
Page 1 of 53

Page 2 of 53

This guide updated January 30, 2017

PCMark for Android .. 3

Using PCMark for Android ... 4

Minimum hardware requirements ... 6

How to benchmark performance .. 7

How to benchmark battery life .. 8

Work 2.0 benchmark .. 11

Scoring .. 12

Web Browsing 2.0 .. 13

Video Editing ... 14

Writing 2.0 .. 16

Photo Editing 2.0 .. 18

Data Manipulation ... 22

Work 2.0 battery life benchmark ... 24

Work benchmark ... 27

Scoring .. 28

Web Browsing .. 29

Video Playback ... 30

Writing .. 31

Photo Editing... 32

Work battery life benchmark ... 36

Computer Vision benchmark ... 39

Scoring .. 40

TensorFlow .. 41

ZXing.. 42

Tesseract ... 43

Storage benchmark .. 45

Implementation.. 46

Workload tasks .. 47

Scoring .. 48

Reporting scores .. 50

Release notes .. 51

About Futuremark, a UL Company .. 53

Page 3 of 53

PCMark for Android

Better benchmarking starts here

PCMark for Android is a benchmark for testing the performance and battery

life of Android phones and tablets. PCMark measures performance using tests

based on common, everyday tasks. See how well your device performs, then

compare it with the latest models.

The big picture benchmark

 PCMark measures the performance of the device as a whole.

 PCMark tests are based on everyday activities, not abstract algorithms.

 See how well your device performs, then compare it with the latest models.

Results you can trust

 PCMark for Android is protected by public rules for manufacturers.

 We delist devices from our rankings that do not comply with our rules.

 All our benchmarks are backed by detailed technical guides.

 These guides explain what's being measured & how scores are calculated.

Make fair comparisons

 Our Best Devices list only includes devices that are available to the public.

 Each score is an average of all benchmarks results received for that model.

 We remove models that boost their scores with misleading optimizations.

 We never intentionally leak scores for prototype or pre-release hardware.

Created by experts

 Futuremark has been creating industry standard benchmarks since 1997.

 PCMark is used throughout industry and by hundreds of publications.

 PCMark has been an industry standard PC benchmark since 2002.

 PCMark for Android was developed with leading technology companies.

http://www.futuremark.com/support/benchmark-rules

Page 4 of 53

Using PCMark for Android

PCMark for Android is a benchmarking app for smartphones, tablets and other

Android devices.

In addition to producing benchmark scores, PCMark for Android helps you

understand your results, track your score history, and compare your device

with the latest models.

PCMark screen

The PCMark screen is the first page you see after opening the app. Start

benchmarking your device by pressing one of the RUN buttons. Alternatively,

swipe left or tap the button to see more tests on the Benchmarks screen.

Benchmarks screen

On this screen you can see which benchmarks are installed on your device.

You can choose which benchmark tests you want to install.

Tap on a benchmark to open its Test Details screen.

Test Details

Each PCMark for Android benchmark contains a number of tests. The Test

Details page explains which tests are included in the benchmark.

You can start a benchmark run by pressing the RUN button. Use the

UNINSTALL button to free up storage space, while leaving the app installed

and available to browse your score history and the Best Devices list.

My Device screen

This page shows your device's score history and system details.

 Highest scores from your own benchmark runs.

 History table showing past benchmark run dates and scores.

 Performance monitoring chart showing score history over time.

 Device details, features and specifications.

Score Details

Tap a score from the My Device Result History panel to open the Score Details

view. This page displays the benchmark score, individual subtest scores, and

some system details.

You can also view the hardware monitoring chart for the run. PCMark for

Android polls the device once per second for CPU clock speed and

temperature and battery charge level while the benchmark is running. This

monitoring has a negligible effect on performance.

Page 5 of 53

Best Devices screen

The Best Devices screen is the ideal way to compare your device with the latest

smartphones and tablets. By default, the page shows you a ranked list of

devices ordered by performance.

Each score is an average of all the benchmarks results received for that model,

with obvious outliers excluded. The average score for a device can be lower

than the score from a clean benchmark run, as many people run benchmarks

under less than ideal conditions. Since people use their devices in the real

world and not a test lab, however, we believe that these averages best

represent the true performance of each device.

You can re-order the list by name, performance, screen size, hardware

(alphabetical), or popularity by tapping on the column headings.

The five star performance rating is calibrated so that the most powerful

Android devices available score five stars. This means that a device's star rating

may change over time as newer, more powerful devices are introduced.

Device popularity is based on the number of results submitted per model in

the last 30 days.

Tap the FILTERS button to show more options. Use the TEST drop-down to see

the list for a different test. Use the ANDROID VERSION drop-down to filter the

list by a specific major version of Android. Use the SEARCH box to search the

Best Devices list for a specific model, brand, CPU, GPU, SoC, or other text

match. The search results include all devices that match your search plus your

own device to enable easy comparison. For example, search for "nexus" to

compare your device to all available Nexus devices.

Device details

Click on a device in the Best Devices list to open its Device Details page. This

view shows your device and the selected device side-by-side for easy

comparison.

Areas where a device is superior are highlighted green. Areas where a device is

inferior are shaded red.

Help

The Help page includes an FAQ and a link to our support page.

Settings

Visit the Settings page to access the screen brightness calibration feature. You

can also check the current version here and change the language.

Page 6 of 53

Minimum hardware requirements

OS Android 5.0

Memory 1 GB

Graphics OpenGL ES 2.0 compatible

Display 480 x 800 resolution

Storage

PCMark app

Work 2.0 benchmark

Work benchmark

Computer Vision benchmark

Storage benchmark

75 MB

200 MB

400 MB

70 MB

100 MB

The requirements are not enforced by the app. It may be possible to run
PCMark for Android on lesser hardware, however, it is not recommended or
supported by Futuremark.

Page 7 of 53

How to benchmark performance

Before you start

In general, you should benchmark every device you test under the same

conditions. For example, you should test every device in the same location, at

room temperature, and away from direct sunlight and other heat sources.

The precision of Futuremark benchmarks scores is usually better than 3%. This

means that running a benchmark repeatedly on a consistently performing

device in a well-controlled environment will produce scores that fall within a

3% range.

Individual scores may occasionally fall outside the margin of error since the

factors that influence the score cannot be completely controlled in a modern,

multitasking operating system. There are also devices that simply do not offer

consistent performance due to their design. In these cases, it is necessary to

run the benchmark multiple times, and then take either an average or a mode

of the results.

To get accurate and consistent results you should close apps that may be

running in the background, and disable notifications before running the

benchmark. Some high-powered mobile devices use thermal throttling to avoid

overheating the CPU, which can lead to lower scores on successive runs. To

reduce this effect, we recommended waiting 15 minutes before and after

PCMark runs to allow the device to cool down.

 Running other apps during the benchmark will affect the results.

 Avoid touching the screen while the tests are running.

 Press the Back Button if you want to stop the test.

Recommended process

1. Install all device updates to ensure your operating system is up to date.

2. Close other apps, especially those that run in the background.

3. Run the benchmark.

Expert process

1. Install all device updates to ensure your operating system is up to date.

2. Restart the device.

3. Wait 2 minutes for startup to complete.

4. Close all other apps, especially those that run in the background.

5. Wait for 15 minutes.

6. Run the benchmark.

7. Repeat from step 2 at least three times to verify your results.

Page 8 of 53

How to benchmark battery life

Set the screen brightness

Screen brightness can have a significant effect on a device's battery life. To

produce comparable results you should calibrate every device you test to the

same screen brightness. In practice, this is difficult without expensive,

specialist equipment.

Our benchmarks can display a pure white calibration screen to help you set

the screen brightness. If you don't have access to a luminance meter, you can

calibrate your devices by comparing the pure white calibration screen to a

reference such as a monitor, light-box or similar. Alternatively, place your

devices side by side and adjust the brightness levels by eye.

It is not a good idea to calibrate the screen using the device's built-in

brightness settings. Different screens offer different levels of maximum

brightness. The 50% brightness setting on one device may not be equal in

luminance to the 50% setting on another device, for example.

Before you start

In general, you should benchmark every device you test under the same

conditions. For example, you should test every device in the same location, at

room temperature, and away from direct sunlight and other heat sources.

The battery must be at least 80% charged before the test will start. The test

loops the benchmark until the battery charge drops below 20%. Battery testing

can take several hours during which you will not be able to use your device for

other tasks. Do not use the charging cable, or connect mobile devices to a PC,

while the test is running.

To get accurate and consistent results you should close apps that may be

running in the background, and disable notifications before running the

benchmark.

 Running other apps during the benchmark will affect the results.

 Avoid touching the screen while the tests are running.

 Press the Back Button if you want to stop the test.

Recommended process

1. Test the device at room temperature, away from direct sunlight and heat

sources.

2. Disable automatic screen brightness adjustment.

3. Use the pure white calibration screen to set the device's screen brightness

to a defined level, ideally 200 cd/m2 for smartphones and tablets.

Page 9 of 53

Expert process

To produce accurate, repeatable and comparable results you should test

devices under controlled conditions. Our recommendations below match

those given in the ECMA-383 standard "Measuring the Energy Consumption of

Personal Computing Products."

1. Test the device in an environment that meets the requirements of ECMA-

383:

 Temperature: 23 +/- 5 degrees Celsius.

 Relative humidity: 10 - 80%.

 Ambient light: 250 +/- 50 lux.

2. Disable automatic screen brightness adjustment.

3. Use the pure white calibration screen in the app and a luminance meter to

calibrate the screen brightness to 200 cd/m2 for smartphones and tablets.

http://www.ecma-international.org/publications/standards/Ecma-383.htm
http://www.ecma-international.org/publications/standards/Ecma-383.htm

Page 10 of 53

Page 11 of 53

Work 2.0 benchmark

See how your device handles common productivity tasks - browsing the web,

editing videos, working with documents and data, and editing photos.

Use the Work 2.0 performance benchmark to test the performance of your

device. This test takes around 10 minutes on a typical smartphone.

Use the Work 2.0 battery life benchmark to measure battery life and

performance. This test can take many hours depending on the capacity and

efficiency of the device.

Work 2.0 is an improved version of the older Work benchmark. It updates the

Web Browsing, Writing, and Photo Editing tests and adds two all-new tests for

Video Editing and Data Manipulation.

Web Browsing 2.0 measures performance when rendering a web page,

scrolling, zooming, searching for content, and re-rendering the page after

editing and adding an item. The test used the native Android WebView view.

Video Editing measures performance when playing, editing, and saving video.

The test uses OpenGL ES 2.0, the native Android MediaCodec API, and

Exoplayer, a Google-developed media player.

Writing 2.0 measures the time to open, edit, and save a document using the

native EditText view and PdfDocument API. The PDF is encrypted, decrypted,

and then rendered in a RecyclerView.

Photo Editing 2.0 measures the time taken to open, edit, and save a set of

4 MP JPEG images. The test uses four different APIs, including the latest

version of the android.renderscript API, to filter and manipulate the images.

Data Manipulation simulates the demands of data-heavy applications such as

fitness and financial apps. It measures the time to parse data from various file

formats, then records frame rate while interacting with dynamic charts.

Page 12 of 53

Scoring

The Work 2.0 performance benchmark reports a Work 2.0 performance score.

Each sub-test also produces a score. Higher scores mean better performance.

𝑊𝑜𝑟𝑘 2.0 𝑠𝑐𝑜𝑟𝑒

= 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑊𝑒𝑏𝐵𝑟𝑜𝑤𝑠𝑖𝑛𝑔2.0, 𝑉𝑖𝑑𝑒𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔, 𝑊𝑟𝑖𝑡𝑖𝑛𝑔2.0, 𝑃ℎ𝑜𝑡𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔2.0, 𝐷𝑎𝑡𝑎𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

Where:

𝑊𝑒𝑏𝐵𝑟𝑜𝑤𝑠𝑖𝑛𝑔2.0 = The result from the Web Browsing 2.0 test

𝑉𝑖𝑑𝑒𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔 = The result from the Video Editing test

𝑊𝑟𝑖𝑡𝑖𝑛𝑔2.0 = The result from the Writing 2.0 test

𝑃ℎ𝑜𝑡𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔2.0 = The result from the Photo Editing 2.0 test

𝐷𝑎𝑡𝑎𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = The result from the Data Manipulation test

The Work 2.0 battery life benchmark reports battery life in hours and minutes

and a Work 2.0 performance score.

⚠ Scores from Work 2.0 are not comparable with scores from the

older Work benchmark test.

Page 13 of 53

Web Browsing 2.0

The Web Browsing 2.0 test represents a common browsing scenario: checking

up on friends on a social networking site. The test measures performance

when rendering a web page, searching for content, and re-rendering the page

after adding a new image.

Web Browsing 2.0 improves on the previous Web Browsing test by measuring

frame rate as well as the time to complete the tasks.

Web Browsing 2.0 uses the native Android WebView view to display and

interact with web pages. The content for these pages is stored in local files on

the device. Android WebView uses the WebKit rendering engine. The test runs

in portrait screen orientation.

A Web Browsing 2.0 score indicates how well the device performs when

displaying and interacting with web content. It does not measure network

speed, latency or bandwidth.

Workload tasks

1. Render the main page, which contains text and images of various sizes.

2. Scroll the page up and down.

3. Zoom into one picture.

4. Load a set of data into the search feature.

5. Execute searches as a search term is entered one character at a time.

6. Select a thumbnail area from a new image being added to the page.

7. Add the image to the page causing the page to be re-rendered.

Scoring

𝑊𝑒𝑏𝐵𝑟𝑜𝑤𝑠𝑖𝑛𝑔2.0 𝑠𝑐𝑜𝑟𝑒

= 2,500,000 × 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (
1

𝑅1
,

1

𝑅4
,

1

𝑅5
,

1

𝑅7
, 𝐴2, 𝐴4, 𝐴7)

Where:

𝑅1 = Time spent rendering the page for task 1

𝑅4 = Time spent loading the data to be searched in task 4

𝑅5 = Time spent searching the data in task 5

𝑅7 = Time spent re-rendering the page in task 7

𝐴2 = Average frame rate during task 2

𝐴4 = Average frame rate during task 4

𝐴7 = Average frame rate during task 7

http://developer.android.com/reference/android/webkit/WebView.html

Page 14 of 53

Video Editing

Video Editing measures performance when playing, editing, and saving video.

The test uses OpenGL ES 2.0, the native Android MediaCodec API, and

Exoplayer, a Google-developed media player.

The first part of the test measures how well your device performs when

applying real-time effects to video using OpenGL ES 2.0 fragment shaders.

The video frames are decoded and sent to an Android GLSurfaceView using a

custom Renderer that applies OpenGL ES 2.0 shaders for the preview.

All video clips are encoded with the H.264/MPEG-4 AVC compression format.

Several frame rates and resolutions are tested:

 30 FPS at 1270 × 720

 30 FPS at 1920 × 1080

 30 FPS at 2560 × 1440

 30 FPS at 3200 × 1800

 60 FPS at 1270 × 720

 60 FPS at 1920 × 1080

 60 FPS at 2560 × 1440

 60 FPS at 3200 × 1800

The second part of the test measures performance while decoding, editing,

encoding, and muxing a video in the same code path. The video frames are

decoded with a MediaCodec decoder on a SurfaceTexture using a custom

Renderer that applies OpenGL shaders, then encoded with a MediaCodec

encoder and muxed with MediaMuxer.

Scoring

𝑉𝑖𝑑𝑒𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 = 15,000 × 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑅1, 𝑅2, 𝑅3, 𝑅4),
1

𝑅5
)

Where:

𝑅1 = ∑ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑟𝑒𝑛𝑑𝑒𝑟_30𝐹𝑃𝑆(𝑖), (𝑖 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 30 𝐹𝑃𝑆 𝑣𝑖𝑑𝑒𝑜)

𝑛

𝑖=1

The sum of the average frame rate when rendering each 30 FPS video

http://developer.android.com/reference/android/media/MediaCodec.html
http://developer.android.com/reference/android/graphics/SurfaceTexture.html
http://developer.android.com/reference/android/opengl/GLSurfaceView.Renderer.html
http://developer.android.com/reference/android/media/MediaMuxer.html

Page 15 of 53

𝑅2 = ∑ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑑𝑒𝑐𝑜𝑑𝑒_30𝐹𝑃𝑆(𝑖), (𝑖 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 30 𝐹𝑃𝑆 𝑣𝑖𝑑𝑒𝑜)

𝑛

𝑖=1

The sum of the average frame rate when decoding each 30 FPS video

𝑅3 = ∑ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑟𝑒𝑛𝑑𝑒𝑟_60𝐹𝑃𝑆(𝑖), (𝑖 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 30 𝐹𝑃𝑆 𝑣𝑖𝑑𝑒𝑜)

𝑛

𝑖=1

The sum of the average frame rate when rendering each 60 FPS video

𝑅4 = ∑ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑑𝑒𝑐𝑜𝑑𝑒_60𝐹𝑃𝑆(𝑖), (𝑖 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 30 𝐹𝑃𝑆 𝑣𝑖𝑑𝑒𝑜)

𝑛

𝑖=1

The sum of the average frame rate when decoding each 60 FPS video

𝑅5 = Time taken to encode and mux the edited video

Page 16 of 53

Writing 2.0

The Writing 2.0 test measures how well your devices performs when working

with documents. The test reflects the simple tasks you might perform on a

mobile device such as adding text and images to a document as well as cutting,

copying and pasting text within the document. It then asses the performance

while creating and visualizing PDF documents.

The test uses the native Android EditText view, native PdfDocument and

PdfRenderer Android API to create and then visualize a PDF file, and javax

Cipher to encrypt and decrypt the file created. Document 1 is a 2.5 MB ZIP file

containing a 100 KB text file and two 1.2 MB images. Document 2 is a 3.5 MB

ZIP containing a 90 KB text file, a 1.6 MB image, and a 1.9 MB image.

Workload tasks

1. Load, uncompress and display Document 1.

2. Load, uncompress and display Document 2.

3. Copy all of Document 1 and paste it into the middle of Document 2. The

combined document has around 200,000 characters.

4. Save Document 2 text and images to a ZIP file and compress. The file is

about 6 MB.

5. Insert a 1.3 MB image to the middle of Document 2.

6. Save Document 2 text and images to a ZIP file and compress. The file is

about 7.4 MB.

7. Save the document as a PDF in the external storage.

8. Encrypts the file with AES algorithm, CBC mode, PKCS#5 padding.

Encryption key is generated with PBKDF2 variant with HmacSHA1.

9. Decrypts the file with the same algorithm and key.

10. Load the PDF file rendering the PDF pages on ImageViews inside a vertical-

scrolling RecyclerView.

Scoring

𝑊𝑟𝑖𝑡𝑖𝑛𝑔2.0 𝑠𝑐𝑜𝑟𝑒 = 2,700,000 × 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (
1

𝑅1
,

1

𝑅2
,

1

𝑅3
,

1

𝑅4
,

1

𝑅5
,

1

𝑅6
)

Where:

𝑅1 = The geometric mean of times measured to load

Document 1 and Document 2.

𝑅2 = The sum of times measured for copying the text to the

clipboard and pasting the text from the clipboard.

http://developer.android.com/reference/android/graphics/pdf/PdfDocument.html
http://developer.android.com/reference/android/graphics/pdf/PdfRenderer.html
http://developer.android.com/reference/javax/crypto/Cipher.html

Page 17 of 53

𝑅3 = The geometric mean of times measured to save

Document 2 after the first copy paste operation and then in the

last save in the end.

𝑅4 = The sum of times measured to add an image to the text.

𝑅5 = The geometric mean of the time to create the PDF

document and to save it to a file with the time to load and

render all the PDF pages.

𝑅6 = The geometric mean of the amount of time to encrypt

and decrypt the file.

Page 18 of 53

Photo Editing 2.0

The Photo Editing 2.0 test measures how well your device performs when

applying various filters and effects to images.

This test is the same as the one in the Work benchmark with one difference.

Photo Editing 2.0 test uses the latest android.renderscript API in the place of

the older android.support.v8.renderscript API that was used previously.

The Photo Editing 2.0 test uses four different APIs to apply filters and effects to

the images.

1. The native android.media.effect API, which processes effects on the GPU.

2. The native android.renderscript API and specifically the RenderScript

Intrinsics functions that support high-performance computation across

heterogeneous processors.

3. The android-jhlabs API, which allows image processing using Java filters on

the CPU, (licensed under the Apache license, version 2).

4. The native android.graphics API, which provides low-level tools that

handle drawing to the screen directly.

The test measures the time taken to open, edit, and save a set of JPEG images.

The measurements include the time taken to move graphics data to and from

the CPU and GPU, decode from and encode to JPEG format, and read and write

from the device's flash storage. The pictures used in the test have a 4 MP

resolution (2048 × 2048).

Loading forces the use of bitmap format of ARGB_8888. Saving uses JPEG

format with 90% quality hint. Saves happen to internal flash, unless

ENABLE_DUMP configuration is set to permanently save all output pictures, in

which case images are saved in the shared photo gallery area

DCIM/Futuremark/PCMA/PhotoEditing.

Workload tasks

1. Load and display a source image.

2. Apply an effect to the source image and display the resulting image.

3. For selected images and filters, save the resulting image on disk.

Each of these tasks is followed by a one second delay to make it easier for you

to follow the progress of the test.

Tasks 1 to 3 are repeated for 24 different filters, across 13 unique source

images, with 6 intermediate saves.

In task 2, effects without parameters are run only once. Effects with

parameters are run 3 times and the result is the arithmetic average of the

execution times.

http://developer.android.com/reference/android/media/effect/package-summary.html
https://developer.android.com/reference/android/renderscript/package-summary.html
http://android-developers.blogspot.fi/2013/08/renderscript-intrinsics.html
http://android-developers.blogspot.fi/2013/08/renderscript-intrinsics.html
https://github.com/finebyte/android-jhlabs
http://www.apache.org/licenses/LICENSE-2.0
http://developer.android.com/reference/android/graphics/package-summary.html

Page 19 of 53

At the end of each Android media effect round (within task 2), glFinish() is

called to make sure the results end up on the screen. This is also how

applications work in order to keep user inputs and screen contents in sync.

Some of the parameterized effects are using each round to apply a different

value (in the space (0,1]) to the effect, giving the impression of a 'phased'

application. The values for the three rounds are: 0.33, 0.66, 1.0.

Effects, parameters and APIs

Effect name Parameters API used

autofix phased android.media.effects

blur radius: 10.0 android.renderscript.ScriptIntrinsicBlur

contrast phased android.media.effects

contrast phased java

crop_java x:0 y:0 w:1600 h:1600 android.graphics

crossprocess android.media.effects

documentary android.media.effects

emboss android.renderscript.ScriptIntrinsicConvolve3x3

exposure phased java

fill light phased android.media.effects

fisheye phased android.media.effects

flip horizontal android.media.effects

flip horizontal java

grain phased android.media.effects

grayscale android.media.effects

Page 20 of 53

Effect name Parameters API used

lomoish android.media.effects

rgb adjust r:2 g:3 b:3 java

rotate -90 android.media.effects

rotate_java phased android.graphics

saturate phased android.media.effects

sharpen android.renderscript.ScriptIntrinsicConvolve3x3

sharpen phased android.media.effects

temperature phased android.media.effects

red eye

correction android.media.effects

Scoring

𝑃ℎ𝑜𝑡𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔2.0 𝑠𝑐𝑜𝑟𝑒 = 800,000 × 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑅𝑗, 𝑅𝑟, 𝑅𝑎)

Where:

 𝑅𝑗 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (
1

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝐽𝑎𝑣𝑎
,

1

𝐶𝑟𝑜𝑝𝐽𝑎𝑣𝑎
,

1

𝐹𝑙𝑖𝑝𝐽𝑎𝑣𝑎
,

1

𝑅𝑔𝑏𝐴𝑑𝑗𝑢𝑠𝑡𝐽𝑎𝑣𝑎
,

1

𝑅𝑜𝑡𝑎𝑡𝑒𝐽𝑎𝑣𝑎
)

𝑅𝑟

= 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (
1

𝐵𝑙𝑢𝑟𝑅𝑒𝑛𝑑𝑒𝑟𝑆𝑐𝑟𝑖𝑝𝑡
,

1

𝑆ℎ𝑎𝑟𝑝𝑒𝑛𝑅𝑒𝑛𝑑𝑒𝑟𝑠𝑐𝑟𝑖𝑝𝑡
,

1

𝐸𝑚𝑏𝑜𝑠𝑠𝑅𝑒𝑛𝑑𝑒𝑟𝑆𝑐𝑟𝑖𝑝𝑡
)

𝑅𝑎 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (
1

𝐴1
,

1

𝐴2
,

1

𝐴3
, … ,

1

𝐴18
,

1

𝐴19
,

1

𝐴20
)

And where:

Page 21 of 53

𝐴1 = Time taken to apply Autofix effect

𝐴2 = Time taken to apply Contrast effect

𝐴3 = Time taken to apply Cross Process effect

𝐴4 = Time taken to apply Documentary effect

𝐴5 = Time taken to apply Fill-light effect

𝐴6 = Time taken to apply Fisheye effect

𝐴7 = Time taken to apply Flip effect

𝐴8 = Time taken to apply Grain effect

𝐴9 = Time taken to apply Greyscale effect

𝐴10 = Time taken to apply Lomoish effect

𝐴11 = Time taken to apply Rotate effect

𝐴12 = Time taken to apply Saturate effect

𝐴13 = Time taken to apply Sharpen effect

𝐴14 = Time taken to apply Temperature effect

𝐴15 = Time taken to apply Red Eye Correction filter effect

𝐴16 = The time taken for face detection in the Red Eye

Correction effect when scaling down the source image by a

factor of four to 512 × 512 px and using the native Android

FaceDetector API to find the location of the eyes. This is

repeated three times with the arithmetic average stored as the

result.

𝐴17 = Arithmetic average of the loading time from flash to

memory, including decompression for all images

𝐴18 = Arithmetic average of the saving time from memory to

flash, including image compression for all images

𝐴19 = Arithmetic average of loading time from memory to GPU

for all images

𝐴20 = Arithmetic average of fetch times from GPU to memory

for all saves

https://developer.android.com/reference/android/media/FaceDetector.html

Page 22 of 53

Data Manipulation

The Data Manipulation test simulates the demands of data-heavy applications

such as fitness and financial apps. It measures the time to parse data from

various file formats, then records the frame rate while interacting with

dynamic charts.

Workload tasks

The first part of the test focuses on measuring performance while reading,

parsing, and validating data.

1. Read 10,000 tuples (date, value) of data from a CSV file with a standard

InputStreamReader.

2. Read 10,000 tuples (date, value) of data from a XML file with Android-

standard XmlPullParser.

3. Read 10,000 tuples (date, value) of data from a JSON file with common

GSON library.

4. Read 10,000 tuples (date, value) of data from Protocol Buffers using Wire

by Square Inc.

In the second part of the test, the data is visualized with dynamic, animated

charts using the common open-source MPAndroidChart library. Several charts

are tested with animations and common gestures such as swipe and zoom.

5. A cubic line chart is tested with three swipes forward and backwards,

vertical and horizontal zoom-in/out and X/Y animations.

6. Bar chart is tested with three swipes forward and backwards, horizontal

zoom-in/out and X/Y animations.

7. Pie chart is tested with swipe forward and backwards, circular swipe and

circular animation.

8. Real-time cubic line chart is tested with a new data point added every

30 milliseconds.

9. Multiple line, bar, and cubic charts are shown inside a horizontal

RecyclerView while performing scrolling animations.

Scoring

𝐷𝑎𝑡𝑎𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 = 5,000 × 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑃1, 𝑃2)

Where:

http://developer.android.com/reference/java/io/InputStreamReader.html
http://developer.android.com/reference/org/xmlpull/v1/XmlPullParser.html
https://github.com/google/gson
https://github.com/square/wire
https://github.com/PhilJay/MPAndroidChart
http://developer.android.com/reference/android/support/v7/widget/RecyclerView.html

Page 23 of 53

𝑃1 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (
1

𝑅1
,

1

𝑅2
,

1

𝑅3
2 ,

1

𝑅4
2)

Where:

𝑅1 = Time to parse data from the CSV file in workload task 1

𝑅2 = Time to parse data from the XML file in workload task 2

𝑅3 = Time to parse data from the JSON file in workload task 3

𝑅4 = Time to parse data from the Protocol Buffer file in task 4

And where:

𝑃2 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5)

Where:

𝐶1 = The harmonic mean of the average draws/s for each part

of workload task 5.

𝐶2 = The harmonic mean of the average draws/s for each part

of workload task 6.

𝐶3 = The harmonic mean of the average draws/s for each part

of workload task 7.

𝐶4 = The average draws/s for the duration of workload task 8.

𝐶5 = The harmonic mean of the average draws/s for each part

of workload task 9.

Page 24 of 53

Work 2.0 battery life benchmark

Measuring performance and battery life provides a better view of the overall

profile of a device than benchmarking performance alone.

The Work 2.0 battery life benchmark uses the same workloads as the Work 2.0

performance benchmark.

The battery must be at least 80% charged before the test will start. The test

loops the Work 2.0 performance benchmark until the battery charge drops

below 20%. Do not use the charging cable or connect your device to a PC while

the test is running.

Please refer to our best practice guide to set up your device and benchmark its

battery life.

⚠ Battery life testing can take several hours during which you will not

be able to use your device for other tasks.

Scoring

The reported battery life is an estimate for a 95% duty cycle (from 100%

charged to 5%) extrapolated from the actual, measured battery life during the

benchmark run:

𝑊𝑜𝑟𝑘 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒

= 0.95 ×
𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑟𝑢𝑛_𝑡𝑖𝑚𝑒

𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑙𝑒𝑣𝑒𝑙_𝑜𝑛_𝑠𝑡𝑎𝑟𝑡 − 𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑙𝑒𝑣𝑒𝑙_𝑜𝑛_𝑒𝑛𝑑

The Work 2.0 battery life benchmark also produces an overall Work 2.0

performance benchmark score, which is an average of the result from each

loop while the battery test was running.

𝑊𝑜𝑟𝑘 2.0 𝑠𝑐𝑜𝑟𝑒

= 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑊𝑒𝑏𝐵𝑟𝑜𝑤𝑠𝑖𝑛𝑔2.0, 𝑉𝑖𝑑𝑒𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔, 𝑊𝑟𝑖𝑡𝑖𝑛𝑔2.0, 𝑃ℎ𝑜𝑡𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔2.0, 𝐷𝑎𝑡𝑎𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

The subtest performance scores are calculated as geometric means of the

results from test passes 1 to n:

𝑊𝑒𝑏𝐵𝑟𝑜𝑤𝑠𝑖𝑛𝑔2.0 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑆𝑐𝑜𝑟𝑒1, … , 𝑆𝑐𝑜𝑟𝑒𝑛)

Page 25 of 53

𝑉𝑖𝑑𝑒𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑆𝑐𝑜𝑟𝑒1, … , 𝑆𝑐𝑜𝑟𝑒𝑛)

𝑊𝑟𝑖𝑡𝑖𝑛𝑔2.0 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑆𝑐𝑜𝑟𝑒1, … , 𝑆𝑐𝑜𝑟𝑒𝑛)

𝑃ℎ𝑜𝑡𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔2.0 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑆𝑐𝑜𝑟𝑒1, … , 𝑆𝑐𝑜𝑟𝑒𝑛)

𝐷𝑎𝑡𝑎𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑆𝑐𝑜𝑟𝑒1, … , 𝑆𝑐𝑜𝑟𝑒𝑖)

The performance monitoring chart shows the performance score from each

loop of the test. This makes it easy to see if performance decreases over time

due to thermal issues or other factors.

Page 26 of 53

Page 27 of 53

Work benchmark

See how your device handles the work tasks you carry out every day - browsing

the web, watching videos, working with documents, and editing photos.

Use the Work performance benchmark to test the performance of your

device. This test takes around 20 minutes on a typical smartphone.

Use the Work battery life benchmark to test battery life and performance.

This test can take many hours depending on the capacity and efficiency of the

device.

Work includes four tests:

Web Browsing measures the time to render a web page, search for content,

and re-render the page after editing and adding an item. The test used the

native Android WebView view.

Video Playback measures the average frame rate during playback as well as

the time to load, and seek within, 1080p video content using the native

Android MediaPlayer API.

Writing measures the time to open, edit, cut, copy and paste text and images

into a document using the native Android EditText view.

Photo Editing measures the time taken to open, edit, and save a set of 4 MP

JPEG images while using four different APIs to filter and manipulate the

images.

Page 28 of 53

Scoring

The Work performance benchmark reports a Work performance score. Each

sub-test also produces a score. Higher scores indicate better performance.

𝑊𝑜𝑟𝑘 𝑠𝑐𝑜𝑟𝑒

= 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑊𝑒𝑏𝐵𝑟𝑜𝑤𝑠𝑖𝑛𝑔, 𝑉𝑖𝑑𝑒𝑜𝑃𝑙𝑎𝑦𝑏𝑎𝑐𝑘, 𝑊𝑟𝑖𝑡𝑖𝑛𝑔, 𝑃ℎ𝑜𝑡𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔)

The Work battery life benchmark reports battery life in hours and minutes and

a Work performance score.

Page 29 of 53

Web Browsing

The Web Browsing test represents a common browsing scenario: checking up

on friends on a social networking site. The test measures the time it takes the

device to render a web page, search for content, and re-render the page after

adding a new image.

Web Browsing uses the native Android WebView view to display and interact

with web pages. The content for these pages is stored in local files on the

device. Android WebView uses the WebKit rendering engine. The test runs in

portrait screen orientation.

A Web Browsing score indicates how well the device performs when displaying

and interacting with web content. It does not measure network speed, latency

or bandwidth.

Workload tasks

1. Render the main page, which contains text and images of various sizes.

2. Scroll the page up and down.

3. Zoom into one picture.

4. Load a set of data into the search feature.

5. Execute searches as a search term is entered one character at a time.

6. Select a thumbnail area from a new image being added to the page.

7. Add the image to the page causing the page to be re-rendered.

Scoring

𝑊𝑒𝑏𝐵𝑟𝑜𝑤𝑠𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 = 2,500,000 × 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (
1

𝑅1
,

1

𝑅4
,

1

𝑅5
,

1

𝑅7
)

Where:

𝑅1 = Time spent rendering the page for task 1

𝑅4 = Time spent loading the data to be searched in task 4

𝑅5 = Time spent searching the data in task 5

𝑅7 = Time spent re-rendering the page in task 7

http://developer.android.com/reference/android/webkit/WebView.html

Page 30 of 53

Video Playback

The Video Playback test measures how well your device performs when asked

to load, play, and seek within 1080p video content. The test uses the native

Android MediaPlayer API and runs in landscape screen orientation.

The video content is 1080p resolution (1920 × 1080), encoded in H.264 using

the baseline profile, level 4.0, with a variable bit rate target of 4.5 Mbps

(max 5.4), at 30 FPS. The videos were encoded using Adobe Media Encoder CC

using the Android - Tablet 1080p 29.97fps preset as the basis, but with the

frame rate set to 30 FPS.

Workload tasks

1. Start playback of video 1

2. Play the video

3. Start playback of video 2

4. Play the video

5. Start playback of video 3

6. Play the video

7. Start playback of video 4

8. Seek within the video

a. pause, seek 1000 ms forward, play, then repeat until 78000 ms

is reached

b. seek to 65000ms

c. seek to 95000ms

Scoring

𝑉𝑖𝑑𝑒𝑜𝑃𝑙𝑎𝑦𝑏𝑎𝑐𝑘 𝑠𝑐𝑜𝑟𝑒 = 5,000 × (
1

𝑅𝑡
× (

1

𝑅𝑠
)

2

× 𝑅𝑓
4)

1

7

Where:

𝑅𝑡 = The arithmetic average of the loading times

measured in tasks 1, 3, 5 and 7. The measured time

starts when the media framework is initializing and

stops when the first frame is displayed.

𝑅𝑠 = The arithmetic average of seek times measured

in task 8. The measured time starts when the seek

operation is triggered and stops when the next video

frame appears on the display.

𝑅𝑓 = The arithmetic average of average playback

frame rates measured in tasks 2, 4 and 6.

http://developer.android.com/reference/android/media/MediaPlayer.html
http://developer.android.com/reference/android/media/MediaPlayer.html
http://www.adobe.com/products/mediaencoder.html

Page 31 of 53

Writing

The Writing test measures how well your devices performs when working with

documents. The test reflects the simple tasks you might perform on a mobile

device such as adding text and images to a document as well as cutting,

copying and pasting text within the document.

The test uses the native Android EditText view and runs in portrait orientation.

Document 1 is a 2.5 MB ZIP file containing a 100 KB text file and two 1.2 MB

images. Document 2 is a 3.5 MB ZIP containing a 90 KB text file, a 1.6 MB

image, and a 1.9 MB image.

Workload tasks

1. Load, uncompress and display Document 1.

2. Load, uncompress and display Document 2.

3. Copy all of Document 1 and paste it into the middle of Document 2. The

combined document has around 200,000 characters.

4. Save Document 2 text and images to a ZIP file and compress. The file is

about 6 MB.

5. Cut around 1,700 characters from the middle of Document 2 and paste to

the beginning of the document. Cut a further 1,200 characters from the

middle and paste near the beginning.

6. Type three short sentences near the start, middle and end of Document 2.

The sentences range from 70 to 100 characters each.

7. Insert a 1.3 MB image to the middle of Document 2.

8. Save Document 2 text and images to a ZIP file and compress. The file is

about 7.4 MB.

Scoring

𝑊𝑟𝑖𝑡𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 = 2,700,000 ∗ 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (
1

𝑅1
,

1

𝑅2
,

1

𝑅3
,

1

𝑅4
,

1

𝑅5
)

Where:

𝑅1 = The geometric mean of the loading times in tasks 1 and 2

𝑅2 = The geometric mean of the saving times in tasks 4 and 8

𝑅3 = Time taken to copy and paste text to and from the

clipboard in task 3

𝑅4 = The sum of the times taken to copy text to the clipboard,

cut it from the document, and paste into the document in task 5

𝑅5 = Time to insert an image into the document in task 7

http://developer.android.com/reference/android/widget/EditText.html

Page 32 of 53

Photo Editing

The Photo Editing test measures how well your device performs when applying

various filters and effects to images. The test runs in portrait screen

orientation.

The test uses four different APIs to apply filters and effects to the images.

1. The native android.media.effect API, which processes effects on the GPU.

2. The native android.support.v8.renderscript API and specifically the

RenderScript Intrinsics functions that support high-performance

computation across heterogeneous processors.

3. The android-jhlabs API, which allows image processing using Java filters on

the CPU, (licensed under the Apache license, version 2).

4. The native android.graphics API, which provides low-level tools that

handle drawing to the screen directly.

The test measures the time taken to open, edit, and save a set of JPEG images.

The measurements include the time taken to move graphics data to and from

the CPU and GPU, decode from and encode to JPEG format, and read and write

from the device's flash storage. The pictures used in the test have a 4 MP

resolution (2048 × 2048).

Loading forces the use of bitmap format of ARGB_8888. Saving uses JPEG

format with 90% quality hint. Saves happen to internal flash, unless

ENABLE_DUMP configuration is set to permanently save all output pictures, in

which case images are saved in the shared photo gallery area

DCIM/Futuremark/PCMA/PhotoEditing.

Workload tasks

1. Load and display a source image.

2. Apply an effect to the source image and display the resulting image.

3. For selected images and filters, save the resulting image on disk.

Each of these tasks is followed by a one second delay to make it easier for you

to follow the progress of the test.

Tasks 1 to 3 are repeated for 24 different filters, across 13 unique source

images, with six intermediate saves.

In task 2, effects without parameters are run only once. Effects with

parameters are run three times and the result is the arithmetic average of the

execution times.

At the end of each Android media effect round (within task 2), glFinish() is

called to make sure the results end up on the screen. This is also how

applications work in order to keep user inputs and screen contents in sync.

http://developer.android.com/reference/android/media/effect/package-summary.html
https://developer.android.com/reference/android/support/v8/renderscript/package-summary.html
http://android-developers.blogspot.fi/2013/08/renderscript-intrinsics.html
https://github.com/finebyte/android-jhlabs
http://www.apache.org/licenses/LICENSE-2.0
http://developer.android.com/reference/android/graphics/package-summary.html

Page 33 of 53

Some of the parameterized effects are using each round to apply a different

value (in the space (0,1]) to the effect, giving the impression of a 'phased'

application. The values for the three rounds are: 0.33, 0.66, 1.0.

Effects, parameters and APIs

Effect name Parameters API used

autofix phased android.media.effects

blur radius: 10.0 android.support.v8.renderscript.ScriptIntrinsicBlur

contrast phased android.media.effects

contrast phased java

crop_java
x:0 y:0 w:1600

h:1600
android.graphics

crossprocess android.media.effects

documentary android.media.effects

emboss android.support.v8.renderscript.ScriptIntrinsicConvolve3x3

exposure phased java

fill light phased android.media.effects

fisheye phased android.media.effects

flip horizontal android.media.effects

flip horizontal java

grain phased android.media.effects

grayscale android.media.effects

lomoish android.media.effects

rgb adjust r:2 g:3 b:3 java

Page 34 of 53

Effect name Parameters API used

rotate -90 android.media.effects

rotate_java phased android.graphics

saturate phased android.media.effects

sharpen android.support.v8.renderscript.ScriptIntrinsicConvolve3x3

sharpen phased android.media.effects

temperature phased android.media.effects

red eye

correction android.media.effects

Scoring

𝑃ℎ𝑜𝑡𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 = 800,000 × 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑅𝑗, 𝑅𝑟, 𝑅𝑎)

Where:

 𝑅𝑗 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (
1

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝐽𝑎𝑣𝑎
,

1

𝐶𝑟𝑜𝑝𝐽𝑎𝑣𝑎
,

1

𝐹𝑙𝑖𝑝𝐽𝑎𝑣𝑎
,

1

𝑅𝑔𝑏𝐴𝑑𝑗𝑢𝑠𝑡𝐽𝑎𝑣𝑎
,

1

𝑅𝑜𝑡𝑎𝑡𝑒𝐽𝑎𝑣𝑎
)

𝑅𝑟

= 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (
1

𝐵𝑙𝑢𝑟𝑅𝑒𝑛𝑑𝑒𝑟𝑆𝑐𝑟𝑖𝑝𝑡
,

1

𝑆ℎ𝑎𝑟𝑝𝑒𝑛𝑅𝑒𝑛𝑑𝑒𝑟𝑠𝑐𝑟𝑖𝑝𝑡
,

1

𝐸𝑚𝑏𝑜𝑠𝑠𝑅𝑒𝑛𝑑𝑒𝑟𝑆𝑐𝑟𝑖𝑝𝑡
)

𝑅𝑎 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (
1

𝐴1
,

1

𝐴2
,

1

𝐴3
, … ,

1

𝐴18
,

1

𝐴19
,

1

𝐴20
)

And where:

Page 35 of 53

𝐴1 = Time taken to apply Autofix effect

𝐴2 = Time taken to apply Contrast effect

𝐴3 = Time taken to apply Cross Process effect

𝐴4 = Time taken to apply Documentary effect

𝐴5 = Time taken to apply Fill-light effect

𝐴6 = Time taken to apply Fisheye effect

𝐴7 = Time taken to apply Flip effect

𝐴8 = Time taken to apply Grain effect

𝐴9 = Time taken to apply Greyscale effect

𝐴10 = Time taken to apply Lomoish effect

𝐴11 = Time taken to apply Rotate effect

𝐴12 = Time taken to apply Saturate effect

𝐴13 = Time taken to apply Sharpen effect

𝐴14 = Time taken to apply Temperature effect

𝐴15 = Time taken to apply Red Eye Correction filter effect

𝐴16 = The time taken for face detection in the Red Eye

Correction effect when scaling down the source image by a

factor of four to 512 × 512 px and using the native Android

FaceDetector API to find the location of the eyes. This is

repeated three times with the arithmetic average stored as the

result.

𝐴17 = Arithmetic average of the loading time from flash to

memory, including decompression for all images

𝐴18 = Arithmetic average of the saving time from memory to

flash, including image compression for all images

𝐴19 = Arithmetic average of loading time from memory to GPU

for all images

𝐴20 = Arithmetic average of fetch times from GPU to memory

for all saves

https://developer.android.com/reference/android/media/FaceDetector.html

Page 36 of 53

Work battery life benchmark

Measuring performance and battery life provides a better view of the overall

profile of a device than benchmarking performance alone.

The Work battery life benchmark uses the same workloads as the Work

performance benchmark.

The battery must be at least 80% charged before the test will start. The test

loops the Work performance benchmark until the battery charge drops below

20%. Do not use the charging cable or connect your device to a PC while the

test is running.

Please refer to our best practice guide to set up your device and benchmark its

battery life.

⚠ Battery life testing can take several hours during which you will not

be able to use your device for other tasks.

Scoring

The reported battery life is an estimate for a 95% duty cycle (from 100%

charged to 5%) extrapolated from the actual, measured battery life during the

benchmark run:

𝑊𝑜𝑟𝑘 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒

= 0.95 ×
𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑟𝑢𝑛_𝑡𝑖𝑚𝑒

𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑙𝑒𝑣𝑒𝑙_𝑜𝑛_𝑠𝑡𝑎𝑟𝑡 − 𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑙𝑒𝑣𝑒𝑙_𝑜𝑛_𝑒𝑛𝑑

The Work battery life benchmark also produces an overall Work performance

benchmark score, which is an average of the result from each loop while the

battery test was running.

𝑊𝑜𝑟𝑘 𝑠𝑐𝑜𝑟𝑒

= 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑊𝑒𝑏𝐵𝑟𝑜𝑤𝑠𝑖𝑛𝑔, 𝑉𝑖𝑑𝑒𝑜𝑃𝑙𝑎𝑦𝑏𝑎𝑐𝑘, 𝑊𝑟𝑖𝑡𝑖𝑛𝑔, 𝑃ℎ𝑜𝑡𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔)

The subtest performance scores are calculated as geometric means of the

results from test passes 1 to n:

𝑊𝑒𝑏𝐵𝑟𝑜𝑤𝑠𝑖𝑛𝑔 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑆𝑐𝑜𝑟𝑒1, … , 𝑆𝑐𝑜𝑟𝑒𝑛)

Page 37 of 53

𝑉𝑖𝑑𝑒𝑜𝑃𝑙𝑎𝑦𝑏𝑎𝑐𝑘 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑆𝑐𝑜𝑟𝑒1, … , 𝑆𝑐𝑜𝑟𝑒𝑛)

𝑊𝑟𝑖𝑡𝑖𝑛𝑔 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑆𝑐𝑜𝑟𝑒1, … , 𝑆𝑐𝑜𝑟𝑒𝑛)

𝑃ℎ𝑜𝑡𝑜𝐸𝑑𝑖𝑡𝑖𝑛𝑔 = 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑆𝑐𝑜𝑟𝑒1, … , 𝑆𝑐𝑜𝑟𝑒𝑛)

The performance monitoring chart shows the performance score from each

loop of the test. This makes it easy to see if performance decreases over time

due to thermal issues or other factors.

Page 38 of 53

Page 39 of 53

Computer Vision benchmark

Computer Vision is an exciting field that opens up the possibilities for a range

of innovative apps and services. Recent advances mean that many mobile

devices can now use these techniques. The Computer Vision test is a new test

incorporating open-source software libraries that measures device

performance for a range of image recognition tasks.

TensorFlow is an open-source machine learning library developed by Google.

The test uses a trained neural network to recognize objects in a set of pictures.

ZXing, commonly known as Zebra Crossing, is a multi-format barcode image

processing library. The test uses XZing to read a set of barcodes and QR codes.

Tesseract is an open-source optical character recognition library. The test

recognizes and extracts English text from a set of images.

Page 40 of 53

Scoring

The benchmark produces a Computer Vision score. Each sub-test also

produces a score. Higher scores indicate better performance.

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑉𝑖𝑠𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 = 1,000,000 × 𝑔𝑒𝑜𝑚𝑒𝑎𝑛 (
1

𝑅1
,

1

𝑅2
,

1

𝑅3
)

Where:

𝑅1 = The result of the TensorFlow test.

𝑅2 = The result of the ZXing test.

𝑅3 = The result of the Tesseract test.

Page 41 of 53

TensorFlow

This test uses a pre-trained neural network model to recognize objects in a set

of photographic images. This technique has many practical uses in mobile

applications such as identifying and classifying images in photography apps,

tagging people and places in social networking apps, and helping visually

impaired people understand the world around them.

A full explanation of machine learning, image recognition techniques, and

neural networks is beyond the scope of this guide. We recommend following

the links in the text below for further reading.

TensorFlow is an open-source machine learning library developed and

supported by Google. "Inception" is a deep convolutional neural network

architecture developed by Google for TensorFlow that is part of the current

state of the art for computer image recognition.

The benchmark test uses a TensorFlow Inception model that has been pre-

trained with the ImageNet database. ImageNet is an academic data set

containing thousands of images that is commonly used for training image

recognition systems.

The Inception model is about 52 MB in size, making it suitable for mobile

devices. The model is loaded into memory and tested with a set of 10 images.

Each image is reduced to 256 × 256 vector size before testing.

For each image, the model returns a percentage that represents its confidence

that the image was recognized successfully. These percentages are not used in

the scoring, however. Since the same model is used on all devices, the

confidence of recognizing each image is also the same on all devices.

Instead, the test measures how long it takes the model to classify each image.

The time taken depends on the performance of the processor in the device.

Scoring

The result is the average of the times taken to recognize each of the 10 images.

https://www.tensorflow.org/
http://arxiv.org/abs/1409.4842
https://en.wikipedia.org/wiki/Convolutional_neural_network
http://www.image-net.org/

Page 42 of 53

ZXing

ZXing, commonly known as Zebra Crossing, is an open-source, multi-format

barcode image processing library.

This test uses XZing to read a set of four traditional barcodes as commonly

found on product packaging and a series of seven QR codes. Each barcode and

QR code has been photographed in poor lighting conditions or with simulated

tearing damage to make the test a better representation of real-world use.

The test measures the time taken to recognize each barcode and QR code. It

does not test the accuracy of the barcode image recognition.

Scoring

The result is the average of the times taken to recognize each barcode image.

https://github.com/zxing/zxing

Page 43 of 53

Tesseract

Optical character recognition (OCR) has many practical and useful applications

from augmented reality translation apps like Google Translate to business card

readers and document scanners.

Tesseract is an open-source optical character recognition library. This test uses

a fork of Tesseract Tools for Android called tess-two.

This test use tess-two to recognize and extract English text from a set of four

images. Each passage of text has been photographed in poor lighting

conditions and at a slight angle to better simulate the challenges of OCR in

real-world use.

The test measures the time taken to recognize and extract the text from each

image. It does not test the accuracy of the OCR engine.

Scoring

The result is the average of the times taken to recognize the text in each image.

https://github.com/tesseract-ocr/tesseract
https://github.com/rmtheis/tess-two

Page 44 of 53

Page 45 of 53

Storage benchmark

A device’s IO performance describes its ability to write data In to and read data

Out of the storage. Good IO performance is key to a smooth, stutter-free

experience. The PCMark for Android Storage benchmark is an isolating

component benchmark for measuring the file IO and SQLite performance of

the Android storage subsystem.

PCMark for Android measures storage IO performance in three areas:

Internal Storage is where your apps save private data such as settings and

user data. The Android default cache directory is also in the internal storage.

Files saved in internal storage are private to the application and cannot be

accessed by the user or other applications. Internal storage performance most

commonly impacts the start-up time and smooth running of your apps.

External Storage is used to save public data such as documents, photos,

videos, and other files, as well as non-sensitive app data such as textures and

sounds. Depending on the device, external storage can be removable, (such as

an SD card), or built-in. Files in external storage can be found and modified by

the user. External Storage performance most commonly impacts your

experience when loading and viewing media files such as photos and videos.

The Database test measures performance when reading, updating, inserting

and deleting database records using SQLite, the default relational database

management system in Android. Following default Android behavior, the test

database is saved in the device's internal storage.

Page 46 of 53

Implementation

The Storage Test consists of two parts:

 File IO performance

 Android SQLite performance

File IO performance

In the File IO part, the test reads and writes files from and to the device’s

internal and external storage systems. The test performs both serial and

random accesses with selected block sizes.

The data that is being read and written consists of random number characters.

Before the read operations, the data is generated in the target partition by the

application.

For each access pattern, the test is repeated 5 times, and the median

bandwidth is used in the result calculation. The final result describes

throughput measured in MB/s.

The implementation uses native code. The flags used when opening each file

are O_RDWR|O_CREAT|O_DIRECT.

For the write operations, a call to fsync() follows each write.

Android SQL performance

In the Database part of the benchmark, the test performs a series of

transactions for reading, updating, inserting, and deleting records in an SQLite

database.

The reading part of the test reads 10 sets of 600 records, 6000 records in total.

The update, insert, and delete parts use 2000 records. For each kind of

operation, the bandwidth is used in the result calculation, given in IOPS

(Input/Output Operations Per Second).

Page 47 of 53

Workload tasks

Internal storage workloads

1. Read a 32 MB file sequentially in 2 MB blocks from internal storage

2. Read a 32 MB file randomly in 4 KB blocks from internal storage

3. Write a 16 MB file sequentially in 2 MB blocks to internal storage

4. Write a 16 MB file randomly in 4 KB blocks to internal storage

External storage workloads

5. Read a 32 MB file sequentially in 2 MB blocks from external storage

6. Read a 32 MB file randomly in 4 KB blocks from external storage

7. Write a 16 MB file sequentially in 2 MB blocks to external storage

8. Write a 16 MB file randomly in 4 KB blocks to external storage

Database workloads

9. Read 10 sets of 600 records from an SQLite database table

10. Update 2000 records in an SQLite database table

11. Insert 2000 records into an SQLite database table

12. Delete 2000 records from an SQLite database table

Page 48 of 53

Scoring

Overall Storage test score

The overall Storage benchmark score is calculated as follows:

𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒

= 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑅1, 𝑅2
2, 𝑅3, 𝑅4, 𝑅5

2, 𝑅6, 𝑅7, 𝑅8, 𝑅9
2, 𝑅10

2, 𝑅11
2, 𝑅12

2)

Where:

𝑅1 = The arithmetic average of the read times from task 1
𝑅2 = The arithmetic average of the read times from task 2
𝑅3 = The arithmetic average of the write times from task 3
𝑅4 = The arithmetic average of the write times from task 4
𝑅5 = The arithmetic average of the read times from task 5
𝑅6 = The arithmetic average of the read times from task 6
𝑅7 = The arithmetic average of the write times from task 7
𝑅8 = The arithmetic average of the write times from task 8
𝑅9 = The IOPS measured in task 9
𝑅10 = The IOPS measured in task 10
𝑅11 = The IOPS measured in task 11
𝑅12 = The IOPS measured in task 12

The weights used in the score formula are based on studies12 that suggest that

the most common I/Os issued by applications are:

 Random reads on the internal storage for loading application binaries,

(represented by workload task 2).

 Sequential reads on the external storage for multimedia files playback,

(represented by workload task 5).

 Database access for application internal data and Android contents, such

as the dial log, contacts, web browsing logs, and multimedia databases,

(represented by workload tasks 9, 10, 11, and 12).

1 Lim. S. H., Lee S. & Ahn W. H. (2013) Applications IO profiling and analysis for smart devices. Journal of Systems

Architecture, 59, 9, 740-747.

2 Lee K. & Won Y. (2012) Smart layers and dumb result: IO characterization of an Android-based smartphone.
EMSOFT '12 Proceedings of the tenth ACM international conference on Embedded software. ACM New York.

Page 49 of 53

Secondary results

The table below shows how each secondary result related to a workload tasks,

its unit, and its explanation.

Task Result Unit Explanation

1 Internal sequential read MB/s
The median bandwidth over the results

measured from the repeats of task 1

2 Internal random read MB/s
The median bandwidth over the results

measured from the repeats of the task 2

3 Internal sequential write MB/s
The median bandwidth over the results

measured from the repeats of the task 3

4 Internal random write MB/s
The median bandwidth over the results

measured from the repeats of the task 4

5 External sequential read MB/s
The median bandwidth over the results

measured from the repeats of the task 5

6 External random read MB/s
The median bandwidth over the results

measured from the repeats of the task 6

7 External sequential write MB/s
The median bandwidth over the results

measured from the repeats of the task 7

8 External random write MB/s
The median bandwidth over the results

measured from the repeats of the task 8

9 SQLite read IOPS
The number of records read per second

during task 9

10 SQLite update IOPS
The number of record updates

performed per second during task 10

11 SQLite insert IOPS
The number of record insertions

performed per second during task 11

12 SQLite delete IOPS
The number of record deletions

performed per second during task 12

Page 50 of 53

Reporting scores

Please follow these guidelines when including PCMark for Android scores in

reviews or marketing materials to avoid confusing your customers and to

ensure you represent our software correctly. Here's an example of how to do it

right:

 "Smartphone scores 4,800 in PCMark for Android Work 2.0 benchmark."

 "Smartphone scores 4,800 PCMarks."

⚠ Scores from PCMark for Android are not comparable with other

versions of PCMark.

Delisted Devices

We have clear rules for hardware manufacturers and software developers that

specify how a platform can interact with our benchmark software. When a

device is suspected of breaking those rules it is delisted. Scores from delisted

devices are not shown in the Best Smartphones and Tablets list and should not

be used to compare devices.

Using PCMark for Android scores in marketing material

You must have a commercial license to use PCMark scores in marketing

material. A commercial license is granted with the purchase of Professional

Edition benchmarks or a site license. Please contact sales@futuremark.com for

more information.

On the first mention of PCMark for Android in marketing text, such as an

advertisement or product brochure, please write "PCMark for Android

benchmark" in order to protect our trademark. For example:

"We recommend the PCMark® for Android™ benchmark from Futuremark®."

Please include our legal text in your small print.

PCMark® is a registered trademark of Futuremark Corporation.

http://www.futuremark.com/support/approved-drivers
http://community.futuremark.com/hardware/mobile
mailto:sales@futuremark.com

Page 51 of 53

Release notes

PCMark for Android v2.0.3710 – January 30, 2016

Fixed

 Fixed an issue that could cause the app to hang before showing the results

on very fast devices.

PCMark for Android v2.0.3706 – November 2, 2016

Fixed

 Fixed a rare issue that could cause the Photo Editing test in the Work 2.0

and Work benchmarks to crash.

PCMark for Android v2.0.3705 – October 13, 2016

New

 Benchmark your Android device with the new Work 2.0 benchmark, an

improved version of the Work benchmark that updates the Web Browsing,

Writing and Photo Editing tests and adds new Video Editing and Data

Manipulation tests.

 Use the new Computer Vision benchmark to measure the performance of

your device for a range of image recognition tasks.

 You can now filter the scores in the Best Devices list by major Android OS

version number to see how performance is affected by software updates.

PCMark for Android v1.4.3539 - May 23, 2016

New

 Benchmark the storage performance of your Android device with the new

Storage Test.

Fixed

 Restored the language option on the Settings screen. Choose from English,

Chinese, and Russian.

Compatibility

 App now requires Android 5.0 or higher.

Page 52 of 53

PCMark for Android v1.3.3083 - April 8, 2015

Fixed

 Fixed a bug in the Photo Editing test that could lead to a crash in extreme

cases of low memory.

Compatibility

 New notification icon for improved appearance on Android 5.0 devices.

PCMark for Android v1.2.1781 - October 28, 2014

Improved

 See performance and battery life together in the Best Devices list.

Fixed

 Fixed an issue causing blank result screens on some devices.

 Fixed a bug that could show Simplified Chinese text on devices set to

Traditional Chinese.

PCMark for Android v1.2.1773 - October 27, 2014

New

 Localized for Simplified Chinese.

Professional Edition only

 Added support for benchmark automation using adb (Android Debug

Bridge) for Professional Edition license key holders.

PCMark for Android v1.1.1676 – October 2, 2014

Fixed

 Fixed an issue that could cause the Work Writing test to fail on some

devices.

PCMark for Android v1.0.1646 – September 25, 2014

 Launch version.

Released on Google Play and as an APK for Benchmark Development Program

partners and selected press publications.

Page 53 of 53

About Futuremark, a UL Company

Futuremark creates benchmarks that enable people to measure, understand

and manage computer hardware performance. Our talented team creates the

industry's most authoritative and widely used performance tests for desktop

computers, notebooks, tablets, smartphones and VR systems.

We work in cooperation with many of the world's leading technology

companies to develop industry standard benchmarks that are relevant,

accurate, and impartial. As a result, our benchmarks are widely used by the

world's leading press publications and review sites.

Futuremark maintains the world’s most comprehensive hardware performance

database, using results submitted by millions of users to help consumers make

better purchasing decisions.

Our headquarters are in Finland just outside the capital, Helsinki. We also have

a sales office in Silicon Valley and sales representatives in Taiwan.

Futuremark became a part of UL in 2014. UL is a global safety science company

with more than a century of expertise and innovation in the fields of product

safety testing, inspection, and verification services. With more than 10,000

professionals in 40 countries, UL is dedicated to creating safe working and

living environments for all.

UL partners with businesses, manufacturers, trade associations, regulators,

and governments to play a key role in the development and harmonization of

national and international standards. For more information about certification,

testing, inspection, advisory and education services, visit http://www.UL.com.

Please don’t hesitate to contact us if you have a question about 3DMark.

Press press@futuremark.com

Business sales@futuremark.com

Support http://www.futuremark.com/support

© 2017 Futuremark® Corporation. PCMark® and Futuremark® trademarks, logos, character names, and distinctive

likenesses are the exclusive property of Futuremark Corporation. Android is a trademark of Google Inc. All other
names of companies and products mentioned herein may be trademarks of their respective owners.

http://www.ul.com/
mailto:press@futuremark.com
mailto:sales@futuremark.com
http://www.futuremark.com/support

