

Outline

- Introduction
- Z, Y, and S parameters
- Self and transfer impedances
- VNA
- One-port impedance measurement
- Two-port impedance measurement
- DUTs
- Measured self and transfer impedances
- Correlation to simulations
- Resources
- References

Plane impedance measurement with VNA 2

Istvan Novak

Requirements in Power Distribution

In digital and mixed analog/digital systems:

- Core and signaling voltages drop
- Noise margin goes down
- Core and total I/O current go up
- Bandwidth goes up

<u>Requirement:</u>

Few milliohms over hundreds of MHz bandwidth.

<u>Solution:</u>

In multilayer boards, power and ground are distributed over (solid) planes.

Istvan Novak

Calibration plane is critical

Plane impedance measurement with VNA 4

Istvan Novak DesignCon99, Feb. 99

Which Parameters Do We Need

At high frequencies, S parameters are easier to measure, but

- Digital designers deal with voltages and currents
- Good power-distribution network is a voltage source >>> Z parameters needed

Measuring Power-Distribution Network

- TDR
- LCR Bridge
- VNA Γ or S11, and S21

What is a VNA

- Tuned sinewave generator
- Directional couplers
- Tracking receiver(s)

Errors of One-Port Self-Impedance Measurement

- VNA accuracy is lower at high reflections
- Connecting discontinuity is in series of low-Z DUT

Plane impedance measurement with VNA 9

Istvan Novak DesignCon99, Feb. 99

VNA Error in S11 Measurement

- |S11| uncertainty of HP8720D is 1.5% at $|\Gamma|$ ~1 in the 50-2000MHz range
- Impedance uncertainty is 0.375 ohms
- For low measurement errors, Z_{DUT} must be in the ohms range

But we want to measure fractions of an ohm

DesignCon99, Feb. 99

Istvan Novak

Errors Due to Discontinuities

- 50 mils of pigtail connector/cable discontinuity is $L_p \sim 0.4 nH$
- 0.4 nH is $Z_p \sim 2.4$ ohms at 1GHz
- Problem: Z_p is in series to Z_{DUT}

Two-Port Self-Impedance Measurement

- S_{21} instead of S_{11} is measured
- S₂₁ uncertainty is less
- Z_p is in series to 50 ohms instead of Z_{DUT}

Transfer Impedance Reading

First-order calculation: Assume that

- L_p ~ 0
- Z₁₁ << Z₀
- Z₂₂ << Z₀
- Z₂₁ << Z₀

$$Z_{21} = Z_{12} = S_{21}^* 25$$
 [ohm]

Plane impedance measurement with VNA 15

Istvan Novak

S21 Uncertainty

- $|S_{21}|$ uncertainty of HP8720D: <1dB in the $|S_{21}| > -60dB$ range <3dB in the $|S_{21}| > -70dB$ range
- Impedance uncertainty: 1dB (10%) for $Z_{DUT} > 25$ milliohms 3dB (40%) for $Z_{DUT} > 8$ milliohms

Plane impedance measurement with VNA 16

DesignCon99, Feb. 99

Istvan Novak

Measurement Setup

Vector Network Analyzer: HP 4396 or HP 8720C VNA Probe: 2 pieces of 12-inch long semirigid coax

Device Under Test (2)

2 mil plane separation 10-inch by 10-inch FR4 PCB Bare PCB or 1 ohm/half-inch DET Probes: 12" Dual Semirigid Probe Test points: on a 1-inch by 1-inch grid

Top view:

Side view with DET:

Istvan Novak

DesignCon99, Feb. 99

20

805 SMD 1 ohm / half inches

Residual Probe Response (2)

Measured Self Impedance of Bare Board at Center

Measured Self Impedance of Board with DET at Center

Measured vs. Simulated Self-Impedance of DUT

- 10" x 10" x 31mil FR4 with DET
- Measured with HP8720C VNA
- Simulated with 1-inch grid at center node:

Freq [Hz]	Zmagn[ohm
1.00E+08	0.3143
1.58E+08	0.4413
2.51E+08	0.6574
3.98E+08	1.233
6.31E+08	1.744
1.00E+09	2.645

Measured at center node

Plane impedance measurement with VNA

Measured Transfer Impedance

Self Impedance, 2-mil DUT

S₂₁ **Conversion to Self Impedance**

$$Z_{ii} = S_{21} \frac{Z_1}{2} \frac{1}{1 - S_{21}} \frac{1}{\frac{Z_1 + Z_2}{2Z_2}} \approx S_{21} * 25 * \frac{1 + jwt_p}{1 - S_{21}}$$

Where $Z_1 = 50 + j\omega L_{p1}$ $Z_2 = 50 + j\omega L_{p2}$ $\tau_p = L_p/50$

30

Plane impedance measurement with VNA

Istvan Novak DesignCon99, Feb. 99

Recommended Resources

Hewlett Packard Vector Network Analyzers:

- HP 8720 VNA
- HP4396 VNA

Circuit simulator software:

• Avant! HSPICE

Istvan Novak DesignCon99, Feb. 99

Conclusions

- Power-distribution network is characterized by self and transfer impedances
- One-port measurements cannot handle low impedances
- 2-port VNA measurement introduced
- Probes: Dual semirigid coax with soldered pigtail
- Transmission-line grid is used to simulate parallel planes
- Good agreement between measured and simulated self and transfer impedances was found

33

Plane impedance measurement with VNA

DesignCon99, Feb. 99

Istvan Novak

References

- Dale Becker, Larry Smith, "Power Distribution Design for High Performance Systems," Short course at the 1998 Topical Meeting on Electrical Performance of Electronic Packaging, October 26-28, 1998, West Point, NY
- [2] Understanding the Fundamental Principles of Vector Network Analysis, Hewlett Packard Application Note 1287-1.
- [3] I. Novak, "Reducing Simultaneous Switching Noise and EMI on Ground/Power Planes by Dissipative Edge Termination," Proceedings of the 1998 Topical Meeting on Electrical Performance of Electronic Packaging, October 26-28, 1998, West Point, NY, pp.181-184.
- [4] E. Leroux, Peter Bajor, "Modeling of Power Planes for Electrical Simulations," Proceedings of the 1996 Wroclaw EMC Symposium, June 25-28, 1996.
- [5] Henry Wu, Jeffrey Meyer, Ken Lee, Alan Barber, "Accurate Power Supply and Ground Plane Pair Models," Proceedings of the 1998 Topical Meeting on Electrical Performance of Electronic Packaging, October 26-28, 1998, West Point, NY, pp.163-166.
- [6] Personal communications with Rich Hoft, Hewlett Packard, Burlington, MA.

Plane impedance measurement with VNA 34

Istvan Novak