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Abstract 

In high-current computing boards PDN target impedance requirement could be a fraction 

of a milliohm.  Measuring and simulating such low impedances create challenges that 

require care to resolve.  In simulations, special challenges include the proper choice of 

load and source components, the proper selection of initial conditions and solver setup.  

In measurements, the instrumentation setup requires a very wide dynamic range with low 

noise floor and very careful selection and connection of test locations and probes.  The 

paper shows the correlation between measured and simulated self and transfer impedance 

profiles of large computer boards down to the micro ohm range. 
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1. Introduction 

In modern computing and communication systems the target impedance of a power 

distribution network (PDN) can be as low as in the sub-milliohm range, and tends to 

decrease even more to meet the high power and low voltage requirement. Because even a 

small change of PDN impedance may cause excessive fluctuations of supply power 

which in turn leads to slow-down or breakdown of a system, precise assessment and 

control of such low impedance is a significantly important engineering practice in the 

PDN design process. Despite of such high importance, simulating and measuring 

extremely low impedance of a PDN is still very challenging. 

 

Simulating extremely low impedance requires special consideration on various factors. 

For example, suboptimum choice of load and source component models can lead to 

accidentally misleading results, and small changes in design parameters, such as layer 

stack-up, metal conductivity, and via diameter and plating thickness can alter simulated 

impedance significantly.  In addition, the selection of solver, solver setup, and simulation 

conditions can also be crucial factors affecting the accuracy of simulation results.  

 

One particular aspect and potential issue with DC-drop simulation is illustrated in Figure 

1.  The screen capture shows the DC drop across a surface pad, connecting to a high-

current device.  For the purposes of field-solver software, (full-wave and hybrid alike), 

external devices are connected through nodes.  The physical size of the node connection 

may make a difference if the current going through the node creates significant current 

density.  Hybrid solvers may have the user-defined option to set the size of the 

connecting node, but it is usually a radius or diameter for a circular node connection.  The 

left side of Figure 1 illustrates a default-size node in a hybrid solver connecting to a large 

pad, which altogether carried more than 15 ampere DC current.    

 

 
 

Figure 1. DC drop on a large surface pad with default-size node connection (left) and 

equipotential pad option (on the right). 
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The voltage drop across the pad itself is more than 5 mV, which on a 1V supply rail 

amounts to 0.5% error.  If the solver has an equipotential user option, and we turn it on, 

the DC drop across the same pad with the same current will be zero (as expected).  This 

is illustrated on the right side of Figure 1.  Of course in a real circuit none of these two 

extremes occur exactly as shown here: if we have a large pad for a component pin, the 

connector pin will not connect through a small circular disc area as it is assumed on the 

left of Figure 1.  But it is also true that even if the component pad is exactly as big as the 

pad, there is still no guarantee that the surface of the pad is equipotential.  However, it is 

reasonable to assume that the component pin of a high-current device has a low-

resistance pin almost as big as the pad, which will make the pad almost equipotential.  In 

summary: a large pad with a small connecting node is very pessimistic, while the 

equipotential pad assumption is only slightly optimistic. 

 

Even the most accurate DC simulations may produce misleading data if the sources and 

loads are not set up correctly.  On high-current supply rails devices, sources and loads 

alike, tend to have multiple connection pins.  Simulation tools allow us to place sources 

and loads at any location on the DUT, but placing sources and loads at hundreds of pins 

becomes a time burden.  Tools may offer help by identifying components and assigning 

the necessary network elements for each device in one step.  The default configuration, 

however, is to create an equipotential area over the pins of each device, thus removing 

the voltage drop under the device.  This can lead up to 50% miscalculation of DC drop in 

large dense memory arrays, while script-assisted or manual setup with individual floating 

sources and loads at every pin tends to produce much better correlation. 

 

 

 

Figure 2. Correlation of various measured and simulated responses at low 

frequencies. 
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The choice of simulation solver also affects the results especially at low frequencies 

where somewhat different physical behavior starts to come into play, such as inter plane-

pair coupling caused by a larger skin-depth compared to the metal thickness. AC 

simulation tools may extrapolate DC values based on the AC result at low frequency, and 

this may produce erroneous results at the DC point. The results of AC and DC 

simulations and measurements are shown in Figure 2.  The DUT had a construction 

similar to describe later in Section 3, where the construction created flat self- and 

transfer- impedance profiles from DC up to at least 10 kHz.   AC data was the average 

response of the DUT around 100 Hz.  P1 through P5 represent different port locations on 

this DUT. P1 is self-impedance and the rest are transfer-impedances. The AC simulation 

and measurement responses seem to show a good correlation at P1, where the impedance 

is several milliohms. However, the correlation – when the AC simulation is not assisted 

by a DC solution – starts to break down when the impedance falls below a milliohm as 

seen at P2 through P5. 

Measuring extremely low impedance of a PDN also requires careful considerations of 

several aspects such as the selection of the measurement configurations, the selection of 

test locations, and the connection of measurement components, including probes, cables, 

and measurement instrument.  The biggest challenges are connection discontinuity and 

cable braid loop error [1]. 

In order to illustrate and discuss the aforementioned factors in simulating and measuring 

low impedance in a PDN, we will present the correlation work performed on large 

printed circuit boards. On one board, we shorted all capacitor pads on one particular 

power net with wires and flat conductors matching the footprint of each particular 

capacitor case size, but left the multi-phase DC-DC converter output pads open. In a 

complementary manner, we left the capacitor pads open but shorted the converter output 

pads on an identical board thereby making the second board providing different current 

paths and different impedances for the correlation. With this set of example structures the 

self and transfer impedance ranges were established, within which we can confidently 

simulate and measure the power distribution network impedance with the selected tools.  

Lastly the same boards were built up with various combinations of capacitors, and again, 

were measured and simulated. 

The boards were also cross sectioned, and the simulation results were re-created based on 

the cross-section data. The new simulations include typical, best, and worst case 

impedance responses resulting from the manufacturing variations. With these simulation 

data, we can show how well the simulation data correlate with the measurement and 

consequently close the correlation and validation loop. 

The rest of this paper is organized as follows: Next section describes the device under test 

(DUT), and the simulation and measurement setup. Section 3 covers the DC simulation 

and measurement using one of the DUTs. Section 4 presents the setup and the results of 

the AC simulation and measurement of the DUTs including the board with mounted 

capacitors. Finally, Section 5 concludes the paper. 
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2. DUT, Simulation and Measurement Setup 

2.1. DUT 

To study how to simulate and measure extremely low impedance, we chose a power 

supply rail of a large printed circuit board where large metal planes provide very low 

impedance. A very similar DUT is also described in [7].  An approximate top view of the 

board is shown in Figure 3 where memory banks, DC-DC converters, and port locations 

are indicated as well. Note that, for simplicity, even-number ports are omitted in the 

figure as they are right next to odd-number ports.  These port pairs with probe 

connections on the top side of the board allow us to implement the Two-Port Shunt-

through impedance measurement scheme [4]. 

 

To make the problem simple we used a bare board without any attached component. 

Instead of attaching actual capacitors, first we shorted the capacitor pads with wires and 

metal braids. Shorting hundreds of capacitor pads leads to the impedance of the power 

rail to become very low. Although our intention was to create such a low-impedance 

DUT, some of the transfer impedances were actually too low to be correctly measured.  

 

 

Figure 3.  Sketch outline of a large printed circuit board with multiple memory sockets.  

The left side shows the approximate dimensions and placements, the right side shows the 

port-numbering definition.   

 

Figure 4 shows two of such transfer-impedance traces together with the noise floor of the 

setup. The noise floor is a measured response with the same measurement setup, cables 
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and probes that were used to measure the DUT, except the probes touched the opposite 

sides of a solid metal sheet. 

 

To allow more correlation points in the sub-milliohm range, we had to create another 

DUT which provides an impedance profile higher than the measurement noise floor but 

still as sufficiently low as a sub-milliohm range. It was possible to slightly raise the 

impedance of the DUT by shorting the pads of the multi-phase DC-DC converters while 

leaving the capacitor pads open.  

 

 

 

Figure 4. Noise floor of the measurement system with two transfer impedances 

not being recognizably above the noise floor. 

 

2.2. Measurement Setup 

Measuring impedance at a DC operating point and at frequencies above zero require 

different measurement instruments, techniques and configurations. DC measurement can 

be made simply by sending a direct current between two points and measure the resulting 

voltage drop with a voltmeter.  

 

The components used in our DC measurements are two coaxial cables, two probes with 

spring-loaded ground pins, a current source generator, and a sensitive voltmeter.  Their 

connectivity is shown in Figure 5.  If the source current is 1A, the measured voltage 

becomes simply the self or transfer resistance between the two ports which can be 

explained by Ohm’s law (R=V/I.)  Many coaxial cables can easily carry 1A DC current, 

and digital multimeters with 10 microvolt resolution are readily available.  With this 

simple instrumentation we can achieve 10 microohm resolution floor.  The coaxial cables 
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and probes allow for quick positioning of probes and change of connection points.  

Semirigid probes with rigid center pins and spring-loaded ground pins are convenient for 

landing on flat PCB pads.  The photo on the right of Figure 5 shows a home-made 

semirigid coaxial probe with spring-loaded ground pin in a 3D probe holder.  The 

semirigid coaxial cable has 0.084” diameter; the spring-loaded ground pin comes from a 

standard oscilloscope probe accessory kit. 

 

      
 

Figure 5.  DC measurement setup sketch on the left, photo of actual instrumentation in 

the middle, home-made semirigid probe in 3D holder on the right. 

 

Probes with two rigid pins are better suited for connecting to through holes with matching 

dimensions or to soft compliant surfaces.  If better sensitivity is needed, either higher DC 

source current can be applied, possibly through heavier wires and directly soldered to the 

DUT or a more sensitive DC voltmeter can be used. 

 

Impedance measurement at non-zero frequencies on the other hand can be made by 

various measurement setup, but it also requires more careful considerations on the 

cabling, probing and connections. From a number of available impedance measurement 

methods [2], we chose to use the two-port shunt-through network analyzer method. Since 

the impedance of a PDN is very low, using a one-port measurement may suffer from the 

parasitic impedance coming from the connection point between the measurement system 

and the DUT. Moreover, the port that only receives the measured data provides the 

sufficiently low error floor, enabling making measurements of extremely low impedance 

[3], [4]. 

 

The instrument described in [5] has two options to measure low impedances: the Gain-

Phase setup side of the instrument, working up to 30 MHz, has semi-floating ground 

connections and its cable-braid error floor is typically in the tens of microohms range.  

The S-parameter side, shown in Figure 6, has regular grounded VNA connections and it 

works in the 5 Hz to 3 GHz frequency range.   
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Figure 6.  AC measurement setup with regular two-port VNA and ferrite toroid common-

mode choke. 

 

 

 

The size of the DUT required a few feet of cables, which would have created a low-

frequency cable-braid error floor of about 30 milliohms.  To reduce this error, and at the 

same time keeping the benefits of the wide-band VNA ports, approximately six feet of 

RG178 coaxial cable was wound on a large ferrite toroid core.  With the good dynamic 

range of the instrument, this common-mode choke can guarantee less than 10 microohm 

impedance error floor above 1 kHz (see Figure 4). 

 

2.3. Simulation Setup  

In this study, we have used a commercial simulation tool, which is described as a hybrid 

solver [6]. It decomposes a given problem into separate domains where different types of 

solvers will be used. Then, it calculates the field in each problem domain using a 

corresponding field solver. The tool finally extracts frequency-dependent network 

parameters. 

 

Like most of the electromagnetic simulation tools do, the simulation tool used in this 

paper requires its users a careful consideration on the simulation setup to ensure that the 

tool generates accurate results. The tool also comes with many options available that may 

affect the result significantly. For example, a special option that engages a DC simulator 

in the middle of the AC simulation process enables calculating the IR drop response 

using a dedicated DC solver. Subsequently, the resulting AC and DC results are merged 

to generate low frequency responses. 

 

Stack-ups and pad-stacks also need to be carefully checked when the tool has finished 

importing the layout file, as certain data may have been neglected or altered during the 

process. Also, updating geometric dimensions and material properties to the most 

realistic ones is a good practice to create well simulation data that correlates well with 
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measurements, because a small change of those parameters may affect the simulation 

results significantly, especially in very low impedance PDNs.  

 

The setup for the most of simulations used in this paper is as follows: 

 Adaptive frequency sweep for 0 Hz – 100 MHz 

 Calculate DC point as reference 

 Natural boundary condition considering boundary radiation 

 Ignore inter-plane coupling 

 Apply up-to-date cross-section information of the board to the stack-up and pad-

stack 

 

 

3. DC Simulations and Measurements 

As explained in 2.1, we shorted the multi-phase DC-DC converter pads of the board 

shown in Figure 3 using short wires and metal braids while leaving the capacitor pads 

open to slightly raise the impedance of the above the noise floor.  

 

We used two types of solvers to generate DC point results. One is an AC solver that 

generated a result at its lowest-possible frequency and extrapolated that to the DC point. 

The other is a DC solver which actually calculated IR drops at DC using a DC-specific 

solving technique. 

 

After all the planned measurements were performed, we cross sectioned the board to 

obtain actual geometric dimensions, such as a via drill hole size and plating thickness, 

metal and dielectric thickness.  

 

 

Figure 7. Vertical geometry data from the layout tool (labeled ‘layout’) and cross-

section data of the two DUT boards 
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Figure 7 shows the stack-up dimensions of the original board design and the ones 

obtained from the actual board cross sections. The table shows part of the stack-up, the 

internal portion where four metal layers were used for high-current power and ground 

connections.  The rows with no layer name indicate the dielectric layers between the 

copper layers.  The variation of via diameter and plating thickness was from 11.8 to 12.3 

mil and from 1.1 to 1.6 mil, respectively. Using the cross section data we categorized 

each geometric dimension to three cases; typical, best, and worst. The typical case simply 

represents the mean value of the measured dimensions. The best and worst cases were 

selected as potential upper bounds: the highest and lowest thickness values were 

uniformly applied across all similar geometry items.  Those combinations were selected, 

which would potentially result in the lowest and highest impedance, respectively. 

Therefore, the best and the worst cases can set the upper and lower boundaries of the 

impedance caused by manufacturing uncertainty. 

 

3.1. DC Correlation 

The self-impedance results of the AC simulations as well as low-frequency VNA and DC 

measurements are shown in Figure 8. Three simulations are created using the typical, 

best, and worst cross section data. Both the VNA and DC measurement results are within 

the corner cases, the best and the worst.  

 

 

Figure 8. Typical, best, and worst case self-impedance results of simulation closely 

correlate with low-frequency VNA and DC measurements. 

 

Figure 9 shows transfer impedance results. The transfer impedances are lower than the 

self impedances and two of them (Z(1,17) and Z(51,73)) are below 1 mOhm. The DC and 

VNA measurement results of port 51 and 73 correspond to each other at 0.45 mOhm, and 
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they are within the simulation corner cases. Other transfer impedance results also show 

that the VNA measurements and the simulation results are with a good correlation. 

 

 

Figure 9. Transfer-impedance simulation and measurement results of typical, best, and 

worst case at 1mOhm and below. 

 

4. AC Simulations and Measurements 

4.1. Shorts at DC-DC Converters 

The DUT in this section is the board with the shorted DC-DC converter pads, which was 

also used for the DC simulations and measurements presented in Section 3. 

 

Since our focus is on the low frequency response of the DUT, we measured and 

simulated from 100 Hz to 10 MHz. In the measurement setup, we used two coaxial cables 

covered by multiple ferrite beads to reduce the measurement error caused by ground loop. 

In addition, one of the cables was connected to a coaxial cable wrapped around a large 

ferrite toroid core to further reduce the measurement error at low frequency as shown in 

Figure 6. Probes used in the measurements have spring-loaded ground pins which enable 

proper contact of the probe pins to the board pads.  

 

The simulation included the wires and metal braids shorting the converter pads, and each 

short is represented by a series connection of a 1 mOhm resistor and 1 nH inductor. The 

DC reference option was enabled so that the tool actually calculates the DC point using a 

DC-dedicated solver. In order to apply the effect of manufacturing variations, the 
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dimensions and material properties have been modified to the typical values based on the 

cross-section data. 

 

Figure 10 shows the self-impedance results from the AC simulation with the DC 

reference option, as well as the measurement. The impedance ranges from 2.5 mOhm to 5 

mOhm and the simulation and measurement curves correlate well.  

 

Since our interest is in the sub-milliohm range, we need to look at transfer-impedances as 

they provide lower impedance than self-impedance. We made measurements of four 

transfer-impedances, Z(1,3), Z(1,9), Z(1,17), and Z(51,73). Port1 and port3 are 

geometrically closest to each other, whereas port51 and port73 are the farthest apart, and 

therefore expected to have lower transfer-impedance. Figure 11 shows all the measured 

transfer-impedances together with simulation results, and most of the impedances are in 

the sub-milliohm range. The lowest impedance is observed from Z(51,73) as expected, 

and the values from the simulation and measurement correlate at 0.55 mOhm and 0.40 

mOhm, respectively. 

 

 

Figure 10. Self-impedance results of measurements and simulations of the board with 

shorted DC-DC converter pads 

 

The simulation results in Figure 11 were based on the typical dimensions and material 

properties that we obtained from the cross-sectioning. In order to assess and quantify how 

the manufacturing uncertainties eventually affect the resultant impedance, we also 

simulated two corner cases from Figure 7 data, the best and the worst, representing the 

minimum and maximum impedance boundaries, respectively. Figure 12 shows 

measurement data compared to the simulation results of two select port combinations, 

Z(1,3) (left) and Z(51,73) (right). In both cases, the measured response stays within the 
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impedance boundary set by the simulation corner cases along the frequency range. Notice 

that the shape of the curves is very similar to each other in the entire frequency range. 

 

 
 

Figure 11. Transfer-impedances from measurements and simulations of the board with 

shorted DC-DC converter pads 

 

 

    
 

Figure 12. Measurement result compared to simulation results with cross-section data. 
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4.2. Shorts at capacitors 

The DUT shown in this section is the board with shorts at the capacitor sites. Shorting 

hundreds of the power and ground pads of capacitors makes the DUT impedance 

extremely low.  

 

 

Figure 13. Measured and simulated self-impedance of the board with shorts at 

capacitors 

 

Figure 13 shows three self-impedances curves generated by simulations and VNA 

measurements, and they have a good impedance correlation in the microohm range. As 

described in Section 2, some of the transfer impedance combinations are below the noise 

floor and could not be correctly measured. Note that the layout dimensions and material 

properties used in the simulation were based on the typical values of the cross section 

data.  

 

 

4.3. Board with Capacitors 

The board used in this paper has hundreds of capacitor locations where three types of 

capacitors can be placed. We selected 12 pieces of 1000uF polymer tantalum capacitors 

and 40 pieces of 0805-size 47uF multi-layer ceramic capacitors and mounted them on the 

board and made multiple combinations of self and transfer impedance measurements and 

simulations. To add the capacitors in the simulation, we measured each capacitor and 

attached the measured data into the simulation. Since the test fixture used for the 

capacitor measurements was initially included in the capacitor models, it was separately 

measured by shorting its surface pads and subtracted the resulting impedance from the 
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capacitor model. Figure 13 shows the measurement and de-embedded results for the 

1000 uF (left) and 47 uF (right) capacitors.  The dashed blue traces represent the 

impedance of the shorted test fixture.  From the de-embedded capacitor impedance-

frequency curve separate .s1p Touchstone model files were created for each capacitor. 

 

  

 
 

Figure 13. Measured impedance of 12 capacitors and test fixture together with de-

embedded models.1000uF (left) and 47uF (right) capacitors. 

 

 

 
 

Figure 14. Self-impedances from simulations and measurements of the capacitor loaded 

DUT. 
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The simulation and measurement results of the board with 52 pieces of the two types of 

capacitors are plotted in Figure 14 and Figure 15.   The correlation used passive 

components only; no DC-DC converter was included as those usually have higher 

variability and therefore are not well suited for correlating measurement and simulation 

processes.  For measured impedances on a similar board with active DC-DC converters 

running, see for instance [7], [9], [10] and [11]. 

 

The self impedances were simulated and measured at the power-ground pad pairs of 

various devices.  In the memory area the opposite pads in the socket footprints were used, 

which connect with shared vias to the internal planes.  As a result, the self-impedance 

values of Figure 14 contain a short section of the corresponding via loop, raising the 

impedance to a few milliohms, where correlation to simulated values is easier.  The same 

series vias do not noticeably alter transfer-impedance values and therefore impedances in 

Figure 15 are sub-milliohm values. 

 

 

Figure 15. Transfer-impedances from simulations and measurements of the 

capacitor loaded DUT. 

 

The correlation of the DUT with capacitors shows the simulation and measurement 

resulted in similar trend and curve shape, such as the frequency points where the local 

and global minima of the impedances are observed. However, the impedances at such 

frequencies show somewhat noticeable disagreement. The reason for the discrepancy 

may resulted from either single or multiple sources, such as an imperfect technique of 

applying a capacitor model to the simulation tool, improper simulation setup, or the bad 

condition of the capacitor model applied to the simulation. 
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5. Conclusions 

We have presented the correlation of simulations and measurements performed on low-

impedance PDN on a large memory array with different component configurations: 

shorts at capacitor sites, shorts at DC-DC converter outputs and with a selected sub-set of 

polymer bulk and ceramic capacitors. Challenges of simulating extremely low impedance 

include the choice of simulation solver, simulation setup, and the application of 

manufacturing variation. It was shown that simulation settings and setup parameters can 

significantly alter the results.  It was also illustrated that AC simulation results from 

hybrid solvers can produce reasonably accurate results in the milliohm range, but require 

DC-solution assist in the sub-milliohm range.  Measuring of microohm impedance values 

requires careful consideration of the choice of measurement method, configuration, and 

setup. Recent instrumentation advances make it possible to achieve a low-frequency 

noise floor of ten microohms or less with conventional two-port VNA shunt-through 

connection with a series common-mode choke. 

 

Using a hybrid field solver and a two-port network analyzer measurement method, we 

have shown good correlation of impedance between simulations and measurements in the 

sub-milliohm range. Further improvement of the low-impedance analysis requires the 

correlation effort in simulating and measuring more realistic and complex devices such as 

a DUT with live active components. 
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