK 4.30 Micro Servers which support the same hardware as
supported in the ShortStack FX SDK are backwards compatible. You can, for
example, use the new SS430_FT5000ISI_SYS20000kHz standard Micro Server
for FT 5000 at 20 MHz system clock in place of its ShortStack FX SDK
predecessor.

The standard Micro Servers for FT 5000 now support 7 normal and 3 priority
buffers at 146 bytes each, while ShortStack FX SDK Micro Servers for the same
Smart Transceiver supported 11 normal and 11 priority buffers at 66 bytes each.

To use a version 4.30 Micro Server in place of the ShortStack FX SDK Micro
Server, point the LonTalk Interface Developer to the new IzoT ShortStack SDK
4.30 Micro Server as if it was a custom Micro Server, and re-generate your
application framework. Alternatively, you can load the version 4.30 Micro Server
image into your Micro Server hardware.

Upgrading a ShortStack FX SDK Project for FT 6050
You can upgrade existing LID-based ShortStack FX SDK projects to use the new
Micro Server for the FT 6050 Smart Transceiver. To do so, point the LonTalk
Interface Developer to the new IzoT ShortStack SDK 4.30 Micro Server as if it
was a custom Micro Server, and re-generate your application framework.

This approach has the following limitations:

• The ShortStack FX LonTalk Compact API is unaware of the extended
address table. The extended address table uses address table index
values in the 0..254 range, which requires a change in the nv_config and
alias_config data structures. As a result, the ShortStack FX LonTalk
Compact API cannot be used to update or examine these data structures
on a Series 6000 Smart Transceiver or Neuron Chip. Micro Servers

ShortStack User’s Guide 221

which support the extended address table indicate this with a new flag
0x40 in the Flags byte of the LonResetNotification structure.

• The ShortStack FX SDK and the LonTalk Interface Developer are
unaware of the extended address table. The generated XIF file will not
accurately reflect these capabilities. You can use your device without an
XIF file, or edit a LID-generated XIF file by hand.

To manually edit the LID-generated XIF file, open the Micro Server’s XIF
and your application’s XIF file (generated by LID) in a text editor.

Copy lines 7, 8, 9 and 10 of the Micro Server XIF file into your application’s
XIF file.

Copy the XIF version number from line 1 from the Micro Server XIF file into
your application’s XIF file.

Merge line 6 from the Micro Server XIF file into your application’s XIF file:

Use field 4 (network variable record count) from your application’s XIF
file.

Use field 5 (message tag count) from your application’s XIF file.

Set field 16 (application type) to 6.

Use field 17 (netvar count) from your application’s XIF file.

Use field 23 (maximum NV count) from your application’s XIF file.

For all other fields, use the values from the Micro Server’s XIF file.

For all other lines, use the values generated by the LonTalk Interface
Developer.

Migration From LonTalk Interface Developer to Izot
Interface Interpreter

To migrate a ShortStack FX SDK (or earlier) project based on a framework
generated by the LonTalk Interface Developer utility to the IzoT ShortStack SDK
and a framework generated by the IzoT Interface Interpreter, follow these steps:

New IzoT ShortStack SDK Project
Create a new IzoT ShortStack SDK project. Port the API and driver, and
implement a trivial implementation as a first milestone. Here is an example for
such an application (not including the driver and API). Adjust the server
selection as necessary to match your Micro Server.

#include “ShortStackDev.h”
#include “ShortStackApi.h”
#include “ldv.h”

222 Application Migration from ShortStack FX to IzoT ShortStack

//@IzoT Option target(“shortstack-classic”)
//@IzoT Option programId(“9F:FF:FF:00:00:00:04:00”)
//@IzoT Option server(“SS430_FT6050_SYS20000kHz”)

SFPTclosedLoopActuator(act, SNVT_volt) act; //@IzoT Block \
//@IzoT onUpdate(nviValue, onActUpdate)

void onActUpdate(
 const unsigned index,
 const LonReceiveAddress* const pSourceAddress
)
{
 LON_SET_UNSIGNED_WORD(
 act.nvoValue.data,
 3 + LON_GET_UNSIGNED_WORD(act.nviValue.data)
)
 LonPropagateNv(act.nvoValue.global_index);
}

static const LdvCtrl ldvCtrl = {
 /* Initialize as required by your driver */
};

int main(int argc, char* argv[])
{
 LonApiError sts = LonInit(&ldvCtrl);

 while(sts == LonApiNoError) {
 sts = LonEventHandler();
 }

 LonExit();

 return sts != LonApiNoError;
}

The trivial test application accepts a simple input value, adds 3 and assigns the
result to the output. You can test this application with a simple tool such as
NodeUtil, but remember that the device must be in the configured and online
state in order to receive updates to input network variables.

You can complete this experiment to be confident that your ShortStack device is
working, even if the simple application does not meet your application
requirements.

Select Preferences
The ShortStack FX SDK uses the LonTalk Interface Developer utility to gather
your preferences. Using the IzoT ShortStack SDK, you can express your
preferences directly within your source code. The application example above
includes some of those expressions. For example,

ShortStack User’s Guide 223

 //@IzoT Option server(“SS430_FT6050_SYS20000kHz”)

selects the SS430_FT6050_SYS20000kHz standard Micro Server for the FT 6050
Smart Transceiver.

A comparison of options and preferences supported by the LonTalk Interface
Developer to their IzoT ShortStack SDK equivalent follows.

LonTalk Interface
Developer

IzoT Interface Interpreter

Project file selection Your main C source code is your project. The IzoT Interface Interpreter does not
maintain data outside your main C source file.

Verbosity,
Verbose Code

You can execute the IzoT Interface Interpreter with the --verbose option to
obtain slightly more verbose console output, but an option to control verbosity of
comments within the generated code is not supported, as you do not have to
edit the code generated by the IzoT Interface Interpreter.

Framework Type //@IzoT Option target(“shortstack-classic”)

or

execute the IzoT Interface Interpreter with the --target shortstack-classic
command line option.

Micro Server
selection,
transceiver
selection, clock
selection

//@IzoT Option server(...)

The IzoT ShortStack SDK uses the Micro Server’s default transceiver type and
communication parameter by default. To override those see the
LonCustomCommunicationParameters() callback function in
ShortStackHandlers.c.

Program Id //@IzoT Option programId(...)

Model File,
Preprocessor
symbols,
Include search path

The IzoT Interface Interpreter does not use a Neuron C model file. Your
definitions of the interface are an integral part of your application’s C or C++
source code.

Enable Application
Messages

LonTag myTag; //@IzoT Tag

The IzoT Interface Interpreter automatically enables the application messaging
API when you declare one or more message tag objects.

Enable Explicit
Addressing

//@IzoT Option explicit_addressing(...)

Enable Service Pin
Notification,
Service Pin
Notification Delay

//@IzoT Option servicebutton_held(...)

Include Query //@IzoT Option api(1)

224 Application Migration from ShortStack FX to IzoT ShortStack

Functions
Include Update
Functions

The IzoT Interface Interpreter groups both query and update functions into one
API extension, API extension 1. You can select multiple API extensions by
adding their numbers. For example, //@IzoT Option api(3) selects both API
extensions 1 and 2.

Include Utility
Functions

//@IzoT Option api(2)

You can select multiple API extensions by adding their numbers. For example,
//@IzoT Option api(3) selects both API extensions 1 and 2.

Include ISI //@IzoT Option isi(...)

Enable Direct-
memory Files
(DMF),
DMF Window Start
Address,
DMF Window Size

The IzoT Interface Interpreter included with the IzoT ShortStack SDK 4.30 does
not support implementations of properties in property files, and therefore does
not support DMF.

Migrate the Model File
The LonTalk Interface Developer utility requires that you model your
application’s network interface using the Neuron C language. By contrast, the
IzoT Interface Interpreter does not require you to model your application’s
network interface. Instead, IzoT Interface Interpreter allows you to implement
your blocks, properties, message tags and datapoints as if your standard C or
C++ compiler knew about those items, and IzoT Interface Interpreter makes it so.

You will find that translating the model file into a set of IML instructions for
IzoT Interface Interpreter is very easy, because IzoT Interface Interpreter
includes comprehensive recognition of profiles and blocks.

In the Neuron C model file, implementing a profile as a block requires
declaration of every network variable and property required declaration of the
block, and declaration of mappings between the network variables and properties
declared on one hand and members listed in the block’s profile on the other hand.

The IzoT Interface Interpreter implements entire profiles, including all
mandatory members, with a single instruction. Optional instructions to add
optional members or other refinements are supported.

Interface Item IzoT Interface Interpreter Instruction

Mandatory datapoint
(network variable)
members of functional
blocks

Implemented automatically with block declaration.

Mandatory property
members of functional
blocks

Implemented automatically with block declaration

ShortStack User’s Guide 225

Implementation of a
profile as a block

Use the Block directive.

Example:

SPFTco2Sensor(s) co2; //@IzoT Block

Implementing an
optional profile member

Use the implement instruction with the Block directive.

Example 1:

SFPTco2Sensor(s) co2; //@IzoT Block implement(nvofloatCO2)

Example 1 adds the optional nvofloatCO2 profile member to the block.
The IzoT Interface Interpreter recognizes a property’s application set.
The optional nciCO2Offset property of the CO2 sensor profile, for
example, applies to the mandatory nvoCO2ppm member.

The IzoT Interface Interpreter requires that you specify a property
within its application set, and generates the block accordingly.

Example 2:

SFPTco2Sensor(s) co2; //@IzoT Block \
//@IzoT implement(nvoCO2ppm.nciCO2Offset)

Device datapoint
(network variable, not
implementing a
member of a profile)

Use the Datapoint directive.

Example:

SNVT_temp(t) nvoTemp; //@IzoT Datapoint

Device property (not
implementing a
member of a profile)

Use the Property directive.

Example:

SCPTlocation here; //@IzoT Property

Message Tag Use the Tag directive and the LonTag type.

Example:

LonTag myTag; //@IzoT Tag

Migrate Event Handlers
The next step is to migrate your ShortStack event handlers. The IzoT
ShortStack SDK ShortStackHandler.c source file looks very similar to the version
included with the ShortStack FX SDK. In many cases, you can simply merge
your callback function bodies into the IzoT ShortStack SDK project.

Frequently used callbacks, however, are automatically implemented by the IzoT
Interface Interpreter, and are dispatched into event handlers. With the
exception of the service pin-related callbacks, these event handlers have the same

226 Application Migration from ShortStack FX to IzoT ShortStack

prototype as their ShortStack FX SDK callback function equivalents. However,
the events are declared within your main C source file.

The IzoT Interface Interpreter supports multicast events and re-usable event
handlers. That is, you can declare and re-use the same onUpdate event handler
for all your input network variables, or you can declare one unique event handler
for each input network variable, or handle update events for certain groups of
input network variables in one handler, others in another.

The IzoT Interface Interpreter implements event dispatchers such that events
related to network variable updates or completion events only fire when the
event applies to the corresponding item. That is, an onUpdate event which
applies to a single network variable will only execute when this particular
network variable received an update, an onUpdate event applying to two
network variables will only execute when either of the two network variables
received an update.

You can also create multicast events, for example by declaring three different
onWink event handlers. Those are fired in declaration-order.

Event types supported in this fashion are onUpdate, onComplete, onReset,
onOnline, onOffline, onService, and onWink. All other events are handled
within ShortStackHandlers.c in the same way as with the ShortStack FX
SDK.

LdvCtrl
Declare the new LdvCtrl structure, and pass a pointer to this structure to the
LonInit() function. The data type of LdvCtrl is determined by you and your
driver implementation. LdvCtrl provides a way for your application to pass
parameters into your driver through the standard IzoT ShortStack LonTalk/IP
Compact API.

Not all drivers require such parameters. Those which don’t will define LdvCtrl
as a simple dummy type, an int, for example. This is your choice.

Other drivers, such as the IzoT ShortStack SDK driver example for Raspberry Pi,
support a selection of device names, GPIO pin assignments and other data
through the LdvCtrl data structure.

LonExit()
The IzoT ShortStack SDK supports a new LonExit() API, which supports
applications that can be terminated. Many embedded applications never
terminate and therefore do not need to call LonExit(). Those which do support
termination, such as the IzoT ShortStack SDK application examples for
Raspberry Pi, can call this new API to support clean shut-down procedures.

LonSuspend(), LonResume()
The ShortStack LonTalk/IP Compact API supports two new optional functions,
LonSuspend() and LonResume(), to temporarily suspend the serial driver, and
resume normal operation. The underlying functionality is implemented in your
driver’s LdvSuspend() and LdvResume() functions. The ShortStack API does
not require that you implement this functionality, but it supports it when you do.

ShortStack User’s Guide 227

Some applications may temporarily suspend the serial driver to allow for other
critical operations. The IzoT Shortstack SDK driver example for Raspberry Pi
includes an example implementation of synchronized suspend and resume
operations.

LonGetCurrentNvSize()
This callback function is no longer necessary in the IzoT ShortStack SDK,
because the IzoT Interface Interpreter includes knowledge of the SCPTnvType
property implementation that applies to a changeable-type network variable.
The tool automatically generates code which implements this callback.

LonNvdDeserializeNvs(), LonNvdSerializeNvs()
While the LonNvdDeserialize() API and callback function remains unchanged,
the IzoT ShortStack SDK adds the LonNvdSerializeNvs() companion callback,
and provides an example implementation for both within
ShortStackHandlers.c.

In the ShortStack FX SDK, you had to implement custom code to store non-
volatile network variable and property data when it was received.

In the IzoT ShortStack SDK, you must implement the LonNvdSerialize() and
LonNvdDeserialize() callbacks. The ShortStack LonTalk/IP Compact API calls
these functions when necessary.

228 Application Migration from ShortStack FX to IzoT ShortStack

ShortStack User’s Guide 229

14

Authentication

This chapter provides details of using authentication with
the IzoT ShortStack SDK.

230 Authentication

Using Authentication
Authentication is a special acknowledged service between one source device and
one or more (up to 63) destination devices. Authentication is used by the
destination devices to verify the identity of the source device. This type of service
is useful, for example, if a device containing an electronic lock receives a message
to open the lock. By using authentication, the electronic lock device can verify
that the “open” message comes from an authorized device, not from a person or
device attempting to break into the system.

Authentication doubles the number of messages per transaction. An
unauthenticated acknowledged message normally requires two messages: an
update and an acknowledgment. An authenticated message requires four
messages, as shown in Figure 52. These extra messages can affect system
response time and channel capacity.

A device can use authentication with acknowledged updates or network variable
polls. However, a device cannot use authentication with unacknowledged or
repeated updates.

For a program to use authenticated network variables or send authenticated
messages, follow these steps:

1. Declare the network variable as authenticated, or allow the network
management tool to specify that the network variable is to be
authenticated.

2. Specify the authentication key to be used for this device using a network
management tool, and enable authentication. You can use the IzoT
Commissioning Tool to install a key during network integration, or your
application can use the LonQueryDomainConfig() and
LonUpdateDomainConfig() API functions to install a key locally.

You can also create a custom Micro Server with a pre-set authentication key.

Specifying the Authentication Key
All devices that read or write a given authenticated network variable connection
must have the same authentication key. This 48-bit authentication key is used
in a special way for authentication, as described in How Authentication Works. If
a device belongs to more than one domain, specify a separate key for each
domain.

The key itself is transmitted to the device only during the initial configuration.
All subsequent changes to the key do not involve sending it over the network.
The network management tool can modify a device’s key over the network, in a
secure fashion, with a network management message.

Alternatively, your application can use a combination of the
LonQueryDomainConfig() and LonUpdateDomainConfig() API calls to
specify the authentication keys during application start-up.

If you set the authentication key during device manufacturing, perform the
following tasks to ensure that the key is not exposed to the network during device
installation:

ShortStack User’s Guide 231

1. Specify that the device uses network-management authentication (set the
configuration data in the LonConfigData data structure, which is
defined in the ShortStackTypes.h file).

2. Set the device’s state to configured. An unconfigured device does not
enforce authentication.

3. Set the device’s domain to an invalid domain value to avoid address
conflicts during device installation.

If you do not set the authentication key during device manufacturing, the device
installer can specify authentication for the device using a network management
tool, but must specify an authentication key because the device has only a default
key.

To produce highly secured ShortStack devices, create a custom Micro Server and,
export the generated image with the authentication keys pre-set. See the IzoT
NodeBuilder User’s Guide for more information.

How Authentication Works
Figure 66 illustrates the process of authentication:

1. Device A uses the acknowledged service to send an update to a network
variable that is configured with the authentication attribute on Device B.
If Device A does not receive the challenge (described in step 2), it sends a
retry of the initial update.

2. Device B generates a 64-bit random number and returns a challenge
packet that includes the 64-bit random number to Device A. Device B
then uses an encryption algorithm (built in to the Neuron firmware) to
compute a transformation on that random number using its 48-bit
authentication key and the message data. The transformation is stored
in Device B.

3. Device A then also uses the same encryption algorithm to compute a
transformation on the random number (returned to it by Device B) using
its 48-bit authentication key and the message data. Device A then sends
this computed transformation to Device B.

4. Device B compares its computed transformation with the number that it
receives from Device A. If the two numbers match, the identity of the
sender is verified, and Device B can perform the requested action and
send its acknowledgment to Device A. If the two numbers do not match,
Device B does not perform the requested action, and an error is logged in
the error table.

If the acknowledgment is lost and Device A sends the same message again,
Device B remembers that the authentication was successfully completed and
acknowledges it again.

232 Authentication

Device B
(reader)

1

2

3

4

ACKD Message or

Request

Challenge

Reply to challenge

ACK or Response

Device A
(Writer)

Figure 66. Authentication Process

If Device A updates an output network variable that is connected to multiple
readers, each receiver device generates a different 64-bit random number and
sends it in a challenge packet to Device A. Device A must then transform each of
these numbers and send a reply to each receiver device.

The principal strength of authentication is that it cannot be defeated by simple
record and playback of commands that implement the desired functions (for
example, unlocking the lock). Authentication does not require that the specific
messages and commands be secret, because they are sent unencrypted over the
network, and anyone who is determined can read those messages.

It is good practice to connect a device directly to a network management tool
when initially installing its authentication key. This direct connection prevents
the key from being sent over the network, where it might be detected by an
intruder. After a device has its authentication key, a network management tool
can modify the key, over the network, by sending an increment to be added to the
existing key.

You can update the device’s address without having to update the key, and you
can perform authentication even if the devices’ domains do not match. Thus, a
ShortStack device can set its key during device manufacturing, and you can then
use a network management tool to update the key securely over the network.

ShortStack User’s Guide 233

A

ShortStack LonTalk/IP
Compact API

This appendix describes the functions and callback handler
functions included with the ShortStack LonTalk/IP Compact
API. It also describes modifying the API callback handlers
for use with your ShortStack application.

234 ShortStack LonTalk/IP Compact API

Introduction
The ShortStack LonTalk/IP Compact API provides the functions that you call
from your ShortStack application to send and receive information to and from a
LonTalk/IP or LON network. The API also defines the callback functions that
your ShortStack application should provide to handle LONWORKS events from the
network and Micro Server. Because each ShortStack application handles these
callbacks in its own specific way, you must modify the callback functions.

Typically, you use the API functions for ShortStack initialization and sending
and receiving network variable updates. See Developing a ShortStack
Application, for more information about using these functions.

The ShortStack LonTalk/IP Compact API functions are implemented in the
ShortStackApi.c file; the ShortStack callback functions are defined in the
ShortStackHandlers.c file. See ShortStack LonTalk/IP Compact API Files for
a list of the files included with the IzoT ShortStack SDK.

This appendix provides an overview of the functions and callbacks. For detailed
information about the ShortStack LonTalk/IP Compact API, see the HTML
documentation that is available from the doc/api directory within your local IzoT
ShortStack SDK repository.

Changes to the API
The ShortStack LonTalk/IP Compact API is the same as the ShortStack FX
LonTalk Compact API in spirit, but details have changed. The host API supports
application-specific configuration data for the driver, for example to assign a
serial device or specific GPIO pins for the link layer signals.

The host API has been enhanced to automatically re-initialize the Micro Server
when required. This simplifies updating the Micro Server over the network,
because the new API automatically detects the situation and re-initializes the
Micro Server with the current application’s configuration.

Several API functions have a slightly different prototype compared to earlier
releases of ShortStack. All LDV functions, which implement the driver API, now
return standard error codes, and use a driver-specific handle parameter. Some
functions of the LDV API have been removed, some new ones added, to better
support targeting modern hosts such as those using an embedded Linux
operating system.

A new LonSetPostResetPause() API has been added. This feature is discussed
under Micro Server, next.

The host API automatically detects if the Micro Server supports an extended
address table (EAT), and automatically translates all affected data types and
message formats, transparent to the application.

The following API types are affected: LonNvConfig, LonAliasConfig.

The following API functions are affected: LonUpdateNvConfig(),
LonUpdateAliasConfig(), LonQueryNvConfig(), and
LonQueryAliasConfig().

The following callbacks are affected: LonNvConfigReceived() and
LonAliasConfigReceived().

ShortStack User’s Guide 235

Support for EAT-enabled Micro Servers is implemented by exposing only EAT-
compatible APIs to the application. The LonNvConfig and LonAliasConfig
data types have been updated to match the format required by Micro Servers
which support an extended address table.

Applications reading the network variable configuration and alias configuration
data will continue to function as before. When re-compiled and used with an
EAT-enabled Micro Server, these applications have immediate access to the
extended data, which includes the high nibble of the address table index.

Applications that write network variable configuration and alias configuration
data must supply well-formed data, including the extended data which includes
the address table index high nibble. To write the data, obtain the current record
using LonQueryNvConfig() or LonQueryAliasConfig(), and then modify and
assign using the record with LonUpdateNvConfig() or
LonUpdateAliasConfig()as necessary.

The LonCustomCommunicationParameters() callback has been added to
support applications with runtime selection of communication parameters. This
supports, for example, applications for power line communication to use the same
application binary to support deployment in CENELEC member countries and
affiliates using the PL-20C channel type, and using the PL-20N channel type
elsewhere.

Customizing the API
Portions of the API are optional, in particular, application messaging, network
management query support, network management update support, and network
management callbacks. If you do not plan to use these functions, you can choose
not to include them in your ShortStack application to reduce the footprint of the
application in your host microprocessor. Use the api option to control inclusion
of optional portions of the API.

Example

//@IzoT Option api(3) // include all optional parts

API Memory Requirements
The memory requirements for the ShortStack LonTalk/IP Compact API depend
on which parts of the API you include in your application. You control which
parts of the API to include in your application using the IML api option.

Table 25 lists the approximate API memory requirements based on a reference
implementation using a bare-metal ARM7 target. Part of the memory
requirement is application specific, depending on the device interface. 10 to 20%
of the memory requirements listed in the table assume a simple device interface.

236 ShortStack LonTalk/IP Compact API

Table 10. ShortStack LonTalk/IP Compact API Memory Requirements

Included API

Memory Requirement
Standard
API

Optional
API ISI API

1.8 KB

2.3 KB

3.0 KB

3.5 KB

The memory requirements for the serial driver depend on the driver’s
implementation. For the ARM7 serial driver that is included with the ARM7
Example Port included in the ShortStack FX release, the memory requirement is
approximately 3 KB.

The ShortStack LonTalk/IP Compact API and
Callback Handler Functions

This section provides an overview of the ShortStack FX LonTalk Compact API
functions and callback handler functions. For detailed information about the
ShortStack LonTalk/IP Compact API and the callback handler functions, see the
HTML API documentation and the API source code:

• doc/api within the IzoT ShortStack SDK for the HTML API
documentation,

• api within the IzoT ShortStack SDK for the API source code.

ShortStack LonTalk/IP Compact API Functions
The ShortStack LonTalk/IP Compact API includes functions for managing
network data and the ShortStack Micro Server.

Commonly Used Functions
Table 26 lists API functions that you will typically use in your ShortStack
application to send and receive data over a LonTalk/IP or LON network.

ShortStack User’s Guide 237

Table 11. Commonly Used ShortStack LonTalk/IP Compact API Functions

Function Description

LonEventHandler() Processes any messages received by the ShortStack driver. If
messages are received, it calls the appropriate callback functions.

See Periodically Calling the Event Handler for more information
about how to use this function.

LonInit() Initializes the ShortStack LonTalk/IP Compact API, the serial
driver, and the ShortStack Micro Server. This function downloads
ShortStack device interface data from the ShortStack application
to the ShortStack Micro Server.

The ShortStack application calls LonInit() once on startup.

LonPropagateNv() Propagates a network variable value to the network.

This function propagates a network variable if all of the following
conditions are met:

• The network variable is declared with the output modifier

• The network variable is bound

Other Functions
Table 27 lists other ShortStack LonTalk/IP Compact API functions that you can
use in your ShortStack application. These functions are not typically used by
most ShortStack applications.

Table 12. Other ShortStack LonTalk/IP Compact API Functions

Function Description

LonGetUniqueId() Gets the unique ID (Neuron ID) value of the ShortStack Micro
Server.

LonGetVersion() Gets the version number of the ShortStack firmware in the
ShortStack Micro Server.

LonPollNv() Requests a network variable value from another device or
devices. A ShortStack application can call LonPollNv() to
request that another device (or devices) send the latest value (or
values) for network variables that are bound to the specified
input variable. To be able to poll an input network variable on
the ShortStack device, it must be declared as an input network
variable and include the polling modifier. You cannot poll an
output network variable on the ShortStack device with the
LonPollNv() function.

Do not use polling with ISI connections.

238 ShortStack LonTalk/IP Compact API

Function Description

LonSendServicePin() Broadcasts a Service- message to the network. The Service-
message is used during configuration, installation, and
maintenance of a LonTalk/IP or LON device.

Application Messaging Functions
Table 28 lists the ShortStack LonTalk/IP Compact API functions that are used
for implementing application messaging and for responding to an application
message. Application messages are used by applications requiring a different
data interpretation model that the one used for network variables. The same
functions can be used for foreign frame and explicit network variable update
messages. Support for application messaging is automatically included when
your application declares at least one message tag.

Table 13. Application Messaging ShortStack LonTalk/IP Compact API Functions

Function Description

LonSendMsg() Sends an application, foreign frame, or explicit network variable
update message.

LonSendResponse() Sends an application, foreign frame, or explicit network variable
update message response to a request message.

The ShortStack application calls LonSendResponse() in response
to a LonMsgArrived() callback handler function.

Network Management Query Functions
The ShortStack LonTalk/IP Compact API includes the optional network
management query API functions that provide additional network management
commands listed in Table 29. Support for these network management API
functions is optional.

The network management query API functions are asynchronous functions.
They issue a downlink request and return immediately. The functions can fail if
no downlink buffer is available.

If you do not plan to use these local network management commands, you do not
have to include these functions in your ShortStack application. You can include
these functions with api extension 1.

Example

//@IzoT Option api(1)

ShortStack User’s Guide 239

Table 14. Network Management Query API Functions

Function Description

LonQueryAddressConfig() Queries configuration data for the Micro Server’s address
table.

LonQueryAliasConfig() Queries configuration data for the Micro Server’s alias
table.

LonQueryConfigData() Queries configuration data on the ShortStack Micro
Server.

LonQueryDomainConfig() Retrieves domain information from the ShortStack Micro
Server.

LonQueryNvConfig() Queries configuration data for the Micro Server’s
network variable table.

LonQueryStatus() Requests the status of the ShortStack Micro Server.

LonQueryTransceiverStatus() Requests the status of the ShortStack Micro Server’s
transceiver. Used with power line transceivers.

If this function is used with an FT transceiver, the
function will appear to succeed, but the callback that
contains the results will declare a failure.

Network Management Update Functions
The ShortStack LonTalk/IP Compact API includes the optional network
management update API functions that provide additional network management
commands listed in Table 30. Support for these network management API
functions is optional.

The network management update API functions can fail if no downlink buffer is
available.

If you do not plan to use these local network management commands, you do not
need to include these functions in your ShortStack application. You can include
these functions in your source code with IML api extension 1.

Example

//@IzoT Option api(1)

240 ShortStack LonTalk/IP Compact API

Table 15. Network Management Update API Functions

Function Description

LonClearStatus() Clears a subset of status information on the ShortStack
Micro Server.

LonSetNodeMode() Sets the operating mode for the Micro Server:

• Online: For an online device, both the host
application and the Micro Server are running, and
the device responds to all network messages.

• Offline: For an offline device, the host application
cannot propagate network variables or send
network messages. The Micro Server processes
network variable update requests, and updates the
network variable values, but the ShortStack
LonTalk/IP Compact API does not call the
LonNvUpdateOccurred() callback handler
function. The Micro Server acknowledges
application messages that the device receives, but
discards them.

LonUpdateAddressConfig() Sets configuration data for the Micro Server’s address table.

LonUpdateAliasConfig() Sets configuration data for the Micro Server’s alias table.

LonUpdateConfigData() Sets configuration data on the ShortStack Micro Server.

LonUpdateDomainConfig() Sets domain information from the ShortStack Micro Server.

LonUpdateNvConfig() Sets configuration data for the Micro Server’s network
variable table.

Local Utility Functions
Table 31 lists the ShortStack LonTalk/IP Compact API functions that provide
local utility functions for the host application. Including these functions is
optional.

If you choose not to include these functions, they are not available for use in your
ShortStack application. You can include these functions in your source code by
enabling IML api extension 2.

Example

//@IzoT Option api(2)

ShortStack User’s Guide 241

Table 16. Local Utility ShortStack LonTalk/IP Compact API Functions

Function Description

LonGoConfigured() Puts the Micro Server in the configured state and online
mode.

LonGoUnconfigured() Puts the Micro Server in the unconfigured state.

LonMtIsBound() Queries the ShortStack Micro Server to determine if the
specified message tag is bound to the network. You can use
this function to ensure that transactions are initiated only
for connected message tags. The
LonMtIsBoundReceived() callback handler function
processes the reply to the query.

LonNvIsBound() Queries the ShortStack Micro Server to determine if the
specified network variable is bound to the network. You can
use this function to ensure that transactions are initiated
only for connected network variables. The
LonNvIsBoundReceived() callback handler function
processes the reply to the query.

LonQueryAppSignature() Queries the Micro Server's current version of the host
application signature.

LonQueryVersion() Queries the version number of the Micro Server application
and the Micro Server core library used for the Micro Server.

With this version information and the Micro Server key, you
can uniquely identify the current Micro Server.

LonRequestEcho() Sends a six-byte message (arbitrary values defined by the
application) to the ShortStack Micro Server. The Micro
Server transforms this message by incrementing each of the
six data bytes and returning the message to the host.

You can use the echo command instead of the ping command,
but the echo command takes longer to complete (because of
larger messages, and because of the data transformation
performed by the Micro Server). Echo tests should be
performed frequently during early stages of device
development or stress testing, but should be executed
infrequently on a production device.

242 ShortStack LonTalk/IP Compact API
I

Function Description

LonSendPing() Sends a message to the ShortStack Micro Server to verify
that communications with the Micro Server are functional.
This function can be useful after long periods of network
inactivity.

Define a ping timer of at least 60 seconds. The application
typically resets this timer upon completion of every
successful uplink or downlink communication. When this
timer expires, the application issues a ping request to the
Micro Server. If the Micro Server is functional, it replies to
the ping request by causing the LonPingReceived()
callback event. In general, link layer idleness of more than
1.5 times the ping timer’s duration indicates a serious error.
An application can recover from this error by physically
resetting the Micro Server.

LonSetPostResetPause Disables or configures the Micro Server’s post reset delay.
Assign zero to disable or a value in the 1..255 ms range to
enable.

The Micro Server uses 50 ms by default.

Assignments to this value are stored in persistent memory
on the Micro Server.

ShortStack Callback Handler Functions
The ShortStack LonTalk/IP Compact API provides event handler functions for
managing network and device events.

Commonly Used Callback Handler
Functions
Table 32 lists the callback handler functions that you will most likely need to
define so that your application can perform application-specific processing for
certain LONWORKS events. You do not have to modify these callback functions if
you have no application-specific processing requirements.

ShortStack User’s Guide 243

Table 17. Commonly Used ShortStack Callback Handler Functions

Function Description

LonGetCurrentNvSize() Indicates a request for the network variable size.

The ShortStack LonTalk/IP Compact API calls this callback
handler function to determine the current size of a
changeable-type network variable.

For applications using the IzoT Interface Interpreter, this
callback is automatically implemented.

LonNvUpdateCompleted() This callback is no longer used. It indicates that either an
update network variable call or a poll network variable call
is completed.

Applications using the IzoT Interface Interpreter declare
onComplete events instead.

LonNvUpdateOccurred() This callback is no longer used. It indicates that a network
variable update request from the network has been
processed by the ShortStack LonTalk/IP Compact API. This
call indicates that the network variable value has already
been updated, and allows your host application to perform
any additional processing, if necessary.

Applications using the IzoT Interface Interpreter declare
onUpdate events instead.

LonOffline() This callback is no longer used. It represenets a request
from the network that the device go offline.

Installation tools use this message to disable application
processing in a device. An offline device continues to
respond to network management messages, but the host
application cannot propagate network variables or send
network messages.

When this function is called, the ShortStack Micro Server is
still online, but changes to the offline state as soon as this
callback handler completes.

Applications using the IzoT Interface Interpreter declare
onOffline events instead.

244 ShortStack LonTalk/IP Compact API

Function Description

LonOnline() This callback is no longer used. It represenets a request
from the network that the device go online.

Installation tools use this message to enable application
processing in a device.

When this function is called, the ShortStack Micro Server is
still offline, but changes to the online state as soon as this
callback handler completes.

Applications using the IzoT Interface Interpreter declare
onOnline events instead.

LonReset() This callback is no longer used. It is a notification that the
ShortStack Micro Server has been reset.

Applications using the IzoT Interface Interpreter declare
onReset events instead.

LonServicePinHeld() This callback is no longer used. It is an indication that the
Service input on the device has been activated for some
number of seconds (default is 10 seconds). Use it if your
application needs notification of the Service input being
active.

Applications using the IzoT Interface Interpreter declare
onService events instead.

LonServicePinPressed() This callback is no longer used. It is an indication that the
Service input on the device has been activated. Use it if
your application needs notification of the Service input
being activated.

Applications using the IzoT Interface Interpreter declare
onService events instead.

LonWink() This callback is no longer used. It indicates a wink request
from the network.

Installation tools use the Wink message to help installers
physically identify devices. When a device receives a Wink
message, it can provide some visual, audio, or other
indication for an installer to be able to physically identify
this device.

Applications using the IzoT Interface Interpreter declare
onWink events instead.

Application Messaging Callback Handler
Functions
Table 33 lists the callback handler functions that are called by the ShortStack
LonTalk/IP Compact API for application messaging transactions. Customize

ShortStack User’s Guide 245

these functions if you use application messaging in your ShortStack device.
Application messaging is optional.

If you choose not to support application messaging, you do not have to customize
these functions. These functions are automatically included when your
application declares at least one message tag.

Table 18. Application Messaging ShortStack Callback Handler Functions

Function Description

LonMsgArrived() An application or foreign frame message from the network to be
processed. This function performs any application-specific
processing required for the message. If the message is a request
message, the function must deliver a response using the
LonSendMsgResponse() function.

Application messages are always delivered to the application,
regardless of whether the message passed authentication. The
application decides whether authentication is required for a
message.

LonMsgCompleted() Indicates that a downlink transfer for a message, initiated by a
LonSendMsg() call, was completed.

If a request message has been sent, this callback handler is
called only after all responses have been reported by the
LonResponseArrived() callback handler.

LonResponseArrived() An application message response from the network. This
function performs any application-specific processing required
for the message.

Network Management Query Callback
Handler Functions
The ShortStack LonTalk/IP Compact API includes the optional network
management query API callback handler functions listed in Table 34. These
callbacks allow you to customize the application processing for responses to local
network management commands (see Table 29). Support of these network
management query API callback functions is optional.

If you do not plan to use extended local network management commands, there is
no need to customize or include these functions in your ShortStack application.
Use IML api extension 1 to include these functions.

246 ShortStack LonTalk/IP Compact API

Table 19. Network Management Query API Callback Handler Functions

Function Description

LonAddressReceived() Indicates that configuration data for the Micro
Server’s address table has been received.

LonAliasConfigReceived() Indicates that configuration data for the Micro
Server’s alias table has been received.

LonConfigDataReceived() Indicates that configuration data has been received
from the Micro Server. Receipt of this data is
initiated by a call to the LonQueryConfigData()
function.

LonDomainConfigReceived() Indicates that domain information has become
available. This event is initiated by the Micro
Server in response to a previous call to
LonQueryDomain() by the ShortStack application.

LonNvConfigReceived() Indicates that configuration data for the Micro
Server’s network variable table has been received.

LonStatusReceived() Indicates that the status report has been received
from the Micro Server. Receipt of this data is
initiated by a call to the LonQueryStatus()
function. Modify this function to perform
application-specific handling of the status report.

LonTransceiverStatusReceived() Indicates that the transceiver status report has been
received from the Micro Server. Receipt of this data
is initiated by a call to the
LonQueryTransceiverStatus() function. Modify
this function to perform application-specific
handling of the transceiver status.

Local Utility Callback Handler Functions
Table 35 lists the callback handler functions for the local utility functions
described in Local Utility Functions.

You can include the local API functions and their callback handler functions with
IML api extension 2.

ShortStack User’s Guide 247

Table 20. Local Utility API Callback Handler Functions

Function Description

LonAppSignatureReceived() Indicates the current host application signature.

LonEchoReceived() Provides the Micro Server’s echo response, containing
the transformed data from the corresponding
LonRequestEcho() request.

The application is responsible for verifying that the
echo response meets expectations.

LonGoConfiguredReceived() Indicates that the Micro Server has responded to the
LonGoConfigured() request.

LonGoUnconfiguredReceived() Indicates that the Micro Server has responded to the
LonGoUnConfigured() request.

LonMtIsBoundReceived() Indicates whether the specified message tag is bound.

LonNvIsBoundReceived() Indicates whether the specified network variable is
bound.

LonPingReceived() Indicates whether the Micro Server received the ping
message.

LonVersionReceived() Indicates the version number of the Micro Server
application and the Micro Server core library used for
the Micro Server.

248 ShortStack LonTalk/IP Compact API
I

ShortStack User’s Guide 249

B

LonTalk/IP ISI API

This appendix describes the functions and callbacks
included with the LonTalk/IP ISI API. It also describes why
and how to modify the API callbacks for use with your
ShortStack application.

250 LonTalk/IP ISI API

Introduction
The ShortStackIsiTypes.h and ShortStackIsiApi.h header files include all
types, enumerations, and prototypes that are needed to create an ISI-compliant
host application.

This appendix provides an overview of the ShortStack ISI functions and
callbacks. For detailed information about the LonTalk/IP ISI API, see the HTML
documentation that is available in the doc/api directory within your local IzoT
ShortStack SDK repository.

The LonTalk/IP ISI API
Table 36 lists the LonTalk/IP ISI API functions. When the host application calls
one of the functions listed in Table 36, a common function sends the downlink
message. When the API completes (that is, when the API receives either an ACK
or NACK response from the Micro Server for the downlink API call), it calls the
IsiApiComplete() callback handler function to inform the host application that
it can issue additional API calls.

Table 21. LonTalk/IP ISI API Functions

Function Description

IsiAcquireDomain() Starts or re-starts the domain ID acquisition
process in a device that supports domain
acquisition.

Do not use this function if the engine is started
with isiTypeS.

IsiCancelAcquistion() Cancels both device and domain acquisition.

After this function call completes, the ISI engine
calls the IsiUpdateUserInterface() function with
the IsiNormal event.

Do not use this function if the engine is started
with isiTypeS.

IsiCancelEnrollment() Cancels an open (pending or approved) enrollment.
When used on a connection host, a CSMX
connection cancellation message is issued to cancel
enrollment on the connection members. When
used on a device that has accepted (but not yet
implemented) an open enrollment, this function
causes the device to opt out of the enrollment
locally.

The function has no effect unless the ISI engine is
running and in the pending or approved state.

ShortStack User’s Guide 251

Function Description

IsiCreateEnrollment() Accepts a connection invitation. You can call this
function after the application has received and
approved a CSMO open enrollment message. If the
assembly is not already in a connection, or if the
assembly is in a connection and the device supports
direct connection removal, the connection is re-
created. If the assembly is already in a connection,
any previous connection information is replaced.
You cannot call this function with an assembly that
is already in a connection on a device that does not
support direct connection removal.

On a connection host that has received at least one
CSME enrollment acceptance message, this
command completes the enrollment and
implements the connection as new, replacing any
previously existing enrollment information
associated with this assembly.

Calling this function on a device that does not
support connection removal while indicating an
assembly number that is already engaged in
another connection, does not implement the new
connection. The IsiImplemented event is not
fired in this case. The application can use the
IsiQueryIsConnected() function to determine if a
given assembly is currently engaged in a
connection.

Use the IsiExtendEnrollment() function instead
where supported, unless application requirements
dictate otherwise.

The ISI engine must be running and in the correct
state when calling this function. For a connection
host, the ISI engine must be in the approved state.
Other devices must be in the pending state.

IsiDeleteEnrollment() Removes the specified assembly from all
connections, and sends a CSMD connection
deletion message to all other devices in each
connection to remove them from the connection.
This function has no effect if the ISI engine is
stopped.

252 LonTalk/IP ISI API

Function Description

IsiExtendEnrollment() Accepts a connection invitation on a device that
supports connection extension. You can call this
function after the application has received and
approved a CSMO open enrollment message. The
connection is added to any previously existing
connections. If no previous connection exists for
the assembly, a new connection is created. You
cannot call this function on a device that does not
support connection extension.

Where supported, and unless application
requirements dictate otherwise, call this function
instead of the IsiCreateEnrollment() function.

On a connection host that has received at least one
CSME enrollment acceptance message, this
command completes the enrollment and extends
any existing connections. If no previous connection
exists for the assembly, the ISI engine creates a
new connection.

The ISI engine must be running and in the correct
state for this function to have any effect. For a
connection host, the ISI engine must be in the
approved state. Other devices must be in the
pending state.

IsiFetchDevice() Fetches a device by assigning a domain to the
device from a domain address server (DAS). An
alternate method to assign a domain to a device is
for the device to use the IsiAcquireDomain()
function.

This function can only be called from a domain
address server.

IsiFetchDomain() Starts or restarts the fetch domain process in a
domain address server (DAS).

This function can only be called from a domain
address server.

IsiInitiateAutoEnrollment() Starts automatic enrollment. The local device
becomes the connection host. Automatic
enrollment can replace previous connections, if
any. When this call returns, the ISI connection is
implemented for the associated assembly.

This function cannot be called before the IsiWarm
event has been signaled in the
IsiUpdateUserInterface() callback.

This function does nothing when the ISI engine is
stopped.

ShortStack User’s Guide 253

Function Description

IsiIssueHeartbeat() Sends an update for the specified bound output
network variable and its aliases, using group
addressing. This function is typically called by the
IsiQueryHeartbeat() callback handler function.

This function requires that the ISI engine has been
started with the IsiFlagHeartbeat flag.

IsiLeaveEnrollment() Removes the specified assembly from all enrolled
connections as a local operation only. When used
on the connection host, the function is
automatically interpreted as
IsiDeleteEnrollment().

This function has no effect if the ISI engine is
stopped.

IsiOpenEnrollment() Opens manual enrollment for the specified
assembly. The device becomes a connection host
for this connection and sends a CSMO manual
connection invitation to all devices in the network.

The ISI engine must be running, and in the idle
state.

IsiQueryImplementationVersion() Returns the version number of this ISI
implementation.

This function returns its result asynchronously
through the
IsiImplementationVersionReceived() callback
function.

The most current ISI implementation is version
3.03. For this version, this function reports
implementation version 3.

IsiQueryIsBecomingHost() Returns TRUE if IsiOpenEnrollment() has been
called for the specified assembly and the
enrollment has not yet timed out, been cancelled,
or confirmed. The function returns FALSE
otherwise.

This function returns its result asynchronously
through the IsiIsBecomingHostReceived()
callback function.

IsiQueryIsConnected() Returns TRUE if the specified assembly is enrolled
in a connection. The function returns FALSE if
the ISI engine is stopped.

This function returns its result asynchronously
through the IsiIsConnectedReceived() callback
function.

254 LonTalk/IP ISI API

Function Description

IsiQueryIsRunning() Returns TRUE if the ISI engine is running and
FALSE if the ISI engine is stopped.

This function returns its result asynchronously
through the IsiIsRunningReceived() callback
function.

IsiQueryProtocolVersion() Returns the version of the ISI protocol supported
by the ISI engine. The number indicates the
maximum protocol version supported. The ISI
engine also supports protocol versions less than the
number returned unless explicitly indicated.

This function returns its result asynchronously
through the IsiProtocolVersionReceived()
callback function.

The most current ISI protocol version is 1.

IsiReturnToFactoryDefaults() Restores the device’s self-installation data to
factory defaults, causing the immediate and
unrecoverable loss of all connection information.

This function returns to the caller, however, calling
this function resets the Micro Server.

IsiStart() Starts the ISI engine. The ISI engine sends and
receives ISI messages, and manages the network
configuration of your device.

This function also specifies whether domain
acquisition server or client services are supported.

Calls to this function with the IsiTypeDas
parameter for a Micro Server that does not support
ISI DAS are NACKed.

IsiStartDeviceAcquisition() Starts or retriggers device acquisition mode on a
domain address server. The domain address server
responds to domain ID requests from devices that
implement a domain acquisition client, as long as it
is in device acquisition mode.

Call this function only if the ISI engine has been
started with the IsiTypeDas type.

IsiStop() Stops the ISI engine.

Certain ISI API calls are managed by the Micro Server itself. These include the
following functions:

• IsiTick()

• IsiApproveMsg()

ShortStack User’s Guide 255

• IsiProcessMsg()

• IsiProcessResponse()

The Micro Server automatically translates these calls according to the mode that
was used when starting the ISI engine. Wrapper functions for the related ISI
functions are implemented within the MicroServer.nc file. For a custom Micro
Server, you can modify those wrapper functions, for example, to intercept ISI
messages. These wrapper functions (and any extensions that you supply) must
be located on the Micro Server.

The LonTalk/IP ISI Callback Handler Functions
Table 37 lists the ShortStack ISI callback handler functions.

In any ISI application, callback handlers provide application-specific details to
the ISI engine. You can implement these callback handlers on your host
processor or in a custom Micro Server for ShortStack ISI applications. In either
case, the set of callback handler functions and their prototypes remain the same.

ISI callback handler functions must return to the caller as soon as possible,
providing the requested information.

Table 22. ShortStack ISI Callback Handler Functions

Function Description

IsiApiComplete() Indicates that the API function is complete and
that the result has been received.

The ISI engine calls this function when an API
function completes. Do not call an ISI API
function until the previous one completes.

This callback is available only on the host
processor.

IsiCreateCsmo() Constructs the IsiCsmoData portion of a
CSMO Message. The ISI engine calls this
function prior to sending a CSMO message.

You can implement this callback on an
application-specific custom Micro Server or on
the host. The standard Micro Servers expect
this callback on the host. Typical applications
implement this callback handler function in the
same location (host or custom Micro Server) as
the IsiGetWidth() callback handler function.

256 LonTalk/IP ISI API

Function Description

IsiCreatePeriodicMsg() Specifies whether the application has any
messages for the ISI engine to send using the
periodic broadcast scheduler. Because the ISI
engine sends periodic outgoing messages at
regular intervals, you can use this function to
send a message during one of the periodic
message slots. If the application has no
message to send, then this function must return
FALSE. If it does have a message to send, then
this function must return TRUE.

To use this function, enable application-specific
periodic messages using the
IsiFlagApplicationPeriodic flag when you
call the IsiStart() function.

The default implementation of this function
does nothing but return FALSE. You can
override this function by providing an
application-specific implementation of
IsiCreatePeriodicMsg().

Do not send any messages, start other network
transactions, or call other ISI API functions
while the IsiCreatePeriodicMsg() callback is
running. To call other ISI API functions or
start other network transactions, signal the
application’s readiness through an application-
specific utility in the IsiCreatePeriodicMsg()
callback function and evaluate the signal when
appropriate. This separate utility can send the
periodic message soon after the
IsiCreatePeriodicMsg() function is
completed.

You can implement this callback handler on an
application-specific custom Micro Server or on
the host. The standard Micro Servers use the
default implementation of this callback.

IsiGetAssembly() Returns the number of the first assembly that
can join a connection. The function returns
ISI_NO_ASSEMBLY (0xFF) if no such
assembly exists, or an application-defined
assembly number (0 to 254).

You can implement this callback on an
application-specific custom Micro Server or on
the host. The standard Micro Servers expect
this callback on the host.

ShortStack User’s Guide 257

Function Description

IsiGetConnection() Returns a pointer to an entry in the connection
table. The default implementation returns a
pointer to a built-in connection table with 32
entries, stored in the Micro Server’s on-chip
EEPROM memory (extended RAM for a Series
5000 Micro Server). You can override this
function to provide an application-specific
means of accessing the connection table, or to
provide an application table of a different size.

This function is frequently called and must
return as soon as possible.

If you override this function, you will typically
also override the
IsiGetConnectionTableSize() and
IsiSetConnection() functions. And, if you
implement any of these callback handlers either
on the host or on the Micro Server, you must
override the other two in the same location. You
can implement all three of these functions on
the Micro Server for the best performance.

IsiGetConnectionTableSize() Returns the number of entries in the connection
table. The default implementation returns the
number of entries in the built-in connection
table (32). You can override this function to
support an application-specific implementation
of the ISI connection table. You can use this
function to support a larger connection table.

The ISI library supports connection tables with
0 to 254 entries. The connection table size is
considered constant following a call to
IsiStart(); you must first stop, then re-start,
the ISI engine if the connection table size
changes dynamically.

If you override this function, you must also
override the IsiGetConnection() and
IsiSetConnection() functions. And, if you
implement any of these callback handlers either
on the host or on the Micro Server, you must
override the other two in the same location. You
can implement all three of these functions on
the Micro Server for the best performance.

Custom Micro Servers can change the
connection table size, or its location, or both.

258 LonTalk/IP ISI API

Function Description

IsiGetNextAssembly() Returns the next applicable assembly for an
incoming CSMO following the specified
assembly. The function returns
ISI_NO_ASSEMBLY (0xFF) if there are no
such assemblies, or an application-specific
assembly number (1 to 254). You can call this
function after calling the IsiGetAssembly()
function, unless IsiGetAssembly() returned
ISI_NO_ASSEMBLY.

You can implement this callback on an
application-specific custom Micro Server or on
the host. The standard Micro Servers expect
this callback on the host.

IsiGetNextNvIndex() Returns the network variable index of the
network variable at the specified offset within
the specified assembly, following the specified
network variable. Returns ISI_NO_INDEX
(0xFF) if there are no more network variables or
a valid network variable index (0 to 254)
otherwise.

You can implement this callback on an
application-specific custom Micro Server or on
the host. The standard Micro Servers expect
this callback on the host.

IsiGetNvIndex() Returns the network variable index (0 to 254) of
the network variable at the specified offset
within the specified assembly or
ISI_NO_INDEX (0xFF) if no such network
variable exists. This function must return at
least one valid network variable index for each
assembly number returned by
IsiGetAssembly() and
IsiGetNextAssembly().

You can implement this callback on an
application-specific custom Micro Server or on
the host. The standard Micro Servers expect
this callback on the host.

IsiGetNvValue() Returns the value of the specified network
variable.

You can implement this callback on the host,
but it is only required if ISI network variable
heartbeats are supported and enabled.

ShortStack User’s Guide 259

Function Description

IsiGetPrimaryDid() Returns a pointer to the default primary
domain ID for the device. The function also
provides the domain ID length. Domain IDs
can be 1, 3, or 6 bytes long; the 0-length domain
ID cannot be used for the primary domain.

You can override this function to override the
ISI standard domain ID value.

You can only use this function to define a
unique primary domain when creating a domain
address server, and to define a non-standard
domain when creating a non-interoperable self-
installed system. Both length and value of the
domain ID provided are considered constant
after the ISI engine is running. To change the
primary domain ID at runtime using the
IsiGetPrimaryDid() callback, stop and re-
start the ISI engine.

You can implement this callback on the Micro
Server. By default, the default implementation
is used. To create an ISI domain address server
with ShortStack, you must create a custom
Micro Server and override the
IsiGetPrimaryDid() function. Typically, such
an overridden IsiGetPrimaryDid() callback
returns the Micro Server’s own Neuron ID.

IsiGetPrimaryGroup() Returns the group ID for the specified
assembly. The default implementation returns
ISI_DEFAULT_GROUP (128).

You can implement this callback on an
application-specific custom Micro Server or on
the host. The standard Micro Servers expect
this callback on the host.

260 LonTalk/IP ISI API

Function Description

IsiGetRepeatCount() Specifies the repeat count used with all network
variable connections, where all connections
share the same repeat counter. The repeat
counter value is considered constant for the
lifetime of the application, and is only queried
when the device powers up the first time after a
new application image has been loaded, and
every time IsiReturnToFactoryDefaults()
runs. Only repeat counts of 1, 2 or 3 are
supported. To take full advantage of the
secondary frequency on a PL transceiver, only
use a repeat count of 1 or 3. This function has
no affect on ISI messages.

The default implementation of this function
always returns 3.

This function operates whether the ISI engine is
running or not.

You can implement this callback on an
application-specific custom Micro Server or on
the host. The standard Micro Servers use the
default implementation that is provided with
the ISI library, which results in 3 repeats.

IsiGetWidth() Returns the width in the specified assembly.
The width is equal to the number of network
variable selectors associated with the assembly.

You can implement this callback on an
application-specific custom Micro Server or on
the host. The standard Micro Servers expect
this callback on the host.

IsiImplementationVersionReceived() Retrieves the version number of this ISI
implementation.

This callback occurs as a result of an earlier call
to the IsiQueryImplementationVersion()
function.

IsiIsBecomingHostReceived() Reports TRUE if IsiOpenEnrollment() has
been called for the specified assembly and the
enrollment has not yet timed out, been
cancelled, or confirmed. The function reports
FALSE otherwise.

This callback occurs as a result of an earlier call
to the IsiQueryIsBecomingHost() API
function.

ShortStack User’s Guide 261

Function Description

IsiIsConnectedReceived() Reports TRUE if the specified assembly is
enrolled in a connection. The function reports
FALSE if the ISI engine is stopped.

This callback occurs as a result of an earlier call
to the IsiQueryIsConnected() API function.

IsiIsRunningReceived() Reports TRUE if the ISI engine is running and
FALSE if the ISI engine is stopped.

This callback occurs as a result of an earlier call
to the IsiQueryIsRunning() API function.

IsiProtocolVersionReceived() Retrieves the version of the ISI protocol
supported by the ISI engine. The number
indicates the maximum protocol version
supported. The ISI engine also supports
protocol versions less than the number returned
unless explicitly indicated.

This callback occurs as a result of an earlier call
to the IsiQueryProtocolVersion() API
function.

IsiQueryHeartbeat() Returns TRUE if a heartbeat for the network
variable with the specified global index has
been sent, and returns FALSE otherwise.
When network variable heartbeat processing is
enabled, and the ISI engine is running, the
engine queries bound output network variables
using this callback (including any alias
connections) whenever the heartbeat is due.
This function does not send the heartbeat
update—see IsiIssueHeartbeat(). For more
details on network variable heartbeat
scheduling, see the ISI Protocol Specification.

You can implement this callback handler on an
application-specific custom Micro Server or on
the host. The standard Micro Servers expect
this callback to be implemented on the host.

262 LonTalk/IP ISI API

Function Description

IsiSetConnection() Updates an entry in the connection table, which
needs to be kept in persistent, nonvolatile,
storage.

The default implementation updates an entry in
the built-in connection table with 32 entries,
stored in the Micro Server’s on-chip non-volatile
memory. You can override this function to
provide an application-specific means of
accessing the connection table, or to provide an
application table of a different size.

This function is frequently called and must
return as soon as possible.

If you override this function, you must also
override the IsiGetConnectionTableSize()
and IsiGetConnection() functions. And, if you
implement any of these callback handlers either
on the host or on the Micro Server, you must
override the other two in the same location. You
can implement all three of these functions on
the Micro Server for the best performance.

IsiUpdateUserInterface() Provides status feedback from the ISI engine.
These events are useful for synchronizing the
device’s user interface with the ISI engine. To
receive notification of ISI status events,
override the IsiUpdateUserInterface()
callback function. The default implementation
of this function does nothing.

This callback is typically, and by default,
implemented on the host.

IsiUserCommand() Informs the host application about user-defined
Micro Server events.

A custom Micro Server can inform the host
application about events that are otherwise
known only to custom code that is local to a
custom Micro Server.

See Discovering Devices for an example of using
this function.

An ISI-aware host application requires an ISI-aware Micro Server, but an ISI-
aware Micro Server can be used with an ISI-unaware host application and host
API.

As defined in the [ShortStack]\microserver\custom
\ShortStackIsiHandlers.h header file, an ISI callback handler function can
reside in one of the following locations:

ShortStack User’s Guide 263

• The ISI Library. The callback handler is an ISI default function. No
development effort is required to implement these functions, but no
customized behavior is available.

• The Micro Server application. The callback handler is a locally
overridden function. Customization of these handlers requires a custom
Micro Server. Assuming the Micro Server has sufficient resources, these
callback handler overrides offer the best performance and control and
minimal host footprint, but can lead to application-specific Micro Server
implementations.

• The host application. The callback handler is a remote function that uses
the ShortStack ISI protocol. These callback handlers are the most
flexible, but lowest performance ISI callback handlers. This type of
callback handler is typically used for application-specific callbacks, and
allows the use of a single Micro Server for multiple applications.

A callback handler function cannot call any other ISI callback handler functions,
unless both the caller and the called functions reside on the same platform (host
or Micro Server).

For each callback, you can choose whether the callback is handled by the ISI
default, by a version local to the Micro Server, or by the host application. The
[ShortStack]\microserver\custom\ShortStackIsiHandlers.h header file
includes conditional-compilation macros for each callback handler function:

• To direct the callback to the Micro Server

• To direct the callback to the host

• To enable the default implementation

The callback control macros use the following naming convention:

ISI_location_callback

For example: ISI_HOST_GETASSEMBLY or
ISI_SERVER_GETCONNECTIONTABLESIZE.

For a remote callback handler, the ShortStack Micro Server includes a proxy
function that receives the function’s parameters, packs them into a message
buffer, and passes the data to the host function.

If the host application attempts to send a response to a callback handler, and it is
unable to do so because there are no transmit buffers, it retries sending the
response until it is successful. The Micro Server’s RPC guard times out after 5
seconds, after which the Micro Server logs an error and resets. See Table 22,
Developing a ShortStack Application, for a list of the LonSystemError
enumeration values.

While waiting for the response, the Micro Server continues to process downlink
and uplink traffic. However, because only one downlink ISI API request can be
buffered, additional requests are NACKed. Other functionality might be delayed
and enqueued for later processing while waiting for the completion of an RPC.

ShortStack User’s Guide 265

C

Downloading a ShortStack
Application over the Network

This appendix describes considerations for designing a
ShortStack host application that allows host application
updates over the network.

266 Downloading a ShortStack Application Over the Network

Overview
For a Neuron hosted device, you can update the application image over the
network using a network management tool, such as the IzoT Commissioning
Tool. However, you typically cannot use the same tools or technique to update a
ShortStack application image over the network. Many ShortStack devices do not
require application updates over the network, but for those that do, this appendix
describes considerations for adding this capability to the device.

If a ShortStack host has sufficient non-volatile memory, it can hold two (or more)
application images: one image for the currently running application, and the
other image to control downloaded updates to the application. The device then
switches between these images as necessary. Because neither the ShortStack
LonTalk/IP Compact API nor the ShortStack Micro Server directly supports
updating the host application over the network, you must do the following:

1. Define a custom host application download protocol.

2. Implement an application download utility.

3. Implement application download capability within your ShortStack host
application.

For the application download process:

• The application must be running and configured for the duration of the
download.

• There must be sufficient volatile and non-volatile memory to store the
new image without affecting the current image.

• The application must be able to boot the new image at the end of the
download. During this critical period, the application must be able to
tolerate device resets and boot either the old application image or the new
one, as appropriate.

This appendix decribes some of the considerations for designing a ShortStack
application download function.

Custom Host Application Download Protocol
The custom host application protocol that you define for downloading a
ShortStack host application over the network must support the following steps:

1. Prepare for application download.

When the application download utility informs the current ShortStack
host application to start an application download, the application must
respond by indicating whether it is ready for the utility to begin the
download. The utility must be able to wait until the application is ready,
or abort download preparation after a timeout period. The utility can
also inform the user of its state.

During this stage, the ShortStack host application must verify that the
application to be downloaded can run on the device platform (using the
Micro Server key and link layer protocol version numbers or similar

ShortStack User’s Guide 267

mechanism), and verify that the application image is from a trusted
source (for example, by using an encrypted signature).

2. Download the application.

A reliable and efficient data transfer mechanism must be used. The
LONWORKS file transfer protocol (LW-FTP) can be used, treating the
entire application image as a file.

The download utility and the application must support long flash write
times during this portion of the download process. The ShortStack host
application must update the flash in the background, however, it might
be necessary for the protocol to define additional flow control to allow the
host application to complete flash writes before accepting new data.

3. Complete download.

The application download utility informs the current application that the
download is complete. The host application verifies the integrity of the
image, and either:

a. Accepts the image, and proceeds to the final steps below.

b. Requests retransmission of some sections of the image.

c. Rejects the download.

4. Boot the new application.

To boot the new application, you must implement a custom boot loader
(or boot copier) so that the host processor can load the new application
and restart the processor with the new image. See your host processor’s
and operating system’s documentation for recommendations and
information about creating a custom boot loader.

For the duration of the first three steps, the application must be running, the
link-layer driver needs to be operational, and the ShortStack device must be
configured and online.

Upgrading Multi-Processor Devices
A ShortStack device consists of at least two processor chips, each with their
respective applications: a Smart Transceiver with the ShortStack Micro Server
and your host processor with the ShortStack link-layer driver, ShortStack
LonTalk/IP Compact API, and your application program.

Because both processor chips must communicate through the link layer, both
must use the same protocol for application download, and have matching
settings.

Most updates to ShortStack host applications will likely address issues within
the application’s control algorithm, and leave the ShortStack LonTalk/IP
Compact API and link-layer driver unchanged. To ensure that the new
application is correct for the current device and its settings, the host application
download protocol must ensure that at least the following requirements are met
before control is handed to the new application:

268 Downloading a ShortStack Application Over the Network

• The Micro Server and the host application must support the same link-
layer protocol version. The link-layer protocol version is contained in the
Micro Server’s reset notification message.

• The Micro Server and the host application must support matching
transceiver types. You can configure the variations of the PL-20
transceiver into a Micro Server that supports any of the PL-20 channel
types (PL-20N, PL-20C, PL-20C-LOW, PL-20N-LOW), but you cannot run
an application designed for any of the supported power line channels on a
Micro Server designed for a twisted-pair free topology (TP/FT-10)
channel, nor can you run a TP/FT-10 Micro Server on a PL-20 channel.
The Micro Server can report the supported channel types through its
Micro Server key, which is part of the reset notification message.

• In addition to matching transceiver families, the host application may
require additional Micro Server features, such as support for the ISI
protocol. These settings are also contained in the Micro Server’s reset
notification message, if applicable.

• The Micro Server and host application must support the same physical
link-layer protocol (SCI or SPI). Unless the host processor controls the
Micro Server’s SBRB0 and SBRB1 input signals for bitrate selection,
both sides’ link-layer bit rates must match.

In addition, the new application will have certain requirements for the host
environment, such as availability of memory or I/O resources, or the availability
or version numbers of the embedded operating system. Your host application
download protocol can include an appropriate mechanism to determine and verify
these requirements before passing control to the new application.

In some cases, your host application download may require an upgrade to the
Micro Server image at the same time as the upgrade of the host application. The
following considerations apply for designing the dual-processor application
download protocol:

• Because a complete and fully operational ShortStack device is required to
run the host application download protocol, the host application download
must be completed first.

• The application cannot reset or initialize the Micro Server until the
download process has been completed for both the host application and
the Micro Server image.

• Because the Micro Server will also be updated in the process, some steps
of the application verification process can be postponed. For example, the
new host application may require a Micro Server key value that is
correctly implemented by the new Micro Server image, but not the
current one.

• After the successful download of the Micro Server image, the Micro
Server resets and enters quiet mode until the entire device has been
successfully initialized. While the Micro Server is in quiet mode, no
network communication is possible with the device.

• After the new Micro Server resets (after loading its new application
image), it sends a reset notification to the host application. This reset
notification reports the new Micro Server’s capabilities and attributes,
and indicates that an application initialization is required.

ShortStack User’s Guide 269

• After the host application has completed initialization, the host
application download protocol must perform any previously postponed
verification steps and pass control to the new host application, which in
turn initializes the Micro Server.

Application Download Utility
This tool reads the application image to be loaded, and runs the application
download protocol described in Custom Host Application Download Protocol. You
can write the utility as an IzoT Net plug-in or as any type of network-aware
application.

Download Capability within the Application
Your application implements the custom application download protocol, and
provides non-volatile storage for the new application image. The application
must also tolerate time consuming writes to flash during the transfer. At a
minimum, the ShortStack host application must reserve enough RAM to buffer
two flash sectors. When one sector has been completely received, the application
writes it to flash in a background process. If the write is not complete when the
second buffer is filled, the ShortStack host application tells the application
download utility to delay additional updates until the application is ready to
receive the data.

After the transfer is complete, and all data has been written to non-volatile
memory, the application performs all necessary verification tasks, and prepares
the image so that the boot loader can reboot the host processor from the new
image. This preparation must be defined so that a device or processor reset at
any point will result in a functioning ShortStack device. For example, the reset
may always cause a boot from the old application image, or from the new
application image, or from some temporary boot application that can complete
the transition (possibly with user intervention).

See your host processor and operating system documentation about guidance,
recommendations, and tools that support these tasks.

ShortStack User’s Guide 271

D

Glossary

This appendix defines many of the common terms used for
ShortStack device development.

B
block

A block, also known as a functional block, is a network visible component of
the software application on a LonTalk/IP or LON device. A block
encapsulates the datapoints and properties required for a task performed by
the device application.

For example, an LED controller device may provide functionality to
independently control the color of multiple LED lamps, and also to monitor
the power consumption and energy usage of the lamps. The LED controller
application may expose this functionality as an independent load control
block for controlling each lamp, as well as independent analog sensor blocks
for monitoring instantaneous power and energy consumption for each lamp.

Each block is defined by a profile that defines the datapoint and property
members that can be implemented by the block. A profile defines mandatory
and optional members. A block always implements the mandatory members,
and may also implement any of the optional members from the profile.

D
datapoint

A datapoint is a data value or structured set of values where each value has
specified encoding, units, range, and scaling. A datapoint may be published
or subscribed to by a LonTalk/IP or LON device, or it may be published by an
IzoT Server via the IzoT REST API. A datapoint published or subscribed to
by a device is called a device datapoint, and is also called a network variable.
A datapoint published by an IzoT Server is called a server datapoint. Both

272 Glossary

types of datapoints are just called "datapoint" when used in the context of a
device or an IzoT Server.

A device datapoint is a generalization of a network variable. Most device
datapoints implement a network variable (and are often the same as a
network variable), but a device datapoint can also implement other forms of
network data objects, or can hold additional data or meta-data.

Device datapoints may be shared among multiple LonTalk/IP and LON
devices. Each device datapoint represents a single scalar value or a structure
or union of multiple values containing 1 to 225 bytes. A device may have
multiple datapoints, and each datapoint may be shared with one or more
datapoints on any device or group of devices within a network.

downlink

Link-layer data transfer from the host to the Micro Server.

H
handshake

The communication across the link layer between the host serial driver and
the ShortStack Micro Server that confirms readiness to receive a link-layer
segment. For the serial driver, the handshake involves three or four control
signals.

host processor

A microcontroller or microprocessor that is attached to a ShortStack Micro
Server and runs a LonTalk/IP or LON application.

I
IzoT Interface Interpreter

A utility that generates the framework for your application and produces
device interface files.

The IzoT Interface Interpreter supersedes the LonTalk Interface Developer
utility, which was included with the ShortStack FX SDK.

IzoT ShortStack SDK

Software required to develop LonTalk/IP or LON applications for any
microcontroller or microprocessor. The kit includes software tools, examples,
documentation, plus the ShortStack LonTalk/IP Compact API and
ShortStack firmware.

L
link layer

A protocol and interface definition for communication between a host
processor and a ShortStack Micro Server; see ShortStack link layer.

link-layer protocol

The protocol that is used for data exchange across the link layer.

ShortStack User’s Guide 273

link-layer segment

A part of a message sent across the link layer that requires a handshake
between the host serial driver and the ShortStack Micro Server. Examples of
a link-layer segment are: the link-layer header, the link-layer extended
header, and the link-layer payload.

LonTalk/IP API

A C language interface that can be used by a LonTalk/IP or LON application
to send and receive network variable updates and application messages.
There is a full featured version shipped with the IzoT SDK and a smaller
version called the ShortStack LonTalk/IP Compact API shipped with the IzoT
ShortStack SDK.

LonTalk application framework

Application code and device interface data structures created by the IzoT
Interface Interpreter supporting an as-if method of programming using
expressions in annotated standard C source code or by the LonTalk Interface
Developer based on a model file.

LonTalk Interface Developer

A utility that generates an application framework for a LonTalk application;
the LonTalk Interface Developer is part of the LonTalk Platform and is
included with the ShortStack FX SDK.
The IzoT ShortStack SDK replaces the LonTalk Interface Developer with the
IzoT Interface Interpreter.

M
model file

A Neuron C application that is used to define the network interface for a
ShortStack FX SDK application.

The IzoT ShortStack SDK uses the IzoT Interface Interpreter, which does not
require or support model files.

N
network variable

A data item that a particular device application program expects to get from
other devices on a network (an input network variable) or expects to make
available to other devices on a network (an output network variable).
Examples are a temperature value, switch value, and actuator position
setting.

Neuron C

A programming language based on ANSI C with extensions for control
network communication, I/O, and event-driven programming; also used for
defining a network interface when used for a model file.

274 Glossary

S
ShortStack application

An application for a LONWORKS device implemented with the LonTalk
Compact API and a ShortStack Micro Server.

ShortStack device

A LONWORKS device based on the ShortStack LonTalk/IP Compact API and a
ShortStack Micro Server.

ShortStack Driver API

A portable C language hardware driver that encapsulates platform-
dependent code for transferring data between a host processor and a
ShortStack Micro Server.

ShortStack Firmware

Firmware for an Echelon Smart Transceiver or Neuron Processor that
enables the Smart Transceiver to be used as a network interface by a
ShortStack host processor.

ShortStack host processor

A microprocessor or microcontroller that is integrated with the ShortStack
LonTalk/IP Compact API, ShortStack Driver API, and a ShortStack Micro
Server to create an IzoT device.

ShortStack link layer

The physical connection and protocol used to attach a ShortStack host
processor to a ShortStack Micro Server; the hardware interface is either an
SCI or SPI serial interface.

ShortStack LonTalk/IP Compact API

A compact version of the LonTalk/IP API for ShortStack devices with support
for up to 254 network variables.

ShortStack Micro Server

An Echelon Smart Transceiver running the ShortStack Firmware.

U
uplink

Link-layer data transfer from the Micro Server to the host.

ShortStack User’s Guide 275

Index

3
3120, loading, 44
3150, loading, 44

5
5000, loading, 45, 46

A
address table, 216
alias table, 216
ANSI C, 70
ANSI/CEA 709.1-B, 2
APB, 43
appInitData structure, 34
application

downloading over a network, 266
tasks, 132

application message, 135
architecture, 9
assembly, 166
AT29C010A, 40
AT29C512, 40
authentication

description, 230
key, 230

automatic enrollment, 170

B
big endian, 68
bit rate, link layer

SCI, 79
selecting, 74
SPI, 84

bit-field members, 126
blank application, 45
BPM Microsystems, 42
buffers, transmit and receive, 118
byte orientation, 68

C
callbacks

LonTalk Compact API, 242
ShortStack ISI API, 255

clock rate, 38
collision, write, 87
command byte, link-layer, 102
compiler, host, 70
connection

assembly, 166
canceling, 182

controller, 169
deleting, 182
host, 166
implementing, 180
invitation, 166
network variable, 166
recovery, 194

context, multiple, 132
control network protocol, 2
controlled enrollment, 170
CPNV, 154
CSMA, 170
CSMC, 181
CSME, 178
CSMO, 170
CSMR, 170
CSMX, 182
CTRP, 170
CTRQ, 170
CTS~, 77
custom Micro Server

configuring, 205
developing, 207
DMF, 215
memory, 215
overview, 204
restrictions, 204
with ISI, 210
without ISI, 208

D
DAS, 187
developer's kit, 16
development

host environment, 70
process, 11

device
deinstalling, 198
discovery, 187
initialization, 63, 133

device table
host application, 192
Micro Server, 187

DMF
custom Micro Server, 215

domain address, 163
domain address server, 187
domain table, 217
downlink

SCI, 81, 108
SPI, 87, 115

downloading an application over a network, 266
driver

buffers, 118
overview, 9, 102

276 Index

SCI, 106
SPI, 113

DRUM, 187

E
EEBLANK utility, 45
EEPROM network variable, 154
EIA-232 interface

FT 5000 EVB, 55
Mini kit, 61

EN 14908.1, 2
endian, 68
enrollment, 166
enumerations, 126
error detection, link layer, 118
error log, 143
event handler, 134
events, ISI, 183
extended header, link-layer, 102

F
file

extension, Micro Server, 43
LonTalk Compact API, 17
names, Micro Server, 42

firmware images, 18
flush mode, 134
FT 5000 EVB

EIA-232 interface, 55
Gizmo interface, 51
jumper settings, general, 50
logic analyzer header, 58
non-volatile memory, 57

FTXL
comparison with ShortStack and Neuron hosted

devices, 5
functions

LonTalk Compact API, 236
ShortStack ISI API, 250

G
Gizmo interface

FT 5000 EVB, 51
Mini kit, 59

H
handshake

SCI, 111
SPI, 117

hardware interface, 72
header, link-layer, 102
HiLo Systems, 42
host latency, 76
host processor

initial health check, 120
selecting, 68

host, connection, 166

HRDY~, 77

I
in-circuit programming, 46
info bytes, link-layer, 102
installation, 16
interoperable self-installation. See ISI
invitation

accepting, 178
connection, 166
receiving, 176

IO9 pin, 74
ISI

3120, 159
3150, 159
3170, 160
5000, 160
accepting invitation, 178
canceling connection, 182
comparing ShortStack and Neuron C, 199
connection, 166
deinstalling device, 198
deleting connection, 182
device discovery, 187
device table, 187
domain address server, 187
enrollment, 166
events, 183
implementing connection, 180
network address, 162
network variable connections, 166
overview, 158
receiving invitation, 176
recovering connection, 194
ShortStack API, 250
ShortStack application, 159
starting, 161
stopping, 161

ISO 7498-1, 2
ISO/IEC 14908, 2

K
key

authentication, 230
Micro Server, 64

L
language, host programming, 70
latency, host, 76
Ldv* functions, 104
length byte, link-layer, 102
link layer

error detection, 118
message, 102
recovery, 118

link-layer bit rate
SCI, 79
selecting, 74
SPI, 84

ShortStack User’s Guide 277

little endian, 68
local network management tasks, handling, 140
logic analyzer

FT 5000 EVB header, 58
setup, 91

LON_ENUM_* macros, 127
LON_STRUCT_* macros, 126
LonEventHandler() function, 134
LonInit() function, 133
Lonmaker Integration tool, 48
LonNiAppInit message

SCI trace, 93
SPI trace, 98

LonNiNvInit message
SCI trace, 94
SPI trace, 98

LonNiReset message
SCI trace, 96
SPI trace, 98

LonPlatform.h, 127
LonResetNotification message

SCI trace, 96
SPI trace, 99

LonTalk Compact API
callbacks, 242
changes, 234
customizing, 235
description, 234
files, 17
functions, 236
memory requirements, 235
multiple contexts, 132
overview, 11
porting, 124
serial driver functions, 104
using, 130

LonTalk Interface Developer
files, 33

LonWorks device
single processor chip, 3

LonWorks network, 2

M
managed network, 158
management tasks, handling, 140
manual enrollment, 170
memory

LonTalk Compact API requirements, 235
map, 39

message code, 136
Micro Server

clock rate, 38
custom, 204
example health check, SCI, 92
example health check, SPI, 97
hardware, 38
hardware interface, 72
I/O pins for SCI, 78
I/O pins for SPI, 83
image file names, 42
initial health check, 89

initialization, 63
key, 64
link-layer bit rate, 74
logic analyzer setup, 91
memory map, 39
standard firmware images, 18

MicroServer.h, 213
MicroServerIsiHandlers.h, 214
Mini kit

custom Micro Server, 205
EIA-232 interface, 61
Gizmo interface, 59

MISO, 83, 87
MOSI, 83, 86

N
NDL, 43
NEI, 43
network

address, 162
managed, 158
management tasks, 140
self-installed, 158

network variable
configuration table, 217
connections, 166
EEPROM, 154
fetch example, 112

Neuron hosted device
comparison with FTXL and ShortStack, 5

NFI, 43
NME, 43
NMF, 43
NodeBuilder Development Tool, 205
NodeLoad utility, 47
non-volatile memory, 69
NXE, 43

O
open enrollment, 166
OSI Model, 2

P
portability, 124
processing power, 69
programming language, host, 70
project.xif, 35
pull-up resistors, 72

Q
quiet mode, 63, 134

R
R/W~, 83
RDCF, 194
RDCS, 194

278 Index

RDCT, 194
recovery

application, 155
link layer, 118

reliability, 72
requirements, 8
reset events, 143
RESET~ pin, 73
resistors, pull-up, 72
restrictions, 8
RTS~, 77
RXD, 77

S
SCI

architecture, 10
bit rate, 79
communications interface, 80
downlink, 81, 108
example health check, 92
handshake, 111
I/O pins, 78
network variable fetch example, 112
overview, 77
uplink, 81, 106

SCLK, 83
SCPTnwrkCnfg, 161
segment, link-layer, 102
self-installed network, 158
serial communications, 68
serial communications interface. See SCI
serial driver

buffers, 118
overview, 9, 102

serial peripheral interface. See SPI
ShortStack

architecture, 9
comparison with FTXL and Neuron hosted

devices, 5
developer’s kit, 16
development process, 11
LonTalk Compact API, 11
requirements, 8
restrictions, 8
serial driver, 9

ShortStack firmware
images, 18

ShortStack ISI API
callbacks, 255
description, 250
functions, 250

ShortStackDev.c, 34
ShortStackDev.h, 33
ShortStackIsiHandlers.h, 213
SPI

architecture, 10
communications interface, 85
downlink, 87, 115
example health check, 97
handshake, 117
I/O pins, 83
MISO, 87
MOSI, 86
overview, 82
resynchronization, 89
uplink, 86, 113
write collision, 87

SS~, 83
SYM, 43

T
TREQ~, 83
TXD, 77

U
uplink

SCI, 81, 106
SPI, 86, 113

V
volatile memory, 69

W
write collision, 87

X
XIF, 43

	Welcome
	Audience
	What’s New in the IzoT ShortStack SDK
	Related Documentation
	Table of Contents
	Introduction to the IzoT ShortStack SDK
	Overview
	IzoT Device Architectures
	IzoT ShortStack SDK Application Development
	Neuron Hosted and IzoT ShortStack Device Characteristics
	IzoT ShortStack SDK and CPM 4200 Wi-Fi SDK

	Requirements and Restrictions for ShortStack
	Network Installation
	ShortStack Architecture
	The ShortStack Serial Driver
	SCI Architecture
	SPI Architecture

	The ShortStack LonTalk/IP Compact API

	Overview of the ShortStack Development Process

	Getting Started with the IzoT ShortStack SDK
	IzoT ShortStack SDK Overview
	Installing the IzoT ShortStack SDK
	ShortStack LonTalk/IP Compact API Files
	Standard Micro Server Firmware Images
	3
	Introduction to the IzoT Markup Language
	Overview
	Selected Introductory Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	The Simple Application Example
	4
	Integrating the IzoT Interface Interpreter

	Input and Output Files
	Pre-build Step or Script Method
	Makefile Method
	# compileOutput Files in Detail
	ShortStackDev.h
	ShortStackDev.c
	main.xif
	5
	Selecting and Creating a ShortStack Micro Server

	Introduction to the IzoT Markup Language
	Overview
	Selected Introductory Examples
	The Simple Application Example

	Integrating the IzoT Interface Interpreter
	Input and Output Files
	Pre-build Step or Script Method
	Makefile Method
	# compileOutput Files in Detail

	Selecting and Creating a ShortStack Micro Server
	Overview
	Selecting the Micro Server Hardware
	Micro Server Clock Rate
	Micro Server Memory Map

	Preparing the ShortStack Micro Server
	Firmware Image File Names
	Loading an FT 3120, PL 3120, or PL 3170 Smart Transceiver
	Loading an FT 3150 or PL 3150 Smart Transceiver
	Loading a Blank Application

	Loading an FT 5000 Smart Transceiver
	Loading an FT 6050 Smart Transceiver
	Using a Network Management Tool for In-Circuit Programming
	Using the NodeLoad Utility with ShortStack
	Example

	Using the IzoT Commissioning Tool with ShortStack

	Working with FT 6000 EVB or FT 5000 EVB Evaluation Boards
	General Jumper Settings for the FT 5000 EVB and FT 6000 EVB
	Using the Gizmo Interface (SCI or SPI)
	Using the EIA-232 Interface (SCI)
	Clearing the Non-Volatile Memory
	For the FT 5000 EVB
	For the FT 6000 EVB

	Using a Logic Analyzer

	Working with Mini EVB Evaluation Boards
	Using the Gizmo Interface (SCI)
	Using the EIA-232 Interface (SCI)

	ShortStack Device Initialization
	Using the ShortStack Micro Server Key

	Selecting the Host Processor
	Selecting a Host Processor
	Serial Communications
	Byte Orientation
	Processing Power
	Volatile Memory
	Modifiable Non-Volatile Memory
	Compiler and Application Programming Language
	Selecting the Development Environment

	Designing the Hardware Interface
	Overview of the Hardware Interface
	Reliability
	Serial Communication Lines
	The RESET~ Pin
	Using the IO9 Pin
	Selecting the Link-Layer Bit Rate
	Host Latency Considerations
	SCI Interface
	ShortStack Micro Server I/O Pin Assignments for SCI
	Setting the SCI Bit Rate
	SCI Communications Interface
	SCI Micro Server to Host (Uplink) Control Flow
	SCI Host to Micro Server (Downlink) Control Flow
	SPI Interface
	ShortStack Micro Server I/O Pin Assignments for SPI
	Setting the SPI Bit Rate
	SPI Communications Interface
	SPI Micro Server to Host Control Flow (MOSI)
	SPI Host to Micro Server Control Flow (MISO)
	SPI Resynchronization

	Performing an Initial Micro Server Health Check
	Setting Up a Logic Analyzer for ShortStack
	Example Health Check for SCI
	Example Health Check for SPI

	Creating a ShortStack Serial Driver
	Overview of the ShortStack Serial Driver
	Role of the ShortStack LonTalk/IP Compact API
	Role of the ShortStack Serial Driver
	ShortStack LonTalk/IP Compact API Interface
	Creating an SCI ShortStack Driver
	SCI Uplink Operation
	SCI Downlink Operation
	Network Variable Fetch Example

	Creating an SPI ShortStack Driver
	SPI Uplink Operation
	SPI Downlink Operation

	Transmit and Receive Buffers
	Link-Layer Error Detection and Recovery
	Loading the ShortStack Application into the Host Processor
	Performing an Initial Host Processor Health Check

	Porting the ShortStack LonTalk/IP Compact API
	Portability Overview
	Bit Field Members
	Enumerations
	LonPlatform.h
	Testing the Ported API Files

	Developing a ShortStack Application
	Overview of a ShortStack Application
	Using the ShortStack LonTalk/IP Compact API
	Using Multiple System Execution Contexts

	Tasks Performed by a ShortStack Application
	Initializing the ShortStack device
	Periodically Calling the Event Handler
	Exchanging NV Data with Other Devices
	Example

	Communicating with Application Messages
	Sending an Application Message
	Receiving an Application Message

	Handling Management Tasks and Events
	Handling Local Network Management Tasks
	Handling Reset Events
	Querying the Error Log
	Runtime Interface Selection
	Static Interface Framework
	Runtime Interface Selection Framework Architecture
	Callback Dispatch
	Interface Selection
	Interface Switchover
	Further Steps
	Sharing Code
	Dispatcher Extensions

	Dispatched Callbacks
	Persistent NVs
	Application Start-Up and Failure Recovery

	Developing a ShortStack Application with ISI
	Overview of ISI
	Using ISI in an IzoT ShortStack SDK Application
	Running ISI on a 3120 Device
	Running ISI on a 3150 Device
	Running ISI on a PL 3170 Device
	Running ISI on an Series 6000 or 5000 Device

	Tasks Performed by a ShortStack ISI Application
	Starting and Stopping ISI
	Implementing a SCPTnwrkCnfg Property
	Managing the Network Address
	Supporting a Pre-Defined Domain
	Acquiring a Domain from a DAS
	Fetching a Device from a Domain Address Server
	Fetching a Domain for a DAS

	Managing Network Variable Connections
	ISI Connection Model
	Opening Enrollment
	Receiving an Invitation
	Accepting a Connection Invitation
	Implementing a Connection

	Canceling a Connection
	Deleting a Connection
	Handling ISI Events
	Domain Address Server Support
	Discovering Devices
	Maintaining a Device Table within the Micro Server
	Maintaining a Device Table within a Host Application

	Recovering Connections
	Example 1: Custom Micro Server Implementation
	Example 2: Host Implementation

	Deinstalling a Device
	Comparing ShortStack ISI and Neuron C ISI Implementations

	Custom Micro Servers
	Overview
	Custom Micro Server Benefits and Restrictions
	Configuring and Building a Custom Micro Server
	Overview of Custom Micro Server Development
	Creating a Custom Micro Server without ISI Support
	Creating a Custom Micro Server with ISI Support
	Configuring MicroServer.h for ISI
	Configuring ShortStackIsiHandlers.h
	Implementing ISI in MicroServerIsiHandlers.c

	Supporting Direct Memory Files
	Managing Memory
	Address Table
	Alias Table
	Domain Table
	Network Variable Configuration Table

	Application Migration from ShortStack FX to IzoT ShortStack
	Who Should Upgrade
	Using an IzoT ShortStack SDK 4.30 Micro Server with the ShortStack FX SDK
	Upgrading a ShortStack FX SDK Project for FT 6050
	Migration From LonTalk Interface Developer to Izot Interface Interpreter
	Migrate the Model File
	Migrate Event Handlers

	Authentication
	Using Authentication
	Specifying the Authentication Key
	How Authentication Works
	ShortStack LonTalk/IP Compact API

	ShortStack LonTalk/IP Compact API
	Introduction
	Changes to the API

	Customizing the API
	API Memory Requirements
	The ShortStack LonTalk/IP Compact API and Callback Handler Functions
	ShortStack LonTalk/IP Compact API Functions
	Commonly Used Functions
	Other Functions
	Application Messaging Functions
	Network Management Query Functions
	Network Management Update Functions
	Local Utility Functions

	ShortStack Callback Handler Functions
	Commonly Used Callback Handler Functions
	Application Messaging Callback Handler Functions
	Network Management Query Callback Handler Functions
	Local Utility Callback Handler Functions
	B
	LonTalk/IP ISI API

	LonTalk/IP ISI API
	Introduction
	The LonTalk/IP ISI API
	The LonTalk/IP ISI Callback Handler Functions

	Downloading a ShortStack Application over the Network
	Overview
	Custom Host Application Download Protocol
	Upgrading Multi-Processor Devices
	Application Download Utility
	Download Capability within the Application

	Glossary
	Index

