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Agenda 

• Anatomy of a via 

• Via performance 

• Frequency and Time domains 

• Fast Edge Rate TDR techniques 

• 50X scaled measurements 

• Conclusion 
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Anatomy of a via 
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VIA PERFORMANCE 

Affects of stubbing on 

transition vias. 

Hz Hz 
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VIA PERFORMANCE 

Impedance mis-match on through vias 
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VIA PERFORMANCE 

We can summarize via performance within two major 

categories: 

Gross Discontinuities: via stubbing, special pads and 

other structures causing major resonances. 

Impedance Discontinuities: pads, stack symmetry, 

and the number of planes subtly affect impedance. 

The primary objective is to make vias seamless and inert in 

the channel… like the trace it connects. 
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Frequency versus Time Domains 

Exploring Via sub-structures 

Can we use frequency--time or both domains 

to reveal via sub-structures and their affects 

so as to help us optimize via performance? 

We will explore these domains using a 3D 

solver. 
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Frequency domain: 16 layer stack 
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Insertion and return loss versus parameter changes: 

Insertion loss trends are expected,  

but no clear relations to the sub-structures can be observed. 

Insertion loss Return loss 

Hz Hz 
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Frequency domain: simple 8 layer stack: 

Let’s test more structural changes 

one parameter at a time. 
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Insertion  loss versus parameter changes: 

dB 

dB 

dB 

dB 
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Return loss versus parameter changes: 

dB 
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Time domain: 16 layer stack 

Impedance target is 85 ohms, contrasting the default structure against 

two parameter changes with a Trise of 23ps. 

 

What do we see using faster rise times? 
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Time domain: 16 layer stack, TDR response vs Trise 

Fast Edge Rate TDR (FER) exposes detail. But can we use this? 
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Time domain: 16 layer stack, 3 parameter changes 
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Time domain: 16 layer stack, launch vs big discontinuities 

Launch the TDR at both ends, 

detail can get lost. 
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Time domain: 8 layer stack, launch impedance also impacts detail 

Lost detail with high launch impedance 

New detail with high launch impedance  
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Time domain: 8 layer stack, stepping through 8 parameter changes  

A bit messy, let’s sort the sub-structures. Our target impedance is 50 ohms. 
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Time domain: 8 layer stack, sorting out structures with the least impact 
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Time domain: 8 layer stack, sorting out structures with the most impact 
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FER TDR Optimization  

We need to consider physical measurements 

using standard TDR equipment. But how are 

we going to physically generate a 2ps edge 

rate? 

 

The answer lies in the power of scaling….. 
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FER TDR Optimization: 50X 3D and Physical models  

We will use the simple 8 layer stack for these exercises. 
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FER TDR Optimization: 
1X 50X dimensional details 

3D model correlation 

Compare FER TDR traces for 

the 1X vs the 50X 3D scaled 

model. 

1X: Trise=600fs 

50X: Trise=30ps 
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FER TDR Optimization: (50X) Calibrating the TDR trace 

ϵ=1 (air), Tpd~85ps/inch 

Top pad Bottom pad 

Default trace 
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FER TDR Optimization: (50X) locating the large impedance discontinuity 
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FER TDR Optimization: (50X) 

best solution 

Increased top/bottom pads 

Added dummy signal pads 

Default trace 
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FER TDR Optimization: (50X) back to the Frequency domain  

How well did we do? 

~1.2dB improvement @ 400MHz ~5.3db improvement @ 400MHz 

Insertion loss 

Return loss 

Hz Hz 
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50X Physical Model Correlation: 

considerations 

 

• Absorbing boundary issue 

• Flexibilility  

• Simple construction 
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50X Physical Model Correlation: 

Absorbing boundaries: frequency 

vs time domains 
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50X Physical Model Correlation: 3D vs physical, default and 1 parameter change 



1/10/2012 

16 

31 

Conclusions: 

• Frequency domain does not provide sub-
structure detail. 

• Time domain using Fast Edge Rate TDR in 
simulation can reveal significant detail of a via’s 
sub-structure. 

• A simple process using this technique was 
demonstrated. 

• The technique has been demonstrated against a 
50X physical model. 


