

Device: WRL-3000v2

This document Version: 1

Matches module hardware: [27 Jun 2013 v2]

Date: 31 July 2013

Description: CC3000 WiFi module

WRL-3001v2 datasheet – Page 2

www.embeddedadventures.com

Page 2

Contents

Introduction... 4

Features .. 4

Connections ... 4

General notes .. 4

Communicating with the WRL-3000 .. 5

SPI protocol ... 5

SPI write operation ... 5

SPI read operation .. 6

HCI protocol .. 7

HCI Command .. 7

HCI Event .. 7

HCI Data .. 8

Startup .. 8

HCI Commands / Events - General .. 9

HCI_COMMAND_READ_BUFFER_SIZE .. 9

HCI Commands / Events - WLAN .. 9

HCI_COMMAND_WLAN_CONNECT ... 9

HCI_COMMAND_WLAN_ DISCONNECT .. 10

HCI_COMMAND_WLAN_ SET_SCANPARAM .. 10

HCI_COMMAND_WLAN_ SET_CONNECTION_POLICY.. 11

HCI_COMMAND_WLAN_ GET_SCAN_RESULTS ... 11

HCI_COMMAND_WLAN_SET_EVENT_MASK .. 12

HCI_COMMAND_WLAN_GET_STATUS .. 12

HCI_COMMAND_WLAN_ SMART_CONFIG_START ... 12

HCI_COMMAND_WLAN_ SMART_CONFIG_STOP .. 13

HCI Commands / Events – Socket ... 13

HCI_COMMAND_SOCKET .. 13

HCI_COMMAND_CONNECT ... 13

WRL-3001v2 datasheet – Page 3

www.embeddedadventures.com

Page 3

HCI_COMMAND_SEND .. 14

HCI_COMMAND_RECV .. 14

HCI_COMMAND_CLOSE_SOCKET .. 15

HCI_COMMAND_MDNS_ADVERTISE .. 15

HCI Commands / Events – NVMEM ... 15

HCI_COMMAND_READ_SP_VERSION ... 15

HCI Commands / Events - Network ... 16

HCI_COMMAND_GETHOSTNAME ... 16

On Porting ... 16

Versions .. 17

WRL-3001v2 datasheet – Page 4

www.embeddedadventures.com

Page 4

Introduction

The WRL-3000 is a WiFi module for embedded systems, based on the CC3000 chip

from TI. It contains the entire WiFi and TCP/IP stacks and requires relatively

straightforward SPI commands to control it. No stack is required on the side of the

microcontroller.

Features

It’s got 802.11B/G goodness, runs down to 2.7V, can transmit at up to 7Mbps and

can operate down to -20°C. Always handy if you’re putting your project in the

freezer.

But best of all, it has a neat technology that TI have called Smart Config. With a

little iPhone / Andriod app, or a java applet on a webpage, you can configure the

WRL-3000 and get it connected to a network without having to tell it directly about

the network password etc.

The design utilises the reference antenna and as such is similarly covered by the

FCC module approval process.

Connections

The WRL-3000 module has one connection port.

VCC Power connection. The WRL-3000 requires up to 300mA.
Voltage should be between 2.7 and 4.8V.

EN Pull high to enable module
Pull low to disable module and enter sleep mode

CLK Data Clock

DIN Data IN to the module

IRQ Interrupt request line

DOUT Data OUT of the module

CS Chip select (active low)

GND Ground connection

General notes

This document goes into detail on the commands and events that we have tried and

tested and know work successfully. We provide sample code that uses these

functions.

WRL-3001v2 datasheet – Page 5

www.embeddedadventures.com

Page 5

There is more that the CC3000 module itself can do – not least of which, includes

UDP sockets, select calls on sockets and so on.

As we confirm in our own code that these work we will be updating this document

with our findings. Or if you have suggestions, please email us!

To explore these further commands on your own, download the SDK from TI at

http://processors.wiki.ti.com/index.php/CC3000_Wi-Fi_Downloads

Communicating with the WRL-3000

TI’s website is a good place to start in learning about how to communicate with the

module:

 http://processors.wiki.ti.com/index.php/CC3000_Host_Driver_Porting_Guide

However, TI’s documentation is focussed on how to get their API code working on

your microcontroller. We didn’t like their code so we wrote ours from scratch. We

hope that this document forms the basis of your learning about this module. If you

get it working on a new platform, we would love to hear from you so we can share

this work with others.

SPI protocol

At its base, the SPI protocol is the way in which you get information into and out of

the module.

Data is sampled at the falling edge of the clock cycle (CPHA=1)

Clock is idle when it is low (CPOL=0)

The entire packet must be an even number of bytes. If the total number of bytes is

not even, a padding byte is added to the end. The Payload Length includes the

padding byte.

SPI write operation

The SPI write is used when the microcontroller wants to send something to the

WRL-3000. It is initiated by the microcontroller when it pulls the CS line low.

For an SPI write operation:

 Pull CS line low

 Wait for IRQ line to go low (indicates WRL-3000 is ready)

 Send SPI packet header

http://processors.wiki.ti.com/index.php/CC3000_Wi-Fi_Downloads
http://processors.wiki.ti.com/index.php/CC3000_Host_Driver_Porting_Guide

WRL-3001v2 datasheet – Page 6

www.embeddedadventures.com

Page 6

 Send HCI packet

 Send padding (if uneven number of bytes)

An SPI Write packet is made up of the following with one byte per cell:

SPI Header (WRITE) Payload

SPI
Opcode

Payload
Length
MSB

Payload
Length

LSB
Busy Busy

HCI
packet

Optional
Padding

The SPI Opcode byte is SPI_OPERATION_WRITE (0x01)

The Busy byte is ignored but should be set to zero.

The Payload contains an HCI packet.

Note that the very first SPI transaction needs to be in a particular magic format and

timing (see startup section below).

SPI read operation

The SPI read is used when the WRL-3000 wants to send something to the

microcontroller. It is initiated by the WRL-3000 when it pulls the IRQ line low.

To handle an SPI read operation:

 IRQ line is pulled low by WRL-3000 (indicating it has something to be read)

 Pull CS line low

 Send SPI packet header

 Send HCI packet

 Send padding (if uneven number of bytes)

An SPI Read packet is made up of the following with one byte per cell:

SPI Header (READ) Payload

SPI
Opcode

Busy Busy
Payload
Length
MSB

Payload
Length

LSB

HCI
packet

Optional
Padding

The SPI opcode is SPI_OPERATION_READ (0x03)

The Busy byte is ignored but should be set to zero.

The Payload contains an HCI packet.

The provided software implementation for the WRL-3000 tried to deliver the simplest

implementation possible. However if you are looking at a DMA implementation, it’s

WRL-3001v2 datasheet – Page 7

www.embeddedadventures.com

Page 7

clear from this packet structure that transferring 5 bytes (for the SPI header) gives

enough information to then do a second DMA transfer of [Payload Length] bytes.

This payload can then be handed to the HCI layer for processing.

In our simple implementation, the microcontroller is busy waiting for all packets and

then handles processing. It’s not as efficient, but it makes the protocol clearer.

HCI protocol

Right. So you’ve got yourself an SPI packet. What now?

The next step is to understand the HCI packet that is contained within it. HCI

stands for Host Communication Interface and represents the guts of the

communication between the WRL-3000 and your microcontroller.

HCI Command

An HCI command is something that the microcontroller wants to tell the WRL-3000

to do. It is usually followed by an HCI Event that at least acknowledges the

command but may also pass back data to the microcontroller.

HCI Header (Command) Payload

HCI
Message

Type

Opcode
(LSB)

Opcode
(MSB)

Args
Length

Arguments

The HCI message type is HCI_TYPE_COMMAND (0x01)

The Opcode is a 16 bit number split over two bytes.

The Args Length is up to 255 bytes.

The Arguments themselves are Args Length bytes long, unsurprisingly. In the

following section, you can see a list of the commands and the Opcodes associated

with them. Or you can just grab them from our sample source code.

HCI Event

An HCI Event occurs when the WRL-3000 wants to indicate something to the

microcontroller. It may be a response to a command (using effectively the same

HCI Command opcode), an acknowledgement, in other words. It may also be an

“asynchronous” or, as the CC3000 documentation puts it, an “unsolicited” event,

where the WRL-3000 is communicating that some sort of event has happened that

was not immediately triggered by a microcontroller required.

WRL-3001v2 datasheet – Page 8

www.embeddedadventures.com

Page 8

HCI Header (Event) Payload

HCI
Message

Type

Opcode
(LSB)

Opcode
(MSB)

Args
Length
(LSB)

Args
Length
(MSB)

Arguments

The HCI message type is HCI_TYPE_EVENT (0x04). Note that in this case the

arguments length is 16 bits long.

HCI Data

HCI Data is used to transport the data received from or sent to a socket.

HCI Header (Event) Payload

HCI
Message

Type
Opcode

Args
Length

Payload
Length
(LSB)

Payload
Length
(MSB)

Arguments Data

The HCI message type is 0x02

The Payload Length is the total of the Arguments Length + Data Length. To

calculate the actual data length, subtract the Args Length from the Payload Length.

Note that the Opcode and Args Length are both 8 bit numbers.

Startup

Startup requires some particular timing.

- Disable the module by setting EN low
- Wait for IRQ line to go high
- Enable the module by setting EN high
- Wait for IRQ line to go low
- Set CS line high
- Wait 50 µs
- Send via SPI: SPI_OPERATION_WRITE
- Send via SPI: 0x00 (length MSB)
- Send via SPI: 0x05 (length LSB)
- Send via SPI: 0x00 (busy 0)
- Wait 50 µs
- Send via SPI: 0x00 (busy 1)
- Send via SPI: HCI_TYPE_COMMAND
- Send via SPI: HCI_COMMAND_SIMPLE_LINK_START (LSB)
- Send via SPI: HCI_COMMAND_SIMPLE_LINK_START (MSB)

WRL-3001v2 datasheet – Page 9

www.embeddedadventures.com

Page 9

- Send via SPI: 0x01 (1 byte payload)
- Send via SPI: PatchesRequest (0x00 = Don’t load patches 0x01 = Load

patches)
- Set CS line low
- Wait for IRQ line to go low
- < Receive HCI>

Note that the normal state is to run with patches loaded. There are certain

circumstances during flash updating where it is desirable to startup without patches.

Following this special timing for the startup command, normal commands can be

issued. The first command that should be issued is:

 HCI_COMMAND_READ_BUFFER_SIZE

which returns:

 HCI_EVENT_READ_BUFFER_SIZE

Once this is received, the WRL-3000 is good to go.

HCI Commands / Events - General

HCI_COMMAND_READ_BUFFER_SIZE

Find out how many buffers the WRL-3000 has available. Typically this command is

used at startup.

Opcode: 0x400B

Args: None

Total HCI payload length = 0

Returns via HCI_EVENT_READ_BUFFER_SIZE message:

uns8 Free buffers

uns16 Buffer length

HCI Commands / Events - WLAN

HCI_COMMAND_WLAN_CONNECT

Initiate the connection of the WRL-3000 to a given WiFi router.

Opcode: 0x0001

WRL-3001v2 datasheet – Page 10

www.embeddedadventures.com

Page 10

Args:

uns32 Magic 0x0000001c

uns32 SSID length <length of SSID string>

uns32 Security Type

0=Unsecured
1=WEP
2=WPA
3=WPA2

uns32 Magic 0x10 + <length of SSID string>

uns32 Key (password) length <length of key>

uns32 Magic 0x00000000

6 x uns8 BSSID 0x00 0x00 0x00 0x00 0x00 0x00

L x uns8 SSID
<SSID string>
L = length of SSID string

Total HCI payload length = 28 + <length of SSID string> + <length of key string>

Returns: HCI_EVENT_WLAN_CONNECT, followed by asynchronous connection

messages

HCI_COMMAND_WLAN_ DISCONNECT

Disconnect from the current wifi router

Opcode: 0x0002

Args: None

Returns: HCI_EVENT_WLAN_DISCONNECT, followed by asynchronous connection

messages

HCI_COMMAND_WLAN_ SET_SCANPARAM

Set the parameters for scanning for WiFi access points.

Opcode: 0x0003

Args:

uns32 Magic 36 (0x24)

uns32 Scan Frequency (ms)

1 = default scan frequency of 10 minutes
1000+ = scan frequency in ms (minimum is 1
second)
Must pull EN low and restart module for this to
have an affect.

uns32 Min channel dwell time
20 = default value
100 = recommended value

uns32
Max channel dwell
time

30 = default value
100 = recommended value

uns32 Max probe requests 2 = default value

WRL-3001v2 datasheet – Page 11

www.embeddedadventures.com

Page 11

per channel 5 = recommended value

uns32 Channel Mask
Bitwise mask, up to 13 channels (0x1fff)
0x07ff = default

uns32 RSSI threshold -80 = default

uns32 SNR threshold 0 = default

uns32 TX power for probe 2000 = default

16 x
uns32

Per channel timeout
between periodic
connection scan (ms)

205 = default
Not used in 1.11 firmware

uns32 Minimum dwell time
20 = default value
100 = recommended value

Total HCI payload length = 100

Returns: HCI_EVENT_WLAN_SET_SCANPARAM

HCI_COMMAND_WLAN_ SET_CONNECTION_POLICY

Set startup connection policy, whether to fast connect to the last connection, try

connecting to stored profiles, and/or connect to open hotspots.

Opcode: 0x0004

Args:

uns32 Fast Connect
0 = Fast connect disabled
1 = Fast connect enabled

uns32 Open Ap Connect
0 = Open ap auto connect disabled
1 = Open ap auto connect enabled

uns32 Profile Options
0 = Use profile options disabled
1 = Use profile options enabled

Total HCI payload length = 12

Returns: HCI_EVENT_WLAN_SET_CONNECTION_POLICY

HCI_COMMAND_WLAN_ GET_SCAN_RESULTS

Opcode: 0x0007

Request a single scan result. Each subsequent call decrements the “number of

networks left to send” until it is 0 (the entry for which will have the Result is not

valid bit cleared).

Args:

uns32 Magic 0x0000

Total HCI payload length = 4

Response: HCI_EVENT_WLAN_GET_SCAN_RESULTS

WRL-3001v2 datasheet – Page 12

www.embeddedadventures.com

Page 12

uns32 Networks Number of networks left to send

uns32 Scan status
0 = aged results
1 = results valid
2 = no results

uns8 Scan result
bit 7 = 1 Result is valid
bit 7 = 0 Result is not valid
bit 6 - bit 0 = RSSI value

uns8 Scan result

bit 7 – bit 6 = 0b00 open security
bit 7 – bit 6 = 0b01 WEP
bit 7 – bit 6 = 0b10 WPA
bit 7 – bit 6 = 0b11 WPA2
bit 5 – bit 0 = SSID name length

2x uns8 Scan result Time hotspot was found

32x uns8 Scan result SSID Name

HCI_COMMAND_WLAN_SET_EVENT_MASK

Mask out asynchronous events

Opcode: 0x0008

Args:

uns32 Event Mask
Asynchronous events
Bit set to 1 = don’t send event

Total HCI payload length = 4

HCI_COMMAND_WLAN_GET_STATUS

Mask out asynchronous events

Opcode: 0x0009

Args:

uns32 Event Mask
Asynchronous events
Bit set to 1 = don’t send event

Total HCI payload length = 4

HCI_COMMAND_WLAN_ SMART_CONFIG_START

Start listening for the Smart Config messages

Opcode: 0x000a

Args:

uns32 Encrypted
0 = Smart config not encrypted
1 = Smart config is encrypted

WRL-3001v2 datasheet – Page 13

www.embeddedadventures.com

Page 13

Total HCI payload length = 4

Response: HCI_EVENT_WLAN_SMART_CONFIG_START

HCI_COMMAND_WLAN_ SMART_CONFIG_STOP

Stop listening for the Smart Config messages

Opcode: 0x000b

Args:

uns32 Encrypted
0 = Smart config not encrypted
1 = Smart config is envrypted

Total HCI payload length = 4

Response: HCI_EVENT_WLAN_SMART_CONFIG_STOP

HCI Commands / Events – Socket

HCI_COMMAND_SOCKET

Create a socket

Opcode: 0x1001

Args:

uns32 Domain AF_INET is the only supported option

uns32 Socket type
One of SOCK_STREAM, SOCK_DGRAM, or
SOCK_RAW

uns8 Protocol
One of IPPROTO_TCP, IPPROTO_UDP or
IPPROTO_RAW

Total HCI payload length = 12

Returns: HCI_EVENT_SOCKET, HCI_STATUS is set to -1 on error or otherwise the

socket descriptor used for further socket commands.

HCI_COMMAND_CONNECT

Connect an existing socket to an end point

Opcode: 0x1007

Args:

uns32 sd Socket descriptor from previous create socket

uns32 Magic 0x00000008

uns32 Address Length Always 0x00000008

WRL-3001v2 datasheet – Page 14

www.embeddedadventures.com

Page 14

uns16 Family Always AF_INET

uns32 Address Quad IP address

Total HCI payload length = 20

Returns: HCI_EVENT_CONNECT. HCI_STATUS = -1 on error, 0 on success

HCI_COMMAND_SEND

Send data to the other end of the socket.

Note that this is a data transaction, not a command.

Opcode: 0x0081

Args:

uns32 sd Socket descriptor from previous create socket

uns32 Magic 12

uns32 Data length Length of data portion

uns32 Flags Not currently used

Total HCI payload length = 16

Data:

Data to be sent to the other end of the socket.

Returns: Nothing

HCI_COMMAND_RECV

Receive data from a socket. This is a combined command + data transaction.

Opcode 0x1004

Args:

uns32 sd Socket descriptor from previous create socket

uns32 Data length
Amount of data that is requested from the
socket (maximum)

uns32 Flags Not currently used

Response: HCI_EVENT_RECV

uns32 sd Socket descriptor

uns32 Number of bytes
Amount of data that is actually going to be
returned

uns32 Flags Not currently used

WRL-3001v2 datasheet – Page 15

www.embeddedadventures.com

Page 15

If the number of bytes returned > 0 then the data will be returned in a new

transaction – a data transaction of type HCI_DATA_RECV (opcode 0x85)

HCI_COMMAND_CLOSE_SOCKET

Close socket.

Opcode 0x100B

Args:

uns32 sd Socket descriptor from previous create socket

Response: HCI_EVENT_CLOSE_SOCKET

HCI_COMMAND_MDNS_ADVERTISE

Advertise the MDNS capabilities. Typically this is used to signal back to the iPhone

app that Smart Config has completed successfully.

Opcode 0x1011

Args:

uns32 MDNS enabled
0 = MDNS disabled
1 = MDNS enabled

uns32 Service name length

L x uns8 Service name Where L is the service name length

Response: HCI_EVENT_MDNS_ADVERTISE

HCI Commands / Events – NVMEM

HCI_COMMAND_READ_SP_VERSION

Read the current version of the software.

Opcode 0x0207

Args:None

Returns: HCI_EVENT_READ_SP_VERSION

uns8 Ignore

uns8 Ignore

uns8 SP_MAJ Major version of service pack

WRL-3001v2 datasheet – Page 16

www.embeddedadventures.com

Page 16

uns8 SP_MIN Minor version of service pack

HCI Commands / Events - Network

HCI_COMMAND_GETHOSTNAME

Convert hostname to IP address

Opcode: 0x1010

Args:

uns32 Magic 0x00008

uns32 Name length Length of the host name

L x uns8 Host name Host name, L = length of host name

Total HCI payload length = 8 + length of host name

Response: HCI_EVENT_GETHOSTBYNAME

int32 Return value -1 = error, 0 = success

4 x uns8 IP Address In reverse order, 4 quad IP address

On Porting

You can use our source code as a base. It has been written in SourceBoost C for Pic

Microcontrollers, but it should be pretty portable.

Using defines for int8, uns8, int16, uns16, int32 and uns32 will make your life easier

(see pic_utils.h).

Substitute your own microcontroller commands for setting up the pins to

communicate with the WRL-3000 in cc3000_setup_io() in cc3000.c/h.

Swap out the SPI routines in cc3000_spi.c/h as appropriate for your microcontroller.

The demo program uses well-worn library files from the Pic Pack library for

communicating with humans via a serial interface; of course you will need to replace

these with your own method of calling the library routines.

See also the debug.h file to debug routines – you can choose to simply use the

#defines here to silence the debugging information, or turn it on using your own

serial routines to see what is happening under the covers. Sometimes it’s not pretty

looking under the covers, but you need to know what’s going on.

In the example source, the first step is to press <s> and <enter> to start the WRL-

3000 module.

WRL-3001v2 datasheet – Page 17

www.embeddedadventures.com

Page 17

Then, if you have compiled it with the correct network, network type and password

in the main program file, you can use <c> and <enter> to connect to the network.

Alternatively, if you have the iPhone CC3000 SmartConfig app (search the apple

store), you can use it to configure the module automatically. Enter your network

password in the app, and use <!> and <enter> to call the smart config routines.

Note that once you have completed smart config, the profile will be stored in the

profile settings for the WRL-3000, and the startup options changed. That means

that the next time the WRL-3000 starts up (<s> command above) it will

automatically reconnect to the network you set up.

If you don’t want that, you can use the <n> and <enter> to disable the connection

policy options.

Versions

Doc
Version

HW
Version

Date Comments

1 2 31 July 2013 Initial Version for first run boards

