General Standards Corporation
S104 Application Interface
User Manual version 1.6.4

September 4, 2013



Table of Contents

WIN32 INSTAHALION. .. .eeiiiiec it s e e sbbe e s eabe e s sraeeans 4
10 [ =] P o] o IR 5
L 1U D £ T=Tot A= (o PSSR 9
SYSIEM LEVEI ROULINES ..ottt e 10
GSCRINABOAITS. ... .veiiieiieictiie ettt et e et e e s e e e s b e e e sab e e s sbb e e s ebbeeesbaeeeanes 10
GSCGELEITOISIIING ...ttt bbbttt bbb 11
BOArd LEVEI ROULINES ......eviiviieiiie ettt sttt sabe e s ebb e s eba e bae e e 12
GSCOPEN ..ttt 12
1104 [0 1] 13
(1Yol 1= 1) {0 P RRROTT 14
LT ol €= AV =T £5] o] 15
GSCLOCAIREGISIEIREAM. .......ccueeiiiiiie it 16
GSCLOCAIREGISIENVIITE .....c.veeveceee sttt ettt ae e 17
GSCAIOCPNYSICAIMEMONY ...t 18
GSCMaAPPRYSICAIMEMOIY ......cviiiiiiccie et 19
GScUNMAPPRYSICAIIMEIMOIY ......cvoiiiiiiiiieieieee e 20
Channel LEVEI ROULINES .......cooviiiiiie ettt ettt ettt sbb e sbb e e s sbae e sbaeeeas 21
GSCSIOACNANNEIRESEL ...ttt e e et e e e s e ebb e e e e s sbeeeeesns 21
GSCSIOAChANNEIRESEIRXFITO ..veiiviii ittt 22
GSCSIOAChaNNEIRESEITXFITO.....ciceeiiic ettt s 23
GsCcSio4ChannelRegIStErREAM .........ccvvcieiiecicie e 24
GSCSIOACANNEIREGISIEIVVIITE ...t 25
T oY [0 L=l { =TS = (o] (P 26
GscSio4ChannelSetMode / GscSio4ChannelGetMode...........c.oocvcvveeiveeiciee e, 27
GscSio4GetOption/GSCSIOASEIOPLION ......eeveceecieeie e 29
GscSio4ChannelSetPinMode / GscSio4ChannelGetPinMode .........cceeecvveecieeecvieenee, 33
GscSio4ChannelSetPinValue / GscSio4ChannelGetPinValue.........ccccooocveecveeiivieenne, 34
GSCSIOAChANNEIFITOSIZES. ....eveeeeeeeeeeee e e e e ebreeeeans 35
GSCSIOAChANNEIFITOCOUNES......ocicviie ittt 36
GscSio4ChannelSetTxAlmost / GscSio4ChannelGetTXAIMOSt .......c.coevveeecieeeirieeee, 37
GscSio4ChannelSetRxAlmost / GscSio4Channel GetRXAIMOSE ..........coccvveviieeiivieenee, 38
GSCSIOAChanNEIChECKFOIDALA .......ceeiivviiei ittt ssbree e 39
GSCSI04AChanNEIRECEIVEPACKEL .........cviiiiiie ittt 40
GSCSIOAChANNEIRECEIVEDALA ........vveieiciiiie ettt e arae e 41
GscSio4ChannelReceiveDataANAWaLL..........c.ocicvieiiiiiei e 42
GscSio4ChannelReCeiVEPIXPRYSDALA .........ccveiiiiiiieiesie e 44
GSCSIoAChannel TranSMUEDALA. ........c.coccviiiiiiiiiie e 45
GscSio4Channel TransmitData ANAWaL ...........ooeiivviiiiiiiee e 46
GscSio4Channel TransmitPIXPhySData. .........ccveiviiiiiiieecc e 47
GSCSio4ChannelQUENYTIANSTET .......cciiiiiieiieeee e e 48
GSCSIoAChannNelWaItFOrTraNSTEr ... 49
GSCSIOAChaNNEIFIUSNTIANSTEL ... 50
GSCSIo4ChannelREMOVETIANSTE ......cccviiiii e 51
GSCFINUBOAITS. ....evieieceeeie ettt ettt e e st e e e s et e e e s sab e e e e s sabbbeeesebbeaeessbreneesns 52



GscSio4ChannelRegiSterINTEITUPL .......c.ei e e 52

GSCSIOACANNEISEICIOCK ...t 54
ProtoCOl LEVEI ROULINES. ......cciiiiiiieiiieie ettt sttt st 55
GSCSIOAHAICGEIDETAUILS ... e 55
GscSio4HdlcSetConfig / GScSIOAHAICGEtCONTIG.......cceiviiviriiiiiieiciee e 56
GSCSIOAASYNCGEIDETAUILS ..o 57
GscSio4AsyncSetConfig / GSCSI04ASYNCGELICONTIG...ccveiviiiiiieriieie e 58
GSCSI04BISYNCGEIDETAUILS......c.eeiveee e 59
GscSio4BiSyncSetConfig / GscSio4BiSyncGetConfig......coovvvvveiiinieninieiiesieee 60
GSCSIOASYNCGEIDETAUILS. .....cviciiicieee et 61
GscSio4SyncSetConfig / GSCSI04SYNCGEtCONTIG ......oveivviviiiiiiiieieee e 62
GSCSI04BiSYNCLOGEIDETAUILS.......c.eevieeieceece e 63
GscSio4BiSyncl16SetConfig / GscSio4BiSync16GetConfig.......cocvvvvvveveiieiveniennnene 64
GSCSIO4BISYNCLOGEITXCOUNES. ....veevieiieiieeie ettt ettt sreesre e re e esre e 65
GSCSI04BISYNCLIEGEIRXCOUNES ...ttt 66
GscSio4BiSYNCLOENtErHUNIMOUE .........oovveieeieciee e 67
GSCSIOABISYNCLOADOITX ..ttt 68
GSCSIOABISYNCLOPAUSE .......ccveevieitieie ettt e et sraeste e beete e e sreesneenee e 69
GSCSIOABISYNCLORESUME .....ouiiiiieiitiete sttt bbb 70
Structures and Macro DefinitioNS .........cooeriiiiiiiiieeee e 71
DEVICES STIUCKUIE ...ttt ettt e s este e ereenbeeneenneenes 71
Interrupt Callback ProtOtYPe.......c.coveiiiiiie ettt 71
Channel Mode DEfINITIONS........ccuviiiiieiecie e neeenee s 72
Channel Mode Configuration StIUCLUIES .........c.cccveiieiiiie e 73
GSC_ASYNC_CONFIG STUCIUIE......ccueiiiieiiiieiie et 73
GSC_HDLC _CONFIG SEIUCKUIE ...ttt 74
GSC_BISYNC_CONFIG StrUCIUIE.....cueiieiieiieieiesie et 75
GSC_SYNC_CONFIG SITUCTUIE. .....eeeiiie ettt 76
GSC_BISYNC16_CONFIG StrUCIUIE.....ccteiiiiieiieiieeiee e 77
Channel Encoding DefinitioNS..........ccooiiiiiiiiie e 78
Channel Protocol and Termination DefinitionS ..........cccoovvvereiieieesece e 79
Channel Interrupt DefinitioNS ..........cocvoiiiiiie e 80
Channel Pin DefiNITIONS.........ccviiiiieieee e nneenee e 81
Channel Parity DefinitioNnS.........c.coviiiiii i 82
Channel Stop Bits DEfiNITION ..........oiiiiiiiieiei e 83
LOOPhAaCK DEFINITIONS. .....ccuiiiiiicsie ettt re e 83
HDLC CRC DEFINITIONS......iiiiiiieieeie et e e sae e e e seaneesneenes 83
Local Register DefiNITIONS .......cccuiiiiiiie et 84
Channel RegiSter DEfiNITIONS ..........ccoiiiiiiieieie e 85
Miscellaneous TOKen DefiNItiONS .........c.cccuoiiiiiiiiiiiie e 86



Introduction

This document describes the Application Programmers Interface (API) for the
General Standards Corporation 1/O Interface boards. Some API functions apply only to
certain hardware. Each function contains the list of boards that it supports. For examples
of how to use the API functions, refer to the source code included in the APl examples.
These examples are located in the sub-directories named samples/SIO4B_Test on Win32
systems and in /usr/local/GscApi/Examples on linux systems.

This API was written using Microsoft Visual Studio .NET 2003 and is compatible
with C#.Net and VB.Net as well as Win32 console and MFC applications, both
“managed” and “unmanaged”. Microsoft Visual C++ 6.0 is supported as well. The API
also supports the Linux platform and the GNU C compiler.

Win32 Installation

The API support files are installed during the standard installation of the driver. The
API support files are placed, by default, into the C:\Program Files\General Standards
Corporation\GscApi\ directory and subdirectories and consist of the following files:

GscApi.h — This is the header file that should be included in any source files that
utilize the API. This file contains the function prototypes and constant
definitions needed to access the API.

GscApi.lib — This is the import library file that should be included in your project
so that the linker can find the API functions.

GscApi.dll — This is the dynamically linked library file that contains the actual
API code. It should be located in the same directory as your
executable or in your system path so that your application can access
the API functions. This file will also be installed to your system32
directory during installation.

It is recommended that you install the driver/API before installing the SIO4B card.
After the installation completes, shut the system down and install the SIO4B card.



Under Windows XP, you may get the following warning during the Hardware Wizard’s
installation of the card. You can safely choose Continue Anyway to install the driver.

Hardware Installation

" 'l_., The zoftware pou are installing for this hardware:
L
5104 Board

haz not pazzed Windows Logo testing to verfy its compatibility
with Windows XP. [Tell me why this testing is important. ]

Continuing your installation of thiz software may impair
or destabilize the correct operation of your zystem
either immediately or in the future. Microzoft strongly
recommends that you ztop this installation now and
contact the hardware vendor for software that has
pazsed Windows Logo testing.

Continue Aryway ] EﬁéTDF‘InstallatiDn |

Linux Installation

On the linux platform, the General Standards Corp API support files are packaged in
an autotools tarball file called GscApi-1.3.2.tar.gz. To install the API support files, follow
the standard installation process:

1. Copy the tarball file into a directory where the files can be extracted. Change
directories to the newly created directory. Extract the files in the tar archive with the
command tar xzvf GscApi-1.3.2.tar.gz. This will create a subdirectory called GscApi-
1.3.2 containing the installation files. One of the files in this directory is the INSTALL
file, which also contains instructions for installing the GSC API.

2. Without changing directories, create a new directory named buildGsc, from which
the installation process will be run. The linux command to do this is mkdir buildGsc.

3. Change directories to the buildGsc directory and run the following command:
..IGscApi-1.3.2/configure. This will run a series of checks of your linux platform to
make sure the libraries and header files needed by the API are present. If the
configure command fails some of its checks, install the missing software and rerun the
configure command. See the notes at the end of this section for instructions regarding
how to install software that may be missing from your linux distribution.

4. After the configure command has been executed successfully, type “make” from the
command line. This will build the Gsc API library and samples.

To install the newly built API files, type “make install” from the command line. This
completes the installation process. The API support files are placed, by default, into the
lusr/local/include/GscApi and /usr/local/lib directories and consist of the following files:

5



GscApi.h — This is the header file that should be included in any source files that
utilize the API. This file contains the function prototypes and constant
definitions needed to access the API.

libGscApi — This is the shared library that contains the actual API code. It should
be located in the same directory as your executable or in your system
path so that your application can access the API functions. This file
will also be installed to your system32 directory during installation.

The driver source is installed in the /usr/local/GscApi/PIxLinux directory tree.
The driver must be manually built and loaded as a module. Currently, the PIx Linux
driver is not available on kernel.org, so it is not built into any distributed linux kernels.
To build the driver source, follow these steps:

1. Make sure the environment variable PLX_SDK_DIR is defined and exported.
This should be done by adding the following line to the .profile file in the
user’s home directory:

export PLX_SDK_DIR=/usr/local/GscApi/PIXLinux.

2. To build the Pci9080 driver, type the following from a shell prompt:

cd $PLX_SDK_DIR/driver
Jbuildriver 9080.

3. Toinstall the driver, type the following:

cd $PLX_SDK_DIR/bin
./modload 9080

Once the driver is installed, any of the Gsc or PIx sample applications can be
executed. All the sample applications are built during installation and then installed in the
usr/local/bin directory. This directory should be in the PATH environment variable on
your linux system, so the samples can be executed from any directory.

The source code of each sample application may also be built with the supplied
makefiles. However, one more step is required before attempting to build any of the
sample code. In order to use the GscApi and PciApi shared libraries, the file
/etc/ld.so.conf must include the following line:

fusr/local/lib

If the file does not contain this line, edit the file and add the line. The next time the
linux system is booted, the linux dynamic linker run-time bindings will be updated to



include the Gsc and PIx libraries. The command ‘ldconfig’ may be used to update the
linker run-time bindings if a system reboot is undesirable.

To build a sample application, change directories to the desired application and
type ‘make’ from a shell prompt. The sample applications are located in
lusr/local/GscApi/Examples. The resulting binary executable is written to the ‘App’
subdirectory of the sample source directory. For example, to build and run the
DisplayBoards sample application, type the following from a shell command prompt:

cd /usr/local/GscApi/Examples/DisplayBoards
make

cd App

IDisplayBoards

Note that there is an environment variable called PLX_DEBUG that is recognized by the
sample application makefiles. This variable may be defined in the sample application
makefiles by uncommenting the following line in the desired makefile:

#PLX_DEBUG =1

If this variable is defined, then a debug executable will be built, with the text “ dbg”
suffixed to the filename. In the example above, if the DisplayBoards application is built
for debugging, the name of the executable generated would be DisplayBoards_dbg. It
will be written to the ‘App’ subdirectory, just as it is for the non-debug version of the
application.

The API installation also includes the source code for the GscApi library. It is
located in /usr/local/GscApi/src. The library can be built from the source code with the
makefile provided along with the source code. To build the GscApi library, change
directories to /usr/local/GscApi/src and type “make” from the command line. This will
build a static library and place it in /usr/local/GscApi/src/Library directory. To link this
library with applications instead of the provided shared library, modify the application
makefile as appropriate.



Win32 Project Setup

To utilize the SIO4B-API in your software application, you should include the
GscApi.h header file and the GscApi.lib static library file in your project. The details of
adding these files to your project will differ from compiler to compiler. We will
concentrate on the Microsoft® Visual Studio .NET 2003 IDE. Support for other
compilers may be added in future releases of the SIO4B-API.

First, be sure that your source code file that will make use of the SIO4B-API has the
GscApi.h header file included as follows:

#include "GscApi.h"
Next, be sure that your project has the GscApi.lib static library file included to be

compiled as part of your project as follows (here is a sample of the workspace for the
SI04B_Test included with the SIO4B-API in the Samples directory):

Workspace

_Wurkspace 'SI04E Test' 1 project(z)!

=[5 SID4B_Test files
-9 Source Files

] 5I04B_Test.cpp

] 5I04B_Test.ic

£] 5104B_TestDlg.cpp

E Stdtfe cpp

=] Gaotpilib

=423 Header Files

% Resource.h

=] 5I04B_Testh

=] 5104B_TestDlg.h

=] Stddfxh

-9 Resource Files

=] 5104B_Testico

=] 5104B_Test.ic2

ReadMe. tat

[C7 External Dependencies

B8 ClazsView | & ResourceVisw

Filefiew

Lastly, the GscApi.dll file should be made available to your final executable program
— either by having this file in the same directory or making it available via your system’s
path.



Linux Project Setup

The standard GNU compiler is supported on Linux. To utilize the SIO4B-API in your
software application, you should include the GscApi.h header file in any source code files
that reference API functions or data types just as you would .

The only other requirement for writing application code to use the API is to add the
GscApi and PIxApi libraries to the GNU linker in your makefile. A makefile that builds a
sample application called MyApp, consisting of one ¢ source file called MyApp.c, would
contain linker-related script that looks like the following:

# definition of linker
LINK = libtool -mode=link $(LDFLAGS) -0 $@

# definition of linker flags — here is where the libraries are added to the build.
LDFLAGS =
LIBS = -IGscApi —IPIxApi

# suffix rule to invoke linker
MyApp : MyApp.o $(DEPENDENCIES)
$(LINK) $(LDFLAGS) MyApp.o $(LIBS)



System Level Routines

The System Level Routines perform functions that either apply to all SIO4 boards in
the system, or are not board specific. These routines are used to gather information about
the current system setup. All of these functions return zero if successful or a non-zero
error code if a failure occurs.

GscFindBoards

GscFindBoards(...) is used to report the number of GSC S104 boards in the system as
well as some board specific information. An application may call this function at any
time.

Supported Hardware:
All
Prototype:

int GscFindBoards(
int *boardCount,
GSC_DEVICES_STRUCT *results);
Parameters:

boardCount — a pointer to the location to save the number of boards detected. This value
will be zero if no boards are found.

results — a pointer to the devices structure that will be filled in with the information from
the boards found. If this parameter is NULL, no board specific information will be
returned. The boardCount will, however, still be returned. The devices structure is
defined as follows:

typedef struct

{
int busNumber; /I ldentifies the bus that contains the board
int slotNumber; /I ldentifies the slot that contains the board
int vendorld; /I Identifies the board VVendor
int deviceld; /I ldentifies the device

char serialNumber[25];  // A unique board serial number
} GSC_DEVICES_STRUCT;

10



GscGetErrorString

GscGetErrorString(...) is used to translate the error codes that are returned by the
various API functions into meaningful null-terminated strings. The strings returned by
this function are guaranteed to be less than 80 characters in length.

Supported Hardware:
All

Prototype:
int GscGetErrorString(

int errorCode,
char *errorString);

Parameters:
errorCode — the error code returned by an API function.

errorString — a pointer to a character string that will be filled with the text that
corresponds to the errorCode.

11



Board Level Routines

The Board Level Routines perform functions that apply to a single SIO4 board. These
functions affect all channels of the S104 board. Each of these routines requires the board
number (boardNumber) as the first argument. The board numbers run from 1 up to the
number that is returned from the call to GscFindBoards(...) function. Note that this
number will always be 1 in a single board system.

These routines can be called at any time. All of these functions return zero if
successful or a non-zero error code if a failure occurs.

GscOpen

GscOpen(...) is used to “open” the SIO4 board for operation. It should be called
before any other Board or Channel Level routines and should only be called once. In the
process of opening a board, all four channels are reset and the clock outputs are disabled.
Supported Hardware:

All
Prototype:

int GscOpen( int boardNumber, int headerVersion);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

headerVersion — The version of the api being used by the application. The value
GSC_API_VERSION, from the GscApi.h header file, should always be passed in for
this parameter.

12



GscClose

GscClose(...) is used to “close” the SI04 board. It should be the last AP function
called before the application terminates. This function releases the resources that are used
by the API and driver.

Supported Hardware:

All
Prototype:

int GscClose( int boardNumber);

Parameters:
boardNumber — The number of the desired board. This number corresponds to the results

of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

13



GscGetinfo

GscGetlinfo(...) returns general information about an SIO4 board. The information
is returned in a board info structure.

Supported Hardware:
All
Prototype:

int GscGetInfo(
int boardNumber,
PBOARD_INFO info);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

PBOARD_INFO info — a pointer to the BOARD _INFO structure that holds the retrieved
board information. The BOARD _INFO structure is defined as follows:

typedef struct
{
char apiVersion[20]; /I The installed GscApi library version
char driverVersion[20];  // The installed plx driver version
char  fpgaVersion[20]; /I The fpga version
char  boardType[50]; // The board type, retrieved from the fpga.
} BOARD_INFO, *PBOARD_INFO;

14



GscGetVersions

GscGetVersions(...) returns the various version numbers associated with the API, the
low level driver, and the SIO4 board’s FPGA. The Library and Driver version numbers
are returned in the form: 0OXMMmmee where MM is the major release number, mm is the
minor release number, and ee is the engineering release number. The entire version is
defined as MM.mm.ee for example 1.02.05 is returned as 0x00010205. The FPGA
version number has several encoded fields. The low byte contains the actual version
number. Refer to the hardware users manual for details on the other encoded fields.

Supported Hardware:
All
Prototype:
int GscGetVersions(
int boardNumber,
int *libVersion,
int *driverVersion,
int *fpgaVersion);
Parameters:
boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single

board system.

libVersion — A pointer to the location that will receive the library (API) version number.
If this value is NULL, no value will be returned.

driverVersion — A pointer to the location that will receive the low level driver version
number. If this value is NULL, no value will be returned.

fpgaVersion — A pointer to the location that will receive the FPGA firmware version
number. If this value is NULL, no value will be returned.

15



GsclLocalRegisterRead

GscLocalRegisterRead(...) is used to read the local board registers. These registers
reside within the board’s FPGA. It is not recommended that a user application directly
access these registers. This function is included for diagnostic purposes only.

Supported Hardware:

All
Prototype:

int GscLocalRegisterRead(

int boardNumber,
int reg,
int *value);
Parameters:
boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single

board system.

reg — The address of the register to be read. Macros for these addresses are described in
the section titled “Local Register Definitions”.

value — A pointer to the location that will receive the results of the read operation.

16



GsclLocalRegisterWrite

GscLocalRegisterWrite(...) is used to write to the local board registers. These
registers reside within the board’s FPGA. It is not recommended that a user application
directly access these registers. This function is included for diagnostic purposes only.
Supported Hardware:

All
Prototype:

int GscLocalRegisterWrite(

int boardNumber,
int reg,
int value);
Parameters:
boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single

board system.

reg — The address of the register to be written. Macros for these addresses are described
in the section titled “Local Register Definitions”.

value — The value that is to be written to the local register.

17



GscAllocPhysicalMemory

GscAllocPhysicalMemory(...) is used to attempt to allocate a physically contiguous,
page-locked buffer which is safe for use with DMA operations.

Supported Hardware:
All
Prototype:
int GscAllocPhysicalMemory(
int boardNumber,
PLX_PHYSICAL_MEM *pciMem);
Parameters:
boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single

board system.

pcimem — A pointer to a PLX_PHYSICAL_MEM structure that will contain the buffer
information.

18



GscMapPhysicalMemory

GscMapPhysicalMemory(...) is used to map into user virtual space a buffer
previously allocated with GscAllocPhysicalMemory.

Supported Hardware:
All
Prototype:
int GscMapPhysicalMemory(
int boardNumber,
PLX_PHYSICAL_MEM *pciMem);
Parameters:
boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single

board system.

pcimem — A pointer to a PLX_PHYSICAL_MEM structure that will contain the buffer
information.

19



GscUnmapPhysicalMemory

GscUnmapPhysicalMemory(...) is used to unmap a buffer previously mapped into
user virtual space with GscAllocPhysicalMemory.

Supported Hardware:
All
Prototype:
int GscUnmapPhysicalMemory/(
int boardNumber,
PLX_PHYSICAL_MEM *pciMem);
Parameters:
boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single

board system.

pcimem — A pointer to a PLX_PHYSICAL_MEM structure that will contain the buffer
information.

20



Channel Level Routines

The Channel Level Routines perform functions that apply to a single channel on an
S104 board. Each of these routines requires the board number (boardNumber) as the first
parameter and the channel number (channel) as the second parameter. The board number
corresponds to the results of the GscFindBoards(...) function. Note that this number will
always be 1 in a single board system. The channel number will always be 1, 2, 3, or 4.

These routines can be called at any time. All of these functions return zero if
successful or a non-zero error code if a failure occurs.

GscSio4ChannelReset

GscSio4ChannelReset(...) resets a single channel on the SIO4 board. In addition to
disabling the serial channel, this function sets the “Almost Empty” and “Almost Full”
FIFO flags to 16.

Supported Hardware:
All
Prototype:
int GscSio4ChannelReset(

int boardNumber,
int channel);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

21



GscSio4ChannelResetRxFifo

GscSio4ChannelResetRxFifo(...) resets the Rx FIFO for a single channel. After the
reset, the FIFO will contain no data.

Supported Hardware:

All
Prototype:
int GscSio4ChannelResetRxFifo (
int boardNumber,
int channel);
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

22



GscSio4ChannelResetTxFifo

GscSio4ChannelResetTxFifo(...) resets the Tx FIFO for a single channel. After the
reset, the FIFO will contain no data.

Supported Hardware:

All
Prototype:
int GscSio4ChannelResetTxFifo (
int boardNumber,
int channel);
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

23



GscSio4ChannelRegisterRead

GscSio4ChannelRegisterRead(...) is used to read the registers in the Universal Serial
Chip that controls the specified channel. It is not recommended that a user application
directly access these registers. This function is included for diagnostic purposes only.

Supported Hardware:
PCI-SI04B

Prototype:
int GscSio4ChannelRegisterRead(
int boardNumber,
int channel,
int reg,
int *value);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

reg — The address of the register to be read. Macros for these addresses are described in
the section titled “Channel Register Definitions™.

value — A pointer to the location that will receive the results of the read operation.

24



GscSio4ChannelRegisterWrite

GscSio4ChannelRegisterWrite(...) is used to write to the registers in the Universal
Serial Chip that controls the specified channel. It is not recommended that a user
application directly access these registers. This function is included for diagnostic
purposes only.

Supported Hardware:
PCI-SI04B

Prototype:
int GscSio4ChannelRegisterWrite(
int boardNumber,
int channel,
int reg,
int value);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

reg — The address of the register to be written. Macros for these addresses are described
in the section titled “Channel Register Definitions”.

value — The value that is to be written to the register.

25



GscSio4GetLastError

GscSio4GetLastError(...) is used to retrieve the error description text of the last
channel-level api call made for the specified channel.

Supported Hardware:

All
Prototype:
int GscSio4GetLastError(

int boardNumber,
int channel,
int errorCode,
char *errorString
char *errorDetail);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

errorCode — The integer error code

errorString — The error description text

errorDetail — More verbose and detailed error description text

26



GscSio4ChannelSetMode / GscSio4ChannelGetMode

GscSio4ChannelSetMode(...) sets a single channel of the SIO4 board to the desired
serial format and bit rate.

Each mode has its own defaults, as described below, which can be altered by calling
the appropriate Channel Level Routines after this function returns.

Supported Hardware:
All

Prototype:
int GscSio4ChannelSetMode(
int boardNumber,
int channel,
int mode,
int bitRate);

int GscSio4ChannelGetMode(
int boardNumber,
int channel,
int *mode,
int *bitRate);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

mode — The desired/current serial mode for this channel. The value should be one of the
following:
GSC_MODE_ASYNC - Sets the channel to standard asynchronous mode. The
channel defaults to 8 data bits, no Parity, and one stop bit. It also uses a
16x sampling clock.

GSC_MODE_ISO — Sets the channel to isochronous mode. Uses the same
defaults as GSC_MODE_ASYNC except the sampling clock, which is set
to 1x.

GSC_MODE_HDLC — Sets the channel to HDLC mode. The Transmit clock is
derived from the on-board source at the rate specified (bitRate) and is also
driven onto the cable for use by the receiving end. The receiver clock is
connected to the cable and should be supplied by the transmitter at the
other end.

27



GSC_MODE_SYNC -

GSC_MODE_SYNC_ENV — (SI04-SYNC boards only)
GSC_MODE_ASYNC_CV -
GSC_MODE_MONOSYNC -

GSC_MODE_BISYNC -
GSC_MODE_TRANS_BISYNC —

GSC_MODE_NBIF -
GSC_MODE_802_3 -

bitRate — The desired/current serial bit (baud) rate for this channel. This value can range

from 250 to 10,000,000 for synchronous modes and 50 to 1,000,000 for asynchronous
modes.

28



GscSio4GetOption/GscSio4SetOption

GscSio4SetOption(...) sets the value of a protocol configuration option for a channel.
The available options are defined by the GSC_OPTION_NAME enumerated type.

Supported Hardware:
All

Prototype:

int GscSio4SetOption(
int boardNumber,
int channel,
enum GSC_OPTION_NAME option,
int value);

int GscSio4GetOption(
int boardNumber,
int channel,
enum GSC_OPTION_NAME option,
int value[]);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

option — The protocol option to set or retrieve. The available options are defined in the
GSC_OPTION_NAME enumerated type. They are listed in the table below.

value — The value or values set or retrieved . When calling GscSio4SetOption, in some
cases value will actually contain a pair of 16 bit values, such as when configuring the
GSC_SIO_PROTOCOL option. In this case value will contain a protocol option in
the upper 16 bits and a termination option in the lower 16 bits. When retrieving the
value of this option using GscSio4GetOption, the protocol and termination options
will be returned as two elements in the value[] array. The majority of the available
options are represented by a single value. The options that are represented as a pair of
values are listed below:

The table below lists the available options and valid settings for each option. The
GscSio4SetOption() function requires a 32-bit parameter value for all options. For some
of the options, this parameter value represents two 16-bit option settings rather than one
32-bit setting. For these options, the table includes descriptions of the format each 16-bit

29



parameter and its valid values. Likewise, for the GscSio4GetOption() function, which
returns two array entries in the case of the options composed of two 16-bit values, the
table describes each entry returned in the parameter array along with its set of valid

values.
Option Name Description Set Value Get Value Valid Values
Parameter Parameter
Format Format
GSC_SIO_DATASIZE The size of the transmitted and [31..0]: value[0]: 1..8 for standard SI04 boards. 0..
received data for a single channel | datasize datasize 65535 for -SYNC boards
of the S104 board.
GSC_SIO_GAPSIZE The size of the gap between [31..0]: value[0]: 0..65535 for -SYNC boards only.
transmitted data words for a single | gapsize gapsize
channel of the SIO4 board. The gap
size can be set to any value
between 0 and 65535.
GSC_SIO_MSBLSBORDER The byte ordering of both [31..16]: value[0]: GSC_MSB_FIRST
transmitted and received data Tx Order Tx Order GSC_LSB_FIRST
words for a single channel of the
S104 board. The order can be set to
transmit or receive either the most | [15..0]: value[1]
significant byte first or the least Rx Order RxOrder
significant byte first.
GSC_SIO_PARITY The type of parity that will be used | [31..0]: value[0]: GSC_PARITY_NONE
on a single channel of the SIO4 parity parity GSC_PARITY_EVEN
board. GSC_PARITY_ODD
GSC_PARITY_MARK
GSC_PARITY_SPACE
GSC_SIO_STOPBITS The number of stop bits to use for a | [31..0]: value[0]: GSC_STOP_BITS 0
single channel of the S104 board. | stopbits stopbits GSC_STOP_BITS 1
GSC_STOP BITS 1.5
GSC_STOP_BITS_2
GSC_SIO_ENCODING The encoding type for a single [31..0] value[0]: The macros defined in the section
channel of the SI04 board. encoding encoding “Channel Encoding Definitions”.
GSC_SIO_PROTOCOL The physical interface protocol and | [31..16]: value[0]: Protocol:
termination options. The protocol | protocol protocol GSC_PROTOCOL_RS422_RS485
on the standard SIO4B card is fixed GSC_PROTOCOL_RS423
at RS422/RS485 or RS232 GSC_PROTOCOL_RS232
depending on the configuration set GSC_PROTOCOL_RS530_1
at the factory. GSC_PROTOCOL_RS530 2
GSC_PROTOCOL V35 1
Only the -BX cards allow this [15..0]: value[1]: GSC_PROTOCOL_V35_2
value to be changed. termination termination | GSC_PROTOCOL_RS422_RS423_1

GSC_PROTOCOL_RS422 _RS423 2
Termination:

GSC_TERMINATION_ENABLED
GSC_TERMINATION_DISABLED

30




Option Name Description Set Value Get Value Valid Values
Parameter Parameter
Format Format

GSC_SIO_DTEDCE Sets a single channel of the SIO4  [31..0]: value[0]: GSC_PIN_DTE
board to either DTE or DCE mode. | mode mode GSC_PIN_DCE
Each channel defaults to DTE
mode when it is configured. Setting
this option is only necessary if
DCE mode is required, or to switch
back to DTE mode after a previous
change to DCE mode. The pin-outs
for both DTE and DCE modes are
available in the Hardware Users
Manual.

GSC_SIO_LOOPBACK The loopback mode of a channel on | [31..0] value[0]: GSC_LOOP_NONE
the S104 board. loop mode loop mode | GSC_LOOP_EXTERNAL

GSC_SIO_RECEIVER Used for enabling or disabling the | [31..0]: value[0]: GSC_ENABLED
receiver for a single channel on the | mode mode GSC_DISABLED
SI04 board..

GSC_SIO_TRANSMITTER Used for enabling or disabling the | [31..0]: value[0]: GSC_ENABLED
transmitter for a single channel on | mode mode GSC_DISABLED
the S104 board.

GSC_SIO_TXDATAPINMODE Used to enable the TxD pin of a [31..0]: value[0]: GSC_PIN_AUTO
channel to be used for general mode mode GSC_PIN_GPIO
purpose i/o.

GSC_SIO_RXDATAPINMODE Used to enable the RxD pin of a [31..0]: value[0]: GSC_PIN_AUTO
channel to be used for general mode mode GSC_PIN_GPIO
purpose i/o.

GSC_SIO_TXCLOCKPINMODE Used to enable the TxC pin of a [31..0]: value[0]: GSC_PIN_AUTO
channel to be used for general mode mode GSC_PIN_GPIO
purpose i/o.

GSC_SIO_RXCLOCKPINMODE Used to enable the RxC pin of a [31..0]: value[0]: GSC_PIN_AUTO
channel to be used for general mode mode GSC_PIN_GPIO
purpose i/o.

GSC_SIO_CTSPINMODE Used to enable the CTS pin of a [31..0]: value[0]: GSC_PIN_AUTO
channel to be used for general mode mode GSC_PIN_GPIO
purpose i/o.

GSC_SIO_RTSPINMODE Used to enable the RTS pin of a [31..0]: value[0]: GSC_PIN_AUTO
channel to be used for general mode mode GSC_PIN_GPIO
purpose i/o.

GSC_SIO_CLOCKSOURCE Used to set the clock pin sources of | [31..16]: N/A GSC_CLOCK_INTERNAL
the transmitter and receiver. This | Tx source GSC_CLOCK_EXTERNAL
option provides for the transmitter
and receiver to be configured with [15..0]:
an internal or an external clock Rx éoﬁrce
source.

GSC_SIO_CRCMODE Used for setting the CRC [31..16] value[0]: crc mode:
generation/detection mode for a GSC_CRC_NONE
single channel. This routine is also crc mode crc mode GSC _CRC_16
used to set the initial value of the GSC _CRC_32
CRC register. GSC _CRC_CCITT

[15..0] value[1]: L
initial value:
crc initial value | crc initial GSC CRC INIT 0
value "CRC INIT

GSC_CRC_INIT_1

31




Option Name Description Set Value Get Value Valid Values
Parameter Parameter
Format Format
GSC_SIO_SYNCWORD Used to set the sync word used on a | [31..16]: value[0]: Integer value between 0..65535.
channel. Tx syncword | Txsync
word
[15..0]: value[1]:
Rx sync word | Rx sync
word
GSC_SIO_TXUNDERRUN Sets the data pattern to be [31..0]: value[0]: GSC_SYN1
transmitted under a Tx underrun Tx Underrun Tx underrun | GSC_SYNO_SYN1
condition. pattern pattern GSC_CRC_SYN1
GSC_CRC_SYNO_SYN1
GSC_SIO_TXPREAMBLE Used to enable or disable the Tx [31..0]: value[0]: GSC_ENABLED
preamble for a channel. preamble state | preamble GSC_DISABLED
state
GSC_SIO_TXSHORTSYNC Used set the Tx sync length (short | [31..0]: value[0]: GSC_ENABLED
or 8 bit) for a channel. Tx sync length | Tx sync GSC_DISABLED
length
GSC_SIO_RXSYNCSTRIP Set the Rx sync strip mode for a [31..0]: value[0]: GSC_ENABLED

channel.

Rx sync strip
mode

Rx sync strip
mode

GSC_DISABLED

GSC_SIO_RXSHORTSYNC Used to set the Rx sync length [31..0]: value[0]: GSC_ENABLED
(short or 8 bit) for a channel. Rx short sync | Rx short GSC_DISABLED
length sync length
GSC_SIO_TXPREAMBLELENGTH | Used to set the Tx preamble length | [31..0]: value[0]: GSC_PREAMBLE_8BITS
for a channel Tx preamble Tx preamble GSC_PREAMBLE_16BITS
length length GSC_PREAMBLE_32BITS
GSC_PREAMBLE_64BITS
GSC_SIO_TXPREAMBLEPATTERN | Used to set the Tx preamble pattern | [31..0]: value[0]: GSC_PREAMBLE_ALL_0
for a channel. Tx preamble T bl GSC_PREAMBLE_ALL_1
pattern X| preamblé | 5sc pREAMBLE_ALL 0_1
value GSC_PREAMBLE_ALL_1 0
GSC_SIO_ORDERING Used to set the byte and bit order | [31..16]: value[0]: byte and bit order:
used in bisync16 mode on a byte order byte order GSC_MSB_FIRST
channel. GSC_LSB_FIRST
[15..0] value[1]:
bit order bit order
GSC_SIO_MAXRXCOUNT Used to set the maximum Rx count | [31..0]: value[0]: Integer value
allowed Max Rx Count | Max Rx
count

32




GscSio4ChannelSetPinMode / GscSio4ChannelGetPinMode

GscSio4ChannelSetPinMode(...) configures the specified pin for general purpose
I/0. The function can also set the specified pin for normal use.

Supported Hardware:

All
Prototype:
int GscSio4ChannelSetPinMode (
int boardNumber,
int channel,
int pinName,
int mode);
int GscSio4ChannelGetPinMode (
int boardNumber,
int channel,
int pinName,
int *mode);
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

pinName — Identifier for the pin to be configured.

mode — The desired/current mode of operation for the specified pin. Valid values are
defined in the GSC_TOKENS enumeration as follows:

GSC_PIN_AUTO
GSC_PIN_GPIO

33



GscSio4ChannelSetPinValue / GscSio4ChannelGetPinValue

GscSio4ChannelSetPinValue(...) sets the current value of the specified
programmable PIN if it is configured as GPI1O.

Supported Hardware:

All
Prototype:
int GscSio4ChannelSetPinValue (
int boardNumber,
int channel,
int pinName,
int value);
int GscSio4ChannelGetPinValue (
int boardNumber,
int channel,
int pinName,
int *value);
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

pinName - Identifier for the pin to be configured.

value — The desired/current value of the specified pin. Accepted values are 0 and 1.

34



GscSio4ChannelFifoSizes

GscSio4ChannelFifoSizes(...) returns the size, in bytes, of the channel’s Transmit
and Receive FIFOs. The size of the Receive FIFO is returned in the upper 16 bits and the
size of the Transmit FIFO is returned in the lower 16 bits of the result (sizes).

Supported Hardware:
PCI-S104B

Prototype:
int GscSio4ChannelFifoSizes(
int boardNumber,
int channel,
int *sizes);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

sizes — A pointer to the location that will receive the size (in bytes) of the Receive (upper
16 bits) and the Transmit (lower 16 bits) FIFOs

35



GscSio4ChannelFifoCounts

GscSio4ChannelFifoCounts(...) returns the current number of bytes in the channel’s
Transmit and Receive FIFOs. The number of bytes in the Receive FIFO are returned in
the upper 16 bits and the number of bytes in the Transmit FIFO are returned in the lower
16 bits of the result (counts).

Supported Hardware:
PCI-SI04B

Prototype:
int GscSio4ChannelFifoCounts(
int boardNumber,
int channel,
int *counts);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

counts — A pointer to the location that will receive the number of bytes currently in the
Receive (upper 16 bits) and the Transmit (lower 16 bits) FIFOs.

36



GscSio4ChannelSetTxAlmost / GscSio4ChannelGetTxAlmost

GscSio4ChannelSetTxAlmost(...) programs the “Almost Full” and “Almost Empty”
registers in the Transmit FIFO for a single channel. Once the values are programmed, the
FIFO will be reset to force the change to take effect. This will also clear the contents of
the FIFO, so this command should be done before any data transfers occur.

Supported Hardware:
PCI-SI04B

Prototype:
int GscSio4ChannelSetTxAlmost(
int boardNumber,
int channel,
int almostValue);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

almostValue — The 32bit value that will be programmed into the Transmitter FIFO’s
Almost Full (upper 16 bits) and Almost Empty (lower 16 bits) registers.

37



GscSio4ChannelSetRxAlmost / GscSio4ChannelGetRxAlmost

GscSio4ChannelSetRxAlmost(...) programs the “Almost Full” and “Almost Empty”
registers in the Receive FIFO for a single channel. Once the values are programmed, the
FIFO will be reset to force the change to take effect. This will also clear the contents of
the FIFO, so this command should be done before any data transfers occur.

Supported Hardware:
PCI-SI04B

Prototype:
int GscSio4ChannelSetRxAImost(
int boardNumber,
int channel,
int almostValue);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

almostValue — The 32bit value that will be programmed into the Receiver FIFO’s Almost
Full (upper 16 bits) and Almost Empty (lower 16 bits) registers.

38



GscSio4ChannelCheckForData

GscSio4ChannelCheckForData(...) determines whether a packet has been received on
the specified channel. If a packet has been received, a dma transfer is initiated to return
the data. The data received on the channel is transferred into the memory buffer pointed
to by buffer. A number of bytes transferred is indicated by the value of count. This
function may return before the transfer completes.

Supported Hardware:
All

Prototype:
int GscSio4ChannelCheckForData(
int boardNumber,
int channel,
char *buffer,
int *count);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

buffer — A pointer to the start of the data buffer that will receive the data. The buffer
should be large enough to hold a packet of data.

count — The number of bytes transferred.

39



GscSio4ChannelReceivePacket

GscSio4ChannelReceivePacket(...) determines whether a packet has been received
on the specified channel. If a packet has been received, a dma transfer is initiated to
return the data. The data received on the channel is transferred into the memory buffer
pointed to by buffer. A number of bytes transferred is indicated by the value of count.
This function may return before the transfer completes.

Supported Hardware:
All

Prototype:
int GscSio4ChannelReceivePacket(
int boardNumber,
int channel,
char *buffer,
int *count,
int *transferStatus);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

buffer — A pointer to the start of the data buffer that will receive the data. The buffer
should be large enough to hold a packet of data.

count — The number of bytes that are to be transferred. Must be set to this value prior to
making the function call.

transferStatus — Indicates the status of the transfer. The value will be non-zero if there are
errors, such as a CRC error or an abort error, with the transfer. The status returned in
this parameter will be a mask of any error bits in the UART RCSR register.
Otherwise the value will be zero.

40



GscSio4ChannelReceiveData

GscSio4ChannelReceiveData(...) starts the reception of data on the specified channel.
The data received on the channel is transferred into the memory buffer pointed to by
buffer. A total of count bytes will be transferred. This function may return before the
transfer completes. When this function returns, the value pointed to by id will contain a
unique identifier that can be used to determine the progress of the transfer.

Supported Hardware:
All

Prototype:
int GscSio4ChannelReceiveData(
int boardNumber,
int channel,
char *buffer,
int count,
int *id);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

buffer — A pointer to the start of the data buffer that will receive the data. The buffer
should be at least count bytes long.

count — The number of bytes to transfer.

id — A pointer to the location that will hold the unique transfer identifier that is assigned
to this transfer. This value can be used to determine when the transfer has completed.

41



GscSio4ChannelReceiveDataAndWait

GscSio4ChannelReceiveDataAndWait(...) starts the reception of data on the
specified channel. The data received on the channel is transferred into the memory buffer
pointed to by buffer. A total of count bytes will be transferred. This function will not
return until the entire transfer has completed or the timeout period has expired. If a
timeout occurs, the value in bytesTransferred will specify the number of bytes that were
actually received. (Note that if no timeout occurs, the bytesTransferred value is
undefined.)

Supported Hardware:
All

Prototype:
int GscSio4ChannelReceiveDataAndWait(

int boardNumber,
int channel,
char *buffer,
int count,
int timeout,
int *bytesTransferred);

Return value:

The function returns a zero if the packet transfer completes. Otherwise it returns a
non-zero error code.

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

buffer — A pointer to the start of the data buffer that will receive the data. The buffer
should be at least count bytes long.

count — The number of bytes to transfer.
timeout — The desired timeout period (in milliseconds) for the transfer.

bytesTransferred — If a timeout occurs, this value will specify the total number of bytes
that were actually received. If no timeout occurs, this value is undefined.

42



43



GscSio4ChannelReceivePIxPhysData

GscSio4ChannelReceivePIxPhysData(. . .) starts the reception of data on the specified
channel. The data received on the channel is transferred into the physically contiguous
memory buffer pointed to by buffer. The memory for this buffer must be allocated with
the GscAllocPhysicalMemory function and mapped into user virtual space using the
GscMapPhysicalMemory function. A total of count bytes will be transferred. This
function may return before the transfer completes. When this function returns, the value
pointed to by id will contain a unique identifier that can be used to determine the progress
of the transfer.

Supported Hardware:
All

Prototype:
int GscSio4ChannelReceivePIxPhysData(
int boardNumber,
int channel,
PLX _PHYSICAL_MEM *buffer,
int count,
int *id);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

buffer — A pointer to the start of the physically contiguous data buffer that will receive the
data. The buffer should be at least count bytes long.

count — The number of bytes to transfer.

id — A pointer to the location that will hold the unique transfer identifier that is assigned
to this transfer. This value can be used to determine when the transfer has completed.

44



GscSio4ChannelTransmitData

GscSio4ChannelTransmitData(...) starts the transmission of data on the specified
channel. The data to be transmitted on the channel is transferred from the memory buffer
pointed to by buffer. A total of count bytes will be transferred. This function may return
before the transfer completes. When this function returns, the value pointed to by id will
contain a unique identifier that can be used to determine the progress of the transfer.

Supported Hardware:
All

Prototype:
int GscSio4Channel TransmitData(
int boardNumber,
int channel,
char *buffer,
int count,
int *id);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

buffer — A pointer to the start of the data buffer that will be transmitted. The buffer should
be at least count bytes long.

count — The number of bytes to transfer.

id — A pointer to the location that will hold the unique transfer identifier that is assigned
to this transfer. This value can be used to determine when the transfer has completed.

45



GscSio4ChannelTransmitDataAndWait

GscSio4ChannelTransmitDataAndWait(...) starts the transmission of data on the
specified channel. The data to be transmitted on the channel is transferred from the
memory buffer pointed to by buffer. A total of count bytes will be transferred. This
function will not return until the entire transfer has completed or the timeout period has
expired. If a timeout occurs, the value in bytesTransferred will specify the number of
bytes that were actually transmitted. (Note that if no timeout occurs, the bytesTransferred
value is undefined.)

Supported Hardware:
All

Prototype:
int GscSio4ChannelTransmitDataAndWait(

int boardNumber,
int channel,
char *buffer,
int count,
int timeout
int *bytesTransferred);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

buffer — A pointer to the start of the data buffer that will be transmitted. The buffer should
be at least count bytes long.

count — The number of bytes to transfer.
timeout — The desired timeout period (in milliseconds) for the transfer.

bytesTransferred — If a timeout occurs, this value will specify the total number of bytes
that were actually transmitted. If no timeout occurs, this value is undefined.

46



GscSio4ChannelTransmitPIxPhysData

GscSio4Channel TransmitPIxPhysData(...) starts the transmission of data on the
specified channel. The data to be transmitted on the channel is transferred from the
physically contiguous memory buffer pointed to by buffer. This buffer must be allocated
using the GscAllocPhysicalMemory function and mapped to user virtual space using the
GscMapPhysicalMemory function. A total of count bytes will be transferred. This
function may return before the transfer completes. When this function returns, the value
pointed to by id will contain a unique identifier that can be used to determine the progress
of the transfer.

Supported Hardware:
All

Prototype:
int GscSio4Channel TransmitPIxPhysData(
int boardNumber,
int channel,
PLX_PHYSICAL_MEM *buffer,
int count,
int *id);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

buffer — A pointer to the start of the physically contiguous data buffer that will be
transmitted. The buffer should be at least count bytes long.

count — The number of bytes to transfer.

id — A pointer to the location that will hold the unique transfer identifier that is assigned
to this transfer. This value can be used to determine when the transfer has completed.

47



GscSio4ChannelQueryTransfer

GscSio4ChannelQueryTransfer(...) is used to determine the status of a transfer that
was initiated by a call to either GscSio4ChannelReceiveData (...) or
GscSio4ChannelTransmitData (...). The result is returned in stat and will be 0 if the
transfer has completed or non-zero if it has not completed.

Supported Hardware:

All
Prototype:
int GscSio4ChannelQueryTransfer(

int boardNumber,
int channel,
int *stat,
int id);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.
stat — A pointer to the location that will hold the returned status of the transfer. The stat
will be 0 if the transfer has completed. Otherwise, it will hold the number of bytes left

to transfer.

id — The unique ID that was assigned to the transfer by the call to either
GscSio4ChannelReceiveData(...) or GscSio4ChannelTransmitData(...)

48



GscSio4ChannelWaitForTransfer

GscSio4ChannelWaitForTransfer (...) is used to wait for the completion of a transfer
that was initiated by a call to either GscSio4ChannelReceiveData (...) or
GscSio4ChannelTransmitData (...). The routine will return when either the transfer
completes or the timeout period expires. If the timeout period expires, the
bytesTransferred parameter will be updated with the number of bytes that were
successfully transferred. If the transfer completes, or another type of error occurs, the
bytesTransferred parameter will be -1.

Supported Hardware:

All
Prototype:
int GscSio4ChannelWaitForTransfer(

int boardNumber,
int channel,
int timeout,
intid,
int *bytesTransferred);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

timeout — The desired amount of time in milliseconds that the routine will wait for the
transfer to complete.

id — The unique ID that was assigned to the transfer by the call to either
GscSio4ChannelReceiveData(...) or GscSio4ChannelTransmitData(...)

bytesTransferred - A pointer to the location that will hold the number of bytes that were

actually transferred if the timeout period expires. This value will be -1 if the transfer
completes or an error occurs.

49



GscSio4ChannelFlushTransfer

GscSio4ChannelFlushTransfer (...) is used to force any data that is in the Rx FIFO to
be transferred via DMA to memory. For a Tx channel, data is transferred to the Tx FIFO
until it is full. Calling this routine is only necessary when a transfer did not complete on
its own, or when aborting a transfer that has not completed.

Supported Hardware:

All
Prototype:
int GscSio4ChannelFlushTransfer(
int boardNumber,
int channel,
intid);
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

id — The unique ID that was assigned to the transfer by the call to either
GscSio4ChannelReceiveData(...) or GscSio4ChannelTransmitData(...)

50



GscSio4ChannelRemoveTransfer

GscSio4ChannelRemoveTransfer (...) is used to remove a pending transfer from the
transfer queue. Calling this routine is only necessary when a transfer did not complete on
its own, or when aborting a transfer that has not completed. If a transfer ID of -1 is passed
to the routine, all pending transfers will be removed.

Supported Hardware:

All
Prototype:
int GscSio4ChannelRemoveTransfer(

int boardNumber,
int channel,
intid,
int *bytesTransferred);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

id — The unique ID that was assigned to the transfer by the call to either
GscSio4ChannelReceiveData(...) or GscSio4ChannelTransmitData(...)

bytesTransferred - A pointer to the location that will hold the number of bytes that were

actually transferred before the call to GscSio4ChannelRemoveTransfer (). This value
will be -1 if the transfer had already completed or an error occurs.

51



GscFindBoardsGscSio4ChannelRegisterinterrupt

GscSio4ChannelRegisterInterrupt (...) is used register a callback routine with the
interrupt handler. There are several interrupt sources associated with each interrupt. This
routine allows any or all of the interrupt sources to be associated with a callback function.
The callback function can be shared between interrupt sources or a different callback can
be used for each source. This routine also determines whether the interrupt occurs on the
Rising Edge (High True) or Falling Edge (Low True).

Supported Hardware:

All
Prototype:
int GscSio4ChannelRegisterinterrupt(

int boardNumber,
int channel,
int interrupt,
int type,
GSC_CB_FUNCTION *function);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

interrupt — This value determines which interrupts are associated with the provided
callback function. This value should be the logical OR of one or more of the
following:

GSC_INTR_SYNC_DETECT - Triggers an interrupt when the SYNC byte is
received on the channel. (This source is not available on the —Sync boards)

GSC_INTR_USC — Triggers an interrupt when the on board USC has an interrupt
pending. Refer to the USC data sheet for details of its possible interrupt
sources. (This source is not available on the —Sync boards)

GSC_INTR_TX_FIFO_EMPTY - Triggers an interrupt when the Transmit FIFO
for the channel is empty.

GSC_INTR_TX_FIFO_FULL - Triggers an interrupt when the Transmit FIFO
for the channel is full.

GSC_INTR_TX_FIFO_ALMOST_EMPTY - Triggers an interrupt when the
Transmit FIFO for the channel is almost empty. The level at which this

52



interrupt will occur is set by calling the GscSio4ChannelSetTxAlmost(...)
routine.

GSC_INTR_RX_FIFO_EMPTY - Triggers an interrupt when the Receive FIFO
for the channel is empty.

GSC_INTR_RX_FIFO_FULL — Triggers an interrupt when the Receive FIFO for
the channel is full.

GSC_INTR_RX_FIFO_ALMOST_FULL - Triggers an interrupt when the
Receive FIFO for the channel is almost full. The level at which this
interrupt will occur is set by calling the GscSio4ChannelSetRxAlmost(...)
routine.

GSC_INTR_RX_ENVELOPE — Triggers an interrupt when the RX Envelope
signal changes. (This source is only available on the —Sync boards)

type — This value determines whether the interrupt occurs on the rising of falling edge. It
should be one of the following:
GSC_RISING_EDGE — The interrupt will occur on the rising edge of the
interrupt signal (i.e. when the condition becomes true.)
GSC_FALLING_EDGE — The interrupt will occur on the falling edge of the
interrupt signal (i.e. when the condition becomes not true.)

function — This is the address of the interrupt callback function. If this value is set to
NULL, the callback for the current “interrupt” parameter will be cleared, otherwise
this routine will be called for each of the conditions specified in the “interrupt”
parameter. The prototype for the callback function is:

void CALLBACK callback_function(
int boardNumber,
int channel,
int interrupt);

The parameters to the callback specify the board and channel number on which the
interrupt occurred as well as the source of the interrupt (as defined above.) If multiple
interrupt sources are mapped to the same callback routine, the “interrupt” parameter
can be used to determine the source of the interrupt.

53



GscSio4ChannelSetClock

GscSio4ChannelSetClock(...) is used to set the serial bit rate (baud rate) for a specific
channel. Under normal conditions, this routine will not be used since the
GscSio4ChannelSetMode(...) function sets the bit rate of the channel when the channel’s
mode is set. This function is provided to allow the bit rate to be changed without re-
configuring the channel.

Supported Hardware:

All
Prototype:
int GscSio4ChannelSetClock(
int boardNumber,
int channel,
int frequency);
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

frequency — The desired bit rate for this channel. This value is specified in Hz and can
range from 100 to 10000000 (1000000 for async channels).

54



Protocol Level Routines

The Protocol Level Routines perform functions that apply to a specific protocol on a
single channel on an S104 board. Each of these routines requires the board number
(boardNumber) as the first parameter and the channel number (channel) as the second
parameter. The board number corresponds to the results of the GscFindBoards(...)
function. Note that this number will always be 1 in a single board system. The channel
number will always be 1, 2, 3, or 4.

These routines can be called at any time. All of these functions return zero if
successful or a non-zero error code if a failure occurs.

GscSio4HdlcGetDefaults

GscSio4HdlcGetDefaults(...) returns the default HDLC configuration structure.
Supported Hardware:
PCI-SIO4B
Prototype:
int GscSio4HdlcGetDefaults(
PGSC_HDLC_CONFIG config);
Parameters:

config — A pointer to a configuration structure that will be filled in with default
configuration values.

55



GscSio4HdIcSetConfig / GscSio4HdlcGetConfig

GscSio4HdlcSetConfig(...) sets the mode of the specified channel to HDLC and sets
the current configuration to the values specified in the config parameter.

Supported Hardware:
PCI-SI04B

Prototype:
int GscSio4HdlcSetConfig(
int boardNumber,
int channel,
GSC_HDLC_CONFIG config);

int GscSio4HdlcGetConfig(
int boardNumber,
int channel,
PGSC_HDLC_CONFIG config);
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

config — The desired/current configuration structure for the channel.

56



GscSio4AsyncGetDefaults

GscSio4AsyncGetDefaults(...) returns the default Async configuration structure.
Supported Hardware:
PCI-SIO4B
Prototype:
int GscSio4AsyncGetDefaults(
PGSC_ASYNC_CONFIG config);
Parameters:

config — A pointer to a configuration structure that will be filled in with default
configuration values.

57



GscSio4AsyncSetConfig / GscSio4AsyncGetConfig

GscSio4AsyncSetConfig(...) sets the mode of the specified channel to Async and sets
the current configuration to the values specified in the config parameter.

Supported Hardware:
PCI-SI04B

Prototype:
int GscSio4AsyncSetConfig(
int boardNumber,
int channel,
GSC_ASYNC_CONFIG config);

int GscSio4AsyncGetConfig(
int boardNumber,
int channel,
PGSC_ASYNC_CONFIG config);
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

config — The desired/current configuration structure for the channel.

58



GscSio4BiSyncGetDefaults

GscSi04BiSyncGetDefaults(...) returns the default BiSync configuration structure.
Supported Hardware:
PCI-SI04B
Prototype:
int GscSio4BiSyncGetDefaults(
PGSC_BISYNC_CONFIG config);
Parameters:

config — A pointer to a configuration structure that will be filled in with default
configuration values.

59



GscSio4BiSyncSetConfig / GscSio4BiSyncGetConfig

GscSio4BiSyncSetConfig(...) sets the mode of the specified channel to bisync and
sets the current configuration to the values specified in the config parameter.

Supported Hardware:
PCI-S104B

Prototype:
int GscSio4BiSyncSetConfig(
int boardNumber,
int channel,
GSC_BISYNC_CONFIG config);

int GscSi04BiSyncGetConfig(
int boardNumber,
int channel,
PGSC_BISYNC_CONFIG config);
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

config — The desired/current configuration structure for the channel.

60



GscSio4SyncGetDefaults

GscSi04SyncGetDefaults(...) returns the default Sync configuration structure.
Supported Hardware:
PCI-SIO4B-SYNC
Prototype:
int GscSio4SyncGetDefaults(
PGSC_SYNC_CONFIG config);
Parameters:

config — A pointer to a configuration structure that will be filled in with default
configuration values.

61



GscSio4SyncSetConfig / GscSio4SyncGetConfig

GscSio4SyncSetConfig(...) sets the mode of the specified channel to Sync and sets
the current configuration to the values specified in the config parameter.

Supported Hardware:
PCI-SIO4B-SYNC

Prototype:
int GscSio4SyncSetConfig(
int boardNumber,
int channel,
GSC_SYNC_CONFIG config);

int GscSio4SyncGetConfig(
int boardNumber,
int channel,
PGSC_SYNC_CONFIG config);
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

config — The desired/current configuration structure for the channel.

62



GscSio4BiSyncl6GetDefaults

GscSio4BiSyncl6GetDefaults(...) returns the default bisyncl6 configuration
structure.

Supported Hardware:
PCI-SIO4B-BISYNC
Prototype:
int GscSio4BiSync16GetDefaults(
PGSC_BISYNC16_CONFIG config);
Parameters:

config — A pointer to a configuration structure that will be filled in with default
configuration values.

63



GscSio4BiSync16SetConfig / GscSio4BiSync16GetConfig

GscSio4BiSyncl16SetConfig(...) sets the mode of the specified channel to bisync16
and sets the current configuration to the values specified in the config parameter.

Supported Hardware:
PCI-SIO4B-BISYNC

Prototype:
int GscSio4BiSync16SetConfig(
int boardNumber,
int channel,
GSC_BISYNC16_CONFIG config);

int GscSio4BiSync16GetConfig(
int boardNumber,
int channel,
PGSC_BISYNC16_CONFIG config);

Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

config — The desired/current configuration structure for the channel.

64



GscSio4BiSyncl6GetTxCounts

GscSi04BiSync16GetTxCounts(...) is used to retrieve the initial and remaining Tx
counts for a channel configured in bisync16 mode.

Supported Hardware:
PCI-SIO4B-BISYNC
Prototype:
int GscSio4BiSync16GetTxCounts(
int boardNumber,
int channel,
int *remaining,
int *initial);
Parameters:
boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.
channel — The desired channel number. This number will be 1, 2, 3, or 4.
remaining — The remaining Tx counts value.

initial — The initial Tx Counts value.

65



GscSio4BiSyncl6GetRxCounts

GscSi04BiSync16GetRxCounts(...) is used to retrieve the initial and remaining Rx
counts for a channel configured in bisync16 mode.

Supported Hardware:
PCI-SIO4B-BISYNC
Prototype:
int GscSio4BiSync16GetRxCounts(
int boardNumber,
int channel,
int *remaining,
int *initial);
Parameters:
boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.
channel — The desired channel number. This number will be 1, 2, 3, or 4.
remaining — The remaining Rx counts value.

initial — The initial Rx Counts value.

66



GscSio4BiSyncl6EnterHuntMode

GscSi04BiSync16EnterHuntMode(...) is used to cause a channel configured in
bisync16 mode to enter hunt mode.

Supported Hardware:
PCI-SIO4B-BISYNC16?7?

Prototype:
int GscSio4BiSync16EnterHuntMode(
int boardNumber,
int channel)
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

67



GscSio4BiSyncl6AbortTx

GscSio4BiSync16AbortTx(...) is used to cause a channel configured in bisync16
mode to abort the current transmission.

Supported Hardware:
PCI-SIO4B-BISYNC16?7?

Prototype:
int GscSio4BiSync16AbortTx(
int boardNumber,
int channel)
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

68



GscSio4BiSyncl6Pause

GscSio4BiSyncl6Pause(...) is used to cause a channel configured in bisync16 mode
to pause the current transmission.

Supported Hardware:
PCI-SIO4B-BISYNC16?7?

Prototype:
int GscSio4BiSyncl6Pause(
int boardNumber,
int channel)
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

69



GscSio4BiSyncl6Resume

GscSio4BiSync16Resume(...) is used to cause a channel configured in bisync16
mode to pause the current transmission.

Supported Hardware:
PCI-SIO4B-BISYNC16?7?

Prototype:
int GscSio4BiSync16Resume(
int boardNumber,
int channel)
Parameters:

boardNumber — The number of the desired board. This number corresponds to the results
of the GscFindBoards(...) function. Note that this number will always be 1 in a single
board system.

channel — The desired channel number. This number will be 1, 2, 3, or 4.

70



Structures and Macro Definitions

This section contains the descriptions of the various structures and macro definitions
available to users of the API.

Devices Structure

typedef struct

{
int busNumber; /I ldentifies the bus that contains the board
int slotNumber; /I Identifies the slot that contains the board
int vendorld; /I ldentifies the board VVendor
int deviceld; /I ldentifies the device

char serialNumber[25];  // A unique board serial number
} GSC_DEVICES_STRUCT;

Interrupt Callback Prototype

typedef void
((CALLBACK *GSC_CB_FUNCTION)(int boardNumber, int channel, int interrupt));

For the Linux platform, the macro CALLBACK is null. On the Win32 platform, this

macro declares the function calling convention as __stdcall, which is required by
Microsoft .Net 2003 applications.

71



Channel Mode Definitions

The Channel Mode Definitions are used to set the current operating protocol for each
channel of the S104 board. These definitions are passed as a parameter of the
GscSio4ChannelSetMode(...) command.

Macro Protocol Defaults
GSC_MODE_ASYNC Asynchronous Mode 8 Data Bits

No Parity

1 Stop Bit

16x Clock

NRZ Encoding
GSC_MODE_HDLC HDLC/SDLC Mode 8 Data Bits

NRZ Encoding
GSC_MODE_SYNC Synchronous Mode* 8 Data Bits

0 Gap Bits

NRZ Encoding
GSC_MODE_SYNC_ENV Synchronous Mode w/ Envelope* 8 Data Bits

0 Gap Bits

NRZ Encoding
GSC_MODE_ISO Isochronous Mode 8 Data Bits

NRZ Encoding
GSC_MODE_MONOSYNC Monosync Mode 8 Data Bits

NRZ Encoding
GSC_MODE_BISYNC BiSync Mode 8 Data Bits

NRZ Encoding
GSC_MODE_TRANS_BISYNC  Transparent BiSync Mode 8 Data Bits

NRZ Encoding
GSC_MODE_802_3 IEEE 802.3 Ethernet Mode 8 Data Bits

NRZ Encoding

* These are the only modes that are available on the -SYNC card. They are not available
on the standard card.

72



Channel Mode Configuration Structures

The Channel Mode Configuration structures are used by the GscApi mode
configuration functions that correspond with each mode. For example, the structure
GSC_HDLC_CONFIG is used by the GscApi configuration functions as follows:

GSC_HDLC CONFIG cfg; // declare a configuration variable
GscSio4HdlcGetDefaults (&cfqg) ; // get the default settings for Hdlc
mode

GscSio4HdlcSetConfig (board, channel, cfqg); // configure a channel in Hdlc mode
GscSio4HdlcGetConfig (board, channel, &cfg); // retrieve current configuration

The GSC_HDLC_CONFIG structure definition, along with the structures corresponding
to the Async, BiSync, Sync and BiSync16 modes are listed below.

GSC_ASYNC_CONFIG Structure

typedef struct GSC ASYNC CONFIG
{

// Channel Configuration Variables

int bitRate; // Baud rate for the channel.

int encoding; // Encoding - NRZ, BiPhase, etc.

int protocol; // Bus Protocol - RS485, RS232, V.35, etc.
int termination; // Termination Resistors enabled/disabled
int parity; // Parity mode - None, Even, 0dd, etc.

int stopBits; // Stop bits - 0, 1, 1.5, 2

// Transmitter Configuration Variables

int txStatus; // Transmitter Enabled/Disabled
int txCharacterLength; // Bits per Tx character
int txClockSource; // Clock source for the transmitter

// Receiver Configuration Variables

int rxStatus; // Receiver Enabled/Disabled
int rxCharacterLength; // Bits per Rx character
int rxClockSource; // Clock source for the receiver

// Pin Configuration Variables

int interfaceMode; // DTE or DCE interface

int txDataPinMode; // RAuto (system use) or GPIO

int rxDataPinMode; // RAuto (system use) or GPIO

int txClockPinMode; // Auto (system use) or GPIO

int rxClockPinMode; // Auto (system use) or GPIO

int ctsPinMode; // RAuto (system use) or GPIO

int rtsPinMode; // RAuto (system use) or GPIO

int loopbackMode; // None, internal, or external loop back

} GSC_ASYNC CONFIG, *PGSC ASYNC CONFIG;

73



GSC_HDLC_CONFIG Structure

typedef struct GSC HDLC CONFIG

{

// Channel Configuration Variables

int bitRate; //
int encoding; //
int protocol; //
int termination; //
int parity; //
int crcMode; //
int crcInitialvValue; //
// Transmitter Configuration Variables
int txStatus; //
int txCharacterLength; //
int txUnderRun; //
int txPreamble; //
int txPreamblePattern; //
int txSharedZero; //
int txClockSource; //
int txIdleCondition; //
// Receiver Configuration Variables
int rxStatus; //
int rxCharacterLength; //
int rxAddrSearchMode; //
int rxAddress; //
int rxClockSource; //
int rxReceiveStatusBlocks; //
//
// Pin Configuration Variables
int interfaceMode; //
int txDataPinMode; //
int rxDataPinMode; //
int txClockPinMode; //
int rxClockPinMode; //
int ctsPinMode; //
int rtsPinMode; //
int loopbackMode; //

// Misc Configuration Variables

int

packetFraming;

} GSC_HDLC_ CONFIG, *PGSC_HDLC CONFIG;

Baud rate for the channel.

Encoding - NRZ, BiPhase, etc.
Bus Protocol - RS485, RS232,

etc.

Termination Resistors enabled/disabled

Parity mode - None, Even, 0dd,

CRC Type - Disabled, CCITT,
Initial CRC - A1l 1 or O

Transmitter Enabled/Disabled

Bits per Tx character

What to do on a Tx underrun
Length of Preamble

Type of Preamble

Share Os in adjacent flags?

Clock source for the transmitter

What to transmit when the line is idle

Receiver Enabled/Disabled
Bits per Rx character
Rx address search mode
Address to search for

Clock source for the receiver
Enable/disable 16 bit receive

status blocks in RX FIFO

DTE or DCE interface

Auto (system use) or GPIO
Auto (system use) or GPIO
Auto (system use) or GPIO
Auto (system use) or GPIO
Auto (system use) or GPIO
Auto (system use) or GPIO

None, internal, or external loop back

Internal use only, leave enabled

74



GSC_BISYNC_CONFIG Structure

typedef struct GSC BISYNC CONFIG

{

// Channel Configuration Variables

int
int
int
int
int
int
int

bitRate;
encoding;
protocol;
termination;
parity;

crcMode;
crcInitialValue;

// Transmitter Configuration Variables

int
int
int
int
int
int
int
int
int

int

txStatus;
txCharacterLength;
txClockSource;
txIdleCondition;
txSyncWord;
txUnderRun;
txPreamble;
txPreamblelLength;
txPreamblePattern;

txShortSync;

// Receiver Configuration Variables

int
int
int
int
int
int

rxStatus;
rxClockSource;
rxCharacterLength;
rxSyncWord;
rxSyncStrip;
rxShortSync;

// Pin Configuration Variables

int
int
int
int
int
int
int
int

interfaceMode;
txDataPinMode;
rxDataPinMode;
txClockPinMode;
rxClockPinMode;
ctsPinMode;
rtsPinMode;
loopbackMode;

// Misc Configuration Variables

int

} GSC_BISYNC CONFIG,

packetFraming;
*PGSC_BISYNC CONFIG;

//
//
//
//

Baud rate for the channel.

Encoding - NRZ, BiPhase, etc.

Bus Protocol - RS485, RS232, V.35, etc.
Termination Resistors enabled/disabled
Parity mode - None, Even, 0dd, etc.

CRC Type - Disabled, CCITT, etc.
Initial CRC - A1l 1 or O

Transmitter Enabled/Disabled

Bits per Tx character

Clock source for the transmitter

What to transmit when the line is idle
Two character sync pattern

What to do on a Tx underrun
Enable/disable preamble before sync open

Preamble length - 8,16,32,64 bits
Preamble pattern - all zeros, all
ones, etc.

Length of sync character -

8 bits or same as txCharacterLength

Receiver Enabled/Disabled

Clock source for the receiver

Bits per Rx character

Two character sync pattern

Sync character stripping enable/disable
Length of sync character - 8 bits or same
as rxCharacterLength

DTE or DCE interface

Auto (system use) or GPIO
Auto (system use) or GPIO
Auto (system use) or GPIO
Auto (system use) or GPIO
Auto (system use) or GPIO
Auto (system use) or GPIO
None, internal, or external loop back

Internal use only, leave disabled

75



GSC_SYNC_CONFIG Structure

typedef struct GSC SYNC CONFIG
{

// Channel Configuration Variables

int bitRate; // Baud rate for the channel.

int encoding; // Encoding - NRZ, NRZB

int protocol; // Bus Protocol - RS485, RS232, V.35, etc.
int termination; // Termination Resistors enabled/disabled

// Transmitter Configuration Variables

int txStatus; // Transmitter Enabled/Disabled

int txCharacterLength; // Bits per Tx character

int txGapLength; // Bits between Tx characters

int txClockSource; // Clock source for the transmitter

int txClockEdge; // Clock edge for the transmitter

int txEnvPolarity; // Envelope polarity for the transmitter
int txIdleCondition; // What to transmit when the line is idle
int txClockIdleCondition; // What to do with the clock when line idle
int txMsbLsb; // Bit order for transmitter

// Receiver Configuration Variables

int rxStatus; // Receiver Enabled/Disabled

int rxClockSource; // Clock source for the receiver

int rxClockEdge; // Clock edge for the receiver

int rxEnvPolarity; // Envelope polarity for the receiver
int rxMsbLsb; // Bit order for receiver

// Pin Configuration Variables

int interfaceMode; // DTE or DCE interface

int txDataPinMode; // Auto (system use) or GPIO

int rxDataPinMode; // RAuto (system use) or GPIO

int txClockPinMode; // BAuto (system use) or GPIO

int rxClockPinMode; // BAuto (system use) or GPIO

int txEnvPinMode; // RAuto (system use) or GPIO

int rxEnvPinMode; // Auto (system use) or GPIO

int loopbackMode; // None, internal, or external loop back

// Misc Configuration Variables
int packetFraming; // Internal use only, leave disabled

} GSC_SYNC CONFIG, *PGSC_SYNC CONFIG;

76



GSC_BISYNC16_CONFIG Structure

typedef struct GSC BISYNC16 CONFIG

{

} GSC_BISYNC1l6_ CONFIG,

// Channel Configuration Variables
int bitRate;

int encoding;

int protocol;

int termination;

//
//
//
//

// Transmitter Configuration Variables

int txStatus;

int txIdleCondition;
int txSyncWord;

int txBitOrder;

int txByteOrder;

// Receiver Configuration Variables
int rxStatus;

int rxSyncWord;

int maxRxCount;

// Pin Configuration Variables
int interfaceMode;

int txDataPinMode;

int rxDataPinMode;

int txClockPinMode;

int rxClockPinMode;

int ctsPinMode;

int rtsPinMode;

int loopbackMode;

*PGSC_BISYNC16 CONFIG;

//
//
//

//
//

Baud rate for the channel.

Encoding - NRZ, BiPhase, etc.

Bus Protocol - RS485, RS232, V.35, etc.
Termination Resistors enabled/disabled

Transmitter Enabled/Disabled
What to transmit when the line is idle
Two character sync pattern

Receiver Enabled/Disabled
Two character sync pattern

DTE or DCE interface

Auto (system use) or GPIO

Auto (system use) or GPIO

Auto (system use) or GPIO

Auto (system use) or GPIO

Auto (system use) or GPIO

Auto (system use) or GPIO

None, internal, or external loop back

77



Channel Encoding Definitions

The Channel Encoding Definitions are used to set the desired channel encoding for
each channel of the S104 board. These definitions are passed as a parameter of the
GscSio4ChannelSetEncoding(...) command.

Macro Description
GSC_ENCODING_NRZ

GSC_ENCODING_NRZB

GSC_ENCODING_NRZI_MARK
GSC_ENCODING_NRZI_SPACE
GSC_ENCODING_BIPHASE_MARK
GSC_ENCODING_BIPHASE_SPACE
GSC_ENCODING_BIPHASE_LEVEL
GSC_ENCODING_DIFF_BIPHASE_LEVEL

78



Channel Protocol and Termination Definitions

GSC_PROTOCOL,_RS422_RS485,
GSC_PROTOCOL,_RS423,
GSC_PROTOCOL._RS232,
GSC_PROTOCOL._RS530 1,
GSC_PROTOCOL._RS530_2,
GSC_PROTOCOL_V35_1,
GSC_PROTOCOL_V35_2,
GSC_PROTOCOL_RS422_RS423 1,
GSC_PROTOCOL_RS422_RS423 2,

GSC_TERMINATION_ENABLED,
GSC_TERMINATION_DISABLED,

79



Channel Interrupt Definitions

GSC_INTR_RISING_EDGE,
GSC_INTR_FALLING_EDGE,
GSC_INTR_HIGH_TRUE,
GSC_INTR_LOW_TRUE,

GSC_INTR_SYNC_DETECT
GSC_INTR_USC
GSC_INTR_TX_FIFO_EMPTY
GSC_INTR_TX_FIFO_FULL
GSC_INTR_TX_FIFO_ALMOST_EMPTY
GSC_INTR_RX_FIFO_EMPTY
GSC_INTR_RX_FIFO_FULL
GSC_INTR_RX_FIFO_ALMOST_FULL
GSC_INTR_TX_TRANSFER_COMPLETE
GSC_INTR_RX_TRANSFER_COMPLETE
GSC_INTR_RX_ENVELOPE

/I -Sync card definition

= 0x0001,
= 0x0002,
= 0x0004,
= 0x0008,
= 0x0010,
= 0x0020,
= 0x0040,
0x0080,
0x0100,
= 0x0200,
= GSC_INTR_SYNC_DETECT,

80



Channel Pin Definitions

GSC_PIN_DTE,
GSC_PIN_DCE,
GSC_PIN_AUTO,
GSC_PIN_GPIO,
GSC_PIN_RX_CLOCK,
GSC_PIN_RX_DATA,
GSC_PIN_CTS,
GSC_PIN_DCD,
GSC_PIN_TX_CLOCK,
GSC_PIN_TX_DATA,
GSC_PIN_RTS,
GSC_PIN_AUXCLK,
GSC_PIN_RX_ENV,
GSC_PIN_TX_ENV,

/I Keep these enums in order

/I Keep these enums in order

81



Channel Parity Definitions

GSC_PARITY_NONE,
GSC_PARITY_EVEN,
GSC_PARITY_ODD,
GSC_PARITY_MARK,
GSC_PARITY_SPACE,

82



Channel Stop Bits Definition

GSC_STOP_BITS_0,
GSC_STOP_BITS_1,
GSC_STOP_BITS_1_5,
GSC_STOP_BITS_2,

Loopback Definitions

GSC_LOOP_NONE,
GSC_LOOP_INTERNAL,
GSC_LOOP_EXTERNAL,

HDLC CRC Definitions

GSC_CRC_NONE,
GSC_CRC_16,
GSC_CRC_32,
GSC_CRC_CCITT,
GSC_CRC_INIT_O,
GSC_CRC_INIT_1,



Local Register Definitions

The Local Register Definitions are used to access the various registers that are
contained in the on board FPGA. These registers should not be accessed during normal
operation and are included only for diagnostic purposes. For detailed descriptions of the

registers, refer to the SIO4 hardware user’s manual.

Macro

FW_REVISION_REG
BOARD_CONTROL_REG
BOARD_STATUS_REG
CLOCK_CONTROL_REG
TX_ALMOST _BASE_REG
RX_ALMOST BASE_REG
DATA FIFO BASE_REG
CONTROL_STATUS BASE_REG
SYNC_CHARACTER_BASE_REG
INTERRUPT_CONTROL_REG
INTERRUPT_STATUS_REG
INTERRUPT_EDGE_LEVEL_REG
INTERRUPT_HI_LO_REG
PIN_SOURCE_BASE_REG
PIN_STATUS BASE_REG
POSC_RAM_ADDRESS REG
POSC_RAM_DATA REG
POSC_CONTROL_STATUS REG
TX_COUNT_BASE_REG
FIFO_COUNT_BASE_REG
FIFO_SIZE_BASE_REG
FEATURES_REG

Value
0x0000
0x0004
0x0008
0x000c
0x0010
0x0014
0x0018
0x001c
0x0050
0x0060
0x0064
0x0068
0x006¢
0x0080
0x0090
0x00a0
0x00a4
0x00a8
0x00b0
0x00d0
0x00e0
0x00fc

Description

Firmware Revision Register

Board Control Register

Board Status Register

Clock Control Register

Base value for the Tx Almost registers
Base value for the Rx Almost registers
Base value for the Tx and Rx Data FIFOs
Base value for the Control/Status registers
Base value for the Sync Byte Registers
Interrupt Control Register

Interrupt Status/Clear Register

Interrupt Edge/Level Register (RO)
Interrupt High/Low, Rising/Falling register
Base value for the Pin Source Registers
Base value for the Pin Status Registers
Programmable OSC Address Register
Programmable OSC Data Register
Programmable OSC Control/Status Register

Base value for the FIFO Count Registers

Base value for the FIFO Size Registers
Features Register

84



Channel Register Definitions

The Channel Register Definitions are used to access the various registers that are
contained in the Zilog USC chip for each channel. These registers should not be accessed
during normal operation and are included only for diagnostic purposes. For detailed
descriptions of the registers, refer to the Zilog USC hardware user’s manual.

Macro Value Description

USC_CCAR 0x0000 Channel Command/Address Register
USC_CMR 0x0002 Channel Mode Register
USC_CCSR 0x0004 Channel Command/Status Register
USC_CCR 0x0006 Channel Control Register
USC_TMDR 0x000c Test Mode Data Register
USC_TMCR 0x000e Test Mode Control Register
USC_CMCR 0x0010 Clock Mode Control Register
USC_HCR 0x0012 Hardware Configuration Register
USC_IVR 0x0014 Interrupt Vector Register
USC_IOCR 0x0016 1/0 Control Register

USC_ICR 0x0018 Interrupt Control Register
USC_DCCR 0x001a Daisy Chain Control Register
USC_MISR 0x001c Misc. Interrupt Status Register
USC_SICR 0x001e Status Interrupt Control Register
USC_RDR 0x0020 Receive Data Register (RO)
USC_RMR 0x0022 Receive Mode Register
USC_RCSR 0x0024 Receive Command Status Register
USC_RICR 0x0026 Receive Interrupt Control Register
USC_RSR 0x0028 Receive Sync Register

USC _RCLR 0x002a Receive Count Limit Register
USC_RCCR 0x002c Receive Character Count Register
USC_TCOR 0x002e Time Constant 0 Register
USC_TDR 0x0030 Transmit Data Register (WO)
USC_TMR 0x0032 Transmit Mode Register
USC_TCSR 0x0034 Transmit Command Status Register
USC_TICR 0x0036 Transmit Interrupt Control Register
USC_TSR 0x0038 Transmit Sync Register
USC_TCLR 0x003a Transmit Count Limit Register
USC_TCCR 0x003c Transmit Character Count Register
USC_TCIR 0x003e Time Constant 1 Register

85



Miscellaneous Token Definitions

GSC_ENABLED,
GSC_DISABLED,

GSC_CLOCK_INTERNAL,
GSC_CLOCK_EXTERNAL,

GSC_LSB_FIRST,
GSC_MSB_FIRST,

86



