

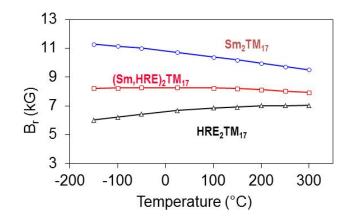
Specialists in Rare Earth Magnets and Magnet Systems

## **Temperature Compensated Magnets**

Some magnet applications benefit from having a constant magnetic field strength over a temperature range of interest. This characteristic is referred to as  $\alpha$ , the reversible temperature coefficient of residual induction (B<sub>r</sub>) and is defined as follows:

 $\alpha = (\Delta B_r/B_r) \times (1/\Delta T) \times 100\%$ 

where  $\Delta B_r$  is the change of residual induction  $B_r$  while  $\Delta T$  is the change of temperature.


For some applications such as traveling wave tubes (TWT), gyroscopes and accelerometers, the reversible temperature coefficient of B<sub>r</sub> is required to be as low as possible. To address this requirement, we developed a series of temperature compensated Sm-Co magnets.

Heavy rare earth (HRE) elements, such as Ho, Er, Gd, and Tb, can be substituted for a portion of the Sm in order to improve reversible temperature coefficient of residual induction.

The following figure shows that, for  $Sm_2TM_{17}$  (TM = transition metal) magnets, the residual induction,  $B_r$ , decreases as temperature increases. As shown,  $Sm_2TM_{17}$  magnets have a negative reversible temperature coefficient of residual induction. Conversely, the  $HRE_2Co_{17}$  alloys have a positive reversible temperature coefficient of  $B_r$ . By carefully adjusting the compositions, substituting HRE elements for a portion of the Sm, EEC has developed a series of temperature compensated Sm-Co 2:17 magnets with reversible temperature coefficient of  $B_r$  very close to zero, as shown by the  $(Sm,HRE)_2TM_{17}$  data points.



Specialists in Rare Earth Magnets and Magnet Systems



## Temperature dependence of residual induction Br for Sm<sub>2</sub>TM<sub>17</sub>, (Sm,HRE)<sub>2</sub>TM<sub>17</sub> and HRE<sub>2</sub>TM<sub>17</sub> magnets (TM=transition metals, HRE=heavy rare earth)

The following table shows the comparison of reversible temperature coefficient for some  $RE_2TM_{17}$  magnets.

| Grades       | (BH) <sub>max</sub> | Typical RTC of B <sub>r</sub> | Comment           |
|--------------|---------------------|-------------------------------|-------------------|
| EEC 2:17-24  | 24 MGOe             | -0.035 %/°C                   | no compensation   |
| EEC2:17TC-18 | 18 MGOe             | -0.02 %/°C                    | some compensation |
| EEC2:17TC-16 | 16 MGOe             | -0.001 %/°C                   | Full compensation |

The typical reversible temperature coefficient (RTC) of  $B_r$  is calculated between -50 and 150°C. The fully compensated EEC2:17TC-16 magnets have a typical RTC of -0.001%/°C. Of course the RTC of  $B_r$  will be more meaningful if it is determined in the actual device in the temperature range of interest for specific applications.

Typical applications which benefit from using temperature compensated Sm-Co magnets include gyroscopes, accelerometers, traveling wave tubes (TWT) and high precision weighing scales. Please contact EEC engineering department if the RTC of B<sub>r</sub> is critical for your application. We can work with you to determine the best possible composition for your specific application.