The

Of UV Measurement & Process Control

Instrument Markets Jim Raymont Sterling, VA

The "Real" ABC Experts Were Not Available

The CRAV's of UV Measurement & ABC's Process Control

Webinar Agenda

- Review 'key' UV measurement & process control concepts
 - All inclusive? No
 - Good start? Yes-these are a few on my favorite terms
 - Reviewed by "letter" with some poetic license
- Resources
 - Copy of this presentation available
 - RadTech UV Measurement Glossary (<u>www.radtech.org</u>)

ABC's of UV Measurement & Process Control

Wide variety of commercial instruments available for different sources and applications

- What are your needs?
 - Define a process?
 - Maintain process?
 - R&D?
 - Data Retention?
- Where will you measure?
 - Production environment or lab environment
- Who will use it?
 - Ease of use and features needed
- What is source type, size, expected dynamic range, spectral output?
- What values do you need?
 - Absolute: Joules, Watts, Irradiance Profile, Spectral Profile
 - Relative: Change over time, continuous monitoring

Let the fun begin.....

Absolute Readings

- Units: mJ/cm² and mW/cm²
- Want a "number"
 - Match a specification
 - Troubleshoot
 - Optimize a process
 - Compare multiple lines
 - Communicate data

Application

- Ability to measure?
- Strategy?

UVA	J/CM2 2,908 0,696	W/CM2 2.259 0.506
UVV	1.275	0.969 - RUN

Additive Lamps

- Spectral output matched to formulation
- AKA: Doped, Halide or Special Fill
- Alphabet Soup
 - Mercury (H)
 - Mercury-Iron (D)
 - Mercury-Gallium (V)

Arc Lamps

Accuracy

- The degree of closeness to that quantity's actual (true) value
- Precision: The ability of a measurement to be consistently reproduced.

- Users expect the same accuracy as other instruments
- Current UV radiometer technology +/- 7-10%
- Improve under controlled conditions to $\pm 2-3\%$

Bands (UV Spectrum)

ULTRAVIOLET SPECTRUM

- UVA: 320-390nm "Black light", UV Inks, adhesion
- UVB: 280-320nm "Toughness", skin response
- UVC: 200-280nm, germicidal (254 nm), surface cure, tack, chemical or scratch resistance
- UVV: 395-445nm, opaque/white, thick coats, adhesion, depth of cure

Bands/Band Pass Filters (Instrument Response)

UVA, UVA2,UVB, UVC, UVV Transmission scan

- Match instrument to needs for your application
- Narrow vs. broad band instruments
- Advantages of looking at both short (UVC) and long (UVA, UVV)
- UVA2 Band for 395 nm LEDs

Calibration & Service

- Instruments used in harsh production & manufacturing environments
- Compensate for changes
 - o Electronics & Optics checked
 - Physical damage: Dropped, over temperature, external optics coated or damaged, unit went for a swim in coating)
- Frequency of calibration?

Cosine Response

- Ability of instrument to measure UV at low incidence angles
- Replicate how coatings behave
- TBD-New sources (LEDs) behave the same or differently?

Communication

- If you are not talking you may not be not curing
 - Formulator (Ink, Coating, Adhesive)
 - o Application Equipment
 - o UV Source Supplier
 - o Substrate Supplier
 - o UV Measurement Supplier

Caution! I've Got Numbers

But I get readings with my radiometer.....

Radiometer readings need to be qualified and understood!

<u>RTM</u> Read The Manual

The use of a radiometer also requires the use of your brain

Dynamic Range (Instrument)

- Match Instrument to Source & Application
 - \circ 10's of mW to 20,000+ mW/cm^2
- Weigh a Baby on Truck Scale? But I Get Readings?
 - Barely trip instrument 'on' or using it in the suggested operating range
 - Low side of range-variation
 - Very, very, very stable readings: Did I max out unit?

Dose (See Energy Density)

Data Organization

- Do not rely only on formulator "radiometer"
 - o Clipboard?
 - o Electronic?
 - o Procedures?

Where were those UV readings?

(Radiant) Energy Density

- Expressed in Joules (J/cm²) or milliJoules (mJ/cm²) per square centimeter
- Incorporates time as part of the measurement
- One watt for One second = One Joule
- Area under the irradiance curve
- Often the only UV exposure guide number supplied
 Peak

Expectations (User)

- Treat and handle as an instrument
- Maintain, calibrate & service as required
- Use as designed within specs
- Avoid user induced errors
- PICNIC Errors: Problem In Chair, Not In Calibration

Use as a resource

Frequency: Power Supply

- Traditional 50/60 Hz power supplies vs. higher frequency power supplies
- Impact on chemistry?

High frequency power supply

Formulation/Formulator

- Match Formulation to Application
- Use Formulator as a Resource and not just a complaint department

Goals

Goals are deceptive-the unaimed arrow never misses

Charles Knief (Kimo's Rules)

Guess

Anything that you can measure, you have a better chance of controlling. Things that you do not measure become the cause of mysterious problems Larry Goldberg-Beta Industries

Health & Safety

- www.radtech.org
- Chemical Safety
- PPE
- Housekeeping
- Reporting Requirements
- Hygiene
- Equipment Safety

How Often Do I Measure?

- Application?
- Value of Product?
- Type of Product?
- Process Window?

<u>Handshake</u>

- The UV source and formulation need to do a "handshake"
- Modify formulation designed for broadband UV sources to work on a narrow band UV source such as UV LED
- Verify you get the desired properties and performance under a new source

Irradiance (Intensity)

- Expressed in watts or milliWatts per square centimeter (W/cm² or mW/cm²)
- Total <u>radiant power</u> of (all) wavelengths passing from all <u>incident</u> directions onto an infinitesimally small area (cm²)
- Readings decrease with the square of the distance (True for LEDs?)
- Depth of cure, penetration through pigments and opaque colors, adhesion to the substrate

Infrared

- What role does it play in your application?
 - o Cure?
 - o Substrate?
 - Cooling of UV Source?

Coating Specification: 4 Joules/cm²

1 Joule = 1 Watt for 1 Second

4 Joule Exposures

- 4 Watts-1 Second
- 1 Watt-4 Seconds
- 2 Watts- 2 Seconds

Knowledge

- Web Sites
 - SGIA
 - RadTech Web site
 - Supplier/Vendor websites
- Articles
- Seminars/Webinars
- Conference & Trade Shows
- Trade Organizations (SGIA, RadTech, Industry)
- Suppliers/Vendors
- Training Materials (CD/DVD)

Lamps

- Differences in materials, fill elements, pressure
- Useful life of lamp
- Buy on value, not the least expensive price
- "Purchasing Specials"

<u>Log</u>	Date	Line S Dwell FPM/	Speed Time RPM	UV	System: I	North Line La	mp: 2	Other	Signature
		Ind.	Actual.	Power WPI	Hour Meter	Irradiance (W/cm²)	Energy Density (J/cm²)		
	10/4	25	22	400	780	0.859	1.45		

(UV) LEDs

- Manufacturers use proprietary processes to select, bin (test) and assemble LED chips into arrays with optics
- Bin by spectral output, intensity and forward voltage

(UV) LEDs

- Instrument Bandwidth Matched to Source
- Spectral Distribution from a 365 nm LED UV Source

Caution! I've Got Numbers

(UV) LEDs

- Instrument Bandwidth Not Matched to Source
- Measurement of 395 nm LED with EIT UVA (320-390 nm) and EIT UVV (390-445nm)

(UV) LEDs

- 395 nm LED with EIT UVA2 (380-410 nm)
- Instrument Bandwidth Matched to Source

UVA2 available in:

- Power Puck II & Power Puck II
 Profiler (UVA, UVA2, UVB, UVV)
- UviCure Plus II & UviCure Plus II
 Profiler (UVA2)
- Special order PowerMAP & UV Map Plus

<u>(UV) LEDs</u>

Location of the UV LED Measurement

- Where is the proper location for the UV Irradiance Value?
- How do we compare systems and communicate values?

Courtesy of Integration Technology

Measurement (Why)

• Save Time & Money

Microwave

Maintenance

- Preventative, Simple & Major Maintenance
- Procedures & Training

Nanometer

- A nanometer is equal to one billionth (1/1,000,000,000 or 10⁻⁹) of a meter
 - Water molecule is less than 1 nm
 - Typical germ is about 1,000 nm
 - o Hair is about 100,000 nm wide
 - Shaquille O'Neal is 2,160,000,000 nm tall
- Non-vacuum UV: +/- 200 nm to 400-450 nm (visible light)
- Nanometers also used to describe instrument bands
 - EIT UVA response is 320-390 nm

"I don't believe in micromanaging. What I do is nanomanaging."

From U.S. TECH July 2012 Issue

NIST Traceability

• Process to transfer "NIST" traceable reading into customer instrument

Online UV Measurement

- Continuous feedback & monitoring
 - Tight process windows/High \$ Products
 - UV changes with time
 - Feedback to display, PLC, Alarms
- Applications where a radiometer will not fit or is not practical
 - Web, Bank of multiple lamps
 - Lamps high off ground
- Communication
 - Percentage readings
 - Coordinate with absolute radiometer

EMI Hardened Sensor for Online measurements

Optics

- Filter and detector specifications
- Spatial response (Cosine)
- Design-Balance between optical stability & repeatable electronic signal level
- Proper care and cleaning

Cleaning The Optics

LOOK
 BLOW
 FLOOD
 WIPE

New Filter

Customer Returns: Left: Improper Cleaning Right: Scratch

Process Windows

- Require work to establish, document & maintain the process
- Require communication with suppliers, vendors, etc.
- Follow the Laws of Physics

Are we to believe that a UV (LED) photon soaks into a coating faster in your lab than anywhere else on the face of the earth? Well, I guess the laws of physics cease to exist in your lab. Are you using magic UV (LED) photons? Magic coatings? Did you buy them from the same guy who sold Jack his beanstalk beans?

Paraphrased from My Cousin Vinnie

Process Window

- The range in which a process will work with the desired results
- Adhesion, hardness, flexibility, gloss, texture, stain or scratch resistance, • chemical rub, cross hatch, abrasion rub, color ID, registration

Profiling Radiometers

- Measure the peak irradiance and total energy density
- Profile the UV irradiance (y-axis) as a function of time (x-axis)
 - Some also profile temperature
- Irradiance profiles useful to: ullet
 - Analyze system changes over time
 - Compare multi-lamp systems
 - Trouble shoot lines
 - View lamp focus
 - Determine lamp type
 - Power supply analysis
- Software or Display

EIT UVIMAP (10

Eile Device Help

Graph by File Table by File Graph by Bandwidth Table by Bandwidth

Profiling Radiometers

aph by File Table b	y File Graph by E	andwidth T	Table by Bandwidth				
Summary (by File)							
	Sample File	Reference	File Difference				
UVA - Power (mW/c	m2) 290.559	297.844	(7.285)				
Power (%)	(2.4)	100	(102.4)				
Energy (mJ/cm	2) 325.469	179.014	146,456				
Energy (%)	81.8	100	(18.2)				
UVB - Power (mW/cr	m2) 283.924	304.488	(20.564)				
Power (%)	(6.8)	100	(106.8)				
Energy (mJ/cm	2) 351.577	186.268	165.309				
Energy (%)	88.7	100	(11.3)				
UVC - Power (mW/c	m2) 64.573	73.067	(8.494)				
Power (%)	(11.6)	100	(111.6)				
Energy (mJ/cm	2) 79.428	45.360	34.068				
Energy (%)	75.1	100	(24.9)				
UVV - Power (mW/ci	m2) 228.967	242.105	(13.138)				
Power (%)	(5.4)	100	(105.4)				
Energy (mJ/cm	2) 282.214	147.816	134.398				
Energy (%)	90.9	100	(9.1)				
Cursors	Off						
Time	00:00:00						
Time - Ref	00:00.00						

Qualify, Quantify & Quality

- UV Measurement & Process Control allows you to Qualify & Quantify a UV process
- UV Measurement & Process Control Allows you to Produce Good Quality Products

- Electronic signal proportional to lamp brightness (% intensity)
- Sensor & Display

Real Time Monitoring

Situational awareness, into PLC display

Reflectors

- 60-80% of energy reaching the substrate is reflected
- Optimize reflected energy, reflector focus and lamp position through design and maintenance programs
- Shape, type, material, coating of reflector matched to process
- Clean Reflectors are key to success

Relative Measurement

UV Intensity Monitor with A 1111-

13000000000

Radiochromatic Strips

- Web press option
- Correlate to radiometer or color?

Specification (Cure)

- Applied electrical power is not enough (i.e. 200 WPI lamp)
- Minimum energy density: 700 mJ/cm², EIT UVA (320-390)
- Minimum irradiance: 650 mW/cm², EIT UVA (320-390)
- Lamp Type, Reflector Type, Thermal, Coating Thickness

Spectral Radiometer

- Irradiance as function of wavelength
- Available from UV bulb/equipment supplier
- R&D value vs. production value?

Sampling Rate

- Did your instrument take enough samples to avoid errors and 'catch' the peak?
- Sample rates have increased in more recent instruments

Smoothing (Data Filtering)

- Instruments have the ability to sample faster
- Peak irradiance: Report average (RMS) or instantaneous peak?
- 910 mW/cm² (RMS/Smooth On) or 1866 mW/Cm² (Instant/Smooth Off)?

Threshold (Start)

- Irradiance level which causes the unit to start measuring UV
- Varies due to dynamic range, electronic response, optics, design
- Use the right dynamic range instrument

Temperature

- Avoid sending an instrument through rapid, repeated, long duration, high UV intensity/temperature runs
- Alarms on units
- If the instrument is too hot to touch it's too hot to measure

Three Dimensional (3D)

 Many UV applications are 3-dimensional & require measurement for uniformity

<u>Units</u>

- Instrument Bandwidths are not defined and vary from manufacturer to manufacturer and how they are specified
 - o EIT UVA 320-390 nm, Full Width Half Max (FWHM), CWL 365 nm
 - o IL UVA 250-415 nm CWL 365 nm

- Specify units in measurement to avoid confusion
 - o 300 mJ/cm² Start
 - 300 mJ/cm²-UVA Improvement
 - o 300 mJ/cm²-UVA EIT 320-390 nm Best

Variables (Process)

- UV Output (W/cm², J/cm² or Relative Intensity)
- Bulb Life/Bulb Type
- Reflectors
- Incoming Electrical Power (Volts, Amps)
- Applied Power (WPI)
- Process Speed (J/cm²)
- Substrate
- Formulation
- Application Equipment
- Machine Equipment

Verification & Validation

- Establish your process window during the design/development phase and start monitoring from day one in production
- Monitor your readings by job, hour, shift or day as required to maintain quality to avoid:

Wavelength

• For UV, the wavelength is most often measured in nanometers (nm)

Watts (For UV Curing)

Irradiance Watts

- Units: Watts or milliWatts per square centimeter (W/cm² or mW/cm²)
- Total <u>radiant power</u> of (all) wavelengths passing from all <u>incident</u> directions onto an infinitesimally small area (cm²)

Wavelength

Trough

Crest

Total Applied Power to UV Source Watts

- Amount of electrical power applied to a UV source
- Total Watts: Voltage x Amperage

Lamp Power Settings

- Voltage x Amperage/Arc length of bulb
- If bulb length is measured in inches: WPI
- If bulb length is measured in centimeters: WPCM

Total power applied to the system or the lamp power setting is not the <u>effective</u> amount of UV generated or <u>effective</u> amount of UV reaching the cure surface

Xenon Sources

- Pulsed UV energy
- Not all instruments can measure short duration high energy pulses-need modified electronics for pulsed sources
- Coordinate with source and instrument supplier

Yield

 At the end of the day, UV Measurement & Process Control is all about being able to produce good quality products at a profit

Thank You

- Zee Presentation available as PDF
- Zee Questions?

And now that you know your <u>UV</u> ABC's, won't you sing along with me...!

EIT-Instrument Markets

Jim Raymont **108 Carpenter Drive** Sterling, VA 20164 Phone: 703-478-0700 Fax: 703-478-0291 jraymont@eit.com uv@eit.com www.eit.com INSTRUMENT

MARKETS