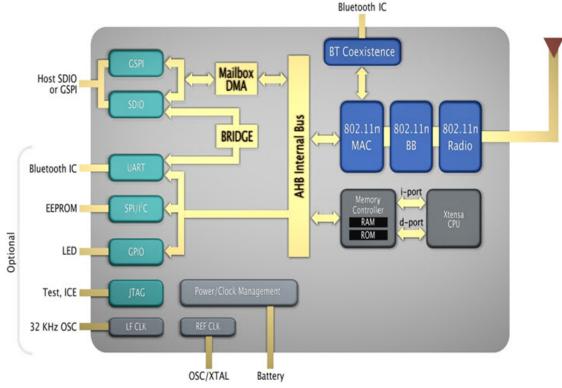


# AR6103 ROCm<sup>TM</sup> Integrated 802.11n


# **General Description**

The AR6103 is a small form factor 802.11 b/g/nWiFi solution optimized for low-power, lowcost and highly integrated mobile and portable CE devices.

The AR6103 is part of the 3rd generation ROCm<sup>™</sup> family of mobile 11n devices,

employing the world's lowest power consumption embedded architecture.

The AR6103 can support any number of external Bluetooth devices, and includes advanced PTA coexistence support. A flexible architecture enables optional customization to meet customer specific profiles and use cases.



**AR6103 Block Diagram** 

On-chip high-efficiency high-output EPA™ power amplifier and integrated LNAs with zero calibration eliminate the need for external RF components. Ultra low power consumption radio architecture and proprietary power save technologies extend battery life. On-chip high-efficiency PMU (power management unit) enables directconnect to battery, eliminating the need for external regulators. An on-chip embedded

CPU handles complete 11n processing to minimize host processor loading.

The AR6103 is available in a low profile 8.3mm x 9.2mm LGA package with 500um pitch pads for robust low-cost PCB design.

The AR6103 can be treated as a single -row QFN for direct on-board designs.

The AR6103 is halogen-free, Pb-free and fully ROHS compliant.

© 2010 by Atheros Communications, Inc. All rights reserved. Atheros<sup>®</sup>, Atheros Driven<sup>®</sup>, Atheros XR<sup>®</sup>, Driving the Wireless Future<sup>®</sup>, ROCm<sup>®</sup>, Super A/G<sup>®</sup>, Super G<sup>®</sup>, Total 802.11<sup>®</sup>, and Wake on Wireless<sup>®</sup> are registered by Atheros Communications, Inc. Atheros SST<sup>™</sup>, Signal-Sustain Technology<sup>™</sup>, the Air is Cleaner at 5-GHz<sup>™</sup>, XSPAN<sup>®</sup>, Wireless Future. Unleashed Now.<sup>®</sup>, and 5-UP<sup>™</sup> are trademarks of Atheros Communications, Inc. The Atheros logo is a registered trademark of Atheros Communications, Inc. All other trademarks are the property of their respective holders. Subject to change without notice PRELIMINARY: ATHEROS CONFIDENTIAL . 1

# **AR6103 Features**

AR6103S - High performance, ultra-low power, single stream (1x1) IEEE 802.11n featuring:

- Half Guard Interval for high max throughput;
- Frame Aggregation for high max throughput;
- Space Time Block Coding (STBC) for improved downlink robustness over range; and
- Low Density Parity Check (LDPC) encoding for improved uplink robustness over range
- Near zero power consumption in idle and stand-by enables users to leave Wi-Fi always on"

- Integrated high-power, high efficiency linearized Power Amplifier
- Best in class Rx sensitivity for superior throughput rate-over-range performance
- Support for standard interfaces including:
- SDIO 2.0 (50MHz, 4-bit and 1-bit)
- Integrated Sleep Clock eliminates the need for expensive bulky 32kHz real-time clock
- Integrated conformal RF shielding and near-zero RBOM for lowest cost
- Atheros proprietary Ap Mode for mobile devices, and DirectConnect<sup>TM</sup> Peer-to-Peer connectivity.

# Table of Contents

| 1   | Features Summary 5                              |
|-----|-------------------------------------------------|
| 1.1 | Overview5                                       |
|     | 1.10.1 AP Mode (Mobile Hot Spot) 8              |
|     | 1.11.1 TCP Checksum8                            |
| 2   | WiFi Functional Description 9                   |
| 2.1 | Overview9                                       |
|     | 2.9.1 CPU Reset10                               |
|     | 2.12.1 Hardware Power States                    |
|     | 2.13.1 High Speed Clocking13                    |
| 3   | Electrical Performance and<br>Characteristics15 |
| 4   | Pin Assignments and<br>Descriptions19           |
| 5   | Package Dimensions 25                           |
|     | Assembly Guidelines                             |
| 7   | Application Schematic 29                        |
| 8   | Ordering Information                            |

# 1. Features Summary

#### 1.1 Overview

The AR6103 is a single package combination IEEE 80211 (b, g, n) based on cutting edge technology from the AR6003 ROCm<sup>™</sup> family of mobile 11n. The AR6103 contains 802.11 including full digital MAC and baseband engines handling all 802.11b (CCK), 11g/n (OFDM). An embedded low-power CPU cores minimize host loading and maximize flexibility to support customer specific profiles and use cases.

The AR6103 is architected for ultra-low power consumption, with near zero power consumption in idle and stand-by modes, enabling users to leave Wi-Fi "always on".

A pin-compatible standalone 802.11n plus advanced Bluetooth device (AR6133) is also available.

# 1.2 Radio Front End

The AR6103 features a high-power highefficiency on-chip power amplifier featuring Atheros proprietary EPA<sup>™</sup> linearization technology for Wi-Fi, and highly integrated LNAs enable high performance, low power consumption, and near-zero RBOM for lowest cost.

# 1.3 Power Management

The AR6103 features direct connection to battery, eliminating the need for external regulators and/or PMU. The AR6103 supports operating voltage from **4.8V** down to 2.5V and is tolerant of momentary overvoltage up to 5.5V. An on-chip switching regulator supports PWM mode and burst mode to optimize power efficiency under both peak operation and low load conditions. An internal PMU with separate analog and digital LDO regulation provides superior noise isolation for analog and digital supplies.

An optional PMU bypass mode, disables the on-chip switching regulator to allow an external 1.8V regulated supply to directly power the device, if so desired.

The AR6103 power management engine utilizes advanced power save techniques such as: gating clocks to idle or inactive blocks, voltage scaling to specific blocks in certain states, fast start and settling circuits to reduce Tx and active duty cycles, CPU frequency scaling, and other techniques to optimize power consumption across all operation states.

# 1.4 Manufacturing Calibration

The AR6103 utilizes internal self-calibration and BIST (built-in self test) circuits to maintain optimal performance over temperature, time and process variation. The AR6103 is delivered fully tested and does not require any customer manufacturing line calibration.

#### 1.5 Internal One-Time Programmable Memory

The AR6103 includes internal one-time programmable memory which may be used to store the device MAC address, eliminating the need for external EEPROM.

# 1.6 Reference Frequency

The AR6103 incorporates an on-chip 26MHz (20ppm) reference frequency source. Internally, the system reference frequency is sleep regulated and gated to enable the internal crystal to be powered down when the device is in sleep mode. Manufacturing calibration of the crystal is not required, but is supported as an option.

# 1.7 Internal Sleep Clock

The AR6103 incorporates integrated on-chip low power sleep clocks to regulate internal timing, eliminating the need for any external 32kHz real time clocks or crystal oscillators.

# 1.8 Interfaces

The AR6103 supports SDIO 1.x and the latest 2.0 standard.

# 1.8.1 Standard Host Interface

The AR6103 supports industry standard SDIO 2.0 (50MHz, 4-bit and 1-bit) and GSPI (Generic SPI) for Wi-Fi.

# 1.9 Mobile 802.11n

The AR6103 incorporates the latest generation of mobile 802.11n technology from Atheros. The AR6103 is draft 802.11n compliant and features Frame aggregation, reduced interframe spacing (RIFS) and half guard intervals for improved throughput and space time block codes (STBC) on downlink receptions and Low Density Parity Check (LDPC) codes on uplink transmissions for improved robustness over range. Table 1-1 shows the 1 802.11n (PHY layer) throughput at different modulations.

| Mode         | MCS | Modulation | Data Rate | e (Mbps) |
|--------------|-----|------------|-----------|----------|
|              |     |            | 20N       | ĺHz      |
|              |     |            | FGI       | HGI      |
|              | 0   | BPSK       | 6.5       | 7.2      |
|              | 1   | QPSK       | 13.0      | 14.4     |
| IEEE 802.11n | 2   | QPSK       | 19.5      | 21.7     |
|              | 3   | 16-QAM     | 26.0      | 29.9     |
|              | 4   | 16-QAM     | 39.0      | 43.3     |
|              | 5   | 64-QAM     | 52.0      | 57.8     |
|              | 6   | 64-QAM     | 58.5      | 65.0     |
|              | 7   | 64-QAM     | 65.0      | 72.2     |

Table 1-1. 802.11n (PHY layer) Throughput at Different Modulations

Host interface design optimized for high throughput, low latency, and very low host loading enable high effective throughput. See Table 1-2.

| MCS | Modulation | TCP Data Rate (Mbps) |        |  |  |  |
|-----|------------|----------------------|--------|--|--|--|
|     |            | 20MHz                | Z      |  |  |  |
|     |            | FGI                  | HGI    |  |  |  |
| 0   | BPSK       | 5.6                  | 6.1    |  |  |  |
| 1   | QPSK       | 10.9                 | 12.0   |  |  |  |
| 2   | QPSK       | 16.1                 | 17.7   |  |  |  |
| 3   | 16-QAM     | 21.1                 | 23.3   |  |  |  |
| 4   | 16-QAM     | 30.5                 | 33.5   |  |  |  |
| 5   | 64-QAM     | 39.2                 | 40.8   |  |  |  |
| 6   | 64-QAM     | 43.4                 | 47.4   |  |  |  |
| 7   | 64-QAM     | 47.4                 | 51.8   |  |  |  |
| MCS | Modulation | UDP Data Rate        | (Mbps) |  |  |  |
| 0   | BPSK       | 6.1                  | 6.7    |  |  |  |
| 1   | QPSK       | 12.0                 | 13.3   |  |  |  |
| 2   | QPSK       | 17.8                 | 19.8   |  |  |  |
| 3   | 16-QAM     | 23.5                 | 26.0   |  |  |  |
| 4   | 16-QAM     | 34.5                 | 38.0   |  |  |  |
| 5   | 64-QAM     | 44.8                 | 49.3   |  |  |  |
| 6   | 64-QAM     | 49.9                 | 54.7   |  |  |  |
| 7   | 64-QAM     | 54.7                 | 60.1   |  |  |  |

Table 1-2. Effective 802.11n Throughput

Host CPU running 88MHz, SDIO 2.0, 8-subframe per A-MPDU and host assisted re-ordering

The AR6103 is fully compliant with IEEE 802.11e QoS, Wi-Fi Alliance WMM® Power Save and 802.11n power saving, ensuring the lowest possible power consumption.

The AR6103 features hardware-based AES, AES-CCMP, and TKIP engines for faster data encryption, and supports industry leading security features including Cisco CCXv4 ASD, WAPI (for China), Wi-Fi Protected Setup (WPS), along with standard WEP/WPA/WPA2 for personal and enterprise environments.

#### 1.10 Advanced Wi-Fi Features

Advanced features such as Host wake-onwireless and ARP (address resolution protocol) off-loading enable the Wi-Fi link to remain associated for extended periods with host processor asleep for additional deep system power savings.

Other standard Wi-Fi features include:

- WWR, 802.11d, 802.11h
- Wi-Fi Protected Setup (WPS)
- Device based scanning & roaming, tunable parameters optimized for seamless handover

- Statistics and events for monitoring
- Self-managed power state handling
- Self-contained beacon processing
- Shared authentication
- Adhoc power save
- Multiple PMK Id support
- Simulated UAPSD
- T-Spec support
- Production flow diagnostics
- Dynamic PS-Polling for enhanced coexistence performance with Bluetooth
- QoS support for VoIP applications

# 1.10.1 AP Mode (Mobile Hot Spot)

Atheros industry leading AP Mode feature allows the AR6103 device to operate as **both a station and an Access Poin**t, enabling seamless station-to-station interconnection with all the benefits of standard infrastructure-level simplicity (no special client software or settings required), security, and power save functionality. AP Mode enables the deployment of unique and powerful applications such as mobile 3G gateway and mobile range extension.

# 1.10.2 DirectConnect<sup>™</sup> (Peer-to-Peer)

Atheros industry leading DirectConnect<sup>TM</sup> implementation of advanced peer-to-peer connectivity enables faster device-to-device data & media transfer, improved network efficiency eliminating the 'hop' through the access point, simultaneous connection to device and the internet, and simple PAN setup (with Wi-Fi Protected Setup), all with reduced power consumption to extend battery life.

# 1.11 Host Offloading (Wi-Fi)

The AR6103 integrates extensive hardware signal processing and an embedded on-chip CPU to offload complete 11n MAC/BB/PHY processing to minimize host processor loading and support application specific customization for gaming and mobile phones.

The AR6103 offloads the complete 802.11 a/b/ g/n baseband and MAC functions as standard feature, including:

Link Maintenance

- 802.11 frame transmission sequence to initiate the connection with an Acces Point;
- Background scanning, including transmission of Probe Request;
- Signal quality detection and automated maintenance of current Access Point list;
- Roaming to a new Access Point
- Rate Adaptation, including automatic retry
- Encapsulation of 802.3 frames from the host to 802.11 frames. This includes adding the security headers for 802.11
- Decapsulation of the 802.11 frame to 802.3 frame
- Encryption & decryption (hardware ciphers) for WEP/TKIP/AES-CCMP, and WAPI
- IEEE PowerSave. Periodic wakeup when in sleep mode to check for buffered traffic
- Packet Filtering and Host Wakeup, including ARP (Address Resolution Protocol) Response. Automated filtering of received data in the sleep mode to transfer only data packets of interest to the host.
- Frame Aggregation (A-MPDU) processing
- LDPC encode and STBC processing

Additionally, the AR6103 also provides host offloading of the following advanced features:

- TCP Checksum
- Security Negotiation

#### 1.11.1 TCP Checksum

The AR6103 can compute the complete TCP checksum.

#### 1.11.2 Security Negotiation

The AR6103 can perform initial and subsequent 4-way handshake offload, and initial Group Key exchange and Re-Keying.

# 2. WiFi Functional Description

#### 2.1 Overview

The AR6103 is a single chip 802.11 a/b/g/n device based on cutting edge technology, optimized for low power embedded applications. The typical data path consists of the host interface, mailbox DMA, AHB, memory controller, MAC, BB, and radio. The CPU drives the control path via register and memory accesses. External interfaces include SDIO or GSPI, reference clock, and front-end components as well as optional connections such as UART, SPI/I2C, GPIO, JTAG, 32 kHz source. See the AR6103 block diagram.

# 2.2 XTENSA CPU

At the heart of the chip is the XTENSA CPU. This CPU has four interfaces:

- The Code RAM/ROM interface (iBus), going to the Virtual Memory Controller (VMC).
- The Data RAM Interface (dBus), going to the VMC
- The AHB interface, used mainly for register accesses.
- JTAG interface for debugging

#### 2.3 Virtual Memory Controller (VMC)

The VMC contains 256 kBytes of ROM and 256 kBytes of RAM. It has three interfaces:

- 🗖 iBus,
- dBus, and
- AHB interface.

Any one of these interfaces can request access to the ROM or RAM modules within the VMC. The VMC contains arbiters to serve these three interfaces on a first-come-first-serve basis.

# 2.4 AHB and APB Blocks

The AHB block acts as an arbiter. It has AHB interfaces from three Masters:

- MAC,
- MBOX (from the Host), and
- CPU.

See below for more on the MBOX and MAC. Depending upon the address, the AHB data request can go into one of the two slaves: APB block or the VMC. Data requests to the VMC are generally high-speed memory requests, while requests to the APB block are primarily meant for register access.

The APB block acts as a decoder. It is meant only for access to programmable registers within the AR6103's main blocks. Depending on the address, the APB request can go to one of theplaces listed below:

- Radio
- VMC
- SI/SPI
- MBOX
- GPIO
- UART
- Real Time Clock (RTC), or
- MAC/BB

#### 2.5 Master SI/SPI Control

The AR6103 has a master serial interface (SI) that can operate in two, three, or four-wire bus configurations to control EEPROMs or other I2C/SPI devices. Multiple I2C devices with different device addresses are supported by sharing the two-wire bus. Multiple SPI devices are supported by sharing the clock and data signals and using separate software-controlled GPIO pins as chip selects.

An SI transaction consists of two phases: a data transmit phase of 0-8 bytes followed by a data receive phase of 0-8 bytes. The flexible SI programming interface allows software to support various address and command configurations in I2C/SPI devices. In addition, software may operate the SI in either polling or interrupt mode.

# 2.6 GPIO

The AR6103 has 26 GPIO pins with direct software access. Many are multiplexed with other functions such as the host interface, UART, SI, Bluetooth coexistence, etc. (see Chapter 6 for details). Each GPIO supports the following configurations via software programming:

- Internal pull-up/down options
- Input available for sampling by a software register
- Input triggering an edge or level CPU interrupt

- Input triggering a level chip wakeup interrupt
- Open-drain or push-pull output driver
- Output source from a software register or the Sigma Delta Pulse-width Modulation (PWM) DAC

The AR6103 has one Sigma Delta PWM DAC that is shared by all of the GPIO pins. It allows the GPIO pins to approximate intermediate output voltage levels. The DAC has a period of 256 samples with a software controllable duty cycle. In applications where the AR6103 is driving LEDs using GPIO pins, the Sigma Delta PWM DAC can provide a continuous dimmer function.

# 2.7 MBOX

The MBOX is a service module to handle one of two possible external hosts: SDIO or GSPI. The AR6103 can handle only one of these hosts at any given time. The type of host the AR6103 uses depends upon the polarity of some package pins upon system power-up. The MBOX has two interfaces: an APB interface for access to the MBOX registers and an AHB interface which is used by the external host to access the VMC memory or other registers within the AR6103.

# 2.8 Debug UART

The AR6103 includes a high-speed Universal Asynchronous Receiver/Transmitter (UART) interface that is fully compatible with the 16550 UART industry standard. This UART is a general purpose UART although it is primarily used for debug.

#### 2.9 Reset Control

The AR6103 CHIP\_PWD\_L pin can be used to completely reset the entire chip. After this signal has been de-asserted, the AR6103 waits for host communication. Until then, the MAC, BB, and SOC blocks are powered off and all modules except the host interface are held in reset.

Once the host has initiated communication, the AR6103 turns on its crystal and later on its PLL. After all clocks are stable and running, the resets to all blocks are automatically de-asserted. The only resets that stay asserted are given below:

#### Warm and cold resets to the MAC

 Warm reset to the radio (The cold reset gets automatically de-asserted) The above resets are deasserted by software. All AR6103 reset control logic resides in the RTC block to ensure stable reset generation.

#### 2.9.1 CPU Reset

CPU reset is different from the other resets mentioned above. There are four scenarios where the CPU reset can be asserted:

- 1. The AR6103 CHIP\_PWD\_L pin is asserted or the host has not initiated communication.
- 2. The polarity of certain package pins are set to enable JTAG debugging via an In-Circuit Emulator (ICE). In this case, the external ICE can assert CPU reset through a package pin.
- 3. The polarity of a package pin is set to hold the CPU in reset until the host clears an internal AR6103 register.
- 4. An internal AR6103 register is set by the host to force the CPU out of an unknown state.

#### 2.10 Reset Sequence

After a COLD\_RESET event (e.g., the host toggles CHIP\_PWD\_L) the AR6103 will enter the HOST\_OFF state and await communication from the host. From that point, the typical AR6103 COLD\_RESET sequence is shown below:

- 1. When the host is ready to use the AR6103, it initiates communication via SDIO or GSPI.
- 2. The AR6103 enters the WAKEUP state then the ON state and enables the XTENSA CPU to begin executing ROM code. Software configures the AR6103 functions and interfaces. When the AR6103 is ready to receive commands from the host, it will set an internal function ready bit.
- 3. The host reads the ready bit and can now send function commands to the AR6103.
- 4. The CPU may continue to be held in reset under some circumstances until its reset is cleared by an external pin or when the host clears a register. See section "CPU Reset" on page 10.
- 5. The MAC cold reset and the MAC/BB warm reset will continue to stay asserted until their respective reset registers are cleared by software.

#### 2.11 Power Management Unit

The AR6103 has a an integrated Power Management Unit (PMU) which generates all the power supplies required by its internal circuitry from an external battery connection. The only supplies needed by the AR6103 are the battery input (2.5V - 4.8V) and the host and SOC I/O supplies (1.8V - 3.3V).

The main components of the PMU are as follows:

- A switching regulator (SWREG) which produces a 1.8V supply from the battery input.
- A small linear regulator (SREG) which converts the host IO supply to a 1.2V supply for some small control blocks which are turned on when CHIP\_PWD\_L is deasserted.
- A larger linear regulator (DREG) which converts the 1.8V input to 1.2V for the bulk of AR6103 core digital circuitry. The input is typically connected to the SWREG output.
- A linear regulator (PAREG) which converts the battery input to a 3.3V supply that can be used for the antenna switch controls as well as the internal AR6103 EPA.

In applications where external supplies are already present, the AR6103 supports bypassing all supplies generated by the PMU.

# 2.12 Power Transition Diagram

The AR6103 provides integrated power management and control functions and extremely low power operation for maximum battery life across all operational states by:

- Gating clocks for logic when not needed
- Shutting down unneeded high speed clock sources
- Reducing voltage levels to specific blocks in some states

When the AR6103 is in a low power state, the switching power supply (SWREG) as well as the main 1.2V regulator for digital circuits (DREG) are both turned off. All digital circuits that normally rely upon 1.2V power from DREG are switched to use power from the smaller SREG regulator using a "Make-and-Break" mechanism.

#### 2.12.1 Hardware Power States

AR6103 hardware has five top level hardware power states managed by the RTC block. Table 2-1 describes the input from the MAC, CPU, SDIO/MBOX, interrupt logic, and timers that affect the power states.

#### 2.12.2 Sleep State Management

Sleep state minimizes power consumption while saving system states. In SLEEP state, all high speed clocks are gated off and the external reference clock source is powered off. The SWREG, DREG, and PAREG supplies are also turned off during SLEEP. For the AR6103 to enter SLEEP state, the MAC, MBOX, and CPU systems must not be active.

The system remains in sleep state until a WAKEUP event causes the system to enter WAKEUP state, wait for the reference clock source to stabilize, and then ungate all enabled clock trees. The CPU wakes up only when an interrupt arrives, which may have also generated the system WAKEUP event.

Figure 2-1 depicts the state transition diagram.

| State    | Description                                                                                                                                                                                                                 |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFF      | CHIP_PWD_L pin assertion immediately brings the chip to this state.                                                                                                                                                         |
|          | Sleep clock is disabled.                                                                                                                                                                                                    |
|          | No state is preserved.                                                                                                                                                                                                      |
|          | SWREG, SREG, DREG, and PAREG are turned off.                                                                                                                                                                                |
| HOST_OFF | WLAN is turned off.                                                                                                                                                                                                         |
|          | SREG is turned on.                                                                                                                                                                                                          |
|          | SWREG, PAREG, DREG are turned off.                                                                                                                                                                                          |
|          | Only the host interface is powered on - the rest of the chip is power gated (off).                                                                                                                                          |
|          | The host instructs the AR6103 to transition to WAKEUP by writing a register in the host interface domain.                                                                                                                   |
|          | Embedded CPU and WLAN do not retain state (separate entry).                                                                                                                                                                 |
|          | This state can be bypassed by asserting FORCE_HOST_ON_L during CHIP_PWD_L deassertion.                                                                                                                                      |
| SLEEP    | Only the sleep clock is operating.                                                                                                                                                                                          |
|          | SREG is kept on.                                                                                                                                                                                                            |
|          | SWREG, DREG, and PAREG are turned off.                                                                                                                                                                                      |
|          | The high speed crystal or oscillator is disabled.                                                                                                                                                                           |
|          | Any wakeup events (MAC, host, LF-Timer, GPIO-interrupt) will force a transition from this state to the WAKEUP state.                                                                                                        |
|          | All internal states are maintained.                                                                                                                                                                                         |
| WAKEUP   | The system transitions from sleep states to ON.                                                                                                                                                                             |
|          | SREG, SWREG, DREG, PAREG are kept on.                                                                                                                                                                                       |
|          | The high frequency clock is gated off as the crystal or oscillator is brought up and the PLL is enabled.                                                                                                                    |
|          | WAKEUP duration is programmable (default 3.8ms).                                                                                                                                                                            |
| ON       | The high speed clock is operational and sent to each block enabled by the clock control register.                                                                                                                           |
|          | SREG, SWREG, DREG, PAREG are kept on.                                                                                                                                                                                       |
|          | Lower level clock gating is implemented at the block level, including the CPU, which can be gated off using the WAITI instruction while the system is on. No CPU, host and WLAN activities will transition to sleep states. |

Table 2-1. Power Management States

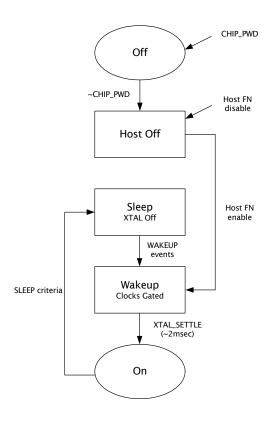



Figure 2-1. AR6103 Power State

# 2.13 System Clocking (RTC Block)

The AR6103 has an RTC block which controls the clocks and power going to other internal modules. Its inputs consist of sleep requests from these modules and its outputs consists of clock enable and power signals which are used to gate the clocks going to these modules. The RTC block also manages resets going to other modules with the device. The AR6103's clocking is grouped into two types: high-speed and low-speed.

#### 2.13.1 High Speed Clocking

The reference clock source drives the PLL and RF synthesizer within the AR6103. It can be either an external crystal or oscillator. To minimize power consumption, the reference clock source is powered off in SLEEP, HOST\_OFF, and OFF states. For an external crystal, the AR6103 disables the on-chip oscillator driver. For an external oscillator, the AR6103 de-asserts its CLK\_REQ signal to indicate that a reference clock is not needed.

When exiting SLEEP state, the AR6103 waits in WAKEUP state for a programmable duration. During this time, the CLK\_REQ signal is asserted to allow for the reference clock source to settle. The CLK\_REQ signal remains asserted in ON state.

The AR6103 supports reference clock sharing in all power states. For an external crystal, the on-chip oscillator driver drives a reference clock output whenever an external clock request signal is asserted. For an external oscillator, the external clock request signal is forwarded on the CLK\_REQ signal, and the input clock is passed along to the reference clock output.

# 2.13.2 Low-Speed Clocking

The AR6103 has eliminated the need for an external sleep clock source thereby reducing system cost. Instead, an internal ring oscillator is used to generate a low frequency sleep clock. It is also used to run the state machines and counters inside the AR6103's Power Control

Module (PCM). The PCM controls all power and isolation control signals for the entire chip.

The AR6103 has an internal calibration module which produces a 32.768 KHz output with minimal variation. For this, it uses the reference clock source as the golden clock. As a result, the calibration module adjusts for process and temperature variations in the ring oscillator when the system is in ON state.

The AR6103 also supports using an external low frequency sleep clock source in applications where one is already available.

#### 2.13.3 Interface Clock

The host interface clock represents another clock domain for the AR6103. This clock comes from the SDIO or GSPI host and is completely independent from the other internal clocks. It drives the host interface logic as well as certain registers which can be accessed by the host in HOST\_OFF and SLEEP states.

# 2.14 Front End Control

For applications that use external front-end components, the AR6103 provides the ability to control them with five antenna switch control outputs named as follows:

- ANTE
- ANTD
- ANTC
- ANTB
- ANTA

A programmable switch table indexed by transceiver state offers flexibility for various front-end configurations. The AR6103 supports antenna sharing with another wireless chip in all power states by using ANTE to control the shared antenna switch.

# 2.15 MAC/BB/RF Block

The AR6103 Wireless MAC consists of five major blocks:

- Host interface unit (HIU) for bridging to the AHB for VMC data accesses and APB for register accesses
- Ten queue control units (QCU) for transferring TX data
- Ten DCF control units (DCU) for managing channel access

- Protocol control unit (PCU) for interfacing to baseband
- DMA receive unit (DRU) for transferring RX data

#### 2.16 Baseband Block

The AR6103 baseband module (BB) is the physical layer controller for the 802.11a/b/g/n air interface. It is responsible for modulating data packets in the transmit direction, and detecting and demodulating data packets in the receive direction. It has a direct control interface to the radio to enable hardware to adjust analog gains and modes dynamically.

#### 2.17 Design for Test

The AR6103 has a built in JTAG boundary scan of its pins. It also has features which enable testing of digital blocks via ATPG scan, memories via MBIST, analog components, and the radio.

# **3. Electrical Performance and Characteristics**

This section describes the electrical and performance characteristics of the AR6103.

**NOTE:** All performance characterization is preliminary and subject to change.

Table 3-1 shows the absolute maximum ratings.

| Specification             | Symbol            | Condition                                          | Min. | Max. | Unit |
|---------------------------|-------------------|----------------------------------------------------|------|------|------|
| Operating Voltage         | Vbat              | TA=-20 to +85C, no permanent damage or degradation | -0.5 | 5.5  | V    |
| Storage temperature range | T <sub>STG</sub>  |                                                    | -55  | +150 | oC   |
| Operating temperature     | $T_A$             | Ambient -20                                        | +85  | -    | oC   |
| Max Current               | I <sub>MAX</sub>  | Current on any pin to avoid latch-up               | -30  | +30  | mA   |
| ESD protection            | V <sub>ESD1</sub> | non-RF pins and non-test monitor pins              | 2000 | -    | V    |
| ESD protection            | V <sub>ESD2</sub> | RF pins and test monitor pins                      | 250  | 500  | V    |

#### Table 3-1. Absolute Maximum Ratings

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Table 3-2 through show the general DC electrical characteristics.

| Specification     | Symbol | Condition      | Min. | Тур. | Max. | Unit |
|-------------------|--------|----------------|------|------|------|------|
| Operating Voltage | Vbat   | TA=-20 to +85C | -2.5 | 3.0  | 4.2  | V    |
|                   |        |                |      |      |      |      |
|                   |        |                |      |      |      |      |
|                   |        |                |      |      |      |      |

| Specification                      | Symbol             | Condition                                                      | Min.               | Тур. | Max.               | Unit |
|------------------------------------|--------------------|----------------------------------------------------------------|--------------------|------|--------------------|------|
| Output Power                       | Pout               | Mask Compliant CCK output power                                | <mark>+1</mark> 5  | -    | <mark>+1</mark> 7  | dBm  |
|                                    |                    | EVM Compliant OFDM<br>output power for 64<br>QAM, 11g and HT20 | +15                | -    | +17                | dBm  |
| PA gain step                       | SP <sub>gain</sub> | -                                                              | <mark>-1.</mark> 5 | -    | <mark>+1.</mark> 5 | dB   |
| Accuracy of power<br>leveling loop | Apl                | -                                                              | -1.5               | -    | +1.5               | dB   |

Table 3-3. Transmitter Characteristics for 802.11 Operation

Table 3-4. Receiver Characteristics for 802.11 Operation

| Specification                                                                                               | Symbol | Condition     | Min.  | Typ.                                                               | Max.  | Unit |
|-------------------------------------------------------------------------------------------------------------|--------|---------------|-------|--------------------------------------------------------------------|-------|------|
| Receive input frequency range                                                                               | Frx    | -             | 2.132 | -                                                                  | 2.484 | GHz  |
| Sensitivity (802.11b)<br>1 Mbps<br>2 Mbps<br>5.5 Mbps<br>11 Mbps                                            | Srf    | -             | -     | -97<br>-93<br>-92<br>-90                                           | -     | dBm  |
| Sensitivity (802.11g)<br>6 Mbps<br>9 Mbps<br>12 Mbps<br>18 Mbps<br>24 Mbps<br>36 Mbps<br>48 Mbps<br>54 Mbps | Srf    | -             | -     | -92<br>-92<br>-91<br>-88<br>-85<br>-85<br>-82<br>-77<br><b>-75</b> |       | dBm  |
| Sensitivity (802.11n)<br>MCS: 0<br>MCS: 1<br>MCS: 2<br>MCS: 3<br>MCS: 4<br>MCS: 5<br>MCS: 6<br>MCS: 7       | Srf    | 20MHz Channel | -     | -92<br>-91<br>-88<br>-85<br>-82<br>-77<br>-75<br>-74               | -     | dBm  |
| Input 1dB compression                                                                                       | IP1dB  | Min gain      | -     | -                                                                  | -     | -    |
| Input third intercept point                                                                                 | IIP3   | Min gain      | -     | -                                                                  | -     | -    |
| IQ phase error                                                                                              |        |               |       |                                                                    |       |      |
|                                                                                                             |        |               |       |                                                                    |       |      |

# 3.18 Typical Power Consumption

Table 3-5 shows the typical power consuption.

# Table 3-5. Wi-Fi target Power Consumption for Various Modes of Operation

| <b>dwidth</b><br>p power d<br>off<br>1 = 1<br>1 = 3<br>M = 10<br>0 | Chip Power<br>Iown   | PA                                                                                       | Total Power [mW]         0.015         0.045         0.250         3.106         1.268         0.626          |
|--------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 1 = 1<br>1 = 3<br>M = 10                                           |                      |                                                                                          | 0.045<br>0.250<br>3.106<br>1.268<br>0.626                                                                     |
| 1 = 1<br>1 = 3<br>M = 10                                           | 105                  |                                                                                          | 0.250<br>3.106<br>1.268<br>0.626                                                                              |
| A = 1 $A = 3$ $M = 10$                                             | 105                  | -                                                                                        | 3.106<br>1.268<br>0.626                                                                                       |
| 1= 3<br>A = 10                                                     | 105                  | _                                                                                        | 1.268<br>0.626                                                                                                |
| <i>A</i> = 10                                                      | 105                  | -                                                                                        | 0.626                                                                                                         |
|                                                                    | 105                  | -                                                                                        |                                                                                                               |
| 0                                                                  | 105                  | -                                                                                        | 105                                                                                                           |
| 0                                                                  |                      |                                                                                          | 105                                                                                                           |
| 0                                                                  | 105                  | -                                                                                        | 105                                                                                                           |
| :0                                                                 | 112                  | -                                                                                        | 112                                                                                                           |
|                                                                    | 85                   | 430                                                                                      | 515                                                                                                           |
| .0                                                                 | 85                   | 470                                                                                      | 555                                                                                                           |
| 0                                                                  | 85                   | 480                                                                                      | 565                                                                                                           |
|                                                                    | 125                  | 310                                                                                      | 435                                                                                                           |
| 0                                                                  | 125                  | 330                                                                                      | 455                                                                                                           |
| 0                                                                  | 125                  | 340                                                                                      | 465                                                                                                           |
| •                                                                  | 20<br>40<br>20<br>40 | 20         85           40         85           125         125           20         125 | 20     85     470       40     85     480       125     310       20     125     330       40     125     340 |

# 4. Pin Assignments and Descriptions

This section describes the pin assignment of the AR6103. Figure 4-1 shows the PCB footprint and pin assignments (X-ray view through the chip) for AR6103.

Table 4-1 shows the pin assignments anddescriptions.

|    | P              | IVE              | ΤY              | <b>,</b> u | 1     |       |          |       |        |        |      |          |          |          |          |                                 |
|----|----------------|------------------|-----------------|------------|-------|-------|----------|-------|--------|--------|------|----------|----------|----------|----------|---------------------------------|
| 17 | XTALO          | BT_ACTIVE        | BT<br>_PRIORITY | VLAN       | GND   | NC    | NC       | NC    | NC     | NC     | NC   | NC       | NC       | NC       | GND      | Ŷ                               |
| 16 | XTALI          | BT_RX<br>_FRAME  | NC              | NC         | NC    | NC    | LF_CLKIN | NC    | NC     | NC     | NC   | NC       | NC       | NC       | NC       | GND                             |
| 15 | NC             | NC               |                 |            |       |       |          |       |        |        |      |          |          |          | NC       | NC                              |
| 14 | NC             | NC               |                 |            |       |       |          |       |        |        |      |          |          |          | NC       | GND                             |
| 13 | NC             | NC               |                 |            |       |       |          |       |        |        |      |          |          |          | NC       | NC                              |
| 12 | NC             | NC               |                 |            |       |       |          |       |        |        |      |          |          |          | NC       | GND                             |
| 11 | GND            | SREG<br>_OUT     |                 |            |       |       | E-GND4   |       |        | E-GND3 |      |          |          |          | NC       | CHIP_VAR CHIP_PVD<br>M_RESET _L |
| 10 | DVDD12         | PM<br>_enable    |                 |            |       |       |          |       |        |        |      |          |          |          | NC       | CHIP_VAR<br>M_RESET             |
| 6  | PAREG<br>_BASE | PM_MODE          |                 | AR6103     |       |       |          |       |        |        |      |          |          |          | ē        | TCK                             |
| 80 | PAREG_33       | PAREG_33<br>_OUT |                 |            |       |       |          |       |        |        |      |          |          |          | NC       | TMS                             |
| 7  | VBAT_42        | VBAT_42          |                 |            |       |       | E-GND1   |       |        | E-GND2 |      |          |          |          | HMODEI   | HMODE0                          |
| 9  | YDD33          | VDD33            |                 |            |       |       |          |       |        |        |      |          |          |          | NC       | UART_TXD                        |
| 5  | SV_REG<br>_OUT | SV_REG<br>_OUT   |                 |            |       |       |          |       |        |        |      |          |          |          | NC       | GND                             |
| 4  | VDDIO          | BT_<br>FREQ      |                 |            |       |       |          |       |        |        |      |          |          |          | NC       | VIFI_RF                         |
| 3  | AVDD18         | NC               |                 |            |       |       |          |       |        |        |      |          |          |          | NC       | GND                             |
| 2  | AVDD18         | CLK_REQ<br>_OUT  | NC              | NC         | NC    | NC    |          |       |        |        |      | UART_TXD | UART_RTS | UART_RXD | UART_CTS | ANTE                            |
| ٣  | GND            | AVDD12           | HOST<br>POVER   | so_cmd     | 50_03 | s0_02 | s0_01    | so_00 | SD_CLK | GND    | ANTC | NC       | NC       | NC       | NC       | ANTD                            |
|    | А              | 8                | U               | D          | ш     | щ     | IJ       | Ξ     | ~      | ¥      | ٦    | Z        | z        | ٩        | ¥        | F                               |

Figure 4-1. AR6103 Pin Assignment - X-ray View Through the Chip

| Pin No. | Signal Name                                                                  | Description                                                           |  |  |  |  |  |
|---------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| A1      | GND                                                                          | Ground                                                                |  |  |  |  |  |
| A10     | DVDD12                                                                       | Power, 1.2V digital supply                                            |  |  |  |  |  |
| A11     | GND                                                                          | Ground                                                                |  |  |  |  |  |
| A12     | NC                                                                           | No Connect.                                                           |  |  |  |  |  |
| A13     | NC                                                                           | No Connect.                                                           |  |  |  |  |  |
| A14     | NC                                                                           | No Connect.                                                           |  |  |  |  |  |
| A15     | NC                                                                           | No Connect.                                                           |  |  |  |  |  |
| A16     | XTALI                                                                        | For external crystal or clock source                                  |  |  |  |  |  |
| A17     | XTALO                                                                        | For external crystal                                                  |  |  |  |  |  |
| A2      | AVDD18                                                                       | Power, 1.8V analog supply                                             |  |  |  |  |  |
| A3      | AVDD18                                                                       | Power, 1.8V analog supply                                             |  |  |  |  |  |
| A4      | VDDIO                                                                        | Power, IO voltage reference                                           |  |  |  |  |  |
| A5      | SW_REG_OUT                                                                   | Power Supply, Switching Regulator output                              |  |  |  |  |  |
| A6      | VDD33                                                                        | Power Supply, Analog, 3.3V Output (from PMU), test port               |  |  |  |  |  |
| A7      | VBAT_42                                                                      | Power Supply, VBAT                                                    |  |  |  |  |  |
| A8      | PAREG_33_OUT Power Supply, Analog, connect to collector of power supply tran |                                                                       |  |  |  |  |  |
| A9      | PAREG_BASE                                                                   | Power Supply, Analog, connect to base of power supply transistor      |  |  |  |  |  |
| B1      | AVDD12                                                                       | Power, 1.3V analog supply                                             |  |  |  |  |  |
| B10     | PM_ENABLE                                                                    | Control signals from BT chip for power and antenna sharing            |  |  |  |  |  |
| B11     | SREG_OUT                                                                     | Internal SDIO regulator output, reserved for external bypass option   |  |  |  |  |  |
| B12     | NC                                                                           | No Connect.                                                           |  |  |  |  |  |
| B13     | NC                                                                           | No Connect.                                                           |  |  |  |  |  |
| B14     | NC                                                                           | No Connect.                                                           |  |  |  |  |  |
| B15     | NC                                                                           | No Connect.                                                           |  |  |  |  |  |
| B16     | BT_RX_FRAME                                                                  | IO, Coexistence (debug)                                               |  |  |  |  |  |
| B17     | BT_ACTIVE                                                                    | IO, Coexistence, 3-wire PTA, test port (debug)                        |  |  |  |  |  |
| B2      | CLK_REQ_OUT                                                                  | IO, Digital test port                                                 |  |  |  |  |  |
| B3      | NC                                                                           | No Connect.                                                           |  |  |  |  |  |
| B4      | BT_FREQ                                                                      | IO, Coexistence, 3-wire PTA, test port (debug)                        |  |  |  |  |  |
| B5      | SW_REG_OUT                                                                   | Power Supply, Siwtching Regulator Output                              |  |  |  |  |  |
| B6      | VDD33                                                                        | Power Supply, Analog, 3.3V Output (from PMU), test port               |  |  |  |  |  |
| B7      | VBAT_42                                                                      | Power Supply, VBAT                                                    |  |  |  |  |  |
| B8      | PAREG_33_OUT                                                                 | Power Supply, Analog, connect to collector of power supply transistor |  |  |  |  |  |
| B9      | PM_MODE                                                                      |                                                                       |  |  |  |  |  |
| C1      | HOST_POWER                                                                   | Power, 1.8V or 3.3V, Host IO (SDIO) power, depends on SDIO voltage    |  |  |  |  |  |
| C2      | NC                                                                           | No Connect.                                                           |  |  |  |  |  |

Table 4-1. AR6103 Pin Assignments and Descriptions

March 2010

| Pin No. | Signal Name | Description                                    |
|---------|-------------|------------------------------------------------|
| C16     | NC          | No Connect.                                    |
| C17     | BT_ACTIVE   | IO, Coexistence, 3-wire PTA, test port (debug) |
| D1      | SD_CMD      | IO, Digital, SDIO Command                      |
| D2      | NC          | No Connect.                                    |
| D16     | NC          | No Connect.                                    |
| D17     | WLAN_ACTIVE | IO, Coexistence, 3-wire PTA, test port (debug) |
| E1      | SD_D3       | IO, Digital, SDIO Data 3                       |
| E2      | NC          | No Connect.                                    |
| E16     | NC          | No Connect.                                    |
| E17     | GND         | Ground                                         |
| F1      | SD_D2       | IO, Digital, SDIO Data 2                       |
| F2      | NC          | No Connect.                                    |
| F16     | NC          | No Connect.                                    |
| F17     | NC          | No Connect.                                    |
| G1      | SD_D1       | IO, Digital, SDIO Data 1                       |
| G16     | LF_CLKIN    | IO, Low Frequency (sleep) clock input          |
| G17     | NC          | No Connect.                                    |
| H1      | SD_D0       | IO, Digital, SDIO Data 0                       |
| H16     | NC          | No Connect.                                    |
| H17     | NC          | No Connect.                                    |
| J1      | SD_CLK      | IO, Digital, SDIO Clock                        |
| J16     | NC          | No Connect.                                    |
| J17     | NC          | No Connect.                                    |
| K1      | GND         | Ground                                         |
| K16     | NC          | No Connect.                                    |
| K17     | NC          | No Connect.                                    |
| L1      | ANTC        | IO, Digital, Switch Control                    |
| L16     | NC          | No Connect.                                    |
| L17     | NC          | No Connect.                                    |
| M1      | NC          | No Connect.                                    |
| M2      | UART_TXD    | AR6003 SDIO-HCI interface                      |
| M16     | NC          | No Connect.                                    |
| M17     | NC          | No Connect.                                    |
| N1      | NC          | No Connect.                                    |
| N2      | UART_RTS    | AR6003 SDIO-HCI interface                      |
| N16     | NC          | No Connect.                                    |
| N17     | NC          | No Connect.                                    |

Table 4-1. AR6103 Pin Assignments and Descriptions

| Pin No. | Signal Name                       | Description                                      |
|---------|-----------------------------------|--------------------------------------------------|
| P1      | NC                                | No Connect.                                      |
| P2      | UART_RXD                          | AR6003 SDIO-HCI interface                        |
| P16     | NC                                | No Connect.                                      |
| P17     | NC                                | No Connect.                                      |
| R1      | NC                                | No Connect.                                      |
| R10     | NC                                | No Connect.                                      |
| R11     | NC                                | No Connect.                                      |
| R12     | NC                                | No Connect.                                      |
| R13     | NC                                | No Connect.                                      |
| R14     | NC                                | No Connect.                                      |
| R15     | NC                                | No Connect.                                      |
| R16     | NC                                | No Connect.                                      |
| R17     | GND                               | Ground                                           |
| R2      | UART_CTS                          | SDIO-HCI interface                               |
| R3      | NC                                | No Connect.                                      |
| R4      | NC                                | No Connect.                                      |
| R5      | NC                                | No Connect.                                      |
| R6      | NC                                | No Connect.                                      |
| R7      | HMODE1                            | Host Select, Bit 1                               |
| R8      | NC                                | No Connect.                                      |
| R9      | TDI                               | IO, WLAN JTAG                                    |
| T1      | ANTD                              | IO, Digital, Switch Control                      |
| T10     | WAKE_ON_WLAN<br>(CHIP_WARM_RESET) | IO, Wake-On-Wireless (if used), test port        |
| T11     | CHIP_PWD_L                        | IO, WLAN Power Down (0=power down, 1=WLAN awake) |
| T12     | GND                               | Ground                                           |
| T13     | NC                                | No Connect                                       |
| T14     | GND                               | Ground                                           |
| T15     | NC                                | No Connect.                                      |
| T16     | GND                               | Ground                                           |
| T17     | NC                                | No Connect.                                      |
| T2      | ANTE                              | IO, Digital, Switch Control                      |
| T3      | GND                               | Ground                                           |
| T4      | WiFi_RF                           | RF, WiFI Antenna Port                            |
| T5      | GND                               | Ground                                           |
| T6      | DEBUG_UART_TXD                    | IO, UART (debug)                                 |
| T7      | HMODE0                            | Host Select, Bit 0 (11=SDIO, 01=SDIO)            |
| T8      | TMS                               | IO, WLAN JTAG                                    |

Table 4-1. AR6103 Pin Assignments and Descriptions

March 2010

| Pin No. | Signal Name | Description   |
|---------|-------------|---------------|
| T9      | TCK         | IO, WLAN JTAG |
|         | E-GND1      | Ground        |
|         | E-GND2      | Ground        |
|         | E-GND3      | Ground        |
|         | E-GND4      | Ground        |

Table 4-1. AR6103 Pin Assignments and Descriptions

# 5. Package Dimensions

Figure 5-1 through Figure 5-2 show the AR6103 pacakge dimension.

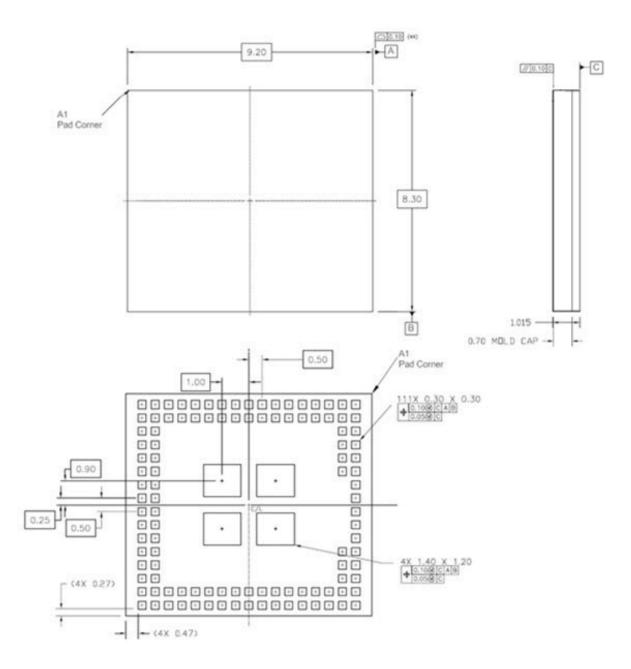



Figure 5-1. AR6103 Package Dimensions Top and Side Views

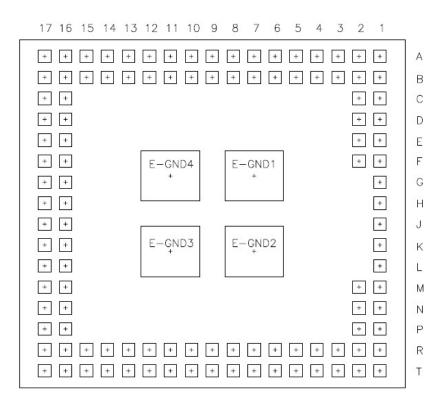



Figure 5-2. AR6103 Pin Assignments

# 6. Assembly Guidelines

This section describes the assembly guidelines and solder material information.

### 6.1 Solder Material Information

Manufacturer name: Kester

Solder past part number: EM808-Sn96.5% Ag3.0% Cu0.5% SAC305 alloy with Type 3 powder, water soluble solder paste

# 7. Application Schematic

This section provides the AR6103 schematic. See Figure 7-1 for details.

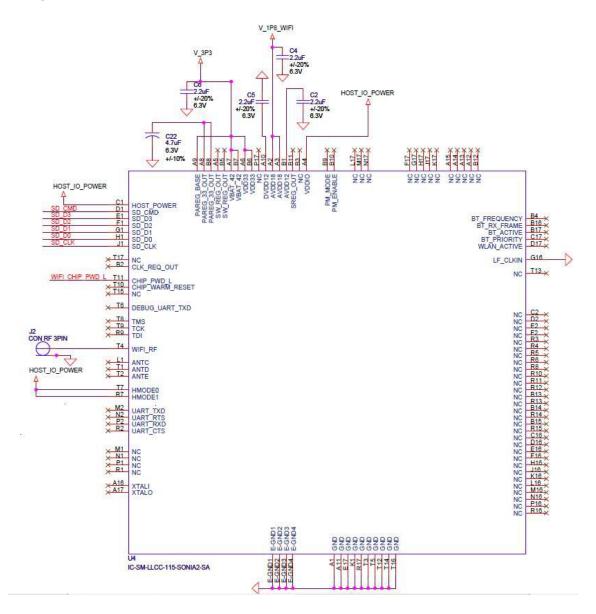



Figure 7-1. AR6103 Reference Schematic

# 8. Ordering Information

For more information on the AR6103 or other solutions from Atheros, contact your local representative:

Atheros Communications, Inc.

t +1 408.773.5200 f +1 408.773.9940

Atheros Hong Kong Limited t +852 8206.1131 f +852 8206.1301

Atheros Communications KK-Japan t +81 3.5501.4100 f +81 3.5501.4129

Atheros (Shanghai) Co., Ltd. t +86 21.5108.3626 f +86 21.5027.0100

Atheros Communications Intl, LLC-Taiwan t +886 2.8751.6385 f +886 2.8751.6397

Atheros Korea

t+82 31.786.0428

For more information on Atheros and Atheros GPS technology please visit www.atheros.com.

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Atheros assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any updates. Atheros reserves the right to make changes, at any time, to improve reliability, function or design and to attempt to supply the best product possible.

MKG-1404 Rev. 2



Atheros Communications, Incorporated 5480 Great America Parkway Santa Clara, CA 95054 t: 408/773-5200 f: 408/773-9940 www.atheros.com



# 射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立,致力并专注于微 波、射频、天线设计研发人才的培养;我们于 2006 年整合合并微波 EDA 网(www.mweda.com),现 已发展成为国内最大的微波射频和天线设计人才培养基地,成功推出多套微波射频以及天线设计经典 培训课程和 ADS、HFSS 等专业软件使用培训课程,广受客户好评;并先后与人民邮电出版社、电子 工业出版社合作出版了多本专业图书,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、 研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电 子等多家台湾地区企业。

易迪拓培训推荐课程列表: http://www.edatop.com/peixun/tuijian/



#### 射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电 路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材; 旨在 引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和 研发设计能力。通过套装的学习,能够让学员完全达到和胜任一个合格 的射频工程师的要求…

课程网址: http://www.edatop.com/peixun/rfe/110.html

#### 手机天线设计培训视频课程

该套课程全面讲授了当前手机天线相关设计技术,内容涵盖了早期的 外置螺旋手机天线设计,最常用的几种手机内置天线类型——如 monopole 天线、PIFA 天线、Loop 天线和 FICA 天线的设计,以及当前 高端智能手机中较常用的金属边框和全金属外壳手机天线的设计;通 过该套课程的学习,可以帮助您快速、全面、系统地学习、了解和掌 握各种类型的手机天线设计,以及天线及其匹配电路的设计和调试...



课程网址: http://www.edatop.com/peixun/antenna/133.html



### WiFi 和蓝牙天线设计培训课程

该套课程是李明洋老师应邀给惠普 (HP)公司工程师讲授的 3 天员工内 训课程录像,课程内容是李明洋老师十多年工作经验积累和总结,主要 讲解了 WiFi 天线设计、HFSS 天线设计软件的使用,匹配电路设计调 试、矢量网络分析仪的使用操作、WiFi 射频电路和 PCB Layout 知识, 以及 EMC 问题的分析解决思路等内容。对于正在从事射频设计和天线 设计领域工作的您,绝对值得拥有和学习! …

课程网址: http://www.edatop.com/peixun/antenna/134.html

# CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出,是最全面、系统、 专业的 CST 微波工作室培训课程套装,所有课程都由经验丰富的专家授 课,视频教学,可以帮助您从零开始,全面系统地学习 CST 微波工作的 各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…



课程网址: http://www.edatop.com/peixun/cst/24.html




#### HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程,是迄今国内最全面、最 专业的 HFSS 培训教程套装,可以帮助您从零开始,全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装,更可超值赠送 3 个月 免费学习答疑,随时解答您学习过程中遇到的棘手问题,让您的 HFSS 学习更加轻松顺畅…

课程网址: http://www.edatop.com/peixun/hfss/11.html

#### ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程,共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统 设计领域资深专家讲解,并多结合设计实例,由浅入深、详细而又全面 地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面 的内容。能让您在最短的时间内学会使用 ADS,迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去,成为 ADS 设计专家...



课程网址: http://www.edatop.com/peixun/ads/13.html

#### 我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养,更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授,结合实际工程案例,直观、实用、易学

#### 联系我们:

- ※ 易迪拓培训官网: http://www.edatop.com
- ※ 微波 EDA 网: http://www.mweda.com
- ※ 官方淘宝店: http://shop36920890.taobao.com



专注于微波、射频、天线设计人才的培养 官方网址: http://www.edatop.com 淘宝网店: http://shop36920890.taobao.com