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Abstract 
 
There is an ongoing interest in refining the simulation models for passive components in electronic 
circuits. For simple analyses, bypass capacitors are modeled by a series C-R-L equivalent network.  To 
capture the frequency dependency of the circuit parameters, more complex equivalent circuits can be 
used: ladder L-R networks to model the frequency dependent inductance and resistance and/or C-R 
networks to model the frequency dependent capacitance.  These equivalent circuits have the advantage 
of being compatible with both time-domain and frequency domain SPICE simulations, but the optimum 
topology of the equivalent circuit may depend on the type and construction of capacitor.  This paper first 
summarizes the current distributions inside MLCC parts simulated with a bedspring model and we make 
some counter-intuitive observations about the frequency dependency of inductance and resistance in tall 
MLCC parts.  Based on those observations we then derive a slow-wave causal model, which represents 
the capacitor with a periodically loaded lossy transmission line.  It is shown that the load circuit in the 
unit cell corresponds to the waveguide formed by two adjacent capacitor plates. The unit cells are 
further simplified and lumped together into one lossy, open-ended transmission line with a series R-L 
circuit capturing the impedance of the cover layer of the capacitor.  The parameters of the single lossy 
transmission line are derived from the geometry and material properties.  It is shown that the counter-
intuitive features in the model are captured by a virtual capacitance and dielectric loss tangent, which 
combine the dielectric loss of the ceramic and the resistive losses of the capacitor plates.  The model is 
shown to capture the important characteristics of measured data, and it is simple enough to be used in 
multiple copies in circuit simulators. 
 
 
 
 
Author Biographies 
 
Istvan Novak is signal-integrity senior staff engineer at SUN Microsystems, Inc.  Besides signal-
integrity design of high-speed serial and parallel buses, he is engaged in the design and characterization 
of power-distribution networks and packages for mid-range servers.  He creates simulation models, and 
develops measurement techniques for power distribution. Istvan has twenty plus years of experience 
with high-speed digital, RF, and analog circuit and system design. He is Fellow of IEEE for his 
contributions to signal-integrity and RF measurement and simulation methodologies.  
 
Gustavo Blando is a signal Integrity engineer with over 10 years of experience in the industry. Currently 
at Sun Microsystems he is responsible for the development of new processes and methodologies in the 
areas of broadband measurement, high speed modeling and system simulations. He received his M.S. 
from Northeastern University. 
 
Jason Miller is currently a Staff Engineer at Sun Microsystems where he works on ASIC development, 
ASIC packaging, interconnect modeling and characterization, and system simulation. He received his 
Ph.D. in Electrical Engineering from Columbia University. 
 
 
 



Manuscript for DesignCon 2006, February 6-9, 2006, Santa Clara, CA 
 

 3

I. Introduction: Present modeling options 
When considering the parasitics of bypass capacitors, a widely used simple model is a series C-R-L 
network, where C is the capacitance of the part, R is the Equivalent Series Resistance (ESR) and L is the 
Equivalent Series Inductance (ESL), as shown in Figure 1.  In its simple form, C, ESR and ESL are 
assumed to be frequency independent constants.  However, measured data indicates [1] that all three of 
these parameters are eventually frequency dependent and furthermore may be inter-related through the 
application geometry.   

 C ESR ESL

                         

cover
thickness

(V2) mounting
height (V3)

stack
height (V1)

via spacing (H2)

body length (H1)

plane spacing (V4)

 
 

Figure 1. Simple RLC equivalent circuit of a 
capacitor.   

Figure 2.  Vertical cross section of an MLCC 
mounted to PCB planes.

 
The capacitance may be frequency dependent, primarily because of dielectric losses [2]. 
 
ESR is the result of transforming the parallel dielectric losses and series conductive losses into a single 
series resistance value.  As long as tangent delta of the dielectric material varies little with frequency, 
the parallel loss resistance drops inversely with frequency.  The series resistance of the part comes from 
the terminals and conductive layers on the dielectric sheet(s).  Apart from bulk capacitor constructions, 
like tantalum brick capacitors and alike, the capacitor plates in high-CV MLCCs are thin enough that in 
the frequency range of interest their thickness is less than the skin depth, and therefore the AC resistance 
contributions of the plates themselves do not vary much with frequency.  Overall ESR still varies at high 
frequencies, due to non-uniform current distribution in the plates [4] 
 
Inductance depends both on the internal construction of the part and the external geometry forming the 
closed current loop.  As illustrated in Figure 3 for the case of a reverse-geometry Multi-Layer Ceramic 
Capacitor (MLCC) attached to a pair of planes on a PCB, the measured impedance of the part exhibits 
strong frequency dependency on all three of the parameters. 
 
When extracting capacitor parameters from measured data, we face a further complication: ESR is 
simply the real part of the measured impedance (after the proper calibration and/or deembedding 
process), but the capacitive and inductive reactances show up in a superimposed way in the imaginary 
part of the measured impedance. If capacitance and inductance were frequency independent, extracting 
them from the imaginary part of measured impedance would be easy.  Because the capacitive and 
inductive reactances change with frequency in the opposite way, we know that at frequencies much 
below the Series Resonance Frequency (SRF) the inductive reactance is negligible and from the 
measured reactance we can calculate the capacitance.  Similarly from a measured reactance value at a 
frequency much above SRF we could calculate the inductance.  This approach is assumed for instance in 
[3] and [4].  With relatively strong frequency dependency of capacitance and/or inductance, which is the 
case of tall capacitor stacks with lossy dielectrics and aggressive mounting, using a low-frequency 
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capacitance and a high-frequency inductance can not uniquely resolve the frequency dependent 
capacitance and inductance values around SRF.  One step further is to iteratively approximate the 
capacitance and inductance close to SRF and use those (constant) values to extract the frequency 
dependent capacitance and inductance curves [5].  This improves accuracy and the range of validity for 
the extracted capacitance and inductance curves, but unless we have further data points or constraints, 
we still cannot uniquely resolve the two unknowns, C(f) and ESL(f), from one data point of Im{Z(f)}. 
 
Instead of trying to blindly extract the parameters from measured data, more sophisticated equivalent 
circuits can also be used to fit the measured data on the model.  Equivalent circuits composed of 
frequency independent resistors, capacitors and inductors unconditionally guarantee causality and easy 
compatibility to circuit simulators.  To describe frequency dependent capacitance and ESR of bulk 
capacitors, [6] suggests a composite RLC network.  To capture the frequency dependent ESR and ESL 
of MLCCs, [7] uses a resonant ladder network, while [8] proposes a transmission-line model. 
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Figure 3.  Measured impedance magnitude of a 10uF 0508 MLCC with the real part of 
the impedance (on the left), and extracted capacitance and inductance versus frequency 

(on the right). 
 

 
For MLCC parts, it is customary to assume that the capacitive and inductive currents balance themselves 
at SRF and therefore at that frequency the current uniformly penetrates all plates and for this reason the 
lowest ESR value occurs at SRF.  Similarly, it is usually assumed that inductance monotonically drops 
from its low-frequency value towards the high-frequency loop inductance.   
 
In contrast to usual expectations, data on Figure 3 indicates that the minimum of the impedance real part 
is not at SRF: at 600kHz ESR is 2.8 milliohms; whereas at the 2.1MHz SRF the ESR reading is 3.6 
milliohms.  Moreover, the ESL(f) value extracted according to the procedure in [5] results in 600pH at 
SRF, but the inductance first increases with frequency, instead of decreasing, reaching a 660pH peak at 
4.2MHz before it starts going down.   Is this due to measurement errors or a deficiency in the extraction 
procedure, or really ESR and ESL behave contrary to common assumptions?  As it was shown in detail 
in [9], this counter intuitive behavior comes from the vertical resonances (and at higher frequencies, to a 
lesser degree, from horizontal resonances) along the capacitor body.  These features can be captured by 
using a two-dimensional transmission-line or RLGC bedspring array.   
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Figure 4 shows the partial schematics of the bedspring model, where the capacitor plates are grouped 
into ten horizontal layers, each layer broken down into ten segments.  Note that the grid size of ten by 
ten is somewhat arbitrary, but proved to be sufficient to capture the major features. 
 
 

capacitor connections

Plate 1

Plate 2

Plate 3

Plate 8

Plate 9

Plate 10

 
 

Figure 4.  Partial schematics of the bedspring capacitor model.  The model consists of ten capacitor 
plates, 1 through 10.  The lowest capacitor plate, connecting to the PCB, is Plate 1.  Plates 1, 3, 5, 7 
and 9 are connected to the left terminal.  Plates 2, 4, 6, 8 and 10 are connected to the right terminal.  

Each capacitor plate is divided into ten equal segments (plus an end piece), represented by series 
RL networks.  At each internal plate node, a capacitor represents the dielectrics. 

 
Figure 5 shows the impedance magnitude and real part of impedance simulated at the connection 
terminals.  The schematics entries used for the simulation are listed to the right of the chart.  Note that 
the bedspring model captures all of the important features that we want to study: it shows that 
impedance real part starts to increase below SRF, and there is a set of dampened, but pronounced 
secondary resonances.  Because we assume no dielectric loss, the impedance real part at low frequencies 
does not rise.  The current-distribution plots in [9] showed also the reason why the inductance starts to 
rise around SRF before it eventually goes down.  For a fully animated illustration of currents in the 
capacitor plates and in the dielectrics, see [10].  Here we reproduce the current distribution plots only at 
SRF.  On the left chart of Figure 6 we see the current distribution along the capacitor plates, whereas on 
the right-hand plot the current distribution in the dielectric layers is shown.  The nonlinear current 
distribution is a clear indication that both ESR and ESL are increased. 
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While the bedspring model is unconditionally causal, and it is useful to study the vertical and horizontal 
resonances in MLCC parts, the model is clearly too complicated to be used in PDN simulations, where 
we may need dozens or hundreds of such capacitor models in the same network.   

Impedance magnitude and real part [ohm]
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Figure 5.  Simulated impedance magnitude and impedance real part at the capacitor 
connections terminals of the circuit shown in Figure 4.  Circuit parameter values are 

shown in the table on the right. 
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Figure 6.  Current distribution along the capacitor plates (on the left) and inside the 

dielectrics (on the right) at the 10MHz SRF.  Vertical axis unit: A. 
 
The black-box behavioral model introduced in [9] offers a unified model for bypass capacitors, simple 
enough to use many of them in frequency-domain PDN simulations.  The model uses only three 
components, a series C-R-L circuit, but all three elements are frequency dependent.  The frequency 
dependency of each element is captured and described by seven parameters, resulting in a total of 21 
parameters for one model.  The expressions capturing the frequency dependencies are based on the 
behavior of measured capacitor pieces.  The parameters can be obtained either by manual or by semi-
automatic curve fitting.  However, the black-box model does not guarantee causal behavior, and because 
the three components are frequency dependent, it is not well suited for time-domain simulations. 
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II. Slow-wave causal model 
The unit-cell model 
The slow-wave causal model is built on the realization that a multi-layer ceramic capacitor is a 
periodically loaded lossy transmission line.  The unloaded transmission line is formed by the two 
vertical terminals of the capacitor, by removing the capacitor plates, but leaving the dielectric material in 
place.  This vertically oriented unloaded transmission line in itself is already lossy: the terminals have 
finite resistance, and the dielectric material has finite dielectric loss tangent.  It is also known that 
causality dictates capacitance to change with the log of frequency in proportion to the dielectric loss 
tangent.  In an MLCC part, the large capacitance is achieved by inter digitated capacitor plates, attached 
alternating to the opposite terminals.  These capacitor plates form a set of periodically arranged lossy 
transmission lines, attached orthogonally to the capacitor terminals.  As it will be shown, the multitude 
of capacitor plates will not only increase the total capacitance of the part, but it also behaves like a 
dielectric material with increased loss tangent and additional frequency dependency of capacitance.  The 
virtual loss tangent is a mix of the loss tangent of the original dielectric material and the resistive loss of 
the capacitor plates. 
 
The expectation is that if we properly assign the dimensions and material constants, or if we do a blind 
optimization of these parameters to match the measured behavior of a capacitor, all of the major features 
will be captured simultaneously, without the need to change and optimize independently capacitance, 
resistance and inductance values (which was the case in [9]).  Also, the model is based on the physical 
properties of the structure, and it guarantees that the model will be causal. 
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Figure 7. Left: side view of MLCC with the important dimensions. Right: representation 
of the same MLCC by turning it 90 degrees. 

 
                    

The sketch on the left side of Figure 7 defines the major dimensions of an MLCC, relevant to our 
calculations.  We assume that the rectangular capacitor body is W wide, L long and H high.  The 
illustration here shows a reverse-geometry capacitor, because for the correlation we will use the 
measured data on the previous 10uF 0508 MLCC example.   The calculations and methodology, 
however, do not mandate a reverse-geometry capacitor.  For other geometries, such as regular or inter-
digitated capacitors, L, W and H can be changed appropriately as needed.   
 
To somewhat simplify the calculations, the capacitor cross section is assumed to be symmetrical, both 
horizontally and vertically.  We assume the same H1 cover thickness both on top and bottom.  A similar 
horizontal symmetry assumes that capacitor plates are stopping W1 distance from the unconnected 
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terminals at both sides.  This symmetry is assumed here only for sake of convenience; the procedure can 
be easily extended to different top and bottom cover thicknesses and/or for different end gaps at the left 
and right terminals. 
 
The capacitor plate thickness is TH_p, each dielectric layer between the plates is TH_d thick.  The 
vertical capacitor terminals are assumed to be TH_t in thickness.  We further assume that the dielectric 
material has εd dielectric constant and tan_δ loss tangent at a given working frequency, and their 
frequency dependent values are inter-related through the causal requirement [2].  The capacitor plates 
have a conductivity of σp, the terminal material has a conductivity of σt. 
 
The periodically loaded transmission-line model becomes apparent when we turn the capacitor sideways 
and distort the aspect ratio.  As shown on the right side of Figure 7, the height (H) of the original 
capacitor body becomes the length of the transmission line, and the capacitor plates will represent a 
periodical loading along the transmission line.   
 
The capacitance of the unloaded transmission line equals the capacitance of the capacitor body between 
the vertical terminals, without the capacitor plates: 

W
HLC d

*
00 εε=  (1) 

The propagation delay of the unloaded transmission line equals the propagation delay along the empty 
vertical capacitor body, with the capacitor plates removed but dielectric material in place: 

000 µεε dpd H
v
Ht ==  (2) 

With C0 and tpd0 known, we can calculate the characteristic impedance and the inductance of the 
unloaded vertical transmission line: 

L
WH

C
t

L pd *
0

0

2
0

0 µ==   and 
L

W
C
L

Z
00

0
00

120
ε
π

==  (3) 

 
The resistance of each terminal along its entire vertical length is: 
 

tTHL
HR

t
t _*

1
σ

=  (4) 

From (1) through (4), we can calculate the parameters of the two end pieces, simply by scaling the 
unloaded transmission line length by the ratio of H1/H for each end piece: 

H
Htt pdendpd

1
0_ =  (5) 

 
The end-piece transmission lines are denoted by suffix _end. 
 
As shown on the left of Figure 8, adjacent capacitor plates along the terminal will create the periodical 
loading.  The impedance of the entire capacitor is observed at the left end of the transmission line; the x 
at the right end of the structure indicates that the right-hand side end of the structure is open.   
 
The loading is created by the lossy, open-ended transmission lines formed by adjacent plates.  Following 
(1) through (4), we can calculate the parameters of a transmission line formed by adjacent capacitor 
plates.  This transmission line is denoted by suffix -p. 
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Figure 8. Slow-wave periodically loaded model of MLCC.  The periodically loaded 
transmission line is broken down into symmetrical unit cells, each cell representing a 
length equal to the capacitor-plate pitch.  The end pieces, corresponding to the bottom 

and top dielectric covers, are represented by unloaded transmission-line sections. 
 
 
From N capacitor plates, we get N-1 pairs to create the periodical loading.  For N>>1, we can 
approximate the number of cells in the periodically loaded structure with N. 
 
The number of plates, the dielectric and plate thicknesses and the top/bottom cover thicknesses are inter-
related through the following formula: 

dTHpTH
HHN

__
1*2

+
−

=  (10) 

 
The conductive and dielectric losses of the transmission lines are, in theory, frequency dependent.  The 
skin depth in conductors is defined as: 

σµπf
depthskin 1_ =  (11) 

The skin depth in copper reaches 1µm at 1GHz frequency.  To meet the requirements of the high 
ceramic firing temperature, capacitor plates use materials with conductivity lower than that of copper.  
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The lower conductivity increases the skin depth.  This means the resistance of individual capacitor plates 
is skin-depth limited and is relatively frequency independent up to hundreds of MHz frequencies.  The 
terminals are usually much thicker than the capacitor plates, and therefore their resistance and 
inductance may show somewhat more frequency dependency. 

 
The dielectric losses are represented by a parallel conductance G in the transmission-line model: 

δπ tan_2 CfG =  (12) 
 
 

Z00, tpd_uc Z00, tpd_ucRp

Rd
Cp

UNIT CELL

Z00, tpd_uc Z00, tpd_ucRp

Rd
Cp

UNIT CELL

TH_pTH_d

0.5*TH_d

TH_pTH_d

0.5*TH_d
Z00, tpd_uc Z00, tpd_uc

UNIT CELL
XZ0p

tpdp

Z00, tpd_uc Z00, tpd_uc

UNIT CELL
XZ0p

tpdp

 
Figure 9. Generating unit-cell parameters from the geometry. 

 
In (12), we can substitute the appropriate capacitance and loss-tangent values for the unloaded 
transmission line of terminals or the lossy transmission line of capacitor plates.   
 
This generic model links the geometry and material properties of an MLCC to a causal electrical model, 
which can be directly used to calculate the impedance of the capacitor.  Though this model is still too 
complex to include in an actual circuit simulator in multiples of copies, it is very suitable for correlation 
purposes.  We can use any of the computer math packages to obtain the input impedance of the 
periodically loaded transmission-line circuit, which represents the impedance of the capacitor. 
 
The lossy transmission-line model 
The model derived in Figures 7 through 9 is generic, and as such, it is valid over a wide range of 
parameters.  When we look at the actual geometry and resulting model numbers for a typical MLCC, we 
can achieve substantial simplifications without major loss of accuracy. 
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Since we are interested in the input impedance of the structure with open at its end (on the top), the 
second end piece of unloaded transmission line can be totally neglected.  Because it is open terminated 
on the right, only the static capacitance of the end piece would matter anyway.   Not having capacitor 
plates in the end piece, for large N, its static capacitance is orders of magnitudes lower than the total 
capacitance, and therefore it can be rightfully ignored. 
 
The end piece on the left is in series to the external connections, and therefore cannot be completely 
ignored.  We can still, however, simplify the left end piece by using the earlier arguments, and neglect 
its parallel capacitance and conductance.  This leaves us with its series inductance and resistance.  These 
values can be obtained from (3) and (4), by substituting H1 for H. 
 

L
WHL end

*1
0_0 µ=  (13) 

 

tTHL
HR

t
endt _*

11
_ σ

=  (14) 

 
The unit cells can be simplified in a similar way. Capacitances and conductance of the series unloaded 
transmission-line pieces can be ignored, leaving only a series L-R term.  For one unit cell, using the 
suffix uc, and substituting TH_p + TH_d for H1, we get: 
 

L
WdTHpTHL uc

*)__(
0_0

+
= µ  (15) 

 

tTHL
dTHpTHR

t
uct _*

__1
_

+
=
σ

 (16) 

 
The open-ended loading transmission line formed by adjacent capacitor plates can be simplified by 
neglecting its inductance.  The Cp capacitance and Rp series resistance of the transmission line were 
already given in (6) and (9).  There is one more element though that we don’t want to ignore: the parallel 
conductance of the loading open-ended transmission line.  It can be calculated from (12), by substituting 
the values for one plate pair: 
 

δπ tan_2 pp CfG =  (17) 
 

These simplifications lead to the equivalent circuit of the unit cell shown in Figure 10.  The shunt 
capacitance has its own Gp conductive loss term originated from the dielectric loss tangent, and an Rp 
series resistive loss term originated from the resistance of the adjacent capacitor plates.  At any given 
frequency, the series and parallel loss terms can be combined into a single term.  The schematics on the 
right of Figure 10 shows a parallel equivalent, where G’p represents a combination of Rp and Gp. 
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Figure 10.  Equivalent schematics of the simplified unit cell.  We get the circuit on the 
left by neglecting the capacitance and conductance of the series transmission line and by 
neglecting the inductance of the parallel transmission line.  We get the circuit on the right 

by combining the series and parallel loss terms around the shunt capacitance. 
 
Note that during the transformation, in a general case, both the capacitance and conductance will 
change.  Assuming that tan_δ is small, we get: 

p
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p

p
p CGGand

C
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ω
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ω
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)(1
+=
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If τp << 1, the formulas can be further simplified to: 
 

p
ppppp CGGandCC
ω
ωω+≈≈ ''  (19) 

 
 
By combining (17) and (19), we get: 
 

pppp CCG τωωδω ''' tan_ +=  (19) 
 
From (19) and (12) we can calculate a virtual loss tangent for the lossy transmission line: 
 

2

'

)(1

tan_
tan_

p

p

ω
ω
ω
ωδ

δ
+

+

=  (20) 

In the final step we can realize that the cascaded unit cells represent the ladder equivalent of a uniform 
lossy transmission line.  To obtain the per-unit-length transmission-line equivalent parameters, we 
multiply the unit-cell parameters by N.   The inductance and the resistance are then simply the 
inductance and resistance of the (H-2*H1) section of the vertical terminals.  The capacitance will 
become approximately the full capacitance of the part itself, though as indicated by (18), it drops sharply 
above the ωp corner frequency.  Moreover, to obey causality, the capacitance also drops slightly with 
frequency due to the finite loss tangent. The parallel conductance can be calculated from the full 
capacitance and the virtual loss tangent. 
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This eventually leads us to the simplified equivalent circuit of Figure 11.  Note that this simple circuit is 
causal, and works on many time-domain and frequency-domain simulators. 
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Figure 11. Simplified causal equivalent circuit of a Multi-Layer Ceramic Capacitor. 
 
Note that the important aspect of this simplified model is not the lossy transmission line itself, rather the 
unique way that it captures the convoluted effect of conductive and dielectric losses in the frequency 
dependent capacitance and conductance per unit length. 
 
III. Correlations 
Characterization of test fixture 
Now we return to the example shown in Figure 3.  The 10uF 0508 MLCC part was measured in a small 
fixture, shown in Figure 12.  The fixture has 22 layers.  Capacitor sites are on top and bottom, 
connecting to 400x600 mil rectangular plane shapes further down in the stack.  The horizontal layout of 
the site used for this test is shown on the right of Figure 12.  The capacitor pads for the 0508 site are on 
the bottom side (layer 22), connecting to power planes on layers 20 and 21 with a set of blind vias. 
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with 2.1-mil separation on 

layers 20 and 21.
Through holes for test 

site on layers 2-3.

Through holes on 50-mil 
center-to-center spacing 
for connecting semirigid

probes.

Three 7-mil blind vias
connect to layer 21 with 
25-mil center-to-center 
spacing.  Three 12-mil 
blind vias connect to 
layer 20, with 25-mil 

center-to-center spacing. 
Horizontal spacing 

between the two columns 
of vias is 50 mils. 

The capacitor pads are 
80x35-mil rectangular 
shapes with 20-mil air 

gap.  
 

Figure 12.  Geometry of test fixture for measuring the 10uF 0508 MLCC sample. 
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First the test site was characterized with the capacitor pads open and shorted with two Vector Network 
Analyzers (VNA): 4395A in the 100Hz – 10MHz frequency range and 4396A in the 100kHz to 
1800MHz frequency range.  Figure 13 shows the measured impedance magnitude and phase of the open 
test site and the extracted capacitance versus frequency.  Note the straight slope of the capacitance curve 
on the linear-logarithmic scale; this indicates an approximately 2% of loss tangent of the FR4 material.  
The average capacitance is around 120pF at 10MHz.  
 
Figure 14 shows the measured data and extracted parameters with the capacitor pads shorted.  The 
graphs show composite data from both VNAs.  The blue line on the left graph is the measured real part 
of the impedance; the green line is an approximation curve.  The blue line on the right graph is the 
inductance extracted from the imaginary part of the measured impedance.  The green line is a curve 
approximating the extracted inductance.  The expressions approximating the real part and inductance: 
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Where RDC = 1.7E-3 [ohm], fR = 1.2E7 [Hz], Linf = 1.4E-10 [H], ∆L = 8E-11 [H], N = 0.8. 
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Figure 13.  Left: impedance magnitude and phase measured on the test site with open 
pads.  Right: extracted capacitance of the test site versus frequency. 

 
 
The parallel capacitance of the open test site and the series resistance and inductance of the shorted test 
site have to be included when we are looking for correlation of the lossy transmission-line capacitor 
model to measured data.  Note, however, that the shorted test site data also reflects resistance and 
inductance of the short itself, not only the test fixture.  Since the short later is replaced with the 
capacitor, this small part of resistance and inductance will be double counted. 
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Figure 14.  Impedance real part and extracted inductance of the shorted test site.  Blue 
lines are measured data.  Green lines are approximating curves based on (21). 

 
 
Checking the convergence of unit-cell model 
The unit-cell model captures the physical properties of the capacitor, and converts them into an electrical 
model.  Strictly speaking we would need to know how many capacitor plates the part has, and 
concatenate the same number of unit cells.  On the other hand, many times we do not know the number 
of capacitor plates in the part.  And, clearly it is not even necessary.  The per-unit electrical parameters 
of concatenated unit cells saturate beyond a number, resulting in diminishing change as we add more 
cells.  The saturation curve does depend somewhat on the characteristics of the unit cell, but usually 50-
100 cells will result in a sufficiently accurate approximation.  Figure 15 illustrates the convergence with 
the unit cells used to describe the capacitor sample in Figure 3.  For this exercise, the unit cells have 
been readjusted so that the given number of unit cells always added up to the same fixed characteristics 
of the sample capacitor. 
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Figure 15.  Saturation curve of concatenated unit cells.  Vertical axis: percentage change 

between consecutive iteration with different number of unit cells.  Horizontal scale: 
number of unit cells. 
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Correlation with unit-cell model 
As opposed to the capacitance curve of the FR4 material of the test fixture, the extracted capacitance 
versus frequency on the right-hand graph of Figure 3 exhibits multiple sections of frequency ranges with 
approximately constant slope.  This behavior suggests that for each of these frequency ranges a different 
dielectric loss tangent should be applied.   This is illustrated in Figure 16, where we compare the 
correlations with a single dielectric loss tangent value (0.015) versus three different loss tangent values 
(0.025, 0.0135, 0.01).  With three loss tangent values, applied separately for each frequency range, and 
combined linearly to continue to enforce causality, we can properly capture the shape of the impedance 
real part (and also the frequency dependency of the capacitance) over three decades of frequencies.   
 
Below the Series Resonance Frequency (SRF) the capacitance and impedance real part are primarily 
coming from the dielectric material, and therefore the extracted capacitance versus frequency curve 
gives useful guidance how many segments we may need to use to properly describe the frequency 
dependency of the dielectric material.  Near to and above SRF, on the other hand, we have no direct 
indication about the possible change of the loss tangent.  We can, for instance, assume that the loss 
tangent just below SRF continues unchanged above SRF as well.  This approached was followed in the 
correlation results shown here.  As an alternative solution, we can assume additional frequency segments 
above SRF with their respective and unknown loss tangent values, and get the values by optimized curve 
fitting to measured data. 
 

Impedance real part [ohm]

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06
Frequency [Hz]  

Impedance real part [ohm]

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02 1.E+03 1.E+04 1.E+05
Frequency [Hz]  

 
Figure 16.  Correlation of impedance real part below the series resonance frequency.  

Measured: blue lines.  Approximation: red lines.  On the left: approximation using one 
loss tangent value.  On the right: approximation using three different dielectric loss 

tangent values. 
 
Once we have the capacitor parameters below SRF, we can put together the full model: cascaded unit 
cells, end piece, fixture.  These models are based on the physical parameters of the capacitor.  In this 
case, however, the measured part was not cross sectioned, and the internal geometry and material 
constant data was not available from other sources either.  The correlation was, instead, done by manual 
and automated optimization of the model, with seed values based on reasonable assumptions.  The 
number of parameters to be optimized is large enough that a reasonable correlation should be possible to 
achieve.  However, not having the true numbers for the capacitors, a very accurate correlation was not 
the goal at this time.  Instead, different parameter settings have been tried to see if the model can 
properly describe and capture the important characteristics of the measured data plots: increased ESR at 
SRF, sudden increase of ESR above SRF, slow rise of ESR above the secondary resonances.   
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As an illustration, Figure 17 shows the correlation after a brief optimization. 
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Figure 17.  Correlation with unit-cell model.  Measured: blue lines.  Approximation: red lines. 
 
 

Correlation with lossy transmission-line model 
The same set of measured data was also correlated to the lossy transmission-line model.  Figure 18 
shows the correlation after a brief manual optimization of parameters. 
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Figure 18.  Correlation with lossy transmission-line model.  Measured: blue lines.  

Approximation: red lines. 
 
Conclusions and future work 
It was shown that a causal model can be constructed for MLCC, which can capture the primary and 
secondary resonances of the part.  The model is based on physical parameters of the capacitors, but the 
exact knowledge of these parameters is not a must: the parameters can be obtained by fitting the model 
to measured data.  The parameters of cascaded unit cells can be combined into a single lossy, frequency 
and parameter-dependent transmission-line equivalent circuit.  The simplified model is suitable many 
frequency and time-domain simulators, and simple enough to be used in multiple copies in Power 
Distribution Network simulations.  Future work will examine correlation to parts with known internal 
geometry. 
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