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ABSTRACT 

This paper describes the validation of cycle times in a 
factory simulation model of a new Recording Head Wafer 
manufacturing facility at Seagate Technology, Minneapolis, 
MN. The project goals were to determine which factors were 
causing cycle time deltas between the model and the actual 
factory, and to add detail to the simulation model to bring 
cycle times closer to reality. The study found that the most 
significant contributors to the cycle time delta were number 
of tools, number of operators, level of operator cross-
training, and assumptions about rework, downtime, and 
equipment dedication. 
 
1.  INTRODUCTION 

A recording head manufacturing facility (fab) is a highly 
complex manufacturing system in which disc drive read/write 
heads are fabricated on wafers. Recording head fabs use 
semiconductor manufacturing processes like micro-
photolithography, film growth and etching. Today’s 
semiconductor manufacturers face worldwide competition, 
increasing capital costs and short product life cycles. These 
issues have combined to make cost effective manufacturing 
management and shorter fab cycle times important 
competitive assets. Fab cycle time management also aligns 
itself to Seagate’s Recording Head Operation management’s 
quest to implement Supply Chain Management techniques. 
Semiconductor manufacturers continuously look at reducing 
time to market and thereby maintain a competitive market 
edge. Simulation is an ideal tool for estimating fab cycle 
times and capacity. The benefits of shorter product cycle 
times for semiconductor industries have been discussed in 
detail by many researchers (e.g. Spence and Welter, 1987. 
Baseman et. al., 1993. Nemoto et. al., 1996). This paper 
outlines the methods that Seagate used to validate a detailed 

simulation model and that was used to identify the key 
factors affecting fab cycle time. 

Simulation is ideal for modeling the complex system 
behavior and other unique attributes of wafer fabs. These 
attributes include re-entrant process flows, unreliable tools, 
and elaborate tool dedication schemes. This ability to model 
complex behavior gives simulation analysis an edge over 
other type of modeling analysis like queueing models and 
static spreadsheets (Potti and Mason, 1997). Seagate’s 
Industrial Engineering (I.E.) team uses WWK’s Factory 
Explorer® (FX®) product for simulation. FX® is an 
integrated software package, capable of cost modeling, 
capacity analysis, and detailed factory simulation. The 
software uses an Excel® spreadsheet as the front end for 
loading data and setting model parameters. FX®’s capacity 
analysis module calculates the resources required to support 
the planned schedule while maintaining a maximum user-
specified capacity loading on each tool group. This is very 
helpful in identifying the minimum resource requirements 
prior to simulation and in creating stable simulation runs. 
The model can also be loaded with actual tool counts and 
the pre-simulation capacity analysis used to refine the 
model. 

The wafer fab studied in this project is one of the latest 
manufacturing facilities commissioned by Seagate. Seagate’s 
I.E. team had developed and applied an integrated static 
capacity and dynamic simulation analysis methodology for 
estimating long-term capital equipment needs while 
achieving targeted cycle times (Grewal et. al. 1998). As part 
of that earlier project, the Seagate I.E. team verified and 
validated a product ramp phase model. The start up fab 
model was a simple single product process, low to moderate 
volume production levels, and no labor constraints. Over 
time, this model was updated and expanded to account for 
increased production volumes, additional process flows, 
express lots, new line yields, etc.  

Expansion of a simulation model in this way leads 
almost inevitably to certain simulation modeling drawbacks, 
such as getting bogged down with excessive model detail. 
An increase in model complexity also increases simulation 
analysis difficulty, especially understanding model behavior 
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and the relationships between model inputs and outputs. 
See Hood, 1990, Chance et. al. 1996, Chance et. al. 1999, and 
Nayani and Mollaghasemi, 1998 for more details on this 
subject.  

When this project commenced, cycle times resulting 
from the simulation model were significantly shorter than 
cycle times in the actual factory. This was a problem 
because it called the validity of the model into question, and 
made the model less appropriate for planning capital 
equipment purchases. Therefore, Seagate hired Wright 
Williams & Kelly to help re-validate the simulation model 
and to determine which factors were causing cycle time 
deltas between the model and the actual factory. The project 
goals were: 

 
• To add detail to the model so that overall model 

cycle times were within 25% of actual cycle times; 
• To add detail to the model so that the list of top 

cycle time contribution tools from the model 
matched the list of top cycle time contribution tools 
in the factory; 

• To identify the top factors that contributed to cycle 
time deltas between the model and reality; 

• To identify the insignificant factors for which data 
is not worth collecting in detail, because they do 
not significantly affect model cycle time; and 

• To prepare a formal verification and validation 
procedure for subsequent analyses.  

 
2.  METHODOLOGY 

This project consisted of two primary phases of activity – 
model updating / validation and simulation experiments. The 
majority of the work consisted of model updating and 
validation – collecting historical information, entering that 
information into the model, and comparing the results with 
actual data. The simulation experiments conducted fell into 
two categories: experiments to compare the validated model 
data with the original model data, and experiments to test the 
sensitivity of the model to other variables. 
 
2.1 Initial Model Verification and Validation 

The base simulation model was modified to include up-to-
date process rework, yield, resource, and average product 
mix data. Historical equipment downtime data was collected 
from the maintenance’s equipment resource tracking system. 
The fab loading was then set to the anticipated production 
volume level over the period of interest. The three main 
performance measures for verification were: equipment 
count; equipment utilization by category (e.g. off-line % and 
busy %) and product cycle time. The base model output 
reports were analyzed to assess the key system performance 
measures. Industrial Engineers for the factory performed 

initial model verification such as checking the model logic, 
process routes and equipment parameters.  

Further, verification was performed by calculating the 
minimum tool set required by the model with FX®. Then 
comparing this with the actual toolset. The projected 
bottlenecks from the model were compared with the known 
bottlenecks in the factory. For the more heavily loaded tools, 
the model’s capacity usage breakdown (total utilization, 
busy time, free time, unscheduled down time, etc.) was also 
compared with actual data from the equipment tracking 
system. Both the equipment tool count and utilization 
numbers predicted by the model were quite similar. However, 
model cycle times, were significantly lower than actual 
values. Key areas identified for adding model detail were: 

 
• Labor – Actual staffing levels, amount of operator 

cross-training, and verification of work 
assignments on the floor. 

• Product – Actual wafer starts by day, actual lot 
release method, amount of WIP in the system at the 
start of the analysis, and actual times per step 
recorded by the manufacturing control system. 

• Equipment – Batch loading policies, tool/operation 
dedication strategies, and alternate tools. 

• Manufacturing Discipline – Batch transfer rules 
between steps and lot priorities. 

 
2.2 Data Validation and Additions to the Model 

Specific detail added to the model included the 
following: 

 
• Actual starts for the past month, as released each 

day.  
• Actual line yields for the past month (instead of 

planned values).  
• Actual tool quantities in place during the past 

month. The original model was a planning model, 
and included future tools not qualified for the 
relevant time period. 

•  Current process flows. The original model, since it 
was used for planning, included future process 
flow changes that had not taken place in the 
factory. These changes affected which tools were 
the factory bottlenecks. 

• Express lots. The planning model did not include 
the disruption provided by express lots. They were 
added for the study. 

• Actual operator quantities and work assignments 
representing two different cross-training 
assumptions. The previous model had large 
operator group data but no labor modeling analysis 
was performed. 

• Equipment dedication policies, particularly those 
leading to a single tool being available to process 
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certain steps. Other studies have shown such 
equipment dedication to be a significant cycle time 
contributor in wafer fabs (Fowler et. al. 1997). 

• Transport steps between each area, modeled by 
using a dummy batch tool, with an operator 
required 100% of the time. For one high traffic 
density area a dedicated runner was modeled for 
the transport steps. For all other areas, an operator 
from the area that the lot was leaving would move it 
to the next area. Previously, transport steps were 
not modeled at all. Other studies had shown, 
however, that the grouping of lots into transport 
batches can significantly increase cycle time 
(Domaschke 1998). 

 
2.3  Simulation Experiments 

Each simulation run was made by pre-loading the model with 
the actual WIP level of the previous month, and reading in 
an actual starts file for the next six weeks. All simulations 
were run for 45 days, with statistics cleared after 15 days (to 
let the existing WIP clear out). Each experiment was 
replicated three times. Common random numbers were used 
to minimize variability across the simulation experiments. All 
cycle times reported were averaged across the three 
replications. 

 
3.  RESULTS 

3.1 Number of Operators  

The fab is divided into nine process areas such as Photo, 
Plating, etc. Fab production provided information on labor 
deployment within each area. The model was first simulated 
with the assumption that all operators were cross-trained to 
run any machine within each area. When the actual number 
of operators in each group were used, cycle times increased 
significantly. To quantify this effect, multiple runs were 
made by increasing the labor force across all the groups by 
25% and 50% from the actual number of operators. Figure 1 
shows the simulation results with labor being increased from 
actual number of operators to infinite number of operators 
(no operator constraint). A significant cycle time reduction 
was observed when operator count was increased by 25% 
for all the operator groups. This occurred because the model 
was slightly unstable with actual number of operators. Labor 
appears to be one of the most important factors impacting 
the cycle time for this factory. It was also observed that 
increasing the number of operators by 50% over the actual 
quantities yielded only a small additional cycle time 
reduction, as did running the model without any operator 
constraints.  
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Figure 1. Impact of Number of Operators on Model Cycle 
Time 
 

These results highlight the importance of 
understanding the impact of operators on factory 
performance. Work is underway to better understand this 
behavior and to detail the production support and direct 
production related work elements for each step. 

 
3.2 Level of Operator Cross-Training 

Labor modeling was further analyzed by including the 
operator work assignment for each specific set of tools. In a 
complex semiconductor-manufacturing environment, level of 
operator cross-training can have a significant effect on 
equipment utilization and fab cycle times. At Seagate, 
although operators were cross-trained to run multiple tools, 
they frequently were assigned to specific tools and thus 
were only available for a small number of assigned tools. 
This process constraint involving tool/operator dedication 
was analyzed by breaking the operators down into 34 small, 
specific groups, instead of the previous nine groups. 

Work assignment details were gathered with 
production’s assistance for each area. The operators were 
broken down into smaller groups and assigned to service 
specific tool sets within individual processing areas. A 
version of the simulation model was prepared with operators 
assigned to these smaller groups. The number of operators 
within each group was then increased by 25% to gauge the 
impact on model cycle times, as illustrated in Figure 2.  
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Figure 2. Impact of Operator Cross-Training on Model Cycle 
Time 
 
This chart in Figure 2 shows the average cycle time, by 
product, for various combinations of the operator groups. 
The far left bar shows the cycle time with small operator 
groups (less cross-training), using the actual number within 
each group. The next bar shows more cross-trained 
operators, broken into nine groups. The difference in cycle 
times for the first product was approximately 120% of the 
theoretical processing time for the first product. The next 
two bars show the cycle time when the number of operators 
was increased by 25% in each group. This resulted in an 
additional cycle time reduction of approximately 85% of 
theoretical process time (Robinson, 1998).  

The original model did not include operators as a 
constraint at all. The combined effect of including operator 
dedication and actual operator quantities was approximately 
2X days, where X is the weighted theoretical cycle time 
across all the processes. Thus operator cross training and 
number of operators together accounted for a large part of 
the cycle time difference between the model and reality 
(Robinson, 1998).  

 
3.3 Number of Tools 

Number of tools is one of key factors that has a direct impact 
on model behavior. Running the model with the right tool 
deployment and qualification information is critical to any 
simulation analysis. While this seems obvious, it is mo re 
difficult in practice than might be expected. When a fab is in 
a ramp situation, the number of qualified tools changes 
frequently. Tool specifications and configurations are also 
in a state of flux due to frequent process changes. This is 
further compounded by the fact that planners are often 
using a model designed to reflect the future, when a different 
set of tools may be available. This was the situation at 
Seagate when this project commenced. Several tools were 
modeled as on line when, for example, they were really in 
qualification or kept on hold by process engineering. 

Discussions with manufacturing support groups and 
engineering/ development groups identified a number of 
anomalies in the simulation model.  

The model was changed to reflect actual tool count and 
qualification information for the validation time period. In the 
planning model, because of frequent tool changes, 
simulation runs had often been made in which FX® would 
calculate the required number of tools in each group. The 
assumption used was that each tool group would be loaded 
to no more than 85% of its maximum possible loading. To 
better represent the impact of this modeling assumption the 
simulation results for the updated model were compared 
against the results of a model using FX®’s estimated tool 
count (at 85% capacity loading). Figure 3 shows the results 
of these simulations runs. The cycle time difference was 
only significant for Product 1, which had a 20% delta. The 
major cycle time contributor for this product was a batch 
tool only used by Product 1. It should be noted, however, 
that at other phases of the ramp, several tools might be 
loaded at above 85%, in which case an experiment like this 
would show a much more dramatic effect. 
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Figure 3. Impact of Actual Vs. Suggested Tools on Model 
Cycle Time 

 
3.4 Downtime Sensitivity  

Recording head manufacturing processes have 
approximately 400 steps across 100 complex tools with 
random uptimes. Because the equipment was so new, the 
initial model was prepared with uptimes either calculated 
from a small range of data or based on engineering 
estimates. The model was updated with a new set of 
MTBF/MTTR, PM and engineering time data gathered from 
the equipment tracking system database over a longer span 
of time. The PM and other unscheduled downtimes events 
are caused by frequent process and equipment specification 
changes. These parameters accordingly vary from time 
period to time period.  

To estimate the impact of downtime variability, an 
experiment was conducted comp aring average cycle time 
estimates for a model with more variable downtime 
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distributions against the base model and against a model 
with no downtime. The results are shown in Figure 4. 
Average cycle times would decrease by approximately 10% 
if downtime were not modeled at all. They could increase by 
approximately 7% if more variable downtime distributions 
were used (e.g. by having downtime events occur half as 
frequently, but last twice as long). This analysis puts a 
bound on the maximum change that might be expected in the 
model from collecting more detailed downtime data. 
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Figure 4. Impact of Downtime Variability on Model Cycle 
Times 
 
3.5 Rework Sensitivity  

In a semiconductor fab, due to short product life-cycles and 
increasingly complex processes, maintaining low rework 
rates is a challenging task. Engineering and manufacturing’s 
mastery of a process is dependent upon the frequency of 
product turns. Shorter turn-around time means faster 
learning and process feedback. In a recording head 
organization, production has a huge rework variance 
depending upon process maturity. Rework has a significant 
impact on all product cycle times because of the re-entrant 
nature of the process. High levels of rework on one product 
impact others because all processes use the same 
equipment. This acute sensitivity to rework levels makes this 
process attribute one of the most critical factors. The impact 
of this factor was estimated by increasing and decreasing 
the rework probabilities from the base mo del assumptions, 
as shown in Figure 5. Cycle time increased significantly (by 
up to 30%) when rework probabilities were increased. This 
indicates that the model is very sensitive to rework 
assumptions, and implies that more detailed rework data 
should probably be collected.  
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Figure 5. Impact of Rework Assumptions on Model Cycle 
Time 

 
3.6 Equipment Dedication 

A startup assumption was made that there is no 
operation/process/tool dedication on the floor. This has 
changed since these situations arise during the ramping or 
cutting in of new products. Also, manufacturing operators 
will dedicate specific tools that produce higher quality for 
specific operations or steps. This tool/process dedication 
impedes manufacturing’s flexibility to manage WIP and 
consequently can cause major queue delays and capacity 
constraints. Although no such major process tool 
constraints were observed on floor the dedication of certain 
photo exposure tools for specific operations and products 
were simulated. Another scenario modeled was operation 
dedication on large batch vacuum deposition tools that can 
create WIP bubbles and flow imbalance in the fab. Three 
scenarios modeled were: Single wafer processing Photo 
exposure tool/operation dedication, large batch size vacuum 
deposition tool/operation dedication and a combined model 
including both the photo exposure tool and the large batch 
size vacuum tool dedication. The cycle times of all the 
candidate models were compared against base model 
without any tool dedication.   
 Photo exposure tool dedication was modeled by 
assigning certain operations to specific tools. In the pre-
simulation capacity analysis some of the photo exposure 
tools became highly loaded (93% Approx.) due to this 
tool/operation dedication. Also many of the tools in the 
group were partially loaded. The capacity constraint 
situation on bottleneck tools was resolved by providing an 
alternate path through the lower capacity loaded tools. The 
modeling embellishment on tool dedication of single wafer 
photo exposure processing tool was significant. The cycle 
times of the low priority wafers increased on average by 14% 
(Approx.) across all the products. In comparison the express 
lot wafers (high-priority lots) were slightly elevated by 4% 
(Approx.) on average. The modeling analysis of dedication 
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of large batch size vacuum tool proved to be a less 
significant contributor of cycle time increase.  

The photo exposure tool dedication had a greater 
impact on the wafer fab cycle time because 
photolithography is one of the most critical process areas 
since wafer visits these tools multiple times (~25 times 
approx.), in comparison to the large batch size vacuum 
deposition tool with 9 visits approx. 
 The final simulation included combined analysis 
with the operation dedication for both the Photo Exposure 
and the large batch size vacuum tool, results are shown in 
Figure 6. The cycle times increased significantly for regular 
wafers around 26% approx. average and for priority express 
lots within range of 8% - 13%. The regular wafers 
accumulated longer delays due to their lower work priorities 
and being preempted by the express wafers. This alludes to 
the effect of manufacturing disciplines on the fab cycle times 
and system behavior. These results also indicate that the 
probability of wafer cycle time increasing goes up when 
several tools are dedicated.  
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Figure 6: Impact of Tool Dedication on Model Cycle Time. 

 
3.7 Less Significant Factors 

Several other sensitivity experiments yielded less significant 
results. Transport lot size between steps, minimum batch 
size on a large batch tool, and actual distribution of starts 
were evaluated. Increasing transport lot size between steps 
did tend to increase cycle time, but only by a small amount. 
Increasing the minimum batch size on one of the batch tools 
increased cycle time for one product by 10%. This cycle time 
effect is due to increase in queue delay time and was not 
very large relative to overall cycle times. This may have been 
because of the small lot sizes used in the Seagate factory. 
Modelling actual lot releases at the time that they occurred, 
instead of having releases occur uniformly, increased cycle 
times only slightly.  
 

4.  CONCLUSION AND RECOMMENDATIONS 

This project was successful in bringing cycle times in the 
model much closer to actual cycle times during the 
validation period. When most of the additional detail 
outlined in Section 2.2 was added, average model cycle times 
for the main process flow rose to 5% higher than actual 
cycle times. When small, dedicated operator groups were 
also added, cycle times became even higher (indicating that 
some additional effort is required to include more accurate 
operator data). The top cycle time tools in the resulting 
model also better matched the industrial engineers’ 
perceptions of top cycle time contributors in the factory.  

This study found that the most critical step in validating 
an on-going model is to make sure that the current 
assumptions accurately reflect the data that is being 
validated against. This is no small task when working with a 
recording head wafer fab in which production is being 
ramped, and product mix, yields, and rework levels are 
constantly changing. The Seagate model was particularly 
sensitive to assumptions about operators, equipment 
downtime, rework, and equipment dedication. Less obvious 
in these results, but still believed to be important for this 
model, was the use of actual, rather than planned, tool 
quantities.  

This study showed in particular the importance of 
including operators in a model when there is a need for the 
model to accurately reflect actual cycle time. This is not 
always the case – many models are used for obtaining 
relative answers, and do not require that level of detail. 
However, in Seagate’s case, having the model show realistic 
cycle times was important for gaining the buy-in of the 
people providing the data. The authors of this study believe 
that even if operator data is not collected in minute detail, 
the inclusion of the additional level of resource contention 
for operators brings cycle times to more realistic levels.  

For this Seagate fab, the study identified areas in which 
it is, and is not, worth collecting more detailed data for future 
models. The model does not appear to be sensitive to lot 
transfer size, lot release policy (when the actual starts per 
day are used, that is), and batching policy. Time will be 
better spent ensuring that the model has up-to-date operator 
and tool quantities, and collecting better data concerning 
rework and equipment dedication policies. Equipment 
downtime falls somewhere in the middle, and is probably 
worth continuing to collect in some detail. 

One final point is that the majority of the project time 
was spent collecting data and validating the model. Actually 
running sensitivity simulation analyses consumed perhaps 
20% of the project time. This suggests that in planning other 
projects, it makes sense to allow as much time as possible 
for model validation.  
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