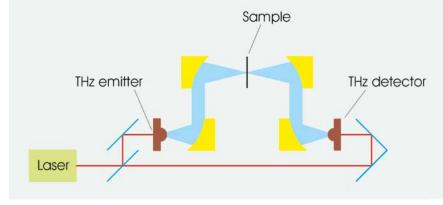


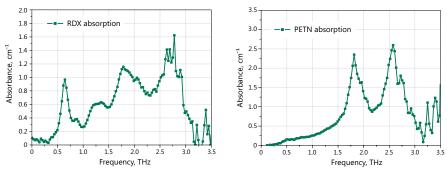
Terahertz spectrometers

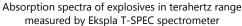
Basic Operation Principles

The terahertz (THz) and sub-THz frequency region (100 GHz - 10 THz) of the electromagnetic spectrum bridges the gap between the microwaves and infrared. THz waves penetrate dielectric materials like paper or plastic, are reflected by materials with free electrons like metals and are absorbed by molecules with certain vibration levels within the terahertz band. Terahertz absorption or reflection spectroscopy, imaging of biological and other objects, THz tomography, and optical pump-THz probe spectroscopy are all hot topics in recent scientific conferences with possible applications in semiconductor, medical and security industries.


One of the most common method of coherent THz generation and detection is approached in terahertz time-domain spectroscopy (THz-TDS) setup. It consist of femtosecond laser, optical delay line and two photoconductive antennas operating as THz emitter and detector. Subpicosecond pulses of THz radiation are detected after propagation through a sample and an identical length of a free space. A comparison of the Fourier transforms of these pulse shapes gives the absorption spectra of the sample under investigation.

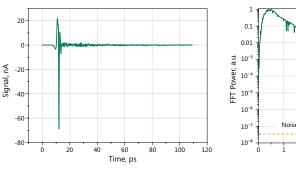
THz-TDS TECHNOLOGY ADVANTAGES


- Broadband spectral coverage in THz range
- ▶ High dynamic range
- Complete amplitude and phase detection
- ▶ Picosecond time resolution
- Optical pump-THz probe experiment possibility


APPLICATIONS AREAS

- ► Material characterization
- ► Non-destructive testing
- Pharmaceutical industry
- Medical imaging
- Homeland security
- ► Semiconductor industry

Simplified scheme of THz time-domain spectroscopy setup


Real-Time Terahertz Spectrometer

Real-time Terahertz Spectrometer offered by Ekspla is a powerful tool for investigative applications of pulsed terahertz waves. With simple and robust design, it is easy-to-use and adaptable to individual requirements.

The unique design of microstrip photoconductive antenna fabricated on low-temperature grown GaAs substrate ensures broadband spectral coverage and high dynamic range. The system is designed with two delay lines: fast and slow. Fast scan line allows real time data acquisition with 10 spectra/s speed and 110 ps time window. Average of collected spectra can increase dynamic range to 70 dB at pulse maximum and extend spectral range up to 4.5 THz. Additional slow delay line allows combination of multiple time windows; thus spectrometer obtains excellent spectral resolution < 2.5 GHz. The fast scan line is designed without bearings and uses a magnetically coupled drive which makes it extremely reliable and significantly extends the lifetime.

T-SPEC spectrometer has hermetic housing with mounted gas inlets. It can be used as purging box, when experiment requires special environmental conditions, like nitrogen or dried air. The spacious sample area allows easy integration of additional equipment, like cryostat of heater. On a special demand we can provide the integration of such equipment, ensuring good fit, spectrometer box sealing, vibration isolation and operation automation.

Typical performance of T-SPEC series Real-time THz Spectrometer (measured in ambient atmosphere)

T-SPEC series

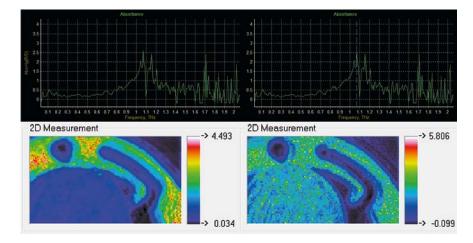
FEATURES

- Wide spectral range up to 4.5 THz
- High dynamic range
 >70 dB @ 0.4 THz
- Real-time data acquisition up to 10 spectra/s
- Excellent spectral resolution better than 2.5 GHz
- "No bearing" design of fast delay line – virtually unlimited lifetime
- Transmission and reflection modes
- High spatial resolution THz imaging
- Complete PC control
- User-friendly software

APPLICATIONS

- Chemical material characterization
- Carrier lifetime and mobility in semiconductors
- Dielectric properties and complex refractive index
- Metamaterials investigation
- Medical and biological nondestructive research
- Thickness measurements

Frequency, THz

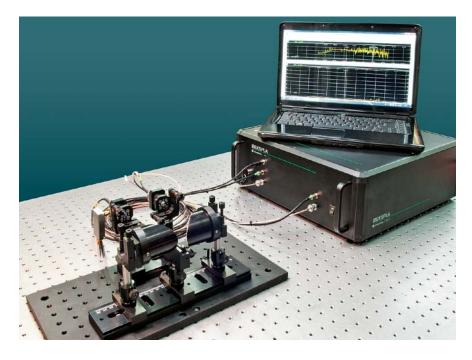

Spectrometer is equipped with two standard spectroscopy modules for transmission and reflection configurations. Each module contains motorized sample manipulator. This allows measurements of multiple samples one by one, without physical access to the spectrometer. Reflection module has convenient vertical architecture, where THz beams reaches the sample from bottom and reflects backwards. The measured samples can be replaced quickly just by laying them down on the sample holder. No adjustment is needed either when changing samples or when changing modules.

Our T-SPEC series spectrometer is the perfect choice for broadband THz imaging. It allows scan of up to 25×25 mm sample with spatial resolution of approx. 1 mm. Measurements contain information about the target, revealing both structural and spectroscopic information.

SPECIFICATIONS

Model	T-SPEC
GENERAL SPECIFICATIONS	
Spectral range	>4.5 THz
Dynamic range	>70 dB @ 0.4 THz
Acquisition rate	10 scans/s
Spectral resolution:	
fast scan	<10 GHz
combined mode (fast + slow)	<2.5 GHz
Scan range:	
fast scan	110 ps
combined mode (fast + slow)	440 ps
Beam diameter on the sample	~ 2 mm @ 1 THz
Configurations	Transmission / normal reflection
Computer interface	USB
Dimensions	560 × 520 × 202 mm
PUMP LASER REQUIREMENTS	
Pump laser	External or integrated
Laser output type	Free space
Wavelength	760-840 nm or 1020-1100 nm
Pulse duration	<120 fs
Output power	>60 mW
Pulse repetition rate	20-100 MHz

T-SPEC SERIES


THz image of tablet containing L-Tartaric acid and metallic part taken in transmission geometry. Tablet is almost transparent at 0.8 THz frequency and become visible close to absorption peak at 1.1 THz frequency

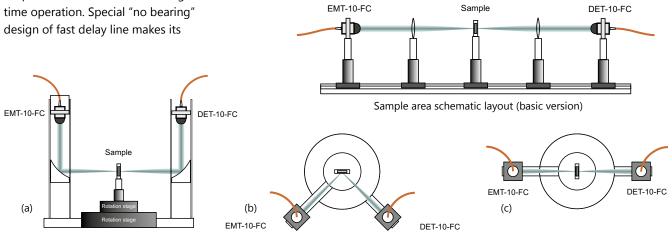
T-SPEC spectroscopy modules: reflection geometry (left) and transmission geometry (right)

Fiber-coupled Terahertz Spectrometer

Fiber-coupled Terahertz Spectrometer T-FIBER, offered by Ekspla, features flexible and robust design. It has integrated femtosecond fiber laser with two fiber output ports. Comparing to common Ti:S oscillators, fiber lasers are smaller, cheaper, more reliable and feature parameters that are perfect for terahertz generation.

Femtosecond laser, delay line and signal registration electronics are integrated in a single compact housing with footprint only 40×40 cm. Minimal set of free space optics used in spectrometer allows stable long time operation. Special "no bearing" design of fast delay line makes its lifetime practically unlimited. Delay line allows real time data acquisition with 10 spectra/s speed and 110 ps time window.

Fiber-coupled THz emitter and detector make switching between experiment geometries easier than before. Due to its compact size and reliability during transportation, T-FIBER spectrometer is dedicated for laboratory use as well as for real field applications. We are also happy to customize it according to special OEM customer requirements.


T-FIBER series

FEATURES

- Pump pulse fiber delivery
- Real-time measurements
- ▶ Unlimited lifetime of delay line
- Flexible design
- THz imaging capability
- Complete PC control
- Excellent value for money

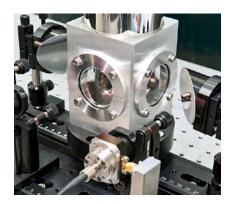
APPLICATIONS

- Time-resolved broadband THz spectroscopy
- Production processes monitoring
- Hazardous substances detection
- Paint and coatings layers thickness measurements
- Food and agricultural products quality inspection
- Medical imaging

Goniometer schematic layout: side view (a), top view in reflection geometry (b), top view in transmission geometry (c)

Basic setup of T-FIBER spectrometer includes optical rail, with fiber-coupled THz emitter, detector, two PE lenses and sample holder. This setup provides transmission geometry and it is extremely simple in alignment.

As an option goniometer stage can be supplied. This inexpensive module allows operation in multiple most common geometries, including transmission and tunable angle reflection from approx. 18.5° up to 90°. It also can be used for unique THz scattering experiments, because sample and detector angles can be changed independently. This module gives also better focusability of THz beam and better dynamic range of THz signal.


SPECIFICATIONS

Output power Pulse repetition rate

Model	T-FIBER basic version	T-FIBER with goniometer
GENERAL SPECIFICATIONS		
Spectral range	>3 THz	>3.5 THz
Dynamic range	>60 dB @ 0.4 THz	>65 dB @ 0.4 THz
Acquisition rate	10) scans/s
Spectral resolution	<	10 GHz
Scan range		110 ps
Configurations	Transmission	Transmission / tunable angle reflection / scattering
Incidence angles range (in reflection mode)	-	18.5 – 90°
Detection angles (in scattering mode)	-	37 – 286°
Computer interface	USB	
Main unit dimensions	400 × 400 × 158 mm	
Spectroscopy setup footprint	670 × 70 mm	450 × 300 mm
PUMP LASER		
Model	LightWire FF50	
Laser output type	Fiber	
Wavelength	1064 nm	
Pulse duration	<160 fs	

T-FIBER SERIES

WE ARE HAPPY TO TAILOR OUR PRODUCTS FOR YOUR APPLICATION

>40 mW

40 MHz

THz Emitter and Detector for Free Space Coupling

THz emitter and THz detector consists of a microstrip photoconductive antenna (PCA) fabricated on GaAs substrate. Depending on pump laser wavelength either low temperature grown GaAs (LT-GaAs) or GaBiAs is used as photoconductor. On its surface a coplanar Hertzian type dipole antenna structure is formed using AuGeNi metallization. Photoconductive antenna geometry, as well as the properties of photoconductor epitaxial layers are optimized for highest THz radiation output efficiency, while preserving optimal bandwidth. As a result, typical emitted THz radiation power exceeds 10 µW, when pumped by laser with 30 mW output power and 150 fs pulse duration. FWHM bandwidth of detection system exceeds 700 GHz with usable spectral range of 0.1-4 THz.

FEATURES

- Based on LT-GaAs or GaBiAs photoconductive material
- Optimized for wavelengths around 800 nm or 1060 nm
- Wide spectral range and low noise
- Sub-picosecond temporal resolution
- Technical passport and test report included

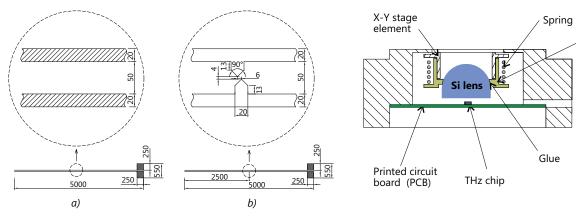
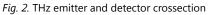
APPLICATIONS

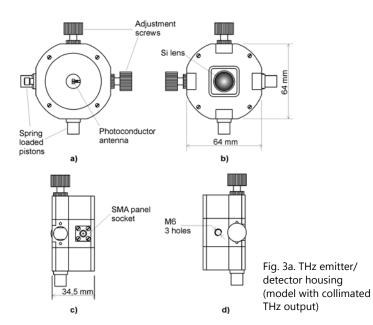
- Time-resolved broadband THz spectroscopy
- Optical pump THz probe spectroscopy
- ▶ THz imaging

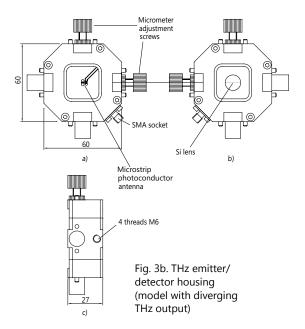
THz emitter or detector is illuminated by laser beam from panel side. Laser beams must be focused between two electrodes (*Fig. 1*). The gap between metallic contacts is similar to laser spot diameter in detector case and larger – in emitter case. THz radiation is collected by integrated lens, manufactured from high-density silicon, mounted on X-Y stage. EKSPLA offers two standard types of these lenses: for collimated or diverging THz beam output. In second case PCA is placed in aplanatic point of silicon lens, which reduces THz beam aberrations. Adjustment screws are used for Si lens positioning onto PCA center. SMA sockets on back side of the housing are used for connecting DC or AC bias to THz emitter and lock-in amplifier input to THz detector. Any of three M6 holes can be used for THz emitter mounting on optical table.

Adapter for Si lens

SMA socket place


Fig. 1. Microstip antena drawings: (a) emitter, (b) detector



LASER SPECTROSCOPY SYSTEMS

THz SPECTROMETERS

SPECIFICATIONS 1)

Model	Emitters		Detectors		
Model	EMT-08	EMT-10	DET-08	DET-10	
PHOTOCONDUCTIVE ANTENNA					
Photoconductive material	LT-GaAs	GaBiAs	LT-GaAs	GaBiAs	
Dimensions of the wafer		5 × 1.	5 mm		
Thickness		600	μm		
Antenna type	strip	line	dip	ole	
Bias voltage	50 V max, 4	50 V max, 40 V typical –		_	
Central THz frequency	~0.5	THz	_		
Detected THz bandwidth	-	– >4 THz		THz	
INTEGRATED FOCUSING LENS					
Material		HRFZ-silicon			
Geometrical form		hyper-hemi-sphere			
THz beam output	collimated o	collimated or diverging		-	
X-Y adjustable stage range		±3 mm			
PUMP BEAM PARAMETERS					
Excitation wavelength	800±40 nm	1060±40 nm	800±40 nm	1060±40 nm	
Average power ¹⁾	<50 mW	<30 mW	<50 mW	<30 mW	
Pulse duration		<150 fs			
Pulse repetition rate		20-100 MHz			
Beam profile		near to Gaussian			
Beam diameter ²⁾	~2 mm				

¹⁾ Subject to laser pulse duration, repetition rate and beam size at the surface of wafer.


Recommended value, if used with EKSPLA THz emitter/detector mount of THz spectroscopy kit.

ORDERING INFORMATION

Description	Model	Notes
THz emitter for 800 nm wavelength	EMT-8	Includes Si lens and coaxial cable with BNC connector
THz detector for 800 nm wavelength	DET-8	Includes Si lens and coaxial cable with BNC connector
THz emitter for 1060 nm wavelength	EMT-10	Includes Si lens and coaxial cable with BNC connector
THz detector for 1060 nm wavelength	EMT-10	Includes Si lens and coaxial cable with BNC connector
THz emitter/detector mouting stage	MNT	Includes pump beam focusing lens on XYZ stage
TMS-100M bias power supply	TMS-100	30–70 V DC or square-wave output
Operational preamplifier	PAM	Current-voltage converter, 10 ⁶ V/A gain, includes 15 V power supply

Fiber-coupled THz Emitter and Detector

Fiber-coupled THz emitters and detectors offered by EKSPLA are designed for broadband operation and can be used in standard time-domain (THz-TDS) setup (*Fig. 1*).

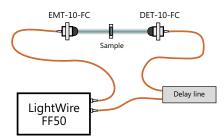


Fig. 1. THz time-domain spectroscopy setup

Unique GaBiAs material used in photoconductive antennas (PCA) features excellent sensitivity for wavelengths up to approx. 1060 nm and electron lifetime shorter than 1 ps. As a result ultra short half-cycle THz pulses with broad spectra up to 5 THz can be generated and detected. Pump beam fiber delivery eliminates timeconsuming adjustments and ensures maximum flexibility of experiment. As an example, this feature allows fast and convenient switching between different geometries: transmission, reflection, etc. THz emitters and detectors are mounted into compact

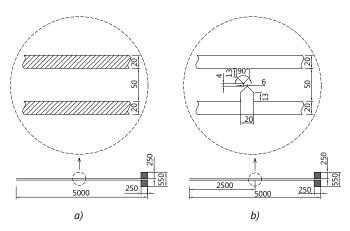
housing compatible with standard 1" optical holders. Performance of each device is checked and technical passport, including testing report, is provided for customer.

INTEGRATED SILICON LENS

THz emitters and detectors are supplied with integrated hyperhemispherical lenses, made from high-resistivity silicon, attached to PCA to increase the radiation efficiency of THz waves into free space. EKSPLA offers two standard types of these lenses: for collimated or diverging THz beam output. Advantage of collimated THz beam output is simple setup, because no additional optical components between THz emitter and detector are required for experiment. However, this design features bigger aberrations of THz beam, which affects focusing. In second case design of lens assumes positioning of the PCA in aplanatic point, which significantly reduces aberrations. As a result nearly diffraction limited spot of THz beam can be achieved.

FEATURES

- Based on unique GaBiAs photoconductive material
- Optimized for wavelengths around 1060 nm
- Pump pulse fiber delivery
- Technical passport and test report included


APPLICATIONS

- Time-resolved broadband THz spectroscopy
- Optical pump-THz probe spectroscopy
- Suitable for all-in-fiber system solution

PHOTOCONDUCTIVE ANTENNA (PCA)

Photoconductive antennas are particularly designed for THz emitter or THz detector. The substrate of GaAs contains messa-etched epitaxial active layer of GaBiAs in order to achieve high dark resistance. High photosensitivity of the material allows use of low average power optical pulses for excitation. On its surface a coplanar Hertzian type dipole antenna structure is formed using AuGeNi metallization (*Fig. 2*). The gap between metallic contacts is similar to laser spot diameter in detector case and larger – in emitter case. Photoconductive chip is mounted on PCB and placed inside metallic housing of device. SMA sockets on back side of the housing are used to connect DC or AC bias to THz emitter or lock-in amplifier input to THz detector.

Fig. 2. Microstip antena drawings: (a) emitter, (b) detector (all dimensions are in micrometers)

SPECIFICATIONS

Model	Emitter EMT-10-FC	Detector DET-10-FC		
PHOTOCONDUCTIVE ANTENNA				
Photoconductive material	GaBiAs			
Dimensions of the wafer	5 × 1.	5 mm		
Thickness	600	μm		
Antenna type	strip line	dipole		
Photosensitivity	up to 12	100 nm		
Bias voltage	50 V max, 40 V typical	-		
Detected THz bandwidth 1)	-	>4 THz		
INTEGRATED FOCUSING LENS				
Material	HRFZ-:	silicon		
Geometrical form	hyper-her	ni-sphere		
THz beam output	collimated or diverging	-		
FIBER DELIVERY				
Fiber length	3±0.2 m			
Fiber connector	FC/APC			
Wavelength ²⁾	1064 nm			
Maximum optical pulse energy (on fiber input)	1 nJ (30 mW at 30 MHz)			
Recommended pump source	EKSPLA LightWire FF50 (with double output option)			

FIBER DELIVERY

Each fiber-coupled THz emitter and detector is delivered with specially design optical fiber. Standard configuration requires pre-chirped pulse with 0.5-2 ps duration on fiber input. Typically such pulse parameters are available directly from fiber lasers before compressor stage. In this case pulse is compressed while propagating through optical fiber with negative dispersion. Another solution can be applied for femtosecond pulses - near zero dispersion optical fiber. In such fiber femtosecond pulse keeps its form and pulse duration doesn't differ much on input and output of fiber. In both cases it works only for particular wavelength, so it should be specified while ordering. Laser radiation is delivered through FC/PCA fiber connector. It is focused onto PCA using lenses fixed inside the housing of THz emitter and THz detector.

¹⁾ Pumped by 130 fs, 20 mW, 30 MHz pulses.

²⁾ Other wavelengths are available on request.

ORDERING INFORMATION

Description	Model	Notes
Fiber-coupled THz emitter for 1060 nm wavelength	EMT-10-FC	Includes Si lens, optical fiber with FC/APC connector and coaxial cable with BNC connector
Fiber-coupled THz detector for 1060 nm wavelength	DET-10-FC	Includes Si lens, optical fiber with FC/APC connector and coaxial cable with BNC connector

Terahertz Registration System TRS-16

Advanced electronics used in T-SPEC and T-FIBER terahertz spectrometers is also available as stand-alone product named TRS-16. It can be used for home-made opto-electronic or electro-optic pulsed THz spectroscopy systems. The complete set includes electronics module and fast scan delay line based on voice coil, with possibility to connect second slow delay line based on stepper motor. It also includes powerful software package used for system control and data acquisition. Similar version of dedicated software is also used in all Ekspla terahertz spectrometers.

ELECTRONICS

The electronic module of TRS-16 system consists of two main parts: delay lines control and signal registration. Fast delay line based on voice coil allows real time data acquisition at 10 scans/s rate with 110 ps scanning window. Use of the optical linear encoder ensures the extremely low jitter, thus registration system can achieve high dynamic range up to 80 dB. The registration part has embedded 16 bit analog to digital converter, operational preamplifier and the THz emitter bias modulator. TRS-16 system also provides bias for the photoconductive THz emitter in range from 20 to 85 V DC or modulated ($\pm 20 \div 85$ V) and for the operational preamplifier ± 12 V DC. Operational preamplifier is also included into the kit.

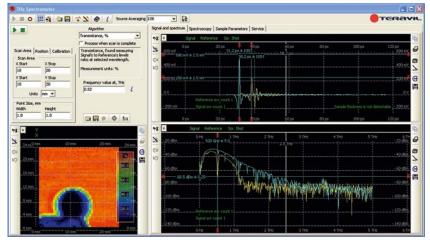


SPECIFICATIONS

Analog to digital converter	16 bit
Operational preamplifier conversion coefficient	not less than 10 ⁶
Dimensions (L×W×H)	230 × 170 × 55 mm

MECHANICS

The fast scan delay line is designed without bearings and uses a magnetically coupled drive which makes it extremely reliable and significantly extends the lifetime. A special mechanical design makes movement of retroreflector straight along one axis, which results perfect beam pointing of the beam passing through the delay line. The maximum line scanning rate is matched with its resonance frequency. This feature substantially reduces energy consumption, vibrations and heat generation.


SPECIFICATIONS

Maximum scan window	110 ps
Speed (at max scan window)	10 Hz
Dimensions (L×W×H)	214 × 75 × 120 mm

SOFTWARE

The Terahertz Registration System TRS-16 comes with dedicated software capable to:

- register THz signal, get FFT spectrum, absorbance and transmittance in real time (10 scans/s);
- make a raster scan image using standard stepper motor XY stage;
- find the absorption, transmission, index of refraction and thickness of the sample;
- THz signal continuous data-flow recording.

Raster scanning with Spectrometer 2D software

Accessories

THz EMITTER/DETECTOR MOUNTING STAGE

Separately from THz emitter and detector EKSPLA provides convenient mounting stage compatible with both devices. It contains lens, mounted on adjustable XY holder, compact stage for shifting lens along optical axis and rail, on which both: lens and emitter/detector are mounted. This helps with pump beam guiding to the gap between electrodes located on photoconductive antenna, as well as adjusting beam diameter on active surface. Convenient fixing screws allow fast mounting and removing each part of this simple setup.

SPECIFICATIONS

Beam height	105 mm
X, Y axis travel range	3 mm
Z axis travel range	13 mm
Lens diameter	25.4 mm
Lens focal diameter	50 mm
Lens anti-reflection coating	AR/AR at selected wavelength (standard: 800 / 1030 / 1064 nm)

BIAS POWER SUPPLY TMS-100 FOR THZ EMITTER

Front view of TMS-100 power supply

FEATURES

- ▶ Low noise
- ► DC or square-wave output (needs external TTL input)
- Cable for connection to THz emitter included

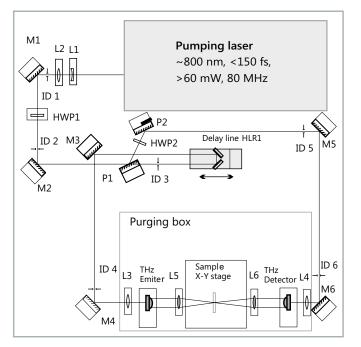
SPECIFICATIONS

Square-wave modulation frequency	10 Hz – 100 kHz
Output voltage	30–70 V (adjustable)
Max current	1 mA
Output socket	BNC
Mains	100/220 V AC, 50/60 Hz
Dimensions (W×L×H)	130 × 190 × 39 mm

OPERATIONAL PREAMPLIFIER FOR THZ DETECTOR

External view of preamplifier

SPECIFICATIONS


PREAMPLIFIER ¹⁾			
Preamplifier type	current-voltage converter		
Conversion coefficient	> 10 ⁶		
Preamplifier head dimensions	60 × 12 × 15 mm		
POWER SUPPLY			
Preamplifier power supply dimensions	155 × 65 × 80 mm		
Preamplifier power supply output voltage	+ 15 V, - 15 V		
Preamplifier power supply line voltage	220 V or 110 V		

 $^{\mbox{\tiny 1}\mbox{\tiny 1}}$ Preamplifier head is equipped with SMA connector matched with EKSPLA THz detector.

THz Spectroscopy Kit

EKSPLA "THz spectroscopy kit" contains all the components necessary to build THz-TDS system. The standard kit consists of photoconductive antenna THz emitter and detector, pump laser beam guiding optics, motorized delay line with controller, bias power supply TMS-100, THz beam guiding optics, sample holder and lock-in amplifier. All components are assembled on the baseplate of 60×80 cm dimensions. Four standard configurations are available, optimized for transmission, reflection, imaging or pump-probe measurement. All can be easily interchanged and modified. Any other optional configuration can be ordered initially or as a future upgrade. THz spectroscopy kit is controlled by dedicated software LabView[™] based.

Optical layout of THz spectroscopy kit in transmission configuration

BASIC THz SPECTROSCOPY KIT INCLUDES:

- ▶ THz emitter and detector
- Pump laser beam guiding optics
- Motorized slow delay line with controller
- ▶ THz beam guiding mirrors
- Sample holder
- Lock-in amplifier
- Labview based software for data acquisition

OPTIONAL ITEMS:

- ▶ Femtosecond laser
- Purging box, removes water absorption lines
- Motorized X,Y sample stage

OUR CUSTOM THZ SYSTEMS EXAMPLES

LIDAR operating in terahertz range was used to scan remote objects at 7 m distance.

THz LIDAR installed in Lomonosov Moscow State University, Russia

Optical pump – terahertz probe spectroscopic technique allows investigation of carrier dynamics in semiconductors, nanocrystals, and other materials.

Optical pump-THz probe system installed in The Institute of Physics, Chinese Academy of Sciences, Beijing, China

Why EKSPLA?

- Know-how in laser technology and nonlinear optics
- In house design and manufacturing
- Close partnership with scientific community
- Network of photonics companies in Vilnius

Savanoriu Av. 237 LT-02300 Vilnius LITHUANIA

Ph.: +370 5 264 96 29 Fax: +370 5 264 18 09 sales@ekspla.com www.ekspla.com ind local distributor at **www.ekspla.com**

Revision number – 150707