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Abstract

The SSP is a high assurance systems engineering effort
spanning both hardware and software. Extensive de-
sign review, first principle design, n-version program-
ming, program transformation, verification, and con-
sistency checking are the techniques used to provide
assurance in the correctness of the resulting system.

1 Introduction

At Sandia National Laboratories, an effort is under-
way to develop a computational infrastructure for
high-consequence embedded real-time systems. The
resulting computational system must satisfy numer-
ous constraints including those listed below.

1. It must be possible to subject the hardware to the
full spectrum of verification and validation tech-
niques ranging from design-level analysis down to
gate level inspections.

2. Application software must be developed using a
strongly typed high-level language.
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3. Software developers must be highly proficient in
the application language.

4. High assurance must be provided in the correct-
ness of the translation between the high-level ap-
plication programs being developed and the cor-
responding low-level programs being executed.

5. After translation, resulting low-level programs
must have a small memory footprint.

6. To the extent possible, software concepts should
be traceable across the abstraction spectrum.

Requirement (1) provides the rationale for devel-
oping a processor in-house. Numerous benefits re-
sulted from this decision. For example, a processor de-
sign team was assembled that included both hardware
developers as well as people with backgrounds in soft-
ware development and formal methods. Overall, the
team recognized the importance of developing a design
that was analyzable. On numerous occassions during
development tradeoffs were made favoring analyzabil-
ity over efficiency. In a similar spirit, functionality was
frequently shifted between hardware and software in
order to simplify the overall hardware design.

Requirements (2) and (3) provide the rationale
for targeting a modern and popular high-level lan-
guage. Requirement (2) calls into question languages
such as C and C++ which support automatic coer-
cions of data, elevate pointers to first-class citizenship,



and burden the user with the details of memory man-
agement. Requirement (3) rules out languages such as
Ada for which highly proficient programmers are diffi-
cult to find. This leaves Java as a prime candidate for
the development language of choice. This sentiment is
beginning to be echoed throughout the military com-
plex:

“Among the key motivations for the mili-
tary’s interest in Java is a drive to transi-
tion away from Ada. The feeling is that Java
represents a modern and more commercially
available technology than alternatives”[4].

Java is strongly typed, provides users with very
controlled access to and manipulation of references,
and shields the developer from memory management
concerns. From the perspective of security, one of the
biggest improvements of Java over C and C++ is a
memory model that eliminates the possibility of over-
writing memory and corrupting data[5]. Java does
not have pointers and neither does compiled Java code
which only references memory in a symbolic fashion.
Java also encourages software quality and analyzabil-
ity by removing entire classes of errors that a C or
C++ programmer could make. For example, Java
does not support goto-statements, operator overload-
ing, or automatic coercions. Another useful feature
of Java is that its semantic model has been defined
in an abstract architecture neutral manner. From the
perspective of in-house processor development an ar-
chitecture neutral model is attractive because it gives
freedom to the hardware design. From the perspective
of software development, the robustness of portability
provided by Java’s semantic model provides confidence
that software developed and tested on given comput-
ing platform such as a PC will have an equivalent
behavior when run on another platform such as the
in-house processor we are developing. For languages
with portability concerns such a conclusion cannot be
safely drawn.

On commercial platforms, it is common to find
Java programs being interpreted by a virtual machine
(that is itself written in software). Requirement (5)
made such an approach unattractive since the memory
footprint of a virtual machine would most likely con-
sume more memory than allowed for the entire appli-
cation. Furthermore, requirement (6) would be jeop-
ardized since it would be difficult to trace software
concepts (e.g., classes, fields, methods) beyond the
virtual machine boundary. As a result, the decision
was made to implement a suitable subset of the Java
Virtual Machine (JVM) directly in hardware. The

processor developed was christened the Sandia Secure
Processor (SSP). Figure 1 shows an embedded system
containing the SSP.

Figure 1: An Embedded System Containing the SSP

Though there are plans for future extensions, the
current version of the SSP does not implement the
following features of Java:

e Garbage collection. Although important to the
execution of Java in many applications, real-time
embedded systems generally avoid the need for
dynamic memory allocation and de-allocation due
to lack of timing determinism.

e Multiple threads. Again, important to Java
in general, but not necessary for small embedded
systems.

e Interfaces. A Java interface capability would
have been nice for a number of reasons, but was
not implemented due to schedule concerns.

e Exception handling. The SSP actually per-
forms exception detection but not exception han-
dling. Instead, on the detection of an exception
the processor shuts down in an orderly fashion.

e Floating point operations. The application
domains under consideration do not require float-
ing point operations and therefore in order to
avoid unnecessary complexity they are not im-
plemented by the SSP.

e Dynamic arrays. Although arrays of multiple
sizes and dimensions are supported, the size of
those arrays must be statically determined.

e Initialization of static fields. The current ver-
sion of the SSP does not support the “first use”
semantics of Java relating to the initialization of
static fields through the execution of <clinit>
methods. However, the next release of the SSP
will support initialization of statics.



e Java Libraries. The previously stated limita-
tions also imply that the SSP does not support
the traditional Java libraries, as many of them
rely on these capabilities. However, even if the
processor were to support all of the items listed, it
would be unlikely that the standard Java libraries
would be used in a security or safety critical sys-
tem until their source code could be subjected to
a complete analysis.

The embedded nature of the SSP prohibits the use
of Java’s dynamic binding capabilities. For example,
loading a class file over a network during runtime is
an operation that is physically not possible and would
be strictly prohibited in any case. Thus the SSP is a
closed system in the sense that all class files belonging
to an application must be present prior to execution.
This enables class loading to be performed statically
(i.e., before execution). As a result, the functionality
of the class loader can be factored out of the SSP hard-
ware and implemented in software (see Figure 2). The
advantages of this are: (1) the resulting hardware is
greatly simplified yeilding a more analyzable system,
(2) the resulting hardware is smaller taking up less
space and consuming less power, (3) the ROM images
produced by the class loader are on average one-third
the size of their corresponding classfiles, and (4) the
class loader software can be developed in a high-level
language — in this case, a higher-order strategic pro-
gramming language ameniable to formal verification.
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Figure 2: Factoring the Class Loader out of the SSP
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2 Hardware: The SSP

Unlike commercial processors, the SSP was NOT de-
signed for high throughput, but rather for safety and
security. The design of the SSP was intended to be
small, simple, and analyzable. In fact the core archi-
tecture was intended to not only to be conceptually
simple, but yield a relatively simple hardware design
as well. For those reasons, it has no pipelining or
caching capabilities. The end result has been a hard-
ware design having only 35K logic gates for the SSP
implementation (not including embedded memories)
and is capable of running at nearly 25Mhz.
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Figure 3: Overview of the SSP Architecture

The design of the SSP is based on the philosophy
that memory usages which are conceptually distinct
should map to memory modules which are physically
distinct. As a result, the design of the SSP closely
follows the specification given for the Java virtual ma-
chine. For example, in accordence with the architec-
ture neutral specification of the JVM, the SSP has
divided what in common practice is implemented as
a single physical memory into a number of indepen-
dent ones. In the SSP what is traditionally is known
as the heap has been implemented by a memory mod-
ule that is physically independent from the memory
module implementing the stack. This makes it phys-
ically impossible to crash the heap memory into the
stack memory as can occur in traditional microproces-
sor memory layouts. Furthermore, it obsolesces all
analysis related to processor behavior which could re-
sult in the case of such memory overruns, deferring
the judgement to first principle design[23].

In accordance with the philosophy of physical sep-
aration, the design of the SSP includes a separate
memory used to manage context switches resulting
from method calls. The resulting memory module is
called the state memory and represents an abstraction



that goes beyond the architecture neutral model of the
JVM. Figure 3 below shows the basic architecture of
the SSP. Note that all of the independent memories
are on-chip and the application program memory is
off-chip.

2.1 The Current System

The hardware implementation of the SSP ASIC ulti-
mately yielded a 110K gate system with 110K embed-
ded memory bits where the core SSP processor was
responsible for roughly 35K gates of the total system.
Transferring the digital design of the SSP into one
capable of being printed on a custom ASIC was re-
markably smooth. Each of the major internal SSP
and I/0 blocks were registered to simplify timing and
synthesis efforts. The designers were rewarded with a
system that was capable of being synthesized and laid
out directly from the top level, in contrast to more tra-
ditional designs which require much of this work to be
completed as sub-blocks and then integrated together.

The total synthesis time spent was just short of
3 weeks, where comparably sized ASICs at Sandia
typically take from 6 to 18 months. The synthesis
work resulted in a design where 100% of the 8000 reg-
isters were covered by the automatic insertion of 9
scan chains, and cover 98% of total logic. This work
required roughly two days where typically it takes
roughy a week to reach 70% logic coverage, and addi-
tional 6 weeks to even approach an end goal of 95%
coverage. It also yielded a design with zero timing vi-
olations for a very aggressive target clock of 25MHz.
Such results are very rare, as most synthesis outputs
yield hundreds of timing violations, and each must be
reasoned away.

The ASIC layout efforts were slightly more prob-
lematic. The difficulty came from a large number of
internal 32 bit busses that led to high routing densities
and difficulty meeting a useable die size.

2.2 Hardware Assurance

Validating the design of a new processor is not a trivial
task. To minimize human-in-the-loop errors we sought
to find the most automated way possible to verify that
the low level digital design satisfied the Java level re-
quirements. In short, an N-version programming solu-
tion was used. A copy of the SSP operational specifi-
cation was distributed to three different development
teams. Each implemented a solution in a completely
different design paradigm described by:

e VHDL — a hardware description language that be-
came the actual design for the physical hardware.

e Java model of the SSP Architecture — a high level
object oriented Java implementation of the byte-
code operation.

e ML model — a high level ML implementation of
the bytecode operations. ML is a functional lan-
guage with type inferencing.

Each of these implementations was executed on a
large self-checking Java program designed to test all
Java features supported by the SSP. The test program
developed covers the general as well as special cases of
each bytecode supported by the SSP. The tests are
non-exhaustive in the sense that only representative
elements of general and special cases are tested. Note
that it would be virtually impossible to test every pos-
sible instance of every general or special case. For ex-
ample, consider exhaustively testing every general case
of adding two 32-bit integers or exhaustively testing
every special case where the addition of two 32-bit
integers causes an overflow in the ALU.

Some of the aspects of bytecode semantics tested
include:

e all possible branch cases within the branching
bytecodes (e.g., ifne, ifeq, etc.)

multiple levels of inheritance (e.g., checkcast and
instanceof)

e general cases for all the ALU operations (e.g.,
iadd, imul, ladd, 1div, Ishl, lushr, etc.)

e special cases for the ALU operations (overflow,
underflow)

e access to all constant pool entries

all supported exceptions as specified by the byte-
codes (e.g., null pointer, divide by zero, array in-
dex out of bounds, etc.)

The resulting test suite resulted was named the
SSP-TestSuite and resulted in the execution of 12,877
bytecodes. Initially the test suite was executed on
each of the implementations of the SSP and final states
compared. In this context a state consists of the state
of each of the memories defined in the SSP design (e.g.,
stack, heap, and state stack) together with the value
of all the registers accessing these structures.

Analysis discovered that a simple comparison of fi-
nals states allowed a number of errors to “slip through
the cracks”. For example, a computational sequence



in one implementation causing a bit to be flipped twice
could not be distinguished from a computational se-
quence in another implementation having no bit flips.

The root cause of these problems was of course
due to the fact that our test suite was only exhaustive
with respect to representative cases but not exhaus-
tive with respect to specific instances of those cases.
Realizing this a decision was made to to perform an n-
way comparison of all intermediate states encountered
during the execution of the test suite. This compar-
ison turned out to be too fine grained as it reported
differences in implementation as errors. For example,
for the “dup” bytecode, the VHDL implementation
will read the top of the stack and copy it, thus per-
forming one “read” and one “push”. The Java and
ML implementations will actually pop the top value
off the stack and perform two pushes.
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Figure 4: Diagram of N-version Testing

In general, the Java and ML implementations will
execute a bytecode to completion before beginning
the execution of the next bytecode in the computa-
tion sequence. However, the execution model in the
VHDL implementation is more complex. The VHDL
implementation fetches a bytecode, decodes it, and
then sends commands to the various intelligent mem-
ory controllers. After a command has been sent to
a memory controller, the VHDL implementation will
immediately begin executing the next bytecode even
though the particular memory controller might still
be processing the previously sent command. The im-
plementation will stall only if a command is made to
a memory controller that is still executing a previous
command. An example of this behavior can be seen in
the execution of the “new” bytecode which will cause
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the heap controller to allocate and zeroize heap mem-
ory. While the “new” bytecode is being executed by
the memory controller, it is possible for the instruc-
tion decode to execute one or more bytecodes that only
use the stack. Because of the parallelism involved, our
test framework requires that the VHDL implementa-
tion record the bytecode associated with each memory
controller command. This information is used in or-
der to successfully distinguish “bytecode boundaries”
so that a semantically accurate n-way comparison can
be performed by our test oracle.

As a result of the differences in computational
models, the choice was made to define an intermedi-
ate state precisely in terms of the before/after seman-
tics used in the architecture neutral specification of
Java bytecodes[10]. Each implementation is required
to make this state sequence available to a test ora-
cle for inspection. Conceptually, the implementations
were designed to output their states before and after
each bytecode execution. All state variables (all mem-
ory and register values) are compared before and after
each bytecode execution, for each of the implementa-
tion. However, for efficiency reasons, state information
is output in a compressed relative form. Specifically,
only those memory locations changed by the currently
executing bytecode are writen to an output file. The
n-way comparison is automated by a test oracle which
compares all of the output files for bytecode bound-
ary equivalence. Figure 4 is a graphical representation
of this process. Figure 4 also shows how this testing
concept is carried into the hardware validation of the
ASIC itself.

3 Software: The Class Loader

The specification of the JVM states that classes should
be made available to a running program via a loading
and linking sequence. The loading step consists of im-
porting a class file into the JVM. A class file is the
binary form of a class and is typically generated by
a Java compiler. The linking phase can be broken
down into three steps: (1) verification, (2) prepara-
tion, and (3) resolution. Verification ensures that a
class is well formed. Preparation involves allocating
the appropriate amounts of memory for classes and
objects and assigning default values to these memory
locations. Resolution is the act of transforming sym-
bolic references into direct references with respect to
a given hardware architecture.

The job of the SSP class loader is to correctly
translate Java class files into a form suitable for exe-
cution by the SSP. This translation produces an inter-



mediate form that we call a ROM image, and concerns
itself with many issues such as:

1. Resolving symbolic references to physical ad-
dresses or direct and indirect offsets. This res-
olution is intimately linked to the architecture of
the hardware!.

2. Correctly capturing the inheritance semantics of
Java for applications consisting of classfile hierar-
chies.

3. Providing suitable information for method invo-
cation and return.

4. Constructing method tables.

3.1 A Transformation-based Approach

The class loader for the SSP that is currently being
used is written in Java. However, a research effort
is underway to implement the class loader using a
transformation-based approach. Analysis has revealed
that a significant portion of the SSP class loader’s
functionality can be directly understood in transfor-
mational terms. Thus program transformation pro-
vides a paradigm well suited for expressing the class
loader’s functionality. Furthermore, program transfor-
mation admits the possibility of bringing the verifica-
tion of the correctness of the class loader within reach
of automated reasoning systems like ACL2. This is
important, because correctness is the attribute of pri-
mary importance to the SSP class loader.

Let Assp denote the Java source code of an ap-
plication written in the subset of Java supported by
the SSP. Let C be a function denoting a trusted Java
compiler. Let JV M (x) denote the execution of the ap-
plication x using the virtual machine JV M. Similarly,
let SSP(z) denote the execution of the application x
using the SSP. Assuming the implementation of the
SSP faithfully implements the semantics of the ap-
propriate subset of the JV M, we say a class loader
CL for the SSP is correct if and only if:

VAssp : JVM(C(ASSP)) = SSP(CL(C(ASSP)))

where CL(C(Asgsp)) is the ROM image resulting from
applying the class loader C'L to the class files produced

by C(Assp).

LOne of the unique aspects of this project has been the close
relationship between the classloader development team and the
SSP development team. Both teams have frequent contact and
are willing to negotiate design complexity issues in favor of in-
creasing the analyzability of the overall system.

3.1.1 Transformation

Program transformation is an approach to software
development that, in spirit, is based upon the notion
that equals may be replaced by equals. An exam-
ple of such a replacement in the class loader would
be that a symbolic reference may be replaced by an
“equivalent” memory address or offset. In a transfor-
mational framework, such replacements can be spec-
ified through rewrite rules of the form: [hs — rhs.
Thus the symbolic reference replacement could be ab-
stractly expressed by the following rewrite rule:

symbolic reference — corresponding address

A strategic programming language is a language
that supports a syntax for expressing rewrite
rules and provides operators for controlling their
application[1][3][8][9][19]]20][21]. This paradigm pro-
vides an elegant framework for specifying how a col-
lection of class files can be altered by the application
of a set of rewrite rules which realize the class loader’s
functionality.

In the context of the class loader, control is nec-
essary to restrict where rules should be applied. For
example, rewrite rules for resolving the indexes found
in constant pool entries should only be applied to the
appropriate constant pool, and so on.

From the perspective of strategic programming,
the class loader problem is distinguished by the fol-
lowing characteristics:

e (lass files are complex structures.

e Data frequently needs to be distributed between
unrelated portions within a class file. For exam-
ple, information from the constant pool needs to
be distributed over the field and method sections.

e Data also needs to be distributed between classes
within the application. Sometimes this data
should only be distributed within an inheritance
hierarchy and sometimes the data should be dis-
tributed throughout the entire application.

In a general fashion, we have characterized the
notion of data distribution with respect to strategic
frameworks. We introduce the term distributed data
problem to describe such activity.

3.1.2 Higher-Order Transformation

First-order strategic systems often encounter difficul-
ties expressing the distribution of data between com-
plex structurally unrelated terms. Thus, even though



a transformation may be conceptually straightfor-
ward, its realization within a first-order framework
becomes complex. At the conceptual level, rewrite
rules are oftentimes straightforward because one can
envision a strategy consisting of rewrite rules contain-
ing problem specific constants (e.g., a field entry in
the constant pool of a class and a corresponding off-
set for that field). Unfortuntely, such problem spe-
cific constants change from problem to problem (e.g.,
different class files will have correspondingly differ-
ent constants). In a first-order setting, this type of
change is most often captured through rule parame-
terization. Thus rule instances are not actually cre-
ated, but rather their effect is simulated through a
framework of accumulation, parameterization, and as-
sociated lookup functions. This has the undesirable
side-effect of making rules more complex than con-
ceptually they need to be. However, this problem
can be avoided in a higher-order rewriting framework.
In a nutshell, the advantage offered by higher-order
rewriting is that collections of first-order rewrite rules
(containing constants) can be generated dynamically.
Thus the need for accumulation, parameterization,
and associated lookup is subsumed by dynamic rule
creation and rule application. Our experiences have
shown[24] that in a higher-order framework, the distri-
bution of data can oftentimes be elegantly expressed —
mirroring the simplicity of the conceptual understand-
ing. As a result, we have developed a higher-order
strategic system called HATS[22] that implements the
ideas described here.

3.2 Providing Assurance in the Class
Loader

The class loader is a weak link in the assurance chain
of the SSP. Commercial compilers take Java source
code and produce class files. The assurance provided
by a commercial compiler stems from several sources
including the fact that the Java community at large
performs an extensive stress test of the compiler. Over
time, such a testing environment causes a software
product to mature. Granted bugs may still exist in
the compiler, but all things being equal, the likeli-
hood of encountering a bug in the class loader is sig-
nificantly greater. Thus we are devoting considerable
effort towards providing assurance in the translation
performed by the SSP class loader. Our assurance ac-
tivities fall into two categories: (1) werification, which
uses formal reasoning to prove properties about the
class loader in general, and (2) validation, which dis-
cretely inspects individual outputs of the class loader

to demonstrate properties in particular.

3.2.1 Verification

Formal verification provides a framework where it is
possible to demonstrate that a system such as the class
loader possesses general properties. In this context,
assurance comes in the form of a mathematical proof
and typically involves a model of the system under
analysis (rather than the actual system itself). Gen-
eral properties are stated in terms of theorems involv-
ing the model. The proof of theorems provides strong
assurance that the model behaves as required. Assur-
ance of the correctness of the system under analysis
relies on (1) confidence that the proofs themselves are
sound, and (2) confidence that the model faithfully
describes the system (e.g., theorems that hold for the
model hold for the system). While it is theoretically
possible to automate the construction of proofs, in
practice it is extremely difficult and requires sophis-
ticated tools and approaches.

We are using the modeling and verification frame-
work provided by ACL2 to formally prove theorems
about the class loader. ACL2 [6][7] is a programming
language based on the applicative subset of Common
Lisp. In this language, users can build executable
models of software systems. ACL2 is also a tool that
assists users in proving theorems about their ACL2
programs. It has been used to prove the correctness
of hardware implementations of microprocessors and
floating point algorithms [2][16]. More recently it has
been used to verify parts of implementations of the
JVM [13][14][15][17].

Our approach to modeling the class loader is
based on a heavily-researched model[2][13][14][15][17]
in which a system is described in terms of states and
state transitions. In the past, this type of model has
been extensively applied to reasoning about the be-
havior of low-level assembly-based computations[12].
More recently, this type of model has been used to
reason about the behavior of computations described
in terms of Java bytecodes. In our research, we are
adapting this model in a novel way to the computa-
tional paradigm offered by strategic programming. In
the context of the class loader, we model the class files
of the Java application as our state and the transfor-
mations on this application as our state transitions.
The JVM and the SSP provide the basis for formally
understanding equivalence between states.

A model of HATS is constructed by defining an ab-
stract machine that controls the application of trans-
formation rules. Each transformation rule modifies
the state of the system. The abstract machine op-



erates according to the following sequence: fetch the
next transformation rule and node from the current
state, apply the transformation, and return a new ma-
chine state.

Though we are exploring the verification of a num-
ber of properties of the classloader, our ultimate goal
is to verify that the transformation rules preserve the
meaning of the term to which they are applied (i.e.,
the class loader is correct). In the context of the SSP,
the initial term is a set of class files, Cp, generated by
a Java compiler. The semantics of this term is defined
by the JVM specification. We can think of the JVM as
defining a mapping from (classfiles X inputs) to out-
puts. Let Evaljyys @ classfiles x inputs — outputs
denote this mapping function. FEwvaljy s defines the
behavior of the program encoded in the classfiles. The
final term is a ROM image, which we denote Croas-
The semantics of this term is defined by the SSP hard-
ware, Evalgsp. HATS accomplishes the conversion of
Co to Cronr, as indicated by the notation Cropy =
T*(Cp). In this notational framework, what must be
shown for inputs [ is:

V(Cg, I)EUCLZJVM(C(), I) = EUCLZSSP(T*(C()), I)

The problem above can be decomposed by defin-
ing a sequence of normal forms, Cy, C1,Co, ... in the
transformation of Cy to Cronr. These normal forms
are formally specified and are theorems within our ver-
ification framework. Constant pool normalization and
field distribution are two examples of normal forms.
Informally stated, in constant pool normalization all
indirection is removed from the constant pool entries
of the classfiles in Co. Let T' denote the transfor-
mation that accomplishes this task. Similarly, let T2
denote the normal form resulting from field distrib-
ution. At present, a sequence of five intermediate
normal forms have been defined. For each normal
form, there is an evaluation function, Fval,. Thus,
the original correctness conjecture can be restated as
a sequence of conjectures:

V(C@, I)EUCLZJVM(C(), I) = Evall (Tl (C()), I)
= Evaly(T*(T(Cy)), I)

= Evalssp (T* (Co), I)

where T is the composition of the individual trans-
formations. This allows the proof to be constructed
incrementally, and therefore, reduces the complexity
of the proof.

3.2.2 Validation

From the perspective of validation, the class loader is
viewed as a class file to ROM image compiler whose
trustworthiness is in question. In an approach simi-
lar to the one taken for Java class files, information is
embedded in (binary) ROM images that enable their
semantic structure to be recovered using simple pars-
ing techinques. This enables ROM images to be sub-
jected to tests similar in spirit to those performed on
Java class files by byte code verfiers. A ROM Integrity
Checker (RIC) has been developed to perform such
tests. The embedded nature of the SSP enables addi-
tional checks to be performed in which ROM images
are compared to the class files which generated them.
This type of checking goes beyond what is possible for
byte code verifiers.

The ROM Integrity Checker The Rom Integrity
Checker (RIC) operates entirely within the bounds of
a single ROM image — that is to say, it does not ex-
amine source code or class files, only the image it-
self. Since SSP ROM images include parsing informa-
tion, RIC can parse the image into its various com-
ponents (method areas, method tables, methods, con-
stant pools, instance field elements, and so forth). At
this point, several checks are run on each component.
An informal description of some of the checks is given
below.

e The parent address must point to a class (or 0 for
Object).

e The class must have at least as many methods as
its parent.

e For each method:

1. The program counter and constant pool ad-
dresses of an inherited method must be con-
sistent among all classes that inherit the
method.

2. Methods defined within a given class must
have a program counter that falls within the
class and a constant pool address that points
to the constant pool of the current class.

e Only one class in the ROM image can be desig-
nated as Object.

e The branches in byte codes must not leave their
method.

e The byte code new must take a class element as
its argument.



All in all, over 80 distinct checks are provided cov-
ering broad structures such as method areas and con-
stant pools and going all the way down to the byte-
codes themselves.

The Class Loader Integrity Checker The con-
sistency properties checked by RIC are all properties
that are necessary for ROM Image to be well formed.
However, since RIC does not consider any context be-
yond the image itself, RIC is limited in the classes of
errors that it can detect. For that reason, we have de-
fined an additional set of checks between ROM Images
and the class files from which they are generated.

This resulted in the development of a new tool:
the Class Loader Integrity Checker (CLIC). The first
stage of CLIC’s execution is to run RIC against the
ROM image. If RIC is claims that this is a valid ROM
image, then CLIC parses a set of Java class files (speci-
fied by the user) from which this ROM image is alleged
to have been created. After the class files have been
parsed, comparisons are made between the class files
and the ROM image. A mapping is establishes be-
tween classes, allowing us to compare their contents
one by one. (The ROM image format was actually
extended slightly to allow this mapping to occur more
easily). CLIC performs a structural comparison of the
class heirarchy defined by the Java class files with the
class hierarchy in the ROM image. Similarly, methods
and instance fields are verified to correlate between the
two structures.

Notably, CLIC performs numerous, very detailed
checks of the individual bytecodes and their argu-
ments. For example, the targets of invoke instruc-
tions are resolved, and checked to ensure that they
are pointing at the correct classes. Bytecodes in each
method are checked “one by one” and must correspond
exactly with the class files. All in all, CLIC expands
the number of distinct checks performed to over 190.

Testing the Checkers The SSP-TestSuite (see Sec-
tion 2.2) was converted into a ROM image by the class
loader. We then took this image and modified it by
hand to create new images. Fach of these images was
wrong in some way, with respect to the original class
files. Many of these images were designed with mali-
cious intent to trick RIC/CLIC, but the effort did not
go beyond modifying more than a few bytes in each
file.

Hand crafted images are reasonable for many pur-
poses, but we would also like to be able to test more
than just what we come up with by hand. CLIC was
not particularly slow (each test run took roughly 5-7

seconds on a 1GHz Pentium 3), and so we devised a
program to sequentially flip every bit of a ROM im-
age (one at a time) thereby producing a new ROM
image. Let Ry denote an initial 32K-bit ROM image
produced by applying the SSP class loader to the SSP
Test Suite. The set of ROM images produced was:

ROMget = {Ro, R1, Ra..., R} where n = 32K

Note that for all ¢ > 0, R; will differ from Ry by
exactly one bit. Each of the ROM images produced
was checked by CLIC to see if it was able to catch
the error resulting from the bit-flip. Split across a few
computers, the testing of this ROM image sequence
was completed in a few days. RIC itself was able to
detect around 70% of the errors, and CLIC was able
to detect 100%. Note that these figures are the results
for these particular images — a different set of images
will surely yield different results. Of course, this is not
a proof that CLIC catches 100% of errors, and it may
well be the case that there is some error which CLIC
does not detect.

We would like to mention that catching any single
bit flip is not a proof of correctness. The implications
of CLIC’s checks with respect to correctness is some-
thing that we are currently investigating. We believe
that it is definitely possible, even likely, that there are
some problems that CLIC will not be able to detect.
Nevertheless, these tests seem to be fairly strong evi-
dence that CLIC is capable of detecting a large class
of errors.

Summary and Limitations Images that pass
through CLIC verification have passed a great num-
ber of tests. Taken as a whole, these tests can be
considered “necessary but not sufficient” for correct
translation of the class files. These tools appear to
be quite useful — it would seem to be unlikely that
an unsophisticated bug in the class loader could out-
put a ROM image that would pass CLIC verification.
RIC and CLIC are relatively simple, together com-
prising only about 6700 lines of liberally commented,
straightforward Java code.

Yet RIC/CLIC are a far cry from formal proof
of correctness. We do not yet have the tools to for-
mally prove properties of complex Java programs such
as the class loader. Furthermore, the testing we have
done of RIC and CLIC, perhaps extensive by human
standards, is nowhere near exhaustive. Indeed, the
problem space is so large as to be virtually infinite
(with 32KDb per image, there are over 2~260000 possi-
ble images).



4 Conclusion

The SSP offers a design space in which significant
tradeoffs can be made between hardware and software.
Much of the success of the SSP can be attributed to
the diverse nature of its design team whose members
have expertise in (1) system design, (2) hardware de-
sign and development, (2) software design and devel-
opment, and (3) formal methods. Additionally, the
members of this team share the perspective that the
primary design requirement is correctness and analyz-
ability.

Assurance efforts for the SSP are ongoing. We see
the correctness argument as consisting of a chain hav-
ing numerous links (e.g., the correctness of the Java
compiler, the correctness of tools used to develop var-
ious portions of the system, etc.). Our overall plan is
to focus our efforts on the weakest links of this chain.
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