
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

DISCRETE-EVENT SIMULATION USING SYSTEMC:
INTERACTIVE SEMICONDUCTOR FACTORY MODELING WITH FABSIM

Holger Vogt

Fraunhofer IMS
Finkenstr. 61

47057 Duisburg, GERMANY

ABSTRACT

Semiconductor fabrication factories are large enterprises
with many toolsets, each having multiple production ma-
chines. The process flow is highly reentrant, therefore
modeling is best done by discrete-event simulation. To de-
scribe such a fab, the author has developed a new discrete
event simulator called FabSim. It is written in C++. As
the simulation engine it uses SystemC, a C++ class library
originally developed for modeling “Systems on a Chip”.
The factory with its machines and lots traveling and in
process is mapped onto SystemC like a hardware descrip-
tion during RTL (register transfer) modeling. The result-
ing simulator is compact, fast and efficient. In a special
configuration as a MS Windows dynamic link library, the
simulator is fully interactive. At any time you may define
a stop in the simulation flow, retrieve the state of the whole
system, change parameters, add lots, or even enter a new
state and continue with the simulation.

1 INTRODUCTION

Semiconductor fabrication factories today represent one of
the most complex industrial processes. Investments into a
modern fab are far beyond the 1 billion US$ mark. There-
fore during the planning phase and during fab operation
simulation of the whole factory is an absolute requirement.
During planning the optimum toolset combination for a
given throughput and the intended process flows has to be
determined. During manufacturing the factories continu-
ously search for the optimized machine usage, minimum
cost, and due date delivery.

The simulation task is very complex. Multiple toolsets
with several machines each serve a large variety of process
flows with more than 400 steps each. The process flow is
highly reentrant, that is toolsets a visited more than once
during processing. For example all. wafers will enter the
lithography area more than 20 times.

Analytical simulation is thus limited to special cases

with high abstraction. Discrete-event simulation (Fishman
2001) is the method of choice to describe the whole factory.

Today fab engineers very often use standard simulator
packages with dedicated settings, see Hunter et al. (2002)
or Shikalgar, Fronckowiak, and MacNair (2002).

To take advantage of the flexibility and high speed of
a universal computer language like C++ and to relieve the
fab engineer from becoming absorbed by simulator and
model setup problems, we have developed a compact fab
simulation tool named FabSim. It is based on the simula-
tion engine SystemC, which is illustrated in Section 2. The
simulator structure is described in Section 3. Section 4
shows the capability of FabSim as a truly interactive simu-
lator. Simulation examples are presented in Section 5.

2 SYSTEMC

SystemC stems from numerous efforts by members from the
Open SystemC Initiative <www.systemc.org>. It is a new
system-level specification and design language which con-
tributes to functional modeling and hardware description
(Grötker 2002). Thus it adds to and enhances the high defi-
nition languages like VHDL and Verilog which are widely
used for integrated circuit and system on chip design.

In the course of evaluating this language in the IC
arena the idea came up to apply SystemC to the totally dif-
ferent field of discrete-event simulation. SystemC allows to
model pin-accurate, cycle-accurate and functionally accu-
rate hardware. If factory “hardware” could be mapped onto
SystemC entities, it could be modeled with high efficiency.

The SystemC simulation engine is a C++ class library,
available by free download at <www.systemc.org> for sev-
eral operating systems. It contains an event-driven simula-
tion kernel, classes of modules with process member func-
tions, as well as classes of channels (ports and signals) for
interconnection of modules. Events may be defined as
changes of signals at the input ports of a module. An event
driven by a continuously running clock emulates a syn-

http://www.systemc.org/
http://www.systemc.org/
http://www.systemc.org/
http://www.systemc.org/

Vogt

chronous system. The process inside a module is the basic
unit of functionality. Processes are organized as coroutines
and provide the mechanism for concurrent simulation. The
simulation model is set up during compilation of the code
which describes the system. At runtime, first of all (multi-
ple) objects from modules and interconnecting channels
are instantiated. The instantiation may occur dynamically,
driven by external data entered into the simulator. After
that the simulation proceeds for a given amount of time.

3 SIMULATOR DETAILS

To create the simulator, we need a suitable factory model
and map it onto the SystemC entities described above.

The semiconductor factory comprises of toolsets, each
with one or several identical machines. Lots are processed
inside the machines and move from toolset to toolset ac-
cording to the process flow chart. Toolsets are objects in-
stantiated from a SystemC module. This module contains
a process which is an universally applicable machine
model. The number of toolsets is determined by the fac-
tory layout and instantiated automatically at runtime. As
many processes are started per toolset object as machines
are needed. The number of toolsets is currently limited
(tested) to 128. The toolset module is responsible for orga-
nizing the buffer in front of the toolset, for handling lot
priority, organize batch processing. Two priority levels are
available above standard (no priority, prio 0). Prio 2 will
always put the lot in front of the buffer. Hot lot prio 1 will
preemptively reserve machines. As soon as the hot lot ar-
rives at the next toolset, it will be processed immediately.
Lots may be grouped into batches and processed together
(e.g. in diffusion furnaces). If required, distinct toolsets
may initiate reworks and send back lots to temporarily fol-
low a rework flow chart.

Each process modeling a machine is a finite state ma-
chine with states like IDLE, DOWN LOAD, PROC,
UNLOAD and others. The machine model contains features
like multiple down times (scheduled or statistically distrib-
uted), setup procedures (especially for implanters and litho
clusters), loading and unloading, and up to 9 recipes with
different lot processing times. The maximum number of
machines per toolset is in principal limited only by the
memory made available to FabSim, but currently set to 50.

Signals between the modules define the lot movement
paths. Whereas digital hardware models require simple
boolean signals, we also may send and retrieve complex
C++ types. Here we use a lot carrying type, derived from a
generic lot class.

After start FabSim reads in toolset and machine data
and sets its toolsets and interconnection objects as shown
in Figure 1. Lots flow back and forth between the toolsets
and a scheduler. The scheduler gets the information about
flow charts and directs lots to the appropriate toolsets. Lots
ready or scrapped are also handled here.
Scheduler

Tool Sets

Lots In Lots Out

Machine Data
Process Info

Flow Charts

Figure 1: Basic Structure of FabSim

Lot movement is modeled by taking either a fixed

transport time (determined by the sending toolset) or by
reading in a from-to matrix at initialization, where a file
contains individual transport times.

The user will provide all input data as ASCII files, as de-
scribed in more detail in chapter 4. Then he starts the simula-
tor with command line parameters to set various options.
FabSim reads the input data, instantiates all objects and thus
sets up the fab model (in a fraction of a second). During the
simulation phase all processes are interrogated synchro-
nously. In case of an event (lot movement) all necessary cal-
culations are done and all the states are updated.

Computation time depends on the time step (clock cy-
cle) chosen, the number of toolsets and machines and some
options. A typical fab with tools set for 500 wafer starts per
day, will require 135 seconds of CPU time on a 1.4GHz
LINUX PC for a simulation period 139 days at a time reso-
lution of 1 minute.

FabSim outputs comprise of several ASCII files con-
taining lots processed or scrapped, machine usage. Option-
ally the simulator creates additional log files on buffer oc-
cupancy, machine idle or down time, and a large step by
step log. EXCEL based tools serve to arrange and display
the output data graphically.

4 SETTING UP THE FACTORY MODEL

To generate the factory model, the user defines several
ASCII data files as an input to FabSim. Three files are re-
quired to provide the toolset definition, a from-to matrix,
and the lots to be started. Additional files contain the
process flows as run sheets, one for each process. Fur-
thermore rework run sheets may be dedicated to any step in
a process flow as separate files.

Currently the user has to rely on the extensive machine
model presented by FabSim, there is no user interface to
add extra code.

Vogt

The factory is composed of an ensemble of toolsets.
Each toolset is a row in the toolset definition file. The user
has to provide data like: number of machines in a toolset,
minimum and maximum batch size, delays for loading and
unloading, mtbf, mttr, scheduled downtimes, type of setup
and setup times, lot size dependence of process step dura-
tion, up to nine process step times.

The from-to matrix contains transport times between
any couple of toolsets, overriding a toolset specific time.

The sequence of lots to be started is set in the third
file, one line per lot. The data include start time, product,
lot size, process, priority. Loops may be set for simplify-
ing the definition of a regular sequence of lot starts. In the
interactive mode described in chapter 5 this file is not used,
lots may be started by the supervisor program.

Run sheet files contain one row per process step, set-
ting the step number, the toolset, the recipe and a rework
probability of this step.

An additional input file will be required by a coming
FabSim version to describe operator availability, including
operator count, experience and shift data.

5 INTERACTIVE SIMULATION

The simulator presented so far is a single executable file.
You may start it, provided all input files are available, from
the command line or out of a batch file. It will simulate for
the prescribed duration and then generate all output files.

In a completely different configuration we have com-
piled FabSim into a dynamic link library (currently only
available for MS Windows). A supervisor program now
may control FabSim.dll and allow fully interactive simula-
tion. The basic simulator structure still resembles Fig. 1.
The dll however exports several function which serve to
control nearly every aspect of the simulation. The general
structure is shown in Fig. 2.

In a batch mode FabSim.dll behaves like its command
line counterpart. In interactive mode of FabSim we firstly
initialize FabSim by loading the dll and reading all factory
input data. The factory status saved during a previous
simulation may now serve as a starting point.

Supervisor

Exported functions:

FabSim.dll

_FabSim_Init
_FabSim_Sim
_FabSim_GetOutput

Simulator

C++
Delphi
Visual Basic
 load dll

call functions

Figure 2: Structure of FabSim Interactive
A lot may now be entered. The supervisor then starts
FabSim.dll for at least one clock cycle. After this simula-
tion period has passed, FabSim stops and waits for input.
All data are stored and are accessible by several of the ex-
ported functions. You may search for lots, save the com-
plete lot or fab status, enter a new lot, move a lot out of the
process flow and onto a shelf, retrieve another lot from the
shelf for further processing, set machines down for a given
period, change lot priority, ask for toolset and machine
utilization. You may even toggle from the push mode
(each lot leaving a toolset will find its way into the buffer
and then into an idle machine of the following toolset) into
a mode where the supervisor actively has to move each lot
from the toolset buffer into a machine currently available.
Thus the supervisor has full control over the simulation
procedure. During periods where FabSim.dll is allowed to
run uninterrupted, it will retain the same high simulation
speed as the command line version.

We have developed a sample supervisor program
which offers a graphical user interface and provides access
to the functions controlling FabSim.dll.

Several applications of an interactive simulation come
into mind. Loaded with the actual fab status, it may predict
fab behavior for a given period (e.g. the next few days). If
the time resolution of one minute is not sufficient, all time
based inputs simply may be related to another base unit
(e.g. one tenth of a minute, or seconds). Of course simula-
tion time for a given real time will increase. Simulation for
one week with resolution of one second will take 80 sec-
onds under MS Windows.

Individual lots may be pushed to predict urgent prod-
uct delivery.

Fab throughput may be controlled. A simple control
mechanism by keeping WIP constant is provided as stan-
dard, other control mechanisms based on buffer occupancy
or bottleneck usage may offer in depth factory control.

6 SIMULATION EXAMPLES

Some simulation results of FabSim Interactive are shown
in this section.

Fig. 3 depicts a simulation of a small pilot line with 42
toolsets. Two simulation runs are plotted with lot cycle
time versus lot start time. Each lot is represented by a data
point. The first run simulates the cycle time with 100%
standard lots started at regular intervals. In the second run
5% “super hot” lots and 95% standard lots are started.

The hot lots cycle through the fab with optimum speed,
however the remaining standard lots are slowed down by
10% compared to the cycle time only standard lots.
 The graphs showing the standard lots are relatively
“noisy”. The pilot line has only one, sometimes two ma-
chines per toolset. Thus machine downtime immediately
leads to a kink in the cycle time.

gt
Vo

Figure 3: Influence of Hot Lots on Lot Cycle Time

In a factory with 500 wafer starts per day the lot prior-

ity of lot 6000 (processed in a quarter micron process) has
been increased at 445.000 minutes. The plot in Fig. 4
shows the lot’s progress through the fab. After changing
the priority from standard to super hot, the slope increases
considerably.

Figure 4: Lot Movement Versus Time.
Priority Set at 445.000 Minutes

Three small interruptions can be seen where the lot

suffers a rework.
All data are excerpted from the log file which stores

every entry of a lot into a machine. Thus you may analyze
data for each lot after the simulation.
 A dramatic influence of downtime is plotted in Fig. 5.
Three out of five I-line steppers are down for 100.000
minutes. A drastic increase of lots in the buffer in front of
the litho toolset is accompanied by a strong increase in cy-
cle time. Even another 100000 minutes after the steppers
are online again, and the buffer usage has returned to nor-
mal (Fig. 6), the fab has not yet recovered.

Figure 5: 3 out of 5 Steppers Down at 200.000 for
100.000 Minutes

Figure 6: Lots in Buffer During Downtime of Steppers

7 SUMMARY AND OUTLOOK

We have presented a compact simulator including a full-scale
model of a semiconductor factory. It is ready for use, if fac-
tory and process flow data are provided. Simulation is fast
and efficient because of its SystemC engine and C++ code.
Output data in ASCII format, together with simple visualiza-
tion tools offer quick access to relevant simulation results.

Still some enhancements have to be added. In small to
medium fabs operator availability is not always guaran-
teed. Its influence therefore should be modeled.

A suitable interface to factory data will easy simula-
tion setup even more. Experience will tell if a universal in-
terface may be generated.

FabSim.dll may be loaded in several instances to
model factories of a complete IC manufacturing chain
(from wafer over chip to back end). Some research into a
suitable supervisor is due.

REFERENCES

Fishman, G. S. 2001. Discrete-event simulation. New
York: Springer.

Grötker, T. et al. 2002. System design with SystemC.
Boston: Kluwer Academic Publishers.

Vogt

Hunter, J. et al. 2002. Understanding a semiconductor

process using a full-scale model. IEEE Transactions
on Semiconductor Manufacturing, vol. 15, no. 2, May
2002: 285-289.

Shikalgar, S. T., D. Frockowiak, and E. A. MacNair. 2002.
300mm wafer fabrication line simulation model. In
Proceedings of the 2002 Winter Simulation Confer-
ence, ed. E. Yücesan et. al. 1365-1368. Piscataway,
New Jersey: Institute of Electrical and Electronics En-
gineers.

AUTHOR BIOGRAPHY

HOLGER VOGT has a diploma degree in electrical en-
gineering. His dissertation dealt with CMOS on buried
nitride, a new SOI technology. Since 1985 he is with
Fraunhofer Institute of Microelectronic Circuits and Sys-
tems, Duisburg, Germany. He has managed the CMOS
pilot line at IMS. Currently he is responsible for R&D
on innovative processes and devices, including smart
sensors and power devices. He heads the program to set
up 0.25 µm technology on 200 mm wafers at IMS. Since
1997 he is also professor at the EE&CS department of
University Duisburg-Essen, Germany, teaching semicon-
ductor technology and packaging.

The FabSim web site is <http://www.fabsim.
com>. <holger.vogt@ims.fraunhofer.de> is
the authors email address.

http://www.fabsim.�com/
http://www.fabsim.�com/
mailto:holger.vogt@ims.fraunhofer.de
http://www.fabsim.com/
http://www.fabsim.com/
mailto:holger.vogt@ims.fraunhofer.de

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1383
	02: 1384
	03: 1385
	04: 1386
	05: 1387

