Test Floor Management Software

Automated Correlation Wafer Management and Processing

White Paper

Jeffrey C. Quinton DELPHI ELECTRONICS & SAFETY

F. B. Lynch III & Steve Sato ELECTROGLAS, INC.

Who is Delphi?

- Delphi is a world leader in mobile electronics and transportation components and systems technology
- Multi-national Delphi
 - Conducts its business operations through various subsidiaries and has headquarters in Troy, Mich., USA, Paris, Tokyo and São Paulo, Brazil.
- Delphi's two business sectors
 - Dynamics, Propulsion, Thermal, and Interior Sector
 - Electrical, Electronics, and Safety Sector
- Delphi has approximately 185,000 employees and operates 171 wholly owned manufacturing sites,
 - 42 joint ventures, 53 customer centers and sales offices and
 - 33 technical centers in 40 countries.

Delphi Electronics and Safety Delphi Microelectronics Center

Key Semiconductor Technologies

Dept 8436 - Wafer Test, Saw and Sort

- 150 Products
 - CMOS, Bipolar, Smart Power, IGBT, Micro Machine, and Sensors
 - Flip Chip and Pad Devices
- 87 Test Cells
 - Teradyne A5xx, A3xx, J9xx, J750, Eagle 300 Sentry SZ M3020 - LTX 77, CP80, Synchro HT, Fusion HT, HF, CX
 - EG2001, EG4090 and TEL P8XL, WDF, WDP Probers
 - Offline Ink
- Test 1,000,000 Die Per Day
 - 3 Shifts, 5 Days/Week Operation
- Automatic Visual Inspect, Saw, and Sort
- Packaging and Final Test DIP, QUAD PAK, SOIC, BGA...

Current Correlation Wafer Process

- Typical Correlation wafer uses:
 - Prior to Device / Product or hardware changeovers
 - After Corrective or Preventive Maintenance
 - Verify / validate test cell integrity anytime yield or test results are in question

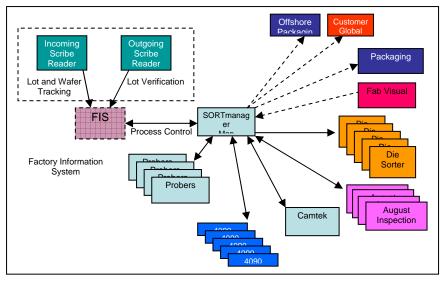
- Current practice is to run an entire wafer to verify the test system setup based on the repeated yield of the correlation wafer.
 - Performed manually by an operator with simple pass/fail criteria.
 We use the good count +/-5% to determine a min and max number of good die.
 - The correlation wafer passes if the number of good die on subsequent runs falls within the min and max values.
 - This process is simple for the operator but it does not systematically indicate if the test system is performing optimally.

Current Correlation Process Concerns

- Correlation result integrity
 - What if we get more good die than the max number?
 - Are we now calling bad die good?
 - What does it mean if we get less good die than the min?
- Correlation wafer integrity and lifespan
 - A correlation wafer can be run 5, 10, 20 times before it is "worn out" or scraped
 - Often, one cannot tell if a failure is due to some part of the test system or due to the correlation wafer integrity
- Throughput cost
 - Test times range between 15 min and 3.5 hours per wafer
 - 600 to 10,000 die per wafer
- Correlation wafer cost
 - Typically correlation wafers are scraped which impacts revenue

How Can The Process Be Improved?

- Implement automate statistical correlation wafer result analysis to improve correlation integrity
 - Rule based bin analysis
 - Good die remain good and bad die remain bad
- Enhance correlation wafer integrity and lifespan
 - Control the number of die tested with each correlation run
 - Control the number of touchdowns per die
- Reduce Cost
 - Improve throughput
 - Not necessary to probe the entire correlation wafer for a valid assessment of the test cell setup
 - Reduce test time used in correlation process


- Reduce Correlation Wafer Cost
 - Extend the life of correlation wafers
 - Controlled use of the wafers enables them to be sold as product for revenue

What is Correlation Wafer Manager (CWM)

- CWM uses automated map management and rule based SPC to automate the correlation wafer process and provides substantial cost savings with increased production throughput
- CWM Features:
 - Identifies correlation wafer(s) from previously probed production wafers in the automated map manager
 - Manages correlation wafer usage
 - Creates correlation follow maps for the prober enabling the testing of a subset of the die on the correlation wafer
 - Analyzes the correlation results based on rules created for each product, or default rules
 - Messages the prober with correlation results
 - Provides simple solution for production with automated analysis and sends the prober a message indicating passage or failure, with failure details

How CWM Functions

- The Core Technology
 - Web-based
 - Automated map manager
 - Two-way prober communication
 - Statistical and graphical reporting engine provides SPC
- CWM Setup
 - Correlation wafer is selected
 - Correlation rules setup
 - Product recipe created for prober

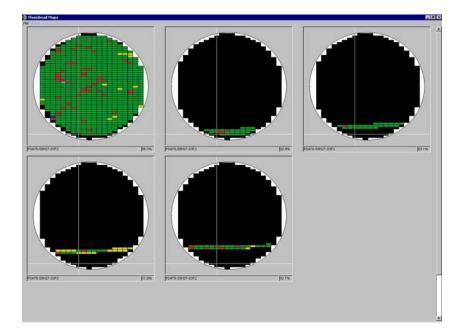
Automated Map Manager Integration

How Many Die To Test?

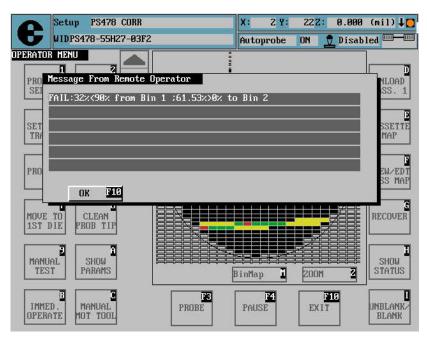
• There are many variables in determining the correlation sample size. We assumed around 90% yield for the device and that Alpha would be 0.1 (90% confidence) and Beta would be 0.2 (risk of missing something significant). Based on that we looked at the comparison of two proportions and got the following:

1% shift	1,000 die
2% shift	275 die
3% shift	125 die
4% shift	75 die
5% shift	50 die
5% shift 6% shift	50 die 40 die
• • • • • • • • • • • • • • • • • • • •	
6% shift	40 die

• The actual number is going to vary based on the individual device maturity and yield trend. Based on this testing 50 die will find a 5% shift while it will take over 100 to find a 3% shift. Looking for 1-2% shifts impacts the cost effectiveness and best utilized with immature devices.


Correlation Rules Setup

				PS478 CO	RR.txt	Continue
lf Bin		Bin Gro	The second second second			Back to Limits Lis
this bi	in/bingroup	to test	"Min % Match	h" is the minimum allow	ved % of die of this bin	remaining this bin. "Max %
Trans	ition" is the	maxim Bin		of die not of this bin to Min # To Test	o change to this bin. Min % Match	Max % Transition
Trans <u>Edit</u>	ition" is the <u>Delete</u>		um allowed %	The second s		Max % Transition
			um allowed % Bin Group	Min # To Test	Min % Match	
<u>Edit</u>	Delete	Bin 1	um allowed % Bin Group *	Min # To Test	Min % Match 90	
<u>Edit</u> Edit	Delete Delete	Bin 1 2	um allowed % Bin Group * *	Min # To Test 25 0	Min % Match 90 0	


Web Interface for CWM Rule Setup

CWM Map Examples

- Initial correlation wafer
- (4) Individual correlation regions of the wafer used for correlation

CWM Prober Message Example = Fail

The Correlation "Failed" the Bin 1 Transition Rule

Benefits

- Correlation Analysis Integrity
 - Implement automate statistical correlation wafer result analysis to improve correlation integrity
 - Rule based bin analysis
 - Good die remain good and bad die remain bad.
 - Removed operator analysis portion (pass/fail) (subjective), making it a statistical rule based decision made by CWM
 - CWM is integrated one device at a time with the flexibility to easily change number of die to test, number of times to probe a wafer section and pass/fail criteria.
- Correlation Wafer Management
 - CWM provides a record of correlation wafer inventory and usage
- Enhanced correlation wafer integrity and lifespan
 - Control the number of die tested with each correlation run
 - Control the number of touchdowns per die
- Reduced Cost
 - Improve throughput
 - Extend the life of correlation wafers