
Yocto � User Manual
GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA
Built on 31.08.2015

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

Important hints

Thank you very much for purchasing a Garz & Fricke product. Our products are dedicated to professional use
and therefore we suppose extended technical knowledge and practice in working with such products.

The information in this manual is subject to technical changes, particularly as a result of continuous
product upgrades. Thus this manual only reflects the technical status of the products at the time
of printing. Before design-in the device into your or your customer’s product, please verify that this
document and the therein described specification is the latest revision and matches to the PCB
version. We highly recommend contacting our technical sales team priorto any activity of that kind. A
good way getting the latest information is to check the release notes of each product and/or service.
Please refer to the chapter [I 11 Related documents and online support].

The attached documentation does not entail any guarantee on the part of Garz & Fricke GmbH with
respect to technical processes described in the manual or any product characteristics set out in the
manual. We do not accept any liability for any printing errors or other inaccuracies in the manual
unless it can be proven that we are aware of such errors or inaccuracies or that we are unaware
of these as a result of gross negligence and Garz & Fricke has failed to eliminate these errors or
inaccuracies for this reason. Garz & Fricke GmbH expressly informs that this manual only contains
a general description of technical processes and instructions which may not be applicable in every
individual case. In cases of doubt, please contact our technical sales team.

In no event, Garz & Fricke is liable for any direct, indirect, special, incidental or consequential damages
arising out of use or resulting from non-compliancy of therein conditions and precautions, even if
advised of the possibility of such damages.

Before using a device covered by this document, please carefully read the related hardware manual
and the quick guide, which contain important instructions and hints for connectors and setup.

Embedded systems are complex and sensitive electronic products. Please act carefully and ensure
that only qualified personnel will handle and use the device at the stage of development. In the event
of damage to the device caused by failure to observe the hints in this manual and on the device
(especially the safety instructions), Garz & Fricke shall not be required to honour the warranty even
during the warranty period and shall be exempted from the statutory accident liability obligation.
Attempting to repair or modify the product also voids all warranty claims.

Before contacting the Garz & Fricke support team, please try to help yourself by the means of this
manual or any other documentation provided by Garz & Fricke or the related websites. If this does not
help at all, please feel free to contact us or our partners as listed below. Our technicians and engineers
will be glad to support you. Please note that beyond the support hours included in the Starter Kit,
various support packages are available. To keep the pure product cost at a reasonable level, we have
to charge support and consulting services per effort.

Shipping address:
Garz & Fricke GmbH
Tempowerkring 2
21079 Hamburg
Germany

Support contact:
Phone +49 (0) 40 / 791 899 - 30

Fax +49 (0) 40 / 791 899 - 39

Email I support@garz-fricke.com

URL I www.garz-fricke.com

© Copyright 2015 by Garz & Fricke GmbH. All rights are reserved.
Copies of all or part of this manual or translations into a different language may only be made
with the prior written approval.

2

mailto:support@garz-fricke.com
http://www.garz-fricke.com

Contents

Important hints 2

1 Introduction 4

2 Overview 5
2.1 The bootloader 5
2.2 The Linux kernel 5
2.3 The root file system 5
2.4 The partition layout 6
2.5 Further information 6

3 Accessing the target system 8
3.1 Serial console 8
3.2 SSH console 9
3.3 Telnet console 9
3.4 Uploading files with TFTP 10
3.5 Uploading files with SFTP 10

4 Services and utilities 11
4.1 Services 11
4.1.1 Udev 11
4.1.2 D-Bus 12
4.1.3 SSH service 12
4.1.4 Module loading 12
4.1.5 Network initialization 12
4.1.6 Garz & Fricke shared configuration 13
4.1.7 Garz & Fricke system configuration 13
4.1.8 Kernel command line 13

5 Add-On Packages 15
5.1 Chromium 15
5.1.1 Installation 15
5.1.2 Deinstallation 16
5.1.3 Manual Start/Stop of Chromium 16
5.1.4 "Kiosk"-Mode 16
5.1.5 Configuration 16
5.1.6 Soft-Keyboard 17

6 Accessing the hardware 18
6.1 Digital I/O 18
6.2 Serial interfaces (RS-232 / RS-485 / MDB) 19
6.3 Ethernet 19
6.4 Real Time Clock (RTC) 19
6.5 Keypad connector 20
6.6 SPI 21
6.7 I2C 21
6.8 CAN 22
6.9 USB 23
6.9.1 USB Host 23
6.9.2 USB Device 23
6.10 Display power 24
6.11 Display backlight 24
6.12 SD cards and USB mass storage 24
6.13 Temperature Sensor 25
6.14 Touchscreen 25
6.15 Audio 25
6.16 SRAM 26

7 Building and running a user application 27
7.1 SDK installation 27

3

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

7.2 Simple command-line application 27
7.3 Qt-based GUI user application 28
7.4 Using the Qt Creator IDE 29
7.4.1 Configuring Qt Creator 29
7.4.2 Developing with Qt Creator 31
7.5 Autostart mechanism for user applications 33
7.6 Configuring the Qt Webkit demo 34

8 Building a Garz & Fricke Yocto Linux system from source 36
8.1 General information about Garz & Fricke Yocto Linux systems 36
8.2 Download and install the Garz & Fricke Yocto BSP 37
8.3 Building the BSP for the target platform with Yocto 37

9 Deploying the Linux system to the target 39
9.1 Booting Flash-N-Go System 39
9.2 Installing a Yocto image on the device 39
9.2.1 Over the network via TFTP 40
9.2.2 From a local folder using an external storage device 40

10 Securing the device 41
10.1 Services 41
10.2 Root password 41
10.2.1 What does it mean if no root password is set? 41
10.2.2 Blocking root access 41
10.3 User permissions concept 41
10.4 Networking 41
10.4.1 Firewall - netfilter/iptables 41
10.4.2 Using secure network protocols 42
10.5 Restrict physical access 42
10.6 Application security 42

11 Related documents and online support 43

A GNU General Public License v2 44
A.1 Preamble 44
A.2 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 44
A.3 END OF TERMS AND CONDITIONS 47
A.3.1 How to Apply These Terms to Your New Programs 47

4

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

1 Introduction

Garz & Fricke systems based on Freescale i.MX6 can be used with an adapted version of Linux, a royalty-
free open-source operating system. The Linux kernel as provided by Garz & Fricke is based on extensions by
Freescale that currently have not been contributed back into the mainline kernel. Furthermore, Garz & Fricke has
made several modifications and extensions to the kernel which are currently not contributed back to the mainline
kernel as well. Nevertheless, the full source code is available as a board support package (BSP) from Garz &
Fricke.

A Garz & Fricke device normally comes with a pre-installed Garz & Fricke Linux operating system. However, since
Linux is an open source system, the user is able to build the complete BSP from source, modify it according to
his needs and replace the pre-installed Linux system with a custom one.

This manual contains information about the usage of the Garz & Fricke Linux operating system for SANTARO/SAN-
TOKA, as well as the build process of the Garz & Fricke Linux BSP and the integration of custom software
components. The BSP can be downloaded from the Garz & Fricke support server:

I http://support.garz-fricke.com/projects/Santaro/Linux-Yocto/Releases/

It does not include the complete source code to all packages. Instead, several external packages are downloaded
from third party online sources and from the Garz & Fricke packages mirror during the build process: If third party
souces are not available anymore at the former location there should be a backup available at:

I http://support.garz-fricke.com/mirror

Modifications to these packages are provided as source code patches, which are part of the BSP.

Please note that Linux development at Garz & Fricke is always in progress. Thus, there are new releases of the
BSP at irregular intervals. Due to differences between the various Linux BSP platforms and versions, a separate
manual is available for every platform/version. To avoid confusion, the version number of the manual exactly
matches the BSP version number.

In addition to this manual, please also refer to the dedicated hardware manuals which can be found on the Garz
& Fricke website as well.

5

http://support.garz-fricke.com/projects/Santaro/Linux-Yocto/Releases/
http://support.garz-fricke.com/mirror

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

2 Overview

A Garz & Fricke Linux System generally consists of four basic components:

the bootloader
the Linux kernel
the root file system
the device configuration

These software components are usually installed on separate partitions on the backing storage of the embedded
system.

Newer Garz & Fricke devices are shipped with a separate small ramdisk-based Linux system called Flash-N-Go
System which is installed in parallel to the main operating system. The purpose of Flash-N-Go is to provide the
user a comfortable and secure update mechanism for the main operating system components.

2.1 The bootloader

There are several bootloaders available for the various Linux platforms in the big Linux world. For desktop PC
Linux systems, GRUB or LILO are commonly used. Those bootloaders are started by hardwired PC-BIOS.

Embedded Systems do not have a PC-like BIOS. In most cases they are started from raw flash memory or an
eMMC device. For this purpose, there are certain open source boot loaders available, like RedBoot, U-Boot or
Barebox. Furthermore, Garz & Fricke provides its own bootloader called Flash-N-Go Boot for its newer platforms
(e.g. SANTARO).

SANTARO/SANTOKA uses the bootloader Flash-N-Go Boot.

2.2 The Linux kernel

The Linux OS kernel includes the micro kernel specific parts of the Linux OS and several internal device and
subsystem drivers.

2.3 The root file system

The root file system is simply a file system. It contains the Linux file system hierarchy folders and files. Depending
on the system configuration, the root file system may contain:

system configuration files
shared runtime libraries
dynamic device and subsystem drivers - so called loadable kernel modules - in contrast to kernel-included
device and subsystem drivers
executable programs for system handling
fonts
etc.

Usually, a certain standard set of runtime libraries can be found in almost every Linux system, including standard
C/C++ runtime libraries, math support libraries, threading support libraries, etc.

Embedded Linux systems principally differ in dealing with the graphical user interface (GUI). The following list
gives some examples for GUI systems that are commonly used in embedded Linux systems:

no GUI framework
Qt Embedded on top of a Linux frame buffer device
Qt Embedded on top of DirectFB graphics acceleration library
Qt Embedded on top of an X-Server
GTK+ on top of DirectFB graphics acceleration library
GTK+ on top of a X-Server
Nano-X / Microwindows on top of a Linux frame buffer device

Some system may additionally be equipped with a window manager of small footprint or a desktop system like
KDE ore GNOME. However, in practice most embedded Linux Systems are running only one GUI application and
a desktop system generates useless overhead.

SANTARO/SANTOKA is equipped with Qt5.

6

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

2.4 The partition layout

As already stated in chapter [I 2 Overview], the different components of the embedded Linux system are stored
in different partitons of the backing-storage. The backing-storage type of SANTARO/SANTOKA is eMMC. In
addition to the partitions for the basic Linux components there may be some more partitions depending on the
system configuration.

The partition layout for the SANTARO/SANTOKA platform is:

Partition File System Contents

mmcblk0boot0 none bootloader image

mmcblk0boot1 FAT32 XML configuration parametes (config.xml) and touchscreen configuration
(ts.conf)

mmcblk0p1 FAT32 Linux kernel image file (linuximage), bootloader command file
(boot-alt.cfg) and Flash-N-Go ramdisk file (root.cpio.gz)

mmcblk0p2 FAT32 Linux kernel image file (linuximage), bootloader command file (boot.cfg)
for the Garz & Fricke Linux system

mmcblk0p3 ext3 root file system

Flash-N-Go Boot can start the following Linux kernel image types:

zImage compressed image
uImage compressed image with u-boot header
Image uncompressed image

2.5 Further information

For readers who are not familar with Linux in general, the following link may be helpful:

I http://tldp.org/LDP/intro-linux/html

Information regarding embedded Linux systems can be found in the following book:

"Building Embedded Linux systems 2nd Edition", Karim Yaghmour, John Masters, Gilad Ben-Yossef, Philippe
Gerum, O’Reilly, 2008, ISBN: 978-0-596-52968-0

Information regarding Linux infrastructure issues in general can be found at:

I http://tldp.org/LDP/Pocket-Linux-Guide/html

I http://www.linuxfromscratch.org

Information about Qt/Embedded can be found at:

I http://directfb.org

Information about the X window system can be found at:

I http://www.freedesktop.org

Information about Qt/Embedded can be found at:

I http://qt-project.org

Information about Nano-X / Microwindows can be found at:

I http://www.microwindows.org

Information about GTK+ can be found at:

I http://www.gtk.org

Information about U-Boot can be found at:

I http://www.denx.de/wiki/U-Boot

7

http://tldp.org/LDP/intro-linux/html
http://tldp.org/LDP/Pocket-Linux-Guide/html
http://www.linuxfromscratch.org
http://directfb.org
http://www.freedesktop.org
http://qt-project.org
http://www.microwindows.org
http://www.gtk.org
http://www.denx.de/wiki/U-Boot

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

Information about the RedBoot can be found at:

I http://ecos.sourceware.org/docs-latest/redboot/redboot-guide.html

Information about the Yocto Project can be found at:

I https://www.yoctoproject.org

Documentation of the Yocto Project can be found at:

I https://www.yoctoproject.org/documentation/current

8

http://ecos.sourceware.org/docs-latest/redboot/redboot-guide.html
https://www.yoctoproject.org
https://www.yoctoproject.org/documentation/current

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

3 Accessing the target system

A Garz & Fricke hardware platform can be accessed from a host system using the following technologies:

Serial console console access over RS-232
Telnet console access over Ethernet
SSH encrypted console access and file transfer over Ethernet
TFTP file downoad over Ethernet
SFTP file upload and download over Ethernet

Each of the following chapters describes one of these possibilities and, where applicable, gives a short example
of how to use it. For all examples, the Garz & Fricke target system is assumed to have the IP address 192.168.1.1.

3.1 Serial console

The easiest way to access the target is via the serial console. There are two way to connect the serial console:

RS232 on connector X13

Virtual console over USB

To use the RS232 connection, connect the first RS-232 port of your target system using to a COM port of your
PC or a USB-to-RS232 converter using a null modem cable.

For a working connection, the signals TXD and RXD have to be connected cross-over in the same way like a null
modem cable does. The location of the X13 connector and the necessary pins can be found in figure [I Figure
1], [I Figure 2] below. If you received your system as part of a starter kit, this kit should also contain a cable to
be used for this connection.

Pin Name Description

1 GND Ground

2 RS232_TXD1 Port#1: Transmit data (Output)

3 RS232_RXD1 Port#1: Receive data (Input)

4 RS232_RTS1 Port#1: Request-to-send (Output)

5 RS232_CTS1 Port#1: Clear-to-send (Input)

6 GND Ground

7 RS232_TXD2 Port#2: Transmit data (Output)

8 RS232_RXD2 Port#2: Receive data (Input)

9 RS232_RTS2 Port#2: Request-to-send (Output)

10 RS232_CTS2 Port#2: Clear-to-send (Input)

Figure 1: Location of the X13 connector

Figure 2: Pinning of the X13 connector

To use the serial console provided over USB, connect a Micro-USB cable to the USB-OTG connector of the
target. When this USB cable is connected to a Windows PC, a driver is installed and a new COM port is created.
Its name can be seen in the device manager.

9

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

Note: Although the serial connection over USB is easy to setup, there are some disadvantages over the RS232
connection: The output of the bootloader and the boot messages are not shown. The first thing you see is the
login shell. This way it is not usable for system updates.

With the serial connection set up start your favourite terminal program (e.g. minicom) with the following settings:

115200 baud
8 data bits
no parity
1 stop bit
no hardware flow control
no software flow control

If you are using the RS232 connection, you should see debug messages in the terminal from the very first moment
when the target is powered. After the boot process has finished, you will see the Linux login shell:

Garz & Fricke Yocto BSP (based on Poky) @VERSION@ santaro /dev/ttymxc0

santaro login:

You can log in as user root without any password by default.

3.2 SSH console

Using SSH, you can access the console of the device and copy files to or from the target. Please note that SSH
must be installed on the host system in order to gain access.

To login via SSH, type on the host system:

$ ssh root@192.168.1.1

The first time you access the target system from the host system, the target is added to the list of known hosts.
You have to confirm this step in order to establish the connection.

The authenticity of host '192.168.1.1 (192.168.1.1)' can't be established.
RSA key fingerprint is e5:86:89:19:50:a5:46:52:15:35:e5:0e:d2:d1:f9:62.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.1.1' (RSA) to the list of known hosts.
root@santaro:~#

To return to your host system’s console, type:

root@santaro:~# exit

You can use secure copy (scp) on the device or the host system to copy files from or to the device.

Example: To copy the file myapp from the host’s current working directory to the target’s /usr/bin directory, type
on the host’s console:

$ scp ./myapp root@192.168.1.1:/usr/bin/myapp

To copy the target’s /usr/bin/myapp file back to the host’s current working directory, type:

$ scp root@192.168.1.1:/usr/bin/myapp ./myapp

3.3 Telnet console

Telnet can be used to access the console. Please note that Telnet must be installed on the host system in order
to gain access.

To login via Telnet, type on the host system:

10

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

$ telnet 192.168.1.1

The login prompt appears and you can login with username and password:

Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^]'.
santaro login: root
Password: [Enter password]
root@santaro:~#

3.4 Uploading files with TFTP

You can copy files from the host system to the target system using the target’s TFTP client. Please note that
a TFTP server has to be installed on the host system. Usually, a TFTP server can be installed on every Linux
distribution. To install the TFTP server under Debian based systems with apt, the following command must be
executed on the host system:

$ sudo apt-get install xinetd tftpd tftp

The TFTP server must be configured as follows in the /etc/xinetd.d/tftpd file on the host system in order to
provide the directory /srv/tftp as TFTP directory:

service tftp
{

protocol = udp
port = 69
socket_type = dgram
wait = yes
user = nobody
server = /usr/sbin/in.tftpd
server_args = /srv/tftp
disable = no

}

The /srv/tftp directory must be created on the host system with the following commands:

$ sudo mkdir /srv/tftp
$ sudo chmod -R 777 /srv/tftp
$ sudo chown -R nobody /srv/tftp

After the above modification the xinetd must be restarted on the host system with the new TFTP service with the
following command:

$ sudo service xinetd restart

From now on, you can access files in this directory from the target.

Example: Copying the file myapp from the host system to the target’s /usr/bin directory. To achieve this, first
copy the file myapp to your TFTP directory on the host system:

$ cp ./myapp /srv/tftp/

The host system is assumed to have the ip address 192.168.1.100. On the target system, type:

root@santaro:~# tftp -g 192.168.1.100 -r myapp -l /usr/bin/myapp

3.5 Uploading files with SFTP

You can exchange files between the host system and the target system using an SFTP (Secure FTP) client on
the host system. Simply choose your favourite SFTP client (e.g. FileZilla) and connect to ftp://192.168.1.1.

11

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

4 Services and utilities

The Garz & Fricke Linux BSP includes several useful services for flexible application handling. Some of them are
just run-once services directly after the OS has been started, others are available permanently.

4.1 Services

The services on Garz & Fricke Yocto Linux systems are usually started with start scripts. This is a very common
technique on Linux systems. Yocto uses the /etc/init.d/rc script for this purpose. This script is run by the init
process after parsing the /etc/inittab file:

[...]
The default runlevel.
id:5:initdefault:

Boot-time system configuration/initialization script.
This is run first except when booting in emergency (-b) mode.
si::sysinit:/etc/init.d/rcS

What to do in single-user mode.
~~:S:wait:/sbin/sulogin

/etc/init.d executes the S and K scripts upon change
of runlevel.
#
Runlevel 0 is halt.
Runlevel 1 is single-user.
Runlevels 2-5 are multi-user.
Runlevel 6 is reboot.

l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6
[...]

As the comments in the file tell, the first script to be run on boot is /etc/init.d/rcS, which executes all start scripts
in /etc/rcS.d. Afterwards, the default runlevel (5) is entered, which makes the start scripts in /etc/rc5.d being
executed.

All scripts starting with the character S are executed with the argument start appended, while all scripts starting
with the character K are executed with the argument stop appended. Furthermore, the naming convention states
that the S/K character is followed by a number which determines the (numeric) execution order.

4.1.1 Udev

The udev service dynamically creates the device nodes in the /dev directory on system start up, as they are
reported by the Linux kernel.

Furthermore, udev is user-configurable to react on asynchronous events from device drivers reported by the Linux
kernel like hotplugging. The according rules are located in the root file system at /lib/udev/rules.d.

Additionally, udev is in charge of loading firware if a device driver requests it. Drivers that use the firmware
subsystem have to place their firmware in the folder /lib/firmware.

The udev service has a startup link that points to the corresponding start script:

/etc/rcS.d/S04udev -> /etc/init.d/udev

Udev can be configured in /etc/udev/udev.conf.

More information about udev can be found at:

I https://www.kernel.org/pub/linux/utils/kernel/hotplug/udev/udev.html

12

https://www.kernel.org/pub/linux/utils/kernel/hotplug/udev/udev.html

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

4.1.2 D-Bus

The dbus service is a message bus system, a simple way for applications to communicate with each another.
Additionally, D-Bus helps coordinating the process lifecycle: it makes it simple and reliable to code a single
instance application or daemon, and to launch applications and daemons on demand when their services are
needed.

Garz & Fricke systems are shipped with dbus bindings for glib and Qt. Therefore, the corresponding APIs can
be used for application programming. Furthermore, Garz & Fricke systems are configured to support HALD that
allows to detect hotplugging events in applications asynchronously.

The dbus service has a startup link that points to the corresponding start script:

/etc/rc5.d/S02dbus-1 -> /etc/init.d/dbus-1

More information about dbus can be found at:

I http://www.freedesktop.org/wiki/Software/dbus

More information about the Qt dbus bindings can be found at:

I http://qt-project.org/doc/qt-4.7/intro-to-dbus.html

More information about the glib dbus bindings can be found at:

I http://dbus.freedesktop.org/doc/dbus-glib

4.1.3 SSH service

The ssh service allows the user to log in on the target system. Futhermore, the SFTP and SCP functionalities
are activated to allow secure file transfers. The communication is encrypted.

The ssh service has a startup link that points to the corresponding start script:

/etc/rc5.d/S09sshd -> /etc/init.d/openssh

The startup script simply starts /usr/sbin/sshd as a daemon. The sshd configuration can be found in the target’s
root file system at /etc/ssh/sshd_config.

More information about OpenSSH can be found at:

I http://www.openssh.org

4.1.4 Module loading

The modules service is responsible for external module loading at system startup. It has a startup link that points
to the corresponding start script:

/etc/rcS.d/S05modutils.sh -> /etc/init.d/modutils.sh

The startup script simply looks which modules are listed in /etc/modules and loads them using /sbin/modprobe.

To ensure that the module loading works correctly, the module dependencies in /lib/modules/<kernel ver-
sion>/modules.dep have to be consistent.

4.1.5 Network initialization

The network initialization service is responsible for initializing all network interfaces at system startup. Garz &
Fricke systems use ifplugd to detect if an ethernet cable or an WLAN stick is plugged.

The network interfaces are listed on the target system in the configuration file /etc/network/interfaces. On
conventional Linux systems, the user configures the network interfaces by hand using this file. On Garz & Fricke
systems, there is a service called sharedconf as described in [I 4.1.6 Garz & Fricke shared configuration] that
generates this file automatically according to the settings in the global XML configuration.

If the user wants to change the network settings, it is recommended to use the sconfig script as described in [I
4.1.7 Garz & Fricke system configuration].

13

http://www.freedesktop.org/wiki/Software/dbus
http://qt-project.org/doc/qt-4.7/intro-to-dbus.html
http://dbus.freedesktop.org/doc/dbus-glib
http://www.openssh.org

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

Note: Changes that are made to /etc/network/interfaces directly will be overwritten by the sharedconf
service on the next system startup and have no effect.

4.1.6 Garz & Fricke shared configuration

The sharedconf service reads shared configuration settings from the XML configuration and configures the
Linux system accordingly. This includes network (as described in [I 4.1.5 Network initialization]) and touch
configuration.

The sharedconf service has a startup link that points to the corresponding start script:

/etc/rcS.d/S24sharedconf -> /etc/init.d/sharedconf

4.1.7 Garz & Fricke system configuration

The /etc/init.d/sharedconf script (see [I 4.1.6 Garz & Fricke shared configuration]) can be used to change the
shared system configuration. For this purpose, there is a link to the script at /usr/bin/sconfig which can be called
without the absolute path:

root@santaro:~# sconfig

If called without any parameters, the command prints the usage:

Usage: /usr/bin/sconfig {start | list | <setting> [value]}
Call without [value] to read a setting, call with [value] to write it.

Available settings:
serialdiag switch serial debug console on or off
dhcp switch DHCP on or off
ip set IP address
mask set subnet mask
gateway set standard network gateway
mac set MAC address
name set device name
serial set serial number (affects MAC address and device name)
rotation set display rotation

If a 2.Ethernet is present, it may be configured via serial2, mac2, etc.

If the script is called with a setting as parameter, the setting is read from the XML configuration and displayed
on the console. If additionally a value is appended, this value is written to the according setting in the XML
configuration.

The ’name’ set with sconfig is also used as hostname for the device. It defaults to GFMM<serial number>.

Example 1: To activate DHCP on the device, type:

root@santaro:~# sconfig dhcp on

Example 2: To deactivate DHCP and set a static IP address, type:

root@santaro:~# sconfig dhcp off
root@santaro:~# sconfig ip 192.168.1.123

4.1.8 Kernel command line

The kernel command line can be used to change some kernel features.

Note: Be careful changing the command line, as it can easily break the booting process of your
device. If booting fails after those changes, you will need to boot into Flash-N-Go System and correct
the settings. In this case, please refer to the Flash-N-Go System manual.

To change the kernel command line, the boot partition needs to be mounted.

14

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

mount /dev/mmcblk0p2 /mnt

Calling

nano /mnt/boot.cfg

will bring up the editor with the boot configurations.

The boot configuration normally looks similar to this:

load -b 0x12000000 -p config config.xml
load -b 0x13040000 -o logo.png
devtree -b 0x05:0x61:0x13000000 imx6-santoka-dl.dtb
devtree -b 0x07:0x61:0x13000000 imx6-santaro-dl.dtb
devtree -b 0x07:0x63:0x13000000 imx6-santaro-q.dtb
load linuximage
exec "console=ttymxc0,115200 root=/dev/mmcblk0p3 xmlram=0x12000000 logo=0x13040000"

The last line is the kernel command line. Options can be added to the end.

Example 1: Enable the SPI interface on the keypad connector:

exec "console=ttymxc0,115200 root=/dev/mmcblk0p3 xmlram=0x12000000 logo=0x13040000
,! keypad=gpio,spi"

15

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

5 Add-On Packages

Starting with Garz & Fricke Yocto Linux BSP Release 19 some packages are not integrated into the prebuilt OS-
images provided by Garz & Fricke but instead shipped separately as installable RPM-packages. This is done to
not burden the prebuilt OS-images with larger packets and to allow choices, which particular version of a package
to install on a specific device.

Such RPM packages can be transfered to the device using any protocol or storage-medium supported by the
system and afterwards installed using the following command:

$ rpm -i <name of RPM-package-file>

Please note that RPM-packages, like the prebuilt OS-images, are provided for each Garz & Fricke system sep-
arately and can be installed on only the particular system they are intended for, e.g. an RPM-package provided
for VINCELL cannot be installed on a SANTARO or vice versa.

Deinstallation of RPM-packages can be performed likewise:

$ rpm -e <name of RPM-package>

For deinstallation you can usually provide abbreviated package names instead of filenames or package names
including full version numbers.

The following sections assume that RPM-packages are stored on your TFTP-server and will be uploaded to the
device using TFTP. You may use other protocols or storage-media to transfer the RPM-packages to your device,
of course.

5.1 Chromium

Starting with Yocto Release 19 Garz & Fricke provides the open-source Chromium browser as installable RPM-
package.

This package is intended to be used for HTML-based applications starting automatically during system boot,
which won’t display the regular browser GUI, i.e. URL-bar, navigation buttons, etc.

5.1.1 Installation

The prebuilt Yocto OS-images provided by Garz & Fricke usually start a small QT-based demo-application au-
tomatically on system boot. As the Chromium package will install the browser to start automatically on system
boot, as well, our default demo application must be disabled first:

$ update-rc.d -f qt4-guf-demo remove

Note: This will only remove the symlinks responsible for starting the qt4-guf-demo during system boot. The
application itself still remains on the device and may still be started from the command-line.

Now the Chromium package may be uploaded and installed on the device. The following example assumes that
you use a TFTP-Server on your Host-PC and have copied the RPM-package to its TFTP-Root folder, already. Of
course you may use FTP, SFTP, USB-Sticks, SD-Cards or other protocols or storage-media instead. You must
change the IP-address in the following example to the IP-address of your Host-PC and may have to change the
name of the RPM-package you want to install (Garz & Fricke will eventually supply different Chromium versions
for each platform).

$ export TFTP=172.20.9.107
$ curl tftp://$TFTP/GUF-Yocto-23.0-r5250-0-SANTARO/SANTOKA-chromium-42.0.2311.90-r0.

,! rpm >/tmp/chromium.rpm
$ rpm -i /tmp/chromium.rpm
$ sync

This may take a moment and shortly afterwards Chromium should already start automatically. After installation
Chromium will always start automatically on each system boot.

16

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

Note: Installing multiple different versions at the same time on a system is currently not supported, i.e. if you want
to install a different version than you already may have installed on your device, you must deinstall the previous
version first.

5.1.2 Deinstallation

Chromium can easily be deinstalled using rpm. Please note that it must be currently running on the device
otherwise the rpm-command will fail.

$ rpm -e chromium

5.1.3 Manual Start/Stop of Chromium

You can start and stop Chromium during runtime with the following commands:

$ /etc/init.d/chromium stop

$ /etc/init.d/chromium start

5.1.4 "Kiosk"-Mode

For normal application use Chromium is configured to start in so-called "kiosk"-mode. This means that it runs
in full-screen mode without displaying the regular browser GUI, e.g. navigation buttons, URL-bar, access to the
Chromium menu, etc. Only your webpage and, if necessary, scroll-bars are displayed.

For development or testing purposes you may want to use Chromium in normal-mode showing the navigation
bar. You can temporarily do so by first stopping Chromium, as described above, and then calling it manually with
any URL(s) and command-line options you like, e.g.:

$ /etc/init.d/chromium stop
$ Chromium http://www.google.com

This will temporarily re-start Chromium with the full GUI. Note that upon reboot of the system it will automatically
start in Kiosk-mode again.

5.1.5 Configuration

URL: The Chromium packages shipped by Garz & Fricke load the Garz & Fricke webpage by default. This is
intended for first demonstration purposes only, of course, and may be changed to a different URL of your choice
with the following command:

$ echo "<Your URL>" >/etc/chromium.conf
$ sync

E.g. to re-configure the Garz & Fricke website as default URL to be opened, execute:

$ echo "http://www.garz-fricke.com" >/etc/chromium.conf
$ sync

Command-Line Options: If you want Chromium to start with different command-line options than we have
configurated by default, please modify the file /etc/init.d/chromium accordingly, e.g. you may remove the –
kiosk command-line option if you want Chromium to automatically start in normal-mode with the navigation-bar
enabled.

Supplying command-line options to the /etc/init.d/chromium start call is not supported. You may test command-
line options by starting Chromium manually, though, e.g.:

17

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

$ /etc/init.d/chromium stop
$ Chromium --show-fps --kiosk --incognito http://www.garz-fricke.com

A list of all Chromium command-line options is available here:

I http://peter.sh/experiments/chromium-command-line-switches/

Not all command-line options are supported by all versions or builds of the Chromium browser, though, and
Chromium does not complain about command-line options it does not recognize, but just ignores them silently,
instead.

Chromium Settings: If you want to change Chromium settings, install Chromium extensions, use the Chromium
developer tools, etc. you must (temporarily) start Chromium in normal-mode. These features and tools are not
available in kiosk-mode

Chromium Apps and Extensions: When started in normal-mode you may install Chromium extensions via the
Chromium menu. Please note, though, that the Chromium-Webstore, which is used to find, download and install
extensions, is shared with the Chrome-Webstore you may know from the Desktop Google Chrome browser.

Chromium is the open-source part of Chrome and does not support all functions of the full Chrome browser,
which unfortunately is not available for Linux-ARM systems. Due to the larger market-share of the regular PC-
Chrome browser, most apps and extensions will probably be tested only on this browser and platform and may
not work on the Chromium browser of Garz & Fricke devices, e.g. while the "Virtual Keyboard"-extension from
xonTAB.com works on Garz & Fricke devices and is in fact currently installed by default in the Garz & Fricke
Chromium package (see below), e.g. the "Google Input Tools" do not work properly on our devices.

Therefore please understand that some apps and extensions you may want to install, may fail to work on our
devices.

To install the same set of extensions (or Chromium preferences) on multiple devices, the easiest way is to
configure one single device as desired and then take a "snapshot" of the device’s /home/root/.chromium-folder,
which can then be unpacked on any other device desired.

5.1.6 Soft-Keyboard

As already briefly mentioned, the Chromium RPM-packages provided by Garz & Fricke currently come with the
free "Virtual Keyboard"-extension from xonTAB.com pre-installed, because there is currently no system-wide soft-
keyboard available in our Yocto-BSP, which can be used in the Chromium kiosk-mode.

More information on the xonTAB.com "Virtual Keyboard" Chromium extension can be found on the manufacturer
web-page: I http://xonTAB.com.com/Apps/VirtualKeyboard

This extension allows you to try regular web-pages without modification. This soft-keyboard will not work in the
Chromium URL-bar or in any Chromium dialogs that you may open, though. It is a Javascript-based extension
only intended to enter text into forms of web-pages (but may even have issues with some web-pages).

To still easily allow opening different web-pages for testing, the keyboard is configured to include an URL-button,
by default. If you want to use this soft-keyboard with your HTML-application, you may want to disable this URL-
button on the options-page of the extension. You can also enable/disable different international keyboard layouts
(by default English and German layouts are enabled), change the soft-keyboard to a floating window, etc.

For your final HTML-based application you may want to replace the xonTAB.com "Virtual Keyboard" with a different
Chromium extension providing a soft-keyboard, use other third-party Javascript-based keyboards embedded
directly in your web-page without any Chromium extensions being installed, or provide your own soft-keyboard
via Javascript, HTML5, etc.

Quite a lot of free third-party Javascript-based soft-keyboard to be integrated in web-pages may be found here:
I http://mottie.github.io/Keyboard

Using the Chromium URL-bar or text-input fields in Chromium dialog boxes is only supported via external USB-
keyboards.

18

http://peter.sh/experiments/chromium-command-line-switches/
http://xonTAB.com.com/Apps/VirtualKeyboard
http://mottie.github.io/Keyboard

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

6 Accessing the hardware

This chapter gives a short overview of how to access the different hardware parts and interfaces from within the
Linux operating system. It is written universally in order to fit all Garz & Fricke platforms in general.

6.1 Digital I/O

The digital I/O pins for a platform are controlled by the kernel’s GPIO Library interface driver. This driver exports
a sysfs interface to the user space. For each pin, there is a virtual folder in the file system under /sys/class/gpio/
with the same name as in the hardware manual.

Each folder contains the following virtual files that can be accessed like normal files. In the command shell, there
are the standard Linux commands cat for read access and echo for write access. To acces those virtual files
from C/C++ code, the standard POSIX operations open(), read(), write() and close() can be used.

sysfs file Valid values Meaning

value 0, 1 The current level of the GPIO pin. The acive_low flag (see
below) has to be taken into account for interpretation.

direction in, out The direction of the GPIO pin.

active_low 0, 1 Indicates if the pin is interpreted active low.

Most of the Garz & Fricke hardware platforms include a dedicated connector with isolated digital I/O pins. On
these pins, the direction cannot be changed, since it is determined by the wiring. Thus, the direction file is missing
here. Some platforms also have a keypad connector, which can be used as a bi-directional GPIO port.

The following examples show how to use the virtual files in order to control the GPIO pins.

Example 1: Verify that the GPIO pin keypad_pin7, which is pin 7 on the keypad connector, is interpreted as
active high, configure the pin as an output and set it to high level in the Linux shell:

root@santaro:~# cat /sys/class/gpio/keypad_pin7/active_low
0
root@santaro:~# echo out > /sys/class/gpio/keypad_pin7/direction
root@santaro:~# echo 1 > /sys/class/gpio/keypad_pin7/value

Example 2: Verify that keypad_pin12 is an input pin and interpreted as active low and verify that the level LOW
is recognized by this pin in the Linux shell:

root@santaro:~# cat /sys/class/gpio/keypad_pin12/direction
in
root@santaro:~# cat /sys/class/gpio/keypad_pin12/active_low
1
root@santaro:~# cat /sys/class/gpio/keypad_pin12/value
1

Example 3: C function to set / clear the dig_out1 output pin:

void set_gpio(unsigned int state)
{

int fd = -1; // GPIO file handle
char gpio[4];

fd = open("/sys/class/gpio/dig_out1/value", O_RDWR);
if (fd == -1)
{

printf("GPIO-ERR\n");
return;

}
sprintf(gpio, "%d", state);
write(fd, gpio, strlen(gpio));
close(fd);

}

19

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

A more detailed documentation of the GPIO handling in the Linux kernel can be found in the documentation
directory of the Linux kernel source tree.

6.2 Serial interfaces (RS-232 / RS-485 / MDB)

Most of the serial interfaces are exported as TTY devices and thus accessible via their device nodes under /dev/t-
tymxc<number>. Depending on your hardware platform (and maybe its assembly option), different transceivers
(RS232, RS485, MDB) can be connected to these TTY devices. See the following table for the mapping between
device nodes and hardware connectors on SANTARO/SANTOKA:

TTY device Hardware function

/dev/ttymxc0 RS-232 #1 (X13)

/dev/ttymxc1 RS-232 #2 / MDB (X13)

/dev/ttymxc2 RS-485 (X39)

/dev/ttymxc3 internal UART (X11)

RS485 can be used in half duplex or full duplex mode. This mode has to be set on the hardware (see the
according hardware manual) as well as in the software. Per default, the interface is working in full duplex mode.
See the following C code example for setting the RS485 interface to half duplex mode:

#include <termios.h>

void set_rs485_half_duplex_mode()
{

struct serial_rs485 rs485;
int fd;

/* Open port */
fd = open ("/dev/ttymxc2", O_RDWR | O_SYNC);

/* Enable RS485 half duplex mode */
rs485.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND;
ioctl(fd, TIOCSRS485, &rs485);

close(fd);
}

For a full source code example, see the BSP folder sources/meta-guf/meta/recipes-guf/ltp-guf-tests/ltp-guf-
tests/testcases/rs485pingpong.

Interfaces with an MDB transceiver should not be accessed directly via their device nodes. Instead, there is a
library for MDB communication in the BSP. Please see the folder sources/meta-guf/meta/recipes-guf/mdbtest
for a full source code example.

6.3 Ethernet

If all network devices are properly configured as described in [I 4.1.7 Garz & Fricke system configuration] and
[I 4.1.5 Network initialization] they can be used by the POSIX socket API.

There is a huge amount of documentation about socket programming available. Therefore it is not documented
here.

The POSIX specification is available at:

I http://pubs.opengroup.org/onlinepubs/9699919799/functions/contents.html

6.4 Real Time Clock (RTC)

All Garz & Fricke systems are equipped with a hardware real time clock. The system time is automatically set
during the boot sequence by reading the RTC. You can read the current time and date using the Linux hwclock
command:

20

http://pubs.opengroup.org/onlinepubs/9699919799/functions/contents.html

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

root@santaro:~# hwclock --show
Fri Jun 1 14:51:12 UTC 2012

The RTC time cannot be adjusted directly in one command because only the current system time can be trans-
ferred to the RTC. Thus, the system time has to be set first, using the date command, and can then be written to
the RTC:

root@santaro:~# date 2010.09.09-16:50:00
Thu Sep 9 16:50:00 UTC 2010
root@santaro:~# hwclock --systohc

6.5 Keypad connector

The so called keypad connector is a general purpose connector. It can be used in different modes. The mode is
selected using the kernel command line. See [I 4.1.8 Kernel command line] how it can be modified.

The actual pin mapping is described in the hardware guide for your device.

There are three available functions.

GPIO:

keypad=gpio

All pins are available as gpios. You can access them in usermode using the sysfs entries:

/sys/class/gpio/keypad_pin<3-18>

See [I 6.1 Digital I/O] for usage.

I2C:

keypad=i2c

The i2c 1 interface is mapped to the keypad connector pins 11 and 12. It is available in usermode as:

/dev/i2c-1

See [I 6.7 I2C] for usage.

SPI:

keypad=spi

The spi interface is mapped to the pins 12 till 18. The interface is available in usermode as:

/dev/spidev0.0
/dev/spidev0.1
/dev/spidev0.2

See [I 6.6 SPI] for usage.

Combination: The options can be combined to use multiple functions at the same time, for example:

keypad=gpio,i2c,spi

will enable all three functions. This leads to the following mapping:

pins 3-10 are used as gpios

11 and 12 are used for i2c

21

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

13-18 are used for spi

Default:

The default setting is:

keypad=gpio,i2c

6.6 SPI

There are two ways of controlling SPI bus devices from a Linux system:

Writing a kernel SPI device driver and accessing this driver from user space by using its interface.
Accessing the SPI bus via the Linux kernel’s spidev API directly.

Describing the process of writing a Linux SPI device driver is out of the scope of this manual. The AT25 SPI
eemprom can serve as a good and simple example for such a driver. It is located in the kernel directory under:

drivers/misc/eeprom/at25.c

The interface provided to the user space by such a kernel driver depends of the sort of this driver (e.g. character
misc driver, input subsystem device driver, etc.). A very common usecase for an SPI driver is a touchscreen
driver that uses the input event subsystem.

Accessing the SPI bus from userspace directly via spidev is described in the Linux kernel documentation and
available in the kernel directory under:

Documentation/spi/spidev

Additionally, there is an example C program available in the same location:

Documentation/spi/spidev_test.c

The header for spidev is available under:

include/linux/spi/spidev.h

Note: If spidev is used to access the SPI bus directly, the user is responible for keeping the interoper-
ability consistent with all other SPI devices that are controlled by the Linux kernel.

6.7 I2C

There are two ways of controlling I2C bus devices from a Linux system:

Writing a kernel I2C device driver and accessing this driver from user space by using its interface.
Accessing the I2C bus via the Linux kernel’s i2c-dev API directly.

Describing the process of writing a Linux I2C device driver is out of this scope of this manual. The AT24 I2C
eemprom can serve as a good and simple example for such a driver. It is located in the kernel directory under:

drivers/misc/eeprom/at24.c

The interface provided to the user space by such a kernel driver depends of the sort of this driver (e.g. character
misc driver, input subsystem device driver, etc.). A very common usecase for an I2C driver is a touchscreen driver
that uses the input event subsystem.

Accessing the I2C bus from userspace directly via spidev is described in the Linux kernel documentation and
avauilable inside the kernel directory under:

Documentation/i2c/dev-interface

The header for i2c-dev is available under:

include/linux/i2c-dev.h

Note: If i2c-dev is used to access the I2C bus directly, the user is responible for keeping the interop-
erability consistent with all other I2C devices that are controlled by the Linux kernel.

22

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

6.8 CAN

CAN bus devices are controlled through the SocketCAN framework in the Linux kernel. As a consequence, CAN
interfaces are network interfaces. Applications receive and transmit CAN messages via the BSD Socket API.
CAN interfaces are configured via the netlink protocol. Additionally, Garz & Fricke Linux systems are shipped
with the canutils package to control and test the CAN bus from the command line.

On SANTARO/SANTOKA the CAN bus is physically available on connector X39.

Example 1 shows how a CAN bus interface can be set up properly for 125 kBit/s from a Linux console:

root@santaro:~# canconfig can0 bitrate 125000
root@santaro:~# ifconfig can0 up

Note: Due to the use of the busybox version of the ip tool the following sequence does NOT work on
Garz & Fricke Linux systems:

root@santaro:~# ip link set can0 type can bitrate 125000
root@santaro:~# ifconfig can0 up

As already stated above, CAN messages can be sent through the BSD Socket API. The structure for a CAN
message is defined in the kernel header include/linux/can.h:

struct can_frame {
u32 can_id; /* 29 bit CAN_ID + flags */
u8 can_dlc; /* data length code: 0 .. 8 */
u8 data[8];

};

Example 2 shows how to initialize SocketCAN from a C program:

int iSock;
struct sockaddr_can addr;

iSock = socket(PF_CAN, SOCK_RAW, CAN_RAW);

addr.can_family = AF_CAN;
addr.can_ifindex = if_nametoindex("can0");

bind(iSock, (struct sockaddr *)&addr,
sizeof(addr);

Example 3 shows how a CAN message is sent from a C program:

struct can_frame frame;

frame.can_id = 0x123;
frame.can_dlc = 1;
frame.data[0] = 0xAB;

nbytes = write(iSock, &frame,
sizeof(frame));

Example 4 shows how a CAN message is received from a C program:

struct can_frame frame;

nbytes = read(iSock, &frame, sizeof(frame));

if (nbytes > 0) {
printf("ID=0x%X DLC=%d data[0]=0x%X\n",
frame.can_id,

23

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

frame.can_dlc,
frame.data[0]);

}

Example 5 shows how a CAN message with four bytes with the standard ID 0x20 is sent on can0 from the Linux
shell, using the cansend tool. The CAN bus has to be physically prepared properly and there has to by at least
one other node that is configured to read on this message ID for this task. Furthermore, all nodes must have the
same bittiming.

root@santaro:~# cansend can0 -i 0x20 0xca 0xbe 0xca 0xbe

Example 6 shows how all CAN messages are read on can0 using the candump tool:

root@santaro:~# candump can0

A more detailled documentation of the CAN bus handling in the Linux kernel can be found in the documentation
directory of the Linux kernel source tree.

6.9 USB

There are two general types of USB devices:

USB Host: the Linux platform device is the host and controls several devices supported by corresponding
Linux drivers
USB Device: the Linux platform device acts as a USB device itself by emulating a specific device type

Additionally, if supported, an OTG-enabled port can automatically detect, which of the above roles the platform
plays during the plugging process.

6.9.1 USB Host

For USB Host functionality, Garz & Fricke platforms per default support the following devices:

USB Mass Storage
USB Keyboard

There are many more device drivers available in the Linux kernel. They are not activated by default, because
Garz & Fricke cannot maintain and test the huge amount of existing drivers. Instead, the customer may do this
himself or engage Garz & Fricke to implement his special use case. Existing drivers can easily be activated by
reconfiguring and rebuilding the Linux kernel inside the BSP.

The USB Host bus can also be directly accessed by using libusb. This library is installed on Garz & Fricke
platforms per default.

Further information about libusb can be found under:

I http://libusb.sourceforge.net/api-1.0

Note: If libusb is used to access the USB bus directly, the user is responsible to keep the interoper-
ability consistent with all other USB devices that are controlled by the Linux kernel.

6.9.2 USB Device

For USB Device functionality, the following device emulations are supported per default:

USB Serial Gadget

Again, further drivers can be activated by reconfiguring the Linux kernel. The USB Device drivers are not compiled
into the kernel by default, but are located as modules in the file system. In order to use the Serial Gadget for
example, the according module has to be loaded:

root@santaro:~# modprobe g_serial

The Serial Gadget creates a virtual serial port over USB, accessible via the device node /dev/ttyGS0.

24

http://libusb.sourceforge.net/api-1.0

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

6.10 Display power

The display can be powered on or off by software. The value is exported as a virtual file in the sysfs under
/sys/class/graphics/fb0/blank. It can be accessed using the standard file operations open(), read(), write() and
close().

Example 1: Turn display off:

root@santaro:~# echo 4 > /sys/class/graphics/fb0/blank

Example 2: Turn display on:

root@santaro:~# echo 0 > /sys/class/graphics/fb0/blank

Please note that this value is not persistent, i.e. it gets lost when the device is rebooted.

6.11 Display backlight

The brightness of the display backlight can be adjusted in a range from 0 to 255. The value is exported as a
virtual file in the sysfs under /sys/class/backlight/pwm-backlight.0/brightness. It can be accessed using the
standard file operations open(), read(), write() and close().

Example 1: Reading and adjusting the current backlight brightness on the console:

root@santaro:~# cat /sys/class/backlight/pwm-backlight.0/brightness
255
root@santaro:~# echo 100 > /sys/class/backlight/pwm-backlight.0/brightness

Please note that this value is not persistent, i.e. it gets lost when the device is rebooted. In order to change the
brightness permanently, it has to be set in the XML configuration, which can be done using the xconfig tool.

Example 2: Adjusting the backlight brightness permanently on the console:

root@santaro:~# xconfig addattribute -p /configurationFile/variables/display/
,! backlight -n level_ac -v 100

Please note that adjusting this value does not affect the brightness immediately. A reboot is required for this
setting to take effect. If you want to adjust the brightness immediately and permanently, you have to execute both
examples.

6.12 SD cards and USB mass storage

SD cards and USB mass storage devices can be accessed directly by using their devices nodes. The SD card can
be found under /dev/mmcblk1, its single partitions are located under /dev/mmcblk1pX with X being a positive
number. The USB mass storage devices can be found under /dev/sdX with X=a..z, its single partitions under
/dev/sdXY with Y being a positive number.

Example 1: Create a FAT32 file system on the first partition of an SD card:

root@santaro:~# mkfs.vfat /dev/mmcblk1p1

If the first partition on an SD card or a USB mass storage device already contains a file system when it is plugged
into the device, it is mounted automatically by the udev service. SD card partitions are mounted to mount point
/media/mmcblk1pX with X being a positive number, and USB mass storage devices are mounted to mount point
/media/sdXY with X=a..z and Y being a positive number.

All further partitions or partitions with a newly created file system have to be mounted manually, like shown in the
following examples.

Example 2: Mount the first partition on an SD Card into a newly created directory:

25

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

root@santaro:~# mkdir /my_sdcard
root@santaro:~# mount /dev/mmcblk1p1 /my_sdcard

Example 3: Mount the first partition on a USB mass storage device into a newly created directory:

root@santaro:~# mkdir /my_usb_drive
root@santaro:~# mount /dev/sda1 /my_usb_drive

6.13 Temperature Sensor

Most Garz & Fricke systems are equipped with an on-board hardware temperature sensor. The sensor is a Texas
Instruments LM73 connected via I2C. To poll the currently measured temperature you can read the corresponding
sysfs file in /sys/class/hwmon/hwmon0/device/.

For example:

root@santaro:~# cat /sys/class/hwmon/hwmon0/device/temp1_input
+38.0

The sensor generates an alert when the measured temperature exceeds the maximum temperature defined in
temp1_max. The alert flag will be set to 0 (active low) and an interrupt is generated. The interrupt will trigger an
event on the temp1_alrt sysfs entry, that can be catched using the poll() function.

Read the temperature alert flag (active low):

root@santaro:~# cat /sys/class/hwmon/hwmon0/device/temp1_alrt
1

To reset the temperature alert flag the currently measured temperature needs to be below the maximum temper-
ature value. Then the flag can be reset by writing 1 to the temp1_alrtrst sysfs entry.

Reset the temperature alert flag:

root@santaro:~# echo 1 > /sys/class/hwmon/hwmon0/device/temp1_alrtrst

6.14 Touchscreen

The touchscreen device is used by the application framework (e.g. Qt) via the Linux input subsystem kernel
API, i.e. its device node /dev/input/event0.

For resistive touchscreens, which require a calibration, the tslib library is used as an inter-layer. Garz & Fricke
provides optimized signal filtering for the touchscreens that are shipped with their products by choosing a suitable
set of filters with suitable parameters in tslib. The filter configuration can be altered in the configuration file
/etc/ts.conf in the target’s root filesystem. This should only be done if the user is familar with tslib’s filter system
and the properties and characteristics of its filters. It is also important to reboot the system properly after altering
this configuartion file or executing the sync command. Otherwise, the changes may get lost during a hard reset.

6.15 Audio

Garz & Fricke systems with an integrated audio codec make use of ALSA (Advanced Linux Sound Architecture)
as a software interface. This project includes a user-space library (alsa-lib) and a set of tools (aplay, arecord,
amixer, alsactl) for controlling and accessing the audio hardware from user applications or the console. Please
refer to the official ALSA webpage for a full documentation:

I http://www.alsa-project.org

For a quick start here are three short examples of how to play/record an audio file and how to adjust the playback
volume.

Example 1: Play the audio file my_audio_file.wav from the console using aplay:

26

http://www.alsa-project.org

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

root@santaro:~# aplay my_audio_file.wav

Example 2: Record the audio file my_recorded_audio_file.wav from the console using arecord:

root@santaro:~# arecord -f cd -t wav > my_recorded_audio_file.wav

Example 3: Set the playback volume to half of the maximum:

root@santaro:~# amixer sset 'PCM' 50%

The amixer command can be used for several settings regarding the audio hardware. Called without parameters,
it gives a list of all available settings along with their possible values.

ALSA is also used in conjuction with playing multimedia files with GStreamer via the alsasink plugin after decod-
ing the audio data from an audio stream.

Example 4: Play a sine signal with a frequency of 440 Hz (default settings) with GStreamer’s adiotestsrc and
alsasink plugins:

root@santaro:~# gst-launch audiotestsrc ! audioconvert ! alsasink

6.16 SRAM

The battery-backed SRAM is controlled by the MTD subsystem in the Linux kernel. Therefore, it can be handled
like a typical MTD device via the device handles /dev/mtdX and /dev/mtdblockX, where X is the logical number
of the device. This number can be found by executing:

root@santaro:~# cat /proc/mtd | grep SRAM

Per default, the SRAM is located at /dev/mtd0.

A very common use of the SRAM in conjuction with the MTD subsystem is to create a file system on top of it, like
shown in the following example.

Example: Create a JFFS2 file system on /dev/mtd0 with the mtd-utils and mount it to /mnt

root@santaro:~# flash_eraseall /dev/mtd0
root@santaro:~# mkfs.jffs2 /dev/mtdblock0
root@santaro:~# mount /dev/mtdblock0 -t jffs2 /mnt

27

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

7 Building and running a user application

There are two general ways of building your own native application for the target: it can be built either manually,
using the cross toolchain of the SDK, or integrated into the BSP, using Yocto and bitbake as a build system.
Integrating the application into the BSP build process is the more complex way and useful only if you have
modified the BSP and want to deploy a complete root file system image to the target anyway (see [I 8 Building
a Garz & Fricke Yocto Linux system from source]). For a single application, using the BSP in its original state as
provided by Garz & Fricke, the SDK is recommended to be used. The following sections describe how to build a
simple Hello Wold! application using the SDK.

In addition to running native applications, the device can also be configured to display a website using Qt Webkit.
The Garz & Fricke Linux BSP comes with a configurable web demo application, which is covered in a separate
section of this chapter.

7.1 SDK installation

The SDK contains the cross-toolchain and several files like headers and libraries necessary to build software for
SANTARO/SANTOKA. It is available as download from the Garz & Fricke support website. The sdk was tested
with Ubuntu 14.04 Desktop (amd64), other destributions might work but 32bit systems will not. In that case you
have to build the sdk yourself using the bsp as described in [I 8.3 Building the BSP for the target platform with
Yocto]

I http://support.garz-fricke.com/projects/Santaro/Linux-Yocto/Releases/Yocto-@VERSION@/sdk

The SDK file is a self-extracting archive that is supposed to run on Linux based machines. It is named something
like GUF-Yocto-23.0-r5250-0-sdk.sh. Run this file on your development PC:

$sh <SDK location>/GUF-Yocto-23.0-r5250-0-sdk.sh

The installer will ask you if you want to install the SDK into a subfolder in /opt. Supposed this is what you want
press the y key.

Example output:

Enter target directory for SDK (default: /opt/guf/GUF-Yocto-23.0-r5250-0-sdk):
You are about to install the SDK to "/opt/guf/GUF-Yocto-23.0-r5250-0-sdk". Proceed[Y/

,! n]?
Extracting SDK...done
Setting it up...done
SDK has been successfully set up and is ready to be used.

Now that the SDK is installed you may proceed and write your first application for the embedded device.

7.2 Simple command-line application

We will create a simple C++ "Hello World!" application that uses a Makefile and the supplied SDK. Create a
directory in your home directory on the host system and change to it:

$ cd ~
$ mkdir myapp
$ cd myapp

Create the empty files main.cpp and Makefile in this directory:

$ touch main.cpp Makefile

Edit the contents of the main.cpp file as follows:

#include <iostream>

using namespace std;

28

http://support.garz-fricke.com/projects/Santaro/Linux-Yocto/Releases/Yocto-@VERSION@/sdk

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

int main(int argc, char *argv[])
{

cout << "Hello World!" << endl;
return 0;

}

Edit the contents of the Makefile as follows:

myapp: main.cpp
$(CXX) ${CXXFLAGS} -o $@ $<
$(STRIP) $@

clean:
rm -f myapp *.o *~ *.bak

It is necessary to setup your build environment so that the complier, headers and libraries can be found. This is
done by "sourcing" a build environment configuration file. If the toolchain is installed in the default directory, this
example compiles for the target system by typing

$ source
,! /opt/guf/GUF-Yocto-23.0-r5250-0-sdk/environment-setup-santaro-santoka-guf-linux-gnueabi

$ make

in the myapp directory. The first line is needed only once as it configures the current shell and sets the necessary
environment variables.

After a successful build, the maypp executable is created in the myapp directory. You can transfer this application
to the target system’s /usr/bin directory using one of the ways described in chapter [I 3 Accessing the target
system] and execute it from the device shell. It might be necessary to change the access rights of the executable
first, so that all users are able to execute it.

You can find further information about how to build applications for Yocto-based platforms at:

I https://www.yoctoproject.org/docs/current/adt-manual/adt-manual.html

7.3 Qt-based GUI user application

Create a new directory in your home directory on the host system and change to it:

$ cd ~
$ mkdir myqtapp
$ cd myqtapp

Create the empty files main.cpp and myqtapp.pro.

$ touch main.cpp myqtapp.pro

Edit the contents of the file main.cpp as follows:

#include <QApplication>
#include <QPushButton>

int main(int argc, char *argv[])
{

QApplication app(argc, argv);
app.setOverrideCursor(Qt::BlankCursor);
QPushButton hello("Hello World!");
hello.setWindowFlags(Qt::FramelessWindowHint);
hello.resize(800, 480);
hello.show();
return app.exec();

}

29

https://www.yoctoproject.org/docs/current/adt-manual/adt-manual.html

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

Edit the contents of the file myqtapp.pro as follows:

TEMPLATE = app
TARGET = myqtapp

QT = core gui widgets

SOURCES += \
main.cpp

Setup the build environment.

$ source
,! /opt/guf/GUF-Yocto-23.0-r5250-0-sdk/environment-setup-santaro-santoka-guf-linux-gnueabi

Note: The above command assumes that you have extracted the SDK in the default directory under /opt/guf/GUF-
Yocto-23.0-r5250-0-sdk. If the SDK is located in a different directory, you have to change the directory accord-
ingly.

Execute the following command to create a Makefile and build the binary in the myqtapp directory:

$ qmake myqtapp.pro
$ make

Now, there is the myqtapp executable in the myqtapp directory. You can transfer this application to the target
system’s /usr/bin directory in one of the ways described in chapter [I 3 Accessing the target system] and run it
from the device shell.

7.4 Using the Qt Creator IDE

Apart from compiling Qt applications on the command line, Qt Creator can be used as a comfortable IDE for
developing, building and deploying applications for the target system. This section describes how to set up Qt
Creator and how to compile and deploy a sample application.

7.4.1 Configuring Qt Creator

To use Qt with the cross toolchain shipped with the Garz & Fricke BSP, the Qt version must be set up properly.
Furthermore, the device configuration for automatic deployment must be set up properly.

Our tests were performed using a virtual machine installation of Ubuntu 14.04 Desktop (amd64). The following
examples consider a Ubuntu 14.04 Desktop (amd64) installation. To install the Qt Creator from the terminal type

$ sudo apt-get install qtcreator qtcreator-plugin-cmake qtcreator-plugin-qnx

SFTP is used to deploy your program to the target device, thus SSH has to be installed as well:

$ sudo apt-get install ssh

After installation, Qt Creator needs some environment variables set. It is the same process as in the chapters [I
7.2 Simple command-line application] and [I 7.3 Qt-based GUI user application]. Open a console and type

$ source
,! /opt/guf/GUF-Yocto-23.0-r5250-0-sdk/environment-setup-santaro-santoka-guf-linux-gnueabi

Now that this console session is prepared, start the Qt Creator:

$ qtcreator &

Now you need to configure the Qt Creator to use the correct toolchain and to deploy to the correct device. Open
the Tools->Options dialog. We will configure the target device first.

30

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

On the left pane of the dialog open the Devices view. Add a new Generic Linux Device and configure IP and
credentials according to your target settings. The IP address depends on the configuration, factory default is the
static adress 192.168.1.1 but dhcp is also possible. Make sure that you can access the target as described in [I
3 Accessing the target system] with ssh or telnet before.

Figure 3: Qt Creator device options

You can press the Test button to test your configuration. The test dialog should display:

Device test finished successfully.

Now that the device is configured we need to set up the toolchain. This is done in the Build & Run pane. The
first thing we want to add is the cross compiler in the Compilers section. The Compiler path is everything that
is needed here.

/opt/guf/GUF-Yocto-23.0-r5250-0-sdk/sysroots/x86_64-gufsdk-linux/usr/bin/arm-guf-
,! linux-gnueabi/arm-guf-linux-gnueabi-g++

The dialog should look similar to [I Figure 4].

Figure 4: Qt Creator compiler options

The next step is checking the version the Qt Versions section. It should be set to

/opt/guf/GUF-Yocto-23.0-r5250-0-sdk/sysroots/x86_64-gufsdk-linux/usr/bin/qt5/qmake

31

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

as seen in [I Figure 5].

Figure 5: Qt Creator Qt Versions

In the last configuration step we combine the previous configuration steps to a kit in the Kits section. Add a new
Generic Linux Device and set the options so that the previously created settings are used. The Sysroot setting
needs to be set to something like

/opt/guf/GUF-Yocto-23.0-r5250-0-sdk/sysroots/santaro-santoka-guf-linux-gnueabi

and the Qt mkspec is set to

linux-oe-g++

Please note that the Qt mkspec will hide after setting.

Figure 6: Qt Creator kits options

You can now begin to develop a Qt Application using the Qt Cerator.

7.4.2 Developing with Qt Creator

In this section we will create and deploy a simple Qt Quick Application. The application will be the default sample
application that comes with the Qt Creator IDE.

32

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

To create a new project select File->New File or Project.... Make sure that in the top right corner of the wizard
dialog the option Embedded linux Templates is selected. Choose an Applications project and select Qt Quick
Application.

Figure 7: Qt Creator new project screen

Click on Choose and give your application a name. After a click on the Next button you can choose which
component set you want to use. For this example we select Qt Quick 2.0. Another click on the Next button
shows the Kits selection. You only need the kit that you created in the previous section.

Figure 8: Qt Creator kit selection

After finishing the wizard you should see the opened main.qml and the project files.

33

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

Figure 9: The first Qt Quick application in Qt Creator

You can now build and deploy the application by clicking the Run button (the play button in the left bottom corner)
or using the shortcut Ctrl-R. Now the Qt Creator builds your application and automatically deploys it to the device.
On the device, you should see an application showing Hello World now.

For further information on how to use Qt Creator and how to program Qt applications see the online Qt documen-
tation:

I http://qt-project.org/doc/qtcreator-3.0/index.html

I http://qt-project.org/doc/

7.5 Autostart mechanism for user applications

In order to make the target system start your application automatically during the boot process you have to create
a start/stop script in the /etc/init.d directory. As described in chapter [I 4.1 Services], this directory contains a
number of scripts for various services on your system. Each script will be run as a command of the following
form:

root@santaro:~# /etc/init.d/<COMMAND> <OPTION>

Where COMMAND is the actual command to run and OPTION can be one of the following:

start
stop

The command can be called by hand to start or stop a specific service. In order to start a service automatically
during system boot, a link to the script has to be created in the /etc/rc.d directory. In this directory, the filename
of each link starts with an S, followed by a two-digit number representing the execution order.

For your demo application, create a new script at /etc/init.d/myapp on the target system:

root@santaro:~# nano /etc/init.d/myapp

Change the contents of this file as follows:

#!/bin/sh

[-f /etc/profile.d/tslib.sh] && . /etc/profile.d/tslib.sh
[-f /etc/profile.d/qt5-touch-config.sh] && . /etc/profile.d/qt5-touch-config.sh

case "$1" in

34

http://qt-project.org/doc/qtcreator-3.0/index.html
http://qt-project.org/doc/

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

start)
start-stop-daemon -m -p /var/run/myapp.pid -b -a /usr/bin/myapp -S
;;

stop)
start-stop-daemon -p /var/run/myapp.pid -K
;;

*)
echo "Usage: /etc/init.d/myapp {start|stop}" >&2
exit 1

;;
esac

Save the changes by pressing Ctrl+O and accept the target file name as suggested by pressing [RETURN].
Leave the nano editor by pressing Ctrl+X.

Make /etc/init.d/myapp executable:

root@santaro:~# chmod a+x /etc/init.d/myapp

Create startlinks in /etc/rc*.d/:

root@santaro:~# update-rc.d myapp defaults 95 5

If the Garz & Fricke demo application is installed on your device, its startlink should be deleted so that your
application is the only application automatically started:

root@santaro:~# update-rc.d -f qt4-guf-demo remove

After system reboot your application will start automatically.

7.6 Configuring the Qt Webkit demo

The Linux BSP for SANTARO/SANTOKA contains a small Qt Webkit demo application, which simply displays a
website over the whole screen. You can start this demo using its start/stop script in /etc/init.d:

root@santaro:~# /etc/init.d/qt4-guf-webdemo start

Without any modifications, the demo displays the local HTML page /home/guf/site/index.htm, as configured in
the script itself:

#!/bin/sh

case "$1" in
start)

start-stop-daemon -m -p /var/run/qt4-guf-webdemo.pid -b -a \
/usr/bin/qt4-guf-webdemo -S -- --no-scrollbars file:///usr/share/website/

,! index.htm
;;

stop)
start-stop-daemon -p /var/run/qt4-guf-webdemo.pid -K
;;

*)
echo "Usage: /etc/init.d/qt4-guf-webdemo {start|stop}" >&2
exit 1
;;

esac

For displaying your own HTML page, either load your page into the local default path (and overwrite the file
index.html), or change the path in line 6 of the script, e.g. using nano:

root@santaro:~# nano /etc/init.d/qt4-guf-webdemo

35

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

Per default, scrollbars are disabled in the Webkit browser. If you want to enable scrollbars, remove the --no-
scrollbars parameter preceeding the webpage path.

For having the webdemo automatically started on system startup, use the autostart mechanism described in the
precedent chapter [I 7.5 Autostart mechanism for user applications].

36

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

8 Building a Garz & Fricke Yocto Linux system from source

This chapter describes how to build a Yocto based Linux BSP for a Garz & Fricke platform from source. All steps,
including the installation of the build system and the required toolchains, are covered here.

8.1 General information about Garz & Fricke Yocto Linux systems

Garz & Fricke uses the Yocto Project build system for building embedded Linux systems for their platforms by
providing a Board Support Package (BSP). The Yocto Project is lead by the Linux foundation with the aim to
produce tools and processes to create embedded Linux distributions.

The Yocto project includes a configurable build system specializing in building embedded Linux systems. This
chapter contains information about the handling of Linux with Yocto and Yocto based toolchains for Garz & Fricke
systems. For further information regarding the Yocto Project please refer to the official Yocto website:

I https://www.yoctoproject.org

Documentation regarding several Yocto topics can be found at:

I https://www.yoctoproject.org/documentation/current

In order to build a Yocto based Linux system, the following list of packages should be installed (Debian and
Ubuntu package names):

autoconf
automake
build-essential
dblatex
docbook-utils
fop
libglib2.0-dev
libsdl1.2-dev
libtool
make
xmlto
xsltproc
xterm
git
texinfo
chrpath
python-dev
python3-dev

See also:

I https://www.yoctoproject.org/docs/1.6/ref-manual/ref-manual.html#required-packages-for-the-host-
development-system

.

On Debian based Linux distributions packages can be installed using the apt-get command:

$ sudo apt-get install <package_Name>

To install all the above packages, type:

$ sudo apt-get install autoconf automake dblatex docbook-utils fop libglib2.0-dev
,! libsdl1.2-dev libtool make xmlto xsltproc xterm git texinfo chrpath python-dev
,! python3-dev

In contrast to a desktop Linux system, which is completely built with a native GNU toolchain, an embedded Linux
system is built with a GNU cross toolchain. A cross toolchain must have the ability to produce target specific
opcode while running on a different host system. When building a BSP with Yocto the toolchain will be supplied
and built alongside with the target system. There is no need to install a GNU Compiler Collection (GCC) host and
cross toolchain separately.

37

https://www.yoctoproject.org
https://www.yoctoproject.org/documentation/current
https://www.yoctoproject.org/docs/1.6/ref-manual/ref-manual.html#required-packages-for-the-host-development-system

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

To distinguish between the native GNU toolchain and the GNU cross toolchain, the GNU cross tools are prefixed
with a triplet. E.g. if the toolchain produces opcode for an ARMv5TE core having library routines that can
deal with Linux system calls satisfying the GNU EABI, the compiler is named arm-v5te-linux-gnueabi-gcc, the
assembler is named arm-v5te-linux-gnueabi-as, and so on. Sometimes a toolchain prefix is only named arm-
linux- or something else. This depends on the toolchain vendor. Garz & Fricke uses the naming convention
stated before.

The build of the embedded Linux system is divided into two steps, covered in the following chapters:

Downloading and Installing a Yocto BSP [I 8.2 Download and install the Garz & Fricke Yocto BSP]
Building the BSP for the target platform [I 8.3 Building the BSP for the target platform with Yocto]

8.2 Download and install the Garz & Fricke Yocto BSP

Yocto supports Linux as a host system only. To install a Garz & Fricke Yocto BSP the following files from the CD
/ USB stick shipped with the starter kit for SANTARO/SANTOKA have to be extracted:

GUF-Yocto-23.0-r5250-0.tar.bz2

This archive can also be found on the Garz & Fricke support website:

I http://support.garz-fricke.com/projects/Santaro/Linux-Yocto/Releases/

This archive contains the necessary files to build a cross toolchain and a Yocto based target image. To install the
Garz & Fricke BSP, simply extract the file.

For example:

$ cd ~
$ mkdir yocto
$ cd yocto
$ cp /media/sda1/Tools/GUF-Yocto-23.0-r5250-0.tar.bz2 .
$ tar -xvf GUF-Yocto-23.0-r5250-0.tar.bz2

If everything went right, we have a GUF-Yocto-23.0-r5250-0 directory now, so we can change into it:

$ cd GUF-Yocto-23.0-r5250-0

8.3 Building the BSP for the target platform with Yocto

In the Yocto directory, the following command selects the platform to be built:

$ MACHINE=santaro-santoka source setup-environment build-santaro-santoka

After that the shell should have changed the current working directory to the platform specific build directory
build-santaro-santoka. To build packages and complete images, the Yocto build tool bitbake is used. It is
documented in the official Yocto documentation and online in the OpenEmbedded Bitbake Manual:

I http://www.yoctoproject.org/docs/1.6.1/bitbake-user-manual/bitbake-user-manual.html

Yocto builds the images from build descriptions called recipes. The recipe to build the Garz & Fricke Linux image
is called guf-image. To build this image, call:

$ bitbake guf-image

This step automatically downloads all necessary parts from the web, builds the native toolchains as well as the
target binaries. As this step is fairly complex, and many packages will be created and compiled, it takes quite
some time. On our development machines, a complete build takes approximately 60 minutes.

After the build has finished, the images will be located in your build directory under tmp/deploy/images/santaro-
santoka. In this directory, several files should be located. The most important ones are the last kernel build
(uImage-santaro-santoka.bin) , the devicetree files (uImage-imx6-santaro-q.dtb, uImage-imx6-santaro-dl.dtb,

38

http://support.garz-fricke.com/projects/Santaro/Linux-Yocto/Releases/
http://www.yoctoproject.org/docs/1.6.1/bitbake-user-manual/bitbake-user-manual.html

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

uImage-imx6-santoka-dl.dtb) and the last target root file system (guf-image-santaro-santoka.tar.bz2). The
latter is also often called rootfs.

Rather than files itself, these are symbolic links to the former build artifacts in the same directory. Every succes-
sive build of the image creates new artifacts with a recent timestamp in its name.

39

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

9 Deploying the Linux system to the target

A Garz & Fricke Yocto image can be installed on the system’s internal eMMC flash memory using the Garz &
Fricke Flash-N-Go System. This is a small RAM-disk-based Linux which is installed on your SANTARO/SAN-
TOKA in parallel to the regular operating system. This chapter describes how to boot your device into Flash-N-Go
System and how to use it to install your Yocto image.

9.1 Booting Flash-N-Go System

There are two ways of booting your device into Flash-N-Go System. If the device already has a working Yocto
image installed, you can switch to Flash-N-Go System by issuing the following commands on the device console:

root@santaro:~# bootselect alternative
root@santaro:~# reboot

The device will reboot and show the Flash-N-Go System splash screen on the display. On the serial console
(see [I 3.1 Serial console]), the command prompt should appear:

Garz & Fricke Flash-N-Go System

FLASH-N-GO:/

The change of the bootmode using the bootmode command is permanent, i.e. the next boot of the device will
start Flash-N-Go System again, until the bootmode is set back to regular operation:

FLASH-N-GO:/ bootselect regular

Alternatively, the bootmode can be switched temporarily by pressing down and holding the bootmode switch SW2
while the device is powered on. The location of SW2 is shown in [I Figure 10].

Figure 10: Location of the SW2 switch

This method changes the bootmode only for a single boot. The next boot of the device (without SW2 pressed)
will boot the regular operating system again.

For more detailed information concerning the Garz & Fricke Flash-N-Go System please consult the Flash-N-Go
System Manual.

9.2 Installing a Yocto image on the device

Garz & Fricke provides a shell script for installing a Yocto image on the device, called fng-install.sh. The files
can be installed either locally on the device (e.g. a USB drive or an SD card) or remotely via TFTP. Regardless
which solution you prefer, you will need the following files from your deploy folder (see [I 8.3 Building the BSP
for the target platform with Yocto]):

fng-install.sh
uImage-santaro-santoka.bin
guf-image-santaro-santoka.tar.bz2
uImage-imx6-santaro-q.dtb, uImage-imx6-santaro-dl.dtb, uImage-imx6-santoka-dl.dtb

40

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

boot-santaro-santoka.cfg

If you have not built the image yourself but rather want to install a Garz & Fricke prebuilt Yocto image, the
filenames will differ slightly. The file extensions should be equal, though, so it should not be difficult to determine
the correct files.

Note: The installation via fng-install.sh removes any previously installed regular operating system. If
the installation fails for some reason, the device will always boot into Flash-N-Go System afterwards.

9.2.1 Over the network via TFTP

During development, the most comfortable way of installing the images on the device is by loading them over the
network via TFTP. For this purpose, a TFTP server is needed on your development host machine (please see [I
3.4 Uploading files with TFTP] on how to install and configure it). The TFTP server directory has to be set to your
deploy folder, e.g. /home/user/yocto/GUF-Yocto-23.0-r5250-0/build-santaro-santoka/tmp/deploy/images/santaro-
santoka/. The ethernet connection on the device has to be configured as described in [I 4.1.7 Garz & Fricke
system configuration], so that it can access the TFTP server.

The script can be loaded to the device and executed there via the Flash-N-Go System shell. Assuming, that
your TFTP host has the IP address 192.168.1.100, type:

FLASH-N-GO:/ export TFTP=192.168.1.100; curl tftp://$TFTP/fng-install.sh > /tmp/a.sh;
,! sh /tmp/a.sh

The above command loads the fng-install.sh script from your TFTP server to the /tmp directory of the Flash-N-
Go System and executes it from there. During execution of the script, the Yocto image files will be loaded from
the TFTP server and written directly to the eMMC flash memory.

The installation procedure will take some minutes. You can observe the output messages of the process on the
terminal console. After successful installation the script returns to the Flash-N-Go prompt:

Update successful
FLASH-N-GO:/

9.2.2 From a local folder using an external storage device

If you do not have a network connection to your device, the fng-install.sh can be copied to an external storage
device, e.g. a USB driver or an SD card, along with the Yocto images. Simply put all files into the same folder
and insert the storage device into your SANTARO/SANTOKA.

The TFTP environment variable must not be set. Usually the variable is not set, so you do not have to worry
about this. If you have tried using TFTP before, though, it probably contains your TFTP server IP address and
has to be unset explicitly:

FLASH-N-GO:/ unset TFTP

To start the installation, simply call the script from the shell:

FLASH-N-GO:/ sh /mnt/mstick1/fng-install.sh

The installation procedure will take some minutes. You can observe the output messages of the process on the
terminal console. After successful installation the script returns to the Flash-N-Go prompt:

Update successful
FLASH-N-GO:/

Note: The installation from a local folder requires Flash-N-Go System 4.0 or higher.

41

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

10 Securing the device

The meaning of security for embedded systems is often underestimated. This chapter should sensitize customers
to the needs of security and disclose some of the typical security holes. It also provides some tips and hints for
the implementation of well chosen security mechanisms. Since we cannot cover the big amount of security issues
in this manual we strongly recommend to read further secondary lecture regarding this topic.

Note: For the following list of security risks, no claim of completeness can be made. There may arise
other risks or - on the opposite - limitations in the design of your application by following the instructions
provided in this chapter.

10.1 Services

The default configuration of a Garz & Fricke device can be described as "developer friendly". This means, all
services are available and activated. Depending on the final application, this might be either helpful or a security
risk. Once the development has been finalized, we recommend a review of the required services and to disable
all services and features which are not used.

10.2 Root password

Since Garz & Fricke is an OEM manufacturer and we are delivering serial-produced devices to several customers
a default root password would lead to a form of pseudo security. Moreover a default password for all devices is
highly vulnerable. For this purpose our devices usually have no root password set. Is is essential that a password
will be set by customers before the devices are deployed. This is the minimum security measure to be done.
Our yocto distribution supports standard linux tools like adduser, deluser, addgroup, passwd, groups, chmod and
others.

10.2.1 What does it mean if no root password is set?

Without root password attackers might connect to the device via serial console, Telnet or FTP and have full
system control since the root user usually have all perissions.

10.2.2 Blocking root access

Linux offers the opportunity to disable the root-login for specific services like ssh, or the serial console. Since the
root login is is always a popular target for attackers this easy mechanism will decrease the risk for those kinds of
brute force attacks.

Note: Ensure that another user account with the posibility to gain super user (su) rights is created
before the root access is disabled. Otherwise, you might completely lose accessibility to the device.

10.3 User permissions concept

Customers should follow the principle of minimal privilege for user rights on the devices. Please note that Garz
& Fricke tools are usually assigned with access rights for all users so far since it is, as mentioned above, more
developer friendly. However for some tools this might lead to a security risk, e.g.

bootselect alternative

This tool might force the device to start Flash-N-Go System on next boot. Within Flash-N-Go the user has full
control of the device’s configuration and the partitions on the flash disk respectively eMMC.

10.4 Networking

10.4.1 Firewall - netfilter/iptables

By default, all network communication is allowed. Linux can be configured to block certain IP packets depending
on its header (e.g. by port or by protocol) using iptables, which is basically a firewall. As this mechanism is

42

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

very powerful and complex it is not documented here in detail. Please take a look at the following link for a basic
introduction:

I http://help.ubuntu.com/community/IptablesHowTo

10.4.2 Using secure network protocols

We strongly recommend the usage of secure network protocols. E.g HTTPS instead of HTTP, FTPS instead of
FTP or SSH instead of telnet.

Further mechanisms regarding the security for network connected linux systems are described here:

I http://embedded-computing.com/articles/improving-security-for-network-connected-linux-based-systems

10.5 Restrict physical access

Each physical interface like USB, SD-Card or ethernet socket can serve as an entrance gate for hackers. If you
limit the number of easily accessible interfaces you in turn decrease the possibility for attackers to connect with
the target device. You need less concern about security mechanism for those interfaces which are not accessible
or not equipped at all.

10.6 Application security

Application security is seldom a high priority for embedded devices. But it is, of course, essential to take account
of identifying risks in embedded applications. Since application development is a very complex subject and it is
out of scope for Garz & Fricke developement we will refer to secondary lecture at this point.

43

http://help.ubuntu.com/community/IptablesHowTo

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

11 Related documents and online support

This document contains product and OS specific information. Additional documentation is available for the use
of the bootloader.

Title File Name Description

GUF
Yocto
Release
Notes

GUF-Yocto-23.0-r5250-0-SANTARO-release-notes.html Contains details about the Yocto
release: change history, known
restrictions, performed tests, etc.

Flash-N-
Go
System
User
Manual

GF_Flash-N-Go_Manual-<version>.pdf Contains relevant information about
the BIOS, boot logo, display settings,
etc. in the case that Flash-N-Go Boot
is used as the bootloader.

RedBoot
User
Manual

GF_RedBoot_User_Manual_<revision>.pdf Contains relevant information about
the BIOS, boot logo, display settings,
etc. in the case that RedBoot is used
as the bootloader.

Support for your Garz & Fricke embedded device is available on the Garz & Fricke website. You can find a list of
the available documents, as well as their latest revision and updates for your system under the following link:

I http://www.garz-fricke.com/santaro-download

44

http://www.garz-fricke.com/santaro-download

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

A GNU General Public License v2

Version 2, June 1991

Copyright ©1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

A.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software–to
make sure the software is free for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Lesser General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this service
if you wish), that you receive source code or can get it if you want it, that you can change the software or use
pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you
legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its recipients
to know that what they have is not the original, so that any problems introduced by others will not reflect on the
original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redis-
tributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To
prevent this, we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

A.2 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The "Program", below, refers to
any such program or work, and a “work based on the Program” means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running the Program is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the Program.

45

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the date
of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from
the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms
of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived
from the Program, and can be reasonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based
on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope
of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable
form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code.
(This alternative is allowed only for noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable
work, complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full compliance.

46

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and
conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent license would not
permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the
Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distri-
bution system, which is implemented by public license practices. Many people have made generous contributions
to the wide range of software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copy-
righted interfaces, the original copyright holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this
License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License
which applies to it and “any later version”, you have the option of following the terms and conditions either of that
version or of any later version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

47

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PRO-
GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

A.3 END OF TERMS AND CONDITIONS

A.3.1 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file
to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a
pointer to where the full notice is found.

one line to give the program's name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type `show c'
for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than ‘show w’ and ‘show c’; they
could even be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program `Gnomovision'
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

48

GUF-Yocto-23.0-r5250-0 � SANTARO/SANTOKA � User Manual

This General Public License does not permit incorporating your program into proprietary programs. If your pro-
gram is a subroutine library, you may consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General Public License instead of this License.

49

	Important hints
	1 Introduction
	2 Overview
	2.1 The bootloader
	2.2 The Linux kernel
	2.3 The root file system
	2.4 The partition layout
	2.5 Further information

	3 Accessing the target system
	3.1 Serial console
	3.2 SSH console
	3.3 Telnet console
	3.4 Uploading files with TFTP
	3.5 Uploading files with SFTP

	4 Services and utilities
	4.1 Services
	4.1.1 Udev
	4.1.2 D-Bus
	4.1.3 SSH service
	4.1.4 Module loading
	4.1.5 Network initialization
	4.1.6 Garz & Fricke shared configuration
	4.1.7 Garz & Fricke system configuration
	4.1.8 Kernel command line

	5 Add-On Packages
	5.1 Chromium
	5.1.1 Installation
	5.1.2 Deinstallation
	5.1.3 Manual Start/Stop of Chromium
	5.1.4 "Kiosk"-Mode
	5.1.5 Configuration
	5.1.6 Soft-Keyboard

	6 Accessing the hardware
	6.1 Digital I/O
	6.2 Serial interfaces (RS-232 / RS-485 / MDB)
	6.3 Ethernet
	6.4 Real Time Clock (RTC)
	6.5 Keypad connector
	6.6 SPI
	6.7 I2C
	6.8 CAN
	6.9 USB
	6.9.1 USB Host
	6.9.2 USB Device

	6.10 Display power
	6.11 Display backlight
	6.12 SD cards and USB mass storage
	6.13 Temperature Sensor
	6.14 Touchscreen
	6.15 Audio
	6.16 SRAM

	7 Building and running a user application
	7.1 SDK installation
	7.2 Simple command-line application
	7.3 Qt-based GUI user application
	7.4 Using the Qt Creator IDE
	7.4.1 Configuring Qt Creator
	7.4.2 Developing with Qt Creator

	7.5 Autostart mechanism for user applications
	7.6 Configuring the Qt Webkit demo

	8 Building a Garz & Fricke Yocto Linux system from source
	8.1 General information about Garz & Fricke Yocto Linux systems
	8.2 Download and install the Garz & Fricke Yocto BSP
	8.3 Building the BSP for the target platform with Yocto

	9 Deploying the Linux system to the target
	9.1 Booting Flash-N-Go System
	9.2 Installing a Yocto image on the device
	9.2.1 Over the network via TFTP
	9.2.2 From a local folder using an external storage device

	10 Securing the device
	10.1 Services
	10.2 Root password
	10.2.1 What does it mean if no root password is set?
	10.2.2 Blocking root access

	10.3 User permissions concept
	10.4 Networking
	10.4.1 Firewall - netfilter/iptables
	10.4.2 Using secure network protocols

	10.5 Restrict physical access
	10.6 Application security

	11 Related documents and online support
	A GNU General Public License v2
	A.1 Preamble
	A.2 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	A.3 END OF TERMS AND CONDITIONS
	A.3.1 How to Apply These Terms to Your New Programs

