
Revision V1.0
Date 13.12.2013

Description for hipecs IRQ functions

frenzel + berg electronic GmbH & Co.KG – Turmgasse 4 – 89073 Ulm - +49 (731) 97057-0 – www.frenzel-berg.de Page 1 of 3

This is the description for the frenzel + berg electronic demo application for using interrupts at the hipecs PLC or
CORE10 modules.

Introduction

For this demo application you need at least a hipecs core module or a hipecs PLC. In order to trigger an interrupt,
you can either use an external signal or you can connect an output (DOUTB0.2) of the hipecs with a configured
IRQ input (DINB1.2) and click a button in the visualization to toggle the output pin.

Preparation

There are only few preparations necessary to use this project.

hipecs setup

The “app_hipecsplc_comtest_v1r1_en.prj” file is the CODESYS PLC program for this example. The communication
parameters are COM15 and 57600 Baud. This must be changed to your specific PC settings!

When using a frenzel + berg Visu-P Panel, you have to use the COM3 (RS422) interface for the SGI connection to
the panel. Baudrate is 460.000 Baud. Check Visu-Panel DIP switches, too.

It is also possible to use the CODESYS internal visualization.

In order to trigger the IRQ by clicking the button in the CODESYS visualization, you have to connect the digital
output byte 0.2 with the digital input byte 1.2. It is also possible to use an external signal.

Revision V1.0
Date 13.12.2013

Description for hipecs IRQ functions

frenzel + berg electronic GmbH & Co.KG – Turmgasse 4 – 89073 Ulm - +49 (731) 97057-0 – www.frenzel-berg.de Page 2 of 3

Starting and using the demo project

It is recommended to use the target visualisation to operate the demo application. In the “VISU_PRG” visualization,
there are several grey buttons. These buttons trigger the corresponding function once. With the blue buttons, you
can change parameters or variables.

The different CoDeSys POUs and functions

PLC_PRG

The programm is running in this POU. By clicking the corresponding button in the VISU, the variable IRQ_Step is
set to a specific value. The function will then be called and the variable is set back to 0.

call_me_from_interrupt

This is the POU triggered by the interrupt. A variable is incremented to check if the program was executed.

Attention! Functions or POUs triggered by an interrupt should be as short as possible.

To use an IRQ:

1. Register Service

2. Then enable interrupt

To delete an IRQ:

1. Disable interrupt first

2. Then delete service

It is possible to set a priority for the IRQs. It is emphasized, that there must be one IRQ per priority level only. It is
not possible to set the same priority for different IRQ channels.

IrqNr in register function digital input of hipecs

hardware
2 DINB1.2
3 DINB 1.3
4 DINB 1.4
5 DINB 1.5
6 DINB 1.6
7 DINB 1.7

Visu description on page 3.

Revision V1.0
Date 13.12.2013

Description for hipecs IRQ functions

frenzel + berg electronic GmbH & Co.KG – Turmgasse 4 – 89073 Ulm - +49 (731) 97057-0 – www.frenzel-berg.de Page 3 of 3

Visu

Button Function
register service

(must be done first)
priority + / priority + increments or decrements the priority of the IRQ from

0…32 where 0 is lowest and 32 is highest priority
rising / falling / both sets the edge detection of the IRQ
execute function

-> SysInterrupt_RegService()

registers the IRQ service in the operating system with
the previously chosen parameters. You have to use
digital input byte 1.2 !!

enable service @ input
(only after successful registration)

execute function calls function: SysInterrupt_Enable(). IRQ can now be
used.

Trigger interrupt with OUT0.2 sets output byte 0.2, which should be connected with
input byte 1.2. So an interrupt should be triggered.

Trigger interrupt by setting flag set the interrupt request flag in the operating system. An
interrupt will be triggered.

disable service calls function:SysInterrupt_Disable()
delete service calls function: SysInterrupt_DeleteService(). After that,

the inputs works as regular input again.

