
Page 1 of 153

Page 2 of 153

This guide updated March 23, 2017

3DMark – The Gamer's Benchmark .. 5

3DMark benchmarks at a glance .. 6

3DMark edition features ... 7

Latest version numbers .. 8

Test compatibility .. 9

Good testing guide ... 10

Options (Windows) .. 11

Android and iOS settings .. 14

Notes on DirectX 11.1 ... 15

Time Spy .. 17

DirectX 12 .. 17

Direct3D feature levels ... 18

System requirements ... 19

Graphics tests ... 20

CPU test .. 21

Scoring .. 22

DirectX 12 features in Time Spy ... 24

Time Spy engine ... 31

Post-processing ... 36

Time Spy version history... 37

Fire Strike ... 39

System requirements ... 40

Default settings ... 41

Graphics test 1 ... 42

Graphics test 2 ... 43

Physics test... 44

Combined test .. 45

Scoring .. 46

Fire Strike engine .. 48

Post-processing ... 51

Fire Strike version history .. 53

Sky Diver ... 55

System requirements ... 56

Default settings ... 57

Page 3 of 153

Graphics test 1 ... 58

Graphics test 2 ... 59

Physics test... 60

Combined test .. 61

Scoring .. 62

Sky Diver engine.. 66

Post-processing ... 68

Sky Diver version history ... 69

Cloud Gate ... 71

System requirements ... 72

Default settings ... 73

Graphics test 1 ... 74

Graphics test 2 ... 75

Physics test... 76

Scoring .. 77

Cloud Gate engine ... 79

Cloud Gate version history ... 80

Sling Shot .. 82

Sling Shot ... 83

Sling Shot Extreme ... 84

Cross-platform benchmarking .. 85

Device requirements .. 86

Default settings ... 87

Graphics test 1 ... 88

Graphics test 2 ... 89

Physics Test ... 90

Scoring .. 91

Sling Shot engine ... 95

Sling Shot version history ... 97

Ice Storm ... 99

System requirements .. 100

Ice Storm .. 102

Ice Storm Extreme ... 103

Graphics test 1 .. 104

Graphics test 2 .. 105

Page 4 of 153

Physics test.. 106

Scoring ... 107

Ice Storm engine ... 109

Ice Storm version history .. 110

API Overhead feature test ... 112

Correct use of the API Overhead feature test .. 113

System requirements .. 114

Windows settings .. 115

Technical details ... 116

DirectX 12 path .. 118

DirectX 11 path .. 119

Vulkan path ... 120

Mantle path ... 121

Metal path .. 122

OpenGL ES 3.0 path ... 123

Scoring ... 124

API Overhead version history .. 125

Stress Tests .. 126

Options .. 127

Technical details ... 128

Scoring ... 129

How to report scores .. 130

Release notes .. 131

Windows edition .. 131

Windows RT edition ... 142

Android edition ... 143

iOS edition - 3DMark Sling Shot app .. 149

iOS edition - 3DMark Ice Storm app ... 150

iOS edition - 3DMark API Overhead app ... 152

About Futuremark, a UL company .. 153

Page 5 of 153

3DMark – The Gamer's Benchmark

3DMark is a tool for measuring the performance of computer hardware and

mobile devices. It includes many different benchmarks, each designed for a

specific class of hardware from smartphones to high-performance gaming PCs.

3DMark works by running intensive graphical and computational tests. The

more powerful your hardware, the smoother the tests will run. Don't be

surprised if frame rates are low. 3DMark benchmarks are very demanding.

Each benchmark gives a score that you can use to compare similar devices and

systems. When testing devices or components, be sure to use the most

appropriate test for the hardware's capabilities and report your results using

the full name of the benchmark test, for example:

 "Video card scores 5,800 in 3DMark Fire Strike benchmark."

 "Video card scores 5,800 in 3DMark benchmark."

3DMark is used by millions of gamers, hundreds of hardware review sites and

many of the world's leading manufacturers. We are proud to say that 3DMark

is the world's most popular and widely used benchmark.

The right test every time

We've made it easy to find the right test for your hardware and devices. When

you open the 3DMark app on any platform, the Home screen will recommend

the most suitable benchmark. You can find and run other tests on the

Benchmarks screen.

Choose your tests

3DMark grows bigger every year with new tests. When you buy 3DMark from

Steam, or download the Android app from Google Play, you can choose to

install only the tests you need. In 3DMark Advanced and Professional Editions,

tests can be installed and updated independently.

Complete Windows benchmarking toolkit

3DMark includes benchmarks for DirectX 12, DirectX 11, DirectX 10, and

DirectX 9 compatible hardware. All tests are powered by modern graphics

engines that use Direct3D feature levels to target compatible hardware.

Cross-platform benchmarking

You can measure the performance of Windows, Android, and iOS devices and

compare scores across platforms.

Page 6 of 153

3DMark benchmarks at a glance

3DMark includes a number of benchmarks, each designed for specific class of

hardware. You will get the most useful and relevant results by choosing the

most appropriate test for your system.

Benchmark Target hardware Engine
Rendering

resolution1

Time Spy
High-performance gaming

PCs running Windows 10

DirectX 12

feature level 11
2560 × 1440

Fire Strike Ultra
PC systems designed

for 4K gaming

DirectX 11

feature level 11

3840 × 2160

(4K UHD)

Fire Strike Extreme
Multi-GPU systems and

overclocked PCs

DirectX 11

feature level 11
2560 × 1440

Fire Strike
High-performance

gaming PCs

DirectX 11

feature level 11
1920 × 1080

Sky Diver
Gaming laptops and

mid-range PCs

DirectX 11

feature level 11
1920 × 1080

Cloud Gate
Notebooks and typical

home PCs

DirectX 11

feature level 10
1280 × 720

Sling Shot Extreme
High-end smartphones

and tablets

OpenGL ES 3.1

Metal
2560 × 1440

Sling Shot
Mainstream smartphones

and tablets
OpenGL ES 3.0 1920 × 1080

Ice Storm Extreme
Low cost smartphones

and tablets

DirectX 11

feature level 9

OpenGL ES 2.0

1920 × 1080

Ice Storm

Ice Storm Unlimited

Older smartphones

and tablets

DirectX 11

feature level 9

OpenGL ES 2.0

1280 × 720

1 The resolution shown in the table is the resolution used to render the Graphics tests. In most cases, the Physics test

or CPU test will use a lower rendering resolution to ensure that GPU performance is not a limiting factor.

Page 7 of 153

3DMark edition features

Basic

Edition

Advanced

Edition

Professional

Edition

Time Spy ● ● ●

Fire Strike Ultra ✕ ● ●

Fire Strike Extreme ✕ ● ●

Fire Strike ● ● ●

Sky Diver ● ● ●

Cloud Gate ● ● ●

Ice Storm Extreme ● ● ●

Ice Storm ● ● ●

API Overhead feature test ✕ ● ●

Stress Tests ✕ ● ●

Install tests independently ✕ ● ●

Hardware monitoring ✕ ● ●

Custom run settings ✕ ● ●

Skip demo option ✕ ● ●

Save results offline ✕ ● ●

Private, offline results option ✕ ✕ ●

Command line automation ✕ ✕ ●

Licensed for commercial use ✕ ✕ ●

Support Online Online Email & phone

Page 8 of 153

Latest version numbers

 Windows Android iOS

3DMark app 2.3.3663 1.6.3439 See table below

Time Spy 1.0 ✕ ✕

Fire Strike 1.1 ✕ ✕

Sky Diver 1.0 ✕ ✕

Cloud Gate 1.1 ✕ ✕

Sling Shot ✕ 2.0 2.0

Ice Storm 1.2 1.2 1.2

API Overhead 1.5 ✕ 1.0

On iOS, 3DMark benchmarks are separate apps due to platform limitations.

iOS app version

3DMark Sling Shot 1.0.745

3DMark Ice Storm 1.4.978

3DMark API Overhead 1.0.147

Page 9 of 153

Test compatibility

 Windows Android iOS

Time Spy ● ✕ ✕

Fire Strike Ultra ● ✕ ✕

Fire Strike Extreme ● ✕ ✕

Fire Strike ● ✕ ✕

Sky Diver ● ✕ ✕

Cloud Gate ● ✕ ✕

Sling Shot Extreme ✕ ● ●

Sling Shot ✕ ● ●

Ice Storm Extreme ● ● ●

Ice Storm ● ● ●

API Overhead ● ✕ ●

Page 10 of 153

Good testing guide

To get accurate and consistent benchmark results you should test clean

systems without third party software installed. If this is not possible, you

should close as many background tasks as possible, especially automatic

updates or tasks that feature pop-up alerts such as email and messaging

programs.

If you are testing a mobile device, it is a good idea to close apps that may be

running in the background, and disable notifications before running the

benchmark. Some high-powered mobile devices use thermal throttling to avoid

overheating the CPU, which can lead to lower scores on successive runs. To

reduce this effect, we recommended waiting 15 minutes before and after

3DMark runs to allow the device to cool down.

 Running other programs during the benchmark can affect the results.

 Don't touch the mouse, keyboard or touchscreen while running tests.

 Do not change the window focus while the benchmark is running.

 Cancel a test by pressing the ESC key (PC), Back Button (Android), or Home

button (iOS).

Recommended process

1. Install all critical updates to ensure your operating system is up to date.

2. Install the latest approved drivers for your hardware.

3. Close other programs.

4. Run the benchmark.

Expert process

1. Install all critical updates to ensure your operating system is up to date.

2. Install the latest approved drivers for your hardware.

3. Restart the computer or device.

4. Wait 2 minutes for startup to complete.

5. Close other programs, including those running in the background.

6. Wait for 15 minutes.

7. Run the benchmark.

8. Repeat from step 3 at least three times to verify your results.

http://www.futuremark.com/support/benchmark-rules#approveddrivers
http://www.futuremark.com/support/benchmark-rules#approveddrivers

Page 11 of 153

Options (Windows)

The settings on the Options screen apply to all available benchmark tests.

Register / Unregister

If you have a 3DMark Advanced or Professional Edition upgrade key, copy it

into the box and press the Register button. If you wish to unregister your key,

so you can move your license to a different machine for example, press the

Unregister button.

Validate result online

This option is only available in 3DMark Professional Edition where it is disabled

by default. In 3DMark Basic and Advanced Editions, all results are validated

online automatically.

Automatically view results online

When this box is checked 3DMark will automatically open a browser window

allowing you to view your results on the Futuremark website after you

complete a benchmark run.

 3DMark Basic Edition, selected by default and cannot be disabled.

 3DMark Advanced Edition, selected by default.

 3DMark Professional Edition, disabled by default.

Automatically hide results online

Check this box if you wish to keep your 3DMark test scores private. Hidden

results are not visible to other users and do not appear in search results.

Hidden results are not eligible for competitions or the Futuremark

Overclocking Hall of Fame.

 3DMark Basic Edition, disabled by default and cannot be selected.

 3DMark Advanced Edition, disabled by default.

 3DMark Professional Edition, selected by default.

Scan SystemInfo

SystemInfo is a component used by Futuremark benchmarks to identify the

hardware in your system or device. It does not collect any personally

identifiable information. This option is selected by default and is required in

order to get a valid benchmark test score.

SystemInfo hardware monitoring

This option controls whether SystemInfo monitors your CPU temperature,

clock speed, power, and other hardware information during the benchmark

run. This option is selected by default.

http://www.3dmark.com/hall-of-fame/
http://www.3dmark.com/hall-of-fame/

Page 12 of 153

Demo audio

Uncheck this box if you wish to turn off the soundtrack while a demo is

running. This option is selected by default.

Language

Use this drop down to change the display language. The choices are:

 English

 German

 Simplified Chinese

 Russian

GPU count

You can use this drop down to tell 3DMark how many GPUs are present in the

system you are testing. The default choice, Automatic, is fine in most cases and

should only be changed in the rare instances when SystemInfo is unable to

correctly identify the system's hardware.

Scaling mode

This option controls how the rendered output of each test, which is at a fixed

resolution regardless of hardware, is scaled to fit the system's Windows

desktop resolution.

The default option is Centered, which maintains the aspect ratio of the

rendered output and, if needed, adds bars around the image to fill the

remainder of the screen.

Selecting Stretched will stretch the rendered output to fill the screen without

preserving the original aspect ratio. This option does not affect the test score.

Output resolution

3DMark tests are rendered at a fixed resolution regardless of hardware – the

rendering resolution. The resulting frames are then scaled to fit the system's

Windows desktop resolution – the output resolution. The default option is

automatic, which sets the output resolution to the Windows desktop

resolution. Change this option if you wish to display the benchmark at some

other resolution. This option does not affect the test score.

Windows custom settings

Each benchmark test has its own settings, found on the Custom Run tab on the

Test Details screen. Use custom settings to explore the limits of your PC's

performance.

Custom settings are only available in the Advanced and Professional Editions.

Page 13 of 153

You will only get an official 3DMark test score when you run a test with the

default settings. When using custom settings you will still get the results from

individual sub-tests as well as hardware performance monitoring information.

Page 14 of 153

Android and iOS settings

The settings found on the Settings screen apply to all available 3DMark

benchmark tests.

Show demo

Select NO if you wish to skip the demo. This option is set to YES by default.

Language

Use this drop down to change the display language. The choices are:

 English

 Simplified Chinese

 Russian

Page 15 of 153

Notes on DirectX 11.1

3DMark does use DirectX 11.1, but only in a minor way and with a fall-back for

DirectX 11 to ensure compatibility with the widest range of hardware and to

ensure that all tests work with Windows 7 and Windows 8.

DirectX 11.1 API features were evaluated and those that could be utilized to

accelerate the rendering techniques in the tests designed to run on

DirectX 11.0 were used.

Discard resources and resource views

In cases where subsequent Direct3D draw calls will overwrite the entire

resource or resource view and the application knows this, but it is not possible

for the display driver to deduce it, a discard call is made to help the driver in

optimizing resource usage. If DirectX 11.1 is not supported, a clear call or no

call at all is made instead, depending on the exact situation. This DX11.1

optimization may have a performance effect with multi-GPU setups or with

hardware featuring tile based rendering, which is found in some tablets and

entry-level notebooks.

16 bpp texture formats

The 16 bpp texture formats supported by DirectX 11.1 are used on Ice Storm

game tests to store intermediate rendering results during post processing

steps. If support for those formats is not found, 32 bpp formats are used

instead. This optimization gives a noticeable performance effect on hardware

such as tablets, entry-level notebooks for which the Ice Storm tests provide a

suitable benchmark.

There are no visual differences between the tests when using DirectX 11 or

DirectX 11.1 in 3DMark and the practical performance difference from these

optimizations is limited to Ice Storm on very low-end Windows hardware, and

on Windows RT.

Page 16 of 153

Page 17 of 153

Time Spy

Time Spy is a DirectX 12 benchmark test for high-performance gaming PCs

running Windows 10. Time Spy includes two Graphics tests, a CPU test, and a

demo. The demo is for entertainment only and does not influence the score.

With its pure DirectX 12 engine, which supports features like asynchronous

compute, explicit multi-adapter, and multi-threading, Time Spy is the ideal

benchmark for testing the DirectX 12 performance of the latest graphics cards.

DirectX 12

DirectX 12, introduced with Windows 10, is a low-level graphics API that

reduces processor overhead. With less overhead and better utilization of

modern GPU hardware, a DirectX 12 game engine can draw more objects,

textures and effects to the screen. How much more? Take a look at the table

below that compares Time Spy with Fire Strike, a high-end DirectX 11 test.

Average amount of processing per frame

With DirectX 12, developers can significantly improve the multi-thread scaling

and hardware utilization of their titles. But it requires a considerable amount

of graphics expertise and memory-level programming skill. The programming

investment is significant and must be considered from the start of a project.

3DMark Time Spy was developed with expert input from AMD, Intel, Microsoft,

NVIDIA, and the other members of the Futuremark Benchmark Development

Program. It is one of the first DirectX 12 apps to be built "the right way" from

the ground up to fully realize the performance gains that DirectX 12 offers.

Vertices Triangles Tessellation patches
Compute shader

invocations

3DMark Fire Strike

Graphics test 1
3,900,000 5,100,000 500,000 1,500,000

3DMark Fire Strike

Graphics test 2
2,600,000 5,800,000 240,000 8,100,000

3DMark Time Spy

Graphics test 1
30,000,000 13,500,000 800,000 70,000,000

3DMark Time Spy

Graphics text 2
40,000,000 14,000,000 2,400,000 70,000,000

http://www.futuremark.com/business/benchmark-development-program
http://www.futuremark.com/business/benchmark-development-program

Page 18 of 153

Direct3D feature levels

DirectX 11 introduced a paradigm called Direct3D feature levels. A feature level

is a well-defined set of GPU functionality. For instance, the 9_1 feature level

implements the functionality in DirectX 9.

With feature levels, 3DMark tests can use modern DirectX 12 and DirectX 11

engines and yet still target older DirectX 10 and DirectX 9 level hardware. For

example, 3DMark Cloud Gate uses a DirectX 11 feature level 10 engine to

target DirectX 10 compatible hardware.

Time Spy uses DirectX 12 feature level 11_0. This lets Time Spy leverage the

most significant performance benefits of the DirectX 12 API while ensuring

wide compatibility with DirectX 11 hardware through DirectX 12 drivers.

Game developers creating DirectX 12 titles are also likely to use this approach

since it offers the best combination of performance and compatibility.

https://msdn.microsoft.com/en-us/library/windows/desktop/ff476876(v=vs.85).aspx

Page 19 of 153

System requirements

OS Windows 10, 64-bit

Processor 1.8 GHz dual-core Intel or AMD CPU

Storage 2 GB free disk space

GPU DirectX 12

Video memory 1.7 GB (2 GB or more recommended)

Known compatibility issues

 Time Spy fails to run on multi-GPU systems with Windows 10 build 10240,

but this is not the fault of the benchmark. You must upgrade Windows 10

to build 10586 (“November Update”) or later to enable multi-GPU

configurations to work.

 AMD Radeon HD 7970/7870 and R9 280 series – the latest available drivers

can cause crashes in Time Spy Graphics test 2. This appears to be a video

driver issue. Scores from runs that do complete are fine.

 Intel Haswell with eDRAM (Core i7-4770R, for example) – Time Spy crashes

with the latest available Intel drivers. This is a driver issue.

 Surface 4 Pro – The latest video drivers are available from Microsoft are not

compatible with Time Spy.

Page 20 of 153

Graphics tests

Time Spy includes two graphics tests. These tests are designed to stress the

GPU while minimizing the CPU workload to ensure that CPU performance is

not a limiting factor.

The two tests have a different mix of rendering workload elements. The

differences come from the amount of tessellated geometries, the average

tessellation factor, the amount of particle effects, the amount of geometries,

the amount of transparent geometries, the post processing effects that are

used, the amount of lights, and the amount of ray-marched volumetric

illumination.

Graphics test 1

Graphics test 1 focuses more on rendering of transparent elements. It utilizes

the A-buffer heavily to render transparent geometries and big particles in an

order-independent manner. Graphics test 1 draws particle shadows for

selected light sources. Ray-marched volumetric illumination is enabled only for

the directional light. All post-processing effects are enabled.

Graphics test 2

Graphics test 2 focuses more on ray-marched volume illumination with

hundreds of shadowed and unshadowed spot lights. The A-buffer is used to

render glass sheets in an order-independent manner. Also, lots of small

particles are simulated and drawn into the A-buffer. All post-processing effects

are enabled.

Processing performed in an average frame

 Vertices
Tessellation

patches
Triangles

Pixels

shader

invocations2

Compute

shader

invocations

Graphics test 1 30 million 0.8 million 13.5 million 80 million 70 million

Graphics test 2 40 million 2.4 million 14 million 50 million 70 million

2 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution

of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 21 of 153

CPU test

The CPU test is designed to stress the CPU while minimizing the GPU workload

to ensure that GPU performance is not a limiting factor.

The CPU test measures performance using a demanding combination of

physics simulation, occlusion culling, and procedural generation.

Physics computations are performed with the x86 path of the Bullet Open

Source Physics library (v2.83) using rigid bodies and a Featherstone solver.

The CPU test includes two custom simulation features: procedural generation

of crystal clusters and simulation of packs of small items based on the

combination of a traditional boid-system and a simple mass-spring system.

Crystal generation is performed from a predefined set of rules and parameters

combined with sampling of artist-controlled target animation. However,

procedural generation can be done fairly effectively and doesn’t result in much

workload for the CPU. The bulk of the workload associated with crystals comes

from the continuous update of the transformation matrices as a result of their

multi-part animation.

The simulation of the item flocks is implemented as a traditional boid

algorithm: it searches for a nearby object and thus results in O(n2) complexity.

Furthermore, they are simulated to follow an artist-defined target using a

simple mass-spring system consisting of two springs while scanning for nearby

repulsor objects. The interaction with repulsors consist of a single spring

assuming it being within the range of repulsor’s influence.

Page 22 of 153

Scoring

Time Spy produces an overall Time Spy score, a Graphics test sub-score, and a

CPU test sub-score. The scores are rounded to the nearest integer. The better a

system's performance, the higher the score.

Overall Time Spy score

The 3DMark Time Spy score formula uses a weighted harmonic mean to

calculate the overall score from the Graphics and CPU test scores.

𝑇𝑖𝑚𝑒 𝑆𝑝𝑦 𝑠𝑐𝑜𝑟𝑒 =
𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 + 𝑊𝑐𝑝𝑢

𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠
𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠

+
𝑊𝑐𝑝𝑢
𝑆𝑐𝑝𝑢

Where:

𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = The Graphics score weight, equal to 0.85

𝑊𝑐𝑝𝑢 = The CPU score weight, equal to 0.15

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = Graphics test score

𝑆𝑐𝑝𝑢 = CPU test score

For a balanced system, the weights reflect the ratio of the effects of GPU and

CPU performance on the overall score. Balanced in this sense means the

Graphics and CPU test scores are roughly the same magnitude.

For a system where either the Graphics or CPU score is substantially higher

than the other, the harmonic mean rewards boosting the lower score. This

reflects the reality of the user experience. For example, doubling the CPU

speed in a system with an entry-level graphics card doesn't help much in

games since the system is already limited by the GPU. Likewise for a system

with a high-end graphics card paired with an underpowered CPU.

Graphics test scoring

Each Graphics test produces a raw performance result in frames per

second (FPS). We take a harmonic mean of these raw results and multiply it by

a scaling constant to reach a Graphics score (𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠) as follows:

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = 164 ×
2

1
𝐹𝑔𝑡1 +

1
𝐹𝑔𝑡2

Page 23 of 153

Where:

 𝐹𝑔𝑡1 = The average FPS result from Graphics test 1

 𝐹𝑔𝑡2 = The average FPS result from Graphics test 1

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

CPU test scoring

The CPU test consists of three increasingly heavy levels, each of which has a

ten second timeline. The third, and thus heaviest, level produces a raw

performance result in frames per second (FPS) which is multiplied by a scaling

constant to give a CPU score (𝑆𝑐𝑝𝑢) as follows:

𝑆𝑐𝑝𝑢 = 298 × 𝐹𝑐𝑝𝑢3

Where:

𝐹𝑐𝑝𝑢3 = The average FPS from the CPU test's third level

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

Page 24 of 153

DirectX 12 features in Time Spy

Command lists and asynchronous compute

Unlike the Draw/Dispatch calls in DirectX 11 (with immediate context), In

DirectX 12, the recording and execution of command lists are decoupled

operations. There is no thread limitation on recording command lists.

Recording can happen as soon as the required information is available.

Quoting from MSDN:

"Most modern GPUs contain multiple independent engines that

provide specialized functionality. Many have one or more

dedicated copy engines, and a compute engine, usually distinct

from the 3D engine. Each of these engines can execute

commands in parallel with each other. Direct3D 12 provides

granular access to the 3D, compute and copy engines, using

queues and command lists.

"The following diagram shows a title's CPU threads, each

populating one or more of the copy, compute and 3D queues.

The 3D queue can drive all three GPU engines, the compute

queue can drive the compute and copy engines, and the copy

queue simply the copy engine.

https://msdn.microsoft.com/en-us/library/windows/desktop/dn899217(v=vs.85).aspx

Page 25 of 153

Command list execution

For GPU work to happen, command lists are executed on queues, which come

in variants called DIRECT (commonly known as graphics or 3D as in the

diagram above), COMPUTE and COPY. Submission of a command list to a

queue can happen on any thread. The D3D runtime serializes and orders the

lists within a queue.

DIRECT command list
This command list type supports all types of commands

including Draw calls, compute Dispatches and Copies.

COMPUTE command list
This command list type supports compute Dispatch and

Copy commands.

DIRECT queue
This queue can be used for executing all types of

command lists supported by DirectX 12.

COMPUTE queue This queue accepts compute and copy command lists.

COPY command list and queues
This command list and queue type accepts only copy

commands and lists respectively.

Once initiated, multiple queues can execute in parallel. This parallelism is

commonly known as ‘asynchronous compute’ when COMPUTE queue work is

performed at the same time as DIRECT queue work.

It is up to the driver and the hardware to decide how to execute the command

lists. The application cannot affect this decision through the DirectX 12 API.

Please see MSDN for an introduction to the Design Philosophy of Command

Queues and Command Lists, and for more information on Executing and

Synchronizing Command Lists.

In Time Spy, the engine uses two command queues: a DIRECT queue for

graphics and compute and a COMPUTE queue for asynchronous compute. 3

The implementation is the same regardless of the capabilities of the hardware

being tested. It is ultimately the decision of the underlying driver whether the

work in the COMPUTE queue is executed in parallel or in serial.

There is a large amount of command lists as many tasks have their own

command lists, (several copies so that frames can be pre-recorded).

3 The COPY queue is generally used for streaming assets. It is not needed in Time Spy as we load all assets before the

benchmark run begins to ensure the test does not gain a dependency on storage or main memory.

https://msdn.microsoft.com/en-us/library/windows/desktop/dn899114(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn899114(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn899124(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn899124(v=vs.85).aspx

Page 26 of 153

Simplified DAG4 of 3DMark Time Spy queue usage

Each task encapsulates a complex task substructure that is omitted in this

simplified graph for clarity. If there are no dependencies, tasks are executed

on the CPU in parallel.

Grey tasks are CPU tasks. The async_illumination_commands task contains

light culling and tiling, environment reflections, HBAO, and unshadowed

surface illumination.

Green tasks are submissions to the DIRECT (graphics) queue. G-buffer draws,

shadow map draws, shadowed illumination resolve, and post-processing are

executed on the DIRECT queue. G-buffer draws, shadow maps and some parts

of the post-processing are done with graphics shaders, while illumination

resolve and the rest of the post processing is done in compute shaders.

Red tasks are submissions to the COMPUTE queue. Particle simulation, light

culling and tiling, environment reflections, HBAO and unshadowed surface

illumination resolve are executed on the COMPUTE queue. All tasks in the

compute queue must be done in compute shaders.

Yellow tasks are submissions of synchronization points. The significance of

these can be seen by noting that execute_async_illumination_commands

cannot be executed on the GPU before execute_gbuffer_commands is

4 Directed Acyclic Graph (DAG), see https://en.wikipedia.org/wiki/Directed_acyclic_graph.

https://en.wikipedia.org/wiki/Directed_acyclic_graph

Page 27 of 153

completed, but the submission happens ahead of the execution, (unless we are

CPU bound). The GPU needs to know that it should wait for a task to complete

execution before a dependent task can begin executing. When the execution is

split between queues then this operation should be done by the engine

otherwise a RAW hazard occurs. There is another dependency between particle

simulation and completion of particle illumination in the previous frame. The

simulation happens on the compute queue, which will cause a WAR hazard if it

is not synchronized with the Present occurring on the graphics queue.

The order of submission can be obtained from the dependency graph.

However, it is entirely up to the driver and the hardware to decide when to

actually execute the given list as long as it is executed in order in its queue.

Compute queue work items (in order of submission)

1. Particle simulation

This pass is recorded and executed at the beginning of a frame because it

doesn’t depend on the G-buffer. Thus its recording and submission is

done in parallel with recording and submission of geometry draws

(G-Buffer construction).

2. Light culling and tiling

3. Environment reflections

4. Horizon based ambient occlusion

5. Unshadowed surface illumination

These passes are recorded and submitted in parallel with G-Buffer

recording and submission, but executed only after the G-Buffer is finished

executing and in parallel with shadow maps execution. This is because

they depend on the G-Buffer, but not on the shadow maps.

Disabling asynchronous compute in benchmark settings

The asynchronous compute workload per frame in Time Spy varies between

10% and 20%. To observe the benefit on your own hardware, you can

optionally choose to disable asynchronous compute using the Custom run

settings in 3DMark Advanced and Professional Editions.

Running with asynchronous compute disabled in the benchmark forces all

work items usually associated with the COMPUTE queue to instead be put in

the DIRECT queue.

Explicit multi-adapter

In DirectX 11, control of GPU adapters is implicit - the drivers use multiple

GPUs on behalf of an application.

In DirectX 12, control of multiple GPUs is explicit. The developer can control

what work is done on each GPU and when. With explicit multi-adapter control,

https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Read_after_write_.28RAW.29
https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_.28WAR.29

Page 28 of 153

one can implement more complex multi-GPU models, for example choosing to

execute partial workloads for a frame across different GPUs.

A GPU adapter can be any graphics adapter, from any manufacturer, that

supports D3D12. Each adapter is referred to as a node. There are two multi-

adapter modes called linked-node adapter and multi-node adapter.

With linked-node (LDA) the programmer has access to and control over an

SLI/Crossfire configuration of similar GPUs through one device interface. LDA

enables some extra features over multi-node, such as faster transfers between

GPUs, cross-node resource sharing and shared swap-chain (back-buffer).

With multi-node (MDA) each GPU appears as a separate device, even if they are

similar and linked. With MDA, the programmer can control any and all GPUs

available in the system. But the programmer must explicitly declare which GPU

should execute the recorded work. MDA allows much more fine-grained

control over rendering and work submission, allowing you to divide work

between a discrete graphics card and an integrated GPU for example.

Time Spy uses explicit alternate frame rendering on linked-node

configurations to improve performance on the most common multi-GPU

setups used by gamers today. MDA configurations of heterogeneous adapters

are not supported.

Multi-threaded GPU work recording and submission

DirectX 11 offers multi-threaded (deferred) context support, but not all

vendors implement it in hardware, so it is slow. And overall, it is quite limited.

DirectX 12 really takes multi-threaded rendering to the next level. With DirectX

12, the programmer is in the control of everything. There are a few operations

that cannot be executed at the same time on multiple threads, but otherwise,

there are not many rules.

Resources must be manually transitioned to the correct states, progress within

a frame must be tracked explicitly, and any potential hazards must be handled

explicitly. All synchronization of CPU and GPU workloads must be done using

fences and barriers, as there is no validation or checks in the driver.

In Time Spy, the rendering is heavily multithreaded. Command lists are

recorded on all logical cores.

Improved resource allocation, explicit state tracking, and
persistent mapping

In DirectX 11, there are no heaps. The driver manages everything, including all

states. Transfers to GPU memory must go through the API layer.

In DirectX 12, there are multiple ways to allocate resources. Programmers can

create heaps, big piles of data that can later be filled with textures and buffers.

Page 29 of 153

Heaps also save memory by allowing resources to be placed on top of each

other, for example render target surfaces.

All resource states must be explicitly declared. Resources have an initial state,

and they must be transitioned to the correct state before the rendering

commands are executed. For example, if a resource is going to be written to, it

must be transitioned to a write state. The same applies for all other

operations.

Since all state is explicit, the driver no longer has 'guess' the intent of the

programmer, which allows faster execution. State can be changed across

different work packets (command lists).

Some buffers can be persistently mapped to CPU memory to mirror the same

buffer in GPU memory. This allows transfers to GPU memory with less stalls

and also removes the need to invalidate buffers. But on the other hand, it puts

the responsibility of managing the buffer on the programmer.

In Time Spy, all features are used, including heaps with overlapping resources

to save memory. States are explicitly handled as they should be. Persistently

mapped (streaming) buffers are used for all dynamic data with custom

resource hazard prevention using fences.

Pre-built GPU state objects

In DirectX 11, individual states (like bound shaders) can be changed at any

time. There are no limitations. But the driver must optimize during runtime if

necessary, which can lead to stalled rendering.

In DirectX 12, the GPU pipeline state is managed by separate pipeline state

objects that encapsulate the whole state of the graphics/compute engine. In

the graphics case, this encompasses things like the rasterizer state, different

shaders (e.g. vertex and pixel shader), and the blending mode. State switching

is done in one step by replacing the whole pipeline at once.

Since pipelines are pre-built before they are bound, the driver can optimize

them beforehand. During runtime, only the GPU state reconfiguration is

required based on the already optimized state. This allows very fast state

switching. It removes the need for 'warm-up' before rendering, since the

drivers don’t cache state as often as with DirectX 11.

Pipelines can also be compiled during runtime, of course. Games can compile

only the necessary pipelines during startup. If a new pipeline object is required

later, it can be created easily in a separate thread without halting any of the

application logic threads.

In Time Spy, all pipelines are built during startup. State changes are

minimized by sorting by pipeline state object during rendering.

Page 30 of 153

Resource binding

As mentioned in the previous section on pipelines, when a new state is bound

to the GPU everything about it is already known. This also applies for resource

bindings. Pipeline state objects also contain information about the resources

that will be bound to the shader and how they will reside in the GPU memory.

DirectX 12 uses descriptors and descriptor tables to bind resources.

Descriptors are very lightweight objects that contain information about the

resource that is to be bound. Descriptors can be arranged in tables for easy

binding of multiple resources at once. This operation is also very fast, as the

table can be described by binding only one pointer.

In Time Spy, resource binding is used as it should be to optimize performance.

Explicit synchronization between CPU, GPU, multiple GPUs, and
multiple GPU queues

In DirectX 12, synchronization won't happen without programmer intervention.

All possible resource hazards must be handled by the programmer by using

various synchronization objects.

And since multiple GPU queues are supported, fences must also be used on

the GPU side to make sure queues execute work when they should. It’s

programmer's responsibility to handle all synchronization.

In Time Spy, synchronization is used as it should be to optimize performance.

Page 31 of 153

Time Spy engine

To fully take advantage of the performance improvements that DirectX 12

offers, Time Spy uses a custom game engine developed in-house from the

ground up. The engine was created with the input and expertise of AMD, Intel,

Microsoft, NVIDIA, and the other members of the Futuremark Benchmark

Development Program.

Multi-threading

The rendering, including scene update, visibility evaluation, and command list

building, is done with multiple CPU threads using one thread per available

logical CPU core. This reduces CPU load by utilizing multiple cores.

Multi-GPU support

The engine supports the most common type of multi-GPU configuration, i.e.

two identical GPU adapters in Crossfire/SLI, by using explicit multi-adapter

with a linked-node configuration to implement explicit alternate frame

rendering. Heterogeneous adapters are not supported.

Visibility solution

The Umbra occlusion library (version 3.3.17 or newer) is used to accelerate and

optimize object visibility evaluation for all cameras, including the main camera

and light views used for shadow map rendering. The culling runs on the CPU

and does not consume GPU resources.

Descriptor heaps

One descriptor heap is created for each descriptor type when the scene is

loaded. Hardware Tier 1 is sufficient for containing all the required descriptors

in the heaps. Root signature constants and descriptors are used when suitable.

Resource heaps

Implicit resource heaps created by ID3D12Device::CreateCommittedResource()

are used for most resources. Explicitly created heaps are used for some target

resources to reduce memory consumption by placing resources that not

needed at the same time on top of each other.

Asynchronous compute

Asynchronous compute is utilized heavily to overlap multiple rendering passes

for maximum utilization of the GPU. Async compute workload per frame varies

between 10-20%.

http://www.futuremark.com/business/benchmark-development-program
http://www.futuremark.com/business/benchmark-development-program

Page 32 of 153

Tessellation

The engine supports Phong tessellation and displacement-map-based detail

tessellation.

Tessellation factors are adjusted to achieve the desired edge length for the

output geometry on the render target (G-buffer, shadow map or other).

Additionally, patches that are back-facing and patches that are outside of the

view frustum are culled by setting the tessellation factor to zero.

Tessellation is turned entirely off by disabling hull and domain shaders when

the size of an object’s bounding box on the render target drops below a given

threshold.

If an object has several geometry LODs, tessellation is used on the most

detailed LOD.

Geometry rendering

Objects are rendered in two steps. First, all opaque objects are drawn into the

G-buffer. In the second step, transparent objects are rendered to an A-buffer,

which is then resolved on top of surface illumination later on.

Geometry rendering uses a LOD system to reduce the number of vertices and

triangles for objects that are far away. This also results in bigger on-screen

triangle size.

The material system uses physically based materials. The following textures

can be used as input to materials. Not all textures are used on all materials.

Material Texture Format

Albedo (RGB) + metalness (A) BC3 or BC7

Roughness (R) + Cavity (G) BC5

Normal (RG) BC5

Ambient Occlusion (R) BC4

Displacement BC4

Luminance BC1 or BC7

Blend BC4, BC5 or BC3

Opacity BC4

Page 33 of 153

Opaque objects

Opaque objects are rendered directly to the G-buffer. The G-buffer is

composed of textures shown in the table below. A material might not use all

target textures. For example, a luminance texture is only written into when

drawing geometries with luminous materials.

G-buffer Texture Format

Depth D24_UNORM_S8_UINT

Normal R10G10B10A2_UNORM

Albedo R8G8B8A8_UNORM_SRGB

Material Attributes R10G10B10A2_UNORM

Luminance R11G11B10_FLOAT

Transparent objects

For rendering transparent geometries, the engine uses a variant of an order-

independent transparency technique called Adaptive Transparency (Salvi et al.

2011). Simply put, a per-pixel list of fragments is created for which a visibility

function (accumulated transparency) is approximated. The fragments are

blended according to the visibility function and illuminated in the lighting pass

to allow them to be rendered in any order. The A-buffer is drawn after the G-

buffer to fully take advantage of early depth tests.

In addition to the per-pixel lists of fragments, per 2x2 quad lists of fragments

are created. The per-quad lists can be used for selected renderables instead of

the per pixel lists. This saves memory when per pixel information is not

required for a visually satisfying result. When rendering to per quad lists, a half

resolution viewport and depth texture is used to ignore fragments behind

opaque surfaces. When resolving the A-buffer fragments for each pixel, both

per pixel list and per quad list are read and blended in the correct order. Each

per quad list is read for four pixels in the resolve pass.

Lighting

Lighting is evaluated using a tiled method in multiple separate passes.

Before the main illumination passes, asynchronous compute shaders are used

to cull lights, evaluate illumination from prebaked environment reflections,

compute screen-space ambient occlusion, and calculate unshadowed surface

illumination. These tasks are started right after G-buffer rendering has finished

and are executed alongside shadow rendering. All frustum lights, omni-lights

Page 34 of 153

and reflection capture probes are culled to small tiles (16x16 pixels) and

written to an intermediate buffer. Reflection illumination is evaluated for the

opaque surfaces by sampling the precomputed reflection cubes. The results

are written out to a separate texture. Ambient occlusion and unshadowed

illumination results are written out to their respective targets.

Second, illumination from all lights and GI data is evaluated for the surface.

The A-buffer is also resolved in a separate pass and then composed on top of

surface illumination. This produces the final illumination that is sampled in the

screen space reflection step, which also blends in previously computed

environment illumination based on SSR quality. Reflections are applied on top

of surface illumination. Surface illumination is also masked with SSAO results.

Third, volume illumination is computed. This includes two passes. The first one

evaluates volume illumination from global illumination data and the second

one calculates illumination from direct lights. The evaluation is done by

raymarching the light ranges.

Finally, surface illumination, GI volume illumination, and direct volume

illumination are composed into one final texture with some blurring, which is

then fed to post-processing stages.

Shadows are sampled in both surface and volume illumination shaders. For

shadow casting lights, the textures in the table below can be rendered.

Shadow Texture Format

Shadow Depth D16_UNORM

Particle Transmittance R8G8B8A8_UNORM

Particles

Particles are simulated on the GPU using asynchronous compute queue.

Simulation work is submitted to the asynchronous queue while G-buffer and

shadow map rendering commands are submitted to the main command

queue.

Particle illumination

Particles are rendered by inserting particle fragments into an A-buffer. The

engine utilizes a separate half-resolution A-buffer for low-frequency particles

to allow more of them to be visible in the scene at once. They are blended

together with the main A-buffer in the combination step. Particles can be

illuminated with scene lights or they can be self-illuminated. The output

buffers of the GPU light-culling pass and the global illumination probes are

used as inputs for illuminated particles. The illuminated particles are drawn

without tessellation and they are illuminated in the pixel shader.

Page 35 of 153

Particle shadows

Particles can cast shadows. Shadow casting particles are rendered into

transmittance 3D textures for lights that have particle shadows enabled.

Before being used as an input to illumination shaders, an accumulated version

of the transmittance texture is created. If typed UAV loads are supported, the

transmittance texture is accumulated in-place. Otherwise the accumulated

result is written to an additional texture. The accumulated transmittance

texture is sampled when rendering surface, particle and volume illumination

by taking one sample with bilinear filtering per pixel or per ray marching step.

Resolution of the transmittance texture for each spotlight is evaluated on each

frame based on screen coverage of the light. For directional light, fixed

resolution textures are used.

Page 36 of 153

Post-processing

Depth of field

The effect is computed by scattering the illumination in the out-of-focus parts

of the input image using the following procedure.

1. Using CS, circle of confusion radius is computed for all screen pixels based

on depth texture. The information is additionally reduced to half and

quarter resolutions. In the same CS pass, a splatting primitive (position,

radius and color) for out-of-focus pixels whose circle of confusion radius

exceeds a predefined threshold is appended to a buffer. For pixel quads

and 4x4 tiles that are strongly out of focus, a splatting primitive per quad

or tile is appended to the buffer instead of per pixel primitives.

2. The buffer with splatting primitives for the out-of-focus pixels is used as

point primitive vertex data and, using Geometry Shader, an image of a

bokeh is splatted to the positions of these primitives. Splatting is done to a

texture that is divided into regions with different resolutions using

multiple viewports. First region is screen resolution and the rest are a

series of halved regions down to 1x1 texel resolution. The screen space

radius of the splatted bokeh determines the used resolution. The larger

the radius the smaller the used splatting resolution.

3. The different regions of the splatting texture are combined by up-scaling

the data in the smaller resolution regions step by step to the screen

resolution region.

4. Finally, the out-of-focus illumination is combined with the original

illumination.

Bloom

Bloom is based on a compute shader FFT that evaluates several effects with

one filter kernel. The effects are blur, streaks, anamorphic flare and lenticular

halo.

Lens Reflections

The effect is computed by first applying a filter to the computed illumination in

frequency domain like in the bloom effect. The filtered result is then splatted

in several scales and intensities on top of the input image using additive

blending. The effect is computed in the same resolution as the bloom effect

and therefore the forward FFT needs to be performed only once for both

effects. The filtering and inverse FFT are performed using the CS and floating

point textures.

Page 37 of 153

Time Spy version history

Version

Notes

1.0 ● ✕ ✕ Launch version

Page 38 of 153

Page 39 of 153

Fire Strike

Fire Strike is a DirectX 11 benchmark for high-performance gaming PCs. Fire

Strike includes two graphics tests, a physics test and a combined test that

stresses both the CPU and GPU.

3DMark Advanced and Professional Editions include Fire Strike Extreme and

Fire Strike Ultra, two benchmarks designed for high-end systems with multiple

GPUs (SLI / Crossfire).

Scores from 3DMark Fire Strike, Fire Strike Extreme and Fire Strike Ultra should

not be compared to each other - they are separate tests with their own scores,

even though they share the same content. Fire Strike Ultra is the highest

workload 3DMark can currently offer.

Fire Strike benchmarks are only available in the Windows editions of 3DMark.

⚠ Fire Strike tests are demanding benchmarks designed for high-end

hardware. If your system scores less than 2800 in Fire Strike you

should run Sky Diver instead.

Fire Strike

Fire Strike is a DirectX 11 benchmark for high-performance gaming PCs and

overclocked systems. Fire Strike is very demanding, even for the latest graphics

cards. If your frame rate is low, use Sky Diver instead.

Fire Strike Extreme

Fire Strike Extreme is designed for testing PCs with multiple GPUs (minimum

1.5 GB graphics card memory required). It raises the rendering resolution from

1920x1080 to 2560x1440 and improves the visual quality.

Fire Strike Ultra

Fire Strike Ultra is a dedicated test for 4K gaming. It raises the rendering

resolution to 3840 × 2160 (4K UHD), four times larger than 1080p. A 4K

monitor is not required, but your graphics card must have at least 3GB of

memory.

Page 40 of 153

System requirements

 Fire Strike Fire Strike Extreme Fire Strike Ultra

OS5
Windows 7

or later
Windows 7 or later Windows 7 or later

Processor
1.8 GHz dual-core

Intel or AMD CPU

1.8 GHz dual-core

Intel or AMD CPU

1.8 GHz dual-core

Intel or AMD CPU

Storage 6 GB free space 6 GB free space 6 GB free space

GPU DirectX 11 DirectX 11 DirectX 11

For systems with

integrated graphics
3 GB RAM 5.5 GB RAM 7 GB RAM

For systems with a

discrete graphics card

2 GB RAM

1 GB video

card memory

4 GB RAM

1.5 GB video

card memory

4 GB RAM

3 GB video

card memory

5 Windows 7 users must install Service Pack 1.

Page 41 of 153

Default settings

 Fire Strike Extreme Ultra

Resolution 1920 × 1080 2560 × 1440 3840 × 2160

GPU Memory Budget 1 GB 1.5 GB 3 GB

Tessellation Detail Medium High High

Surface Shadow Sample Count 8 16 16

Shadow Map Resolution 1024 2048 2048

Volume Illumination Quality Medium High High

Particle Illumination Quality Medium High High

Ambient Occlusion Quality Medium High High

Depth of Field Quality Medium High High

Bloom Resolution 1/4 1/4 1/4

Page 42 of 153

Graphics test 1

3DMark Fire Strike Graphics test 1 focuses on geometry and illumination.

Particles are drawn at half resolution and dynamic particle illumination is

disabled. There are 100 shadow casting spot lights and 140 non-shadow

casting point lights in the scene. Compute shaders are used for particle

simulations and post processing. Pixel processing is lower than in Graphics test

2 as there is no depth of field effect.

Processing performed in an average frame

 Vertices
Tessellation

patches
Triangles Pixels6

Compute

shader

invocations

Fire Strike 3.9 million 500,000 5.1 million 80 million 1.5 million

Fire Strike

Extreme
3.9 million 560,000 9.9 million 150 million 3.4 million

Fire Strike

Ultra
3.7 million 650,000 12.4 million 330 million 3.4 million

6 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution

of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 43 of 153

Graphics test 2

3DMark Fire Strike Graphics test 2 focuses on particles and GPU simulations.

Particles are drawn at full resolution and dynamic particle illumination is

enabled. There are two smoke fields simulated on GPU. Six shadow casting

spot lights and 65 non-shadow casting point lights are present. Compute

shaders are used for particle and fluid simulations and for post processing

steps. Post processing includes a depth of field effect.

Processing performed in an average frame

 Vertices
Tessellation

patches
Triangles Pixels7

Compute

shader

invocations

Fire Strike 2.6 million 240,000 5.8 million 170 million 8.1 million

Fire Strike

Extreme
3.9 million 260,000 12.9 million 400 million 10.4 million

Fire Strike

Ultra
6.0 million 260,000 17.6 million

1100

million
10.4 million

7 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution

of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 44 of 153

Physics test

3DMark Fire Strike Physics test benchmarks the hardware’s ability to run

gameplay physics simulations on the CPU. The GPU load is kept as low as

possible to ensure that only the CPU is stressed. The Bullet Open Source

Physics Library is used as the physics library for the test.

The test has 32 simulated worlds. One thread per available CPU core is used to

run simulations. All physics are computed on CPU with soft body vertex data

updated to GPU each frame.

Page 45 of 153

Combined test

3DMark Fire Strike Combined test stresses both the GPU and CPU

simultaneously. The GPU load combines elements from Graphics test 1 and 2

using tessellation, volumetric illumination, fluid simulation, particle simulation,

FFT based bloom and depth of field.

The CPU load comes from the rigid body physics of the breaking statues in the

background. There are 32 simulation worlds running in separate threads each

containing one statue decomposing into 113 parts. Additionally there are 16

invisible rigid bodies in each world except the one closest to camera to push

the decomposed elements apart. The simulations run on one thread per

available CPU core.

The 3DMark Fire Strike Combined test uses the Bullet Open Source Physics

Library.

Processing performed in an average frame

 Vertices
Tessellation

patches
Triangles Pixels8

Compute

shader

invocations

Fire Strike 7.5 million 530,000 7.9 million 150 million 110 million

Fire Strike

Extreme
9.2 million 540,000 14.8 million 390 million 110 million

Fire Strike

Ultra
10.8 million 540,000 19.6 million 960 million 120 million

8 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution

of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 46 of 153

Scoring

Scores from different benchmarks should not be compared to each other. Fire

Strike, Fire Strike Extreme, and Fire Strike Ultra are separate tests with their

own scores, even though they share the same content.

Overall Fire Strike score

The 3DMark Fire Strike score formula uses a weighted harmonic mean to

calculate the overall score from the Graphics, Physics, and Combined scores.

𝐹𝑖𝑟𝑒 𝑆𝑡𝑟𝑖𝑘𝑒 𝑠𝑐𝑜𝑟𝑒 =
𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 + 𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠 + 𝑊𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠
𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠

+
𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠
𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠

+
𝑊𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

Where:

𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = The Graphics score weight, equal to 0.75

𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = The Physics score weight, equal to 0.15

𝑊𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = The Combined score weight, equal to 0.10

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = Graphics score

𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = Physics score

𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = Combined score

For a balanced system, the weights reflect the ratio of the effects of GPU and

CPU performance on the overall score. Balanced in this sense means the

Graphics, Physics and Combined scores are roughly the same magnitude.

For a system where either the Graphics or Physics score is substantially higher

than the other, the harmonic mean rewards boosting the lower score. This

reflects the reality of the user experience. For example, doubling the CPU

speed in a system with an entry-level graphics card doesn't help much in

games since the system is already limited by the GPU. Likewise for a system

with a high-end graphics card paired with an underpowered CPU.

Graphics score

Each Graphics test produces a raw performance result in frames per

second (FPS). We take a harmonic mean of these raw results and multiply it by

a scaling constant to reach a Graphics score (𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠) as follows:

Page 47 of 153

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = 230 ×
2

1
𝐹𝑔𝑡1 +

1
𝐹𝑔𝑡2

Where:

𝐹𝑔𝑡1 = The average FPS result from Graphics test 1

𝐹𝑔𝑡1 = The average FPS result from Graphics test 2

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

Physics score

𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = 315 × 𝐹𝑝ℎ𝑦𝑠𝑖𝑐𝑠

Where:

𝐹𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = The average FPS result from the Physics Test

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

Combined score

𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 215 × 𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

Where:

𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = The average FPS result from the Combined Test

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

Page 48 of 153

Fire Strike engine

Fire Strike benchmarks require graphics hardware with full DirectX 11 feature

level 11 support.

Multithreading

The multithreading model is based on DX11 deferred device contexts and

command lists. The engine utilizes one thread per available CPU core. One of

the threads is considered as the main thread, which uses both immediate

device context and deferred device context. The other threads are worker

threads, which use only deferred device contexts.

Rendering workload is distributed between the threads by distributing items

(e.g. geometries and lights) in the rendered scene to the threads. Each thread

is assigned roughly equal amount of scene items.

When rendering a frame, each thread does the work associated to items

assigned to the thread. That includes, for example, computation of

transformation matrix hierarchies, computation of shader parameters

(constants buffer contents and dynamic vertex data) and recording of DX API

calls to a command list. When the main thread is finished with the tasks

associated to its own items, it executes the command lists recorded by worker

threads.

Tessellation

The engine supports rendering with and without tessellation. The supported

tessellation techniques are PN Triangles, Phong, and displacement map based

detail tessellation. Both triangle and quad based tessellation is supported.

Tessellation factors are adjusted to achieve desired edge length for output

geometry on the render target. Additionally, patches that are back facing and

patches that are outside of the view frustum are culled by setting the

tessellation factor to zero.

Tessellation is turned entirely off by disabling hull and domain shaders when

size of object’s bounding box on render target drops below a given threshold.

This applies both to g-buffer and shadow map drawing.

Lighting

Lighting is done in deferred style. Geometry attributes are first rendered to a

set of render targets. Ambient occlusion is then computed from depth and

normal data. Finally illumination is rendered based on those attributes.

Page 49 of 153

Surface illumination

Two different surface shading models and g-buffer compositions are

supported. The more complex model uses four textures and depth texture as

the g-buffer. The simpler model uses two textures and depth texture.

Surface illumination model is either combination of Oren-Nayar diffuse

reflectance and Cook-Torrance specular reflectance or basic Blinn Phong

reflectance model. Simple surface shading model is used on Feature Level 10

demo and tests while the complex model is used on Feature Level 11 demo

and tests. Optionally atmospheric attenuation is also computed.

Horizon based screen space ambient occlusion can be applied to the surface

illumination.

Point, spot and directional lights are supported. Spot and directional lights can

be shadowed. For spot lights, shadow texture size is selected based on size of

the light volume in screen space. Shadow maps are sampled using best

candidate sample distribution. Sample pattern is dithered with 4 × 4 pixel

pattern.

Volumetric illumination

The renderer supports volume illumination. It is computed by approximating

the light scattered towards the viewer by the medium between eye and the

visible surface on each lit pixel. The approximation is based on volume ray

casting and the Rayleigh-Mie scattering and attenuation model.

One ray is cast on each lit pixel for each light. The cast ray is sampled at

several depth levels. Sampling quality is improved by dithering sampling

depths with a 4 × 4 pixel pattern. The achieved result is blurred to combine the

different sampling depths on neighboring pixels before combining the volume

illumination with the surface illumination.

When rendering illumination, there are two high dynamic range render targets.

One is for surface illumination and the other for volume illumination.

Particle illumination

Particle effects are rendered on top of opaque surface illumination with

additive or alpha blending. Particles are simulated on the GPU. Particles can be

either simply self-illuminated or receive illumination from scene lights.

Lights that participate in particle illumination can be individually selected. To

illuminate particles, the selected lights are rendered to three volume textures

that are fitted into view frustum. The textures contain incident radiance in each

texel stored as spherical harmonics. Each of the three textures holds data for

one color channel storing four coefficients. Incident radiance from each light is

rendered to these volume textures as part of light rendering.

Page 50 of 153

When rendering illuminated particles, hull and domain shaders are enabled.

Incident radiance volume texture sampling is done in the domain shader.

Tessellation factors are set to produce fixed size triangles in screen pixels.

Tessellation is used to avoid sampling incident radiance textures in the pixel

shader.

Particles can cast shadows on opaque surface and on other particles. For

generating particle shadows, particle transmittance is first rendered to a 3D

texture. The transmittance texture is rendered from the shadow casting light

like a shadow map. After particles have been rendered to the texture, an

accumulated transmittance 3D texture is generated by accumulating values of

each depth slice in the transmittance texture. The accumulated transmittance

texture can then be sampled when rendering illumination or incident radiance

that is used to illuminate particles.

Page 51 of 153

Post-processing

Particle based distortion

Particles can be used to generate a distortion effect. For particles that generate

the effect, a distortion field is rendered to a texture using a 3D noise texture as

input. This field is then used to distort the input image in post processing

phase.

Depth of field

The effect is computed using the following procedure:

6. Circle of confusion radius is computed for all screen pixels and stored in a

full resolution texture.

7. Half and quarter resolution versions are made from the radius texture

and the original illumination texture.

8. Positions of out-of-focus pixels whose circle of confusion radius exceeds a

predefined threshold are appended to a buffer.

9. The position buffer is used as point primitive vertex data and, using

Geometry Shaders, the image of a hexagon-shaped bokeh is splatted to

the positions of these vertices. Splatting is done to a texture that is divided

into regions with different resolutions using multiple viewports. First

region is screen resolution and the rest are a series of halved regions

down to 1x1 texel resolution. The screen space radius of the splatted

bokeh determines the used resolution. The larger the radius the smaller

the used splatting resolution.

10. Steps 3 and 4 are performed separately for half and quarter resolution

image data with different radius thresholds. Larger bokehs are generated

from lower resolution image data.

11. The different regions of the splatting texture are combined by up-scaling

the data in the smaller resolution regions step by step to the screen

resolution region.

12. The out-of-focus illumination is combined with the original illumination.

Lens reflections

The effect is computed by first applying a filter to the computed illumination in

frequency domain like in the bloom effect. The filtered result is then splatted

in several scales and intensities on top of the input image using additive

blending. The effect is computed in the same resolution as the bloom effect

and therefore the forward FFT needs to be performed only once for both

effects. As in the bloom effect, the forward and inverse FFTs are performed

using the CS and 32bit floating point textures.

Page 52 of 153

Bloom

The effect is computed by transforming the computed illumination to

frequency domain using Fast Fourier Transform (FFT) and applying bloom filter

to the input in that domain. An inverse FFT is then applied to the filtered

image. The forward FFT, applying the bloom filter and inverse FFT are done

with the CS. The effect is computed in reduced resolution. The input image

resolution is halved two or three times depending on settings and then

rounded up to nearest power of two. The FFTs are computed using 32bit

floating point textures. A procedurally pre-computed texture is used as the

bloom filter. The filter combines blur, streak, lenticular halo and anamorphic

flare effects.

Anti-aliasing

MSAA and FXAA anti-aliasing methods are supported.

In MSAA method G-buffer textures are multisampled with the chosen sample

count. Edge mask is generated based on differences in G-buffer sample values.

The mask is used in illumination phase to select for which pixels illumination is

evaluated for all G-buffer samples. For pixels that are not considered edge

pixels, illumination is evaluated only for the first G-buffer sample. Volume

illumination is always evaluated only for the first G-buffer sample due to its

low frequency nature.

FXAA is applied after tone mapping making it the final step in post processing.

Smoke simulation

The implementation of the smoke simulation is based on Ronald Fedkiw's

paper "Visual Simulation of Smoke" with the addition of viscous term as in Jos

Stam's "Stable Fluids" but without a temperature simulation. Thus the smoke is

simulated in a uniform grid where velocity is modeled with incompressible

Euler equations. Advection is solved with a semi-Lagrangian method.

Vorticity confinement method is then applied to the velocity field to reinforce

vortices. Diffusion and projection is then computed by the Jacobi iteration

method. The simulation is done entirely with Compute Shaders. Cylinders that

interact with the smoke are implicit objects which are voxelized into the

velocity and density field in Compute Shaders.

Page 53 of 153

Fire Strike version history

Version

Notes

1.1 ● ✕ ✕

Fixed issues when benchmarking systems with multiple

GPUs. Scores improve significantly on systems with

multiple GPUs.

1.0 ● ✕ ✕ Launch version

Fire Strike Ultra, added in 3DMark v1.4.775, uses the Fire Strike v1.1.0

workload.

3DMark v2.1.2852, released July 14, 2016, used an incorrect setting for

Fire Strike Custom runs that resulted in slightly lower than expected scores.

Results from Fire Strike Custom runs using that version should not be

compared with any other version of 3DMark. The issue was fixed in 3DMark

v2.1.2969 released August 18, 2016. The standard Fire Strike benchmark was

not affected, nor were Fire Strike Extreme and Fire Strike Ultra.

Page 54 of 153

Page 55 of 153

Sky Diver

Sky Diver is a DirectX 11 benchmark for mid-range gaming PCs and laptops.

Use 3DMark Sky Diver to benchmark gaming PCs and laptops with mid-range

graphics cards, mobile GPUs, or integrated graphics. It is especially suitable for

DirectX 11 compatible systems that struggle to run the more demanding Fire

Strike test.

⚠ If your system scores more than 12000 in Sky Diver, you should

run Fire Strike.

Use 3DMark Sky Diver to benchmark:

 Integrated GPUs like AMD A10-7850K and Intel i5-4570R

 Mobile integrated GPUs like AMD A10-5757M and Intel i7-4750HQ

 Mobile discrete GPUs like AMD R7 M265 and NVIDIA GT 840M

 Entry level discrete GPUs like AMD R7 240

Sky Diver includes two Graphics tests, a Physics test and a Combined test

designed to stress the CPU and GPU at the same time.

Sky Diver is compatible with Windows 8 and Windows 7. A DirectX 11

compatible GPU is required. 3DMark Sky Diver runs on all DirectX 11 feature

level 11_0 compatible hardware and uses optimized code paths on feature

level 11_1 devices.

Sky Diver is only available in the Windows editions of 3DMark.

How is Sky Diver different from Fire Strike?

Sky Diver and Fire Strike are complementary benchmarks designed to cover

the full performance range of DirectX 11 graphics hardware. Fire Strike is

equivalent to a modern DirectX 11 game running on ultra-high settings. Sky

Diver is equivalent to running a game on normal settings.

Scores from Sky Diver and Fire Strike are not directly comparable.

Page 56 of 153

System requirements

OS9 Windows 7 or later

Processor 1.8 GHz dual-core Intel or AMD CPU

Storage 6 GB free disk space

GPU DirectX 11

For systems with

integrated graphics
2.5 GB RAM10

For systems with a discrete

graphics card
2 GB RAM + 512 MB video card memory11

9 Windows 7 users must install Service Pack 1.

10 The benchmark tests require 2.5 GB of RAM. The demo requires 3 GB of RAM.

11 The benchmark tests require 512 MB of video card memory. The demo requires 1 GB of video card memory.

Page 57 of 153

Default settings

Resolution 1920 × 1080

GPU Memory Budget 1 GB

Tessellation Detail Medium12

12 The tessellation detail setting is relative. Sky Diver’s medium value is roughly the same as Fire Strike’s low value.

Page 58 of 153

Graphics test 1

3DMark Sky Diver Graphics test 1 focuses on tessellation. The test uses a

forward lighting method with one shadow casting directional light. The test

utilizes a depth of field post processing effect, which is not used in the other

tests.

Processing performed in an average frame

 Vertices
Tessellation

patches
Triangles Pixels13

Compute

shader

invocations

Sky Diver 1.6 million 150,000 3.9 million 30.3 million 0.78 million

13 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution

of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 59 of 153

Graphics test 2

This test focuses on pixel processing and compute shader utilization. The test

uses a compute shader-based deferred tiled lighting method with screen space

ambient occlusion. Post processing creates a lens reflection effect, which is not

used in Graphics test 1.

Processing performed in an average frame

 Vertices
Tessellation

patches
Triangles Pixels14

Compute

shader

invocations

Sky Diver 0.9 million 90,000 1.5 million 13.9 million 2.7 million

14 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution

of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 60 of 153

Physics test

3DMark Sky Diver Physics test benchmarks the hardware’s ability to run

gameplay physics simulations on the CPU. The GPU load is kept as low as

possible to ensure that only the CPU is stressed. The test uses the Bullet Open

Source Physics Library.

Sky Diver Physics test introduces a new approach to CPU testing in 3DMark

designed to extend the performance range for which the test is relevant. With

this new approach, the test has four levels of work. The first level is the lightest

and the last is the heaviest.

The test starts with the first level and continues to the fourth level unless the

frame rate drops below a minimum threshold. The score is calculated from the

last two completed levels.

There are 96 simulation worlds with identical structure in total. In the first

level, 8 worlds are triggered. On the second level, 16 more. On the third level, a

further 24, and on the fourth and final level, another 48 so that all 96 worlds

are being simulated at once.

Each world contains a statue that collapses when struck by a hammer swinging

from a chain. Each statue contains 49 fragments. Each fragment is a mesh

collision shape and, together, the 49 fragments have 6590 triangles. The

hammer piece hangs on a chain with 39 links simulated using the Featherstone

articulated body algorithm.

Page 61 of 153

Combined test

This test contains both graphics workloads and physics simulations to stress

the CPU and GPU.

The test uses the compute shader based deferred tiled lighting method from

Graphics test 2. The CPU workload is similar to the third level of the Physics

test where 48 worlds are being simulated at once.

The workloads are designed to be of equal weight so that on balanced systems

both the GPU and CPU are well utilized.

The 3DMark Sky Diver Combined test uses the Bullet Open Source Physics

Library.

Processing performed in an average frame

 Vertices
Tessellation

patches
Triangles Pixels15

Compute

shader

invocations

Sky Diver 1.3 million 100,000 1.6 million 29.6 million 2.5 million

15 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution

of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 62 of 153

Scoring

Sky Diver produces an overall Sky Diver score, a Graphics test sub-score, a

Physics test sub-score, and a Combined test sub-score. The scores are rounded

to the nearest integer. The higher the score, the better the performance.

Overall Sky Diver score

The 3DMark Sky Diver score formula uses a weighted harmonic mean to

calculate the overall score from the Graphics, Physics, and Combined scores.

𝑆𝑘𝑦 𝐷𝑖𝑣𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 =
𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 + 𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠 + 𝑊𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠
𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠

+
𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠
𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠

+
𝑊𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

Where:

𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = The Graphics score weight, equal to 0.75

𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = The Physics score weight, equal to 0.15

𝑊𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = The Physics score weight, equal to 0.10

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = Graphics score

𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = Physics score

𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = Combined score

For a balanced system, the weights reflect the ratio of the effects of graphics

and physics performance on the overall score. Balanced in this sense means

the Graphics, Physics and Combined scores are roughly the same magnitude.

For a system where either the Graphics or Physics score is substantially higher

than the other, the harmonic mean rewards boosting the lower score. This

reflects the reality of the user experience. For example, doubling the CPU

speed in a system with an entry-level graphics card doesn't help much in

games since the system is already limited by the GPU. Likewise for a system

with a high-end graphics card paired with an underpowered CPU.

Graphics score

Each Graphics test produces a raw performance result in frames per second

(FPS). We take a harmonic mean of these raw results and multiply it with a

scaling constant to reach a Graphics score (𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠) as follows:

Page 63 of 153

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = 219 ×
2

1
𝐹𝑔𝑡1 +

1
𝐹𝑔𝑡2

Where:

𝐹𝑔𝑡1 = The average FPS result from Graphics Test 1

𝐹𝑔𝑡1 = The average FPS result from Graphics Test 2

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

Physics score

3DMark Sky Diver Physics test uses a different approach to testing than that

used in Fire Strike, Cloud Gate and Ice Storm. The aim of the new approach is

to extend the performance range for which the test is relevant.

The test has four levels of work. The first level is the lightest and the last is the

heaviest. The test begins with the first level and continues until the frame rate

drops below a minimum threshold 𝐿𝑙𝑜𝑤, or until the last available level is

run.

Each level produces a raw performance result in frames per second (FPS). The

score is defined as a weighted average of the two highest successfully

completed levels.

𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = 56 × ((1 − 𝑊𝑖)𝑁𝑖−1𝐹𝑖−1 + 𝑊𝑖𝑁𝑖𝐹𝑖)

Where:

𝑊 = The weighting factor for a level

𝑖 = The index of the last level to run

𝑁 = The frame rate normalization factor for a level

𝐹 = The frame rate of a level

The weight 𝑊 for a level is defined as:

𝑊𝑖 = min (1,
𝐹𝑖−1 − 𝐿𝑙𝑜𝑤

𝐿ℎ𝑖𝑔ℎ − 𝐿𝑙𝑜𝑤
)

Page 64 of 153

Where:

𝐿𝑙𝑜𝑤 = The minimum frame rate threshold, set to 30 FPS

𝐿ℎ𝑖𝑔ℎ = Upper frame rate threshold used for weighting, set to 40

FPS

When the first level is the last level to run above 𝐿𝑙𝑜𝑤 then the score is defined

as follows:

𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = 56 × 𝐹1

Frame rate normalization factors are used to normalize the frame rates of

different levels before using them in the score calculation. A set of reference

CPUs was used to define the factors.

Reference CPUs for 𝑵𝟐 Level 1 frame rate Level 2 frame rate
Relative

difference

AMD A4-5150M 30.53 17.14 1.78

Intel Core i5-4200U 56.49 33.43 1.69

Reference CPUs for 𝑵𝟑 Level 2 frame rate Level 3 frame rate
Relative

difference

AMD A10-7850K 51.48 28.84 1.79

Intel Core i5-4430 68.58 39.62 1.73

Reference CPUs for 𝑵𝟒 Level 3 frame rate Level 4 frame rate
Relative

difference

AMD A10-7850K 28.84 16.57 1.74

Intel Core i7-4770K 55.30 31.87 1.74

Page 65 of 153

The following table defines values for the frame rate normalization factors. 𝑁1

is always set to 1. 𝑁𝑖+1 is the average relative frame rate difference of levels 𝑖

and 𝑖 + 1 on the reference CPUs multiplied by 𝑁𝑖.

𝑵𝟏 𝑵𝟐 𝑵𝟑 𝑵𝟒

1.000 1.735 3.054 5.314

Combined score

𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 243 × 𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

Where:

𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = The average FPS result from the Combined Test

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

Page 66 of 153

Sky Diver engine

Multithreading

The engine utilizes one thread per available CPU core, less one physical core

that is left free for the display driver. Draw calls are issued through immediate

device context only.

Tessellation

The engine supports rendering with and without tessellation. The supported

tessellation techniques are Phong tessellation and displacement map based

detail tessellation.

Tessellation factors are adjusted to achieve desired edge length for output

geometry on the render target. Additionally, patches that are back facing and

patches that are outside of the view frustum are culled by setting the

tessellation factor to zero.

Tessellation is turned entirely off by disabling hull and domain shaders when

size of object’s bounding box on render target drops below a given threshold.

Lighting

The engine supports two alternative methods of lighting the scene.

Forward lighting

The forward lighting method is used for the first part of the Demo and

Graphics test 1.

It supports one shadow casting directional light and a limited number of

additional un-shadowed point lights as well as cube map-based ambient

illumination. All lights are rendered in one pass to

DXGI_FORMAT_R11G11B10_FLOAT texture.

Compute shader-based tiled deferred lighting

The compute shader based tiled deferred lighting method is used the second

part of the Demo, Graphics test 2 and the Combined test.

It supports point lights, spot lights and cube map-based ambient illumination.

The geometry is first rendered to gbuffer that contains depth, normal and

surface illumination parameters stored in three textures with

DXGI_FORMAT_D24_UNORM_S8_UINT, DXGI_FORMAT_R10G10B10A2_UNORM and

DXGI_FORMAT_R8G8B8A8_UNORM_SRGB formats. Screen space ambient

occlusion is computed to a DXGI_FORMAT_R8_UNORM texture.

Page 67 of 153

Lighting is evaluated in one compute shader pass that splits the screen to tiles

and culls scene lights for each tile evaluating the illumination for visible lights

on each tile. Lighting is rendered to a DXGI_FORMAT_R11G11B10_FLOAT texture.

Particles

Particle effects are rendered on top of opaque surface illumination with

additive or alpha blending. Particles are simulated on the GPU. Particles are

simply self-illuminated.

Page 68 of 153

Post-processing

Depth of field

The effect is computed using the following procedure:

1. Using Compute Shader, the circle of confusion radius is computed for all

screen pixels based on depth texture and the information is reduced to

half and quarter resolutions. In the same CS pass, data about out-of-focus

pixels whose circle of confusion radius exceeds a predefined threshold is

appended to a buffer.

2. The buffer with information about the out-of-focus pixels is used as point

primitive vertex data and, using Geometry Shader, the image of a

hexagon-shaped bokeh is splatted to the positions of these vertices.

Splatting is done to a texture that is divided into regions with different

resolutions using multiple viewports. First region is screen resolution and

the rest are a series of halved regions down to 1x1 texel resolution. The

screen space radius of the splatted bokeh determines the used resolution.

The larger the radius the smaller the used splatting resolution.

3. The different regions of the splatting texture are combined by up-scaling

the data in the smaller resolution regions step by step to the screen

resolution region.

4. The out-of-focus illumination is combined with the original illumination.

Bloom

The effect is computed by transforming the computed illumination to

frequency domain using Fast Fourier Transform (FFT) and applying bloom filter

to the input in that domain. An inverse FFT is then applied to the filtered

image. The forward FFT, applying the bloom filter and inverse FFT are done

with the Compute Shader. The effect is computed in reduced resolution. The

input image resolution is halved three times and rounded up to nearest power

of two. With the 1920 × 1080 screen resolution, 256 × 256 resolution is used to

perform the FFT. DXGI_FORMAT_R16G16B16A16_FLOAT textures are used to

store the frequency domain data. A procedurally pre-computed texture is used

as the bloom filter. The filter combines blur, streak, lenticular halo and

anamorphic flare effects.

Windows

3DMark Sky Diver runs on all DirectX 11 feature level 11_0 compatible

hardware and uses optimized code paths on feature level 11_1 devices.

Page 69 of 153

Sky Diver version history

Version

Notes

1.0.0 ● ✕ ✕ Launch version

Page 70 of 153

Page 71 of 153

Cloud Gate

Cloud Gate is a new test designed for Windows notebooks and typical home

PCs. It is a particularly good benchmark for systems with integrated graphics.

Cloud Gate includes two graphics tests and a physics test. The benchmark uses

a DirectX 11 engine limited to Direct3D feature level 10 making it suitable for

testing DirectX 10 compatible hardware. Cloud Gate is only available in the

Windows edition of 3DMark.

 Designed for typical home PCs and notebooks.

 DirectX 11 engine supporting DirectX 10 hardware.

 Includes two graphics tests and a physics test.

3DMark Cloud Gate and 3DMark Vantage compared

3DMark Vantage and 3DMark Cloud Gate are both benchmarks for DirectX 10

compatible hardware. The difference is in the engine powering each

benchmark.

3DMark Vantage, released in April 2008, uses a DirectX 10 engine. 3DMark

Cloud Gate uses a DirectX 11 engine limited to Direct3D feature level 10. Using

Direct3D feature levels is the modern approach to game engine design as it

allows developers to use a DirectX 11 engine and still support older generation

hardware all the way down to DirectX 9 level models.

We recommend using 3DMark Cloud Gate for testing DirectX 10 based

systems. Scores from 3DMark Vantage and 3DMark Cloud Gate cannot be

directly compared.

Page 72 of 153

System requirements

OS16 Windows 7 or later

Processor 1.8 GHz dual-core Intel or AMD CPU

Memory 2 GB

Storage 6 GB free disk space

GPU DirectX 10

Video card memory 256 MB

16 Windows 7 users must install Service Pack 1.

Page 73 of 153

Default settings

Rendering Resolution 1280 × 720

GPU memory Budget 256 MB

Shadow Sample Count 4

Shadow Map Resolution 1024

Depth of Field Quality Low

Bloom Resolution 1/8

Page 74 of 153

Graphics test 1

Cloud Gate Graphics test 1 has an emphasis on geometry processing while

having simple shaders. Volumetric illumination is disabled, but the scene

contains particle effects. FFT based bloom effects and a depth of field effect

are added as post processing steps.

Processing performed in an average frame

 Vertices Triangles Pixels17

Cloud Gate 3.0 million 1.1 million 15.6 million

17 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution

of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 75 of 153

Graphics test 2

Cloud Gate Graphics test 2 has shaders that are more mathematically complex

than Graphics test 1, but has less geometry to process. Simple volumetric

illumination is used, but the scene has no particle effects. Post processing

steps are similar to Graphics test 1.

Processing performed in an average frame

 Vertices Triangles Pixels18

Cloud Gate 1.8 million 690,000 16.3 million

18 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution

of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 76 of 153

Physics test

The Cloud Gate Physics test benchmarks the hardware’s ability to run

gameplay physics simulations on CPU. The GPU load is kept as low to ensure

that only the CPU is stressed.

The test has 32 simulated worlds. Each world has 4 soft bodies, 4 joints and 20

rigid bodies colliding with each other. The rigid bodies are invisible and are

there to cause the blast effect on the soft bodies.

The simulations run on one thread per available CPU core. All physics are

computed on the CPU with soft body vertex data updated to the GPU each

frame. Each world also has one CPU simulated particle system. The Physics test

uses a forward renderer for minimum GPU load.

The test duration is 20 seconds but the score calculation begins after 8

seconds. The first 8 seconds skipped to allow all simulated objects to actively

participate in simulation.

The Cloud Gate Physics test uses the Bullet Open Source Physics Library.

Page 77 of 153

Scoring

Overall Cloud Gate score

The 3DMark Cloud Gate score formula uses a weighted harmonic mean to

calculate the overall score from the Graphics and Physics scores.

𝐶𝑙𝑜𝑢𝑑 𝐺𝑎𝑡𝑒 𝑠𝑐𝑜𝑟𝑒 =
𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 + 𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠

𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠
𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠

+
𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠
𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠

Where:

𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = The Graphics score weight, equal to 7/9

𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = The Physics score weight, equal to 2/9

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = Graphics score

𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = Physics score

For a balanced system, the weights reflect the ratio of the effects of graphics

and physics performance on the overall score. Balanced in this sense means

the Graphics and Physics sub-scores are roughly the same magnitude.

For a system where either the Graphics or Physics score is substantially higher

than the other, the harmonic mean rewards boosting the lower score. This

reflects the reality of the user experience. For example, doubling the CPU

speed in a system with an entry-level graphics card doesn't help much in

games since the system is already limited by the GPU. Likewise for a system

with a high-end graphics card paired with an underpowered CPU.

Graphics score

Each Graphics test produces a raw performance result in frames per second

(FPS). We take a harmonic mean of these raw results and multiply it with a

scaling constant to reach a Graphics score (𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠) as follows:

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = 230 ×
2

1
𝐹𝑔𝑡1 +

1
𝐹𝑔𝑡2

Where:

𝐹𝑔𝑡1 = The average FPS result from Graphics test 1

𝐹𝑔𝑡1 = The average FPS result from Graphics test 2

Page 78 of 153

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

Physics score

The Physics score is calculated from the raw performance result in frames per

second (FPS) of the Physics test.

𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = 315 × 𝐹𝑝ℎ𝑦𝑠𝑖𝑐𝑠

Where:

𝐹𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = The average FPS result from the Physics Test

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

Page 79 of 153

Cloud Gate engine

Cloud Gate tests use same engine as Fire Strike, but with a reduced set of

features including a simplified lighting model and some fall-backs

implemented for Direct3D feature level 10.

Cloud Gate requires graphics hardware with support for Direct3D feature level

10 or greater.

Page 80 of 153

Cloud Gate version history

Version

Notes

1.1.0 ● ✕ ✕

Fixed issues when benchmarking systems

with multiple GPUs. Scores improve significantly

on systems with multiple GPUs.

1.0.0 ● ✕ ✕ Launch version

Page 81 of 153

Page 82 of 153

Sling Shot

Sling Shot is a cross-platform benchmark for modern mobile devices. Use it to

compare mainstream Android devices with popular iPhone and iPad models.

Use Sling Shot Extreme to compare high-end Android phones and tablets with

the latest Apple devices.

 Designed for the latest high-end smartphones and tablets.

 Mobile-optimized rendering engine using OpenGL ES 3.x and Metal.

 Benchmark the GPU with Graphics tests and the CPU with the Physics test.

Android devices must have Android 5.0 or later and support OpenGL ES 3.0 to

run Sling Shot and Open GL ES 3.1 to run Sling Shot Extreme.

On iOS, Sling Shot and Sling Shot Extreme compatibility starts with iPhone 5s,

iPad Air, iPad mini 2, and runs to the latest models.

Page 83 of 153

Sling Shot

Use 3DMark Sling Shot to compare mainstream Android smartphones and

tablets with popular iPhone and iPad models.

Sling Shot is a demanding OpenGL ES 3.0 benchmark that tests the full range of

API features including multiple render targets, instanced rendering, uniform

buffers and transform feedback. It includes volumetric lighting and particle

illumination, as well as depth of field and bloom post-processing effects.

The Graphics tests are rendered at 1920 × 1080 before being scaled to the

device's display resolution. The Physics test is rendered at 1280 × 720 to

ensure that GPU performance is not a limiting factor.

Use Sling Shot Unlimited to make chip-to-chip comparisons without vertical

sync, display resolution scaling and other operating system factors affecting

the result. Sling Shot Unlimited uses the same content and settings as Sling

Shot but runs offscreen using a fixed time step between frames. It renders

exactly the same frames in every run on every device. The display is updated

with frame thumbnails every 100 frames to show progress.

Page 84 of 153

Sling Shot Extreme

Run Sling Shot Extreme to compare high-end Android phones and tablets with

the latest Apple devices.

Sling Shot Extreme uses OpenGL ES 3.1 on Android and the Metal API on Apple

devices. It tests the full range of API features including multiple render targets,

instanced rendering, and uniform buffers. It also includes volumetric lighting,

depth of field and bloom post-processing effects using Compute Shaders.

The Graphics tests are rendered at 2560 × 1440 then scaled to the device's

native display resolution. The Physics test is rendered at 1280 × 720 to ensure

that GPU performance is not a limiting factor.

Use Sling Shot Extreme Unlimited to make chip-to-chip comparisons without

vertical sync, display resolution scaling and other operating system factors

affecting the result. Sling Shot Extreme Unlimited uses the same content and

settings as Sling Shot Extreme but runs offscreen using a fixed time step

between frames. It renders exactly the same frames in every run on every

device. The display is updated with frame thumbnails every 100 frames to

show progress.

Page 85 of 153

Cross-platform benchmarking

The rows in the table below show valid cross-platform comparisons, i.e. you

can compare Sling Slot scores across platforms, and you can compare Sling

Shot Extreme scores across platforms. But you cannot compare Sling Shot

scores with Sling Shot Extreme scores. Though they appear to be similar, they

use different rendering resolutions and post-processing techniques.

When comparing scores across platforms, note that the test results reflect

both hardware and software. APIs with low overhead, such as Metal and

Vulkan, can deliver more performance than OpenGL ES even on devices with

similar hardware.

Benchmark
Rendering

resolution
Android API iOS API

Sling Shot 1920 × 1080 Open GL ES 3.0 Open GL ES 3.0

Sling Shot Extreme 2560 × 1440 Open GL ES 3.1 Metal

Sling Shot results are not comparable with Cloud Gate

Even though the Sling Shot and Cloud Gate benchmarks share content they are

separate tests. To create Sling Shot, the assets and rendering techniques used

in Cloud Gate were modified to make them suitable for mobile hardware. In

broad terms, Sling Shot is a lighter test than Cloud Gate.

⚠ Sling Shot scores from mobile devices should not be compared

with Cloud Gate scores from Windows PCs.

Page 86 of 153

Device requirements

Android

 Sling Shot Sling Shot Extreme

OS Android 5.0 Android 5.0

Memory 1 GB 1.5 GB

Graphics OpenGL ES 3.0 OpenGL ES 3.1

Storage19 203 MB 203 MB

⚠ Sling Shot is temporarily disabled for ASUS Fonepad 8 FE380CG

due to problems with the driver included in the Android 5.0 OS

image. Intel has been notified.

Apple iOS

 Sling Shot Sling Shot Extreme

OS iOS 9 iOS 9

Memory 1 GB 1.5 GB

Graphics OpenGL ES 3.0 Metal

Storage 135 MB 135 MB

19 With the Android app you can choose to install only the tests you need. This figure is the storage space required for

installing the 3DMark app and the Sling Shot test. The total install size for 3DMark with all tests is 339 MB.

Page 87 of 153

Default settings

 Sling Shot Sling Shot Extreme

Resolution 1920 × 1080 2560 × 1440

GPU Memory Budget 1 GB 1.5 GB

Bloom/FFT Using Pixel Shaders Using Compute Shaders

Page 88 of 153

Graphics test 1

Sling Shot Graphics test 1 has an emphasis on geometry processing while

having simple shaders. Volumetric illumination is disabled, but the scene

contains particle effects. FFT-based bloom effects and a depth of field effect

are added as post processing steps. In Sling Shot Extreme, the bloom effects

use Compute Shaders. In Sling Shot, they use Pixel shaders.

 No volumetric illumination

 Particle effects

 Post-processing

Processing performed in an average frame

 Resolution20 Vertices Triangles Pixels21

Sling Shot Extreme 2560 × 1440 620,000 320,000 33.6 million

Sling Shot 1920 × 1080 620,000 320,000 20.4 million

For contrast

 Resolution Vertices Triangles Pixels

Cloud Gate 1280 × 720 3.0 million 1.1 million 15.6 million

20 This is the resolution used to render the Graphics tests. The Physics test is rendered at 1280 x 720 to ensure that

GPU performance is not a limiting factor.

21 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution
of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 89 of 153

Graphics test 2

Sling Shot Graphics test 2 has shaders that are more mathematically complex

than Graphics test 1, but has less geometry to process. Simple volumetric

illumination is used, but the scene has no particle effects. Post processing

steps are similar to Graphics test 1.

 Volumetric illumination

 No particle effects

 Post-processing

Processing performed in an average frame

 Resolution22 Vertices Triangles Pixels23

Sling Shot Extreme 2560 × 1440 427,000 220,000 35.1 million

Sling Shot 1920 × 1080 427,000 220,000 20.8 million

For contrast

 Resolution Vertices Triangles Pixels

Cloud Gate 1280 × 720 1.8 million 690,000 16.3 million

22 This is the resolution used to render the Graphics tests. The Physics test is rendered at 1280 x 720 to ensure that

GPU performance is not a limiting factor.

23 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution
of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 90 of 153

Physics Test

The test has three levels with different workloads. The first level is the lightest

and the last is the heaviest. The purpose of the three levels is to extend the

performance range for which the test is relevant.

The physics test is run with a fixed timestep at 30 FPS. The physics test always

begins with the first level and continues to the next level until either the test is

finished or 90 seconds have passed. If a level did not finish completely, then it

will contribute proportionally less to the final score. The final score is a

weighted sum of all levels.

The first level of the test has 8 simulation worlds running in separate threads.

Each world has one soft body with 107 vertices and 64 rigid bodies. The rigid

bodies are invisible and are there to cause the blast effect to soft bodies.

Additionally, there are 32 CPU simulated particle systems with about 500

particles in each.

The second level of the test adds 8 simulation worlds running in separate

threads. Each new world has one soft body with 499 vertices and additionally

64 rigid bodies.

The third level of the test adds another 16 simulation worlds running in

separate threads. Each new world has one soft body with 499 vertices and

additionally 64 rigid bodies.

Each of the 32 worlds is simulated at 30 FPS and the whole test takes 16

seconds at 30 FPS. The first level starts at time 0, the second level starts at time

5 and the third level at time 10.

All physics are computed on CPU. Soft body vertex data is updated to GPU on

each frame.

The Bullet Open Source Physics C++ Library version 2.83 alpha is used for

physics computation.

Page 91 of 153

Scoring

Sling Shot scores are rounded to the nearest integer. Higher is better.

Graphics Test scoring

Each of the Graphics Tests produces a raw performance result in frames per

second (FPS). A harmonic mean of the raw results is evaluated and multiplied

with a scaling constant to reach a Graphics score as follows:

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = 230
2

1
𝐹𝑔1

+
1

𝐹𝑔2

Where:

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = Graphics score

𝐹𝑔1 = Average frames per second in Graphics test 1

𝐹𝑔2 = Average frames per second in Graphics test 2

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

Physics Test scoring

The levels of the physics test produce a raw performance result in frames per

second (FPS). The score is defined as a sum of raw results from levels that can

be completed before a given time limit of 90 seconds. A scaling constant is

used to reach the final physics score.

The score is defined as follows:

𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = 9 (𝑁𝑝1𝑊𝑝1 + 𝑁𝑝2𝑊𝑝2 + 𝑁𝑝3𝑊𝑝3)

Where:

𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = Physics score

𝐶𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = A scaling constant, set to 9

𝑁𝑝𝑛 = a frame rate normalization factor for level 𝑁

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

𝑊𝑝𝑛 is defined as follows for the default version of the test:

Page 92 of 153

𝑊𝑝𝑛 = max (0, min(𝐿ℎ𝑖𝑔ℎ, 𝐹𝑛))

Where:

 𝐿ℎ𝑖𝑔ℎ = A maximum frame rate limit set to 60

 𝐹𝑛 = Average frames per second for the current level

And as follows for the Unlimited version of the test:

𝑊𝑝𝑛 = max (0, 𝐹𝑛)

Where:

𝐹𝑛 = Average frames per second for the current level

The frame rate normalization factors 𝑁𝑝1 , 𝑁𝑝2 , and 𝑁𝑝3 are used to normalize

the frame rates of the different levels before using them in score calculation. A

set of reference CPUs is used to define the factors.

 𝑁𝑝1 is always set to 1.

 𝑁𝑝2 is the average relative frame rate difference of levels 1 and 2 on the

reference CPUs.

 𝑁𝑝3 is the average relative frame rate difference of levels 2 and 3 on the

reference CPUs multiplied by 𝑁𝑝2.

The following table lists the CPUs that are used as reference.

Reference CPUs for Np2
Level 1

frame rate

Level 2

frame rate

Relative

difference

Apple A7

(iPhone 5s)
36.69 6.35 5.78

Qualcomm Snapdragon 800

(LG Nexus 5)
40.19 8.59 4.68

Qualcomm Snapdragon 805

(Motorola Nexus 6)
46.67 9.89 4.71

Page 93 of 153

Reference CPUs for Np2
Level 1

frame rate

Level 2

frame rate

Relative

difference

Tegra K1

(NVIDIA SHIELD)
59.05 20.59 2.87

AMD A4-5150M 112.36 13.57 8.28

Reference CPUs for Np3
Level 2

frame rate

Level 3

frame rate

Relative

difference

AMD A10-4600M 70.79 6.15 11.51

Intel Core i5-3317U 79.50 18.17 4.38

Intel Core i7 920 226.89 145.83 1.56

The following table defines values for the frame rate normalization factors.

𝑁𝑝1 1.00

𝑁𝑝2 3.26

𝑁𝑝3 10.60

3DMark Sling Shot score

The 3DMark Sling Shot and Sling Shot Extreme score is formed from the

Graphics score and Physics score using a weighted harmonic mean as follows:

𝑆3𝐷𝑀𝑎𝑟𝑘 =
𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 + 𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠

𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠
+

𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠

𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠

Where:

𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = the weight for the Graphics score, set to 7/9

𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = the weight for the Physics score, set to 2/9

Page 94 of 153

⚠ Even though the tests appear to be similar, Sling Shot scores

should not be compared with scores from Sling Shot Extreme. The

two tests use different rendering resolutions and post-processing

techniques making their scores incomparable.

Page 95 of 153

Sling Shot engine

Rendering

Multithreading

The engine utilizes one thread per available CPU core. One of the threads is

considered as the main thread, which makes the graphics API calls. The other

threads are worker threads, which do not make API calls.

The rendering workload is distributed between the threads by distributing

items (e.g. geometries and lights) in the rendered scene to the threads. Each

thread is assigned roughly equal amount of scene items. When rendering a

frame, each thread does the work associated to items assigned to the thread.

That includes, for example, computation of transformation matrix hierarchies

and computation of shader parameters (constants buffer contents and

dynamic vertex data). When the main thread is finished with the tasks

associated to its own items, it executes API calls for items assigned to the

worker threads.

Lighting

Lighting is done in deferred style. Geometry attributes are first rendered to a

set of render targets. Finally illumination is rendered based on those

attributes.

Surface illumination

The g-buffer is composed from two 32 bits per pixel textures and a depth

texture. Surface illumination model the basic Blinn Phong reflectance model.

Point, spot and directional lights are supported. Spot and directional lights can

be shadowed. For spot lights, shadow texture size is selected based on size of

the light volume in screen space. Shadow maps are sampled using best

candidate sample distribution. Sample pattern is dithered with 4x4 pixel

pattern.

Volumetric illumination

The renderer supports volume illumination. It is computed by approximating

the light scattered towards the viewer by the medium between eye and the

visible surface on each lit pixel. The approximation is based on volume ray

casting and simple scattering and attenuation model.

One ray is cast on each lit pixel for each light. The cast ray is sampled at

several depth levels. Sampling quality is improved by dithering sampling

depths with a 4x4 pixel pattern. The achieved result is blurred to combine the

different sampling depths on neighboring pixels before combining the volume

illumination with the surface illumination.

Page 96 of 153

When rendering illumination, there are two high dynamic range render targets.

One is for surface illumination and the other for volume illumination.

Particle illumination

Particle effects are rendered on top of opaque surface illumination with

additive or alpha blending. Particles are simulated on the GPU utilizing

transform feedback. Particles are simply self-illuminated.

Post-processing

Depth of field

The effect is computed by filtering rendered illumination in half resolution with

three separable skewed box filters that form hexagonal bokeh pattern when

combined.

The filtering is performed in two passes that exploit similarities in the three

filters to avoid duplicate work.

The first pass renders to two render targets and the second pass the one target

combining results of the three filters. Before filtering, a circle of confusion

radius is evaluated for each pixel and the illumination is premultiplied with the

radius.

After filtering, illumination is reconstructed by dividing the result with the

radius. This makes the filter gather out of focus illumination and prevents it

from bleeding in focus illumination to neighbor pixels.

Bloom

The effect is computed by transforming the computed illumination to

frequency domain using Fast Fourier Transform (FFT) and applying a bloom

filter to the input in that domain. An inverse FFT is then applied to the filtered

image.

The forward FFT, applying the bloom filter and inverse FFT are done using the

fragment shader. The FFT is performed with Cooley-Tukey algorithm as a series

of render passes.

The effect is computed in 256 × 256 resolution in both Sling Shot and Sling

Shot Extreme. In Sling Shot, the FFTs are computed using 16-bit floating point

textures. In Sling Shot Extreme, the FFTs are computed using 32-bit floating

point textures. A procedurally pre-computed texture is used as the bloom

filter. The filter combines blur, streak, lenticular halo and anamorphic flare

effects.

With Sling Shot Extreme, Compute Shaders are used for the FFT and bloom. A

total of 256 invocations within a work group is required.

Page 97 of 153

Sling Shot version history

Version

Notes

2.2 ✕ ✕ ●

Fixed a Physics test bug introduced in 3DMark Sling

Shot version 1.0.745. Scores from 2.2 workloads are

again comparable across platforms and devices.

2.0 ✕ ● ●
Improved compatibility with ARM Mali GPUs. Scores

from v2.0 are not comparable with v1.0 results.

1.0 ✕ ● ✕ Launch version

Page 98 of 153

Page 99 of 153

Ice Storm

Ice Storm is a cross-platform benchmark for low cost, basic smartphones and

tablets and older mobile devices.

Ice Storm includes two Graphics tests focusing on GPU performance and a

Physics test targeting CPU performance.

On Android and iOS, Ice Storm uses OpenGL ES 2.0. On Windows, Ice Storm

uses a DirectX 11 engine limited to Direct3D feature level 9.

Ice Storm's test content, settings and rendering resolution are the same on all

platforms and scores can be compared across Windows, Android and iOS.

 Cross-platform benchmark for older mobile devices.

 Includes two Graphics tests and a Physics test.

 Compare scores across Windows, Android and iOS.

⚠ With most modern mobile devices you will get more useful results

by benchmarking with one of the Sling Shot tests.

Page 100 of 153

System requirements

Windows

Ice Storm

Ice Storm Unlimited
Ice Storm Extreme

OS24 Windows 7 or later Windows 7 or later

Processor
1.8 GHz dual-core

Intel or AMD CPU

1.8 GHz dual-core

Intel or AMD CPU

Memory 2 GB 4 GB

Storage 6 GB free disk space 6 GB free disk space

GPU25 DirectX 9 DirectX 9

Video card memory 128 MB 256 GB

Windows RT

OS Windows RT

Memory 1 GB

Device All Windows RT devices

Storage 151 MB

24 Windows 7 users must install Service Pack 1.

25 DirectX 9 hardware needs Shader Model 3.0 support, 128 MB and WDDM 1.1 drivers. Note that ATI Radeon
X1x00 series cards do not have WDDM 1.1 drivers available and cannot run 3DMark. The oldest cards confirmed to
work with 3DMark are Radeon HD 2x00 series (Ice Storm, Cloud Gate), NVIDIA GeForce 7x00 series (Ice Storm)

and Intel GMA X4500 (Ice Storm).

Page 101 of 153

Android

OS Android 4.026

Memory 1 GB

Graphics OpenGL ES 2.0

Storage 235 MB27

Apple iOS

OS iOS 6.0

Memory 512 MB

Device iPhone 4, iPad 2, iPod touch (5th Gen)

Storage 174 MB

26 Minimum Android requirement raised from 3.1 to 4.0 with 3DMark Android version 1.3.1309.

27 With 3DMark on Android you can choose to install only the tests you need. This figure is the storage space required
for installing the 3DMark app and the Ice Storm test. The total install size for 3DMark with all tests is 339 MB.

Page 102 of 153

Ice Storm

Rendering resolution 1280 × 720

GPU memory budget 128 MB

Texture quality Low

Bloom resolution 1/8

Use Ice Storm for device-to-device comparisons of older mobile devices. Ice

Storm is rendered at a fixed 1280 × 720 resolution and then scaled to the

native resolution of the display. This is the best approach for ensuring that

devices can be compared fairly.

Many mobile devices lock their display refresh rate to 60 Hz and force the use

of vertical sync. If your device is able to run this test at more than 60 frames

per second you will be prompted to run a more demanding test instead.

Ice Storm Unlimited

Use Ice Storm Unlimited to make chip-to-chip comparisons. Ice Storm

Unlimited uses the same content and settings as Ice Storm but runs offscreen

using a fixed time step between frames. Unlimited mode renders exactly the

same frames in every run on every device. The display is updated with frame

thumbnails every 100 frames to show progress.

Ice Storm Unlimited measures the performance of the device hardware

without vertical sync, display resolution scaling and other operating system

factors affecting the result.

Page 103 of 153

Ice Storm Extreme

Graphics tests rendering resolution 1920 ×1080

Physics test rendering resolution 1280 × 720

GPU memory budget 256 MB

Texture Quality High

Bloom resolution 1/4

Use Ice Storm Extreme for device-to-device comparisons of low cost, basic

model mobile devices.

Ice Storm Extreme raises the Graphics tests rendering resolution from

1280 × 720 to 1920 × 1080 and uses higher quality textures and post-

processing effects to create a more demanding load. The Physics test renders

at 1280 × 720 to ensure performance is not limited by the GPU.

Many mobile devices lock their display refresh rate to 60 Hz and force the use

of vertical sync. If your device is able to run this test at more than 60 frames

per second you will be prompted to run a more demanding test instead.

Page 104 of 153

Graphics test 1

Ice Storm Graphics test 1 stresses the hardware’s ability to process lots of

vertices while keeping the pixel load relatively light. Hardware on this level

may have dedicated capacity for separate vertex and pixel processing.

Stressing both capacities individually reveals the hardware’s limitations in both

aspects. Pixel load is kept low by excluding expensive post processing steps,

and by not rendering particle effects.

Processing performed in an average frame

 Vertices Triangles Pixels28

Ice Storm

530,000 180,000 1.9 million

Ice Storm Extreme 580,000 190,000 4.4 million

28 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution

of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 105 of 153

Graphics test 2

Graphics test 2 stresses the hardware’s ability to process lots of pixels. It tests

the ability to read textures, do per pixel computations and write to render

targets. The additional pixel processing compared to Graphics test 1 comes

from including particles and post processing effects such as bloom, streaks

and motion blur. The numbers of vertices and triangles are considerably lower

than in Graphics test 1 because shadows are not drawn and the processed

geometry has a lower number of polygons.

Processing performed in an average frame

 Vertices Triangles Pixels29

Ice Storm

79,000 26,000 7.8 million

Ice Storm Extreme 89,000 28,000 18.6 million

29 This figure is the average number of pixels processed per frame before the image is scaled to fit the native resolution

of the device being tested. If the device’s display resolution is greater than the test’s rendering resolution, the actual
number of pixels processed per frame will be even greater.

Page 106 of 153

Physics test

The purpose of the Physics test is to benchmark the hardware’s ability to do

gameplay physics simulations on CPU. The GPU load is kept as low as possible

to ensure that only the CPU’s capabilities are stressed.

The test has four simulated worlds. Each world has two soft bodies and two

rigid bodies colliding with each other. One thread per available CPU core is

used to run simulations. All physics are computed on the CPU with soft body

vertex data updated to the GPU each frame. The background is drawn as a

static image for the least possible GPU load.

The Ice Storm Physics test uses the Bullet Open Source Physics Library.

Page 107 of 153

Scoring

Scores from individual Ice Storm benchmarks can be compared across

platforms, for example you can compare 3DMark Ice Storm Extreme scores

from Android and iOS devices.

Scores from different benchmarks should not be compared to each other. Ice

Storm, Ice Storm Unlimited and Ice Storm Extreme are separate tests with

their own scores, even though they share the same content.

Overall Ice Storm score

The 3DMark Ice Storm score formula uses a weighted harmonic mean to

calculate the overall score from the Graphics and Physics scores.

𝐼𝑐𝑒 𝑆𝑡𝑜𝑟𝑚 𝑠𝑐𝑜𝑟𝑒 =
𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 + 𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠

𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠
𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠

+
𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠
𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠

Where:

𝑊𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = The Graphics score weight, equal to 7/9

𝑊𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = The Physics score weight, equal to 2/9

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = Graphics score

𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = Physics score

For a balanced system, the weights reflect the ratio of the effects of graphics

and physics performance on the overall score. Balanced in this sense means

the Graphics and Physics sub-scores are roughly the same magnitude.

For a system where either the Graphics or Physics score is substantially higher

than the other, the harmonic mean rewards boosting the lower score. This

reflects the reality of the user experience. For example, doubling the CPU

speed in a system with an entry-level graphics card doesn't help much in

games since the system is already limited by the GPU. Likewise for a system

with a high-end graphics card paired with an underpowered CPU.

Graphics score

Each Graphics test produces a raw performance result in frames per second

(FPS). We take a harmonic mean of these raw results and multiply it with a

scaling constant to reach a Graphics score (𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠) as follows:

Page 108 of 153

𝑆𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠 = 230 ×
2

1
𝐹𝑔𝑡1 +

1
𝐹𝑔𝑡2

Where:

𝐹𝑔𝑡1 = The average FPS result from Graphics test 1

𝐹𝑔𝑡1 = The average FPS result from Graphics test 2

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

Physics score

The Physics score is calculated from the raw performance result in frames per

second (FPS) of the Physics test.

𝑆𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = 315 × 𝐹𝑝ℎ𝑦𝑠𝑖𝑐𝑠

Where:

𝐹𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = The average FPS result from the Physics Test

The scaling constant is used to bring the score in line with traditional 3DMark

score levels.

Page 109 of 153

Ice Storm engine

Ice Storm uses the same engine on all platforms. The engine supports the

following features.
 Traditional forward rendering using one pass per light.

 Scene updating and visibility computations are multithreaded.

 Draw calls are issued from a single thread.

 Support for skinned and static geometries.

 Surface lighting model is basic Blinn Phong.

 Supported light types include unshadowed point light & optionally shadow

mapped directional light as well as pre-computed environmental cube.

 Support for transparent geometries and particle effects.

 16-bit color formats are used in illumination buffers if supported by the

hardware.

Windows

On Windows and Windows RT, Ice Storm requires support for Direct3D feature

level 9_3 or 9_1 with the optional shadow filtering support.

Android

Ice Storm does not use any vendor specific OpenGL ES 2.0 extensions.

Textures are compressed using ETC. Textures that require an alpha channel

are loaded uncompressed.

iOS

Textures, including those with an alpha channel, are compressed using PVRTC.

Page 110 of 153

Ice Storm version history

Version

RT

Notes

1.2.0 ● ● ● ● Added Ice Storm Unlimited

1.1.1 ● ✕ ● ✕

Ice Storm Extreme Physics test now runs at

1080 × 720 to ensure performance is not

limited by the GPU. Scores may improve

slightly on devices with low-end GPUs.

1.1.0 ● ✕ ● ✕ Added Ice Storm Extreme

1.0.0 ● ✕ ✕ ✕ Launch version

Page 111 of 153

Page 112 of 153

API Overhead feature test

Feature tests are special tests designed to highlight specific techniques,

functions or capabilities. A 3DMark feature test differs from a 3DMark

benchmark in that the nature of the test may be necessarily artificial rather

than based on real-world uses and applications.

Even so, feature tests are designed such that performance improvements in

the test should benefit other applications as well, i.e. any driver optimization

that results in improved performance in the API Overhead feature test will also

benefit other games and applications.

The 3DMark API Overhead feature test is an independent test for measuring

differences in Vulkan, DirectX 12 and DirectX 11 API performance on Windows

PCs. On iOS devices, the test measures the difference between OpenGL ES 3.0

and Metal APIs.

New low-overhead APIs like Vulkan, DirectX 12 and Metal make better use of

multi-core CPUs to streamline code execution and eliminate software

bottlenecks, particularly for draw calls.

A draw call happens when the CPU tells the GPU to draw an object on the

screen. Games typically make thousands of draw calls per frame, but each one

creates performance-limiting overhead for the CPU.

As the number of draw calls rises, graphics engines become limited by API

overhead. APIs like Vulkan, DirectX 12 and Metal reduce that overhead

allowing more draw calls. With more draw calls, the graphics engine can draw

more objects, textures and effects to the screen.

The 3DMark API Overhead feature test measures API performance by making a

steadily increasing number of draw calls. The result of the test is the number

of draw calls per second achieved by each API before the frame rate drops

below 30 FPS.

For Windows, the API Overhead feature test is only available in 3DMark

Advanced Edition and 3DMark Professional Edition.

Page 113 of 153

Correct use of the API Overhead feature test

The API Overhead feature test is not a general-purpose GPU benchmark, and it

should not be used to compare graphics cards from different vendors.

The test is designed to make API overhead the performance bottleneck. It does

this by maximizing the number of draw calls in a scene, (by drawing a huge

number of individual ‘buildings’), while minimizing the GPU load, (by using

simple shaders and no lighting effects). This an artificial scenario that is

unlikely to be found in games, which typically aim to achieve high levels of

detail and exceptional visual quality.

The benefit of reducing API overhead is greatest when the CPU is the limiting

factor. With modern APIs and fast CPUs, the test can become GPU bound, but

not always in a way that is meaningful from a general GPU performance

perspective. The point at which the test moves from being CPU-bound to GPU-

bound changes from system to system. It is not easy to tell from the test

results whether the run was CPU or GPU limited. And what's more, it is difficult

to isolate the relative impact of GPU performance and driver performance.

As a result, you should be careful making conclusions about GPU performance

when comparing API Overhead test results from different systems. For

instance, we would advise against comparing the Vulkan score from an AMD

GPU with the DirectX 12 score from an NVIDIA GPU. Likewise, it could be

misleading to credit the GPU for any difference in DirectX 12 performance

between an AMD GPU and an NVIDIA GPU.

Another scenario, for example, would be to test DirectX 12 performance with a

range of CPUs in a system with a fixed GPU. Or, you could test a vendor's range

of GPUs, from budget to high-end, and keep the CPU fixed. But in both cases,

the nature of the test means it will not show you the extent to which the

performance differences are due to the hardware and how much is down to

the driver.

The proper use of the test is to compare the relative performance of each API

on a single system, rather than the absolute performance of different systems.

The focus on single-system testing is one reason why the API Overhead test is

called a feature test rather than a benchmark.

Page 114 of 153

System requirements

Windows

 DirectX 11 DirectX 1230 Vulkan

OS31
Windows 7 or later,

64-bit
Windows 10, 64-bit

Windows 7 or later,

64-bit

Processor
1.8 GHz dual-core

Intel or AMD CPU

1.8 GHz dual-core

Intel or AMD CPU

1.8 GHz dual-core

Intel or AMD CPU

Memory 6 GB 6 GB 6 GB

GPU
DirectX 11

compatible

DirectX 12

compatible
Vulkan compatible

Video card memory 1 GB 1 GB 1 GB

Apple iOS

The 3DMark API Overhead app requires iOS 8.0 or later. Compatibility starts

with iPhone 5s, iPad Air, iPad mini 2, and runs to the latest models. The app

requires 33 MB of free storage space.

30 The DirectX 12 part of the API Overhead feature test requires Windows 10, graphics hardware that supports

DirectX 12, and the appropriate drivers. DirectX 12 is not yet supported on all DirectX 11 level hardware. Check

with your video hardware vendor for the latest drivers. The API Overhead feature test does not yet support multi-
GPU systems, and you may need to disable Crossfire/SLI. Close other apps that tie into the DirectX stack, for
example applications like FRAPS that draw overlays. Apps that are not compatible with DirectX 12 will prevent the

test from running.

31 Windows 7 users must install Service Pack 1.

Page 115 of 153

Windows settings

Windowed mode

Check this box to run the test in a window. The default is unchecked, meaning

the test runs full screen.

Rendering resolution

Use this drop-down menu to set the rendering resolution for the test. This is

the resolution used for the internal render target, before the output is scaled

to the back buffer. This option is cosmetic, since changing the rendering

resolution will not affect the test results on the majority of systems. The

default is 1280 × 720.

Page 116 of 153

Technical details

The test is designed to make API overhead the performance bottleneck. The

test scene contains a large number of geometries. Each geometry is a unique,

procedurally-generated, indexed mesh containing 112 -127 triangles.

The geometries are drawn with a simple shader, without post processing. The

draw call count is increased further by drawing a mirror image of the geometry

to the sky and using a shadow map for directional light.

The scene is drawn to an internal render target before being scaled to the back

buffer. There is no frustum or occlusion culling to ensure that the API draw call

overhead is always greater than the application side overhead generated by

the rendering engine.

Starting from a small number of draw calls per frame, the test increases the

number of draw calls in steps every 20 frames, following the figures in the

table below.

To reduce memory usage and loading time, the test is divided into two parts.

On Windows, the first part runs until 98,304 draw calls per frame. On iOS, the

first part runs until 12,288 draw calls per frame. The second part starts from

the beginning on both Windows and iOS.

Draw calls per frame
Draw calls per frame increment

per step

Accumulated duration

in frames

192 – 384 12 320

384 – 768 24 640

768 – 1536 48 960

1536 – 3072 96 1280

3072 – 6144 192 1600

6144 – 12288 384 1920

12288 – 24576 768 2240

24576 – 49152 1536 2560

49152 – 98304 3072 2880

Page 117 of 153

Draw calls per frame
Draw calls per frame increment

per step

Accumulated duration

in frames

98304 – 196608 6144 3200

196608 – 393216 12288 3520

Geometry batching

To improve content streaming performance, reduce API overhead and shorten

loading times, games often batch geometries together by storing the vertex

data for a group of geometries in a single, large buffer.

Allocating one large buffer is faster than allocating several small buffers. And

uploading the contents of one large buffer from the CPU to the GPU is faster

than uploading the contents of several small buffers.

In games and other real-world applications, the extent to which batching is

possible depends on many factors. API overhead is reduced if consecutive

draw calls can use the same buffer and there is no buffer changing operation

required between draw calls.

The 3DMark API Overhead feature test makes a vertex buffer change operation

on every tenth draw call. This represents neither the worst case nor the

optimal scenario and was chosen to best reflect the nature of real-world

workloads.

For fairness, we use the same batching and buffer management code on all

platforms. Some platforms restrict the minimum size of buffer allocations,

which in practice requires applications to store the data for smaller geometries

together in large buffers. Therefore, the test uses large buffers to hold the data

for several geometries.

Page 118 of 153

DirectX 12 path

All lighting draw calls use the same primitive topology and pipeline state

object. The following DirectX 12 API calls are made, at least once, for each

lighting draw call:

SetIndexBuffer()

SetGraphicsRootDescriptorTable()

SetGraphicsRootConstantBufferView()

DrawIndexedInstanced() with a single instance

All shadow map draw calls use the same primitive topology and pipeline state

object. The following DirectX 12 API calls are made, at least once, for each

shadow map draw call:

SetIndexBuffer()

SetGraphicsRootConstantBufferView()

DrawIndexedInstanced() with a single instance

Neither lighting nor shadow map passes use tessellator or geometry shader.

The test uses one thread for each logical CPU core. Draw call recording work is

divided evenly between all threads for both the shadow map and lighting

passes. Each thread records draw calls for a fixed set of geometries for both

passes.

Page 119 of 153

DirectX 11 path

All lighting draw calls use the same primitive topology, shaders and rasterizer,

depth stencil and blend states. The following DirectX 11 API calls are made for

each lighting draw call:

IASetIndexBuffer()

IASetVertexBuffers()

VSSetConstantBuffers()

PSSetConstantBuffers()

PSSetSamplers()

PSSetShaderResources()

DrawIndexed()

All shadow map draw calls use the same primitive topology, shaders and

rasterizer, depth stencil and blend states. The following API calls are made for

each shadow map draw call:

IASetIndexBuffer()

IASetVertexBuffers()

VSSetConstantBuffers()

DrawIndexed()

Neither lighting nor shadow map passes use tessellator or geometry shader.

Single-threaded

When single threaded mode is selected, draw calls for all geometries are made

through ImmediateDeviceContext using a single thread, first for the shadow

map pass and then for the lighting pass.

Multi-threaded

When multi-threaded mode is selected, (and there are more than two logical

CPU cores available), one core is intentionally left unused to ensure it is

available for the display driver. The other threads, (one less than the number

of available cores), are used to record draw calls to command lists through

DeferredDeviceContexts.

Draw call recording work is divided evenly across all used threads for both

shadow map and lighting passes. Each thread records draw calls for a fixed set

of geometries for both passes. First all command lists are recorded without

synchronization points. After being recorded, the command lists are executed

by the main thread in the appropriate order.

⚠ Since one thread is reserved for the display driver, running multi-

threaded on a dual-core CPU will return the same result as running

the single-threaded test.

Page 120 of 153

Vulkan path

All lighting draw calls use the same primitive topology and pipeline state

object. The following Vulkan API calls are made for each lighting draw call:

vkCmdBindDescriptorSets()

vkCmdDrawIndexed()

All shadow map draw calls use the same primitive topology and pipeline state

object. The following Vulkan API calls are made for each shadow map draw

call:

vkCmdBindDescriptorSets()

vkCmdDrawIndexed()

Neither lighting nor shadow map passes use tessellator or geometry shader.

The test uses one thread for each logical CPU core. Draw call recording work is

divided evenly between all threads for shadow map and lighting passes. Each

thread records draw calls for a fixed set of geometries for both passes.

Page 121 of 153

Mantle path

⚠ Please note that the Mantle test was replaced with a Vulkan test in

3DMark v2.3.3663 released on March 23, 2017.

All lighting draw calls use the same primitive topology, shaders and rasterizer,

depth stencil and blend states. The following Mantle API calls are made for

each lighting draw call:

grCmdBindDescriptorSet()

grCmdBindIndexData()

grCmdDrawIndexed()

All shadow map draw calls use the same primitive topology, shaders and

rasterizer, depth stencil and blend states. For each shadow map draw call, the

following Mantle API calls are made:

grCmdBindDescriptorSet()

grCmdBindIndexData()

grCmdDrawIndexed()

Neither lighting nor shadow map passes use tessellator or geometry shader.

All shader constants are stored in one large constant buffer that is updated

with a single grMapMemory() call. The memory states for the constant buffer

are set with grCmdPrepareMemoryRegions().

The test uses one thread for each logical CPU core. Draw call recording work is

divided evenly between all threads for shadow map and lighting passes. Each

thread records draw calls for a fixed set of geometries for both passes.

Page 122 of 153

Metal path

All lighting draw calls use the same primitive topology, render pipeline state,

and other graphics rendering state. The following Metal API calls are made for

each lighting draw call:

setVertexBuffer:

setVertexTexture:

setFragmentBuffer:

setFragmentTexture:

drawIndexedPrimitives:

All shadow map draw calls use the same primitive topology, render pipeline

state, and other graphics rendering state. On each shadow map draw call, the

following Metal API calls are made:

setVertexBuffer:

drawIndexedPrimitives:

OpenGL ES 3.0 is only used in single-threaded mode, where the draw calls for

all geometries are made first for the shadow map pass and then for the

lighting pass.

Page 123 of 153

OpenGL ES 3.0 path

All lighting draw calls use the same primitive topology, shader program, and

other graphics rendering state. The following OpenGL ES 3.0 API calls are made

for each lighting draw call:

glActiveTexture()

glBindTexture()

glBindSampler()

glBindBufferRange()

glBindVertexArray()

glDrawElements()

All shadow map draw calls use the same primitive topology, shader program,

and other graphics rendering state. On each shadow map draw call, the

following OpenGL ES 3.0 API calls are made:

glBindBufferRange()

glBindVertexArray()

glDrawElements()

OpenGL ES 3.0 is only used in single-threaded mode, where the draw calls for

all geometries are made first for the shadow map pass and then for the

lighting pass.

Page 124 of 153

Scoring

The test increases the number of draw calls per frame in steps, until the frame

rate drops below 30 frames per second.

Note that if a single frame takes more than 3 times as long to render than the

average time for the 20 previous frames, it is treated as an outlier and ignored.

This is necessary because the first frame after raising the draw call count

sometimes has a longer frame time, which would cause the test to end earlier

than it should.

Once the frame rate drops below 30 frames per second, the number of draw

calls per frame is kept constant and the average frame rate is measured over 3

seconds.

This frame rate value is then multiplied by the number of draw calls per frame

to give the result of the test: the number of draw calls per second achieved by

each API.

⚠ The API Overhead feature test is not a general-purpose GPU

benchmark, and it should not be used to compare graphics cards

from different vendors. The proper use of the test is to compare

the relative performance of each API on a single system, rather

than the absolute performance of different systems.

Page 125 of 153

API Overhead version history

Windows

Version Notes

1.5 Vulkan test replaces Mantle.

1.3 Minor bug fixes. Scores are not affected.

1.2 Minor bug fixes. Scores are not affected.

1.1 Updated for Windows 10 RTM. Scores are not affected.

1.0 Launch version

iOS

Version Notes

1.0 Launch version

Page 126 of 153

Stress Tests

Stress testing is a useful way to check the reliability and stability of your

system. It can also identify faulty hardware or a need for better cooling. The

best time to run the stress test is after buying or building a new PC, upgrading

your graphics card, or overclocking your GPU.

If your GPU crashes, hangs, or produces visual artifacts during the test, it may

indicate a reliability or stability problem. If it overheats and shuts down, you

may need more cooling in your computer.

Stress Tests are not available in 3DMark Basic Edition or the Steam demo.

Page 127 of 153

Options

Test Selection

Use this drop down menu to choose which Stress Test to run. 3DMark offers

many tests, each designed for a specific class of hardware. You should use the

test most suited to the system you are testing.

⚠ Note that Fire Strike Ultra requires at least 3 GB of dedicated video

card memory. A crash on a system that does not meet this

requirement is not a sign of a hardware stability problem.

Number of loops

In 3DMark Professional Edition, you can use this option to set the number of

loops for the test. The minimum number of loops is 2. The maximum is 5000.

You can stop the test at any time by pressing the ESC key.

Enable window mode

In 3DMark Professional Edition, use this option to run the test in a window.

Page 128 of 153

Technical details

The aim of stress testing is to place a high load on the system for an extended

period of time to expose any problems with stability or cooling capability.

3DMark Stress Tests work by looping a benchmark graphics test continuously

without pausing for loading screens or other breaks. A Stress Test takes

around 10 minutes to run when set to the default 20 loops, which is usually

enough to find any significant stability or cooling issues.

Stress Test Target hardware Engine
Rendering

resolution

Time Spy
High-performance gaming

PC running Windows 10

DirectX 12

feature level 11
2560 × 1440

Fire Strike Ultra
PC systems designed

for 4K gaming

DirectX 11

feature level 11

3840 × 2160

(4K UHD)

Fire Strike Extreme
Multi-GPU systems and

overclocked PCs

DirectX 11

feature level 11
2560 × 1440

Fire Strike
High-performance

gaming PCs

DirectX 11

feature level 11
1920 × 1080

Sky Diver
Gaming laptops and

mid-range PCs

DirectX 11

feature level 11
1920 × 1080

Page 129 of 153

Scoring

The main result from the Stress Test is the system's Frame Rate Stability

expressed as a percentage.

𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑓𝑝𝑠𝐿𝑜𝑤

𝑓𝑝𝑠𝐻𝑖𝑔ℎ
 * 100

Where:

𝑓𝑝𝑠𝐻𝑖𝑔ℎ = The average frame rate from the best

performing loop of the test.

𝑓𝑝𝑠𝐿𝑜𝑤 = The average frame rate from the worst

performing loop of the test.

A high score means your PC's performance under load is stable and consistent.

To pass the test, your system's frame rate stability must be at least 97% and all

loops must be completed.

In the example below, the system failed the test because its average frame

rate dropped noticeably after the GPU reaches its peak temperature.

Page 130 of 153

How to report scores

3DMark includes many tests, each designed for a specific type of hardware

ranging from smartphones to high-performance gaming PCs. When testing

devices or components, make sure you use the most appropriate test for the

hardware's capabilities.

Each test gives its own score, which you can use to compare similar devices or

systems. There is no overall 3DMark score. Scores from different tests are not

comparable. Do not use 3DMark as a unit of measurement.

 "Video card scores 10,000 in 3DMark Fire Strike benchmark."

 "Video card scores 10,000 3DMarks."

Always include details of the hardware setup you used to obtain the score. Be

sure to include the operating system, system hardware and version numbers

for relevant drivers.

World record scores

Futuremark's Hall of Fame is the only source of official 3DMark world record

scores. You should not present scores from any other website or leaderboard

as world records. In those cases we suggest using alternative wording such as:

"Video card takes the number one spot on [website] leaderboard."

Delisted Devices

We have rules for manufacturers and developers that specify how a platform

can interact with our benchmark software. When a device is suspected of

breaking those rules it is delisted. Scores from delisted devices are not shown

in the Hardware Channel and should not be used to compare devices.

Using 3DMark scores in marketing material

You must have a commercial license to use 3DMark scores in marketing

material. A commercial license is granted with the purchase of 3DMark

Professional Edition or through our site licensing program. Please contact us if

you wish to use 3DMark scores from mobile platforms.

On the first mention of 3DMark in marketing text, such as an advertisement or

product brochure, please write "3DMark benchmark" to protect our trademark.

"We recommend 3DMark® benchmarks from Futuremark®."

Please include our legal text in your small print.

3DMark® is a registered trademark of Futuremark Corporation.

http://www.3dmark.com/hall-of-fame/
http://www.futuremark.com/support/approved-drivers
http://community.futuremark.com/hardware/mobile
mailto:sales@futuremark.com

Page 131 of 153

Release notes

Windows edition

3DMark Windows v2.3.3663 – March 23, 2017

This is a major update that adds Vulkan support to the API Overhead feature

test. Benchmark scores are not affected with the exception of API Overhead

feature test, which now produces scores for Vulkan instead of Mantle.

New

 Added Vulkan support to the API Overhead feature test. Use the API

Overhead feature test to compare Vulkan, DirectX 12, and DirectX 11 API

performance on your PC. The Vulkan test requires compatible video drivers

with Vulkan support. Check with your GPU vendor for Vulkan driver

support if your hardware is unable to run the test. Note that the Vulkan

test replaces the Mantle test found in previous versions of 3DMark.

Improved

 SystemInfo scan time greatly improved on X99 systems.

Fixed

 Fixed an issue that could cause the API Overhead feature test to fail to

show a score at the end of an otherwise normal run on some systems.

 Fixed Time Spy test to properly recover from a corrupted shader cache - if

runtime compiled shaders are found to be corrupted, they are deleted and

recompiled. Uninstallation also now completely removes the shader cache

folder.

 Fixed a scaling issue that could cause parts of the UI to end up outside the

display area on 1080p monitors with 150% DPI scaling. UI will now scale

appropriately even on high DPI scaling settings.

Professional Edition

 Fixed an issue that could cause the Command Line interface to refuse to

work after registering a Time Spy Professional Edition key with an

expiration date.

3DMark Windows v2.2.3509 – December 15, 2016

This update fixes a GUI issue that resulted in marginally lower than expected

scores when starting a test from the Benchmark Details screen in 3DMark

versions 2.1.2852 and later. Benchmark runs started from the Home screen or

the Command Line were not affected.

Page 132 of 153

It is normal for 3DMark scores to vary by up to 3% between runs since there

are factors in a modern, multitasking operating system that cannot be

completely controlled.

With this update, overall scores are expected to increase by up to 0.3%. Scores

from the Physics and CPU parts of benchmark tests may improve by up to

2.5%. Scores from this version of 3DMark are consistent with results from

previous versions that did not have the GUI issue.

Compatibility

 Added a two-minute timeout to the SystemInfo scan to prevent it from

stalling for long periods on some specific systems.

3DMark Windows v2.2.3491 – December 10, 2016

This is a minor update. Benchmark scores are not affected.

Fixed

 Fixed an issue with the output resolution setting on the Option screen.

3DMark Windows v2.2.3488 – December 9, 2016

This is a minor update. Benchmark scores are not affected.

Improved

 3DMark now warns you when vsync, FreeSync, or G-SYNC is enabled. For

accurate results, you should disable these features in your video driver

settings before benchmarking.

Fixed

 Fixed a SystemInfo timing issue that most commonly affected systems with

the X99 chipset. 3DMark now waits for the SystemInfo scan to finish before

starting the test.

 Fixed a rare issue that could cause the UI to open on an empty white

window.

VRMark Preview

VRMark is now available from futuremark.com and Steam. You can still install

and run the VRMark Preview in 3DMark, but it is no longer recommended or

supported.

 Moved the Preview from the main navigation bar to the Benchmarks

screen.

 Added an uninstall button to the VRMark Preview screen.

Page 133 of 153

3DMark Windows v2.1.2973 – August 19, 2016

This is a minor update. Benchmark scores are not affected.

Fixed

 Updating 3DMark from within the app will now properly close previous

versions before applying the update.

3DMark Windows v v2.1.2969 – August 18, 2016

This is a minor update to fix problems reported by some users. Benchmark

scores are not affected with one exception - see the section about Fire Strike

Custom runs below for details.

Improved

 SystemInfo module updated to 4.48 for improved compatibility with the

latest hardware.

 The video RAM check that warns if your system may not be able to run a

test now accepts extra main RAM beyond the minimum requirement as

VRAM for integrated graphics.

 We've added a DETAILS button to the panel for the Recommended test on

the Benchmarks screen to make it easier to find more information and the

settings for the test. This is also where you find the option to enable or

disable the demo for each test.

Fixed Fire Strike Custom run settings

Unfortunately, the previous version (3DMark v2.1.2852) used an incorrect

setting for Fire Strike Custom runs that resulted in slightly lower than expected

scores. Fire Strike Custom run results from the previous version should not be

compared with this latest version nor with any other version of 3DMark. The

standard Fire Strike benchmark run was not affected, nor were Fire Strike

Extreme and Fire Strike Ultra.

 Restored the control for volumetric illumination sample count setting on

the Fire Strike Custom run screen, which was missing in the previous

version.

 Fixed the default value for volumetric illumination sample count for Fire

Strike Custom runs. In 3DMark v2.1.2852, Fire Strike Custom run used an

incorrect default setting of 1.5. This has been reverted to 1.0, which is the

correct value for the test.

Standalone version fixes

 Fixed an issue that caused installation to fail if the unzipped installer

content resided in a path that included a folder name with a space.

Page 134 of 153

 Fixed an issue that could prevent the in-app update from working properly.

If you are affected by this issue and cannot update 3DMark from within the

app, you should download the full installer.

Steam version fixes

 Fixed a problem that could cause 3DMark to appear to be still running in

the Steam client after exiting, which then blocked Steam from closing.

 Fixed an issue that prevented DLCs from installing into a custom Steam

library folder when the folder name included a space.

Other fixes

 Fixed an issue that prevented Sky Diver from starting on 32-bit Windows.

 Fixed an issue that caused Time Spy to crash when scaling mode was set to

Stretched.

 Fixed an issue that could cause result parsing to fail on complex systems

with lots of devices due to the unusually large data set generated by the

SystemInfo scan.

Known Issues

 Time Spy fails to run on multi-GPU systems with Windows 10 build 10240,

but this is not the fault of the benchmark. You must upgrade Windows 10

to build 10586 (“November Update”) or later to enable multi-GPU

configurations to work.

 Installing the standalone version and the DLC test data to the same folder

is not a supported configuration. The latest version will prevent you from

installing both to the same folder. If you currently have 3DMark and the

DLC test data installed to the same custom folder you will need to uninstall

3DMark then reinstall the latest version using the full installer.

3DMark Windows v2.1.2852 – July 14, 2016

This major update adds Time Spy, a new DirectX 12 benchmark test. With its

pure DirectX 12 engine, which supports new API features like asynchronous

compute, explicit linked multi-adapter, and multi-threading, 3DMark Time Spy

is the ideal benchmark for testing the DirectX 12 performance of the latest

graphics cards.

New

 Added Time Spy Stress Test - a new dedicated Stress Test for high-

performing PCs running on Windows 10. Time Spy Stress Test is not

available in 3DMark Basic Edition or 3DMark Time Spy upgrade in Steam.

Fixed

 Fixed an issue that could cause all Stress Test runs to end with 0% score.

Page 135 of 153

 Fixed an issue that could prevent self-update from working (standalone

version only). If you are running 3DMark 2.0.2724 or 2.0.2809 Advanced

Edition, you need to download and install the full 2.1 installer to update.

3DMark Windows v2.0.2809 - July 12, 2016

This is a minor update. Benchmark scores are not affected.

Fixed

 Fixed further compatibility issues with the Steam launcher and some

specific operating system configurations that could cause the 64-bit version

to refuse to start.

 Fixed an issue with result file processing that could cause the benchmark to

hang with a black screen at the end of a demo or test on some systems.

3DMark Windows v2.0.2724 - July 4, 2016

This is a minor update that fixes several compatibility issues. Benchmark

scores are not affected.

Improved

 SystemInfo module updated to 4.47 for improved compatibility with the

latest hardware.

Fixed

 Fixed an issue that could cause the Sky Diver Stress Test to hang on a white

screen on very fast systems.

 Fixed an issue that prevented 3DMark from installing on Windows 7 if UAC

was disabled. You can now click 'Ignore' on the warning to continue the

installation.

 Fixed compatibility issues with the Steam launcher and some specific

operating system configurations that could cause the 64-bit version to

refuse to start.

 Fixed an issue that could cause the benchmark to fail if your Windows user

folder name contained UTF-8 characters.

3DMark Windows 2.0.2530– June 13, 2016

This major update adds new Stress Tests for checking the stability of your PC.

New

 Use the new Stress Tests to check the stability of your system after buying

or building a new PC, upgrading your graphics card, or overclocking your

GPU. Stress testing can help you identify faulty hardware or the need for

better cooling. Stress Tests are not available in 3DMark Basic Edition or the

Steam demo.

Page 136 of 153

Improved

 SystemInfo module updated to 4.46 for improved hardware detection.

 Reintroduced the option to set up a Custom run using only the Demo.

Fixed

 Fixed an issue that could cause 3DMark to fail to install test DLC files.

3DMark Windows v2.0.2067 - April 15, 2016

This minor update fixes a few issues that came to light after the v2.0.1979

release on April 6. Benchmark scores are unaffected.

Fixed

 SystemInfo module updated to 4.45 to fix a compatibility issue with

Russian and Chinese language versions of Windows.

 Fixed the Unicode compatibility issue with Russian and Chinese language

versions of Windows.

 Fixed the white screen issue when installing 3DMark under a NTFS Junction

or Mount Point.

 Fixed the missing button text issue affecting a small number of users.

Improved

 Updated Russian localization.

3DMark Windows v2.0.1979 – April 6, 2016

This is a major update that adds a redesigned UI for all editions and a preview

of VRMark for Advanced and Professional Edition users.

New

 3DMark UI has been redesigned and rebuilt to be faster and more flexible.

 Home screen recommends the best test based on your system details.

 Run other benchmarks and feature tests from the Benchmarks screen.

 Russian localization.

Improved

 Each benchmark test can now be updated independently.

 Ice Storm Extreme and Ice Storm Unlimited are unlocked in 3DMark Basic

Edition.

 SystemInfo module updated to 4.43 for improved hardware detection.

VRMark preview

 Explore two test scenes in a preview of VRMark, our new benchmark for VR

systems. The preview does not produce a score.

Page 137 of 153

 The preview is not available in 3DMark Basic Edition or the Steam demo.

Fixed

 Workaround for the AMD driver issue where the preview videos in the UI

caused some AMD graphics cards to use low power mode and run at lower

clock speeds.

3DMark Windows v1.5.915 – June 5, 2015

This is a minor update. Benchmark scores are unaffected. Note that while

Windows 10 is in development there may be unforeseeable compatibility

problems with some hardware configurations.

Improved

 SystemInfo module updated to 4.39 for improved detection of upcoming

hardware from AMD and Intel.

Compatibility

 API Overhead feature test updated to work with Windows 10 Technical

Preview build 10130.

Known issues

 AMD Catalyst Driver 15.200.1023.5 for Windows 10 has an issue that

prevents the DirectX 12 API Overhead test from working on Radeon R9

280, Radeon HD 79xx series, and Radeon HD 78xx series graphics cards.

We expect AMD to fix the issue with its next driver update.

 Intel HD Graphics Driver 10.18.15.4204 for Windows 10 does not appear

to have working full screen DirectX 12 support. We are investigating this

issue for a future update.

3DMark Windows v1.5.893 – April 24, 2015

This is a minor update. Benchmark scores are unaffected.

Compatibility

 Fixed a bug that could cause the API Overhead feature test to hang on

Windows 10 Technical Preview build 10061.

Steam version only

 Fixed an issue that prevented Steam Achievements from being unlocked.

3DMark Windows v1.5.884 - March 26, 2015

This major update adds the API Overhead feature test, the world's first

independent test for comparing the performance of DirectX 12, Mantle, and

Page 138 of 153

DirectX 11. See how many draw calls your PC can handle with each API before

the frame rate drops below 30 FPS.

New

 Compare DirectX 12, DirectX 11 and Mantle with the new API Overhead

Feature Test, available in 3DMark Advanced Edition and 3DMark

Professional Edition.

 Added Feature Test selection screen.

Improved

 Improved formatting of larger scores to make them more readable.

 Result screen automatically shows FPS after running a single test.

Fixed

 Fixed a bug that could cause the Sky Diver demo to hang at the cave

entrance scene.

3DMark Windows v1.4.828 - December 1, 2014

This is a minor update. Benchmark scores are unaffected.

Improved

 SystemInfo module updated to 4.32 for improved hardware detection.

 Reduced hardware monitoring overhead (was already negligible).

 Product key is no longer visible on the Help tab unless you choose to

reveal it.

Fixed

 Fixed a memory access violation issue with Ice Storm and Cloud Gate that

could occasionally cause crashes in stress testing scenarios.

 Letterboxed mode now retains 16:9 aspect ratio even when selecting a

non-default Output Resolution on the Help tab.

Professional Edition only

 Fixed the "No outputs found on DXGI adapter" issue in the Command Line

application affecting laptops with NVIDIA Optimus graphics switching

technology.

 Fixed custom_x.3dmdef files to use the centered scaling mode by default.

 You can now change the scaling mode from a .3dmdef file and via

command line.

3DMark Windows v1.4.780 - October 23, 2014

This is a minor update. Benchmark scores are unaffected.

Page 139 of 153

Fixed

 Fixed the "No outputs found on DXGI adapter" issue affecting laptops with

NVIDIA Optimus graphics switching technology.

3DMark Windows v1.4.778 - October 14, 2014

This is a minor update. Benchmark scores are unaffected.

Fixed

 Fixed the "Workload Single init returned error message: bad lexical cast"

issue affecting some systems.

3DMark Windows v1.4.775 - October 13, 2014

This is a major update that adds Fire Strike Ultra, the world's first 4K Ultra HD

benchmark. Fire Strike Ultra is available in 3DMark Advanced Edition and

3DMark Professional Edition.

New

 Added Fire Strike Ultra, a new 4K Ultra HD benchmark test. You don't need

a 4K monitor to run Fire Strike Ultra, though you will need a GPU with at

least 3 GB of dedicated memory.

Improved

 New design for main benchmark selection screen.

 Improved benchmark logging to assist customer support.

Fixed

 3DMark is now more robust when there is a problem identifying or

monitoring the hardware in the system.

Professional Edition only

 You can now set command line options within .3dmdef files.

 Minor syntax changes to the .3dmdef definition files. You may need to

update your existing scripts if using automation. See Command Line

Guide for details.

 Added command line logging options.

 Command line progress logging now includes workload names and loop

numbers.

 Removed empty log lines from command line output.

3DMark Windows v1.3.708 – June 11, 2014

This update adds Sky Diver, a new DirectX 11 benchmark for gaming laptops

and mid-range PCs. Sky Diver is ideal for testing systems with mainstream

Page 140 of 153

graphics cards, mobile GPUs, integrated graphics and other DirectX 11

hardware that cannot achieve double-digit frame rates in Fire Strike.

Improved

 You can now run benchmarks individually in 3DMark Basic Edition.

 SystemInfo module updated to 4.29 for improved hardware detection.

Compatibility

 On Windows 7, Service Pack 1 is required for 3DMark version 1.3.708

onwards.

Professional Edition only

 The filenames of the .3dmdef definition files used for running 3DMark

from the command line have changed with this release. You may need to

update your existing scripts if using automation.

3DMark Windows v1.2.362 - March 12, 2014

Improved

 Improved reliability when submitting results over an internet connection

with very high latency.

 SystemInfo module updated to 4.26 for improved hardware detection.

Fixed

 DirectX 10 level video cards no longer attempt to run the Fire Strike

benchmark.

 Fixed a rare issue that could corrupt the saved product key.

Steam version only

 Fixed a bug that prevented Steam Achievements from being unlocked.

 Fixed a rare issue with results not always being associated with a Steam

ID.

Professional Edition only

 Fixed an issue with command line XML export of Ice Storm scores.

3DMark Windows v1.2.250 – December 10, 2013

New

 Added Ice Storm Unlimited test enabling comparison of Windows 8 tablets

with the latest Android and iOS devices.

Page 141 of 153

Improved

 3DMark now uses technology provided by TechPowerUp for improved

GPU hardware detection.

Fixed

 Hardware monitoring performance graphs show clock speeds and

temperatures for the CPU and GPU again (with compatible hardware).

Tests

 Ice Storm updated to version 1.2

3DMark Windows Edition v1.1.0 – May 6, 2013

This update fixes issues when testing systems with multiple GPUs. Fire Strike

and Fire Strike Extreme scores will increase slightly on systems with two GPUs

and significantly on systems with three or four GPUs.

New

 Added Ice Storm Extreme benchmark to 3DMark Advanced and

Professional Editions.

Fixed

 3DMark now works correctly on systems with up to four GPUs.

 Fixed the issue caused by Windows update KB2670838, which added

partial DX11.1 support to Windows 7.

 Fixed a problem with the bloom post-processing effect when using very

high rendering resolutions in custom settings.

Tests

 Ice Storm updated to version 1.1.0

 Cloud Gate updated to version 1.1.0

 Fire Strike updated to version 1.1.0

3DMark Windows Editions v1.0.0 – February 4, 2013

 Launch version.

Tests

 Ice Storm version 1.0.0

 Cloud Gate version 1.0.0

 Fire Strike version 1.0.0

Page 142 of 153

Windows RT edition

3DMark Windows RT v1.2.42 – November 26, 2013

New

 Device models that do not comply with our benchmark rules have been

delisted from the Device Channel.

 You should not use scores from delisted models to compare devices.

Improved

 Compare your score with Windows 8 tablets in the Device Channel.

Compatibility

 Improved compatibility with the latest NVIDIA hardware.

3DMark Windows RT v1.1.11.4749 – October 30, 2013

 Added a UI prompt directing PC and notebooks users to download the

complete desktop version of 3DMark.

3DMark Windows RT v1.1.11 - October 11, 2013

 Launch version.

Tests

 Ice Storm version 1.2.0

Page 143 of 153

Android edition

3DMark Android 1.6.3439 – January 13, 2017

Compatibility

 This update fixes an issue in the previous version (1.6.3428) that could

affect performance on some Qualcomm-powered devices. Benchmark

scores on those devices will return to the correct level with this update.

3DMark Android 1.6.3428 – December 7, 2016

This minor update renames some tests to make it easier to compare scores

across platforms. The test names in the Android app now match the test

names used in the iOS app. Benchmark scores are not affected.

Improved

 "Sling Shot using ES 3.0" test is now simply called "Sling Shot."

 "Sling Shot using ES 3.1" test is now called "Sling Shot Extreme."

 Improved benchmark compatibility information.

3DMark Android 1.5.3285 – August 31, 2015

Compatibility

 Sling Shot fix for devices that support OpenGL ES 3.2.

 Sling Shot compatibility warning is now specific about requiring Android

5.0 or later.

3DMark Android 1.5.3263 – July 27, 2015

This update completely replaces the standalone Sling Shot app released for

limited testing in April 2015. That app is no longer available from Google Play

and should not be used for further testing since its scores are not comparable

with this update.

New

 New Sling Shot benchmark for testing OpenGL ES 3.1 and OpenGL ES 3.0

performance on compatible devices running Android 5.0 or later.

 New hardware monitoring chart shows how CPU clock frequency, CPU

usage, temperature and battery charge changed while the benchmark was

running.

Improved

 3DMark now recommends the best test for your device.

 New layout makes choosing benchmarks easier.

 Save storage space by installing only the benchmark tests you need.

Page 144 of 153

 Added Russian localization.

Compatibility

 Added support for Android TV.

 Sling Shot now runs on ARM Mali GPUs.

3DMark Android 1.4.2925 - December 15, 2014

Fixed

 Fixed a bug that caused the UI to hang with a black screen if the

benchmark run ended unexpectedly.

 Minor UI improvements and bug fixes.

3DMark Android 1.4.2717 - December 5, 2014

New

 3DMark now recommends the best benchmark test for your device.

 New Benchmarks page shows which tests are currently installed.

 New Test Details pages explain what each benchmark measures.

Improved

 Downloading and installing tests is now faster and uses less memory.

 Optimized app startup time and update check.

 Device Channel is now called Best Devices.

Compatibility

 3DMark is compatible with Android 5.0 (Lollipop).

Fixed

 Fixed a problem where 3DMark could not install tests even though there

was enough space on the storage or SD card.

 Fixed sorting by screen size on Best Devices list.

3DMark Android 1.3.1439 - March 24, 2014

Improved

 Added the ability to selectively delist devices based on Android version.

Compatibility

 Delisted Samsung devices that comply with Futuremark benchmark rules

after being updated* have been relisted in the 3DMark Device Channel.

 Samsung Galaxy S IV: scores are valid when using Android 4.2.2 and 4.4.x

or later.

Page 145 of 153

 Samsung Galaxy Note III: scores are valid when using Android 4.4.2 or

later.

*Provided that the device is running the official update provided by Samsung.

Fixed

 Fixed a bug that prevented downloads on devices set to use Turkish

language.

3DMark Android 1.3.1375 - March 7, 2014

Improved

 Optimizations to improve the speed at which tests are downloaded and

installed.

Fixed

 Fixed a bug that prevented the Device Channel from updating with the

latest devices.

3DMark Android 1.3.1309 – February 21, 2014

New

 Do you love your phone? Let other 3DMark users know with the new

Recommend My Device feature.

 3DMark Android benchmark is now available in Simplified Chinese.

Improved

 3DMark now supports the ability to install and uninstall benchmark tests

from within the app. Look out for new tests coming soon.

 Improved UI rendering performance.

Compatibility

 Now requires Android 4.0.0 or higher. Android 3.2 support has been

retired.

 Fixed a compatibility issue affecting Sony Xperia SP and Samsung Galaxy S

III models with the Qualcomm Snapdragon MSM8960 chip.

 Improved reliability on devices with less than the recommended 1 GB of

memory.

 Support for installing 3DMark on AOSP devices that cannot access Google

Play store.

 Sideloading support for networkless installation.

Page 146 of 153

3DMark Android v1.2.0.1232 – November 25, 2013

New

 Device models that do not comply with our benchmark rules have been

delisted from the Device Channel.

 You should not use scores from delisted devices to compare devices.

Improved

 Compare your score with Windows 8 tablets in the Device Channel.

 Devices are colour-coded by OS in the Device Channel.

 You can filter scores by OS in the Device Channel.

Compatibility

 Improved compatibility with the latest NVIDIA hardware.

 Improved compatibility with some Samsung Galaxy S3 models.

3DMark Android Edition v1.1.0.1179 – Sept 9, 2013

New

 New Ice Storm Unlimited test.

 Compare 3DMark scores with Apple iOS devices in the Device Channel.

Improved

 Forced vertical sync on Android devices limits apps to displaying a

maximum of 60 frames per second. Your score will be shown as "Maxed

out" if your device hits the vertical sync limit during a test.

 3DMark will recommend the best test for your device to avoid vertical

sync limits.

Compatibility

 Nexus 7 (2013) is correctly identified.

Tests

 Ice Storm updated to version 1.2.0

3DMark Android Edition v1.0.3-1138 - August 20, 2013

Compatibility

 Added a workaround for a driver bug on Nexus 7 devices running Android

4.3.

Page 147 of 153

3DMark Android Edition v1.0.2-1109 - May 2, 2013

New

 Added chipset model to device detail pages.

Improved

 Ice Storm Extreme Physics test for measuring CPU performance now runs

at 720p to ensure the result is not influenced by the GPU. Ice Storm

Extreme scores may improve slightly on devices with low-end GPUs.

Optimized

 Faster image loading in the Device Channel.

 Better score bar scaling in search result lists.

 Reduced app size to 149 MB.

Compatibility

 Automatically skip demo on devices with TI OMAP 44xx chipset to avoid a

memory-related crash. There will be some visual corruption during the

Physics test however this does not affect the score and you will now be

able to complete all the tests on these devices.

 Automatically skip demo if the device runs out of memory during the

demo, typically on devices with 512 MB of memory. The recommended

minimum device memory for 3DMark is 1 GB (1024 MB).

Fixed

 Fixed a bug that prevented your best score being shown as your Highest

Score.

 My Device now shows the Android OS version installed on the current

device. Device Channel detail pages show the Android OS version shipped

with the model.

Tests

 Ice Storm version 1.1.1

3DMark Android Edition v1.0.1-949 – April 11, 2013

New

 You can now search the Device Channel.

 You can now report unknown and incorrectly identified devices.

Fixed

 Fixed a bug that caused crashes for some users.

 Fixed the "no score" bug that could cause the test to exit after the demo.

Page 148 of 153

 The Device Channel list loads faster and uses less memory.

3DMark Android Edition v1.0.0 – April 2, 2013

 Launch version.

 Added Ice Storm Extreme test for the latest smartphones and tablets.

Tests

 Ice Storm version 1.1.0

Page 149 of 153

iOS edition - 3DMark Sling Shot app

3DMark Sling Shot iOS Edition 1.0.745 – April 18, 2016

Fixed

This update fixes a bug from the previous release (1.0.734) that inflated

Physics test scores. Scores from this version are again comparable across all

compatible platforms and devices.

Added Sling Shot

3DMark Sling Shot iOS Edition 1.0.734 – March 29, 2016

New

Added Sling Shot Extreme, a more demanding test for the latest high-end

smartphones and tablets. Sling Shot Extreme uses Apple's Metal API and a

2560 × 1440 rendering resolution. You can compare Sling Shot Extreme scores

across platforms.

Improved

 UI improvements.

3DMark Sling Shot iOS Edition v1.0.484 – October 16, 2015

 Launch version.

Page 150 of 153

iOS edition - 3DMark Ice Storm app

3DMark Ice Storm iOS Edition 1.4.978 – March 29, 2015

New

 New hardware monitoring chart.

Improved

 3DMark now recommends the best test for your device.

 New layout makes choosing benchmarks easier.

 Added Russian localization.

Fixed

 Fixed UI stuns when updating device data.

Compatibility

 Requires iOS 7.0.

3DMark iOS Edition v1.3.116 – March 27, 2014

Compatibility

 Fixes for iOS 7.1.

3DMark iOS Edition v1.3.0 – March 13, 2014

New

 Do you love your phone? Let other 3DMark users know with the new

Recommend My Device feature.

 3DMark is now available in Simplified Chinese. Change languages on the

Settings screen.

3DMark iOS Edition v1.2.0 – December 2, 2013

Compatibility

 Now includes a 64-bit version for iPhone 5s, iPad Air and iPad mini 2.

 Scores from those devices will improve slightly with this version.

New

 Device models that do not comply with our benchmark rules have been

delisted from the Device Channel.

 You should not use scores from delisted models to compare devices.

 For more details, please visit: http://bit.ly/3dmark-rules

Page 151 of 153

Improved

 Compare your score with Windows 8 tablets in the Device Channel.

3DMark iOS Edition v1.1.1 – September 19, 2013

Improved

 Devices are color coded by OS in the Device Channel.

 Compatibility

 Compatible with iOS 7.

3DMark iOS Edition v1.1.0 – September 9, 2013

 Launch version.

Tests

 Ice Storm version 1.2.0

Page 152 of 153

iOS edition - 3DMark API Overhead app

3DMark API Overhead iOS 1.0.147 – March 29, 2016

Improved

 Interface improvements.

3DMark API Overhead iOS v1.0.53 – October 16, 2015

 Launch version.

Page 153 of 153

About Futuremark, a UL company

Futuremark creates benchmarks that enable people to measure, understand

and manage computer hardware performance. Our talented team creates the

industry's most authoritative and widely used performance tests for desktop

computers, notebooks, tablets, smartphones and VR systems.

We work in cooperation with many of the world's leading technology

companies to develop industry standard benchmarks that are relevant,

accurate, and impartial. As a result, our benchmarks are widely used by the

world's leading press publications and review sites.

Futuremark maintains the world’s most comprehensive hardware performance

database, using results submitted by millions of users to help consumers make

better purchasing decisions.

Our headquarters are in Finland just outside the capital Helsinki. We also have

sales and field application engineering support in Silicon Valley and Taiwan.

Futuremark became a part of UL in 2014. UL is a global safety science company

with more than a century of expertise and innovation in the fields of product

safety testing, inspection and verification services. With more than 10,000

professionals in 40 countries, UL is dedicated to creating safe working and

living environments for all.

UL partners with businesses, manufacturers, trade associations, regulators,

and governments to play a key role in the development and harmonization of

national and international standards. For more information about certification,

testing, inspection, advisory and education services, visit http://www.UL.com.

Please don’t hesitate to contact us if you have a question about 3DMark.

Press press@futuremark.com

Business sales@futuremark.com

Support http://www.futuremark.com/support

© 2017 Futuremark® Corporation. 3DMark® and Futuremark® trademarks and logos, Futuremark® character
names and distinctive likenesses, are the exclusive property of Futuremark Corporation. Microsoft, Windows 10,

Windows 8, Windows 7, DirectX, and Direct3D are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Vulkan™ is a trademarks of the Khronos Group Inc. The
names of other companies and products mentioned herein may be the trademarks of their respective owners.

http://www.ul.com/
mailto:press@futuremark.com
mailto:sales@futuremark.com
http://www.futuremark.com/support

