
1© 2016 The MathWorks, Inc.

Bao Nguyen, Senior Pilot Engineer, MathWorks
Kishore Karnane, Product Management Director, Cadence

Co-Simulation of interconnected power electronics 
using Simulink-PSpice interface and components 
defined in C/C++ and SystemC



2

AGENDA

 Challenges in Analog/Mixed-Signal Design

 The SLPS Co-Simulation Interface

 The Device Modeling Interface (DMI) and Exporting Models from Simulink
– Demo

 Conclusion



3

Analog/Mixed-Signal Design

Digital Analog Electro-
mechanical

Target:
• MCU (SW)
• FPGA, ASIC (HW)

Target:
• Transitor-level

Design

Example: Field-oriented Control of a Permanent-Magnet-Synchrone-Machine

This control technique is common in motor drive systems for hybrid electric vehicles, 
manufacturing machinery, and industrial automation

Field-Oriented
Controller PWM Power

Inverter
PMSM

Load
I
v

vexp



4

IMPLEMENTATION

INTEGRATION

TEST &
 VER

IFIC
ATIO

N

Analog

SPICE

IMPLEMENTATION

Digital

C/C++
HDL

Digital
Hardware

Analog
Hardware

Specification 
isolated from 
verification

No run-time 
analog/digital 
links

Disconnected 
teams

Design trade-
offs difficult

Limited analog 
design 
abstractions

SPECIFICATION

Slow design 
iterations

Challenges in Classical Mixed-Signal Design



5

 „Executable Specification“

 Simulink as multi-domain 
simulation environment
– Time-continuous and time-discrete 

(sampled)
– Event-triggered
– Mathematical and physical algorithm 

modeling
– Robustness through environment 

modeling

 Automatic code generation (C/C++, 
HDL)

 Continuous Verification

INTEGRATION

IMPLEMENTATION

TEST &
 VER

IFIC
ATIO

N

SPICE

SiliconMCU DSPFPGA ASIC

HDL C/C++C/C++HDL

TEST 
SYSTEM

DESIGNDESIGN

Environment Models

Timing and Control Logic

Digital Models Analog Models

Algorithms

RESEARCH

Digital Models

Timing and Control Logic

Algorithms

Analog Models

REQUIREMENTS

Environment Models

Model-Based Design



6

 Bottom-Up Workflow
– Starting point:

Transistor-level schematic

– Needs
 Input stimuli generation
 Integration in surrounding multi-domain 

system
 Analysis in time/frequency domain

– Solution
 Co-simulation with OrCAD PSpice using 

SLPSINTEGRATION

IMPLEMENTATION

TEST &
 VER

IFIC
ATIO

N

SPICE

SiliconMCU DSPFPGA ASIC
TEST 

SYSTEM

HDL SPICE

DESIGN

REQUIREMENTS

Environment Models

Timing and Control Logic

Digital Models Analog Models

Algorithms

RESEARCH

Timing and Control Logic

Algorithms

Digital Models

C/C++

Model-Based Design for Analog/Mixed-Signal



7

 Top-Down Workflow
– Starting point:

 Mathematical Model
 Physical Model

– Needs
 Simulation speed (proof of 

concept)
 Reuse of existing testbench
 Sign-off Transistor-level simulation

– Solution
 Co-simulation with Simulink and 

PSpice using SLPS
 Model integration through

automatic C code generation
and PSpice DMI

INTEGRATION

IMPLEMENTATION

TEST &
 VER

IFIC
ATIO

N

SPICE

SiliconMCU DSPFPGA ASIC
TEST 

SYSTEM

HDL SPICE

DESIGN

REQUIREMENTS

Environment Models

Timing and Control Logic

Digital Models Analog Models

Algorithms

RESEARCH

Timing and Control Logic

Algorithms

Digital Models Analog Models

C/C++C/C++

Model-Based Design for Analog/Mixed-Signal



8

What is SLPS?

 SLPS = Simulink + PSpice Co-Simulation

– Simulink
 Multi-domain simulation environment for dynamic systems
 Algorithm development and verification platform

– PSpice:
 SPICE-based simulator
 Simulation of electrical and electronic circuits
 Circuit design platform  Hardware



9

How does SLPS work?

 Simulink plays the master role

 The SLPS-block in Simulink builds 
the interface between both 
simulators

 Both simulators work with their 
own time-step-control algorithm
– guarantees the optimal compromise 

out of simulation accuracy and 
performance.



10

Step 1: Algorithm Design and Verification

Physical Models of 
Mechanical

Load Scenarios

Time-continuous
PI Controllers

(speed, current)

Time-discrete
PWM

Generator

Physical Models
of

Electrical Components



11

Step 1: Algorithm Design and Verification

Load Scenario: with Load



12

Step 1: Algorithm Design and Verification

Load Scenario: with Load and Vibration



13

Step 2: Schematic Entry (PSpice)

IGBT



14

SLPS
Co-Simulation

Interface

Step 3: Simulink/PSpice Co-Simulation (SLPS)



15

Simulink Simulation

Simulink / PSpice
Co-Simulation

(SLPS)

w
m

_r
ef

, w
m

w
m

_r
ef

, w
m

Te
 [N

m
]

Te
 [N

m
]

Vs
_a

bc
 [V

]

Vs
_a

bc
 [V

]

Is
_a

bc
 [A

]

Is
_a

bc
 [A

]

Step 3: Simulink/PSpice Co-Simulation (SLPS) 



16

Vehicle 
Electronics

Emission and 
Fuel 

Economy

Comfort &
Performance

Safety & 
Quality

Automotive Engineering 
Interdisciplinary Design Challenge



17

Vehicle Electronics

Explosion of Interconnected Electronic Systems with Embedded Software 
having some very challenging Power Density issues created by System 
miniatuarization for reliability, form & functions.

Automotive Engineering 
Interdisciplinary Design Challenge



18

• Mixed Signal Control “Drive By 
Wire” over bus protocols

Interconnected 
Systems

• Complex Algorithmic Control, 
Configurability and 
Maintenance

Embedded 
Software 

• Reliability, smaller space, 
increased Functions packaged 
in Lower Power consumption

System 
Miniaturization

• Smaller form factors handling 
huge power transfer are 
driving higher power density

Power Density

System Design linked to System 
Implementation

Mixed Signal Accuracy 
accelerated with System Model 
Abstractions

Virtual Prototyping –
Model/HIL/SW Co-Simulation for 
early S/W Validation

Implementation across multiple 
design fabrics –
Chip/Package/Board

Analog Behavioral and New 
Technology Physical Device 
modeling

PSpice Solution
Design Trends

Automotive Engineering 
Interdisciplinary Design Challenge



19

Physical device compact model

SystemC model supporting 
embedded S/W and different 
abstraction levels

Analog behavioral

Digital C/C++ with embedded SW 
block

Every complex device on 
PCB - a system model 
embedded in mixed-signal 
device model

PSpice complex device macro-model



20

Algorithmic Models
(MATLAB, Simulink, C/C++)

System Models (SystemC)

Digital Models with 
IO/Timing/Constraint

Digital Functional Models

PSpice Behavioral Models

Compact Device Models

PSpice Models

Model Abstractions

Architectural

Functional

Behavioral

Gate Level

Circuit Level

Physical 
Implementation



21

PSpice PCB 
Implementation

PSpice System 
Design

PSpice PCB
Block in Simulink

Simulink Coder
to PSpice Block

System Design Exploration to Implementation



22

Model CodeDMI
Physical
Devices

Analog 
Behavioral
Devices

Digital 
Devices

C/C++, SystemC, VerilogA, 
MATLAB, Simulink

Communicating
with PSpicePSpice Simulator

Device Modeling Interface



23

Device Modeling Interface Libraries

PSpice Common API Definitions

PSpice Common 
Model API Definitions

PSpice BasePspice Digital API 
Definitions

PSpice Engine Functions

PSpice Device User Information



24

Generate 
C++ Code 

for Simulink 
Model

Generate Device 
User Information 
and register with 
Engine Function

Compile 
and 

generating 
DLL, LIB

Associate 
PSpice

model with 
symbol and 

Simulate

Device Modeling Interface – Embedded Coder Steps

 Requires Embedded Coder license



25

OrCAD
Capture

Embedded Coder

Embedded Coder

Embedded Coder

PSpice

Top Level 
Analog 

Schematic

Associate 
PSpice Model 
with a Symbol

Run Simulation

Simulink 
Model

Generated 
C++ Code

Code 
Embedded 
inside DMI

Compile and 
generate dll

PSpice

Device Modeling Interface – Steps for integrating Simulink 
models



26

Simulink Model Example



27

Simulink-PSpice Target Configuration – Code Generation

Embedded Coder 
Target

Custom Template 
Makefile

C++ Code



28

Simulink-PSpice Target Configuration – Custom Code

DMI‘s Libraries Path



29

Simulink-PSpice Target Configuration – Interface

Fucnction Prototype



30

Simulink-PSpice Target Configuration – Templates

Custom DMI 
Wrapper Code 

Template



31

Simulink Simulation Results



32

PSpice Model Example



33

PSpice DMI Library

Generated by 
Embedded Coder



34

PSpice Simulation Results



35

Demo



36

Q&A

 MathWorks’s Point-of-Contact:
– Bao Nguyen Bao.Nguyen@mathworks.com
– Corey Mathis Corey.Mathis@mathworks.com

 Cadence’s Point-of-Contact : 
– Kishore Karnane karnane@cadence.com

mailto:Bao.Nguyen@mathworks.com
mailto:Corey.Mathis@mathworks.com
mailto:karnane@cadence.com


37

Conclusion

 SLPS is a needed tool because of:
– Introduction of newest technologies and efficient methods.
– Possibility to verify and optimize SW-Algorithms with HW-Models.
– Reconnaissance and compensation of errors during the specification and 

implementation reducing development time. 

 DMI increase the possibilities: 
– System Level Simulation importing C/C++/SystemC and Simulink Blocks into a 

unique simulator. 
– Hardware in the Loop, getting the results in a completely reliable environment to 

test the new critical functions. 



38

Conclusion

PSpice SLPS SimulinkHiL DMI


	Slide Number 1
	AGENDA
	Analog/Mixed-Signal Design
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	What is SLPS?
	How does SLPS work?
	Step 1: Algorithm Design and Verification
	Step 1: Algorithm Design and Verification
	Step 1: Algorithm Design and Verification
	Step 2: Schematic Entry (PSpice)
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	PSpice Models
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Simulink-PSpice Target Configuration – Code Generation
	Simulink-PSpice Target Configuration – Custom Code
	Simulink-PSpice Target Configuration – Interface
	Simulink-PSpice Target Configuration – Templates
	Simulink Simulation Results
	Slide Number 32
	PSpice DMI Library
	PSpice Simulation Results
	Demo
	Q&A
	Conclusion	
	Conclusion	

