PCIe-SIO4BX2-SYNC

Hardware User's Manual

Four Channel High Performance Serial I/O PCIe Card

Featuring RS422/RS485/RS232 Software Configurable Transceivers and 32K Byte FIFO Buffers (256K Byte total)

RS485 RS422/V.11 RS232/V.28

General Standards Corporation 8302A Whitesburg Drive Huntsville, AL 35802 Phone: (256) 880-8787 Fax: (256) 880-8788

URL: <u>www.generalstandards.com</u> **E-mail:** <u>techsupport@generalstandards.com</u>

General Standards Corporation

High Performance Bus Interface Solutions

PREFACE

Revision History

1. Rev 0 – May 2013 – Original rev from PMC66-SIO4BXR-SYNC manual.

Additional copies of this manual or other **General Standards Corporation** literature may be obtained from:

General Standards Corporation

8302A Whitesburg Drive Huntsville, Alabama 35802 Telephone: (256) 880-8787

Fax: (256) 880-8788

URL: www.generalstandards.com

The information in this document is subject to change without notice.

General Standards Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing and reviews are performed before release to ECO control, **General Standards Corporation** assumes no responsibility for any errors that may exist in this document. No commitment is made to update or keep current the information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product or circuit described herein, nor is any license conveyed under any patent right of any rights of others.

General Standards Corporation assumes no responsibility resulting from omissions or errors in this manual, or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve reliability, performance, function, or design.

All rights reserved

No parts of this document may be copied or reproduced in any form or by any means without prior written consent of **General Standards Corporation**.

Copyright © 2013 General Standards Corporation

i

RELATED PUBLICATIONS

PLX PEX8311AA Data Book

PLX Technology Inc. 390 Potrero Avenue Sunnyvale, CA 4085 (408) 774-3735 http://www.plxtech.com/

EIA-422-A – Electrical Characteristics of Balanced Voltage Digital Interface Circuits (EIA order number EIA-422A)

EIA-485 - Standard for Electrical Characteristics of Generators and Receivers for Use in Balanced Digital **Multipoint Systems** (EIA order number EIA-485)

EIA Standards and Publications can be purchased from:

GLOBAL ENGINEERING DOCUMENTS 15 Inverness Way East Englewood, CO 80112 Phone: (800) 854-7179 http://global.ihs.com/

PCI Local Bus Specification Revision 2.2 December 18, 1998.

Copies of PCI specifications available from: PCI Special Interest Group

> NE 2575 Kathryn Street, #17 Hillsboro, OR 97124 http://www.pcisig.com/

ii

TABLE OF CONTENTS

PREFA	CE]
RELAT	TED PUBLICATIONS	I
TABLE	OF CONTENTS	II
СНАРТ	TER 1: INTRODUCTION	1
1.0	GENERAL DESCRIPTION	1
1.1	SERIAL INTERFACE	
1.1.1	THREE SIGNAL SERIAL INTERFACE	
1.1.2	TWO SIGNAL SERIAL INTERFACE	
1.2	DEEP TRANSMIT/RECEIVE FIFOS	
1.3	MULTIPROTOCOL TRANSCEIVERS	
1.4 1.5	PMC/PCI Interface	
1.6	CONNECTOR INTERFACE	
	ER 2: LOCAL SPACE REGISTERS	
	GSC FIRMWARE (LOCAL SPACE) REGISTERS	
2.0 2.1	GSC FIRMWARE (LOCAL SPACE) REGISTERS	
2.1	BOARD CONTROL: LOCAL OFFSET 0x00004	
2.3	BOARD STATUS: LOCAL OFFSET 0X0008	
2.4	CHANNEL TX ALMOST FLAGS: LOCAL OFFSET 0x0010 / 0x0020 / 0x0030 / 0x0040	
2.5	CHANNEL RX ALMOST FLAGS: LOCAL OFFSET 0x0014 / 0x0024 / 0x0034 / 0x0044	
2.6	CHANNEL FIFO: LOCAL OFFSET 0x0018 / 0x0028 / 0x0038 / 0x0048	
2.7	CHANNEL CONTROL/STATUS: LOCAL OFFSET 0x001C / 0x002C / 0x003C / 0x004C	
2.8	INTERRUPT REGISTERS	10
2.8.1	INTERRUPT CONTROL: LOCAL OFFSET 0x0060	
2.8.2	INTERRUPT STATUS/CLEAR: LOCAL OFFSET 0x0064	
2.8.3	INTERRUPT EDGE/LEVEL: LOCAL OFFSET 0x0068	
2.8.4	INTERRUPT HI/LO: LOCAL OFFSET 0x006C	
2.9	CHANNEL PIN SOURCE: LOCAL OFFSET 0x0080 / 0x0084 / 0x0088 / 0x008C	
2.10	CHANNEL PIN STATUS: LOCAL OFFSET 0x0090 / 0x0094 / 0x0098 / 0x009C	
2.11 2.12	PROGRAMMABLE CLOCK REGISTERS: LOCAL OFFSET 0x00A0 / 0x00A4 / 0x00A8	
2.12	RX COUNT REGISTER: LOCAL OFFSET 0X00000 / 0X00004 / 0X00008 / 0X0C	
2.13	FIFO Count Register: Local Offset 0x0000/0x0004/0x0008/0x00DC	
2.15	FIFO SIZE REGISTER: LOCAL OFFSET 0X00E0 / 0X00E4 / 0X00E8 / 0X00EC	
2.16	FW Type ID Register: Local Offset 0x00F8	
2.17	FEATURES REGISTER: LOCAL OFFSET 0x00FC	
СНАРТ	TER 3: PROGRAMMING	17
3.1	SERIAL INTERFACE	
3.1.1	SERIAL INTERFACE DEFINITION	
3.1.2	TWO SIGNAL INTERFACE	
3.1.3	TX BIT COUNT / TX GAP	
3.1.4	RX BIT COUNT	18

General Standards Corporation

8302A Whitesburg Drive · Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@genéralstandards.com

3.2	FIFOs	18
3.2.1	FIFO FLAGS	18
3.2.2	FIFO COUNTERS	19
3.2.3	FIFO Size	19
3.3	BOARD VS. CHANNEL REGISTERS	19
3.4	PROGRAMMABLE OSCILLATOR / PROGRAMMABLE CLOCKS	19
3.5	MULTIPROTOCOL TRANSCEIVER CONTROL	19
3.6	DCE/DTE Mode	20
3.7	LOOPBACK MODES	20
3.8	GENERAL PURPOSE IO	21
3.9	Interrupts	21
3.10	PCI DMA	21
CHAP	TER 4: PCI INTERFACE	22
4.0	PCI Interface Registers	22
4.1	PCI REGISTERS	22
4.1.1	PCI CONFIGURATION REGISTERS	22
4.1.2	LOCAL CONFIGURATION REGISTERS	23
4.1.3	RUNTIME REGISTERS	23
4.1.4	DMA REGISTERS	23
4.1.4.	.1 DMA CHANNEL MODE REGISTER: (PCI 0x80 / 0x94)	23
СНАРТ	TER 5: HARDWARE CONFIGURATION	24
5.0	BOARD LAYOUT	24
5.1	BOARD ID JUMPER J2	
5.2	TERMINATION RESISTORS	
5.3	LEDs	25
5.4	INTERFACE CONNECTOR	26
СНАРТ	TER 6: ORDERING OPTIONS	27
6.0	Ordering Information	27
6.1	Interface Cable	27
6.2	DEVICE DRIVERS	27
6.3	CUSTOM APPLICATIONS	27
APPEN	NDIX A: PROGRAMMABLE OSCILLATOR PROGRAMMING	28
APPEN	NDIX B: FIRMWARE REVISIONS / FEATURES REGISTER	31

CHAPTER 1: INTRODUCTION

1.0 **General Description**

The PCIe-SI04BX2-SYNC is four channel synchronous serial interface card which provides high speed, full-duplex, multi-protocol serial channels for PCIe applications. The PCIe-SIO4BX2-SYNC combines a flexible serial interface, deep external FIFOs, and software selectable multi-protocol transceivers to provide four fully independent synchronous serial channels. These features, along with a high performance one lane PCIe interface engine, give the PCIe-SIO4BX2-SYNC unsurpassed performance in a synchronous serial interface card.

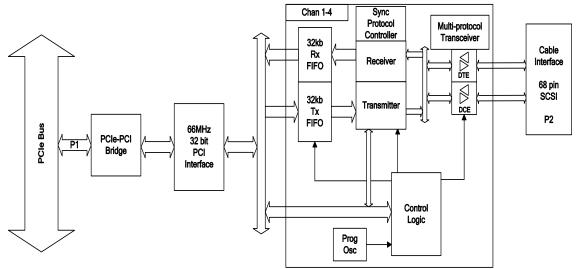


Figure 1-1 Block Diagram of PCIe-SIO4BX2-SYNC

Features:

- One Lane PCI Express (PCIe) Interface
- Four Independent Multi-Protocol Synchronous Serial Channels
- Independent Transmit and Receive FIFOs for each Serial Channel 32K byte each
- Multi-protocol Transceivers support RS422/RS485, RS232
- Fast RS422/RS485 Differential Cable Transceivers Provide Data Rates up to 10Mbps
- RS232 Cable Transceivers Provide Data Rates up to 250kbps
- Two Signal (Clock/Data) or Three Signal modes (Clock/Data/Data Valid)
- Programmable Oscillators provide increased flexibility for Baud Rate Clock generation
- Programmable Transmit Bit Counts allow for various transmit word lengths
- Programmable Transmit Gap Bit Counts allow for variable gap between words
- Fully Programmable Polarity on all signals
- Eight signals per channel, configurable as either DTE or DCE: 3 Serial Clocks (TxC,RxC,AuxC), 2 Serial Data (TxD,RxD), 2 Data Valid (TxE,RxE), plus Spare
- Unused signals may be reconfigured as General Purpose IO
- SCSI type 68 pin front edge I/O Connector
- Standard Cable to four DB25 connectors and Custom Cables available
- Interchangeable 120Ω Termination Resistors (RS422/RS485 Mode)
- Available drivers include VxWorks, WinNT, Win2k, WinXP, Linux, and Labview
- Industrial Temperature Option Available

General Standards Corporation

High Performance Bus Interface Solutions

1.1 Serial Interface

The simple synchronous interface may be configured as a three signal interface - Clock, Data, and Envelope (Data Valid), or an even simpler two signal interface - Clock and Data. The SIO4BX2-SYNC allows the serial interface to be further customized with the following user configurable options:

- Clocking Data on either rising or falling edge of the clock.
- Active Hi or Active Lo polarity for the Envelope Signal
- NRZ (Level) or NRZB (Inverted Level) Data Encoding
- Continuous Transmit Clock or Transmit Clock disabled when Data is invalid (Clock present only for valid Data).
- Transmit Word Size may be configured from 1 to 64k bits (consecutive bit count).
- Transmit Gap Size (number of clocks between transmit words) may be configured from 0 to 64k bits.
- Data may be transmitted MSB first or LSB first (8-bit or less word size).
- Transmit Clock may be configured from 10MHz down to 400Hz on a per channel basis.
- Auxiliary Clock Input from cable may be used as Transmit Clock.

The following sections show some typical examples of how the SIO4BX2-SYNC can be configured to support different two and three signal interfaces.

1.1.1 Three Signal Serial Interface

Figure 1-2 shows two examples of typical 3-signal interfaces. The two diagrams show how the card can be configured to handle different interface requirements. For the top diagram, Data and Envelope change on the rising edge of the Clock. The Data and Envelope are both Active Hi. The Clock is continuous – e.g. the Clock continues even when Data is Invalid (TxC Idl). Data is transmitted in 8 bit words (TxCount), with a two Clock 'gap' (TxGap) in between each word (Data Valid for 8 bits, Invalid for 2).

In the lower example, Data and Envelope change on the falling edge of the Clock. The Data and Envelope signals are both Active Lo. The Clock is still continuous – Clock continues even when Data is Invalid (TxC Idl). Data is transmitted in 16 bit words (TxCount), with a one Clock 'gap' (TxGap) in between each word (Data Valid for 16 bits, Invalid for 1).

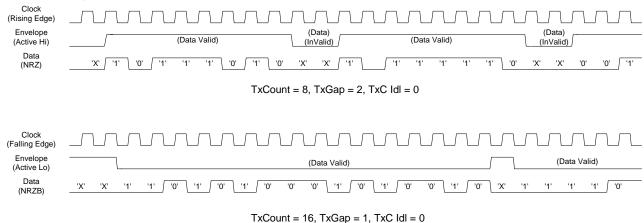
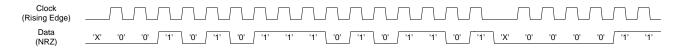


Figure 1-2 Three Signal Serial Interface


General Standards Corporation

8302A Whitesburg Drive ·Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@generalstandards.com

1.1.2 Two Signal Serial Interface

Figure 1-3 shows how the Clock can be used to qualify the Data to give a two signal serial interface. In this case, Data is considered valid at every Clock. In this example, Data is Active Hi and changes on the rising edge of the Clock. The Clock is not present when Data is invalid (TxC Idl). Data is transmitted in 8 bit words (TxCount), with a two clock 'gap' (TxGap) in between each word (Data Valid for 8 bits, Invalid for 2).

In the lower example, Data and Envelope change on the falling edge of the Clock. The Data and Envelope signals are both Active Lo. The clock is still continuous – Clock continues even when Data is Invalid (TxC Idl). Data is transmitted in 16 bit words (TxCount), with a one Clock 'gap' (TxGap) in between each word (Data Valid for 16 bits, Invalid for 1).

TxCount = 16, TxGap = 1, TxC IdI = 1

Figure 1-3 Two Signal Serial Interface

1.2 Deep Transmit/Receive FIFOs

Data is transferred to/from the serial interface through Transmit and Receive FIFOs. Each of the four serial channels has an independent Transmit FIFO and a Receive FIFO for a total of eight separate on-board FIFOs. These FIFOs are always 32k bytes deep. FIFOs allow data transfer to continue to/from the IO interface independent of PCI interface transfers and software overhead. The required FIFO size may depend on several factors including data transfer size, required throughput rate, and the software overhead (which will also vary based on OS). Generally, faster baud rates (greater than 500kbps) will require deeper FIFOs. Deeper FIFOs help ensure no data is lost for critical systems.

The SIO4BX2 provides access to complete FIFO status to optimize data transfers. In addition to Empty and Full indicators, each FIFO has a programmable Almost Empty Flag and a programmable Almost Full Flag. These FIFO flags may be used as interrupt sources to monitor FIFO fill levels. In addition, real-time FIFO counters showing the exact number of words in the FIFO are also provided for each FIFO. By utilizing these FIFO counters, data transfers can be optimized to efficiently send and receive data.

1.3 Multiprotocol Transceivers

The SIO4BX2 data is transferred over the user interface using high-speed multiprotocol transceivers. These multiprotocol transceivers are software selectable as RS422/RS485 or RS232 on a per channel basis. Each channel direction may also be configured as DTE or DCE configuration. This allows for either full duplex or half duplex configurations.

1.4 PCIe Interface

The control interface to the SIO4BX2-SYNC is through a one channel PCIe interface. An industry standard bridge chip from PLX Technology is used to implement PCIe Specification 1.1. The PEX8311 provides a one lane (250MBit/sec) interface between the PCIe bus and the Local 32 bit bus. It also provides for high-speed DMA transfers to efficiently move data to and from the board.

1.5 General Purpose IO

Since some signals may not be used in all applications, the SIO4BX2 provides the flexibility to remap unused signals to be used as general purpose IO. For example, this would allow support for an application requiring DTR/DSR signals to be implemented on an unused DCD or TxAuxC signals. This also allows signals from unused channels to be available as general purpose IO.

1.6 Connector Interface

The SIO4BX2 provides a user IO interface through a front-side card edge connector. All four serial channels interface through this high-density, 68 pin SCSI-3 type connector, and are grouped to simplify separating the cable into four distinct serial connectors.

Standard cables are available from General Standards in various lengths to adapt the single 68 pin SCSI-3 connector into four DB25 connectors (one per channel). A standard cable is also available with a single 68 pin SCSI-3 connector on one end and open on the other. This allows the user to add a custom connector (or connect to a terminal block). General Standards will also work with customers to fabricate custom cables. Consult factory for details on custom cables.

CHAPTER 2: LOCAL SPACE REGISTERS

2.0 **GSC Firmware (Local Space) Registers**

The PCIe-SIO4BX2-SYNC is accessed through two sets of registers – PCI Registers and GSC Firmware Registers. The GSC Firmware Registers (referred to as Local Space Registers), which provide the control/status for the SIO4BX2-SYNC board, are described below. The PCI registers (internal to the PLX 9056 PCI controller) are discussed in Chapter 3.

Offset Address	Size	Access*	Register Name	Default Value (Hex)
0x0000	D32	Read Only	Firmware Revision	E22404XX
0x0004	D32	Read/Write	Board Control	0000000
0x0008	D32	Read Only	Board Status	000001XX
0x000C			Reserved	00000000
0x0010	D32	Read/Write	Ch 1 Tx Almost Full/Empty	00070007
0x0014	D32	Read/Write	Ch 1 Rx Almost Full/Empty	00070007
0x0018	D32	Read/Write	Ch l Data FIFO	000000XX
0x001C	D32	Read/Write	Ch 1 Control/Status	0000CC00
0x0020	D32	Read/Write	Ch 2 Tx Almost Full/Empty	00070007
0x0024	D32	Read/Write	Ch 2 Rx Almost Full/Empty	00070007
0x0028	D32	Read/Write	Ch 2 Data FIFO	000000XX
0x002C	D32	Read/Write	Ch 2 Control/Status	0000CC00
0x0030	D32	Read/Write	Ch 3 Tx Almost Full/Empty	00070007
0x0034	D32	Read/Write	Ch 3 Rx Almost Full/Empty	00070007
0x0038	D32	Read/Write	Ch 3 Data FIFO	000000XX
0x003C	D32	Read/Write	Ch 3 Control/Status	0000CC00
0x0040	D32	Read/Write	Ch 4 Tx Almost Full/Empty	00070007
0x0044	D32	Read/Write	Ch 4 Rx Almost Full/Empty	00070007
0x0048	D32	Read/Write	Ch 4 Data FIFO	000000XX
0x004C	D32	Read/Write	Ch 4 Control/Status	0000CC00
0x0050-0x005C			RESERVED	
0x0060	D32	Read/Write	Interrupt Control	0000000
0x0064	D32	Read/Write	Interrupt Status/Clear	0000000
0x0068	D32	Read Only	Interrupt Edge/Level	FFFFFFF
0x006C	D32	Read/Write	Interrupt High/Low	FFFFFFF
0x0070-0x007C			RESERVED	
0x0080	D32	Read/Write	Ch 1Pin Source	0000020
0x0084	D32	Read/Write	Ch 2 Pin Source	0000020
0x0088	D32	Read/Write	Ch 3 Pin Source	00000020
0x008C	D32	Read/Write	Ch 4 Pin Source	00000020
0x0090	D32	Read Only	Ch 1Pin Status	000000XX
0x0094	D32	Read Only	Ch 2 Pin Status	000000XX
0x0098	D32	Read Only	Ch 3 Pin Status	000000XX
0x009C	D32	Read Only	Ch 4 Pin Status	000000XX
0x00A0	D32	Read/Write	Prog Osc RAM Addr	00000000
0x00A4	D32	Read/Write	Prog Osc RAM Data (Ch 1-3)	0000000
0x00A8	D32	Read/Write	Prog Osc Control/Status	00000000
0x00AC	D32	Read/Write	Prog Osc RAM Data (Ch 4)	00000000
0x00B0	D32	Read/Write	Ch1 TxCount / TxGap	00000000
0x00B4	D32	Read/Write	Ch2 TxCount / TxGap	00000000

General Standards Corporation

8302A Whitesburg Drive 'Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@generalstandards.com

0x00B8	D32	Read/Write	Ch3 TxCount / TxGap	00000000
0x00BC	D32	Read/Write	Ch4 TxCount / TxGap	00000000
0x00C0	D32	Read/Write	Ch1 RxCount	00000000
0x00C4	D32	Read/Write	Ch2 RxCount	00000000
0x00C8	D32	Read/Write	Ch3 RxCount	00000000
0x00CC	D32	Read/Write	Ch4 RxCount	00000000
0x00D0	D32	Read Only	Ch1 FIFO Count	00000000
0x00D4	D32	Read Only	Ch2 FIFO Count	00000000
0x00D8	D32	Read Only	Ch3 FIFO Count	00000000
0x00DC	D32	Read Only	Ch4 FIFO Count	00000000
0x00E0	D32	Read Only	Ch1 FIFO Size	XXXXXXXX
0x00E4	D32	Read Only	Ch2 FIFO Size	XXXXXXXX
0x00E8	D32	Read Only	Ch3 FIFO Size	XXXXXXXX
0x00EC	D32	Read Only	Ch4 FIFO Size	XXXXXXXX
0x00F0-0x00F4			RESERVED	
0x00F8	D32	Read Only	FW Type Register	04040404
0x00FC	D32	Read Only	Features Register	001979F4

2.1 Firmware Revision: Local Offset 0x0000

The Firmware ID register provides version information about the firmware on the board. This is useful for technical support to identify the firmware version.

D31:16	HW Board Rev	0xE225	PCIe-SIO4BX2 Rev E
D15:8	Firmware Type ID	0x04	Sync Firmware
D7:0	Firmware Revision	XX	Firmware Version

2.2 **Board Control: Local Offset 0x0004**

The Board Control Register defines the general control functions for the board. The main function in this register defines the Demand mode DMA channel requests.

D31	Board Reset

1 = Reset all Local Registers and FIFOs to their default values

Notes: This bit will automatically clear to 0 following the board reset.

Board Reset will NOT reset programmable oscillator.

Following a Board Reset, ResetInProgress bit (D31) of the Board Status Register

will remain set until the Board reset is complete;

D30 RESERVED (Debug Test) **D29** RESERVED (FIFO Test)

D28:27 RESERVED (FIFO Configuration)

D26 RESERVED D25 LED D1 Red **D24** LED D1 Green D23:9 **RESERVED**

D8 Rx FIFO Stop on Full 1 = If Rx FIFO becomes full, stop receiving data (disable receiver). **D7** Demand Mode DMA Channel 1 Single Cycle Disable D6:4 Demand Mode DMA Channel 1 Request 000 = Ch1 Rx100 = Ch1 Tx010 = Ch2 Rx110 = Ch2 Tx001 = Ch3 Rx101 = Ch3 Tx011 = Ch4 Rx111 = Ch4 Tx**D3** Demand Mode DMA Channel 0 Single Cycle Disable Demand Mode DMA Channel 0 Request D2:0 000 = Ch1 Rx100 = Ch1 Tx010 = Ch2 Rx110 = Ch2 Tx001 = Ch3 Rx101 = Ch3 Tx011 = Ch4 Rx111 = Ch4 Tx

2.3 **Board Status: Local Offset 0x0008**

The Board Status Register gives general overall status for a board. The Board Jumpers (D1:D0) are physical jumpers which can be used to distinguish between boards if multiple SIO4 boards are present in a system.

D31:D9	RESERVED
D8	0 = Standard
	1 = Sync
D7:D6	RESERVED
D5:D4	FIFO Size
	10 = 256K
D3:D0	Board Jumper (J2)
D3	Board ID4
	0=J2:7-J2:8 jumper installed
D2	Board ID3
	0=J2:5-J2:6 jumper installed
D1	Board ID2
	0=J2:3-J2:4 jumper installed
$\mathbf{D0}$	Board ID1
	0=J2:1-J2:2 jumper installed

2.4 Channel TX Almost Flags: Local Offset 0x0010 / 0x0020 / 0x0030 / 0x0040

The Tx Almost Flag Registers are used to set the Almost Full and Almost Empty Flags for the transmit FIFOs. The Almost Full/Empty Flags may be read as status bits in the Channel Control/Status Register, and are also edge-triggered interrupt sources to the Interrupt Register.

D31:16 TX Almost Full Flag Value

Number of words from FIFO Full when the Almost Full Flag will be asserted (i.e.

FIFO contains {FIFO Size – Almost Full Value} words or more.)

D15:0 TX Almost Empty Flag Value

Number of words from FIFO Empty when the Almost Empty Flag will be asserted.

2.5 Channel Rx Almost Flags: Local Offset 0x0014 / 0x0024 / 0x0034 / 0x0044

The Rx Almost Flag Registers are used to set the Almost Full and Almost Empty Flags for the transmit FIFOs. The Almost Full/Empty Flags may be read as status bits in the Channel Control/Status Register, and are also edge-triggered interrupt sources to the Interrupt Register.

D31:16 RX Almost Full Flag Value

Number of words from FIFO Full when the Almost Full Flag will be asserted (i.e.

FIFO contains {FIFO Size – Almost Full Value} words or more.)

D15:0 RX Almost Empty Flag Value

Number of words from FIFO Empty when the Almost Empty Flag will be asserted

2.6 Channel FIFO: Local Offset 0x0018 / 0x0028 / 0x0038 / 0x0048

The Channel FIFO Register passes serial data to/from the serial controller. The same register is used to access both the Transmit FIFO (writes) and Receive FIFO (reads).

D31:8 RESERVED

D7:0 Channel FIFO Data

2.7 Channel Control/Status: Local Offset 0x001C / 0x002C / 0x003C / 0x004C

The Channel Control/Status Register provides the reset functions and data transceiver enable controls, and the FIFO Flag status for each channel.

D31 RESERVED

D30:24 Channel Control Bits

D30 Receive Gap Enable

0 = Bit D24 (Receiver Enable) controls when data reception starts.

1 = Data reception will begin when D24=1 and RxE is negated. This waits for a gap in the data stream before data reception begins.

D29 Receive Bit Count Reset

1 = Reset Receive Bit Counter

General Standards Corporation

8302A Whitesburg Drive ·Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@generalstandards.com

D28	Transmit MSB/LSB	
	0 = Transmit MSB first (defa	ult)
	1 = Transmit LSB first	
D27	Receive MSB/LSB	
	0 = Receive MSB first (defau	ılt)
	1 = Receive LSB first	
D26	Stop Transmit On FIFO Empty	
		oled under software control (D17)
		led (D25 = '0') if Tx FIFO becomes empty
D25	Transmit Enable	rate (1)
	1 = Transmitter enabled. No	te that cable transceiver direction should be set and
	transceivers enabled before the	
D24	Receive Enable	1144104444 2144040 10 0044
22.		that cable transceiver direction should be set and
	transceivers enabled before the	
	transcervers enabled before a	ne receive Emaile is see.
D23:20	LED Control	
220120		back of the PCB. See Section 5.3 for more
	detailed information about the LEDs.	out of the feet see seemen ele for more
	demine information acoust the 222 st	
D19	Rx Stop on Full	
	r	
D18:8 Cha	nnel Status Bits	
D18	Rx FIFO Underflow	
D17	Tx FIFO Overflow (Latched)	
D16	Rx FIFO Overflow (Latched)	
	1= Rx Data was lost due to R	x Overflow.
	Note: This bit is latched.	Write D16=1 to clear.
D15	Rx FIFO Full Flag Lo	(0 = Rx FIFO Full)
D14	Rx FIFO Almost Full Flag Lo	(0 = Rx FIFO Almost Full)
D13	Rx FIFO Almost Empty Flag Lo	(0 = Rx FIFO Almost Empty)
D12	Rx FIFO Empty Flag Lo	(0 = Rx FIFO Empty)
D11	Tx FIFO Full Flag Lo	(0 = Tx FIFO Full)
D10	Tx FIFO Almost Full Flag Lo	(0 = Tx FIFO Almost Full)
D9	Tx FIFO Almost Empty Flag Lo	(0 = Tx FIFO Almost Empty)
D8	Tx FIFO Empty Flag Lo	(0 = Tx FIFO Empty)
	1.0	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
D7:0	Channel Control Bits	
D7	RESERVED	
D6	RESERVED (Channel Reset)	
D5:D4	RESERVED (FIFO Rx/Tx Allocation)
D3:D2	RESERVED	
D1	Reset Channel Rx FIFO (Pulsed)	
	Note: This value will automatically	clear to '0'.
$\mathbf{D0}$	Reset Channel Tx FIFO (Pulsed)	
	Makes This realise will automotically	-14- (0)

Note: This value will automatically clear to '0'.

General Standards Corporation 8302A Whitesburg Drive - Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@genéralstandards.com

2.8 **Interrupt Registers**

There are 32 on-board interrupt sources (in addition to PLX interrupts), each of which may be individually enabled. Four interrupt registers control the on-board interrupts – Interrupt Control, Interrupt Status, Interrupt Edge/Level, and Interrupt Hi/Lo. The Interrupt sources are:

IRQ#	Source	Default Level	Alternate Level
IRQ0	Ch1 RxE	Rising Edge	Falling Edge
IRQ1	Ch1 Tx FIFO Almost Empty	Rising Edge	Falling Edge
IRQ2	Ch1 Rx FIFO Almost Full	Rising Edge	Falling Edge
IRQ3	Ch1 RxSp	Rising Edge	Falling Edge
IRQ4	Ch2 RxE	Rising Edge	Falling Edge
IRQ5	Ch2 Tx FIFO Almost Empty	Rising Edge	Falling Edge
IRQ6	Ch2 Rx FIFO Almost Full	Rising Edge	Falling Edge
IRQ7	Ch2 RxSp	Rising Edge	Falling Edge
IRQ8	Ch3 RxE	Rising Edge	Falling Edge
IRQ9	Ch3 Tx FIFO Almost Empty	Rising Edge	Falling Edge
IRQ10	Ch3 Rx FIFO Almost Full	Rising Edge	Falling Edge
IRQ11	Ch3 RxSp	Rising Edge	Falling Edge
IRQ12	Ch4 RxE	Rising Edge	Falling Edge
IRQ13	Ch4 Tx FIFO Almost Empty	Rising Edge	Falling Edge
IRQ14	Ch4 Rx FIFO Almost Full	Rising Edge	Falling Edge
IRQ15	Ch4 RxSp	Rising Edge	Falling Edge
IRQ16	Ch1 Tx FIFO Empty	Rising Edge	Falling Edge
IRQ17	Ch1 Tx FIFO Full	Rising Edge	Falling Edge
IRQ18	Ch1 Rx FIFO Empty	Rising Edge	Falling Edge
IRQ19	Ch1 Rx FIFO Full	Rising Edge	Falling Edge
IRQ20	Ch2 Tx FIFO Empty	Rising Edge	Falling Edge
IRQ21	Ch2 Tx FIFO Full	Rising Edge	Falling Edge
IRQ22	Ch2 Rx FIFO Empty	Rising Edge	Falling Edge
IRQ23	Ch2 Rx FIFO Full	Rising Edge	Falling Edge
IRQ24	Ch3 Tx FIFO Empty	Rising Edge	Falling Edge
IRQ25	Ch3 Tx FIFO Full	Rising Edge	Falling Edge
IRQ26	Ch3 Rx FIFO Empty	Rising Edge	Falling Edge
IRQ27	Ch3 Rx FIFO Full	Rising Edge	Falling Edge
IRQ28	Ch4 Tx FIFO Empty	Rising Edge	Falling Edge
IRQ29	Ch4 Tx FIFO Full	Rising Edge	Falling Edge
IRQ30	Ch4 Rx FIFO Empty	Rising Edge	Falling Edge
IRQ31	Ch4 Rx FIFO Full	Rising Edge	Falling Edge

For all interrupt registers, the IRQ source (IRQ31:IRQ0) will correspond to the respective data bit (D31:D0) of each register (D0 = IRO0, D1 = IRO1, etc.).

All FIFO interrupts are edge triggered active high. This means that an interrupt will be asserted (assuming it is enabled) when a FIFO Flag transitions from FALSE to TRUE (rising edge triggered) or TRUE to FALSE (falling edge). For example: If Tx FIFO Empty Interrupt is set for Rising Edge Triggered, the interrupt will occur when the FIFO transitions from NOT EMPTY to EMPTY. Likewise, if Tx FIFO Empty Interrupt is set as Falling Edge Triggered, the interrupt will occur when the FIFO transitions from EMPTY to NOT EMPTY.

8302A Whitesburg Drive · Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@generalstandards.com

All Interrupt Sources share a single interrupt request back to Local Interrupt Input of the PCI9056 PLX chip. This Local Interrupt input must be enabled in the PLX Interrupt Control/Status Register to be recognized as a PCI interrupt source.

2.8.1 Interrupt Control: Local Offset 0x0060

The Interrupt Control register individually enables each interrupt source. A '1' enables each interrupt source; a '0' disables. An interrupt source must be enabled for an interrupt to be generated.

2.8.2 Interrupt Status/Clear: Local Offset 0x0064

The Interrupt Status Register shows the status of each respective interrupt source. If an interrupt source is enabled in the Interrupt Control Register, a '1' in the Interrupt Status Register indicates the respective interrupt has occurred. The interrupt source will remain latched until the interrupt is cleared, either by writing to the Interrupt Status/Clear Register with a '1' in the respective interrupt bit position, or the interrupt is disabled in the Interrupt Control Register. Clearing an interrupt which is not enabled or not asserted will have no effect.

2.8.3 Interrupt Edge/Level: Local Offset 0x0068

The Interrupt Edge Register is an information only (read only) register. This register can be used by a generic driver to determine if the interrupt source is edge or level triggered. All interrupt sources on the SIO4BX2-SYNC are edge triggered.

2.8.4 Interrupt Hi/Lo: Local Offset 0x006C

The Interrupt Edge Register is an information only register which denotes all interrupt sources as edge triggered. The Interrupt Hi/Lo Register defines each interrupt source as rising edge or falling edge. For example, a rising edge of the TX Empty source will generate an interrupt when the TX FIFO becomes empty. Defining the source as falling edge will trigger an interrupt when the TX FIFO becomes "NOT Empty".

2.9 Channel Pin Source: Local Offset 0x0080 / 0x0084 / 0x0088 / 0x008C

The Channel Pin Source Register configures the function of the cable interface signals as well as controls the transceiver protocols.

31	30	29	28	27	26	25	24	
Cable Xcvr	X	Ext Loopback	DCE/DTE		Transceiver Protocol Mode			
Enable		Enable	Mode					

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Int		XXX		TxD	X	Rx	ίD	R	хE	RxC	Tx	Sp	TxA	uxC		TxD		T	ĸΕ	TxC		TxC	
LB				Idl		S	rc	S	rc	Src	S	rc	S	rc		Src		S	rc	Idl		Src	

Pin Source Register

D31 Cable Transceiver Enable

Setting this bit turns on the cable transceivers. If this bit is cleared, the transceivers are tristated.

D30 Termination Disable

D29 External Loopback Mode

When Cable Transceiver is enabled (Bit D31), this bit will automatically loopback the TxC/RxC, TxD/RxD, and TxE/RxE signals at the cable (transceivers enabled).

Notes:

- The DCE/DTE mode will select the set of signals (DCE or DTE) to be looped back
- Since the transceivers will be enabled in this mode, all external cables should be disconnected to prevent interference from external sources.

D28 DCE/DTE Mode

D19

TxD Idl

This bit sets up the transceiver direction. Setting the mode to '1' will enable DCE mode, while '0' will set DTE mode (default). See Section 5.3 for a detail of the signal direction as defined for each mode.

D27:24 Transceiver Protocol Mode

D27	D26	D25	D24	Transceiver Mode
0	0	0	0	RS422 / RS485
0	0	1	0	RS232
0	0	X	1	RESERVED
0	1	X	X	RESERVED
1	X	X	X	RESERVED

TxD driven low ('0') while Idle (Envelope Negated)

D23	Int LB	0 1	Normal Mode Internal Loopback – TxC, TxD, TxE looped back internally
D22:21	RESERVED		
D20	TxC Idl	0 1	TxC driven low ('0') while Idle (Envelope Negated) TxC driven high ('1') while Idle (Envelope Negated)

		1	TxD driven high ('1') while Idle (Envelope Negated)
D18:17	RESERVED		
D16	RxD Src	0 1	RxD Active Hi (NRZ) RxD Active Lo (NRZB)
D15:14	RxE Src	00 01 1X	RxE Active Hi RxE Active Lo RxE Disabled
D13	RxC Src	0 1	Sample Data on Falling Edge of Clock (Data Change on Rising) Sample Data on Rising Edge of Clock (Data Change on Falling)
D12:11	TxSp Src	00 01 10 11	Disabled Input '0' '1'
D10:9	TxAuxC Src	00 01 10 11	Tri-State ProgClk/2 '0' '1'
D8:6	TxD Src	0X0 0X1 1X0 1X1	TxD Active Hi (NRZ) TxD Active Lo (NRZB) '0' '1'
D5:4	TxE Src	00 01 10 11	TxE Active Hi TxE Active Lo '0' '1'
D3	TxC Idl	0 1	TxC driven while Idle (Envelope Negated) No TxC while Idle (Envelope Negated)
D2:0	TxC Src	000 001 010 011 1X0	Clock Data on Rising Edge of Internal Programmable Clock / 2 (Data/Envelope change on rising edge) Clock Data on Falling Edge of Internal Programmable Clock / 2 (Data/Envelope change on falling edge) Clock Data on Rising Edge of External Clock (Data/Envelope change on rising edge) Clock Data on Falling Edge of External Clock (Data/Envelope change on falling edge) Clock Data on Falling Edge of External Clock (Data/Envelope change on falling edge)

1X1 '1'

General Standards Corporation 8302A Whitesburg Drive · Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@genéralstandards.com

2.10 Channel Pin Status: Local Offset 0x0090 / 0x0094 / 0x0098 / 0x009C

In addition to standard inputs, unused inputs may be utilized as general purpose input signals. The Channel Pin Status Register allows the input state of all the IO pins to be monitored. Output signals as well as inputs are included to aid in debug operation.

D31:D10	RESERVED
D9	TxSp Output
D8	RxSp Input
D7	TxAuxC Output
D6	TxE Output
D5	TxD Output
D4	TxC Output
D3	RxAuxC Input
D2	RxE Input
D1	RxD Input
D 0	RxC Input

2.11 Programmable Clock Registers: Local Offset 0x00A0 / 0x00A4 / 0x00A8

The Programmable Clock Registers allow the user to program the on-board programmable oscillator and configure the channel clock post-dividers. As GSC should provide software routines to program the clock, the user should have no need to access these registers. See Section 4.6 for more information.

2.12 Tx Count Register: Local Offset 0x00B0 / 0x00B4 / 0x00B8 / 0xBC

D31:16 Gap Bit Count

When transmitting, these bits indicate the number of idle clocks between transmitted

words. To output a continuous stream of bits, this value should be set to zero.

D15:0 Transmit Bit Count

These bits indicate the number of consecutive bits to transmit for each transmit word.

2.13 Rx Count Register: Local Offset 0x00C0 / 0x00C4 / 0x00C8 / 0xCC

D31:16 RESERVED
D15:0 Receive Bit Count

When receiving, these bits indicate the number of consecutive bits received for the last

received word.

2.14 FIFO Count Register: Local Offset 0x00D0 / 0x00D4 / 0x00D8 / 0x00DC

The FIFO Count Registers display the current number of words in each FIFO. This value, along with the FIFO Size Registers, may be used to determine the amount of data which can be safely transferred without over-running (or under-running) the FIFOs.

General Standards Corporation

High Performance Bus Interface Solutions

D31:D16 Number of words in Rx FIFO D15:D0 Number of words in Tx FIFO

2.15 FIFO Size Register: Local Offset 0x00E0 / 0x00E4 / 0x00E8 / 0x00EC

The FIFO Size Registers display the sizes of the installed data FIFOs. This value is calculated at power-up. This value, along with the FIFO Count Registers, may be used to determine the amount of data which can be safely transferred without over-running (or under-running) the FIFOs.

D31:D16 Size of installed Rx FIFO D15:D0 Size of installed Tx FIFO

FW Type ID Register: Local Offset 0x00F8 2.16

This register allows boards to be designed with different functionality on each channel. For example, a board could contain two Standard SIO channels (with Z16C30), and two Raw Synchronous channels. Each byte corresponds to a channel. This register is read only – it reflects the implemented logic.

D31:D24	Channel 4 FW Type $-04 = Sync$
D23:D16	Channel 3 FW Type $-04 = Sync$
D15:D8	Channel 2 FW Type $-04 = Sync$
D7:D0	Channel 1 FW Type $-04 = Sync$

2.17 Features Register: Local Offset 0x00FC

USC_RxC Source

D5:3

The Features Register allows software to account for added features in the firmware versions. Bits will be assigned as new features are added. See Appendix B for more details.

D31:23	RESERVED
D22	1 = Rx Stop on Full in Ch_Ctrl
D21	1 = SRAM Debug
D20	1 = No Rx Status byte (std only)
D19:D18	10 = Internal Timestamp (std only)
D17:D16	01 = FPGA Reprogram field
D15:D14	01 = Configurable FIFO space
D13	1 = FIFO Test Bit
D12	1 = FW Type Reg
D11:8	Features Rev Level
	$\mathbf{0xA} = \mathbf{BX} \text{ level}$
D7	1 = Demand Mode DMA Single Cycle Disable feature implemented
D6	1 = Board Reset
D5	1 = FIFO Counters/Size
D4	1
D3:0	Programmable Clock Configuration
	0x4 = Two CY22393 - 6 Oscillators

General Standards Corporation

8302A Whitesburg Drive 'Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@generalstandards.com

The clock source must agree with the USC Clock setup (USC I/O Control Reg D5:3) to ensure the signal is not being driven by both the USC and the FPGA.

D5	D4	D3	USC_RxC Source	USC IOCR D2:D0 Setup
0	0	0	Prog Clock	000 (Input)
0	0	1	Inverted Prog Clock	000 (Input)
0	1	0	'0'	000 (Input)
0	1	1	'1'	000 (Input)
1	0	0	Cable RxC Input	000 (Input)
1	0	1	Cable RxAuxC Input	000 (Input)
1	1	0	RESERVED	
1	1	1	Driven from USC	IOCR D2:D0 != 000 (Output)

D2:0 USC_TxC Source

Since this signal is bidirectional (it may be used as either an input or output to the USC), the clock source must agree with the USC Clock setup (USC IO Control Reg D2:0) to ensure the signal is not being driven by both the USC and the FPGA.

D2	D1	D 0	USC_TxC Source	USC IOCR D5:D3 Setup
0	0	0	Prog Clock	000 (Input)
0	0	1	Inverted Prog Clock	000 (Input)
0	1	0	'0'	000 (Input)
0	1	1	'1'	000 (Input)
1	0	0	Cable RxC Input	000 (Input)
1	0	1	Cable RxAuxC Input	000 (Input)
1	1	0	RESERVED	
1	1	1	Driven from USC	IOCR D5:D3 != 000 (Output)

16 Rev₀

CHAPTER 3: PROGRAMMING

3.1 Serial Interface

3.1.1 Serial Interface Definition

The Pin Source Register contains information which defines the physical serial interface. This register contains fields to setup the polarity of the TxC, RxC, TxD, RxD, TxE, and RxE signals. As these signals are all individually configurable, it is possible to setup the Receive channel differently than the Transmit channel. In addition, the TxD Idle field defines the state of the TxD signal while idling (not sending data).

The MSB/LSB for both transmit and receive is setup in the Channel Control/Status register. Note that this acts only upon the current byte. MSB will send/receive bit D7 first, LSB will send/receive D0 first. For word lengths of other than 8 bits, the word should be right/left justified accordingly. Since the MSB/LSB only acts upon 8 bits, if the bit length is greater than 8 bits, the bits will only be reversed on a byte by byte basis. The user may need to rearrange bytes for bit lengths greater than 8 bits.

3.1.2 Two Signal Interface

A two signal interface is a special setup case of the three signal serial interface. In a three signal interface, an envelope signal defines when data is valid. For a two wire case, every clock indicates valid data. When data is invalid, the clock simply stops.

For transmit, the TxC Idle field defines the two signal interface. By setting the TxC Idle enable, the clock will stop during idle periods. The TxCount and TxGap still apply. The TxE signal may be left enabled and simply unconnected, or may be reconfigured as a general purpose output.

For receive, a two wire interface is defined when RxE is set as a general purpose input. When RxE is set as an input, the internal logic simply assumes the internal RxE is always valid. Thus, all data is considered valid based on the RxC clock.

3.1.3 Tx Bit Count / Tx Gap

The TxCount/TxGap register defines the number of consecutive bits to transmit in a word, as well as the number of idle clock cycles between words. This configurability allows this board to interface with a custom user interface. All data sent to/from the board is in 8 bit increments. Therefore, if TxCount is not a multiple of 8, all extra bits will be padded with zeros. For example, a TxCount of 14 would use 14 bits out of two consecutive bytes (and the two extra bits would be ignored).

Note that there is no hardware interlock to ensure that TxCount bits are present in the Tx FIFO before a transmit can begin. If TxCount is greater than 8 bits (and transmit is enabled), the first 8 bits will be transmitted as soon as it is loaded into the TxFIFO. If the TxFIFO is empty when the first 8 bits complete, a gap will be inserted. Therefore, if the TxCount is greater than 8 bits, some data should be preloaded into the TxFIFO before the transmit is enabled. This will ensure a continuous data stream of the correct length.

For a continuous data stream, the TxCount should be set to 8 and TxGap to 0.

Certain TxCount/TxGap combinations may not work correctly in a very few instances. In general, a data word cannot be transmitted or received faster than 500ns per byte. If the TxCount, TxGap, and serial data rate result in a throughput rate of greater than 1 byte in 500ns, correct operation cannot be guaranteed. If an application requires such an interface, please contact GSC tech support to determine if the board will work for your application.

3.1.4 Rx Bit Count

The Rx Bit Count is primarily a debug feature to check that the expected number of bits in a frame were received. The Rx Bit Count will simply count received bits in the current frame. It will reset at the beginning of each frame based on RxE, or may be reset via the Rx Bit Count Reset bit of the Channel Control Register. For a two signal interface, this register will count all bits received.

3.2 FIFOs

Deep transmit and receive FIFOs are the key to providing four high speed serial channels without losing data. Several features have been implemented to help in managing the on-board FIFOs. These include FIFO flags (Empty, Full, Almost Empty and Almost Full) presented as both real-time status bits and interrupt sources, and individual FIFO counters to determine the exact FIFO fill level. DMA of data to/from the FIFOs provides for fast and efficient data transfers.

A single memory address is used to access both transmit and receive FIFOs for each channel. Data written to this memory location will be written to the transmit FIFO, and data read from this location retrieves data from the receive FIFO. Individual resets for the FIFOs are also provided in the Channel Control/Status Register.

3.2.1 FIFO Flags

Four FIFO flags are present from each on-board FIFO: FIFO Empty, FIFO Full, FIFO Almost Empty, and FIFO Almost Full. These flags may be checked at any time from the Channel Control/Status Register. Note these flags are presented as active low signals ('0' signifies condition is true). The Empty and Full flags are asserted when the FIFO is empty or full, respectively. The Almost Empty and Almost Full flags are software programmable such that they may be asserted at any desired fill level. This may be useful in determining when a data transfer is complete or to provide an indicator that the FIFO is in danger of overflowing and needs immediate service.

The Almost Flag value represents the number of bytes from each respective "end" of the FIFO. The Almost Empty value represents the number of bytes from empty, and the Almost Full value represents the number of bytes from full (NOT the number of bytes from empty). For example, the default value of "0x0007 0007" in the FIFO Almost Register means that the Almost Empty Flag will indicate when the FIFO holds 7 bytes or fewer. It will transition as the 8^{th} byte is read or written. In this example, the Almost Full Flag will indicate that the FIFO contains (FIFO Size -7) bytes or more. For the standard 32Kbyte FIFO, an Almost Full value of 7 will cause the Almost Full flag to be asserted when the FIFO contains 32761 (32k -7) or more bytes of data .

The values placed in the FIFO Almost Registers take effect immediately, but should be set while the FIFO is empty (or the FIFO should be reset following the change). Note that this is different than the method for FIFO Flag programming which has previously been implemented on SIO4 boards. No FIFO programming delay is necessary

8302A Whitesburg Drive • Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@generalstandards.com

3.2.2 FIFO Counters

The FIFO Size and FIFO count registers can be used to determine the exact amount of data in a FIFO as well as the amount of free space remaining in a FIFO. The size of each FIFO is auto-detected following a board reset. Real-time FIFO counters report the exact number of data words currently in each FIFO. By utilizing this information, the user can determine the exact amount of data which can safely be transferred to the transmit FIFOs or transferred from the receive FIFO. This information should help streamline data transfers by eliminating the need to continuously check empty and full flags, yet still allow larger data blocks to be transferred.

3.2.3 FIFO Size

Unlike previous SIO4 boards which had ordering options for different FIFO sizes, the PCIe-SIO4BX2 always uses 32k byte deep FIFOs.

3.3 Board vs. Channel Registers

Since four serial channels are implemented on a single board, some registers apply to the entire board, while others are unique to each channel. It is intended that each channel can act independently, but the user must keep in mind that certain accesses will affect the entire board. Typically, the driver will adequately handle keeping board and channel interfaces separate. However, the user must also be mindful that direct access to certain registers will affect the entire board, not just a specific channel.

The Board Control and Board Status registers provide board level controls. Fundamentally, a board reset will do just that, reset all the GSC registers and FIFOs to their default state. Interrupt control is also shared among all registers, although local bits are segregated by channel. The device driver should take care of appropriately handling the inter-mixed channel interrupts and pass them on to the application appropriately.

3.4 Programmable Oscillator / Programmable Clocks

The On-Board Programmable Oscillator provides each channel with a unique programmable clock source using a Cypress Semiconductor CY22393 Programmable Clock generator. In order to program the oscillator, it is necessary to calculate and program values for different clock frequencies. General Standards has developed routines to calculate the necessary values for a given setup and program the clock generator. These clock setup routines have been incorporated into most of the drivers.

The default clock configuration at power-up for the programmable clock on all channels is 20MHz. See Appendix A for more detailed information concerning programming the on-board clock frequencies, as well as common frequency setups. The specific driver manual should have information on clock setup. If not, please contact GSC tech support for assistance.

3.5 Multiprotocol Transceiver Control

The SIO4BX2-SYNC has multiprotocol transceivers which allow RS422/RS485 or RS232. The mode is set by the Protocol Mode field in the Pin Source Register.

3.6 DCE/DTE Mode

As all signals are bidirectional, the DCE or DTE mode will set the direction for each signal. For the transceivers to be configured as either DTE or DCE, set the DCE/DTE Enable bit in the Pin Source register (D31). The following table gives the input/output configuration for each signal: The DCD direction is set in the Pin Source register fields, independent of DCE/DTE mode.

Signal	DTE	DCE
TxC	TxC Out	RxC In
RxC	RxC In	TxC Out
TxD	TxD Out	RxD In
RxD	RxD In	TxD Out
TxE	TxE Out	RxE In
RxE	RxE In	TxE Out
AuxC	Direction controlle	d by Pin Source Reg D10:9
Spare	Direction controlled	by Pin Source Reg D12:11

3.7 Loopback Modes

For normal operation, the Cable Transceiver Enable bit of the Pin Source Register will turn on the cable transceivers, and the DTE/DCE Mode bit will set the transceiver direction. These bits must be set before any data is transmitted over the user interface.

Additionally, there are several ways to loopback data to aid in debug operations. Data may be physically looped back externally by connecting one channel to another. For DB25 cable applications, this simple loopback method will require a gender changer to connect one channel to another. One channel will be set to DTE mode, the other to DCE mode. Data sent from one channel will be received on the other.

An External Loopback mode (External Loopback bit set in the Pin Source Register) is also provided to loop back data on the same channel without requiring any external cabling. In this mode, the DTE/DCE mode will control the location for the transmit signals (TxC, TXD, TXE), and the receive signals will use these same signals as the receive inputs. Since signals are transmitted and received through the transceivers, this mode allows the setup to be verified (including signal polarity) without any external connections. Since external signals could interfere with loopback operation, all cables should be disconnected when running in external loopback mode.

An Internal Loopback Mode is also provided which loops back on the same channel internal to the board. This provides a loopback method which does not depend on DTE/DCE mode or signal polarity. This can remove cable transceiver and signal setup issues to aid in debugging. If the Cable Transceivers are enabled, the transmit data will still appear on the appropriate transmit pins (based on DTE/DCE Mode setting). The Pin Status register will not reflect internally looped back signals, only signals to/from the transceivers.

3.8 General Purpose IO

Unused signals at the cable may be used for general purpose IO. The Pin Source and Pin Status Registers provide for simple IO control of all the cable interface signals. For outputs, the output value is set using the appropriate field in the Pin Source Register. All inputs can be read via the Pin Status register.

Since TxAuxC and RxAuxC share a single pin, the TxAuxC Src field in the Pin Source Register controls whether AuxC will function as an input or output. If the field is set to 'Tri-State', the pin is set as RxAuxC Input. Otherwise, The TxAuxC output will be driven (and the RxAuxC input will be equal to the TxAuxC output). Likewise, the TxSp Src field in the Pin Source Register controls the Spare pin direction. If the field is set to 'Tri-State', RxSp will be an Input. Otherwise, RxSp will follow the TxSp output.

3.9 Interrupts

The PCIe-SIO4BX2-SYNC has a number of interrupt sources which are passed to the host CPU via the PCI IRQA. Since there is only one physical interrupt source for the board, the interrupts pass through a number of "levels" to get multiplexed onto this single interrupt. The interrupt originates in the PCI9056 PCI Bridge, which combines the internal PLX interrupt sources (DMA) with the Local on-board interrupt. The single Local Interrupt is made up of the interrupt sources described in Section 2.8. The user should be aware that interrupts must be enabled at each level for an interrupt to occur. For example, if a FIFO interrupt is used, it must be setup and enabled in the GSC Firmware Interrupt Control Register, as well as enabled in the PCI9056. In addition, the interrupt must be acknowledged and/or cleared at each level following the interrupt. The driver will typically take care of setting up and handling the PCI9056 interrupts as well as most local interrupts. The specific driver manual should have more information on how to handle these interrupts.

3.10 PCI DMA

The PCI DMA functionality allows data to be transferred between host memory and the SIO4BX2 onboard FIFOs with the least amount of CPU overhead. The PCI9056 bridge chip handles all PCI DMA functions, and the device driver should handle the details of the DMA transfer. (Note: DMA refers to the transfer of Data from the on-board FIFOs over the PCI bus. This should not be confused with the DMA mode of the USC – transfer of data between the USC and the on-board FIFOs. This On-Board DMA is setup by the driver and should always be enabled).

There are two PCI DMA modes – Demand Mode DMA and Non-Demand Mode DMA. Demand Mode DMA refers to data being transferred on demand. For receive, this means data will be transferred as soon as it is received into the FIFO. Likewise, for transmit, data will be transferred to the FIFOs as long as the FIFO is not full. The disadvantage to Demand Mode DMA is that the DMA transfers are dependent on the user data interface. If the user data transfer is incomplete, the Demand mode DMA transfer will also stop. If a timeout occurs, there is no way to determine the exact amount of data transferred before it was aborted.

Non-Demand Mode DMA does not check the FIFO empty/full flags before or during the data transfer – it simply assumes there is enough available FIFO space to complete the transfer. If the transfer size is larger than the available data, the transfer will complete with invalid results. This is the preferred mode for DMA operation. The FIFO Counters may be used to determine how much space is available for DMA so that the FIFO will never over/under run. Demand Mode DMA requires less software control, but runs the risk of losing data due to an incomplete transfer. The GSC library uses this method (Non-Demand DMA and checking the FIFO counters) as the standard transfer method.

8302A Whitesburg Drive · Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@generalstandards.com

General Standards Corporation

High Performance Bus Interface Solutions

CHAPTER 4: PCI INTERFACE

4.0 PCI Interface Registers

The PMC/PCI interface is handled by a PCI9056 I/O Accelerator from PLX Technology. The PCI interface is compliant with the 5V, 66MHz 32-bit PCI Specification 2.2. The PCI9056 provides dual DMA controllers for fast data transfers to and from the on-board FIFOs. Fast DMA burst accesses provide for a maximum burst throughput of 264MB/s to the PCI interface. To reduce CPU overhead during DMA transfers, the controller also implements Chained (Scatter/Gather) DMA, as well as Demand Mode DMA.

Since many features of the PCI9056 are not utilized in this design, it is beyond the scope of this document to duplicate the PCI9056 User's Manual. Only those features, which will clarify areas specific to the PCIe-SIO4BX2 are detailed here. Please refer to the PCI9056 User's Manual (See Related Publications) for more detailed information. Note that the BIOS configuration and software driver will handle most of the PCI9056 interface. Unless the user is writing a device driver, the details of this PCI Interface Chapter may be skipped.

4.1 PCI Registers

The PLX 9056 contains many registers, many of which have no effect on the SIO4BX2 performance. The following section attempts to filter the information from the PCI9056 manual to provide the necessary information for a SIO4BX2 specific driver.

The SIO4BX2 uses an on-board serial EEPROM to initialize many of the PCI9056 registers after a PCI Reset. This allows board specific information to be preconfigured correctly.

4.1.1 PCI Configuration Registers

The PCI Configuration Registers allow the PCI controller to identify and control the cards in a system.

PCI device identification is provided by the Vendor ID/Device ID (Addr 0x0000) and Sub-Vendor ID/Sub-Device ID Registers (0x002C). The following definitions are unique to the General Standards SIO4BX2 boards. All drivers should verify the ID/Sub-ID information before attaching to this card. These values are fixed via the Serial EEPROM load following a PCI Reset, and cannot be changed by software.

Vendor ID	0x10B5	PLX Technology
Device ID	0x9056	PCI9056
Sub-Vendor ID	0x10B5	PLX Technology
Sub-Device ID	0x3198	GSC SIO4BXR

The configuration registers also setup the PCI IO and Memory mapping for the SIO4BX2. The PCI9056 is setup to use PCIBAR0 and PCIBAR1 to map the internal PLX registers into PCI Memory and IO space respectively. PCIBAR2 will map the Local Space Registers into PCI memory space, and PCIBAR3 is unused. Typically, the OS will configure the PCI configuration space.

For further information of the PCI configuration registers, please consult the PLX Technology PCI9056 Manual.

8302A Whitesburg Drive · Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@generalstandards.com

4.1.2 Local Configuration Registers

The Local Configuration registers give information on the Local side implementation. These include the required memory size. The SIO4BX2 memory size is initialized to 4k Bytes. All other Local Registers initialize to the default values described in the <u>PCI9056 Manual</u>.

4.1.3 Runtime Registers

The Runtime registers consist of mailbox registers, doorbell registers, and a general-purpose control register. The mailbox and doorbell registers are not used and serve no purpose on the SIO4BX2. All other Runtime Registers initialize to the default values described in the <u>PCI9056 Manual</u>.

4.1.4 DMA Registers

The Local DMA registers are used to setup the DMA transfers to and from the on-board FIFOs. DMA is supported only to the four FIFO locations. The SIO4BX2 supports both Demand (DREQ# controlled) and Non-Demand mode DMA. Both Channel 0 and Channel 1 DMA are supported.

4.1.4.1 DMA Channel Mode Register: (PCI 0x80 / 0x94)

The DMA Channel Mode register must be setup to match the hardware implementation.

Bit	Description	Value	Notes
D1:0	Local Bus Width	11 = 32 bit	Although the serial FIFOs only contain 8 bits of
		00 = 8 bit	data, the register access is still a 32bit access. It is
			possible to "pack" the data by setting the Local
			Bus Width to 8, but this is only guaranteed to
			work with Non-Demand Mode DMA
D5:2	Internal Wait States	0000 = Unused	
D6	Ready Input Enable	1 = Enabled	
D7	Bterm# Input Enabled	0 = Unused	
D8	Local Burst Enable	1 = Supported	Bursting allows fast back-to-back accesses to the
			FIFOs to speed throughput
D9	Chaining Enable (Scatter	X	DMA source addr, destination addr, and byte
	Gather DMA)		count are loaded from memory in PCI Space.
D10	Done Interrupt Enable	X	DMA Done Interrupt
D11	Local Addressing Mode	1 = No Increment	DMA to/from FIFOs only
D12	Demand Mode Enable	X	Demand Mode DMA is supported for FIFO
			accesses on the SIO4BXR.
			(See Section 3.3)
D13	Write & Invalidate Mode	X	
D14	DMA EOT Enable	0 = Unused	
D15	DMA Stop Data Transfer	0 = BLAST	
	Enable	terminates DMA	
D16	DMA Clear Count Mode	0 = Unused	
D17	DMA Channel Interrupt	X	
	Select		
D31:18	Reserved	0	

23 Rev 0

CHAPTER 5: HARDWARE CONFIGURATION

5.0 Board Layout

The following figure is a drawing of the physical components of the PCIe-SIO4BX2-SYNC:

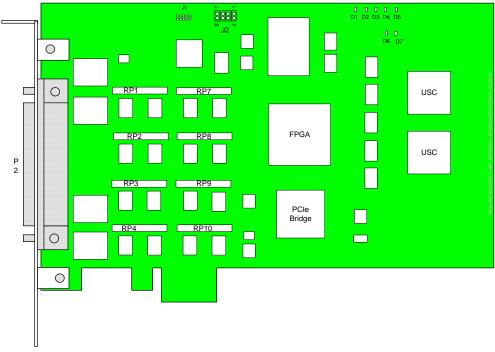


Figure 5-1: Board Layout - Top

5.1 **Board ID Jumper J2**

Jumper J2 allows the user to set the Board ID in the Board Status Register (See Section 2.1.3). This is useful to uniquely identify a board if more than one SIO4BX2-SYNC card is in a system. When the Board ID jumper is installed, it will read '1' in the Board Status Register. The Board Status Register bit will report '0' when the jumper is removed. Refer to Figure 5-1 for Jumper J2 location.

J2 Jumper	Description	Notes
1 - 2	Board ID 1	Board ID 1 in Board Status Register (D0)
3 - 4	Board ID 2	Board ID 2 in Board Status Register (D1)
5 - 6	Board ID 3	Board ID 3 in Board Status Register (D2)
7 - 8	Board ID 4	Board ID 4 in Board Status Register (D3)

5.2 Termination Resistors

The PCIe-SIO4BX2-SYNC transceivers have built in termination resistors for the RS422/RS485 mode. The built in RS422/RS485 termination is a 120 Ohm parallel termination. If desired, the internal termination resistors may be disabled by setting bit D30 in the Pin Source Register.

The board is designed with socketed external parallel termination (if a different value than the internal termination is required). The external termination resistors are 8 pin SIPs. There are 8 termination SIPs – RP1-RP4, RP7-RP10. The external parallel resistors are for RS422/RS485 termination only. Refer to Figure 5-1 for resistor pack locations.

Please contact quotes@generalstandards.com if a different termination value is required.

5.3 LEDs

Five bicolor LEDs (D1-D5) are accessible via software. Refer to Figure 5-1 for these LED locations.

LED D1 is controlled from the Board Control Register. LED_D1 Red is controlled by D25, and LED_D1 Green is controlled D24

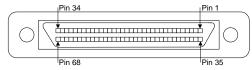
The remaining 4 LEDs are controlled from D23:D20 of the four Channel Control Registers. Each Channel Control Register controls 1 LED. If D23:D22="10", the Red LED will turn off. Likewise, if D23:D22="11", the Red LED will turn on. D21:D20 controls the Green LED in the pair.

LED_D2 is controlled by Ch 4

LED D3 is controlled by Ch 3

LED D4 is controlled by Ch 2

LED_D5 is controlled by Ch 1


Additionally, if all the LED controls are set to 0 in all four of the Channel Control Registers (power up default), the LEDs will display the lower 4 bits of the firmware revision in Green LED_D2 to LED_D5.

LED D6 displays the PCIe link status. It will be green for "No Link" and off when the PCIe link is established.

The remaining LED (D7) displays the firmware status. This LED should flash at power up or after a PCIe reset, then it will turn off. The LED should be off during normal operation.

5.4 **Interface Connector**

User I/O Connector: 68-pin SCSI connector (female) (P2) Part Number: AMP/TYCO 787170-7 Mating Connector: AMP/TYCO 749111-6 (or equivalent)

Note: RS422/RS485 mode or RS232 mode is set on a per channel basis

Pin	RS422	/RS485	RS	232	Pin	RS422/	RS485	RS2	232
#	DTE	DCE	DTE	DCE	#	DTE	DCE	DTE	DCE
1	ΑUΣ	КС1+	Unused (Hi)		35	AUXC3+		Unused (Hi)	
2	AUX	XC1-	AUXC1		36	AUXC3-		AUX	KC3
3		RE1+	Unused (Hi)		37	SPAF		Unuse	` /
4		RE1-		RE1	38	SPAI		SPARE3	
5	RXE1+	TXE1+		ed (Hi)	39	RXE3+	TXE3+	Unuse	` ′
6	RXE1-	TXE1-	RXE1	TXE1	40	RXE3-	TXE3-	RXE3	TXE3
7	RXD1+	TXD1+		d (Hi)	41	RXD3+	TXD3+	Unuse	/
8	RXD1-	TXD1-		TXD1	42	RXD3-	TXD3-	RXD3	
9	RXC1+	TXC1+		ed (Hi)	43	RXC3+	TXC3+	Unuse	/
10	RXC1-	TXC1-	RXC1		44	RXC3-	TXC3-	RXC3	TXC3
11	TXE1+	RXE1+		d (Hi)	45	TXE3+	RXE3+	Unuse	/
12	TXE1-	RXE1-		RXE1	46	TXE3-	RXE3-	TXE3	RXE3
13	TXD1+	RXD1+		d (Hi)	47	TXD3+	RXD3+	Unuse	` ′
14	TXD1-	RXD1-	TXD1		48	TXD3-	RXD3-	TXD3	RXD3
15	TXC1+	RXC1+		d (Hi)	49	TXC3+	RXC3+	Unuse	
16	TXC1-	RXC1-		RXC1	50	TXC3-	RXC3-	TXC3	
17		ND1		ND1	51	SGN		SGND3	
18		ND2		ND2	52	SGN		SGN	
19	RXE2+	TXE2+		d (Hi)	53	RXE4+	TXE4+	Unuse	` /
20	RXE2-	TXE2-		TXE2	54	RXE4-	TXE4-	RXE4	
21	RXD2+	TXD2+		ed (Hi)	55	RXD4+	TXD4+	Unuse	` ′
22	RXD2-	TXD2-	RXD2	TXD2	56	RXD4-	TXD4-	RXD4	TXD4
23	RXC2+	TXC2+		ed (Hi)	57	RXC4+	TXC4+	Unuse	` ′
24	RXC2-	TXC2-	RXC2	TXC2	58	RXC4-	TXC4-	RXC4	TXC4
25	TXE2+	RXE2+		ed (Hi)	59	TXE4+	RXE4+	Unuse	, ,
26	TXE2-	RXE2-	TXE2	RXE2	60	TXE4-	RXE4-	TXE4	RXE4
27	TXD2+	RXD2+		ed (Hi)	61	TXD4+	RXD4+	Unuse	` ′
28	TXD2-	RXD2 -	TXD2	RXD2	62	TXD4-	RXD4-	TXD4	RXD4
29	TXC2+	RXC2+		ed (Hi)	63	TXC4+	RXC4+	Unuse	/
30	TXC2-	RXC2-	TXC2	TXC2	64	TXC4-	RXC4-	TXC4	
31		RE2+	Unused (Hi)		65	SPAF		Unused (Hi)	
32		RE2-		RE2	66	SPAI		SPA	
33		KC2+		ed (Hi)	67	AUX		Unuse	, ,
34	AUX	XC2-	AU.	XC2	68	AUX	KC4-	AUX	KC4

Table 1- Front Panel (P2) IO Connections

CHAPTER 6: ORDERING OPTIONS

6.0 **Ordering Information**

PCIe - SIO4BX2 - SYNC - < Temperature >

Option	Valid Selections	Description
Temperature	 blank>	0°C to +70°C – Commercial (Standard)
	I	-40°C to +85°C – Industrial

6.1 **Interface Cable**

General Standards Corporation can provide an interface cable for the PCIe-SIO4BX2-SYNC board. This standard cable is a twisted pair cable for increased noise immunity. Several standard cable lengths are offered, or the cable length can be custom ordered to the user's needs. Versions of the cable are available with connectors on both ends, or the cable may be ordered with a single connector to allow the user to adapt the other end for a specific application. A standard cable is available which will breakout the serial channels into eight DB25 connectors. Shielded cable options are also available. Please consult our sales department for more information on cabling options and pricing.

6.2 **Device Drivers**

General Standards has developed many device drivers for The SIO4BX2 boards, including VxWorks, Windows, Linux, and LabView. As new drivers are always being added, please consult our website (www.generalstandards.com) or consult our sales department for a complete list of available drivers and pricing.

6.3 **Custom Applications**

Although the PCIe-SIO4BX2-SYNC board provides extensive flexibility to accommodate most user applications, a user application may require modifications to conform to a specialized user interface. General Standards Corporation has worked with many customers to provide customized versions based on the SIO4BX2 boards. Please consult our sales department with your specifications to inquire about a custom application

General Standards Corporation

High Performance Bus Interface Solutions

APPENDIX A: PROGRAMMABLE OSCILLATOR PROGRAMMING

The 4 on-baord clock frequencies are supplies via two Cypress Semiconductor CY22393 Programmable Clock Generatosr. In order to change the clock frequencies, this chip must be reprogrammed. This document supplies the information necessary to reprogram the on-board clock frequencies. GSC has developed routines to calculate and program the on-board oscillator for a given set of frequencies, so it should not be necessary for the user need the following information – it is provided for documentation purposes. Please contact GSC for help in setting up the on-board oscillator.

The CY22393 contains several internal address which contain the programming information. GSC has mirrored this data internal to the FPGA (CLOCK RAM) to allow the user to simply setup the data in the FPGA RAM and then command the on-board logic to program the clock chip. This isolates the user from the hardware serial interface to the chip. For detailed CY22393 programming details, please refer to the Cypress Semiconductor CY22393 dat sheet.

For the SIO4BX2, a second programmable oscillator has been added to assure that each channel has a dedicated PLL. (The older SIO4BX uses 3 PLLs in a single CY22393 to generate all four clocks). To implement this, a second CLOCK RAM block was added. CLOCK RAM1 programs the first CY22393 (using CLKA=Ch1_Clk, CLKB=Ch2_Clk, CLKC=Ch3_Clk), and CLOCK_RAM2 programs the second CY22393 (using CLKD=Ch4_Clk). Since the original SIO4BX (with a single CY22393) used CLKD for Ch4_Clk, the same code can be made to support both schemes by simply programming CLKD of the first CY22393.

Each CLOCK RAM block is accessed through 2 registers – Address Offset at local offset 0x00A0 and Data at local ffset at 0x00A4 (CLOCK RAM1) or 0x00AC (CLOCK RAM2). The user simply sets the RAM Address register to the appropriate offset, then reads or writes the the RAM data. The Programmable Osc Control/Status register allows the user to program the CY22393 or setup the clock post-dividers.

The GSC Local Programmable Clock Registers are defined as follows:

0x00A0 - RAM Address Register

Defines the internal CLOCK RAM address to read/write

0x00A4 – RAM Data1 Register

Provides access to the CLOCK RAM1 pointed to by the RAM Addr Register.

0x00AC - RAM Data2 Register

Provides access to the CLOCK RAM2 pointed to by the RAM Addr Register.

0x00A8 - Programmable Osc Control/Status Register

Provides control to write the contents of the CLOCK RAM to the CY22393 and setup additional post-dividers for the input clocks.

Control Word (Write Only)

D 0	Program Oscillator	
	1 = Program contents of CLOCK RAM to CY22393.	
	Automatically resets to 0.	
D1	Measure Channel 1 Clock	
D2	Measure Channel 2 Clock	
D3	Measure Channel 3 Clock	

General Standards Corporation

8302A Whitesburg Drive · Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@generalstandards.com

General Standards Corporation

High Performance Bus Interface Solutions

D4	Measure Channel 4 Clock
D5	Reserved (Unused)
D/	Ctatas Wand Daadlaala Cantu

D6 Status Word Readback Control

0 => Status Word D31-D8 == Measured Channel Value 1 => Status Word D31-D8 == Control Word D23-D0

D7 Post-divider set

0 = Ignore D23-D8 during Command Word Write

1 = Set Channel Post-Dividers from D23-D8 during Command Word Write

D11-D8 Channel 1 Post-Divider
D15-D12 Channel 2 Post-Divider
D19-D16 Channel 3 Post-Divider
D23-D20 Channel 4 Post-Divider
D31-D24 Reserved (Unused)

Status Word (Read Only)

D 0	Program Oscillator Done
------------	-------------------------

0 =Oscillator Programming in progress.

D1 Program Oscillator Error

1 = Oscillator Programming Error has occurred.

D2 Clock Measurement complete.

0 =Clock Measurement in progress.

D7-D3 Reserved (Unused)

D31-D8 If Command Word D6 = 0,

Measured Channel Clock Value

If Command Word D6 = 1, Control Word D23-D0

Channel Clock Post-Dividers:

The Control Word defines 4 fields for Channel Clock Post-dividers. These post-dividers will further divide down the input clock from the programmable oscillator to provide for slow baud rates. Each 4 bit field will allow a post divider of 2ⁿ. For example, if the post-divider value=0, the input clock is not post-divided. A value of 2 will provide a post-divide of 4 (2²). This will allow for a post-divide value of up to 32768 (2¹⁵) for each input clock. Bit D7 of the Control word qualifies writes to the post-divide registers. This allows other bits in the command register to be set while the post-divide values are maintained.

Channel Clock Measurement:

The Control Word defines 4 bits which will select one of the 4 channel clocks (input clock + post-divide) for a measurement. This will allow the user feedback as to whether the programmable oscillator was programmed correctly. To measure a clock, select the clock to measure in the Control word, and also clear Bit D6 to allow for readback of the result. Read back the Status Word until D2 is set. Status Word D31-D8 should contain a value representing 1/10 the measured clock frequency (Value * 10 = Measured Frequency in MHz). Keep in mind that this value will not be exactly the programmed frequency due to the 100ppm (0.01%) accuracy of the on-board reference.

The Internal RAM is defined as follows: RAM Address 0x08–0x57 correspond directly to the CY22393 registers.

Address	Description	Default Value		
0x00 - 0x05	Reserved (Unused)	0x00		
0x06	Reserved	0xD2		
0x07	Reserved	0x08		
0x08	ClkA Divisor (Setup0)	0x01		
0x09	ClkA Divisor (Setup1)	0x01		
0x0A	ClkB Divisor (Setup0)	0x01		
0x0B	ClkB Divisor (Setup1)	0x01		
0x0C	ClkC Divisor	0x01		
0x0D	ClkD Divisor	0x01		
0x0E	Source Select	0x00		
0x0F	Bank Select	0x50		
0x10	Drive Setting	0x55		
0x11	PLL2 Q	0x00		
0x12	PLL2 P Lo	0x00		
0x13	PLL2 Enable/PLL2 P Hi	0x00		
0x14	PLL3 Q	0x00		
0x15	PLL3 P Lo	0x00		
0x16	PLL3 Enable/PLL3 P Hi	0x00		
0x10 0x17	OSC Setting	0x00		
0x17 0x18	Reserved	0x00		
0x19	Reserved	0x00 0x00		
0x14	Reserved			
0x1B	Reserved	0xE9 0x08		
0x1C-0x3F	Reserved (Unused)	0x08 0x00		
	` /			
0x40 0x41	PLL1 Q (Setup0) PLL1 P Lo 0 (Setup0)	0x00 0x00		
-				
0x41 0x43	PLL1 Enable/PLL1 P Hi (Setup0) PLL1 Q (Setup1)	0x00 0x00		
0x44 0x45	PLL1 P Lo 0 (Setup1) PLL1 Enable/PLL1 P Hi (Setup1)	0x00 0x00		
		0x00 0x00		
0x46	PLL1 Q (Setup2)			
0x47	PLL1 P Lo 0 (Setup2)	0x00		
0x48	PLL1 Enable/PLL1 P Hi (Setup2)	0x00		
0x49	PLL1 Q (Setup3)	0x00		
0x4A	PLL1 P Lo 0 (Setup3)	0x00		
0x4B	PLL1 Enable/PLL1 P Hi (Setup3)	0x00		
0x4C	PLL1 Q (Setup4)	0x00		
0x4D	PLL1 P Lo 0 (Setup4)	0x00		
0x4E	PLL1 Enable/PLL1 P Hi (Setup4)	0x00		
0x4F	PLL1 Q (Setup5)	0x00		
0x50	PLL1 P Lo 0 (Setup5)	0x00		
0x51	PLL1 Enable/PLL1 P Hi (Setup5)	0x00		
0x52	PLL1 Q (Setup6)	0x00		
0x53	PLL1 P Lo 0 (Setup6)	0x00		
0x54	PLL1 Enable/PLL1 P Hi (Setup6)	0x00		
0x55	PLL1 Q (Setup7)	0x00		
0x56	PLL1 P Lo 0 (Setup7)	0x00		
0x57	PLL1 Enable/PLL1 P Hi (Setup7)	0x00		
0x58-0xFF	Reserved (Unused)	0x00		

General Standards Corporation 8302A Whitesburg Drive ·Huntsville, AL 35802 Phone: (256)880-8787 or (800)653-9970 FAX: (256)880-8788 Email: sales@genéralstandards.com

APPENDIX B: FIRMWARE REVISIONS / FEATURES REGISTER

Since SIO4 boards can exist across multiple form factors and with various hardware features, the firmware/features registers attempt to help identify the exact version of a SIO4 board. This appendix provides a more detailed breakdown of what the firmware and features registers, and detail differences between the firmware revisions.

Firmware Register - Local Offset 0x00 (0xE5100400)

D31:16	HW Board	Rev	0xE510	PCIe-SIO4BX2 Rev NR	
	D31	1 = Features	Register Present		
	D30	1 = Complies with this standard			
	D29	1 = 66MHz PCI bus interface			
		0 = 33MHz	PCI bus interface		
	D28	1 = 64 bit P	CI bus interface		
		0 = 32 bit bu	us interface		
	D27:D24	Form Factor	ſ		
		0 = Res	erved		
		1 = PCI	[
	2 = PMC				
		3 = cPC	CI		
		4 = PC1	104P		
		5 = PCI	le .		
		6 = XM	IC		
	D23:D20	HW Board ((sub-field of form	factor)	
		0 = PCI	le4-SIO8BX2		
		1 = PCI	le-SIO4BX2		
	D19:D16	HW Board I	Rev (lowest rev fo	r firmware version)	
		0 =NR			
D15:8	Firmware Type ID		0x01	Std Firmware default	
			0x04	Sync Firmware default	
D7:0	Firmware R	evision	XX	Firmware Version	
	0x00 – Initial release from PMC66-SIO4BXR v417				

General Standards Corporation

High Performance Bus Interface Solutions

Feature Register - Local Offset 0xFC (0x00197AF4)

D31:23 RESERVED

D22 $1 = Rx Stop on Full in Ch_Ctrl$

D21 1 = SRAM Debug

D20 1 = No Rx Status byte (std only)

D19:D18 Timestamp

01 = single external clock

10 = single internal clock

D17:D16 FPGA Reprogram field

01 = Present

00 = Not Present

D15:D14 Configurable FIFO space

01 - Rx/Tx select. Up to 32k deep FIFOs

D11:D8 FW Feature Level (Set at common code level)

0x01 = RS232 support, Pin Source Change

0x02 = Multi-Protocol support

0x03 = Common Internal/External FIFO Support 0x04 = FIFO Latched Underrun/Overrun/Level 0x05 = Demand mode DMA Single Cycle for Tx 0x06 = DMA_Single_Cycle_Dis, updated Pin_Src

0x07 = Rx Underrun Only, Reset Status 0x08 = Clock to 50Hz with 10Hz resolution

0x09 = No Legacy Support (No Clock Control Register)

0x0A = Falling Int fix

D4 1 = FW ID complies with this standard

D3:D0 Clock Oscillator

0x0 = Fixed

0x1 = ICD2053B (1 Osc) 0x2 = ICD2053B (4 Osc) 0x3 = CY22393 (4 Osc) 0x4 = 2 x CY22393 (6 Osc)