
Ethernut 3 Source Code Debugging

Requirements
This is a short listing only. For Details please refer to the related manuals.

Required Hardware
• Ethernut 3 Board
• Turtelizer 2 JTAG Dongle
• PC with USB and RS-232 port
• 12V Power Supply
• RS-232 DB9 Null Modem Cable
• USB A/B Cable

The first 2 items are available at http://www.egnite.de/en/egnite-shop.html.

Required Software
The following software needs to be installed on the Windows PC:

• Windows XP or later
• Java Runtime Environment 1.6 or later
• Eclipse Platform Runtime Binary 3.6.2 (Helios)
• Eclipse CDT 7.0.2
• TeraTerm or similar Terminal Emulator
• Nut/OS Beta 4.9.10
• Turtelizer OpenOCD Package
• Turtelizer FTDI Driver

You can download the Java Runtime at
http://www.oracle.com/technetwork/java/javase/downloads/.

Eclipse is available at http://download.eclipse.org/eclipse/downloads/ and the CDT can be found at
http://www.eclipse.org/cdt/. Remember to install the Platform Runtime Binary. You may try Eclipse
IDE for C/C++ Developers, which includes the CDT, but this version is not covered here.

TeraTerm can be downloaded at http://ttssh2.sourceforge.jp/.

The last 3 items are available at http://www.ethernut.de/en/download/.

Installation details can be found in the documents that come with the specific product.

http://www.egnite.de/en/egnite-shop.html
http://www.ethernut.de/en/download/
http://ttssh2.sourceforge.jp/
http://www.eclipse.org/cdt/
http://download.eclipse.org/eclipse/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/

Configuring Nut/OS
When using the latest YAGARTO distribution, you must be aware of a significant change. While
earlier releases used arm-elf-gcc, YAGARTO is now using arm-none-eabi-gcc. Nut/OS 4.9.10 has
been prepared to make this switch easy. Open the file nut/Makevars.arm-gcc with your text editor.
Notepad will be fine. Locate the line

#TRGT = arm-none-eabi-
and remove the leading numero sign:
TRGT = arm-none-eabi-
Save your changes.

In order to include debugging information in the compiled binaries you need to switch from arm-gcc
to arm-gccdbg. When done, rebuild Nut/OS and recreate the application directory. The following
steps will give detailed instructions.

When started for the first time, the Nut/OS
Configurator will display a file selection dialog. If
this is hidden by the splash window, simply click
on that window to close it.

Select the file ethernut30e.cfg for Ethernut 3.0
boards or ethernut31c.cfg for Ethernut 3.1 boards
and click open

Ethernut 3 Source Code Debugging

The Configurators main window will show the Nut/OS
Components in a tree structure on the right side.

From the Edit menu select Settings....

Nothing needs to be changed on the Repository page of the settings
dialog. You may check Enable multiple configurations if you are
concurrently working with different target boards.

3

Select arm-gccdbg as the platform on the Build page.

On the Tools page you need to enter the path to all required tools,
separated by semicolons. For the Ethernut 3 board this should point
to the Nut/OS win32 tools directory and the YAGARTO bin directory.
While all other settings use normal slashes in paths, here we must
use backslashes.

On the last page titled Samples you may select arm-oocd as the
programmer of choice, but this is only required for programming the
flash memory, not for debugging in RAM.

Ethernut 3 Source Code Debugging

Before building the system, change the Linker Script
in the components tree under Tools/GCC Settings to
at91_ram.

We are using YAGARTO with Newlib 1.19. Make sure
that Posix compatible unsetenv is checked under C
runtime (target specific)/Environment.

Now we are ready to build Nut/OS for debugging.
Select Build Nut/OS in the Build menu.

5

A message box shows the settings for creating the build directory. Verify
them and click OK to build this directory.

A second message box shows the settings for building the system.
Again verify them and click OK.

The build may take a few minutes.

When done, make sure that it has been terminated
successfully.

Ethernut 3 Source Code Debugging

Nut/OS uses a separate directory for the application
code. A template can be created by selecting Create
Sample Directory, containing all Nut/OS samples that
are included in the distribution. Remember, that we
will use the events sample.

A message box will show the current settings. Click OK, if
everything looks as expected.

When done, you may exit the Configurator by
selecting Exit in the File menu.

7

Configuring Eclipse
It is assumed that you successfully installed Eclipse and the CDT plug-in. For a first demonstration
we will use the events sample that is included in the Nut/OS distribution.

When started, Eclipse will ask for the Workspace
Path. Choose the Nut/OS sample directory, e.g.
C:\Ethernut-4.9\nutapp.

The welcome page appears. Click
on Workbench in the upper right
corner.

The so called Resource
Perspective or, depending on
what else had been installed on
your computer, the Java
Perspective appears. We will
later change to the C
Perspective.

Ethernut 3 Source Code Debugging

In the New Project dialog choose C Project and click on
Next.

In the C Project dialog enter events for the project name.
Then choose Empty Project and -- Other Toolchain --.
Again click on Next.

On the next page click on Advanced settings....

9

In the Project Properties page
select Settings and check GNU
Elf Parser. Then click on OK.

Back in the C Project dialog click Finish.

Click Yes to open the C/C++ perspective.

Ethernut 3 Source Code Debugging

We do not need the Resource
or Java Perspective, therefore
you should close it.

Uncheck Build Automatically in the
Project menu.

In the same menu select
Properties.

11

In the Properties
dialog select
Environment in the
tree on the right.
Then click Add.

The variable Name must be PATH. You need to
enter the path to all required tools as the Value,
separated by semicolons. The first path should
point to the Nut/OS win32 tools directory and
the second one to the YAGARTO bin directory.

Click OK to store the
updated
Environment.

Ethernut 3 Source Code Debugging

Then, in the same menu, select
Build Project.

Building this simple application
requires a few seconds only.

When done, the newly created
files appear in the Project
Explorer. The file events.elf
contains the executable binary
including all debug information.

13

Debugging the Application
Click on the Open
Perspective button and
selectDebug. This will open
the Debug Perspective.

Click on the tiny arrow near the
bug in the toolbar to open the
related menu. Then select Debug
Configuration....

In the Debug Configurations
dialog select GDB Hardware
Debugging and click on the New
button.

Ethernut 3 Source Code Debugging

Enter events.elf as the
configuration name and events
as the project name. Next click
on Search Project....

Select events.elf and click OK.

Back in the Debug
Configurations dialog click on
Select other.

15

Choose Standard GDB Hardware Debugging Launcher as the
preferred launcher and click OK.

Back in the Debug
Configurations dialog click on the
Debugger tab and enter arm-
none-eabi-gdb in GDB
Command. Although we will use
remote target debugging, Use
remote target must be
unchecked here.

Ethernut 3 Source Code Debugging

Now click on the Startup tab. Set breakpoint at and Resume must be checked. Enter NutInit as
the breakpoint target.

Then copy and paste the
following commands into the field
Initialization Commands.
target remote localhost:3333
monitor reset
monitor sleep 500
monitor poll
monitor soft_reset_halt
monitor gdb_breakpoint_override soft
monitor mww 0xffe00000 0x1000212d
monitor mww 0xffe00004 0x20003025

monitor mww 0xffe00008 0x21002026
monitor mww 0xffe00010 0x22002e3e
monitor mww 0xffe00020 0x00000001
set mem inaccessible-by-default off

Finally click Apply to store the
settings and Close to close the
dialog.

17

Once again click on the tiny arrow
near the bug to open the menu
and select Organize Favorites....

Click Add

Check events.elf and click OK.

In the previous dialog click OK again.

Ethernut 3 Source Code Debugging

We will now setup the hardware, using the following steps:

• Connect the Turtelizer's JTAG port to the Ethernut board's 10-pin connector.
• Attach the power supply to the Ethernut Board and switch it on. The red LED should go on.
• Connect the Turtelizer's USB port to the PC using the USB A/B cable.

If the Turtelizer is used for the first time, it will be required to install the FTDI driver. For more
details please refer to the Turtelizer's documentation.

Next we will start OpenOCD. We could do this within Eclipse, but for the first time it makes sense
to start it manually to check the output in case of problems.

Unfortunately, the standard configuration for OpenOCD will not work out of the box. You can use a
simple text editor like Notepad to fix this. Open the file C:\Ethernut-
4.9\nut\tools\turtelizer2\board\ethernut3.cfg and put a number sign in front of the following line:
#arm7_9 dcc_downloads enable

Save your change

Now open a command line
and change to directory
C:\Ethernut\4.9\nut\tools\
turtelizer2. Add the Nut/OS
tools directory for Windows
to your path, using the
following command

set PATH=C:\ethernut-4.9\nut\tools\win32;%PATH%

Then start OpenOCD using

openocd -f board/ethernut3.cfg -f interface/turtelizer2.cfg

19

The events sample will create some output on the RS-232. To
make it visible, we start a terminal emulator. On Windows
PCs we could use HyperTerminal, but TeraTerm is the
preferred one. After TeraTerm started, select Serial port...
from the Setup menu.

Select the COM port to which the Ethernut board is connected.
Configure the port to 8 data bits, no parity, 1 stop bit and no flow
control and click on OK.

Let's get back to Eclipse. Remember that we specified a breakpoint at NutInit in the debugger
configuration. For some unknown reason the debugger fails, if this is not defined. However, the
function NutInit is located in the initialization of Nut/OS, while you will be mostly interested in
debugging your application code.

Lets specify a second breakpoint
at the beginning of the application
code, which is the function main.
Click on the tab C/C++ in the
upper right corner to change to the
C Perspective.

In the Project Explorer double click
on the events folder to expand it.
Then click on the tiny arrow in
front of events.c to expand this
part of the tree. Note, that this
arrow will appear only when
moving the mouse over the
Project Explorer window.

Now double click on main(void) to open the source file at this location.

Ethernut 3 Source Code Debugging

At the first line click with the right
mouse button on blue border to
open the context menu. Select
Toggle Breakpoint.

Switch back to the debug
perspective by clicking on the tab
Debug in the upper right corner.
Click on the bug button in the
toolbar to start debugging.

The code will be downloaded to
the target and started. Then it
stops at the first breakpoint at the
beginning of NutInit. Press F8 or
click the Resume button

21

The target code will run up to the
next breakpoint in main. You can
now press F5 or click the button
to step execute a single line, F6 or
click the button to step over a
function call.

Now continue pressing F6 until we
stepped over the first puts()
function call.

When this statement has been executed, the text Nut/OS
Event Queue Demo should appear in the terminal emulator
window.

Ethernut 3 Source Code Debugging

As you continue stepping through
the main loop...

...additional output appears on the serial port.

You may set additional breakpoints, evaluate variables or memory areas and do many other useful
things during debugging. Please refer to the Eclipse documentation for further details.

Links
• http://www.yagarto.de/howto/yagarto2/ Michael Fischer provided the technical details to

make it work.

23

http://www.yagarto.de/howto/yagarto2/

egnite GmbH Phone +49 (0)23 05-44 12 56
Erinstr. 9 Fax +49 (0)23 05-44 14 87
44575 Castrop-Rauxel
Germany Email info@egnite.de

http://www.egnite.de
http://www.ethernut.de

	Requirements
	Required Hardware
	Required Software
	Links

