Slow-Wave Causal Model for Multi Layer Ceramic Capacitors

Istvan Novak Gustavo Blando Jason R. Miller DesignCon 2006 11-TA4 February 2006

Agenda

- Present modeling options
- Slow-wave causal model
 - Unit-cell model
 - Lossy transmission-line model
- Correlations
 - Test fixture characterization
 - Convergence of unit-cell model
 - Correlation results
- Conclusions and future work

Present Modeling Options (1)

Present Modeling Options (2)

DesignCon 2006, 11-TA4, February 2006

Present Modeling Options Simulated impedance with bedspring model

Present Modeling Options

Current distribution at SRF from bedspring model

Present Modeling Options Black-box model, L(f), C(f) $L_{a} = L_{inf} + \frac{L_{1}}{(1 + (\frac{f}{f_{I1}})^{2})^{m_{L1}}} + \frac{L_{2}}{1 + \exp\{\frac{\log(f) - \log(f_{L2})}{m_{L2}}\}}$ Inductance measured, modeled [H] 5.0E-10 4.5E-10 Capacitance [F] measured 4.0E-10 SRF 1.6E-03 3.5E-10 1.4E-03 3.0E-10 modeled 1.2E-03 2.5E-10 modeled 1.0E-03 2.0E-10 SRF 1.5E-10 measured 8.0E-04 sigmoid 1.0E-10 exponential 6.0E-04 5.0E-11 4.0E-04 Frequency [Hz] 0.0E+00 1.E+07 1.E+08 1.E+06 2.0E-04 Frequency [Hz] 0.0E+00 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

 $C_{a} = \frac{C_{o}}{\{1 + (\frac{f}{f_{C1}})^{2}\}^{m_{C1}}} \{1 + (\frac{f}{f_{C2}})^{2}\}^{m_{C2}}} \{1 + (\frac{f}{f_{C3}})^{2}\}^{m_{C3}}$ DesignCon 2006, 11-TA4, February 2006

8

1.E+09

Present Modeling Options

R-L-C models

- Simple model does not capture secondary resonances
- Ladder models are causal, but complex
- Bed-spring model is most accurate, but most complex

Black-box models

• Hard to guarantee causality

Slow-Wave Causal Model The unit cell (1)

MLCCs are periodically loaded transmission lines

Slow-Wave Causal Model The unit cell (2)

Each capacitor plate pair forms one unit cell of load impedance Unloaded end pieces are formed by the empty cover layers

renninai

Slow-Wave Causal Model

Generating unit cell parameters from geometry

The Lossy Transmission Line Model Transforming the unit cell

Terminal resistance and inductance

DesignCon 2006, 11-TA4, February 2006

The Lossy Transmission Line Model Simplified model

Correlations (1) Test fixture characterization

Three 7-mil blind vias connect to layer 21 with 25-mil center-to-center spacing. Three 12-mil blind vias connect to layer 20, with 25-mil center-to-center spacing. Horizontal spacing between the two columns of vias is 50 mils. The capacitor pads are 80x35-mil rectangular shapes with 20-mil air gap. 400x600 mil plane shapes with 2.1-mil separation on layers 20 and 21.

Correlations (2)

Test fixture capacitance

Capacitance extracted from bare fixture's impedance

DesignCon 2006, 11-TA4, February 2006

Correlations (3)

Test fixture inductance

DesignCon 2006, 11-TA4, February 2006

Correlations (4)

Test fixture resistance

Correlations (5) Convergence of unit cell model

Correlation below SRF

One loss tangent domain

Correlation below SRF

Three loss tangent domains

Correlation with unit-cell model Impedance

Correlation with unit-cell model Resistance (ESR)

Correlation with lossy-line model Impedance

Correlation with lossy-line model Resistance (ESR)

Conclusions and future work

MLCC model based on periodically loaded transmission lines:

- Very simple
- Guaranteed to be causal
- Captures primary and secondary resonances
- Captures C(f) and R(f) below SRF
 Coupling among capacitor plates is not captured

THANK YOU

DesignCon 2006, 11-TA4, February 2006