

ORACLE

Electrical and Thermal Consequences of Non-Flat Impedance Profiles

Jae Young Choi (Oracle) Ethan Koether (Oracle) Istvan Novak (Oracle)

SPEAKERS

Jae Young Choi Senior Hardware Engineer, Oracle jae.young.choi@oracle.com

He is engaged in the design and characterization of high-speed signal interconnects and power distribution networks for high-performance server systems. He received his Ph.D. in Electrical and Computer Engineering from the Georgia Institute of Technology.

Ethan Koether

Hardware Engineer, Oracle ethan.koether@oracle.com

He is currently focusing on system power-distribution network design, measurement, and analysis. He received his master's degree in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology.

SPEAKERS

Istvan Novak

Senior Principal Engineer, Oracle istvan.novak@oracle.com

Besides signal integrity design of high-speed serial and parallel buses, he is engaged in the design and characterization of power-distribution networks and packages for mid-range servers. He creates simulation models, and develops measurement techniques for power distribution. Istvan has twenty plus years of experience with high-speed digital, RF, and analog circuit and system design. He is a Fellow of IEEE for his contributions to signal-integrity and RF measurement and simulation methodologies.

Outline

- Electrical and Thermal Impact of Antiresonance:
 - High-Q antiresonance
 - Effect of component tolerance
 - Components at elevated temperature
- Impedance Flatness and Worst-Case Transient Noise:
 - Target impedance and the reverse pulse technique
 - Obtaining the PDN step response
 - Getting the worst-case transient response
- Conclusions

Outline

- Electrical and Thermal Impact of Antiresonance:
 - High-Q antiresonance
 - Effect of component tolerance
 - Components at elevated temperature
- Impedance Flatness and Worst-Case Transient Noise:
 - Target impedance and the reverse pulse technique
 - Obtaining the PDN step response
 - Getting the worst-case transient response
- Conclusions

High-Q Antiresonance

- We want to avoid high-Q antiresonances in any power distribution network
- What causes high-Q antiresonance?
 - Opposite-signed reactances of any component or structure
 - Ex1) Capacitor bank: Z₀ (=sqrt(L/C)) > ESR → antiresonance
 - Ex2) Band limitation of DC-DC converter control loops
 - Ex3) PCB plane modal resonance
- Component reactance may change because of
 - AC, DC bias
 - Temperature
 - Initial tolerance, aging

Current multiplication due to high-Q antiresonance can cause additional temperature rise in each capacitor

Impact of DC Bias on Antiresonance

- Ferromagnetic and ferroelectric materials used in filter components:
 - Need to consider DC bias and temperature
- Even under a normal operating condition, the antiresonance peaks can become noticeably

Values fitted to the measured impedance

Simulated Waveforms With and Without DC Bias

Component Tolerance Effect

- Considerable spread of actual component values is expected in a volume production
- Capacitance used in large DC bias filter applications usually shows large variations across vendors
- Temperature dependence is specified as only a range
- Statistical impedance profiles including the
 - worst-case can be created from the tolerance

table

Impedance (Ohm)

freq, Hz

#DC16

	C _{C1}	L _{C1}	R _{C1}	C _{C2}	L _{C2}	R _{C2}	C _{C3}	L _{C3}	R _{C3}
Min.	120uF	2.2nH	4mOhm	2uF	1.5nH	2.5mOhm	2uF	0.6nH	2.5mOhm
Nominal	180uF	2.7nH	8mOhm	22uF	1.9nH	5mOhm	20uF	0.77nH	5mOhm
Max.	200uF	3.2nH	10mOhm	30uF	2.3nH	10mOhm	30uF	0.93nH	10mOhm

Assumed tolerance range of each component in the DC-DC converter input filter

Simulated Waveforms Considering Component Tolerances

 Switching frequency for each case

MEETS THE BOARD

- 12V DC-bias: 750kHz
- Maximum L_{C1}: 1.32MHz
- Maximum L_{C2}: 3.16MHz

JANUARY 19-21, 2016

Impedance of tolerance corner cases

Simulated RMS current and dissipated power in the capacitors

Temperature Rise in Capacitors

- Will more current dissipation heat up the capacitor more?
- Thermocouplers are attached to the capacitors and PCB as well.
- Temperature was measured after sufficient settling time (> 30min).
- Test setup had no forced air flow.
- PCB was placed horizontally ~0.5" above the bench surface.
- Except for the switching regulator under study, all other circuits were disabled.

#DC16

Ambient temperature was 20 degC

Thermal Resistance

- Thermal resistances were expected to be constant
- Contrary to the expectation, the resulting thermal resistance changes with different switching frequencies. Why?

JANUARY 19-21, 2016

Simulated current and power dissipation in the capacitors

#DC16

Calculated thermal resistance of each capacitor

Thermal Consequences

12V bias (*I_{C3}: current per piece)

#DC16

All capacitors heat up to 50~55°C regardless of switching frequencies

≻Heat spreads through PCB

≻Capacitors are not the only heat dissipating components; Loss from the nearby power components dominates (e.g. input filter inductor, FETs, output inductor)

• The ambient temperature needs to account for the local temperature rise caused by the adjacent power components.

Measured temperature (°C)								
F _{sw}	425 kHz	525 kHz	625 kHz					
T1	56.2	55.5	56.3					
Т2	49.3	51.0	52.2					
Т3	54.9	54.9	56.5					
Т4	54.2	53.0	54.5					
T5	58.2	58.0	59.9					
Т6	44.3	44.5	45.5					
Τ7	33.9	34.4	35.6					

JANUARY 19-21, 2016

Outline

- Electrical and Thermal Impact of Antiresonance:
 - High-Q antiresonance
 - Effect of component tolerance
 - Components at elevated temperature
- Impedance Flatness and Worst-Case Transient Noise:
 - Target impedance and the reverse pulse technique
 - Obtaining the PDN step response
 - Getting the worst-case transient response
- Conclusions

Target Impedance

- Estimates upper bound for rail's impedance
 - Voltage fluctuation on rail: ΔV
 - Maximum current step: ΔI
 - Target Impedance: $Z_{target} = \Delta V / \Delta I$
- Valid for linear and time-invariant PDN
- Approximation unless impedance strictly resistive

Reverse Pulse Technique (RPT)

 RPT finds worst case transient response to arbitrary load step

MEETS THE BOARD

RPT Measurement Setup

- Multiphase DC-DC converter
- Medium-speed highresolution real-time oscilloscopes from two vendors
- The fast power FET driven by an arbitrary waveform generator and a gate driver circuit
- Two-port shunt-thru measurement with VNA

Measured Step Response

THE BOARD

RPT Measurement Pitfalls (1)

 Response to rising edge and falling edge of excitation step must be symmetric

RPT Measurement Pitfalls (2)

- Non-linearity of response limits application space (for large-signal excitations)
- Noise and thermal drifts may degrade small-signal responses

Measurement: Comparison of Edges

 Transient responses corresponding to rising and falling edges of load step compared.

Measurement: Worst Case Excitation Current

 Peaks and valleys of step response give timing for edges in excitation current

Measurement: Worst Case Transient Response

- Worst case transient response generated by Reverse Pulse Technique.
- Good correlation between measurement and simulation

Measurement: Worst Case Transient Response

- Worst case transient response generated by Reverse Pulse Technique.
- Good correlation between measurement and simulation

28

Measurement: Worst Case Transient Response

- Worst case transient response generated by Reverse Pulse Technique.
- Good correlation between measurement and simulation

Shortcoming of Target Impedance Approach

- Impedance profile shows low-Q resonant peaks at 30kHz and 300kHz
 - Popular approach approximates worst case peak-to-peak voltage by repetitive excitation of the resonant peaks
- Voltage waveform due to load pulsed at 30kHz and 300kHz
 - 30kHz: 18.5mVpp (underestimates worst case noise by 8.4%)
 - 300kHz: 16.1mVpp (underestimates worst case noise by 20%)

#DC16

1.04

1 0 3 5

1.02

1.015

£

Outline

- Electrical and Thermal Impact of Antiresonance:
 - High-Q antiresonance
 - Effect of component tolerance
 - Components at elevated temperature
- Impedance Flatness and Worst-Case Transient Noise:
 - Target impedance and the reverse pulse technique
 - Obtaining the PDN step response
 - Getting the worst-case transient response
- Conclusions

Conclusions

- Demonstrated causes and consequences of non-flatness of PDN impedance profiles.
- In the thermal design, the ambient temperature needs to consider the local temperature rise caused by the nearby power components.
- •Reverse Pulse Technique can be used for the worst-case transient noise estimation.
- Estimating the noise by tuning a periodical waveform may underestimate the worstcase noise.

Acknowledgment

The authors wish to thank **Kavitha Narayandass** for her support with lab instrumentation and measurements, **Bill Couillard**, **Gene Whitecomb**, **Seyla Lang** for their lab support and the **Oracle SPARC Enterprise design team** for providing their transient test fixture.

MORE INFORMATION

- jae.young.choi@oracle.com
- <u>ethan.koether@oracle.com</u>
- istvan.novak@oracle.com

Thank you!

QUESTIONS?

