

LXI

₩ •

Data Sheet

PXA

00 **0** E)

9

-

LXI class C certified

Available frequncy ranges					
N9030A-503	3 Hz to 3.6 GHz				
N9030A-508	3 Hz to 8.4 GHz				
N9030A-513	3 Hz to 13.6 GHz				
N9030A-526	3 Hz to 26.5 GHz				
N9030A-543	3 Hz to 43 GHz				
N9030A-544	3 Hz to 44 GHz				
N9030A-550	3 Hz to 50 GHz				

Table of Contents

Definitions and Conditions	3
Frequency and Time Specifications4	ł
Amplitude Accuracy and Range Specifications	;
Dynamic Range Specifications)
PowerSuite Measurement Specifications16	;
General Specifications17	1
Inputs and Outputs)
Other Optional Outputs21	
I/Q Analyzer22)
I/Q Analyzer - Option B2524	ł
I/Q Analyzer - Option B4025	5
I/Q Analyzer - Option B1X26	;
Related Literature28	3

Agilent's future-ready PXA signal analyzer is the evolutionary replacement for your current highperformance analyzer. It helps you sustain past achievements, enhance current designs and accelerate future innovations.

Its performance, flexibility, capability and compatibility enable you to address demanding applications in aerospace, defense, commercial communications and more.

- Reveal new levels of signal detail with outstanding RF performance
- Increase test throughput and protect your system investments
- Refresh legacy systems with a highly compatible replacement

Definitions and Conditions

Specifications describe the performance of parameters covered by the product warranty and apply to temperature ranges 0 to 55 °C, unless otherwise noted.

95th percentile values indicate the breadth of the population (approx. 2σ) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to 30 °C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to 30 °C. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but is not covered by the product warranty.

The analyzer will meet its specifications when:

- The analyzer is within its calibration cycle.
- Under auto couple control, except that Auto Sweep Time Rules = Accy.
- For signal frequencies < 10 MHz, DC coupling applied.
- The analyzer has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on, if it had previously been stored at a temperature range inside the allowed storage range but outside the allowed operating range.
- The analyzer has been turned on at least 30 minutes with Auto Align set to normal, or if Auto Align is set to off or partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from Time and Temperature to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user.

This PXA signal analyzer data sheet is a summary of the complete specifications and conditions. The complete PXA Signal Analyzer Specification Guide can be obtained from the web at:

www.agilent.com/find/pxa_specifications

Frequency and Time Specifications

Frequency range	DC coupled	AC coupled		
Option 503	3 Hz to 3.6 GHz	10 MHz to 3.6 GHz		
Option 508	3 Hz to 8.4 GHz	10 MHz to 8.4 GHz		
Option 513	3 Hz to 13.6 GHz	10 MHz to 13.6 GHz		
Option 526	3 Hz to 26.5 GHz	10 MHz to 26.5 GHz		
Option 543	3 Hz to 43 GHz	NA		
Option 544	3 Hz to 44 GHz	NA		
Option 550	3 Hz to 50 GHz	NA		
Band LO multiple (N)				
0 1	3 Hz to 3.6 GHz			
1 1	3.5 to 8.4 GHz			
2 2	8.3 to 13.6 GHz			
3 2	13.5 to 17.1 GHz			
4 4	17 to 26.5 GHz			
5 4	26.4 to 34.5 GHz			
6 8	34.4 to 50 GHz			
Precision frequency reference				
Accuracy	\pm [(time since last adjustment x agin	g rate) + temperature stability + calibration accuracy]		
Aging rate	± 1 x 10 ⁻⁷ / year ± 1.5 x 10 ⁻⁷ / 2 years			
Temperature stability 20 to 30 °C Full temperature range	± 1.5 x 10 ⁻⁸ ± 5 x 10 ⁻⁸			
Achievable initial calibration accuracy	± 4 x 10 ⁻⁸			
Example frequency reference accuracy 1 year after last adjustment 20 to 30 °C	$= \pm (1 \times 1 \times 10^{-7} + 1.5 \times 10^{-8} + 4 \times 1)$ $= \pm 1.55 \times 10^{-7}$	0-8)		
Residual FM Center frequency = 1 GHz 10 Hz RBW, 10 Hz VBW	≤ (0.25 Hz x N) p-p in 20 ms nomin See band table above for N (LO mu			
Frequency readout accuracy (start, s	top, center, marker)			
± (marker frequency x frequency reference a	ccuracy + 0.10% x span + 5% x RBW +	+ 2 Hz + 0.5 x horizontal resolution 1)		
Marker frequency counter				
Accuracy	± (marker frequency x frequency re	ference accuracy + 0.100 Hz)		
Delta counter accuracy	± (delta frequency x frequency reference accuracy + 0.141 Hz)			
Counter resolution	0.001 Hz			
Frequency span (FFT and swept mod	e)			
Range	0 Hz (zero span), 10 Hz to maximum	n frequency of instrument		
Resolution	2 Hz			
Accuracy Swept FFT	± (0.1% x span + horizontal resolut ± (0.1% x span + horizontal resolut			

1. Horizontal resolution is span/(sweep points -1).

Sweep time and triggering		
Range	Span = 0 Hz Span > 10 Hz	1 μs to 6000 s 1 ms to 4000 s
A	Span \geq 10 Hz	± 0.01% nominal
Accuracy	Span ≥ 10 Hz, swept Span ≥ 10 Hz, FFT	\pm 40% nominal
	Span = 0 Hz	\pm 0.01% nominal
Sweep trigger	Free run, line, video, external 1, exte	ernal 2, RF burst, periodic timer
Trigger Delay	Span = 0 Hz or FFT	-150 to +500 ms
	Span ≥ 10 Hz, swept	0 to 500 ms
	Resolution	0.1 µs
Time gating		
Gate methods	Gated LO; gated video; gated FFT	
Gate length range (except method = FFT)	1 µs to 5.0 s	
Gate delay range	0 to 100.0 s	
Gate delay jitter	33.3 ns p-p nominal	
Sweep (trace) point range	1 to 40001	
All spans	1 to 40001	
Resolution bandwidth (RBW) Range (–3.01 dB bandwidth)	1 Uz to 2 MUz (100/ stops) / E 6 0	
о (1 Hz to 3 MHz (10% steps), 4, 5, 6, 8 1 Hz to 100 kHz	
Bandwidth accuracy (power) RBW range	110 kHz to 1.0 MHz (< 3.6 GHz CF)	± 0.5% (± 0.022 dB) ± 1.0% (± 0.044 dB)
now lange	1.1 to 2 MHz (< 3.6 GHz CF)	± 0.07 dB nominal
	2.2 to 3 MHz (< 3.6 GHz CF)	\pm 0.10 dB nominal
	4 to 8 MHz (< 3.6 GHz CF)	± 0.20 dB nominal
Bandwidth accuracy (–3.01 dB)		
RBW range	1 Hz to 1.3 MHz	± 2% nominal
Selectivity (-60 dB/-3 dB)		4.1:1 nominal
EMI bandwidth (CISPR compliant)	200 Hz, 9 kHz, 120 kHz, 1 MHz	(Option EMC required)
EMI bandwidth (MIL STD 461E compliant)	10 Hz, 100 Hz, 1 kHz, 10 kHz, 100 kHz, 1 MHz	(Option EMC required)
Analysis bandwidth ¹		
Maximum bandwidth	Standard	10 MHz
	Option B25	25 MHz
	Option B40	40 MHz
	Option B1X	160 MHz
Video bandwidth (VBW)		
Video bandwidth (VBW) Range	1 Hz to 3 MHz (10% steps), 4, 5, 6, 8	3 MHz, and wide open (labeled 50 MHz)
	1 Hz to 3 MHz (10% steps), 4, 5, 6, 8 ± 6% nominal (in swept mode and z	
Range		
Range Accuracy	± 6% nominal (in swept mode and z	
Range Accuracy Measurement speed ²	± 6% nominal (in swept mode and z Standard	
Range Accuracy Measurement speed ² Local measurement and display update rate	± 6% nominal (in swept mode and z Standard 10 ms (100/s) nominal	
RangeAccuracyMeasurement speed 2Local measurement and display update rateRemote measurement and LAN transfer rate	± 6% nominal (in swept mode and z Standard 10 ms (100/s) nominal 10 ms (100/s) nominal	
RangeAccuracyMeasurement speed 2Local measurement and display update rateRemote measurement and LAN transfer rateMarker peak search	 ± 6% nominal (in swept mode and z Standard 10 ms (100/s) nominal 10 ms (100/s) nominal 2.5 ms nominal 	

1. Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.

2. Sweep points = 101.

Amplitude Accuracy and Range Specifications

Displayed average noise 0 to 70 dB in 2 dB steps EA3) 3 Hz to 3.6 GHz	e level (DANL) to maximum	n safe input level
EA3)		
,		
3 Hz to 3.6 GHz		
0 to 24 dB, 1 dB steps 0 to 94 dB, 1 dB steps		
+30 dBm (1 W)		
< 10 µs pulse width, < 1	% duty cycle +50 dBm (10	0 W) and input attenuation \geq 30 dB
± 0.2 Vdc ± 100 Vdc (For frequenc	y Option 503, 508, 513, or	526)
		ons)
10 divisions		
dBm, dBmV, dBµV, dBm	A, dBµA, V, W, A	
	Specification	95th percentile ($\approx 2\sigma$)
C, preselector centering app	lied above 3.6 GHz)	
3 Hz to 10 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 22.0 GHz 22.0 to 26.5 GHz	± 0.46 dB ± 0.35 dB ± 1.5 dB ± 2.0 dB ± 2.0 dB ± 2.5 dB	± 0.16 dB ± 0.39 dB ± 0.45 dB ± 0.62 dB ± 0.82 dB
3 Hz to 20 MHz 20 to 50 MHz 50 MHz to 3.6 GHz 3.5 to 5.2 GHz 5.2 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 22.0 GHz 22.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz	$\begin{array}{c} \pm \ 0.46 \ dB \\ \pm \ 0.35 \ dB \\ \pm \ 0.35 \ dB \\ \pm \ 1.7 \ dB \\ \pm \ 1.5 \ dB \\ \pm \ 2.0 \ dB \\ \pm \ 2.5 \ dB \\ \pm \ 2.5 \ dB \\ \pm \ 2.5 \ dB \\ \pm \ 3.2 \ dB \end{array}$	\pm 0.19 dB \pm 0.15 dB \pm 0.70 dB \pm 0.57 dB \pm 0.54 dB \pm 0.64 dB \pm 0.72 dB \pm 0.71 dB \pm 0.93 dB \pm 1.24 dB
on P03, P08, P13, P26, P43,	P44, P50)	
9 to 100 kHz 100 kHz to 50 MHz 50 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 22.0 GHz	± 0.68 dB ± 0.55 dB ± 2.0 dB ± 2.3 dB ± 2.5 dB ± 3.0 dB	\pm 0.36 dB \pm 0.26 dB \pm 0.28 dB \pm 0.64 dB \pm 0.76 dB \pm 0.95 dB \pm 1.41 dB \pm 1.61 dB
	+30 dBm (1 W) < 10 μs pulse width, < 1 ± 0.2 Vdc ± 100 Vdc (For frequence 0.1 to 1 dB/division in 0 1 to 20 dB/division in 1 10 divisions dBm, dBmV, dBμV, dBm C, preselector centering app 3 Hz to 10 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 22.0 GHz 22.0 to 26.5 GHz 3 Hz to 20 MHz 20 to 50 MHz 20 to 50 MHz 50 MHz to 3.6 GHz 3.5 to 5.2 GHz 5.2 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 13.5 to 17.1 GHz 22.0 to 26.5 GHz 22.0 to 26.5 GHz 3.4.4 to 50 GHz 34.4 to 50 GHz 34.4 to 50 MHz 50 MHz to 3.6 GHz 3.5 to 8.4 GHz 3.5 to 8.4 GHz 3.5 to 100 kHz 100 kHz to 50 MHz 50 MHz to 3.6 GHz 3.5 to 8.4 GHz 3.5 to 17.1 GHz	+30 dBm (1 W) < 10 μs pulse width, < 1% duty cycle +50 dBm (10 ± 0.2 Vdc ± 100 Vdc (For frequency Option 503, 508, 513, or 9 0.1 to 1 dB/division in 0.1 dB steps 1 to 20 dB/division in 1 dB steps (10 display divisi 10 divisions dBm, dBmV, dBµV, dBmA, dBµA, V, W, A Specification C, preselector centering applied above 3.6 GHz) 3 Hz to 10 MHz ± 0.46 dB 10 MHz to 3.6 GHz ± 0.35 dB 3.5 to 8.4 GHz ± 1.5 dB 8.3 to 13.6 GHz ± 2.0 dB 13.5 to 22.0 GHz ± 2.0 dB 22.0 to 26.5 GHz ± 0.35 dB 50 MHz to 3.6 GHz ± 0.35 dB 50 MHz to 3.6 GHz ± 1.7 dB 5.2 to 8.4 GHz ± 1.5 dB 8.3 to 13.6 GHz ± 2.0 dB 13.5 to 5.2 GHz ± 2.0 dB 13.5 to 5.2 GHz ± 2.0 dB 13.5 to 5.2 GHz ± 2.0 dB 13.5 to 17.1 GHz ± 2.5 dB 34.4 to 50 GHz ± 3.2 dB on P03, P08, P13, P26, P43, P44, P50) 9 to 100 kHz 100 kHz to 3.6 GHz ± 0.55 dB 3.5 to 8.4 GHz ± 2.0 dB 13.5 to 17.1 GHz ± 2.0 dB 13.5 to 100 kHz ± 0.55 dB 3.5 to 8.4 GHz ± 2.0 dB 13.5 to 100 kHz ± 0.55 dB 3.5 to 8.4 GHz ± 2.0 dB 13.5 to 17.1 GHz ± 2.0 dB 13.5 to 17.1 GHz ± 2.0 dB 13.5 to 17.1 GHz ± 2.5 dB 3.5 to 8.4 GHz ± 2.0 dB 13.5 to 17.1 GHz ± 2.5 dB

Millimeter-Wave	9 to 100 kHz		± 0.40 dB
(Option 543, 544, 550)	100 kHz to 50 MHz	± 0.68 dB	± 0.34 dB
	50 MHz to 3.6 GHz	± 0.60 dB	± 0.31 dB
	3.5 to 5.2 GHz	± 2.0 dB	± 0.81 dB
	5.2 to 8.4 GHz	± 2.0 dB	± 0.70 dB
	8.3 to 13.6 GHz	± 2.3 dB	± 0.79 dB
	13.5 to 17.1 GHz	± 2.5 dB	± 0.88 dB
	17.0 to 22.0 GHz	± 3.0 dB	± 1.07 dB
	22.0 to 26.5 GHz	± 3.5 dB	± 1.03 dB
	26.4 to 34.5 GHz	± 3.0 dB	± 1.35 dB
	34.4 to 50 GHz	± 4.1 dB	± 1.69 dB
Input attenuation switching unc	ertainty	Specifications	Additional information
Relative to 10 dB and preamp off			
At 50 MHz (reference frequency)	attenuation 12 to 40 dB	± 0.14 dB	± 0.03 dB typical
	attenuation 2 to 8 dB	± 0.18 dB	± 0.05 dB typical
	attenuation 0 dB		± 0.05 dB nominal
attenuation > 2 dB			
3 Hz to 3.6 GHz			± 0.3 dB nominal
			\pm 0.5 dB nominal \pm 0.5 dB nominal
3.5 to 8.4 GHz			
8.3 to 13.6 GHz			± 0.7 dB nominal
13.5 to 26.5 GHz			± 0.7 dB nominal
26.4 to 50 GHz			± 1.0 dB nominal
Total absolute amplitude accura	су		
(10 dB attenuation, 20 to 30 °C, 1 H			o-coupled except
	ce level, any scale, σ = nomina	al standard deviation)	o-coupled except
(10 dB attenuation, 20 to 30 °C, 1 H	ce level, any scale, σ = nomina At 50 MHz	al standard deviation) ± 0.24 dB	
(10 dB attenuation, 20 to 30 °C, 1 H	ce level, any scale, σ = nomina At 50 MHz At all frequencies	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon	se)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app	se) rox. 2σ)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen Preamp on (Option P03, P08, P13, P26, P43,	ce level, any scale, σ = nomina At 50 MHz At all frequencies	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon	se) rox. 2σ)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen Preamp on (Option P03, P08, P13, P26, P43, P44 and P50)	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app	se) rox. 2σ)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen Preamp on (Option P03, P08, P13, P26, P43,	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon	se) rox. 2σ) se)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen Preamp on (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave ration	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR)	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526	se) rox. 2σ) se) Freq Opt 543, 544, 550
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen Preamp on (Option P03, P08, P13, P26, P43, P44 and P50)	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen Preamp on (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave ration	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz 10 MHz to 3.6 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile)	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen Preamp on (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave ration	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile)	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen Preamp on (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave ration	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile)	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen Preamp on (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave ration	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.403 (95th percentile)	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.204 (95th percentile)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen Preamp on (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave ration	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile)	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.204 (95th percentile) 1.331 (95th percentile)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen Preamp on (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave ration	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.403 (95th percentile) 1.475 (95th percentile) NA	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.204 (95th percentile) 1.331 (95th percentile) 1.321 (95th percentile)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen Preamp on (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave ration	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.403 (95th percentile) 1.475 (95th percentile)	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.204 (95th percentile) 1.331 (95th percentile)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave rati (10 dB input attenuation)	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.403 (95th percentile) 1.475 (95th percentile) NA NA	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.204 (95th percentile) 1.331 (95th percentile) 1.321 (95th percentile) 1.378 (95th percentile)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave rati (10 dB input attenuation) Preamp on (0 dB input attenuation)	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.403 (95th percentile) 1.475 (95th percentile) NA NA 1.45 (95th percentile)	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.204 (95th percentile) 1.331 (95th percentile) 1.321 (95th percentile) 1.378 (95th percentile) 1.378 (95th percentile) 1.393 nominal
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave rati (10 dB input attenuation) Preamp on (0 dB input attenuation) (Option P03, P08, P13, P26, P43,	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies 0 (VSWR) 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35.5 to 8.4 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.403 (95th percentile) 1.475 (95th percentile) NA NA 1.45 (95th percentile) 1.54 (95th percentile)	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.204 (95th percentile) 1.331 (95th percentile) 1.321 (95th percentile) 1.378 (95th percentile) 1.378 (95th percentile) 1.393 nominal 1.50 (95th percentile)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave rati (10 dB input attenuation) Preamp on (0 dB input attenuation)	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.403 (95th percentile) 1.475 (95th percentile) NA NA 1.45 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile)	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.204 (95th percentile) 1.331 (95th percentile) 1.321 (95th percentile) 1.378 (95th percentile) 1.378 (95th percentile) 1.393 nominal 1.50 (95th percentile) 1.310 (95th percentile)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave rati (10 dB input attenuation) Preamp on (0 dB input attenuation) (Option P03, P08, P13, P26, P43,	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.403 (95th percentile) 1.475 (95th percentile) NA NA 1.45 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.48 (95th percentile)	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.204 (95th percentile) 1.331 (95th percentile) 1.378 (95th percentile) 1.378 (95th percentile) 1.378 (95th percentile) 1.393 nominal 1.50 (95th percentile) 1.310 (95th percentile) 1.330 (95th percentile)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave rati (10 dB input attenuation) Preamp on (0 dB input attenuation) (Option P03, P08, P13, P26, P43,	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies 0 (VSWR) 50 MHz 10 Mz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35.5 to 8.4 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 10 MHz to 3.6 GHz 10 MHz to 3.6 GHz 10 Sto 17.1 GHz 17.0 to 26.5 GHz 10 Mz to 3.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.403 (95th percentile) 1.475 (95th percentile) NA NA 1.45 (95th percentile) 1.54 (95th percentile) 1.48 (95th percentile) 1.54 (95th percentile) 1.54 (95th percentile) 1.54 (95th percentile)	se) rox. 2o) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.204 (95th percentile) 1.331 (95th percentile) 1.321 (95th percentile) 1.378 (95th percentile) 1.378 (95th percentile) 1.393 nominal 1.50 (95th percentile) 1.310 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile)
(10 dB attenuation, 20 to 30 °C, 1 H Auto Swp Time = Accy, any referen (Option P03, P08, P13, P26, P43, P44 and P50) Input voltage standing wave rati (10 dB input attenuation) Preamp on (0 dB input attenuation) (Option P03, P08, P13, P26, P43,	ce level, any scale, σ = nomina At 50 MHz At all frequencies 10 Hz to 3.6 GHz At all frequencies o (VSWR) 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz	al standard deviation) ± 0.24 dB ± (0.24 dB + frequency respon ± 0.19 dB (95th Percentile app ± (0.36 dB + frequency respon Freq Opt 503, 508, 513, 526 1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.403 (95th percentile) 1.475 (95th percentile) NA NA 1.45 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.48 (95th percentile)	se) rox. 2σ) se) Freq Opt 543, 544, 550 1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.204 (95th percentile) 1.331 (95th percentile) 1.378 (95th percentile) 1.378 (95th percentile) 1.378 (95th percentile) 1.393 nominal 1.50 (95th percentile) 1.310 (95th percentile) 1.330 (95th percentile)

Resolution bandwidth switch	ing uncertainty (refer	enced to 30 kHz RBW)	
1 Hz to 1.5 MHz RBW	± 0.03 dB		
1.6 MHz to 2.7 MHz RBW	± 0.05 dB		
3 MHz RBW	± 0.10 dB		
4, 5, 6, 8 MHz RBW	± 0.30 dB		
Reference level			
Range Log scale Linear scale Accuracy	–170 to +30 dBm in 0. 707 pV to 7.07 V with 0 dB	01 dB steps 0.11% (0.01 dB) resolution	
Display scale switching unce	rtainty		
Switching between linear and log	0 dB		
Log scale/div switching	0 dB		
Display scale fidelity			
Between –10 dBm and –80 dBm input mixer level	± 0.10 dB total	± 0.04 dB typical	
Below –18 dBm input mixer level	± 0.07 dB	± 0.02 dB typical	
Trace detectors			
Normal, peak, sample, negative pea	k, log power average, RMS	S average, and voltage average	
Preamplifier			
Frequency range ¹	Option P03 Option P08 Option P13 Option P26 Option P43 Option P44 Option P50	9 kHz to 3.6 GHz 9 kHz to 8.4 GHz 9 kHz to 13.6 GHz 9 kHz to 26.5 GHz 9 kHz to 43 GHz 9 kHz to 44 GHz 9 kHz to 50 GHz	
Gain	9 kHz to 3.6 GHz 3.6 to 26.5 GHz 26.5 to 50 GHz	+20 dB nominal +35 dB nominal +40 dB nominal	

1. Below 100 kHz, only 95th percentile (approx. 2σ) value for frequency response is provided.

Dynamic Range Specifications

1 dB gain compression (two-to	ne)	Maximum power at	input mixer		
(At 1 kHz RBW with 100 kHz tone spa		maximum power at			
(At 1 KH2 HDW WIth 100 KH2 tone spa	20 to 40 MHz	3 dBm	0 dBm typical		
	40 to 200 MHz	-3 dBm +1 dBm	+3 dBm typical		
	200 MHz to 3.6 GHz	+3 dBm	+5 dBm typical		
	3.6 to 16 GHz	+1 dBm	+4 dBm typical		
	16 to 26.5 GHz	–1 dBm	+2 dBm typical		
	26.5 to 50 GHz	1 dBm	0 dBm nominal		
Preamp on	10 MHz to 3.6 GHz		–14 dBm nominal		
•	3.6 to 26.5 GHz				
(Option P03, P08, P13, P26, P43,	Tone spacing 100 kHz to	20 MHz	–28 dBm nominal		
P44, and P50)	Tone spacing > 70 MHz	20 10112	20 dBin noninidi		
	Freq Option ≤ 526		–10 dBm nominal		
	Freq Option > 526		–20 dBm nominal		
	26.5 to 50 GHz		–30 dBm nominal		
Displayed average noise level (DANL)				
(Input terminated, sample or average detect	<i>,</i>	ut attenuation. IF Gain = High	1 kHz BBW normalized to 1 Hz 20 to	30 °C)	
RF/MW (Option 503, 508, 513, 526)	,	Normal ¹ /LNP enabled			
Preamp off	3 Hz to 9 kHz				
Preamp on	9 to 100 kHz		–100 dBm/NA typical		
	9 to 100 kHz 100 kHz to1 MHz	—146 dBm/NA —150 dBm/NA	 –152 dBm/NA typical –156 dBm/NA typical 		
	1 to 10 MHz	–150 dBm/NA –155 dBm/NA	–156 dBm/NA typical		
	10 MHz to 1.2 GHz	-155 dBm/NA	–157 dBm/NA typical		
	1.2 to 2.1 GHz	-153 dBm/NA	–155 dBm/NA typical		
	2.1 to 3.0 GHz	-152 dBm/NA	–154 dBm/NA typical		
	3.0 to 3.6 GHz	-151 dBm/NA	-153 dBm/NA typical		
	3.5 to 4.2 GHz	−147 dBm/−153 dBm	–150 dBm/–156 dBm	typical	
	4.2 to 8.4 GHz	−150 dBm/−155 dBm	−152 dBm/−157 dBm	–152 dBm/–157 dBm typical	
	8.3 to 13.6 GHz	−149 dBm/−155 dBm	-151 dBm/-157 dBm typ		
	13.5 to 16.9 GHz	−145 dBm/−152 dBm		-147 dBm/-155 dBm typical	
	16.9 to 20.0 GHz	–143 dBm/–151 dBm	−145 dBm/−153 dBm		
	20.0 to 26.5 GHz	–137 dBm/–150 dBm	−140 dBm/−152 dBm	typical	
Preamp on					
Option P03, P08, P13, P26	100 to 200 kHz	-157 dBm/NA	-160 dBm/NA typical		
	200 to 500 kHz	-160 dBm/NA	-163 dBm/NA typical		
	0.5 to 1 MHz	–164 dBm/NA	–166 dBm/NA typical		
Option P03, P08, P13, P26	1 to 10 MHz	-164 dBm/NA	–167 dBm/NA typical		
Option P03, P08, P13, P26	10 MHz to 2.1 GHz	-165 dBm/NA	-166 dBm/NA typical		
Option P03, P08, P13, P26	2.1 to 3.6 GHz	-163 dBm/NA	-164 dBm/NA typical		
Option P08, P13, P26 ³	3.5 to 8.4 GHz	-164 dBm/NA	-166 dBm/NA typical		
Option P13, P26 ³ Option P26 ³	8.3 to 13.6 GHz 13.5 to 16.9 GHz	–163 dBm/NA –161 dBm/NA	 –165 dBm/NA typical –162 dBm/NA typical 		
Option P26 ³	16.9 to 20.0 GHz	-161 dBm/NA -159 dBm/NA	-161 dBm/NA typical		
Option P26 ³	20.0 to 26.5 GHz	-155 dBm/NA	–157 dBm/NA typical		
DANL with Noise Floor Extensi			mprovement @ 95th percen	tilo	
RF/MW (Option 503, 508, 513, 526)			amp Off Preamp On LNP enal		
Band 0, f > 20 MHz		10	· ·	biou	
Band 1		4 d			
Band 2		7 d			
Band 3		8 d			
Band 4		6 d			
Examples of effective DANL	Preamp Off Preamp On	LNP enabled ^{2, 3}			
Frequency 20 to 30 °C					
Mid-Band 0 (1.8 GHz)	–162 dBm –172 dBm	NA			
Mid-Band 1 (5.95 GHz)	–158 dBm –172 dBm	–160 dBm			
Mid-Band 2 (10.95 GHz)	–157 dBm –170 dBm	–161 dBm			
Mid-Band 3 (15.3 GHz)	–152 dBm –166 dBm	–158 dBm			
Mid-Band 4 (21.75 GHz)	–145 dBm –162 dBm	–155 dBm			
With the NEE (Noise Floor Extension) "Off	"				

1. With the NFE (Noise Floor Extension) "Off".

2. LNP (Low Noise Path) requires option LNP.

3. At higher frequency bands (beyond 3.6 GHz), Preamp "On" supersedes "LNP enabled". LNP cannot operate simultaneously with preamp.

Millimeter-Wave (Option 543, 544, 550)		Normal ¹ /LNP enabled ²	Normal ¹ /LNP enabled ²
Preamp off	3 Hz to 9 kHz		–100 dBm/NA nominal
	9 to 100 kHz	-146 dBm/NA	–152 dBm/NA typical
	100 kHz to 1 MHz	-150 dBm/NA	–156 dBm/NA typical
	1 to 10 MHz	–155 dBm/NA	–158 dBm/NA typical
	10 MHz to 1.2 GHz	–155 dBm/NA	–157 dBm/NA typical
	1.2 to 2.1 GHz	–153 dBm/NA	–155 dBm/NA typical
	2.1 to 3 GHz	–152 dBm/NA	–154 dBm/NA typical
	3 to 3.6 GHZ	-151 dBm/NA	–153 dBm/NA typical
	3.5 to 4.2 GHz	−143 dBm/−150 dBm	–153 dBm/NA typical
	4.2 to 6.6 GHz	−144 dBm/−152 dBm	–147 dBm/–154 dBm typical
	6.6 to 8.4 GHz	−147 dBm/−154 dBm	–148 dBm/–155 dBm typical
	8.3 to 13.6 GHz	−147 dBm/−153 dBm	–149 dBm/–156 dBm typical
	13.5 to 14 GHz	−143 dBm/−150 dBm	–149 dBm/–152 dBm typical
	14 to 17 GHz	−145 dBm/−151 dBm	–146 dBm/–153 dBm typical
	17 to 22.5 GHz	−141 dBm/−149 dBm	-148 dBm/-152 dBm typical
	22.5 to 26.5 GHz	−139 dBm/−146 dBm	-146 dBm/-150 dBm typical
	26.4 to 34 GHz	−138 dBm/−146 dBm	-142 dBm/-149 dBm typical
	33.9 to 37 GHz	−134 dBm/−141 dBm	–139 dBm/–147 dBm typical
	37 to 40 GHz	−132 dBm/−140 dBm	–138 dBm/–145 dBm typical
	40 to 46 GHz	−130 dBm/−140 dBm	–135 dBm/–145 dBm typical
	46 to 49 GHz	−130 dBm/−138 dBm	–135 dBm/–142 dBm typical
	49 to 50 GHz	−128 dBm/−138 dBm	–133 dBm/–142 dBm typical
Preamp on			
Option P03, P08, P13, P26, P43, P44, P50 ³	100 to 200 kHz	–157 dBm/NA	–160 dBm/NA typical
	200 to 500 kHz	-160 dBm/NA	–163 dBm/NA typical
	500 kHz to 1 MHz	-162 dBm/NA	–165 dBm/NA typical
	1 to 10 MHz	–164 dBm/NA	–167 dBm/NA typical
	10 MHz to 2.1 GHz	-164 dBm/NA	–166 dBm/NA typical
	2.1 to 3.6 GHz	-163 dBm/NA	–164 dBm/NA typical
Option P08, P13, P26, P43, P44, P50 ³	3.5 to 8.4 GHz	–161 dBm/NA	–163 dBm/NA typical
Option P13, P26, P43, P44, P50 ³	8.3 to 13.6 GHz	−161 dBm/NA	-163 dBm/NA typical
Option P26, P43, P44, P50 ³	13.5 to 17 GHz	-161 dBm/NA	-163 dBm/NA typical
	17 to 20 GHz	-160 dBm/NA	-163 dBm/NA typical
	20 to 26.5 GHz	−158 dBm/NA	-161 dBm/NA typical
Option P43, P44, P50 ³	26.4 to 30 GHz	–157 dBm/NA	–159 dBm/NA typical
	30 to 34 GHz	−155 dBm/NA	-158 dBm/NA typical
	33.9 to 37 GHz	−153 dBm/NA	–157 dBm/NA typical
	37 to 40 GHz	–152 dBm/NA	–156 dBm/NA typical
	40 to 43 GHz	_149 dBm∕NA	–154 dBm/NA typical
Option P44, P50 ³	43 to 44 GHz	–149 dBm/NA	–154 dBm/NA typical
Option P50 ³	44 to 46 GHz	-149 dBm/NA	–154 dBm/NA typical
•	46 to 50 GHz	-146 dBm/NA	–150 dBm/NA typical

1. With the NFE (Noise Floor Extension) "Off".

2. LNP (Low Noise Path) requires option LNP.

3. At higher frequency bands (beyond 3.6 GHz), Preamp "On" supersedes "LNP enabled". LNP cannot operate simultaneously with preamp.

DANL with Noise Floor Extension (NFE) on					Improvement @ 95th percentile		
Millimeter-Wave				Preamp Off	Preamp On	LNP enabled 1,2	
(Option 543, 544, 550)							
Band 0, f > 20 MHz				10 dB	9 dB	N/A	
Band 1				6 dB	5 dB	6 dB	
Band 2				8 dB	8 dB	8 dB	
Band 3				9 dB	8 dB	10 dB	
Band 4				7 dB	6 dB	8 dB	
Band 5				6 dB	6 dB	6 dB	
Band 6				6 dB	5 dB	7 dB	
Example of effective DANL	Preamp Off	Preamp On	LNP enabled ^{1, 2}				
Frequency 20 to 30 °C							
Mid-Band 0 (1.8 GHz)	–162 dBm	–172 dBm	N/A				
Mid-Band 1 (5.95 GHz)	—151 dBm	—165 dBm	–158 dBm				
Mid-Band 2 (10.95 GHz)	—152 dBm	—165 dBm	–158 dBm				
Mid-Band 3 (15.3 GHz)	–152 dBm	—165 dBm	–158 dBm				
Mid-Band 4 (21.75 GHz)	—149 dBm	—163 dBm	–155 dBm				
Mid-Band 5 (30.4 GHz)	—144 dBm	–160 dBm	–151 dBm				
Mid-Band 6 (42.7 GHz)	–139 dBm	—154 dBm	–147 dBm				

1. LNP (Low Noise Path) requires option LNP.

2. At higher frequency bands (beyond 3.6 GHz), Preamp "On" supersedes "LNP enabled". LNP cannot operate simultaneously with preamp.

Residual responses (Input terminated and 0 dB attenuation) 20 HHz to 84 GHz Zero span or FT or other frequencies -100 dBm -00 dBm nominal Image responses Tuned Freq (I) Excitation Freq 20 GBc -118 dBc typical (Mixer level at -10 dBm) 10 MHz to 25 GHz 10 MHz to 36 GHz 13 5 to 17.1 GHz 14 GH45 MHz 25 GHz 17.0 to 22 GHz 12 to 22.5 GHz 14 G45 MHz 22 to 22.5 GHz 14 G45 MHz 22 to 22.5 GHz 14 G45 MHz 22 to 22.5 GHz 14 G45 MHz 24 To 24 GHz 17.0 to 22 GHz 14 G45 MHz 25 GHz 14 G45 MHz 25 GHz 16 GMZ 17.0 to 22 GHz 14 G45 MHz 25 GHz 16 GMZ 17 O MBr 16 CMZ 17 O MBr 16 CMZ 17 O MBr 17 O MBr 16 CMZ 17 O MHz 16 CMZ 16 CMZ
(Input terminated and 0 dB Zero span or FFT or other frequencies 100 dBm nominal Image responses Tuned Freq (f) Excitation Freq Response (Mixer leval at -10 dBm) 10 MHz to 25.5 GHz 10 MHz to 3.6 GHz Fr445 MHz 80 dBc -118 dBc typical 10 MHz to 3.6 GHz Fr465 MHz 80 dBc -112 dBc typical 13 to 13.5 GHz Fr465 MHz 74 dBc -74 dBc -74 dBc 17.0 to 22 GHz Fr465 MHz 74 dBc -74 dBc -74 dBc -74 dBc (Mixer level at -30 dBm) 25 to 34.5 GHz Fr465 MHz 74 dBc -74 dBc -75 dBc -74 dBc <td< td=""></td<>
Image responses Tuned Freq (f) Excitation Freq Response (Mixer level at -10 dBm) 10 MHz to 26.5 GHz 10 MHz to 3.6 GHz 10 MHz to 3.6 GHz 10 MHz to 3.6 GHz 13.5 to 17.0 GHz 35 to 13.5 GHz 13.5 to 17.1 GHz 13.5 to 17.1 GHz 17.0 to 22 GHz 14.645 MHz 22 CD 26.5 GHz 17.0 to 22 GHz 44.645 MHz 22 CD 26.5 GHz 14.645 MHz 22 CD 26.5 GHz 14.645 MHz 22 CD 26.5 GHz 14.645 MHz 22 CD 26.5 GHz 14.645 MHz 24.0 GHZ 14.645 MHz 25.5 to 3.5 GHZ 14.645 MHz 25.5 to 3.5 GHZ 14.645 MHz 26.5 to 3.5 GHZ 14.645 MHz 26.5 to 3.5 GHZ 14.645 MHz 27.0 GHZ 26.5 to 3.5 GHZ 14.645 MHz 27.0 GHZ 26.5 to 3.5 GHZ 14.645 MHz 27.0 GHZ 27.0 GHZ 27.
(Mixer level at -10 dBm) 10 MHz to 26.5 GHz 10 MHz to 2.6 GHz 10 MHz to 2.6 GHz 10 MHz to 2.6 GHz 10 MHz to 2.6 GHz 110 GHz to 2.6 GHz 13 S to 17.1 GHz 17.0 to 22 CHz 17.0 to 20 CHz 17.0 to 2
10 MHz to 3.6 GHz +10.245 MHz -80 dBc -112 dBc typical 10 MHz to 3.6 GHz +4645 MHz -80 dBc -101 dBc typical 13.5 to 13.6 GHz +4645 MHz -78 dBc -80 dBc -101 dBc typical 13.5 to 17.1 GHz +4645 MHz -74 dBc -82 dBc typical -22 to 2.55 GHz -12 to 2.5 GHz +4645 MHz -80 dBc -70 dBc typical 22 to 2.65 GHz +4645 MHz -57 dBc -79 dBc typical -44 to 50 GHz +4645 MHz -57 dBc -79 dBc typical 34 to 44 GHz +4645 MHz -57 dBc -79 dBc typical -
10 MHz to 3.6 GHz 1445 MHz -80 dBc -101 dBc typical 35 to 13.6 GHz 14450 MHz -74 dBc -75 dBc -74 dBc <td< td=""></td<>
35 to 13.6 GHz 14 + 645 MHz -74 dBc -84 dBc typical 13.5 to 13.6 GHz 14 + 645 MHz -74 dBc -84 dBc typical (Mixer level at -30 dBm) 20 to 25.6 GHz 14 + 645 MHz -70 dBc -84 dBc typical 2 to 25.6 GHz 14 + 645 MHz -70 dBc -84 dBc typical -84 dBc -79 dBc 2 to 25.6 GHz 14 + 645 MHz -70 dBc -84 dBc -79 dBc -79 dBc 2 to 25.6 GHz 14 to 50 GHz 14 + 645 MHz -79 dBc -79 dBc -79 dBc Carrier frequency < 252.6 GHz
Instruction 13.5 to 17.1 GHz 14.46 MHz -74 dBc -84 dBc typical 17.0 to 22 GHz 14.464 MHz -68 dBc -82 dBc typical 22 to 26.5 GHz 14.464 MHz -68 dBc -82 dBc typical 34.4 to 44 GHz 14.464 MHz -68 dBc -79 dBc typical 34.4 to 46 GHz 14.46 GHz -75 dBc -79 dBc typical Carrier frequency <26.5 GHz
17.0 to 22 GHz 17.4 to 43 GHz 17.4 to 44 GHz 17.4 to 44 GHz 17.4 to 44 GHz 17.4 to 27 GHz 17.4 to 44 GHz 17.4 to 57 GHz 17.4 to 44 GHz 17.4 to 57 GHz 17.4 to 44 GHz 17.4 to 44 GHz 17.4 to 47 GHz 17.4 to 48 GHz 17.4 to
Image: second barron carrier) 22 to 26.5 GHz F+645 MHz -68 dBc -79 dBc typical 34.4 to 45 0 GHz F+645 MHz -79 dBc typical -79 dBc typical 34.4 to 50 GHz F+645 MHz -79 dBc typical Carrier frequency ≤ 25.5 GHz F+645 MHz -79 dBc typical First RF order -10 dBm -80 dBc + 20log(N ¹) Including IF feedthrough, L0 harmonic mixing responses (f ≥ 10 MHz from carrier) -40 dBm -80 dBc + 20log(N ¹) Including higher order mixer responses (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal (f ≥ 10 MHz from carrier) -68 dBc ² + 20log(N ¹) (nominal) -68 dBc ² + 20log(N ¹) L0-related spurious responses -30 dBm -90 dBc nominal - (f ≥ 10 MHz from carrier) - - - Higher RF order -30 dBm -90 dBc nominal - (f ≥ 10 MHz from carrier) - - - Higher RF order -30 dBm -90 dBc nominal - (f ≥ 10 MHz from carrier) - - -
(Mixer level at -30 dBm) 26 5 to 34 5 GHz 34.4 to 44 GHz 44 to 50 GHz F445 MHz F446 MHz F446 MHz -68 dBc -79 dBc typical -79 dBc typical -70 dBm Other spurious responses Mixer level Response Carrier frequency 5 26.5 GHz (f ≥ 10 MHz from carrier) Higher RF order (f ≥ 10 MHz from carrier) Higher RF order -10 dBm -80 dBc + 20log(N ¹) Including IF feedthrough, L0 harmonic mixing responses Carrier frequency > 26.5 GHz First RF order -30 dBm -90 dBc nominal
34.4 to 44 6Hz f+645 MHz 73 dBc r/pical (r+645 MHz 75 dBc nominal Other spurious responses Mixer level Response Carrier frequency ≤ 26.5 GHz First RF order -10 dBm -80 dBc + 20log(N ¹) Including IF feedthrough, L0 harmonic mixing responses (f ≥ 10 MHz from carrier) -40 dBm -80 dBc + 20log(N ¹) Including higher order mixer responses (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal (f ≥ 10 MHz from carrier) -73 dBc ² + 20log(N ¹) (nominal) Second harmonic distortion SHI RF/MW 10 to 100 MHz -15 dBm -57 dBc/NA +42 dBm/NA (0ption 503, 508, 513, 526) 10 to 100 MHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm (0ption 543, 544, 550) 10 to 100 MHz -15 dBm -77 dBc/-105 dBc +57 dBm/+80 dBm (0ption 543, 544, 550) 10 to 100 MHz
Other spurious responses Mixer level Response Carrier frequency ≤ 26.5 GHz First RF order (f ≥ 10 MHz from carrier) Higher RF order (f ≥ 10 MHz from carrier) Higher RF order (f ≥ 10 MHz from carrier) -10 dBm -80 dBc + 20log(N ¹) Including IF feedthrough, L0 harmonic mixing responses Carrier frequency > 26.5 GHz First RF order (f ≥ 10 MHz from carrier) -40 dBm -80 dBc + 20log(N ¹) Including higher order mixer responses LO-related spurious responses (20 Hz ≤ 1 × 10 MHz from carrier), Mixer level at -10 dBm -30 dBm -90 dBc nominal LO-related spurious responses -73 dBc ² + 20log(N ¹) (nominal) Second harmonic distortion (20 Hz ≤ 1 × 10 MHz from carrier), Mixer level at -10 dBm -73 dBc ² + 20log(N ¹) (nominal) Second harmonic distortion (20 Hz ≤ 1 × 10 MHz from carrier), Mixer level at -10 dBm -15 dBm -60 dBc/NA +42 dBm/NA 10 to 100 MHz -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm LS > 0 dBz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 10 to 100 MHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 10 to 13.25 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 10 to 13.25 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm <t< td=""></t<>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
First RF order (f ≥ 10 MHz from carrier) Higher RF order (f ≥ 10 MHz from carrier)-40 dBm-80 dBc + 20log(N ¹) Including Higher order mixer responsesCarrier frequency > 26.5 GHz First RF order (f ≥ 10 MHz from carrier)-30 dBm-90 dBc nominal(f ≥ 10 MHz from carrier) Higher RF order (f ≥ 10 MHz from carrier)-30 dBm-90 dBc nominalL0-related spurious responses (200 Hz ≤ f < 10 MHz from carrier)
(f ≥ 10 MHz from carrier) Higher RF order (f ≥ 10 MHz from carrier) -40 dBm -80 dBc + 20log(N ⁻¹) Including higher order mixer responses Carrier frequency > 26.5 GHz First RF order (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal LO-related spurious responses (20 Hz ≤ r 10 MHz from carrier) -30 dBm -90 dBc nominal LO-related spurious responses (20 Hz ≤ r 10 MHz from carrier) -68 dBc ² + 20log(N ⁻¹) -68 dBc ² + 20log(N ⁻¹) Second harmonic distortion Line-related spurious responses -68 dBc ² + 20log(N ⁻¹) -73 dBc ² + 20log(N ⁻¹) (nominal) Second harmonic distortion (Gption 503, 508, 513, 526) 10 to 100 MHz -15 dBm -57 dBc/NA +42 dBm/NA 175 to 2.5 GHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm -15 dBm -77 dBc/-105 dBc +52 dBm/+80 dBm -15 dBm -70 dBc/-105 dBc +42 dBm/NA 10 to 13.25 GHz -15 dBm -77 dBc/-105 dBc +52 dBm/+80 dBm -15 dBm -60 dBc/-105 dBc +57 dBm/+90 dBm Preamp on (0ption P03, P08, P13, P26) 10 to 100MHz -15 dBm -61 dBc/NA +42 dBm/NA +33 dBm nominal
Higher RF order -40 dBm -80 dBc + 20log(N 1) Including higher order mixer responses (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal Higher RF order -30 dBm -90 dBc nominal (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal L0-related spurious responses -68 dBc ² + 20log(N 1) -57 dBc ² + 20log(N 1) (nominal) Second harmonic distortion (SHI) -73 dBc ² + 20log(N 1) (nominal) Second harmonic distortion (SHI) -73 dBc ² + 20log(N 1) (nominal) FF/MW 10 to 100 MHz -15 dBm -57 dBc ² /NA +42 dBm/NA (0ption 503, 508, 513, 526) 0.1 to 1.8 GHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm 1.75 to 2.5 GHz -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm 15 dBm -77 dBc/-105 dBc +47 dBm/+80 dBm (Dption 503, 508, 513, 526) 10 MHz to 1.8 GHZ -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm 15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 10 to 13.25 GHZ -15 dBm -78 dBc rominal +10 dBm nominal (Dption 503, 508, 513, 526) 10 MHz to 1.8 GHZ -15
If ≥ 10 MHz from carrier) Carrier frequency > 26.5 GHz First RF order -30 dBm -90 dBc nominal If ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal L0-related spurious responses -68 dBc ² + 20log(N ¹) -68 dBc ² + 20log(N ¹) 200 Hz ≤ f × 10 MHz from carrier) -68 dBc ² + 20log(N ¹) -73 dBc² + 20log(N ¹) (nominal) Second harmonic distortion (SHI) -73 dBc² + 20log(N ¹) (nominal) Second harmonic distortion (SHI) -73 dBc² + 20log(N ¹) (nominal) Second harmonic distortion (SHI) -15 dBm -57 dBc/NA +42 dBm/NA (0ption 503, 508, 513, 526) 10 to 100 MHz -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm +25 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -78 dBc nominal +33 dBm nominal (Option P03, P08, P13, P26) 10 MHz to 18 GHz -45 dBm -78 dBc nominal +33 dBm nominal (IIII) 10 MIz to 18 GHz -15 dBm -78 dBc nominal +33 dBm nominal (Option 543, 544, 550) 10 to 1000MHz -15 dB
First RF order -30 dBm -90 dBc nominal (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal Higher RF order -30 dBm -90 dBc nominal (f ≥ 10 MHz from carrier) -68 dBc ² + 20log(N ¹) -68 dBc ² + 20log(N ¹) L0-related spurious responses -68 dBc ² + 20log(N ¹) -68 dBc ² + 20log(N ¹) carrier), Mixer level at -10 dBm -73 dBc ² + 20log(N ¹) (nominal) -73 dBc ² + 20log(N ¹) (nominal) Second harmonic distortion (SHI) Second harmonic distortion (Nixer level Distortion ³ Of dBc nominal (Option 503, 508, 513, 526) Nixer level Distortion ³ Of dBc nominal Cource frequency Mixer level Distortion ³ Of dBc nominal (Option 503, 508, 513, 526) Nito 10 to 100 MHz -15 dBm -77 dBc/-101 dBc +62 dBm/NA 10 to 13.25 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/H2 dBm Distortion SHI Preamp on 10 M
If ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal Higher RF order (f ≥ 10 MHz from carrier) -68 dBc ² + 20log(N ¹) L0-related spurious responses -68 dBc ² + 20log(N ¹) (200 Hz ≤ f < 10 MHz from carrier), Mixer level at -10 dBm Line-related spurious responses -73 dBc ² + 20log(N ¹) (nominal) Second harmonic distortion SHI Second harmonic distortion SHI 10 to 100 MHz -15 dBm -57 dBc/NA +42 dBm/NA (0ption 503, 508, 513, 526) 10 to 100 MHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 0.1 to 1.8 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 10 to 13.25 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 10 to 13.25 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 10 to 13.25 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm (0ption P03, P08, P13, P26) 10 to 100MHz -15 dBm -78 dBc nom
Higher RF order (f ≥ 10 MHz from carrier) -30 dBm -90 dBc nominal L0-related spurious responses (200 Hz ≤ f < 10 MHz from carrier), Mixer level at -10 dBm -68 dBc ² + 20log(N ¹) - L0-related spurious responses -73 dBc ² + 20log(N ¹) (nominal) - Second harmonic distortion (SHI) -73 dBc ² + 20log(N ¹) (nominal) - Second harmonic distortion (SHI) -73 dBc ² + 20log(N ¹) (nominal) - RF/MW (Option 503, 508, 513, 526) 10 to 100 MHz 0.1 to 18 GHz -15 dBm -57 dBc/NA +42 dBm/NA 10 to 100 MHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm -80 dBc/NA 2.5 to 4 GHz -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm -55 to 2 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm -15 dBm -70 dBc/-105 dBc +62 dBm/+80 dBm 0 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +47 dBm/+90 dBm +10 tBm rominal (Option 543, 544, 550) 10 th 18 GHz -15 dBm -50 dBc nominal +10 dBm nominal (Option 543, 544, 550) 10 to 100MHz -15 dBm -72 dBc/-95 dBc +57 dBm/HA
Instruction Construction L0-related spurious responses (200 Hz ≤ f < 10 MHz from carrier), Mixer level at -10 dBm Line-related spurious responses -68 dBc ² + 20log(N ¹) Second harmonic distortion (SHI) -73 dBc ² + 20log(N ¹) (nominal) Second harmonic distortion (SHI) -57 dBc/NA Yet (0ption 503, 508, 513, 526) 10 to 100 MHz -15 dBm -57 dBc/NA Yet (0ption 503, 508, 513, 526) 10 to 100 MHz -15 dBm -77 dBc/-95 dBc +62 dBm/NA Yet (0ption 503, 508, 513, 526) 10 to 100 MHz -15 dBm -77 dBc/-101 dBc +62 dBm/HA Yet (0ption 503, 508, 513, 526) 10 to 100 MHz -15 dBm -77 dBc/-101 dBc +62 dBm/HA Yet (0ption 503, 508, 513, 526) 10 to 1.25 GHz -15 dBm -77 dBc/-101 dBc +62 dBm/HA Yet (0ption 503, 508, 513, 526) 10 to 1.25 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/HA Yet (0ption 503, 508, 513, 526) 10 to 1.25 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/HA Yet (0ption 703, 908, P13, P26) 10 to 1.25 GHz -45 dBm -78 dBc nominal +33 dBm nominal Yet (0ption 543, 544, 550) 10 to 100MHz -15 dBm -60 dBc/NA +42 dBm/NA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
carrier), Mixer level at -10 dBm Line-related spurious responses Carrier), Mixer level at 200 (N ¹) (nominal) Second harmonic distortion (SHI) Source frequency Mixer level Distortion ³ SHI ³ RF/MW (Option 503, 508, 513, 526) 10 to 100 MHz -15 dBm -57 dBc/NA +42 dBm/NA 1.75 to 25 GHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 0 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +47 dBm/+90 dBm 0 to 13.25 GHz -15 dBm -78 dBc nominal +33 dBm nominal 10 to 13.25 GHz -45 dBm -78 dBc/NA +42 dBm/NA (Option P03, P08, P13, P26) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA Millimeter-Wave In to 1.8 GHz -15 dBm -57 dBc/NA +42 dBm/NA <t< td=""></t<>
Line-related spurious responses -73 dBc ² + 20log(N ¹) (nominal) Second harmonic distortion (SHI) Source frequency Mixer level Distortion ³ SHI ³ RF/MW (Option 503, 508, 513, 526) 10 to 100 MHz -15 dBm -57 dBc/NA +42 dBm/NA 1.75 to 2.5 GHz -15 dBm -60 dBc/NA +45 dBm/NA 1.75 to 2.5 GHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -70 dBc/-105 dBc +62 dBm/+80 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +42 dBm/NA 10 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +42 dBm/+90 dBm 10 to 13.25 GHz -50 dBm -70 dBc/-105 dBc +47 dBm/+90 dBm (Option P03, P08, P13, P26) 10 to 100MHz -50 dBm -78 dBc nominal +33 dBm nominal Millimeter-Wave Mixer level Distortion SHI (Option 543, 544, 550) 10 to 100MHz -15 dBm
Second harmonic distortion (SHI) Source frequency Mixer level Distortion 3 SHI 3 RF/MW (Option 503, 508, 513, 526) 10 to 100 MHz -15 dBm -57 dBc/NA +42 dBm/NA 0.1 to 1.8 GHz -15 dBm -60 dBc/NA +45 dBm/NA 1.75 to 2.5 GHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm 6.5 to 10 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 6.5 to 10 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -78 dBc nominal +33 dBm nominal (Option P03, P08, P13, P26) 10 to 100MHz -45 dBm -78 dBc nominal +10 dBm nominal Millimeter-Wave Mixer level Distortion SHI (Option 543, 544, 550) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 10 to 100MHz -15 dBm -72 dBc/-99 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm
Source frequency Mixer level Distortion ³ SHI ³ RF/MW (Option 503, 508, 513, 526) 10 to 100 MHz -15 dBm -57 dBc/NA +42 dBm/NA 0.1 to 1.8 GHz -15 dBm -60 dBc/NA +45 dBm/NA 1.75 to 2.5 GHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 0.1 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +62 dBm/+90 dBm 0 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +47 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -60 dBc nominal +33 dBm nominal (Option P03, P08, P13, P26) 10 to 100MHz -15 dBm -60 dBc nominal +10 dBm nominal Millimeter-Wave Mixer level Distortion SHI (Option 543, 544, 550) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc <td< th=""></td<>
RF/MW 10 to 100 MHz -15 dBm -57 dBc/NA +42 dBm/NA (0ption 503, 508, 513, 526) 0.1 to 1.8 GHz -15 dBm -60 dBc/NA +45 dBm/NA 1.75 to 2.5 GHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm 4 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -77 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -78 dBc nominal +33 dBm nominal (Option P03, P08, P13, P26) 10 to 100MHz -45 dBm -78 dBc nominal +33 dBm nominal Millimeter-Wave Mixer level Distortion SHI (Option 543, 544, 550) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/NA 1.8 to 1.8 GHz -15 dBm -72 dBc/-95 dBc
(Option 503, 508, 513, 526) 0.1 to 1.8 GHz -15 dBm -60 dBc/NA +45 dBm/NA 1.75 to 2.5 GHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm 4 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 4 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +47 dBm/+90 dBm (Option P03, P08, P13, P26) 10 MHz to 1.8 GHz -45 dBm -78 dBc nominal +33 dBm nominal Millimeter-Wave Mixer level Distortion SHI (Option 543, 544, 550) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+84 dBm 100 M to 1.8 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+80 dBm 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm
1.75 to 2.5 GHz -15 dBm -77 dBc/-95 dBc +62 dBm/+80 dBm 2.5 to 4 GHz -15 dBm -77 dBc/-101 dBc +62 dBm/+80 dBm 4 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 4 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +47 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -78 dBc nominal +33 dBm nominal (Option P03, P08, P13, P26) 10 to 100MHz -45 dBm -78 dBc nominal +10 dBm nominal Millimeter-Wave Mixer level Distortion SHI (Option 543, 544, 550) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 1.8 to 2.5 GHz -15 dBm -57 dBc/NA +42 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dB
4 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -62 dBc/-105 dBc +47 dBm/+90 dBm Preamp on 10 MHz to 1.8 GHz -45 dBm -78 dBc nominal +33 dBm nominal (Option P03, P08, P13, P26) 10 MHz to 1.8 GHz -45 dBm -78 dBc nominal +10 dBm nominal Millimeter-Wave Nixer level Distortion SHI (Option 543, 544, 550) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 1.8 to 2.5 GHz -15 dBm -57 dBc/NA +42 dBm/NA 1.8 to 2.5 GHz -15 dBm -50 dBc +57 dBm/+80 dBm 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+80 dBm 1.8 to 2.5 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -77 dBc/-99 dBc +62 dBm/+80 dBm 3 to 5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+80 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc
6.5 to 10 GHz 10 to 13.25 GHz -15 dBm -15 dBm -70 dBc/-105 dBc -62 dBc/-105 dBc +55 dBm/+90 dBm +47 dBm/+90 dBm Preamp on (Option P03, P08, P13, P26) 10 MHz to 1.8 GHz 1.8 to 13.25 GHz -45 dBm -50 dBm -78 dBc nominal -60 dBc nominal +33 dBm nominal +10 dBm nominal Millimeter-Wave Mixer level Distortion SHI (Option 543, 544, 550) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 100 M to 1.8 GHz -15 dBm -57 dBc/NA +45 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -77 dBc/-99 dBc +57 dBm/+84 dBm 3 to 5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 5 to 6.5 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +47 dBm/+90 dBm
10 to 13.25 GHz -15 dBm -62 dBc/-105 dBc +47 dBm/+90 dBm Preamp on (Option P03, P08, P13, P26) 10 MHz to 1.8 GHz -45 dBm -78 dBc nominal +33 dBm nominal Millimeter-Wave 1.8 to 13.25 GHz -50 dBm -60 dBc nominal +10 dBm nominal Millimeter-Wave Mixer level Distortion SHI (Option 543, 544, 550) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 1.8 to 2.5 GHz -15 dBm -57 dBc/NA +45 dBm/NA 1.8 to 2.5 GHz -15 dBm -57 dBc/NA +42 dBm/NA 1.8 to 2.5 GHz -15 dBm -60 dBc/NA +45 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+84 dBm 3 to 5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 5 to 6.5 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 1 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 1 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+9
Preamp level Distortion SHI (Option P03, P08, P13, P26) 10 MHz to 1.8 GHz -45 dBm -78 dBc nominal +33 dBm nominal Millimeter-Wave 1.8 to 13.25 GHz -50 dBm -60 dBc nominal +10 dBm nominal (Option 543, 544, 550) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 100 M to 1.8 GHz -15 dBm -57 dBc/NA +42 dBm/NA 100 M to 1.8 GHz -15 dBm -60 dBc/NA +45 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+84 dBm 3 to 5 GHz -15 dBm -77 dBc/-99 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm
Preamp on (Option P03, P08, P13, P26) 10 MHz to 1.8 GHz 1.8 to 13.25 GHz -45 dBm -50 dBm -78 dBc nominal -60 dBc nominal +33 dBm nominal +10 dBm nominal Millimeter-Wave (Option 543, 544, 550) Mixer level Distortion SHI 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 100 M to 1.8 GHz -15 dBm -60 dBc/NA +45 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+84 dBm 3 to 5 GHz -15 dBm -77 dBc/-99 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm
(Option P03, P08, P13, P26) 1.8 to 13.25 GHz -50 dBm -60 dBc nominal +10 dBm nominal Millimeter-Wave Mixer level Distortion SHI (Option 543, 544, 550) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 100 M to 1.8 GHz -15 dBm -60 dBc/NA +45 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+84 dBm 3 to 5 GHz -15 dBm -77 dBc/-99 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -62 dBc/-105 dBc +47 dBm/+90 dBm
Millimeter-Wave Mixer level Distortion SHI (Option 543, 544, 550) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 100 M to 1.8 GHz -15 dBm -60 dBc/NA +45 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+84 dBm 3 to 5 GHz -15 dBm -77 dBc/-99 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -62 dBc/-105 dBc +47 dBm/+90 dBm
(Option 543, 544, 550) 10 to 100MHz -15 dBm -57 dBc/NA +42 dBm/NA 100 M to 1.8 GHz -15 dBm -60 dBc/NA +45 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+84 dBm 3 to 5 GHz -15 dBm -77 dBc/-99 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -62 dBc/-105 dBc +47 dBm/+90 dBm
100 M to 1.8 GHz -15 dBm -60 dBc/NA +45 dBm/NA 1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+84 dBm 3 to 5 GHz -15 dBm -77 dBc/-99 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -62 dBc/-105 dBc +47 dBm/+90 dBm
1.8 to 2.5 GHz -15 dBm -72 dBc/-95 dBc +57 dBm/+80 dBm 2.5 to 3 GHz -15 dBm -72 dBc/-99 dBc +57 dBm/+84 dBm 3 to 5 GHz -15 dBm -77 dBc/-99 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -62 dBc/-105 dBc +47 dBm/+90 dBm
3 to 5 GHz -15 dBm -77 dBc/-99 dBc +62 dBm/+84 dBm 5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -62 dBc/-105 dBc +47 dBm/+90 dBm
5 to 6.5 GHz -15 dBm -77 dBc/-105 dBc +62 dBm/+90 dBm 6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -62 dBc/-105 dBc +47 dBm/+90 dBm
6.5 to 10 GHz -15 dBm -70 dBc/-105 dBc +55 dBm/+90 dBm 10 to 13.25 GHz -15 dBm -62 dBc/-105 dBc +47 dBm/+90 dBm
10 to 13.25 GHz -15 dBm -62 dBc/-105 dBc +47 dBm/+90 dBm
15.25 to 25 UTZ -15 UDII -05 UDC/-105 UDC (1011.) +50 UDII/+90 UDII (1011.)
Preamp on (Option P03, P08, Preamp level Distortion SHI
P13, P26, P43, P44, P50)
10 MHz to 1.8 GHz
1.8 to 13.25 GHz -50 dBm -60 dBm/NA (nominal) +10 dBm/NA (nominal)

N is the LO multiplication factor. Refer to page 4 for the N value verses frequency ranges.
 Nominally –40 dBc under large magnetic (0.38 Gauss rms) or vibrational (0.21 g rms) environmental stimuli.
 Normal path/LNP enabled (requires Option LNP).

Third-order intermodulation distortion (TOI)					
(two –16 dBm tones at input mixe	er with tone separation >	5 times IF prefilte	r bandwidth, 20 to 30 °C)		
		тоі			
	10 to 150 MHz 150 to 600 MHz 0.6 to 1.1 GHz 1.1 to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17 GHz 17 to 26.5 GHz 26.5 to 50 GHz	+13 dBm +18 dBm +20 dBm +21 dBm +15 dBm +15 dBm +11 dBm +10 dBm	+16 dBm typical +21 dBm typical +22 dBm typical +23 dBm typical +22 dBm typical +23 dBm typical +17 dBm typical +17 dBm nominal +13 dBm nominal		
Preamp on (Option P03, P08, P13, P26, P43, P44, and P50)					
Tones at preamp input (two –45 dBm) (two –45 dBm) (two –50 dBm)	10 to 500 MHz 500 MHz to 3.6 GHz 3.6 to 26.5 GHz		+4 dBm nominal +4.5 dBm nominal –15 dBm nominal		

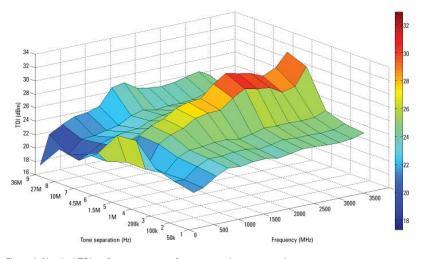
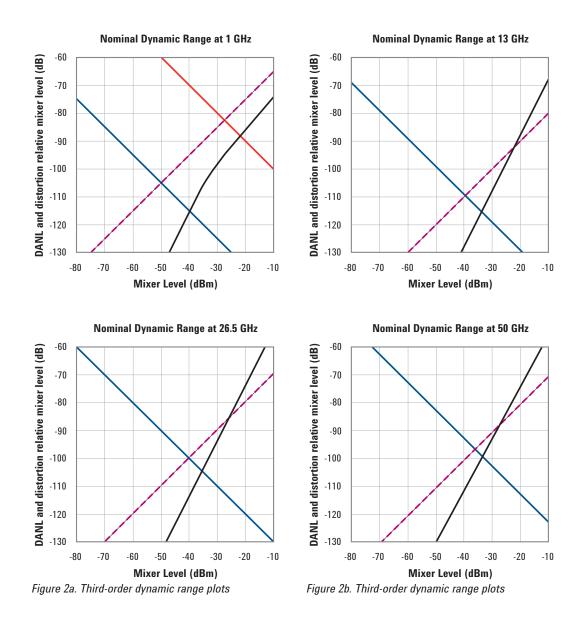



Figure 1. Nominal TOI performance versus frequency and tone separation

DANL (30 kHz RBW)
 DANL (1 Hz RBW)
 OANL (1 Hz RBW)
 OANL (1 Hz RBW)

----- 3rd Order Intermodulation

Phase noise	Offset	Specification	Typical
Noise sidebands	10 Hz		–75 dBc/Hz nominal
(20 to 30 °C, CF = 1 GHz)	100 Hz	–94 dBc∕Hz	–100 dBc/Hz typical
	1 kHz	−121 dBc/Hz	–125 dBc/Hz typical
	10 kHz	−129 dBc/Hz	-132 dBc/Hz typical
	30 kHz	−130 dBc/Hz	-132 dBc/Hz typical
	100 kHz	−129 dBc/Hz	–131 dBc/Hz typical
	1 MHz	−145 dBc/Hz	-146 dBc/Hz typical
	10 MHz	–155 dBc/Hz	–158 dBc/Hz typical

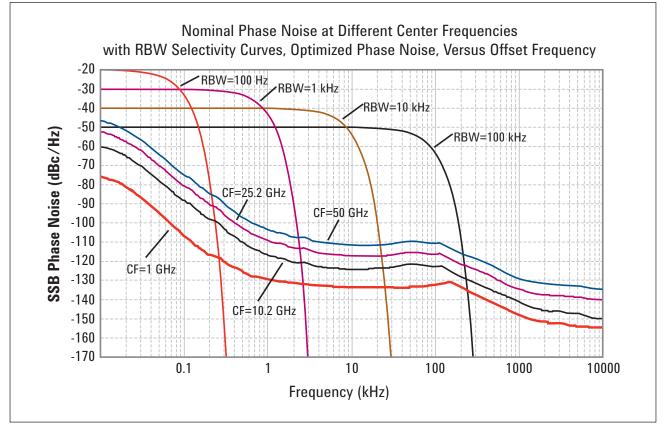


Figure 3. Nominal PXA phase noise at various center frequencies

Option MPB, microwave preselector bypass ¹			
Frequency range			
N9030A-508	3.6 to 8.4 GHz		
N9030A-513	3.6 to 13.6 GHz		
N9030A-526	3.6 to 26.5 GHz		
N9030A-543	3.6 to 43 GHz		
N9030A-544	3.6 to 44 GHz		
N9030A-550	3.6 to 50 GHz		

1. When Option MPB is installed and enabled, some aspects of the analyzer performance change. Please refer to the PXA specification guide for more details.

PowerSuite Measurement Specifications

Channel power				
Amplitude accuracy, W-CDMA or IS95 (20 to 30 °C, attenuation = 10 dB)	± 0.61 dB (± 0.19 dB 95th	percentile)		
Occupied bandwidth				
Frequency accuracy	± [span/1000] nominal			
Adjacent channel power				
Accuracy, 3GPP W-CDMA (ACLR) (at specific mixer levels and ACLR ranges)	Adjacent	Alternate		
MS (UE) BTS	± 0.09 dB ± 0.18 dB	± 0.16 dB ± 0.31 dB		
Dynamic range (typical) Without noise correction With noise correction	-82.5 dB -83.5 dB (-88 dB 1)	–87 dB –89 dB		
Offset channel pairs measured	1 to 6			
Multi-carrier ACP				
Accuracy, 3GPP W-CDMA (ACPR) (4 carriers, 5 MHz offset, BTS, UUT ACPR range at –42 to –48 dB, optimal mixer level at –21 dBm)	± 0.13 dB			
Multiple number of carriers measured	Up to 12			
Power statistics CCDF				
Histogram resolution	0.01 dB			
Harmonic distortion				
Maximum harmonic number	10th			
Result	Fundamental power (dBm), relative harmonics power (dBc), total harmonic distortion in %			
Intermod (TOI)	Measure the third-order products and intercepts from two tones			
Burst power				
Methods	Power above threshold, p	ower within burst width		
Results	Single burst output power, average output power, maximum power, minimum power within burst, burst width			
Spurious emission				
3GPP W-CDMA table-driven spurious signals	s; search across regions			
Dynamic range (1 to 3.6 GHz) Absolute sensitivity (1 to 3.6 GHz)	97.1 dB —86.4 dBm	(101.9 dB typical) (–90.4 dBm typical)		
Spectrum emission mask (SEM)				
cdma2000® (750 kHz offset)				
Relative dynamic range	81.6 dB	(86.4 dB typical)		
Absolute sensitivity	–101.7 dBm	(–105.7 dBm typical)		
Relative accuracy	± 0.08 dB			
3GPP W-CDMA (2.515 MHz offset)				
Relative dynamic range Absolute sensitivity	85.4 dB –101.7 dBm	(89.8 dB typical) (–105.7 dBm typical)		
Relative accuracy	± 0.08 dB			

1. Nominal value base on hand-measured results from early production units. These observations were done near 2 GHz, the common W-CDMA operating region.

General Specifications

Temperature range					
Operating	0 to 55 °C				
Storage	-40 to +70 °C				
Altitude					
	4,500 meters (approx 14,760 feet)				
EMC					
Complies with European EMC Directive • IEC/EN 61326-1 or IEC/EN 61326-2- • CISPR Pub 11 Group 1, class A ¹ • AS/NZS CISPR 11:2002 • ICES/NMB-001 This ISM device complies with Canadia Cet appareil ISM est conforme à la norr	-1 n ICES-001				
Safety					
Complies with European Low Voltage D • IEC/EN 61010-1 2nd Edition • Canada: CSA C22.2 No. 61010-1 • USA: UL 61010-1 2nd Edition	virective 73/23/EEC, amended by 93/68/EEC				
Acoustic noise					
Acoustic noise emission	Geraeuschemission				
LpA < 70 dB	LpA < 70 dB				
Operator position	Am Arbeitsplatz				
Normal position	Normaler Betrieb				
Per ISO 7779	Nach DIN 45635 t.19				
Acoustic noise - more information	bn .				
(Values given are per ISO 7779 standard	d in the "Operator Sitting" position)				
Ambient temperature < 40 °C	Nominally under 55 dBA Sound Pressure. 55 dBA is generally considered suitable for use in quiet office environment				
≥ 40 °C	Nominally under 65 dBA Sound Pressure. 65 dBA is generally considered suitable for use in noisy office environment				
Environmental stress					
against the environmental stresses of s	e tested in accordance with the Agilent Environmental Test Manual and verified to be robust storage, transportation, and end-use; those stresses include, but are not limited to, tempera- e, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar				
Power requirements					
Voltage and frequency (nominal)	100 to 120 V, 50/60/400 Hz				

Voltage and frequency (nominal)	100 to 120 V, 50/60/400 Hz 220 to 240 V, 50/60 Hz
Power consumption	
On	450 W (fully loaded with options)
Stanby	40 W

1. The N9030A is in full compliance with CISPR 11, Class A emissions and is declared as such. In addition, the N9030A has been type tested and shown to meet CISPR 11, Class B emissions limits. Information regarding the Class B emission performance of the N9030A is provided as a convenience to the user and is not intended to be a regulatory declaration.

Display				
Resolution Size	1024 x 768, XGA 213 mm (8.4 in.) diagonal (nominal)			
Data storage				
Internal	Removable solid state drive (80 GB)			
External	Supports USB 2.0 compatible memory devices			
Weight (without options)				
Net Shipping	22 kg (48 lbs) nominal 34 kg (75 lbs) nominal			
Dimensions				
Height Width Length	177 mm (7.0 in) 426 mm (16.8 in) 556 mm (21.9 in)			
Warranty				
The PXA signal analyzer is supplied with a one-year standard warranty				
Calibration cycle				
The recommended calibration cycle is one year. Calibration services are available through Agilent service centers				

Inputs and Outputs

Front panel	
RF input Connector	
Standard (Option 503, 508, 513, 526)	Type-N female, 50 Ω nominal
Option C35 (with Option 526 only)	APC 3.5 mm male, 50 Ω nominal
Standard (Option 543, 544, 550)	2.4 mm male, 50 Ω nominal
Probe power	
Voltage/current	+15 Vdc, ± 7% at 150 mA max nominal
	–12.6 Vdc, ± 10% at 150 mA max nominal
USB 2.0 ports	
Master (2 ports)	
Standard	Compatible with USB 2.0
Connector	USB Type-A female
Output current	0.5 A nominal
Headphone jack	Miniature stereo audio jack (3.5 mm, also known as "¼ inch")
External mixing, Option EXM	
Connection port	
Connector	SMA, female
Impedance	50 Ω nominal
Functions	Triplexed for mixer bias, IF input and LO output
Mixer bias range	± 10 mA in 10 uA step
IF input center frequency	
Narrowband IF path	322.5 MHz
40 MHz BW IF path	250.0 MHz
LO output frequency range	3.75 to 14.0 GHz
Rear panel	
10 MHz out	
Connector	BNC female, 50 Ω nominal
Output amplitude	≥ 0 dBm nominal
Frequency	10 MHz + (10 MHz x frequency reference accuracy)
Ext Ref In	
Connector	BNC female, 50 Ω nominal
Input amplitude range	–5 to 10 dBm nominal
Input frequency	1 to 50 MHz nominal (selectable to 1 Hz resolution)
Frequency lock range	\pm 5 x 10 ⁻⁶ of specified external reference input frequency
Trigger 1 and 2 inputs	
Connector	BNC female
Impedance Triange Issuel and a	> 10 k Ω nominal
Trigger level range	-5 to +5 V (TTL) factory preset
Trigger 1 and 2 outputs	DNC female
Connector	BNC female
Impedance Level	50 Ω nominal 0 to 5 V (CMOS) nominal
Sync (reserved for future use) Connector	BNC female
Monitor output	
Connector	VGA compatible, 15-pin mini D-SUB
Format	XGA (60 Hz vertical sync rates, non-interlaced) Analog RGB
Resolution	1024 x 768
Noise source drive +28 V (pulsed)	
Connector	BNC female
Output voltage	On 28.0 \pm 0.1 V (60 mA maximum)
Calpar Voltage	Off < 1 V
SNS series noise source	For use with the Agilent Technologies SNS Series noise sources
Digital bus (reserved for future use)	
Connector	MDR-80

Rear panel	
Analog out	
Connector	BNC female
USB 2.0 ports Master (4 ports)	
Standard	Compatible with USB 2.0
Connector	USB Type-A female
Output current	0.5 A nominal
Slave (1 port)	
Standard	Compatible with USB 2.0
Connector Output current	USB Type-B female 0.5 A nominal
GPIB interface	
Connector	IEEE-488 bus connector
GPIB codes	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0
GPIB mode	Controller or device
LAN TCP/IP interface	
Standard	1000Base-T
Connector	RJ45 Ethertwist
IF output	
Connector	SMA female, shared by Opts CR3, CRP, and ALV
Impedance	50 Ω nominal
2nd IF output, Option CR3	
Center frequency	
SA mode or I/Q analyzer with IF BW \leq 25 MHz with Option B40	322.5 MHz 250 MHz
with Option B1X	300 MHz
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth	
Low band	Up to 160 MHz (nominal)
High band, with preselector	Depends on center frequency
High band, with preselector bypassed ¹	Up to 700 MHz (nominal); expandable to 900 MHz with corrections
Arbitrary IF output, Option CRP	
Center frequency	
Range	10 to 75 MHz (user selectable)
Resolution	0.5 MHz
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth	
Output at 70 MHz	
Low band or high band with preselector bypassed	100 MHz (nominal)
Preselected band	Depends on RF center frequency
Lower output frequencies	Subject to folding
Residual output signals	≤ –88 dBm (nominal)

1. The maximum bandwidth is not centered around the IF output center frequency.

Other Optional Output

Option ALV Log video out

General port specifications				
Connector	SMA female	Shared with other options		
Impedance		50 Ω nominal		
Fast log video output				
Output voltage	Open-circuit voltages shown			
Maximum	1.6 V at –10 dBm nominal			
Slope	$25 \pm 1 \text{ mV/dB}$ nominal			
Log fidelity				
Range	57 dB nominal			
Accuracy within range	± 1.0 dB nominal			
Rise time	15 ns nominal			
Fall time				
Bands 1-4 with Option MPB	40 ns nominal best case,			
Other cases	Depends on bandwidth			

Option YAV Y-Axis output

General port specifications						
Connector	BNC female	Shared with other options				
Impedance	50 Ω nominal					
Screen video						
Operating conditions						
Display scale types	Log or Lin	"Lin" is linear in voltage				
Log scales	All (0.1 to 20 dB/div)					
Modes	Spectrum analyzer only					
Gating	Gating must be off					
Output scaling	0 to 1.0 V open circuit, representi	ng bottom to top of screen				
Offset	± 1% of full scale nominal					
Gain accuracy	± 1% of output voltage nominal					
Delay between RF input to analog output	71.7 μs +2.56/RBW + 0.159/VBW nominal					
Log video (Log envelope) output						
Amplitude range (terminated with 50 $\Omega)$						
Maximum	1.0 V nominal for –10 dBm at the	mixer				
Scale factor	1 V per 192.66 dB					
Bandwidth	Set by RBW					
Operating conditions	Select Sweep Type = Swept					
Linear video (AM Demod) output						
Amplitude range (terminated with 50 $\Omega)$						
Maximum	1.0 V nominal for signal envelope at the reference level					
Minimum	0 V					
Scale factor	If carrier level is set to half the reference level in volts, the scale factor is 200% of carrier level per volt. Regardless of the carrier level, the scale factor is 100% of reference level per volt.					
Bandwidth	Set by RBW					
Operating conditions	Select Sweep Type = Swept					

I/Q Analyzer

10 Hz to 10 MHz 10 Hz to 25 MHz 10 Hz to 40 MHz 10 Hz to 160 MHz urement)				
10 Hz to 25 MHz 10 Hz to 40 MHz 10 Hz to 160 MHz				
10 Hz to 40 MHz 10 Hz to 160 MHz				
10 Hz to 160 MHz				
urement)				
100 mHz to 3 MHz				
50 Hz to 3 MHz				
1 Hz to 10 kHz				
100 mHz to 100 Hz				
			an, Blackman-Harris	s, Kaiser Bessel
ement)				
10 Hz to 10 MHz				
10 Hz to 25 MHz				
10 Hz to 40 MHz				
10 Hz to 160 MHz				
d 10 MHz IF path)				
nd FFT response relat	tive to the cente	r frequency)		
Analysis	Max error	Midwidth	Slope (dB/	RMS (nominal)
•		error (95th	• •	
()		percentile)	percentile)	
≤ 10	± 0.20 dB	± 0.12 dB	± 0.10 dB	0.02 dB
				0.23 dB
	± 0.25 dB	± 0.12 dB	± 0.10 dB	0.02 dB
•				0.12 dB
•	± 0.30 dB	± 0.12 dB	± 0.10 dB	0.024 dB
	(K-B 70 dB, K-B 90 dE ement) 10 Hz to 10 MHz 10 Hz to 25 MHz 10 Hz to 40 MHz 10 Hz to 160 MHz d 10 MHz IF path)	50 Hz to 3 MHz 1 Hz to 10 kHz 100 mHz to 100 Hz Flat Top, Uniform, Hanning, Hamming (K-B 70 dB, K-B 90 dB and K-B 110 dE ement) 10 Hz to 10 MHz 10 Hz to 25 MHz 10 Hz to 25 MHz 10 Hz to 40 MHz 10 Hz to 160 MHz d 10 MHz IF path) nd FFT response relative to the cente Analysis Max error BW (MHz) $\leq 10 \pm 0.20$ dB ≤ 10 preselected ≤ 10 preselector off 1 ± 0.25 dB ≤ 10 preselected	50 Hz to 3 MHz 1 Hz to 10 kHz 100 mHz to 100 Hz Flat Top, Uniform, Hanning, Hamming, Gaussian, Blackma (K-B 70 dB, K-B 90 dB and K-B 110 dB) ement) 10 Hz to 10 MHz 10 Hz to 25 MHz 10 Hz to 25 MHz 10 Hz to 40 MHz 10 Hz to 160 MHz d 10 MHz IF path) nd FFT response relative to the center frequency) Analysis Max error Midwidth BW (MHz) error (95th percentile) $\leq 10 \pm 0.20 \text{ dB} \pm 0.12 \text{ dB}$ $\leq 10 \text{ preselected}$ $\leq 10 \text{ preselected}$	Solution of the second state of the s

IF phase linearity					
Center freq (GHz)	Span (MHz)	Preselector	Peak-to-peak (nominal)	RMS (nominal)	
≥ 0.02, < 3.6	≤ 10	NA	0.06°	0.012°	
≥ 3.6 to ≤ 26.5	≤ 10	Off ¹	0.10°	0.022°	
≥ 3.6	≤ 10	On	0.11°	0.024°	
Dynamic range (standard 10	MHz IF path)				
Clipping-to-noise dynamic range				Excluding residuals and spurious responses	
Clipping level at mixer				Center frequency \geq 20 MHz	
IF gain = Low	–10 dBm			–8 dBm nominal	
IF gain = High	–20 dBm			–17.5 dBm nominal	
Noise density at mixer at center	(DANL + IF Gain effect) + 2.25 dB				
frequency					
Data acquisition (standard 1	0 MHz IF path)				
Time record length					
Analysis tool					
IQ analyzer	4,000,000 IQ sample	Pairs			
	Data packing		89600 VSA software or N9064A VXA		
Advanced tools	32-bit	64-bit	- 89600 VSA soπv	vare or N9064A VXA	
Length (IQ sample pairs)	536 MSa (2 ²⁹ Sa)	268 MSa (2 ²⁸ Sa)	2 GB total memo	pry	
Length (time units)	Samples/(span x 1.2	28)			
Sample rate					
At ADC	100 Msa/s				
IQ pairs	Span dependent				
ADC resolution	16 bits				

Option B25 25 MHz analysis bandwidth (Option B25 is automatically included in Option 40 or B1X)

IF frequency response (B25	• •				
IF frequency response (demodulat	ion and FFT response rela	tive to the center	frequency)		
Freq (GHz)	Analysis BW (MHz)	Max error	Midwidth error (95th percentile)	Slope (dB/ MHz) (95th percentile)	RMS (nominal
< 3.6	10 to ≤ 25	± 0.30 dB	± 0.12 dB	± 0.05 dB	0.02 dB
3.6 to 26.5	10 to ≤ 25 preselected				0.50 dB
3.6 to 26.5	10 to ≤ 25 preselector off ¹	± 0.40 dB			0.03 dB
26.5 to 50	10 to ≤ 25 preselected				0.31 dB
26.5 to 50	10 to ≤ 25 preselector off ¹	± 0.40 dB			0.02 dB
IF phase linearity					
Center freq (GHz)	Span (MHz)	Preselector	Peak-to-peak (nominal)		RMS (nominal)
≥ 0.02, < 3.6 ≥ 3.6	≤ 25 ≤ 25	NA Off ¹	0.48° 0.85°		0.12° 0.20°
Dynamic range (B25 IF path					
Full scale (ADC clipping)					
Default settings, signal at CF (IF gain = Low) Band 0 Bands 1 through 4	–8 dBm mixer level r –7 dBm mixer level r				
High gain setting, signal at CF (IF gain = High) Band 0 Bands 1 through 4	–18 dBm mixer level –17 dBm mixer level				
Effect of signal frequency \neq CF	Up to ± 3 dB nomina	I			
Data acquisition (B25 IF pat	h)				
Time record length					
Analysis tool					
IQ analyzer	4,000,000 IQ sample Pa	iirs			
, ,	Data pac	king			
Advanced tools	32-bit	64-bit	89600 VSA software o		XA
Length (IQ sample pairs)	536 MSa (2 ²⁹ Sa)	268 MSa (2 ²⁸ Sa)	2 GB total men	nory	
Length (time units)	Samples/(span x 1.28)	· /	1	*	
Sample rate					
At ADC	100 Msa/s				
IQ pairs	Span dependent				
ADC resolution	16 bits				

Option B40 40 MHz analysis bandwidth (Option B40 is automatically included in Option B1X)

IF frequency response (B40 I	F path)				
IF frequency response				Relative to center	er frequency
Center freq. (GHz)	Span (MHz)	Preselector		Typical	RMS (nominal)
$\geq 0.03, < 3.6$ $\geq 3.6, \leq 8.4$ $> 8.4, \leq 26.5$ $\geq 26.5, < 34.4$	≤ 40 ≤ 40 ≤ 40 ≤ 40	NA Off ¹ Off ¹ Off ¹	± 0.4 dB ± 0.4 dB ± 0.7 dB ± 0.8 dB	± 0.25 dB ± 0.16 dB ± 0.20 dB ± 0.25 dB	0.05 dB 0.05 dB 0.05 dB 0.1 dB
\geq 34.4, < 50	≤ 40	Off ¹	± 1.0 dB	± 0.35 dB	0.1 dB
IF phase linearity (deviation f Center freq (GHz)	Span (MHz)	Preselector		Peak-to-peak (nominal)	RMS (nominal)
≥ 0.03, < 3.6 ≥ 3.6	≤ 40 ≤ 40	NA Off ¹		0.16° 1.5°	0.041° 0.35°
EVM (EVM measurement floor for a	an 802.11g OFDM sign	al, using 89600B s	oftware equalization	n, channel estimation	and data EQ)
2.4 GHz 5.8 GHz with Option MPB				–52.0 dB (0.25% –49.1 dB (0.35%	
Dynamic range (B40 IF path)					
SFDR (Spurious-free dynamic range) Signal frequency within ±12 MHz of center Signal frequency anywhere within analysis BW	–80 dBc nominal				
Spurious response within ± 18 MHz of center	–79 dBc nominal				
Response anywhere within analysis BW	–77 dBc nominal				
Full scale (ADC clipping)					
	–8 dBm mixer leve –7 dBm mixer leve				
Full scale (ADC clipping) Default settings, signal at CF (IF gain = Low: IF gain offset = 0 dB) Band 0	–7 dBm mixer leve –18 dBm mixer lev	l nominal rel nominal, subjec	et to gain limitations et to gain limitations		

Option B40 40 MHz analysis bandwidth

Time record length				
Analysis tool				
IQ analyzer	4,000,000 IQ sample	4,000,000 IQ sample pairs		
	Data p	backing	- 89600 VSA software or N9064A VXA	
Advanced tools	32-bit	64-bit		
Length (IQ sample pairs)	536 MSa (2 ²⁹ Sa)	268 MSa (2 ²⁸ Sa)	2 GB total memory	
Length (time units)	Samples/(span x 1.2	Samples/(span x 1.28)		
Sample rate				
At ADC	200 Msa/s	200 Msa/s		
IQ pairs	Span dependent	Span dependent		
ADC resolution	12 bits			

I/O Analyzer (continued)

Option B1X 160 MHz analysis bandwidth

IF frequency response (B1X IF path	ı)				
IF frequency response				Relative to cente	r frequency
Center freq. (GHz)	Span (MHz)	Preselector		Typical	RMS (nominal)
≥ 0.1, < 3.6	≤ 80 ≤ 140 ≤ 160	NA NA NA	± 0.6 dB ± 0.6 dB	± 0.17 dB ± 0.25 dB ± 0.2 dB (nom)	0.05 dB 0.05 dB 0.07 dB
≥ 3.6, ≤ 8.4	≤ 80 ≤ 140 ≤ 160	Off ¹ Off ¹ Off ¹	± 0.73 dB ± 0.8 dB	± 0.2 dB ± 0.35 dB ± 0.3 dB (nom)	0.05 dB 0.05 dB 0.07 dB
> 8.4, ≤ 26.5	≤ 80 ≤ 140 ≤ 160	Off ¹ Off ¹ Off ¹	± 1.10 dB ± 1.30 dB	± 0.50 dB ± 0.75 dB ± 0.5 dB (nom)	0.1 dB 0.1 dB 0.12 dB
≥ 26.5, ≤ 50	≤ 80 ≤ 140	Off ¹ Off ¹	± 1.20 dB ± 1.40 dB	± 0.45 dB ± 0.65 dB	0.12 dB 0.12 dB
IF phase linearity (deviation from n	nean phase line	earity)			
Center freq (GHz)	Span (MHz)	Preselector		Peak-to-peak (nominal)	RMS (nominal)
≥ 0.03, < 3.6 ≥ 3.6,	≤ 140 ≤ 160 ≤ 140 ≤ 160	NA NA Off ¹ Off ¹		0.9° 1.7° 1.6° 2.8°	0.20° 0.42° 0.39° 0.64°
EVM (EVM measurement floor)	Customized se	ttings required, p	preselector bypassed	I (Option MPB) abov	ve Band 0
Case 1: 62.5 Msymbol/s, 160AM signal, R	RC filter alpha of ().2, non-equalized	d, with approximatel	y 75 MHz occupied	bandwidth
Band 0, 1.8 GHz Band 1, 5.95 GHz	0.8% nominal 1.1% nominal			· · ·	
Case 2: 104.167 Msymbol/s, 160AM signa	l, RRC filter alpha	of 0.35, non-equ	alized, with approxin	nately 140 MHz occ	upied bandwidth
Band 1, 5.95 GHz Band 2, 15.3 GHz Band 4, 26 GHz	3.0% nominal, 2.5% nominal, 3.5% nominal,	(unequalized)	0.5% nominal, (0.6% nominal, (1.6% nominal, (equalized)	
Effect of signal frequency \neq CF	Up to ± 3 dB n	ominal			

Option B1X 160 MHz analysis bandwidth

Dynamic range (B1X IF path)			
SFDR (Spurious-free dynamic range)			
Signal frequency within \pm 12 MHz of center	–75 dBc nominal		
Signal frequency anywhere within analysis BW			
Spurious response within \pm 63 MHz of center	–74 dBc nominal		
Response anywhere within analysis BW	–72 dBc nominal		
Full scale (ADC clipping)			
Default settings, signal at CF (IF gain = Low: IF gain offset = 0 dB) Band 0 Band 1 through 4	–8 dBm mixer level –7 dBm mixer level		
High gain setting, signal at CF (IF gain = High) Band 0 Band 1 through 4	–18 dBm mixer level nominal, subject to gain limitations –17 dBm mixer level nominal, subject to gain limitations		
Effect of signal frequency \neq CF	Up to ± 3 dB nominal		
Data acquisition (B1X IF path)			
Time record length			
Analysis tool			
IQ analyzer	4,000,000 IQ sample (pairs	
Advanced tools	Data p	backing	89600 VSA software or N9064A VXA
Advanced tools	32-bit	64-bit	
Length (IQ sample pairs)	536 MSa (2 ²⁹ Sa)	268 MSa (2 ²⁸ Sa)	2 GB total memory
Length (time units)	Samples/(span x 1.28	3)	
Sample rate			
At ADC	400 Msa/s		
IQ pairs	Span dependent		
ADC resolution	14 bits		

Related Literature

Agilent PXA signal analyzers

Brochure	5990-3951EN
Configuration guide	5990-3953EN

For more information or literature resources please visit the web: www.agilent.com/find/pxa

Additional information, including literature, can be found at the Agilent website:

www.agilent.com/find/PXA www.agilent.com/find/xseries apps

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners

www.agilent.com/find/channelpartners Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

cdma2000® is a registered certification mark of the Telecommunications Industry Association. Used under license.

Agilent Advantage Services is committed to your success throughout your equipment's lifetime. We share measurement and service expertise to help you create the products that change our world. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair, reduce your cost of ownership, and move us ahead of your development curve.

www.agilent.com/find/advantageservices

www.agilent.com/quality

www.agilent.com www.agilent.com/find/N9030A

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	(11) 4197 3600
Mexico	01800 5064 800
United States	(800) 829 4444

Asia Pacific

1 800 629 485
800 810 0189
800 938 693
1 800 112 929
0120 (421) 345
080 769 0800
1 800 888 848
1 800 375 8100
0800 047 866
(65) 375 8100

Europe & Middle East

Europo & minutio	Luot
Belgium	32 (0) 2 404 93 40
Denmark	45 45 80 12 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	49 (0) 7031 464 6333
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
United Kingdom	44 (0) 118 927 6201

For other unlisted countries: www.agilent.com/find/contactus Revised: January 6, 2012

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2012 Published in USA, June 27, 2012 5990-3952EN

Agilent Technologies