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Co-Simulation of interconnected power electronics 
using Simulink-PSpice interface and components 
defined in C/C++ and SystemC
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AGENDA

 Challenges in Analog/Mixed-Signal Design

 The SLPS Co-Simulation Interface

 The Device Modeling Interface (DMI) and Exporting Models from Simulink
– Demo

 Conclusion
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Analog/Mixed-Signal Design

Digital Analog Electro-
mechanical

Target:
• MCU (SW)
• FPGA, ASIC (HW)

Target:
• Transitor-level

Design

Example: Field-oriented Control of a Permanent-Magnet-Synchrone-Machine

This control technique is common in motor drive systems for hybrid electric vehicles, 
manufacturing machinery, and industrial automation
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 „Executable Specification“

 Simulink as multi-domain 
simulation environment
– Time-continuous and time-discrete 

(sampled)
– Event-triggered
– Mathematical and physical algorithm 

modeling
– Robustness through environment 

modeling

 Automatic code generation (C/C++, 
HDL)

 Continuous Verification
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 Bottom-Up Workflow
– Starting point:

Transistor-level schematic

– Needs
 Input stimuli generation
 Integration in surrounding multi-domain 

system
 Analysis in time/frequency domain

– Solution
 Co-simulation with OrCAD PSpice using 
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Model-Based Design for Analog/Mixed-Signal
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 Top-Down Workflow
– Starting point:

 Mathematical Model
 Physical Model

– Needs
 Simulation speed (proof of 

concept)
 Reuse of existing testbench
 Sign-off Transistor-level simulation

– Solution
 Co-simulation with Simulink and 

PSpice using SLPS
 Model integration through

automatic C code generation
and PSpice DMI
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Model-Based Design for Analog/Mixed-Signal
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What is SLPS?

 SLPS = Simulink + PSpice Co-Simulation

– Simulink
 Multi-domain simulation environment for dynamic systems
 Algorithm development and verification platform

– PSpice:
 SPICE-based simulator
 Simulation of electrical and electronic circuits
 Circuit design platform  Hardware
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How does SLPS work?

 Simulink plays the master role

 The SLPS-block in Simulink builds 
the interface between both 
simulators

 Both simulators work with their 
own time-step-control algorithm
– guarantees the optimal compromise 

out of simulation accuracy and 
performance.
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Step 1: Algorithm Design and Verification

Physical Models of 
Mechanical

Load Scenarios

Time-continuous
PI Controllers

(speed, current)

Time-discrete
PWM

Generator

Physical Models
of

Electrical Components
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Step 1: Algorithm Design and Verification

Load Scenario: with Load
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Step 1: Algorithm Design and Verification

Load Scenario: with Load and Vibration
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Step 2: Schematic Entry (PSpice)

IGBT
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SLPS
Co-Simulation

Interface

Step 3: Simulink/PSpice Co-Simulation (SLPS)
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Simulink Simulation

Simulink / PSpice
Co-Simulation

(SLPS)
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Step 3: Simulink/PSpice Co-Simulation (SLPS) 
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Vehicle 
Electronics

Emission and 
Fuel 

Economy

Comfort &
Performance

Safety & 
Quality

Automotive Engineering 
Interdisciplinary Design Challenge
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Vehicle Electronics

Explosion of Interconnected Electronic Systems with Embedded Software 
having some very challenging Power Density issues created by System 
miniatuarization for reliability, form & functions.

Automotive Engineering 
Interdisciplinary Design Challenge
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• Mixed Signal Control “Drive By 
Wire” over bus protocols

Interconnected 
Systems

• Complex Algorithmic Control, 
Configurability and 
Maintenance

Embedded 
Software 

• Reliability, smaller space, 
increased Functions packaged 
in Lower Power consumption

System 
Miniaturization

• Smaller form factors handling 
huge power transfer are 
driving higher power density

Power Density

System Design linked to System 
Implementation

Mixed Signal Accuracy 
accelerated with System Model 
Abstractions

Virtual Prototyping –
Model/HIL/SW Co-Simulation for 
early S/W Validation

Implementation across multiple 
design fabrics –
Chip/Package/Board

Analog Behavioral and New 
Technology Physical Device 
modeling

PSpice Solution
Design Trends

Automotive Engineering 
Interdisciplinary Design Challenge
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Physical device compact model

SystemC model supporting 
embedded S/W and different 
abstraction levels

Analog behavioral

Digital C/C++ with embedded SW 
block

Every complex device on 
PCB - a system model 
embedded in mixed-signal 
device model

PSpice complex device macro-model
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Algorithmic Models
(MATLAB, Simulink, C/C++)

System Models (SystemC)

Digital Models with 
IO/Timing/Constraint

Digital Functional Models

PSpice Behavioral Models

Compact Device Models

PSpice Models

Model Abstractions

Architectural

Functional

Behavioral

Gate Level

Circuit Level

Physical 
Implementation
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PSpice PCB 
Implementation

PSpice System 
Design

PSpice PCB
Block in Simulink

Simulink Coder
to PSpice Block

System Design Exploration to Implementation
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Model CodeDMI
Physical
Devices

Analog 
Behavioral
Devices

Digital 
Devices

C/C++, SystemC, VerilogA, 
MATLAB, Simulink

Communicating
with PSpicePSpice Simulator

Device Modeling Interface
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Device Modeling Interface Libraries

PSpice Common API Definitions

PSpice Common 
Model API Definitions

PSpice BasePspice Digital API 
Definitions

PSpice Engine Functions

PSpice Device User Information
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Generate 
C++ Code 

for Simulink 
Model

Generate Device 
User Information 
and register with 
Engine Function

Compile 
and 

generating 
DLL, LIB

Associate 
PSpice

model with 
symbol and 

Simulate

Device Modeling Interface – Embedded Coder Steps

 Requires Embedded Coder license
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OrCAD
Capture

Embedded Coder

Embedded Coder

Embedded Coder

PSpice

Top Level 
Analog 

Schematic

Associate 
PSpice Model 
with a Symbol

Run Simulation

Simulink 
Model

Generated 
C++ Code

Code 
Embedded 
inside DMI

Compile and 
generate dll

PSpice

Device Modeling Interface – Steps for integrating Simulink 
models
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Simulink Model Example
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Simulink-PSpice Target Configuration – Code Generation

Embedded Coder 
Target

Custom Template 
Makefile

C++ Code
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Simulink-PSpice Target Configuration – Custom Code

DMI‘s Libraries Path
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Simulink-PSpice Target Configuration – Interface

Fucnction Prototype
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Simulink-PSpice Target Configuration – Templates

Custom DMI 
Wrapper Code 

Template
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Simulink Simulation Results
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PSpice Model Example
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PSpice DMI Library

Generated by 
Embedded Coder
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PSpice Simulation Results
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Demo
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Q&A

 MathWorks’s Point-of-Contact:
– Bao Nguyen Bao.Nguyen@mathworks.com
– Corey Mathis Corey.Mathis@mathworks.com

 Cadence’s Point-of-Contact : 
– Kishore Karnane karnane@cadence.com

mailto:Bao.Nguyen@mathworks.com
mailto:Corey.Mathis@mathworks.com
mailto:karnane@cadence.com
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Conclusion

 SLPS is a needed tool because of:
– Introduction of newest technologies and efficient methods.
– Possibility to verify and optimize SW-Algorithms with HW-Models.
– Reconnaissance and compensation of errors during the specification and 

implementation reducing development time. 

 DMI increase the possibilities: 
– System Level Simulation importing C/C++/SystemC and Simulink Blocks into a 

unique simulator. 
– Hardware in the Loop, getting the results in a completely reliable environment to 

test the new critical functions. 
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Conclusion

PSpice SLPS SimulinkHiL DMI
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