	16SDI

	16-Bit, Multiple Channel Sigma-Delta, Analog Input

	Windows 2K\XP\Vista\W7 Driver

User Manual

	Manual Revision: August 15, 2011

	General Standards Corporation
8302A Whitesburg Drive
Huntsville, AL 35802
Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

Preface

Copyright ©2002, General Standards Corporation
Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com
General Standards Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing and reviews are performed before release to ECO control, General Standards Corporation assumes no responsibility for any errors that may exist in this document. No commitment is made to update or keep current the information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product or circuit described herein, nor is any license conveyed under any patent rights or any rights of others.
General Standards Corporation assumes no responsibility for any consequences resulting from omissions or errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve reliability, performance, function, or design.
ALL RIGHTS RESERVED.

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then they would have to purchase their own copy of the software.

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this software without reservation and without notification to its users.
The information in this document is subject to change without notice. This document may be copied or reproduced provided it is in support of products from General Standards Corporation. For any other use, no part of this document may be copied or reproduced in any form or by any means without prior written consent of General Standards Corporation.
GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

Table of Contents

1. Scope…………………………………………………………………………..
 4

2. Hardware Overview………………………………………………………….
 5

3. Referenced Documents……………………………………………………..
 6

4. General Standards API………………………………………………………
 7

4.1 SDI_FindBoards()………………………………………………………...
 8

4.2 SDI_Get_Handle()…………………………………………………………
 9

4.3 SDI_Read_Local32()……………………………………………………...
10

4.4 SDI_Write_Local32()……………………………………………………...
11

4.5 SDI_Close_Handle()………………………………………………………
12

4.6 Interface Functions………………………………………………………
13

4.6.1 SDI_Initialize()……………………………………………………
13

4.6.2 SDI_Autocal()…………………………………………………….
14

4.6.3 SDI_Set_Input _Mode()…………..…………………………….
15

4.6.4 SDI_Set_Voltage _Range()…………………………………….
16

4.6.5 SDI_Clear_Buffer()………………………………………………
17

4.6.6 SDI_EnableInterrupt()…………………………………………..
18

4.6.7 SDI_DisableInterrupt()………………………………………….
19

4.6.8 SDI_Open_DMA_Channel()…………………………………….
20
4.6.9 SDI_DMA_Transfer()…………………………………………….
21
4.6.10 SDI_Close_DMA_Channel()……………………………………
22
4.6.11 SDI_Register_Interrupt_Notify()…..………………………….
23

4.6.12 SDI_Cancel_Interrupt_Notify()….…………………………….
24

5. Driver Installation………………………………………………………………
25
6. Example Program………………………………………………………………
26
1. Scope

The Purpose of this document is to describe how to interface with the 16SDI Windows Driver API developed by General Standards Corporation (GSC). This software provides the interface between the “Application Software” and the 16SDI board.

The 16SDI Driver API Software executes under control of the Windows Operating System. The 16SDI is implemented as a standard Windows driver API written in “C” programming language. The 16SDI Driver API Software is designed to operate on CPU boards containing x86 processors.

The 16SDI Driver consists of a Windows driver with an interface layer (GSC API) to simplify the interface to the PLX Driver. While an application may interface directly to the PLX driver, interfacing to the GSC API layer, will simplify the application software development.

2. Hardware Overview

The 16SDI board is a single-width board that provides 16-bit analog input. In addition to providing six or more analog input channels and two or more independently adjustable rate generators, the board supports multi-board clocking and synchronization. The board is functionally and mechanically compatible with the IEEE PCI local bus specification Revision 2.2, and supports the "plug-n-play" initialization concept. Power requirements consist of +5 VDC in accordance with the PCI specification, and operation over the specified temperature range is achieved with minimal (200 LFPM) air-cooling. Specific details pertaining to physical characteristics and performance are contained in the PCI-16SDI product specification.

The board is designed for minimum off-line maintenance, and includes internal monitoring features that eliminate the need for disconnecting or removing the module from the system for calibration. All system input and output system connections are made at the panel bracket through a single 40-pin dual-ribbon cable connector.

** Number of Channels and Rate Generators available are dependant on the ordering options provided by the customer.

3. Referenced Documents

The following documents provide reference material for the 16SDI board:

· PMC-16SDI User’s Manual – GSC

· PLX Technology, Inc. PCI 9080 PCI Bus Master Interface Chip data sheet.

4.
General Standards API

This section describes the interface to the 16SDI GSC API. The 16SDI GSC API isolates the user from operating system specific requirements, allowing the API to be used with all Windows operating systems (W2K\XP\Vista\Win7).

The 16SDI Win Driver provides an interface to a 16SDI card and a Windows application, which run on a x86 target processor. The driver is installed and devices are created when the driver is started during boot up. The functions of the driver can then be used to access the board. Devices are created with the name “board x” where “x” is the device number. Device numbers start at 1 and for each board found the device number will increment.

Included in the board driver software is a menu driven board application program. This program is delivered undocumented and unsupported but may be used to exercise the card and the device driver. It can also be used as an example for programming the 16SDI device.

The user interfaces to the GSC API at the basic level with the following functions:

· Find Boards() - Detects all PLX Devices connected via the PCI Bus.

· Get Handle() - Opens a driver interface to one 16SDI card.

· Readlocal32() - Reads local registers from one 16SDI card.

· Writelocal32() - Writes to local Registers of one 16SDI card.

· Close Handle() - Closes a driver interface to one 16SDI card.

The user MUST call Find Boards to determine what PLX devices are installed in the system, and get the associated board number. The user then calls the Get Handle function with each board number to be used. This function obtains a handle to the device and initializes the device parameters within the API / driver. The user is then free (assuming no errors) to write / read the registers as desired. The user should always call Close Handle when done to free resources prior to exiting.

The function definitions and parameters are defined in the following paragraphs of this section.

** Number of Rate Generator and Rate Divisor Registers listed throughout this document are dependent on the ordering options provided by the customer.

4.1 SDI_FindBoards()

Detects all PLX Devices connected via the PCI Bus.

Prototype:

U32 SDI_FindBoards
(char

*pDeviceInfo,

 U32

 *ulError);

Returns – Total number of PLX boards found in the system or –1L if error or no boards found.

Where:

pDeviceInfo – Contains “Board #: Bus: Slot: SSID: Type” info for PLX boards found.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.2 SDI_Get_Handle

Initializes Handle for the passed board number IN THE DRIVER.

Prototype:

U32 SDI_Get_Handle
(U32

*ulError,

 U32

BoardNumber);

Returns – Error code if invalid board number passed (0, >10), else # boards.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.3 SDI_Read_Local32

Read a value from the board local register.

Prototype:

U32 SDI_Read_Local32
(U32

BoardNumber,
 U32

*ulError,

 U32

ulRegister);

Returns – Value read from the register.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

ulRegister – Register to read. Values defined in SDIeintface.h

BCR

Board Control Register

RATE_CONTROL_A

Rate Generator-A Register

RATE_CONTROL_B

Rate Generator-B Register

RATE_CONTROL_C

Rate Generator-C Register

RATE_CONTROL_D

Rate Generator-D Register

RATE_ASSIGN

Ch/Group Rate Gen Assignments Register

RATE_DIV_00_01

Ch0/1 Sample Rate Divisor Register

RATE_DIV_02_03

Ch2/3 Sample Rate Divisor Register

RATE_DIV_04_05

Ch4/5 Sample Rate Divisor Register

RATE_DIV_06_07

Ch6/7 Sample Rate Divisor Register

RATE_DIV_08_09

Ch8/9 Sample Rate Divisor Register

RATE_DIV_10_11

Ch10/11 Sample Rate Divisor Register

RATE_DIV_12_13

Ch12/13 Sample Rate Divisor Register

RATE_DIV_14_15

Ch14/15 Sample Rate Divisor Register

BUFFER_THRESHOLD
Buffer Control & Status Register

FW_REV

Firmware Rev Register - Undocumented

BUFF_SIZE

Sample Size Register

AUTOCAL

Gain / Offset Register - Undocumented

INPUT_DATA_BUFFER
Input Data Buffer Register

** Number of Rate Generator and Rate Divisor Registers listed above are dependent on the ordering options provided by the customer.

4.4 SDI_Write_Local32

Write a value to the board local register.

Prototype:

void SDI_Write_Local32
(U32

BoardNumber,
 U32

*ulError,

 U32

ulRegister

 U32

uiValue);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

ulRegister – Register to write. Values defined in SDIeintface.h

BCR

Board Control Register

RATE_CONTROL_A

Rate Generator-A Register

RATE_CONTROL_B

Rate Generator-B Register

RATE_CONTROL_C

Rate Generator-C Register

RATE_CONTROL_D

Rate Generator-D Register

RATE_ASSIGN

Ch/Group Rate Gen Assignments Register

RATE_DIV_00_01

Ch0/1 Sample Rate Divisor Register

RATE_DIV_02_03

Ch2/3 Sample Rate Divisor Register

RATE_DIV_04_05

Ch4/5 Sample Rate Divisor Register

RATE_DIV_06_07

Ch6/7 Sample Rate Divisor Register

RATE_DIV_08_09

Ch8/9 Sample Rate Divisor Register

RATE_DIV_10_11

Ch10/11 Sample Rate Divisor Register

RATE_DIV_12_13

Ch12/13 Sample Rate Divisor Register

RATE_DIV_14_15

Ch14/15 Sample Rate Divisor Register

BUFFER_THRESHOLD
Buffer Control & Status Register

FW_REV

Firmware Rev Register - Undocumented

BUFF_SIZE

Sample Size Register

AUTOCAL

Gain / Offset Register - Undocumented

INPUT_DATA_BUFFER
Input Data Buffer Register

uiValue – Value to write to the selected register.

 Refer to the 16SDI user manual for all register / bit definitions.

4.5 SDI_Close_Handle

Closes the device handle and frees the resources.

Prototype:

void SDI_Close_Handle
(U32

BoardNumber,
 U32

*ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6 Interface Functions

These functions allow the user to perform certain operations on the board, without having to keep track of individual register values and bit definitions.

4.6.1 SDI_Initialize

Perform a reset on the board. All register values are set to defaults.

Prototype:

void SDI_Initialize

(U32

BoardNumber,
 U32

*ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.2 SDI_Autocal

Perform an auto calibration on the board. This operation generates new calibration correction values which are stored in nonvolatile EEprom.

Prototype:

U32 SDI_Autocal

(U32

BoardNumber,
 U32

*ulError);

Returns – 0x55 –Insufficient Resources, 0xAA for Interrupt timeout, or 0/1 for Autocal status.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.3 SDI_Set_Input_Mode

Sets the input mode of the board: Differential, Single-Ended, or SelfTest.

Prototype:

void SDI_Set_Input_Mode
(U32

BoardNumber,

 U32

*ulError

 U32

ulInputMode);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

ulInputMode – Valid values: Differential (0), SE (1), Zero SelfTest (2), VREF SelfTest (3).

4.6.4 SDI_Set_Voltage_Range

Sets the input voltage range of the board: ±1.25, ±2.50, ±5.00, ±10.00.

Prototype:

void SDI_Set_Voltage_Range
(U32

BoardNumber,

 U32

*ulError

 U32

ulRange);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

ulRange – Valid values: ±1.25 (0), ±2.50 (1), ±5.00 (2), ±10.00 (3).

4.6.5 SDI_Clear_Buffer

Clears all data from the input buffer.

Prototype:

void SDI_Clear_Buffer
(U32

BoardNumber,
 U32

*ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.6 SDI_EnableInterrupt

Enables the desired interrupt in the local register, and for the PCI bus. See 16SDI User manual for interrupt sources.

Prototype:

U32 SDI_EnableInterrupt
(U32

BoardNumber,

 U32

ulValue,

 U32

ulType,

 U32

*ulError);

Returns – Interrupt value set.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulValue – The desired interrupt value to set, valid for 0 – 7.

ulType – The desired type to set, valid for LOCAL (0) or DMA (1).

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.7 SDI_DisableInterrupt

Disables the interrupt in the local register, and for the PCI bus.

Prototype:

void SDI_DisableInterrupt
(U32

BoardNumber,

 U32

ulValue,

 U32

ulType,

 U32

*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulValue – The desired interrupt value to disable, valid for 0 – 7.

ulType – The desired type to disable, valid for LOCAL (0) or DMA (1).

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.8 SDI_Open_DMA_Channel

Opens the desired DMA channel for transferring data from the board input buffer.

Prototype:

void SDI_Open_DMA_Channel
(
U32

BoardNumber,

U32

ulChannel,

U32

*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulChannel – The desired channel to open, valid for channel 0 or 1 .

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.9 SDI_DMA_Transfer

Transfers the desired number of WORDS from the board input buffer.

Prototype:

U32 SDI_DMA_Transfer
(
U32

BoardNumber,
 U32

ulChannel,

 U32

ulWords,

 U32*

uData,

 U32

*ulError);

Returns – WORDS transferred if no error.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulChannel – The DMA channel previously opened, valid for channel 0 or 1.

ulWords – Number of WORDS to transfer. (BYTES = ulWords*4).

uData – User data buffer.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.10 SDI_Close_DMA_Channel

Closes the desired DMA channel and releases resources.

Prototype:

void SDI_Close_DMA_Channel(
U32

BoardNumber,

 U32

ulChannel,

 U32

*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulChannel – The desired channel to close, valid for channel 0 or 1.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.11 SDI_Register_Interrupt_Notify

Attaches a user supplied handle to an interrupt which can be used in WaitForSingleObject for notification when the interrupt occurs. A sample use is provided in the Autocal function of the example program.

 SDI_Register_Interrupt_Notify(ulBdNum, &event, 0x01, LOCAL, &ulErr);

…

… Setup and code to cause interrupt to happen

…

 EventStatus = WaitForSingleObject(myHandle,10 * 1000);

…

 switch(EventStatus)

 {

case WAIT_OBJECT_0:

… code to perform desired action

break;

default:

cprintf("Interrupt was NOT requested...");

break;

 }

Prototype:

void SDI_Register_Interrupt_Notify
(U32

BoardNumber,

 GS_NOTIFY_OBJECT
event,

 U32

ulInterrupt,

 U32

ulType,

 U32

*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

event – User supplied handle is stored in the event.

ulInterrupt – The desired interrupt to attach to.

ulType – The desired type to attach to LOCAL (0) or DMA (1).

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.12 SDI_Cancel_Interrupt_Notify

Releases a user supplied handle from interrupt notification.

Prototype:

void SDI_Cancel_Interrupt_Notify
(U32

BoardNumber,

 GS_NOTIFY_OBJECT
event,

 U32

*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

event – Event where the user supplied handle was stored.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

 5.
Driver Installation

This section details driver installation on the target system. Any current driver previously installed for the 16SDI must be uninstalled prior to this installation to avoid interference.

To install the driver, API, and associated example files, insert the CD ROM into the drive and close the bay. The installation should commence automatically and display user prompts. Follow the onscreen instructions to complete the installation.

Should the installation fail to automatically start, Select Start (Run (Browse on the Windows toolbar/popup and browse to find Setup.exe on the CD ROM. Click on OK to commence the installation.

The following files are installed on the target system:

OS dependent\…\GS16SDI.sys

OS dependent\…\GS16SDIM.sys

OS dependent\…\GSebApi.dll

Program Files\General Standards\Sigma Delta C\SDI eDriver C.dll

Program Files\General Standards\Sigma Delta C\SDI eDriver C.lib

Program Files\General Standards\Sigma Delta C\SDI eExample_16Ch.c

Program Files\General Standards\Sigma Delta C\SDI eExample_6Ch.c

Program Files\General Standards\Sigma Delta C\Tools.c

Program Files\General Standards\Sigma Delta C\Tools.h

Program Files\General Standards\Sigma Delta C\CioColor.h

Program Files\General Standards\Sigma Delta C\SDIintface.h

Program Files\General Standards\Sigma Delta C\16SDI.inf

Program Files\General Standards\Sigma Delta C\16SDIeb.inf

Program Files\General Standards\Sigma Delta C\Example_16Ch.exe

Program Files\General Standards\Sigma Delta C\Example_6Ch.exe

6.
Example Program

This section describes the example program, and the files required to develop an application.

The complied example program allows the user to exercise the installed device, while observing the inputs or outputs. To execute, double click on ‘Example.exe’. Refer to the Driver Installation section for file location.

The source is provided to educate the user with the GSC API function calls and provide a working example to aid the user with application development. To build the example program using MS Visual C++, create a project and add the following files:

Source Files
(SDI eExample_16Ch.c

(Tools.c

Header Files
(SDIeintface.h

(CioColor.h

(Tools.h

Resource Files
(SDI eDriver C.lib
Select Build ([ProjectName].exe on the toolbar.

NOTE: SDI eDriver C.dll must be in the project directory to run the example.
Contact GSC for example programs (drivers) for other development environments (i.e LabVIEW(, LabWindows/CVI(, etc.)

	3
General Standards Corporation, Phone: (800) 653-9970

