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INTRODUCTION

• Laminate loss is becoming more important
• Df measurement options

• direct impedance measurements
• resonance-based methods 
• wide-band model-based signature tests

• Multitude of IPC standards for Df testing
• No agreed-upon method followed by the majority

• Data (if available) may be conflicting and confusing
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THE CAPACITANCE GRADIENT METHOD (1)
What is it and what are the steps
• Df derived from change in Capacitance with 

frequency
• Measure the impedance of a CCL (Copper 

Clad Laminate) DUT sample
• Extract capacitance vs frequency
• Establish the trendline of C(f)
• Calculate Df(f) from Wideband Debye model
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THE CAPACITANCE GRADIENT METHOD (2)
The theory behind it
• Capacitance can be 

extracted from Im{Z}
• The real and imaginary 

parts of impedance are 
linked through causality 
constraints

• Integral wide-band Debye 
model needs only one 
Df(fo) point to define the 
entire curve

• Df is proportional to the 
slope of Dk
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Integral Wide-band Debye model:

 Dk(f), Df(f) [-]
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THE CAPACITANCE GRADIENT METHOD (3)
Assumptions, benefits
• Relies on Wideband Debye 

model: >> input data is OK 
from any limited frequency 
band

• C(f) is closer related to the 
magnitude of Y, relative 
measurement error is 
usually lower

• C(f) is measured in a 
convenient low frequency 
band >> there are fewer 
error factors
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THE CAPACITANCE GRADIENT METHOD (4)
Limitations
• Does not work if/where 

Wideband Debye model is 
not valid

• Lowest frequency is set by 
impedance limit

• High-frequency limit is set by 
lowest resonance frequency
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• DUT size limitation
• Effective working area
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LAMINATE STUDY: Subject, purpose, scope (1)

• Subject
• Df (no Dk)

• Purpose
• Correlate CGM against other methods
• Find a Df test method that fits our needs

• Scope
• Glass-reinforced laminates
• 45% - 55% glass-resin ratio
• 4-5 mil thickness
• One glass style
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LAMINATE STUDY: Subject, purpose, scope (2)

Material Thickness 
(mil) 

Glass 
Style 

Resin 
Content 

(%) 
Vendor Df Freq (GHz) Method (IPC) 

Laminate A 
FR408HR 5.0 #2116 55 
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0.0086 
0.0093 

0.1 
1.0 

10.0 
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2.5.5.5 

Laminate B 
R1566V 5.0 
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 Loss tangent at mid-side points [-]
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COPPER CLAD LAMINATES: Low Frequency (1)
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• Laminate A measured with E4294A Impedance Analyzer and 16192A 
SMD (Surface Mount Device) fixture

• Measurements taken on unconditioned samples
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COPPER CLAD LAMINATES: Low Frequency (2)
Comparing the four laminates
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COPPER CLAD LAMINATES: Low Frequency (3)

Laminate A, 3”x3” size

Correlation to Integral Wideband 
Debye model is poor
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BARE LAMINATES: High Frequency
Instrumentation for 1MHz – 1GHz:

E4991A and 16453A fixture (Parallel Plate)
Instrumentation for 10GHz:

E8363A and 85072A Split Cylinder 
Resonator (SCR)

Sample

• Bare laminate sample
• Fixture creates plate capacitor
• C(f) and D(f) directly measured

• Cylinder Q is measured with/without DUT
• Dk and Df are calculated from shift of 

resonance frequency and Q
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B-STAGE BARE LAMINATES: High Frequency (1)
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• All 4 laminates measured with PP and SCR
• Measurements taken on unconditioned samples

• B-stage: not fully cured 
resin

• Df < 1% under 1MHz

• All laminates show similar 
trends

• Significant changes in 
slope

• Dashed line indicates 
frequency range with no 
data
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B-STAGE BARE LAMINATES: High Frequency (2)
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• Integral Wideband Debye model does not match 
• Differential Debye model correlates well
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C-STAGE BARE LAMINATES: High Frequency

• C-stage: fully cured resin
• Trend significantly different
• Multiple inflection points
• Neither integral Wideband 

Debye nor Differential 
Debye model correlates well

Df(f) from differential Debye model

• All 4 laminates measured with PP and SCR
• Measurements taken on unconditioned samples
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C-STAGE BARE LAMINATES: Etching
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Etching Experiment
• Why did trend change from 

B-stage to C-stage?
• C-stage were etched cores
• Impact of inner vs. outer 

layer etching process is 
minimal
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C-STAGE BARE LAMINATES: Soaking
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• 2 Hour Soak in pressure 
cooker

• Moisture absorption 
increases Df but doesn’t 
change trend

• Is moisture responsible for Df(f) signature?

• Qualitative measurements by Parallel Plate 
and SCR methods
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C-STAGE BARE LAMINATES: Baking

 Df of Laminate B [-]
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Step 2

Step 3

Step 4

Step 1
30min @ 110C

Step 2
2 hours @ 110C

Step 3
14 hours @ 110C

Step 4
2 hours @ 185C

• Baking DOES change Df 
signature

• Step 4 shows previous 
C-stage trend

• Additional baking had no 
effect
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UNREINFORCED LAMINATES (1)

Low and high-frequency Df signature of DuPont 
FR0121A acrylic laminate
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• Negative Df slope • Inflection point in 
Df(f) is still present

Purpose: checking to see if difference in field 
orientation shows up in isotropic laminates as well
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UNREINFORCED LAMINATES (3)

Df of Oak Mitsui Technologies BC24M 1/1 (left graph) and experimental 
laminate (right graph). Blue data points: SUN Microsystems; red data 

points: courtesy of Oak Mitsui Technologies.
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• Maybe no 
inflection point 

• Maybe no 
inflection point 
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COMPOSITE TEST RESULTS (1)
Df of Laminate B for two different resin contents, measured with Short 

Pulse Propagation (SPP) method.  Data courtesy of Compeq.
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SPP:
• Laminated interconnect is 

measured with a narrow 
pulse

• Different length traces are 
measured

• Complex propagation 
constant is calculated from 
far-end received pulse

• From cross section data, DC 
resistance and field-solver 
data, a first order model is 
created

• R(f), L(f), C(f) and G(f) are 
fitted to match measured 
response
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COMPOSITE TEST RESULTS (2)

Df of Laminate A (left graph) and Laminate B (right graph) with different 
measurement methods.  SPP data courtesy of Compeq and GCE
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POTENTIAL SOURCES OF ERRORS (1)

Impact of electrode pressure of 16453A fixture on the measured 
capacitance and Df
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POTENTIAL SOURCES OF ERRORS (2)

Impact of point averaging in E4991A Impedance Analyzer 

1.0E+06
1.5E+06

2.2E+06
3.3E+06

5.0E+06
7.4E+06

'100 pts'
'50 pts'

'20 pts'
'10 pts'

'5 pts'
'2 pts'

'1 pt'0.E+00

1.E-02

2.E-02

3.E-02

4.E-02

Frequency [Hz]

Df(f)



DesignCon 2010, Santa Clara, CA. February 2, 2010 34

POTENTIAL SOURCES OF ERRORS (3)

Impact of stacking on Df. Laminate D samples were measured in 16453A 
Parallel-Plate fixture.
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SUMMARY AND CONCLUSIONS
• Wideband Debye model does not match measured data

• Multiple inflection points on Df(f) curves

• CGM can not be used to extrapolate to higher frequencies with no data

• Differential Wideband Debye model matches measured Df data wherever 
capacitance can be extracted reliably

• CGM can be used within the measured frequency range to cross-
correlate data

• Short Pulse Propagation, Parallel-plate and Split-cylinder methods provide 
different results
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