

Beschreibung, Datenübertragung:

Profibus DP, EN 50170

Mehrzonentemperaturregler

Typ: R2000, R2100, R2200

Inhalt:

1.Vorwort	2
2.Allgemein (GDS-Datei; FAQ`s)	2
2.1 Leitungsführung, Schirmung u. Maßnahmen gegen Störspannungen	3
2.2Schirmung von Leitungen	
2.3Inbetriebnahme	
2.3.1PROFIBUS - Anschluss	
2.3.2PROFIBUS - Einstellungen	5
2.3.3PROFIBUS - Diagnoseanzeigen	
3.Übertragung der Parameter	
3.1Kommunikation, generell:	
3.2Prozessabbild	
3.2.1Vom Master an das Regelgerät:	7
3.2.2Vom Regelgerät zum Master:	8
3.2.3Übertragungsbeispiel	
3.3Konfigurationskanal	11
3.3.1Datenübertragung, generell	11
3.3.2Begriffe	
3.3.3Zahlenbereiche	11
3.3.4Konfigurieren der Parameter über den Konfigurationskanal	11
3.3.5Parameterliste	13
3.3.6Übertragungsbeispiele	
3.3.6.1Übertragungsbeispiel zum Konfigurationskanal, Befehlscode 10 H	15
3.3.6.2Übertragungsbeispiel zum Konfigurationskanal, Befehlscode 20 H	16
3.3.6.3Übertragungsbeispiel zum Konfigurationskanal, Befehlscode 21 H	17
3.4Prozessabbild und Konfigurationskanal	18
4.Literaturhinweis:	
5.FAQ`s – Frequently Asked Questions:	20

Version: 2.04

ELOTECH Industrieelektronik GmbH

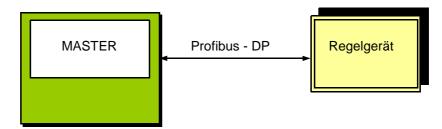
Verbindungsstrasse 27

D – 40723 HILDEN

FON +49 2103 / 255 97 0 FAX +49 2103 / 255 97 29 www.elotech.de Email: info@elotech.de

1. Vorwort

Diese Beschreibung wurde mit größtmöglicher Sorgfalt erstellt.


Die Angaben hierin gelten jedoch nicht als Zusicherung von Produkteigenschaften.

Der Hersteller übernimmt keine Haftung für Fehler.

Der Hersteller behält sich Änderungen, die dem technischen Fortschritt dienen, jederzeit vor. Alle Rechte, auch der Übersetzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Kopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Genehmigung der Der Hersteller reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

2. Allgemein (GDS-Datei; FAQ's)

ELOTECH - Mehrzonentemperaturregler (auch als Regelgerät bezeichnet) sind zum Anschluss an Profibus-DP (EN 50170) mit der entsprechenden seriellen Schnittstelle ausgerüstet.

Es ist möglich, die Mehrzonentemperaturregler über Profibus-DP nach EN 50170 durch einen Master (z. B. einen Industrie- oder Personal-Computer oder eine SPS) überwachen und steuern zu lassen.

Der Ablauf einer Kommunikation wird immer vom Master gesteuert.

Das nachgeschaltete Regelgerät arbeitet als "Slave".

Jedes Regelgerät hat eine eigene Geräteadresse.

Stellt das Regelgerät Übertragungsfehler oder Plausibilitätsfehler (z. B. Bereichsgrenzenüberschreitung) fest, so akzeptiert es diese Daten nicht.

Die zuvor bereits vorhandenen, gültigen Daten bleiben weiterhin bestehen.

Beachten Sie unbedingt die zu dem Regelgerät gehörende Bedienungsanleitung. Bitte beachten Sie auch unsere Literatur- und Hilfshinweise (FAQ`s) im Internet.

GSD - Datei:

Liefern wir mit jedem Regelgerät mit Profibus-DP-Schnittstelle auf CD mit. Die Datei steht auch im Internet unter www.elotech.de -> "Downloads" zum Download bereit.

FAQ's:

Eine Liste mit FAQ's finden Sie ebenfalls unter www.elotech.de -> " Downloads".

2.1 Leitungsführung, Schirmung u. Maßnahmen gegen Störspannungen

Gegenstand dieses Kapitels ist die Leitungsführung bei Bus-, Signal- und Versorgungsleitungen. Hierdurch soll ein EMV-gerechter Aufbau Ihrer Anlage erreicht werden.

Allgemeines zur Leitungsführung

Innerhalb und außerhalb von Schränken:

Für eine EMV-gerechte Führung der Leitungen ist es zweckmäßig, die Leitungen in folgende Leitungsgruppen einzuteilen und diese Gruppen getrennt zu verlegen.

Gruppe A:

- geschirmte Bus- und Datenleitungen (z.B. für PROFIBUS-DP, RS232C, Drucker, usw)
- geschirmte Analogleitungen
- ungeschirmte Leitungen für Gleichspannungen ≥60 V
 ungeschirmte Leitungen für Wechselspannung ≥25 V
- Koaxialleitungen für Monitore

Gruppe B:

- ungeschirmte Leitungen für Gleichspannungen ≥60 V und ≥400 V
- ungeschirmte Leitungen für Wechselspannung >24 V und >400 V

Gruppe C:

• ungeschirmte Leitungen für Gleichspannungen ≥400 V

Anhand der folgenden Tabelle können Sie durch die Kombination der einzelnen Gruppen die Bedingungen für das Verlegen der Leitungsgruppen ablesen.

	Gruppe A	Gruppe B	Gruppe C
Gruppe A	1	2	3
Gruppe B	2	1	3
Gruppe C	3	3	1

Tabelle 2 : Leitungsverlegevorschriften in Abhängigkeit der Kombination von Leitungsgruppen

- 1) Leitungen können in gemeinsamen Bündeln oder Kabelkanälen verlegt werden.
- 2) Leitungen sind in getrennten Bündeln oder Kabelkanälen (ohne Mindestabstand) zu verlegen.
- 3) Leitungen sind innerhalb von Schränken in getrennten Bündeln oder Kabelkanälen und außer- halb von Schränken aber innerhalb von Gebäuden auf getrennten Kabelbahnen mit mindestens 10 cm Abstand zu verlegen.

2.2 Schirmung von Leitungen

Das Schirmen ist eine Maßnahme zur Schwächung (Dämpfung) von magnetischen, elektrischen oder elektromagnetischen Störfeldern.

Störströme auf Kabelschirmen werden über die mit dem Gehäuse leitend verbundene Schirmschiene zur Erde abgeleitet. Damit diese Störströme nicht selbst zu einer Störquelle werden, ist eine impedanzarme Verbindung zum Schutzleiter besonders wichtig.

Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht. Die Deckungsdichte des Schirmes sollte mehr als 80 % betragen. Vermeiden Sie Leitungen mit Folienschirm, da die Folie durch Zug- und Druckbelastung bei der Befestigung sehr leicht beschädigt werden kann; die Folge ist eine Verminderung der Schirmwirkung.

In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich. Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden.. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigeren Frequenzen.

Eine einseitige Schirmanbindung kann günstiger sein, wenn,

- die Verlegung einer Potentialausgleichsleitung nicht durchgeführt werden kann
- Analogsignaie (einige mV bzw. mA) übertragen werden
- Folienschirme (statische Schirme) verwendet werden.

Benutzen Sie bei Datenleitungen für serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergehäuse. Schirm <u>nicht</u> auf einen Pin der Steckerleiste auflegen!

Bei Potentialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen. Verlegen Sie in diesem Fall eine zusätzliche Potential-ausgleichsleitung.

Beachten Sie bei der Schirmbehandlung bitte folgende Punkte:

- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall.
 Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zur Baugruppe weiter; legen Sie ihn dort jedoch nicht erneut auf!

Bedienungsanleitung R20-R21-R22-PB-D Version: 2.04 © Elotech GmbH Seite 4 von 20

2.3 Inbetriebnahme

Anmerkung:

Die Inbetriebnahme des Regelgerätes mit Profibus-DP-Anschluss darf nur von geschultem Personal unter Beachtung der Sicherheitsvorschriften durchgeführt werden. Es ist unabdingbar, dass Sie Erfahrung im Umgang mit Profibus-DP besitzen.

Zur Inbetriebnahme benötigen Sie die folgenden Komponenten:

- Verbindungsstecker für den PROFIBUS-Anschluss an das Regelgerät
- PROFIBUS-Kabel (Dieses Kabel ist in der Regel bereits vor Ort installiert)
- GSD-Datei
- Beliebiges Projektierungswerkzeug für PROFIBUS-DP

Um ein ordnungsgemäßes Arbeiten des Regelgerätes zu gewährleisten, müssen Sie folgende Schritte bei der Inbetriebnahme unbedingt durchführen:

2.3.1 PROFIBUS - Anschluss

Verbinden Sie das Regelgerät mit dem PROFIBUS. Beachten Sie die Steckerbelegungen. Anschlüsse: siehe jeweilige Bedienungsanleitung des Regelgerätes.

Die Anschlüsse VP und GND dienen zur Anschaltung der optionellen Abschlusswiderstände. Eine weitere Belastung ist nicht zulässig.

Die Abschlusswiderstände müssen beim ersten und beim letzten Gerät an einem Profibus-Strang aktiviert werden.

Toleranz der Abschlusswiderstände: +/-2%

CNT

2.3.2 PROFIBUS - Einstellungen

Stellen Sie an dem Regelgerät die folgenden Parameter oder Schalter entsprechend ein: Regelgeräteeinstellungen:

Die Regelgeräteadresse wird

- bei Typ R2000 und R2100 in der Konfigurationsebene mittels des Parameters "Adr" eingestellt,
- bei Typ R2200 mittels der frontseitigen DIP-Schalter

Die **Baudrate** (93,75 kBaud - 12 MBaud) wird automatisch erkannt.

- Typ R2000 und R2100: Anzeige (in der Konfigurationsebene: Parameter "bAUd"): "ndEt" = keine Baudrate erkannt.

2.3.3 PROFIBUS - Diagnoseanzeigen

<u>Serien R2000 und R2100:</u> Die Diagnoseanzeige erfolgt mittels eines Dezimalpunktes, der im linken Display der Zonenanzeige eingeblendet wird.

Serie R2200: Bei der Serie R2200 erfolgt die Diagnoseanzeige mittels der grünen BUS-LED.

Bedeutung:

Dezimalpunkt bzw. LED: Das Gerät befindet sich im data-exchange-modus.

- leuchtet permanent Die Kommunikation ist in Ordnung.

Der Datenaustausch mit dem Master findet statt.

Dezimalpunkt bzw.

Der Busanschluss ist erkannt. Das Regelgerät wartet auf die LED – blinkt:

Parametrierung oder Konfigurierung durch den Master.

Dezimalpunkt bzw. Das Regelgerät ist nicht ordnungsgemäß an den Bus

LED - blinkt nicht oder leuchtet nicht: angeschlossen. Evtl. ist ein Verdrahtungsfehler vorhanden oder

der Master ist nicht aktiv.

3. Übertragung der Parameter

3.1 Kommunikation, generell:

Der Master sendet Daten an das Regelgerät. Diese werden vom Regelgerät (R2000, R2100) nur übernommen, wenn dieses auf "remote"-Betrieb steht. Siehe entsprechende Bedienungsanleitung. In der umgekehrten Richtung sendet das Regelgerät eine Antwort an den Profibusmaster. Dieser Ablauf findet zyklisch statt und wird vom Master gesteuert. Die Konfiguration des Masters erfolgt mittels der GSD-Datei.

Für das Regelgerät stehen die folgenden Module zur Verfügung. Das Modul muss entsprechend der Zonenzahl des Reglers ausgewählt werden.

1. Prozessabbild: Modul: "x - channel process data"

2. Konfigurationskanal: Modul: "parameter channel"

3. Prozessabbild und Konfigurationskanal: Modul: "x - channel process + parameter"

x = 2, 4, 6, 8, 10, 12 oder 16 (Zonen)

Bei einem 8-Zonenregler muss immer ein 8-channel-Modul gewählt werden,

auch wenn nur eine oder nur sechs Zonen benutzt werden.

Version: 2.04

Bedienungsanleitung R20-R21-R22-PB-D

© Elotech GmbH

Seite 6 von 20

3.2 Prozessabbild

Im Prozessabbild werden bestimmte Parameter nach einem fest vorgegebenen Schema übertragen.

3.2.1 Vom Master an das Regelgerät: Übertragung von Sollwert 1 und Statuswort 1 für alle Regelzonen (Channel)

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	
Zone 1: Sollwert 1 High Byte	Zone 1: Sollwert 1 Low Byte	Zone 1: Steuerbyte	Zone 2: Sollwert 1 High Byte	Zone 2: Sollwert 1 Low Byte	Zone 2: Steuerbyte	
usw.	•	•	•		•	
	Byte 46	Byte 47	Byte 48			

Zone 16:
Sollwert 1
High Byte

Zone 16:
Sollwert 1
Low Byte

Zone 16:
Steuerbyte

Bei Regelgeräten mit weniger als 16 Regelzonen werden entsprechend weniger Datenbyte übertragen.

ACHTUNG: Jede Änderung des Sollwertes wird im internen nichtflüchtigen

Speicher gespeichert. Die Anzahl der Schreibzyklen ist auf ca.

1.000.000 begrenzt.

Sollwert / Istwert: Im Prozessabbild besteht der Parameterwert aus zwei Datenbyte.

Es wird erst das High- und dann das Low-Byte übetragen

(Siemens / Motorola-Format).

Sollwert und Istwert werden immer mit einer Nachkommastelle übertragen,

auch wenn der Messbereich keine Kommastelle hat.

Beispiele:		С	Dez.	Hex.	High-Byte	Low-Byte
Messbereich mit Kommastelle:	Istwert	23,0	230	00E6	00	E6
Messbereich mit Kommastelle:	Sollwert	170,0	1700	06A4	06	A4
Messbereich ohne Kommastelle:	Istwert	23	230	00E6	00	E6
Messbereich ohne Kommastelle:	Sollwert	170	1700	06A4	06	A4

Steuerbyte:	Bit 0:	Regelzone on/off :	0=on,	1=off
Gloder Byte.	Bit 1:	Selbstoptimierung: Die Änderung von "0" auf	0=off, ,1" bewirkt eine e einer Optimierung	1=on
	Bit 2:	0		
	Bit 3:	Aktueller Sollwert:	0= Sollwert SP1	1= Sollwert SP2
	Bit 4:	1= löschen der Meldung ,	,Optimierungsfehl	er" im Reglerstatus
	Bit 5:	0		
	Bit 6:	0		
	Bit 7:	1= löschen der Meldung ,	"Systemfehler" im	Reglerstatus

3.2.2 Vom Regelgerät zum Master: Übertragung der Prozessdaten

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Status Sollwert- vorgabe High Byte	Status Sollwert- vorgabe Low Byte	Zone 1 Istwert High Byte	Zone 1 Istwert Low Byte	Zone 1 Reglerstatus	Zone 1 Alarmstatus

Byte 7	Byte 8	Byte 9	Byte 10	
Zone 2 Istwert High Byte	Zone 2 Istwert Low Byte	Zone 2 Reglerstatus	Zone 2 Alarmstatus	

Byte 63	Byte 64	Byte 65	Byte 66
 Zone 16 Istwert High Byte	Zone 16 Istwert Low Byte	Zone 16 Reglerstatus	Zone 16 Alarmstatus

Bei Regelgeräten mit weniger als 16 Regelzonen werden entsprechend weniger Datenbyte übertragen.

Definition "Status Sollwertvorgabe":

zeigt an, ob beim Schreiben des Sollwertes ein Bereichsfehler aufgetreten ist.

Bit 0	= 0 = 1	Zone 1:	Sollwert in Ordnung Sollwertvorgabe fehlerhaft
Bit 1	= 1 = 0	Zone 2:	Sollwert in Ordnung
	= 1	_	Sollwertvorgabe fehlerhaft
Bit 2	= 0	Zone 3:	Sollwert in Ordnung
	= 1		Sollwertvorgabe fehlerhaft
Bit 15	= 0 = 1	Zone 16:	Sollwert in Ordnung Sollwertvorgabe fehlerhaft

Definition "Alarmstatus": Bit 0 = Alarm 1 hat ausgelöst

Bit 1 = Alarm 2 hat ausgelöst

Bit 2 = 0 Bit 3 = 0 Bit 4 = 0 Bit 5 = 0 Bit 6 = 0 Bit 7 = 0

Reglerstatus: Bit 0: Regelzone on/off: 0=ein, 1=aus

Bit 1: Selbstoptimierung: 0=aus, 1=ein

Bit 2: Fernsteuerbetrieb: 0=remote, 1=manuelle Bedienung

Bit 3: Aktueller Sollwert: 0= Sollwert SP1, 1= Sollwert SP2

Version: 2.04

Bit 4: 1 = Optimierungsfehler

Bit 5: 1 = Sollwertrampe aktiv

Bit 6: 1 = Fühlerfehler

Bit 7: 1 = Systemfehler

3.2.3 Übertragungsbeispiel

Vom Master an das Regelgerät: Übertragung von Sollwert 1 und Steuerwort

Byte 1 + 2: Zone 1, Sollwert 1 = 50,0℃ soll an das Regelgerät übertragen werden. Sollwert: 500 dezimal = 0x01F4 hexadezimal als 16 Bit Integer-Wert

Byte 3: Zone 1, die Regelung soll eingeschaltet werden (Bit 0 = 0).

Alle folgenden Zonen werden entsprechend gehandhabt.

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	
Zone 1: Sollwert 1 High Byte 0x01	Zone 1: Sollwert 1 Low Byte 0xF4	Zone 1: Steuerbyte 0x00	Zone 2: Sollwert 1 High Byte 0x	Zone 2: Sollwert 1 Low Byte 0x	Zone 2: Steuerbyte 0x	

Byte 46	Byte 47	Byte 48
 Zone 16: Sollwert 1 High Byte 0x	Zone 16: Sollwert 1 Low Byte 0x	Zone 16: Steuerbyte 0x

Bei Regelgeräten mit weniger als 16 Regelzonen werden entsprechend weniger Datenbyte übertragen.

Antwort

Vom Regelgerät an den Master: Übertragung des Prozessabbildes

Das Regelgerät zeigt die folgenden Parameter-Werte:

Byte 1 + 2: Statusvorgabe Sollwertübertragung: Die letzte Vorgabe war in Ordnung.

Byte 3 + 4: Zone 1, Istwerttemp. 55,0℃ 550 dezimal = 0x0226 hexadezimal, 16 Bit Integer-Wert

Byte 5: Zone 1, Reglerstatus Regler = ein
Byte 6: Zone 1, Alarmstatus Alarm = kein Alarm

Byte 7 + 8: Zone 2, Istwerttemp. 56,0℃ 560 dezimal = 0x0230 hexadezimal, 16 Bit Integer-Wert

Byte 9: Zone 2, Reglerstatus Regler = ein

Byte 10: Zone 2, Alarmstatus Alarm = kein Alarm

usw.

Byte 63 + 64: Zone 16, Istwerttemp. Byte 65: Zone 16, Reglerstatus Byte 66: Zone 16, Alarmstatus

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Status Sollwert- vorgabe	Status Sollwert- vorgabe	Zone 1 Istwert High Byte	Zone 1 Istwert Low Byte	Zone 1 Reglerstatus	Zone 1 Alarmstatus
High Byte 0x00	Low Byte 0x00	0x02	0x26	0x00	0x00

Byte 7	Byte 8	Byte 9	Byte 10	
Zone 2 Istwert High Byte 0x02	Zone 2 Istwert Low Byte 0x3A	Zone 2 Reglerstatus 0x00	Zone 2 Alarmstatus 0x02	

Byte 63	Byte 64	Byte 65	Byte 66
 Zone 16 Istwert High Byte 0x	Zone 16 Istwert Low Byte 0x	Zone 16 Reglerstatus	Zone 16 Alarmstatus 0x

Bei Regelgeräten mit weniger als 16 Regelzonen werden entsprechend weniger Datenbyte übertragen.

3.3 Konfigurationskanal

Über den Konfigurationskanal kann jeder Parameter individuell angesprochen werden.

Die Abfolge der beschriebenen Bytes gilt sowohl für "Frage" als auch für "Antwort".

3.3.1 Datenübertragung, generell

Der Master im Profibus-DP hat die Möglichkeit, alle verfügbaren Daten der Regelgeräte auszulesen und, wenn zugelassen, zu ändern.

Die Befehls- oder Parameterübergabe erfolgt in beiden Richtungen über festgelegte Datenblöcke.

3.3.2 Begriffe

Befehlscode [BC]: "sagt" dem Gerät, was es zu "tun" hat (1 Byte)

Parametercode [PC]: bezeichnet jeden einzelnen im Regler aufrufbaren Parameter (1 Byte)

Parameterwert [**PW**]: gibt den Wert eines Parameters an (3 Byte)

3.3.3 Zahlenbereiche

Befehlscode [**BC**]: 0x10, 0x20, 0x21 Parametercode [**PC**]: 0x00...0xFF

Parameterwert [PW]: der Parameterwert (16 Bit Integer) setzt sich zusammen

aus dem reinen Zahlenwert PWH u. PWL und der Kommastelle PWK

Parameterwert High-Byte [PWH]
Parameterwert Low- Byte [PWL]
Kommastelle [PWK]

3.3.4 Konfigurieren der Parameter über den Konfigurationskanal.

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
Laufende Nummer	Regelzone	Befehlscode	immer:	Parameter- code	Parameter- wert	Parameter- wert	Kommastelle
0x00 0xFF	0x01 0xFF	BC 0x10, 0x20 oder 0x21	0x00	PC 0x00 0xFF	PWH High-Byte	PWL Low-Byte	PWK 0x00 0xFF

Byte 1

Laufende Nummer: Der Master sollte jeder neuen Anfrage eine neue laufende Nummer voranstellen.

Version: 2.04

Diese wird vom Regelgerät in der Antwort wiederholt. So ist es möglich, Anfrage

und Antwort einander zuzuordnen.

Byte 2

Regelzone: Nummer der Regelzone innerhalb eines Regelgerätes.

Parameter, die zur Konfiguration des Gerätes dienen,

werden immer über die Zone 1 vorgegeben.

Byte 3

Befehlscode, **BC**: 0x10 : Parameter lesen

0x20: Parameter schreiben

0x21: Parameter schreiben und netzausfallsicher speichern

Der netzausfallsichere Halbleiterspeicher (EAROM, EEPROM)

lässt max. 1.000.000 Schreibzyklen zu.

Byte 4: Immer 0x00

Byte 5

Parametercode, PC: Anfrage:

Adressiert den zu konfigurierenden Parameter (siehe Tabelle).

Antwort:

War der Lesevorgang vom Regelgerät fehlerfrei, so enthält Byte 5 in der Antwort des Regelgerätes den Parametercode PC.

War der Schreibvorgang auf das Regelgerät fehlerfrei, so enthält Byte 5 den Wert 00H (acknowledge).

Bei fehlerhafter Kommunikation können die folgenden Fehlermeldungen in Byte 5 auftreten:

03 H - Prozedurfehler (ungültiger Befehlscode)

04 H - Bereichvorgabe nicht eingehalten (Wert zu groß oder zu klein)

05 H - Regelzone nicht vorhanden

06 H - der angesprochene Parameter ist ein "nur Leseparameter"

07 H - Schreiben nicht möglich, da Regler nicht auf "remote" geschaltet ist.

08 H - Parametercode ungültig

09 H - Befehlsausführung nicht möglich

(z.B. Optimierung kann nicht ausgelöst werden)

FEH - Fehler beim Schreiben in den netzausfallsicheren Speicher

FFH - allgemeiner Fehler

Byte 6, 7 und 8 Parameterwert:

In den Bytes 6, 7 und 8 stehen der Parameterwert PWH und PWL

und die Kommastelle PWK.

Im Konfigurationskanal besteht der Parameterwert aus drei Datenbyte:

2 Datenbyte (Wert), 1 Datenbyte (Kommastelle).

Beispiele:	Dez.	Hex.	PWL/PWH	Kommastelle
Istwert (℃):	215	00D7	00D7	00
Sollwert (℃):	230	00E6	00E6	00
Stellgrad, "kühlen" (%)	-16	FFF0	FFF0	00
Sollwertrampe (℃/min):	2,2	0016	0016	01

Der Parameterwert errechnet sich wie folgt:

Dez.: 2,2 = 22 mit 1 Kommastelle

Hex.: = 0016 (Wert)

Hex.: = 01 (1 Kommastelle)

Negative Werte: Bildung durch das binäre 2er-Komplement.

3.3.5 Parameterliste

Die zulässigen Wertebereiche bzw. Eintragungen unter den Parametern entnehmen Sie bitte der jeweiligen Gerätebeschreibung.

Je nach Geräteausführung sind einzelne der hier beschrieben Parameter nicht verfügbar. Sehen Sie dazu die Bedienungsanleitung des entsprechenden Gerätes.

Parameter	Abkürzung Anzeige	Parameter- Code	R2000	R2100	R2200
Istwerte:					
Akt. Temperaturistwert		0x10	RO	RO	RO
Heizstromistwert	cur	0x11	RO	RO	RO
Reststromistwert	C.	0x12	RO	RO	RO
Istwertoffset	OFSt	0x18	RW	RW	RW
Fühlerkonfiguration	Sen	0x1a	RW	RW	RW
Messbereichskommastelle	r. dP	0x1d	RO	RO	RO
Linearbereichskommastelle	r. dP	0x1d	RW	RW	RW
Linearbereichsanfang	r. Lo	0x1e	RW	RW	RW
Linearbereichsende	r. Hi	0x1c 0x1f	RW	RW	RW
Sollwerte:					
Aktueller Sollwert	SP, act.	0x20	RO	RO	RO
Sollwert1	SP1	0x20 0x21	RW	RW	RW
Sollwert2	SP2	0x21 0x22	RW	RW	RW
Untere Sollwertbegrenzung	SP.Lo	0x2b	RW	RW	RW
Obere Sollwertbegrenzung	SP.Hi	0x2c	RW	RW	RW
Sollwertrampe, steigend	SP↑	0x2f	RW	RW	RW
Sollwertrampe, fallend	SP ↓	0x2d	RW	RW	RW
Alarme:					
Heizstromzykluszeit	Cu.Cy	0x31	RW	RW	RW
Reststromgrenzwert	Cu.Sp	0x32	RW	RW	RW
Alarm 1, Konfiguration	Co.A1	0x34	RW	RW	RW
Alarm 2, Konfiguration	Co.A2	0x35	RW	RW	RW
Alarmwert 1	A1	0x38	RW	RW	RW
Alarmwert 2	A2	0x39	RW	RW	RW
Schaltverhalten A1	rE.A1	0x3c	RW	RW	RW
Schaltverhalten A2	rE.A2	0x3d	RW	RW	RW
Alarmverzögerung, -delay A1	dL.A1	0x3e	RW	RW	RW
Alarmverzögerung, -delay A2	dL.A2	0x3f	RW	RW	RW
Regelparameter "heizen":					
Proportionalbereich (P-Anteil)	1 P	0x40	RW	RW	RW
Vorhaltezeit (D-Anteil)	1 d	0x41	RW	RW	RW
Nachstellzeit (I -Anteil)	1 J	0x42	RW	RW	RW
Schaltzykluszeit	1 C	0x43	RW	RW	RW
Schaltdifferenz	1 Sd	0x47	RW	RW	RW
Schaltpunktabstand (Totband)	SH	0x46	RW	RW	RW
Regelparameter "kühlen":					
Proportionalbereich (P-Anteil)	2 P	0x50	RW	RW	RW
Vorhaltezeit (D-Anteil)	2 d	0x51	RW	RW	RW
Nachstellzeit (I -Anteil)	2 J	0x52	RW	RW	RW
Schaltzykluszeit	2 C	0x53	RW	RW	RW
Schaltdifferenz	2 Sd	0x57	RW	RW	RW

Parameter	Abkürzung Anzeige	Parameter- Code	R2000	R2100	R2200
Stellgrad:					
Aktueller Stellgrad	Y	0x60	RO	RO	RO
Handstellgrad	Hand	0x62	RW	RW	RW
Stellgradbegrenzung (Heizen)	1Y.Hi	0x64	RW	RW	RW
Stellgradbegrenzung (Kühlen)	2Y.Hi	0x69	RW	RW	RW
Anfahrstellgrad	So. Y	0x6a	RW	RW	RW
Anfahrsollwert	So.Sp	0x6b	RW	RW	RW
Anfahrzeit	So.ti	0x6c	RW	RW	RW
Anfahrschaltung aus/ein	So.St	0x6d	RW	RW	RW
Reglerkonfiguration: Reglerbetriebsart	ConF	0x80	RW	RW	RW
2- / 3-Pkt.	Oom	0,00	1200	1200	1200
Bediensperre	LOC	0x85	RW	RW	-
Taste F1 - Konfiguration	Co.F1	0x86	RW	RW	-
Selbstoptimierung	Opt	0x88 0 = aus 1 = ein	RW	RW	RW
Zonenoffset	Zo.OF	0x89	RW	RW	RW
Handstellgradkonfiguration Auto- / Hand-Stellgradvorgabe	Hand	0x8b 0 = norm. Reglerbetrie b 1 = autom. Umschalten 2 = Stellerbetrie b	RW	RW	RW
Einheiten einer Messzone	Unit	0x8d	RW	RW	-
Fühlerkonfiguration bzw. Fühleranschlüsse	P tc	0x8e	RW	RW	RW
Regelzone aus/ein	ZonE	0x8f 0 = aus 1 = ein	RW	RW	RW

3.3.6 Übertragungsbeispiele

3.3.6.1 Übertragungsbeispiel zum Konfigurationskanal, Befehlscode 10 H

Das Regelgerät soll den Parameter Istwert (Parametercode 10H), Zone 1 an den Master senden. Der Istwert hat den Wert von 225 Grad C. 225 (Dezimal) = 0xE1 (Hex)

Master an Regelgerät:	Dez.	Hex
laufende Nummer:	1	0x01
Zone:	1	0x01
sende Parameter:	16	0x10
immer:	0	0x00
Parametercode (Istwert):	16	0x10
Parameterwert (High-Byte):	0	0x00
Parameterwert (Low -Byte):	0	0x00
Kommastelle:	0	0x00

Übertragung zum Regelgerät: 0x01, 0x01 0x10, 0x00, 0x10, 0x00, 0x00, 0x00

Regelgerät an Master:	Dez.	Hex
laufende Nummer der Anfrage:	1	0x01
Zone:	1	0x01
sende Parameter:	16	0x10
immer:	0	0x00
Parametercode (Istwert):	16 *)	0x10
Parameterwert (High-Byte):	0	0x00
Parameterwert (Low -Byte):	225	0xE1
Kommastelle:	0	0x00

Übertragung zum Master: 0x01, 0x01 0x10, 0x00, 0x10, 0x00, 0xE1, 0x00

Bedienungsanleitung R20-R21-R22-PB-D

© Elotech GmbH

^{*)} Wiederholung PC = 16, weil der Lesevorgang fehlerfrei war.

3.3.6.2 Übertragungsbeispiel zum Konfigurationskanal, Befehlscode 20 H

Das Regelgerät erhält den Befehl:

"Übernehme Parameter xp-heizen (Parametercode: 40H, Parmeterwert: 5,0 %), Zone 2 in den Datenspeicher (RAM)".

Master an Regelgerät:	Dez.	Hex
laufende Nummer:	2	0x02
Zone:	2	0x02
Befehlscode:	32	0x20
immer:	0	0x00
Parametercode:	64	0x40
Parameterwert (High-Byte):	0	0x00
Parameterwert (Low -Byte):	50	0x32
Kommastelle:	1	0x01

Übertragung zum Regelgerät: 0x02, 0x02, 0x20, 0x00, 0x40, 0x00, 0x32, 0x01

Regelgerät an Master:	Dez.	Hex
laufende Nummer der Anfrage:	2	0x02
Zone:	2	0x02
Befehlscode:	32	0x20
immer:	0	0x00
Parametercode (xp-heizen):	0 *)	0x00
Parameterwert (High-Byte):	0	0x00
Parameterwert (Low -Byte):	0	0x00
Kommastelle:	0	0x00

Übertragung zum Master: 0x02, 0x02, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00

*) Hat das Regelgerät den Befehl des Masters "verstanden", so antwortet es mit dem Parametercode PC = 00, weil der Schreibvorgang fehlerfrei war. Bei Übertragungs- oder anderen (z.B. formalen) Fehlern antwortet das Regelgerät an dieser Stelle mit einem entsprechenden Fehlercode.

Version: 2.04

Bedienungsanleitung R20-R21-R22-PB-D

© Elotech GmbH

3.3.6.3 Übertragungsbeispiel zum Konfigurationskanal, Befehlscode 21 H

Das Regelgerät erhält den Befehl:

"Übernehme Parameter SP1 = 200 ℃ (Sollwert1, Param etercode: 0x21), Zone 1 und speichere netzausfallsicher".

Master an Regelgerät:	Dez.	Hex
laufende Nummer:	3	0x03
Zone:	1	0x01
Befehlscode:	33	0x21
immer:	0	0x00
Parametercode (SP1):	33	0x21
Parameterwert (High-Byte):	0	0x00
Parameterwert (Low -Byte):	200	0xC8
Kommastelle:	0	0x00

Übertragung zum Regelgerät: 0x03, 0x01, 0x21, 0x00, 0x21, 0x00, 0xC8, 0x00

Regelgerät an Master:	Dez.	Hex
laufende Nummer der Anfrage:	3	0x03
Zone:	1	0x01
Befehlscode:	33	0x21
immer:	0	0x00
Parametercode:	0 *)	0x00
Parameterwert (High-Byte):	0	0x00
Parameterwert (Low -Byte):	0	0x00
Kommastelle:	0	0x00

Übertragung zum Master: 0x03, 0x01, 0x21, 0x00, 0x00, 0x00, 0x00, 0x00

*) Hat das Regelgerät den Befehl des Masters "verstanden", so antwortet es mit dem Parametercode PC = 00, weil der Schreibvorgang fehlerfrei war... Bei Übertragungs- oder anderen (z.B. formalen) Fehlern antwortet das Regelgerät an dieser Stelle mit einem entsprechenden Fehlercode.

Bedienungsanleitung R20-R21-R22-PB-D

© Elotech GmbH

3.4 Prozessabbild und Konfigurationskanal

Prozessabbild und Konfigurationskanal können auch gleichzeitig übertragen werden. Dazu werden die Bytes des Konfigurationskanals an die des Prozessabbildes angefügt.

Master an Regelgerät:

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	
Zone 1: Sollwert 1 High Byte	Zone 1: Sollwert 1 Low Byte	Zone 1: Steuerbyte	Zone 2: Sollwert 1 High Byte	Zone 2: Sollwert 1 Low Byte	Zone 2: Steuerbyte	

Byte 46	Byte 47	Byte 48
 Zone 16: Sollwert 1 High Byte	Zone 16: Sollwert 1 Low Byte	Zone 16: Steuerbyte

Byte 49	Byte 50	Byte 51	Byte 52	Byte 53	Byte 54	Byte 55	Byte 56
Laufende Nummer	Regelzone	Befehlscode BC	immer: 0x00	Parameter- code PC	Parameter- wert PWH High Byte	Parameter- wert PWL Low Byte	Kommastelle PWK

Bei Regelgeräten mit weniger Regelzonen (z.B. 4, 6, 8, 10, 12 Zonen) werden entsprechend weniger Daten übertragen.

Regelgerät an Master:

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Status Sollwert- vorgabe High Byte	Status Sollwert- vorgabe Low Byte	Zone 1 Istwert High Byte	Zone 1 Istwert Low Byte	Zone 1 Reglerstatus	Zone 1 Alarmstatus
Byte 7	Byte 8	Byte 9	Byte 10	7	
Zone 2 Istwert High Byte	Zone 2 Istwert Low Byte	Zone 2 Reglerstatus	Zone 2 Alarmstatus		
Byte 11	Byte 12	Byte 13	Byte 14	<u>-</u> 	-
Zone 3 Istwert High Byte	Zone 3 Istwert Low Byte	Zone 3 Reglerstatus	Zone 3 Alarmstatus		_

Byte 63	Byte 64	Byte 65	Byte 66
 Zone 16 Istwert High Byte	Zone 16 Istwert Low Byte	Zone 16 Reglerstatus	Zone 16 Alarmstatus

Byte 67	Byte 68	Byte 69	Byte 70	Byte 71	Byte 72	Byte 73	Byte 74
Laufende Nummer	Regelzone	Befehlscode BC	immer: 0x00	Parameter- code PC	Parameter- wert PWH High-Byte	Parameter- wert PWL Low-Byte	Kommastelle PWK

4. Literaturhinweis:

Zum schnellen und intensiven Einstieg in die Thematik des PROFIBUS-DP empfehlen wir das Buch "Schnelleinstieg in PROFIBUS-DP", Autor. M.Popp.

Das Buch ist über die PROFIBUS Nutzerorganisation, Best. Nr 4.071 beziehbar.

Anschrift: PROFIBUS Nutzerorganisation e.V. Tel: 0721 9658 590

Haid-und-Neu-Str. 7 D-76131 Karlsruhe

5. FAQ's - Frequently Asked Questions:

Unter "www.elotech.de -> Downloads" erhalten Sie im Internet Hinweise zur Inbetriebnahme und zur richtigen Installation von Profibus DP in Verbindung mit unseren Regelgeräten.

Bedienungsanleitung R20-R21-R22-PB-D Version: 2.04 © Elotech GmbH Seite 20 von 20