designfeature By Mike Stein, Paradigm Works

AS DIGITAL DESIGN BECOMES INCREASINGLY SOPHISTICATED,
CIRCUITS WITH MULTIPLE CLOCKS MUST RELIABLY

COMMUNICATE WITH EACH OTHER.

Crossing the abyss:
asynchronous signals
in a synchronous world

single clock. Most data-movement applica-

tions, including disk-drive controllers, CD-
ROM/DVD controllers, modems, network inter-
faces, and network processors, bear inherent
challenges moving data across multiple clock do-
mains. When signals travel from one clock domain
to another, the signal appears to be asynchronous
in the new clock domain.

In modern IC, ASIC, and FPGA designs, engineers
have many software programs to help them create
million-gate circuits, but these programs do not
solve the problem of signal synchronization. It is up
to the designer to know reliable design techniques
that reduce the risk of failure for circuits commu-
nicating across clock domains.

FUNDAMENTALS

The first step in managing multiclock designs is
to understand the problem of signal stability. When
asignal crosses a clock domain, it appears to the cir-
cuitry in the new clock domain as an asynchronous
signal. The circuit that receives this signal needs to
synchronize it. Synchronization prevents the meta-
stable state of the first storage element (flip-flop) in
the new clock domain from propagating through the
circuit.

Metastability is the inability of a flip-flop to arrive
at a known state in a specific amount of time. When
a flip-flop enters a metastable state, you can predict
neither the element’s output voltage level nor when
the output will settle to a correct voltage level. Dur-
ing this settling time, the flip-flop’s output is at some
intermediate voltage level or may oscillate and can
cascade the invalid output level to flip-flops
farther down the signal path.

The input must be stable during a small window
of time around the active edge of the clock for any
flip-flop. This window of time is a function of the
design of the flip-flop, the implementation technol-

0 NLY THE MOST elementary logic circuits use a

www.edn.com

Figure 1

ogy, operating conditions, and the load on the out-
put for outputs that are not buffered. Sharp edge
rates on the input signal minimize the window. More
windows of vulnerability arise as the clock frequen-
cy increases, and the probability of hitting the win-
dow increases as the data frequency increases.

FPGA manufacturers and IC foundries qualify
their flip-flops and determine their characteristics.
“MTBF” (mean time between failures) describes the
metastability characteristic of a flip-flop using sta-
tistics to determine the probability of a flip-flop’s
failure. Manufacturers base the MTBF in part on the
length of the time window during which a change in
the input signal causes the flip-flop to become un-
stable. In addition, MTBF calculation uses the fre-
quency of the input signal and the frequency of the
clock driving the flip-flop.

Each type of flip-flop in an ASIC or FPGA library
has timing requirements to help you determine the
window of vulnerability. “Setup time” describes the
time an input signal to a flip-flop must be stable be-
fore the clock edge. “Hold time” is the time the sig-
nal must remain stable after the clock edge. These
specifications are usually conservative to account for
all the possible variations in supply voltage, operat-

NO COMBINATIONAL LOGIC HERE
CLOCK 1 DOMAIN CLOCK 2 DOMAIN

DATA

D SET Q D SET Q D SET Q= OUTPUT

D> D> D
| CLR Q | CLR Q@ CLR Q
CLOCK 1 CLOCK 2

In a full synchronizer circuit, the signal-cross-
ing clock domains should pass from the origi-
nating flip-flop in the original clock domain to the first flip-
flop of the synchronizer without passing through any combi-
national logic between the originating flip-flop and the first
flip-flop of the synchronizer.

JULY 24, 2003 | EDN 59

designfeature Asynchronous signals

ing temperature, signal quality, and fab-
rication. If a design meets these timing
requirements, the possibility is negligible
that the flip-flop will fail.

Synthesis programs in modern IC and
FPGA designs ensure that digital circuits
meet the setup-and-hold requirements
for each flip-flop in the design; however,
asynchronous signals pose problems for
the software. A signal crossing a clock do-
main appears to be asynchronous to the
logic in the new clock domain. Most syn-
thesis programs have trouble determin-
ing whether asynchronous signals meet
the timing requirements for flip-flops.
Because they cannot determine the time
the flip-flop is unstable, they cannot de-
termine the total delay from the flip-flop
through the combinational logic to the
next flip-flop. The best course, then, is to
use circuits that mitigate the impact of
asynchronous signaling.

SIGNAL SYNCHRONIZATION

The purpose of synchronizing signals
is to protect downstream logic from the
metastable state of the first flip-flop in a
new clock domain. A simple synchroniz-
er comprises two flip-flops in series with-
out any combinational circuitry between
them. This design ensures that the first
flip-flop exits its metastable state and its
output settles before the second flip-flop
samples it. You also need to place the flip-
flops close to each other to ensure the
smallest possible clock skew between
them.

IC foundries help with signal synchro-
nization by providing synchronizer cells.
These cells usually comprise a flip-flop
with a very high gain that uses more pow-
er and is larger than a standard flip-flop.
Such a flip-flop has reduced setup-and-
hold-time requirements for the input sig-
nal and is resistant to oscillation when the
input signal causes a metastable condi-
tion. Another type of synchronizer cell
contains two flip-flops, thus easing your

BASIC SYNCHRONIZER

DATA

OUTPUT

A
Ol B

D SET Q

D SET Q

CLR Q CLR Q

SRR

CLOCK 2

®—{D SET Q
D>

clr Q

Figure 2

The edge-detecting synchronizer circuit adds a flip-flop to the output of the level synchronizer.

job by placing the flip-flops close to each
other and preventing you from placing
any combinational logic between them.

For synchronization to work properly,
the signal crossing a clock domain should
pass from flip-flop in the original clock
domain to the first flip-flop of the syn-
chronizer without passing through any
combinational logic between the two
(Figure 1). This requirement is important
because the first stage of a synchronizer is
sensitive to glitches that combination log-
ic produces. A long enough glitch that oc-
curs at the correct time could meet the
setup-and-hold requirements of the first
flip-flop in the synchronizer, leading the
synchronizer to pass a false-valid indica-
tion to the rest of the logic in the new
clock domain.

A synchronized signal is valid in the
new clock domain after two clock edges.
The signal delay is between one and two
clock periods in the new clock domain. A
rule of thumb is that a synchronizer cir-
cuit causes two clock cycles of delay in the
new clock domain, and a designer needs
to consider how synchronization delay
impacts timing of signals crossing clock
domains.

There are many designs for synchro-
nizers because one type does not work
well in all applications. Synchronizers fall
into one of three basic categories: level,
edge-detecting, and pulse (Table 1). Oth-
er synchronizer designs exist, but these
serve for most applications a designer en-
counters. In a level synchronizer, the sig-
nal crossing a clock domain stays high
and stays low for more than two clock cy-

SYNCHRONIZER TYPES AND USES

Type Application Input

Level Synchronizes level Level

signals

Edge- Detects rising or Level or

detecting | falling edge of input pulse

Pulse Synchronizes single Pulse
clockwide pulses

60 epN | JULY 24, 2003

Restriction

Input must be valid for at least two
clock periods in the new domain.
Each time output goes valid counts
as a single event.
Input must be valid for at least two
clock periods in the new domain.
Input pulses must have at least two
clock periods between them in the
new domain.

Output
Level

Pulse

Pulse

cles in the new clock domain. A require-
ment of this circuit is that the signal
needs to change to its invalid state before
it can become valid again. Each time the
signal goes valid, the receiving logic con-
siders it a single event, no matter how
long the signal remains valid. This circuit
is the heart of all other synchronizers.

The edge-detecting synchronizer cir-
cuit adds a flip-flop to the output of the
level synchronizer (Figure 2). The output
of the additional flip-flop is inverted and
ANDed with the output of the level syn-
chronizer. This circuit detects the rising
edge of the input to the synchronizer and
generates a clockwide, active-high pulse.
Switching the inverter on the AND gate
inputs creates a synchronizer that detects
the falling edge of the input signal.
Changing the AND gate to a NAND gate
results in a circuit that generates an ac-
tive-low pulse.

The edge-detecting synchronizer works
well at synchronizing a pulse going to a
faster clock domain. This circuit produces
a pulse that indicates the rising or falling
edge of the input signal. One restriction
of this synchronizer is that the width of
the input pulse must be greater than the
period of the synchronizer clock plus the
required hold time of the first synchro-
nizer flip-flop. The safest pulse width is
twice the synchronizer clock period. This
synchronizer does not work if the input is
a single clockwide pulse entering a slow-
er clock domain; however, the pulse syn-
chronizer solves this problem.

The input signal of a pulse synchro-
nizer is a single clockwide pulse that trig-
gers a toggle circuit in the originating
clock domain (Figure 3). The output of
the toggle circuit switches from high to
low and vice versa each time it receives a
pulse and passes through the level syn-
chronizer to arrive at one input of the
XOR gate, while a one-clock-cycle-de-
layed version goes to the other input of
the XOR. For one clock cycle, each time
the toggle circuit changes state, the out-
put of this synchronizer generates a sin-
gle clockwide pulse.

www.edn.com

designfeature Asynchronous signals

TOGGLE CIRCUIT

/ (CLOCK 1 DOMAIN)

BASIC SYNCHRONIZER

X I
I
! ’.—OUTPUT
D D SET Q TOGGLE , D SET Q D SET Q : —ID SET Q D
I
> | D> > ! D>
DATA CLR Q— 1 CLR Q cLRr Q] ! CLR Q
I ! Figure 3
CLOCK 1 CLOCK 2 ; 7Y L
I

The input signal of a pulse synchronizer is a single-clock, cyclewide pulse that triggers a toggle circuit in the originating clock domain.

The basic function of a pulse synchro-
nizer is to take a single clockwide pulse
from one clock domain and create a sin-
gle clockwide pulse in the new domain.
One restriction of a pulse synchronizer is
that input pulses must have a minimum
spacing between pulses equal to two syn-
chronizer clock periods. If the input puls-
es are closer, the output pulses in the new
clock domain are adjacent to each other,
resulting in an output pulse that is wider
than one clock cycle. This problem is more
severe when the clock period of input
pulse is greater than twice the synchro-
nizer clock period. In this case,
if the input pulses are too close,

cate with each other when the response
time of one or both circuits is unpre-
dictable. For example, an arbitrated bus
allows more than one circuit to request
access to a single bus, such as PCI or
AMBA (Advanced Microcontroller Bus
Architecture), using arbitration to deter-
mine which circuit gains access to the bus.
Each circuit signals a request, and the ar-
bitration logic determines which request
“wins.” This winning circuit receives an
acknowledgment indicating that it has
access to the bus. It then discontinues its
request and begins the bus transaction.

the synchronizer does not detect
every one.

HANDSHAKING AND FIF0s

In many applications, simple
signals are not the only infor-
mation crossing clock domains;
data, address, and con-
trol buses also travel
together across domains. Engi-
neers have at their disposal ad-
ditional tools, such as hand-
shaking protocols and FIFOs,
that can handle these situations.

Handshaking allows digital
circuits to effectively communi-

Figu

CIRCUIT A

Full- and partial-handshake signaling
are the two fundamental types of hand-
shake protocol that circuits on different
clock domains use. Each type of hand-
shake uses synchronizers, and each has its
own set of design trade-offs. In full-hand-
shake signaling, the two circuits wait for
each other before asserting or dropping
their respective handshake signal (Figure
4). First, Circuit A asserts its request sig-
nal. Next, Circuit B detects that the request
signal is valid and asserts its acknowledg-
ment signal. When Circuit A detects that
the acknowledgment signal is valid, it

drops its request signal. Finally,
when Circuit B detects that the
request is invalid, it drops its ac-

A
(CLOCK DOMAIN A)@ SSERT REQUEs,

TWO CLOCKS (3)
ONE cLock ()

re 4

TWO CLOCKS
TOTAL: FIVE CLOCKS

CIRCUIT B
(CLOCK DOMAIN B)

@ Two cLocks
(® ONEcCLOCK

(®) TWO cLOCKS
@ one cLock

TOTAL: SIX CLOCKS

In full-handshake signaling, the two circuits wait for each other
before asserting or dropping their respective handshake signals.

HANDSHAKING TECHNIQUES

knowledgment signal. Circuit A
does not make a new request
until it detects that the ac-
knowledgment signal is invalid.

This type of handshake uses
level synchronizers. A designer
uses this technique when the
acknowledging circuit (Circuit
B) needs to inform the re-
questing circuit (Circuit A)
that it is actively processing the
request. This handshake re-
quires that the requesting cir-
cuit hold off its next request
until it detects that the ac-

Handshake type | Circuits Signaling type | Sequence length | Synchronizer Restrictions

Full Circuit A Level Five clocks Level Sequence is long.
(request) Request must be invalid for at least two of the Circuit B

clock periods.

Circuit B Level Six clocks Level Acknowledgment must be invalid for at least two of the
(acknowledge) Circuit A clock periods.

Partial | Circuit A Level Three clocks Pulse or edge- Must control rate of acknowledgment pulses.
(request) detect
Circuit B Pulse Five clocks Level Request must be invalid for at least two of the Circuit B
(acknowledge) clock periods.

Partial Il Circuit A Pulse Two clocks Pulse or edge- Must save pending request information.
(request) detect
Circuit B Pulse Three clocks Pulse or edge- Must register request and acknowledgment signals.
(acknowledge) detect

62 EpN | JULY 24, 2003 www.edn.com

designfeature Asynchronous signals

knowledgment signal is invalid.
To determine the timing for this
protocol, use the rules of thumb
that signals take two clock cy-
cles to cross a clock domain and
that circuits register signals be-
fore they cross clock domains.
The complete sequence takes a
maximum of five cycles in the A
clock domain plus a maximum
of six cycles in the B clock

ing is robust because each
circuit explicitly knows the state
of the other by examining the
request and acknowledgment
signals. The drawback of this
scheme is that the entire
process uses many clock cycles
to complete the transaction.

Partial handshaking is an-
other signaling technique that
shortens this sequence of
events. With partial handshake
signaling, the two circuits com-
municating with each other do
not wait for the other one
before dropping their re-
spective signal and continuing
with the handshake sequence.
Partial handshaking is less ro-
bust than full handshaking be-
cause the handshake signals do
not indicate the state of both
circuits; each circuit must save
state information normally
present in full handshake signals. How-
ever, by not waiting until the other circuit
drops it handshake signal, the whole se-
quence of events takes less time.

When using partial-handshake signal-
ing, the acknowledging circuit must gen-
erate its signal at the correct time. If the
acknowledging circuit needs to complete
processing the request before it can han-
dle another, then the timing of the ac-
knowledgment signal is important. The
circuit uses its acknowledgment signal to
indicate when it completed any process-
ing. One partial-handshake scheme mix-
es level and pulse signaling, and the oth-
er uses only pulse signaling.

In the first partial-handshake scheme,
Circuit A asserts its request signal as an
active level, and Circuit B acknowledges
it with a single clockwide pulse. In this
case, Circuit B does not care when Cir-
cuit A drops its request signal. However,
to make this technique work, Circuit A
must drop its request signal for at least

Figure 6

64 epN | JuLY 24, 2003

CIRCUIT A
(CLOCK DOMAIN A)@

TOTAL: THREE CLOCKS

CIRCUIT A
(CLOCK DOMAIN A)®

TOTAL: TWO CLOCKS

In a partial-handshake scheme, Circuit A asserts its request signal,
and Circuit B acknowledges it with a single clockwide pulse.

P\SSER—‘ [\¥

This type of partial-handshake scheme uses pulse synchronizers, but
a circuit that has a clock that is twice as fast as the other can instead
use an edge-detecting synchronizer.

one clock cycle; otherwise, Circuit B can-
not distinguish between a previous re-
quest and a new request. With this hand-
shake, Circuit B uses a level synchronizer
for the request signal, and Circuit A uses
a pulse synchronizer for the acknowl-
edgment signal. The acknowledgment
pulses occur only when Circuit B detects
the request signal. This situation allows
Circuit A to control the spacing of puls-
es it receives into the synchronizer by
controlling the timing of its request sig-
nal (Figure 5). Once again, to determine
timing, use the rules of thumb that sig-
nals take two clock cycles to cross a clock
domain and that circuits register signals
before they cross clock domains.

The complete sequence takes a maxi-
mum of three cycles in the A clock do-
main plus a maximum of five cycles in
the B clock domain. This partial hand-
shake signaling uses two fewer clock cy-
cles in the A clock domain and one few-
er clock cycle in the B clock domain than

CIRCUIT B
(CLOCK DOMAIN B)

A
SSERT REQUEg,

(@ TWO CLOCKS
(® ONE CLOCK

3

(OWLEP®
i A
Two cLocks ® poSE
ONE cLock (®) DEASSERy req

UEST

(&) TWO CLOCKS

domain. Full handshak- Figure 5

TOTAL: FIVE CLOCKS

CIRCUIT B

ASSERT
REQ
\;EST\ (CLOCK DOMAIN B)
(2 TWo CLOCKS
/ ® onccuoon
GE
WLED
TWO CLOCKS (3) KO

TOTAL: THREE CLOCKS

full handshake signaling. You
can shave off a few more clock
cycles using a second partial-
handshake scheme where Cir-
cuit A asserts its request with a
single clockwide pulse and Cir-
cuit B acknowledges the request
with a single clockwide pulse.
In this case, both circuits need
to save state to indicate that the
request is pending.

This type of handshake uses
pulse synchronizers, but either
circuit that has a clock that is
twice as fast as the other can in-
stead use an edge-detecting syn-
chronizer instead (Figure 6).
The complete sequence takes a
maximum of two cycles in the A
clock domain plus a maximum
of three cycles in the B clock do-
main. This partial-handshaking
technique uses three fewer clock
cycles in the A clock domain and
three fewer clock cycle in the B
clock domain than full-hand-
shake signaling. This technique
is also faster than the first par-
tial-handshake signaling by one
cycle in the A clock domain and
two cycles in the B clock domain
(Table 2). These handshake pro-
tocols involve single signals that
cross clock domains. However,
when groups of signals cross
clock domains, designers need to
use more complex signaling schemes.

DATAPATH DESIGN

One important rule when synchroniz-
ing signals is that a design should not
synchronize the same signal in more than
one place; that is, a single signal fans out
to more than one synchronizer. Because
synchronization takes one to two clock
cycles, a designer cannot reliably predict
when each of these signals arrives across
a clock domain. In addition, the timing
of a group of synchronized signals in the
new clock domain can vary because the
delay can be either a single clock cycle of
delay or two cycles, depending on when
the input arrives at the synchronizer. This
situation results in a “race condition” be-
tween the individually synchronized sig-
nals. This race condition also applies to
groups of signals, such as data, address,
and control buses, that need to travel to-
gether across clock domains. Thus, you
should not use individual synchronizers

www.edn.com

66 EpN | JULY 24, 2003

designfeature Asynchronous signals

on each signal in the
group or on each bit
of a data bus or an ad-

| SYNCHRONIZE

REQUEST

dress bus in which SYNCHRONIZE

ACKNOWLEDGE

each signal

needs to be Figure 7

valid in the new clock CIRCUIT A CIRCUIT B
. HOLD SAMPLE
domains at the same

time.

One way to solve | A datapath-synchronizer design uses a holding register and hand-

the problem of bus | shake signaling.
synchronization is to

use a holding register and handshake sig-
naling. This circuit comprises a register
that holds the signal bus and a hand-
shaking scheme (Figure 7). The hand-
shake signals indicate when the circuit in
the new clock domain can sample the bus
and when the originating circuit can re-
place the current contents of the hold-
ing register.

In this design, the transmitting circuit
stores the data (signal bus) in the hold-
ing register as it asserts the request signal.
These two actions can happen at once be-
cause the request signal takes at least one
clock cycle before the receiving circuit de-
tects it (the minimum handshake-syn-
chronization delay). When the receiving
circuit samples the data (signal bus), it as-
serts the acknowledgment signal. This de-
sign uses full handshaking and takes a
long time to complete the transfer. A de-
sign using full-handshake signaling has a
large window of time for the receiving cir-
cuit to sample the signal bus and is thus
somewhat inefficient. The same design
can use a partial handshake instead of a
full handshake to speed the transfer.

With this type of bus synchronization,
you synchronize the handshake signals
but not the signal bus. The signal bus
originates from the holding register and
remains stable until after the receiving
circuit samples it. Note that bus syn-
chronization may not work in applica-
tions in which the transmitting circuit
presents data too fast for the receiving
circuit to handle it.

ADVANCED DATAPATH DESIGN

In many cases, data needs to “pile up”
as it crosses clock domains, so designs us-
ing a single holding register do not work.
One such case is a transmitting circuit
that presents data in bursts, too quickly
for a receiving circuit to sample. Anoth-
er such case is a receiving circuit that
samples data faster, but in a narrower
data width, than the transmitting circuit

sends it. These situations call for the use
of a FIFO.

Fundamentally, a designer uses a FIFO
for speed matching, data-width match-
ing, or both. For speed matching, the
faster port on the FIFO handles burst
transfers while the slower port handles
constant rate transfers. However, even
with different access types and speeds,
the average data rates into and out of the
FIFO have to be the same; otherwise, the
FIFO overflows or underflows. Like the
single-register design, the FIFO holds
data in registers or memory while it syn-
chronizes status signals that determine
when data can be written into the FIFO
or when data can be read out of it.

In speed-matching applications, each
port (read or write) has a different clock.
The registers in the FIFO use the write-
port clock, just as the holding register uses
the clock of the circuit changing the reg-
ister’s contents. Signal synchronization
takes place in the pointer logic and is
more complex than handshake signaling.

Several approaches exist for designing
the pointer logic. The first method is to
synchronize the read and write strobes
while using counters in each clock do-
main to track the available entries in the
FIFO. The counters reflect the number of
FIFO entries available for reading or
writing, and the counters are synchro-
nous with their respective ports. The read
counter tracks the number of entries that
contain valid data, and the write count-
er tracks the number of entries available
to store data. When you reset the point-
er logic, the read counter starts at zero
because no data is available to read. The
write counter starts at the number of en-
tries in the FIFO, meaning that all the en-
tries are available for storing data.

The read strobe decrements the read
counter and is synchronized to the write-
clock domain before it increments the
write counter. The write strobe decre-
ments the write counter and is synchro-

www.edn.com

68 epN | JuLy 29, 2003

designfeature

nized to the read-clock domain before it
increments the read counter.

This design requires single clockwide
pulses and pulse synchronizers for the
read and write strobes because, as a level
signal crosses from one clock domain to
a faster one, it remains valid for more
clock cycles in the faster domain than in
the slow one. Because each counter
changes whenever the read or write
signal is valid, then the faster clock do-
main detects more reads or writes than
actually occurred in the slower clock do-
main. Pulse synchronizers translate a
clockwide pulse in one clock domain to
a clockwide pulse in the new clock do-
main, and each pulse represents one read
or write of the FIFO.

This FIFO-status technique gives pes-
simistic status for both reads and writes.
The status for the write port indicates full
when the FIFO has all entries filled and
continues to indicate full after the read
strobe triggers, because synchronization
delays the strobe to the write counter.
This situation is also true for the empty
status on the read port, because syn-
chronization delays the write strobe to
the read counter.

Another consideration for this design
is detecting full or empty at the right
time. If the FIFO has one entry remain-
ing, and the write strobe triggers, the
FIFO must then set the full status. This
scenario gives the full indication one
clock sooner to allow the circuit writing
into the FIFO enough time to stop the
next write from overflowing the FIFO.
This situation is also true for the read
port of the FIFO. In this case, if the FIFO
has only one entry, and the read strobe

GRAY CODE VERSUS
BINARY CODE
Decimal Binary Gray
0 0 0
1 1 1
2 10 11
3 11 10
4 100 110
5 101 m
6 110 101
7 111 100
8 1000 1100
9 1001 1101
10 1010 1111
n 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1 1000

Figure 8

/— BINARY ADDER

BINARY TO
GRAY CODE

GRAY CODE
TO BINARY

POINTER
(GRAY CODE)

The Gray-code counter, a bina-
ry adder, has converters from
‘ and to Gray code before and after the adder.

triggers, you must set the empty status to
give the read circuitry time to prevent a
read of an empty FIFO.

This pointer logic restricts circuits
from accessing the FIFO on every clock
cycle, even in the slow clock domain. The
advantage of this feature is that the cir-
cuits accessing the FIFO have at least one
clock cycle to evaluate the FIFO status.
The FIFO can have every entry filled with
data without overwriting valid data or
can be empty without reading invalid
data. Another advantage of this design is
that each side can read its respective
counter and determine how many entries
are available. A designer can use this FIFO
design for circuits that perform multiple
reads or writes of data without causing an
underflow or overflow condition.

The drawback of this design is that
counters, rather than direct comparisons
of the read and write pointers, determine
status. For large FIFOs, these counters are
large. Also, the average data rates are half
the slowest clock frequency, because the
read or write pulses from the faster clock
domain must have at least two clock pe-
riods between them in the slow-clock do-
main when using pulse synchronizers.
One way to eliminate some of these
problems is to use direct pointer com-
parison.

In this FIFO design, comparing the
read and write pointers determines the
FIFO status. Pointer comparison in asyn-
chronous designs is more challenging,
because each pointer exists in a different
clock domain, and synchronizing a sig-
nal bus requires that the bus does not
change while synchronizing handshake
signals. A FIFO design using this tech-
nique for pointer synchronization would
be slow. To solve this problem, the FIFO
pointer logic uses Gray code instead of
binary code for the pointers.

Gray code changes only one bit at a
time for each increase or decrease in the
count (Table 3). You can use synchroniz-

www.edn.com

ers on Gray-code buses because only one
signal changes each time the bus changes,
eliminating the race condition between
bits of the Gray-coded bus as it passes
through separate synchronizers. The
pointers for this design are Gray-code
counters. Using binary pointers would re-
quire synchronizing pointer values after
converting them to Gray code, and using
conversion logic violates the restriction
that synchronized signals originate from
flip-flops before crossing a clock domain.

The Gray-code counter is a binary
adder with converters from and to Gray
code before and after the adder (Figure
8). Converting to and from Gray code is
an XOR operation, so you need only a few
more levels of logic than a binary count-
er. To convert Gray code to binary, use:
B,=G; B —1=B +G —~1;B —2=
B, —1+G,—2..B,=B,+G; B,=B +G,.
To convert binary to Gray code, use:
G,=B; G,—1=B +B,—~1;G,—2=
B,—1+B,—2..G =B +B; G,=B +B,
A design can use the same technique to
compare Gray-code pointer values by
adding converters between the pointers
and binary-comparison logic.

A FIFO with this pointer logic is fast,
and circuits can read or write the FIFO
on every clock cycle. However, accessing
the FIFO on every cycle means the FIFO
status has to include almost-full and al-
most-empty indications, so that the cir-
cuits accessing the FIFO have time to
stop. Almost full indicates that one entry
is available to write, and almost empty
indicates that one entry remains unread.
This situation describes a design that
needs the fewest possible status signals,
and a design needs more indicators if the
circuits accessing the FIFO use a burst ac-
cess with a fixed minimum size.

This FIFO-status technique gives pes-
simistic status for both reads and writes.
The status on the write port indicates full
when the FIFO fills and continues to in-
dicate full after it the circuit reads it, be-
cause synchronization delays the read
pointer to the write-side comparison log-
ic. This situation is also true for the emp-
ty status on the read side, because syn-
chronization delays the write pointer to
the read-side comparison logic.

Handling signals crossing clock do-
mains becomes less challenging when you
design with techniques that reduce the
risk of communication failure between
circuits in different domains. To prevent
metastability of flip-flops receiving sig-

www.edn.com

nals that cross clock domains from caus-
ing unpredictable behavior in circuits, use
synchronization. Level synchronizers
work well for signals that remain valid for
many clock cycles. Use an edge-detecting
synchronizer for level signals in the slow-
er clock domain that change to pulses in
the new clock domain. Finally, use pulse
synchronizers for pulses crossing clock
domains. Remember that, when a signal
bus crosses clock domains, it needs to ar-
rive in the new clock domain during the
same clock cycle. Do not synchronize each
signal but use a holding register and
handshaking. Handshaking indicates
when signals in the holding register are
valid and when to sample them. Using
handshaking and a holding register is use-
ful for data buses but does not provide for
passing more than one data word at a time
to the new clock domain.OI

REFERENCES

1. Davis, Leroy, Logic Metastability,
www.interfacebus.com/Design_MetaSta
ble.html, September 2002.

2. Seed, Luke, Introduction to VLSI/
Clocked CMOS Circuits, The University of
Sheffield, UK, www.shef.ac.uk/eee/
teach/resources/eee310/documents/VLSI
_Clocked_CMOS.pdf, February 2002.

3. Haseloff, Eilhard, “Metastable Re-
sponse in 5-V Logic Circuits,” Texas In-
struments Application Note SDYA006,
www-s.ti.com/sc/psheets/sdya006/
sdya006.pdf, February 1997.

4. Cummings, Clifford E, “Synthesis
and Scripting Techniques for Designing
Multi-Asynchronous Clock Designs,”
Synopsys Users Group Conference, San
Jose, CA, www.sunburst-design.com/pa-
pers, March 2001.

5. “A Metastability Primer,” Philips
Semiconductors Application Note AN2-
19, www.semiconductors.philips.com/
acrobat/applicationnotes/AN219_1.
pdf, Nov 15, 1989.

6. Wakerly, John F, Digital Design: Prin-
ciples and Practices, Prentice Hall, 1990.

AUTHOR’S BIOGRAPHY

Mike Stein is principal consulting engineer
at Paradigm Works (Andover, MA), where
he works on ASIC and FPGA design, syn-
thesis, and static-timing analysis. He re-
ceived a BSEE from Northeastern Univer-
sity in 1995. His spare-time interests
include playing video games with his son,
photography, snowboarding, biking, and
building Lego robots.

JULY 24, 2003 | EDN 69

