

General Standards Corporation
SIO4 Application Interface

Users Manual
v1.2.9

March 30, 2005

Table of Contents

Introduction... 4
Installation... 4
Project Setup ... 6
System Level Routines ... 7

GscSio4FindBoards .. 7
GscSio4GetErrorString... 8

Board Level Routines ... 9
GscSio4Open .. 9
GscSio4Close.. 10
GscSio4GetVersions ... 11
GscSio4LocalRegisterRead .. 12
GscSio4LocalRegisterWrite ... 13

Channel Level Routines.. 14
GscSio4ChannelReset... 14
GscSio4ChannelResetRxFifo ... 15
GscSio4ChannelResetTxFifo.. 16
GscSio4ChannelRegisterRead .. 17
GscSio4ChannelRegisterWrite ... 18
GscSio4ChannelSetMode / GscSio4ChannelGetMode .. 19
GscSio4ChannelSetDataSize / GscSio4ChannelGetDataSize...................................... 21
GscSio4ChannelSetGapSize / GscSio4ChannelGetGapSize.. 22
GscSio4ChannelSetMsbLsbOrder / GscSio4ChannelGetMsbLsbOrder...................... 23
GscSio4ChannelSetParity / GscSio4ChannelGetParity.. 24
GscSio4ChannelSetStopBits / GscSio4ChannelGetStopBits 25
GscSio4ChannelSetEncoding / GscSio4ChannelGetEncoding 26
GscSio4ChannelSetProtocol / GscSio4ChannelGetProtocol.. 27
GscSio4ChannelSetDteDce / GscSio4ChannelGetDteDce .. 29
GscSio4ChannelSetLoopBack / GscSio4ChannelGetLoopBack 30
GscSio4ChannelSetPinMode / GscSio4ChannelGetPinMode 31
GscSio4ChannelSetPinValue / GscSio4ChannelGetPinValue 32
GscSio4ChannelFifoSizes... 33
GscSio4ChannelFifoCounts.. 34
GscSio4ChannelSetTxAlmost / GscSio4ChannelGetTxAlmost 35
GscSio4ChannelSetRxAlmost / GscSio4ChannelGetRxAlmost.................................. 36
GscSio4ChannelCheckForData .. 37
GscSio4ChannelReceiveData ... 38
GscSio4ChannelReceiveDataAndWait... 39
GscSio4ChannelTransmitData.. 40
GscSio4ChannelTransmitDataAndWait ... 41
GscSio4ChannelQueryTransfer .. 42
GscSio4ChannelWaitForTransfer... 43
GscSio4ChannelFlushTransfer ... 44
GscSio4ChannelRemoveTransfer... 45
GscSio4ChannelRegisterInterrupt .. 46

 2

GscSio4ChannelSetClock ... 48
GscSio4ChannelSetClockSource.. 49

Protocol Level Routines.. 50
GscSio4ChannelSetHdlcCrcMode / GscSio4ChannelGetHdlcCrcMode..................... 50
GscSio4ChannelSetBiSyncPattern / GscSio4ChannelGetBiSyncPattern..................... 52

Structures and Macro Definitions ... 53
Devices Structure .. 53
Interrupt Callback Prototype... 53
Channel Mode Definitions.. 54
Channel Encoding Definitions.. 55
Channel Protocol and Termination Definitions .. 56
Channel Interrupt Definitions ... 57
Channel Pin Definitions.. 58
Channel Parity Definitions.. 59
Channel Stop Bits Definition.. 60
Loopback Definitions.. 60
HDLC CRC Defintions... 60
Local Register Definitions .. 61
Channel Register Definitions.. 62
Miscellaneous Token Definitions ... 63

 3

Introduction
This document describes the Application Programmers Interface (API) for the

General Standards Corporation I/O Interface boards. Some API functions apply only to
certain hardware. Each function contains the list of boards that it supports. For examples
of how to use the API functions, refer to the source code included in the API examples.
These examples are located in the sub-directories named samples/SIO4B_Test.

This API was written using Microsoft Visual C++ 6.0 and is compatible with both
Win32 and MFC applications.

Installation
The API support files are installed during the standard installation of the driver. The

API support files are placed, by default, into the C:\Program Files\General Standards
Corporation\GscApi\ directory and subdirectories and consist of the following files:

GscApi.h – This is the header file that should be included in any source files that

utilize the API. This file contains the function prototypes and constant
definitions needed to access the API.

GscApi.lib – This is the import library file that should be included in your project

so that the linker can find the API functions.

GscApi.dll – This is the dynamically linked library file that contains the actual

API code. It should be located in the same directory as your
executable or in your system path so that your application can access
the API functions. This file will also be installed to your system32
directory during installation.

Below is a list of files copied by the installer during the installation process:

Critical System Files:

%WINDIR%\system32\GscApi.dll
%WINDIR%\system32\PlxApi.dll
%WINDIR%\inf\SIO4Cdriver.inf
%WINDIR%\system32\drivers\PciSIO4.sys

Examples/Documentation:

%PROGRAMFILES% \General Standards Corporation\GscApi\

It is recommended that you install the driver/API before installing the SIO4B card.

After the installation completes, shut the system down and install the SIO4B card.

 4

Under Windows XP, you may get the following warning during the Hardware
Wizard’s installation of the card. You can safely choose Continue Anyway to install the
driver.

 5

Project Setup
To utilize the SIO4B-API in your software application, you should include the

GscApi.h header file and the GscApi.lib static library file in your project. The details of
adding these files to your project will differ from compiler to compiler. We will
concentrate on the Microsoft® Visual C++ IDE. Support for other compilers may be
added in future releases of the SIO4B-API.

First, be sure that your source code file that will make use of the SIO4B-API has the
GscApi.h header file included as follows:

#include "GscApi.h"

Next, be sure that your project has the GscApi.lib static library file included to be
compiled as part of your project as follows (here is a sample of the workspace for the
SIO4B_Test included with the SIO4B-API in the Samples directory):

Lastly, the GscApi.dll file should be made available to your final executable program

– either by having this file in the same directory or making it available via your system’s
path. By default, the installer copies the GscApi.dll file to the system32 directory so it
should be available to all applications.

 6

System Level Routines
The System Level Routines perform functions that either apply to all SIO4 boards in

the system, or are not board specific. These routines are used to gather information about
the current system setup. All of these functions return zero if successful or a non-zero
error code if a failure occurs.

GscSio4FindBoards

GscSio4FindBoards(…) is used to report the number of GSC SIO4 boards in the
system as well as some board specific information. An application may call this function
at any time.

Supported Hardware:

All

Prototype:

int GscSio4FindBoards(
int *boardCount,
GSC_DEVICES_STRUCT *results);

Parameters:

boardCount – a pointer to the location to save the number of boards detected. This value

will be zero if no boards are found.

results – a pointer to the devices structure that will be filled in with the information from

the boards found. If this parameter is NULL, no board specific information will be
returned. The boardCount will, however, still be returned. The devices structure is
defined as follows:

typedef struct
{

 int busNumber; // Identifies the bus that contains the board
 int slotNumber; // Identifies the slot that contains the board
 int vendorId; // Identifies the board Vendor
 int deviceId; // Identifies the device
 char serialNumber[25]; // A unique board serial number

} GSC_DEVICES_STRUCT;

 7

GscSio4GetErrorString

GscSio4GetErrorString(…) is used to translate the error codes that are returned by the
various API functions into meaningful null-terminated strings. The strings returned by
this function are guaranteed to be less than 80 characters in length.

Supported Hardware:

All

Prototype:

int GscSio4GetErrorString(

int errorCode,
char *errorString);

Parameters:

errorCode – the error code returned by an API function.

errorString – a pointer to a character string that will be filled with the text that

corresponds to the errorCode.

 8

Board Level Routines
The Board Level Routines perform functions that apply to a single SIO4 board. These

functions affect all channels of the SIO4 board. Each of these routines requires the board
number (boardNumber) as the first argument. The board numbers run from 1 up to the
number that is returned from the call to GscSio4FindBoards(…) function. Note that this
number will always be 1 in a single board system.

These routines can be called at any time. All of these functions return zero if
successful or a non-zero error code if a failure occurs.

GscSio4Open

GscSio4Open(…) is used to “open” the SIO4 board for operation. It should be called
before any other Board or Channel Level routines and should only be called once. In the
process of opening a board, all four channels are reset and the clock outputs are disabled.

Supported Hardware:

All

Prototype:

int GscSio4Open(int boardNumber);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

 9

GscSio4Close

GscSio4Close(…) is used to “close” the SIO4 board. It should be the last API
function called before the application terminates. This function releases the resources that
are used by the API and driver.

Supported Hardware:

All

Prototype:

int GscSio4Close(int boardNumber);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

 10

GscSio4GetVersions

GscSio4GetVersions(…) returns the various version numbers associated with the
API, the low level driver, and the SIO4 board’s FPGA. The Library and Driver version
numbers are returned in the form: 0x00MMmmee where MM is the major release
number, mm is the minor release number, and ee is the engineering release number. The
entire version is defined as MM.mm.ee for example 1.02.05 is returned as 0x00010205.
The FPGA version number has several encoded fields. The low byte contains the actual
version number. Refer to the hardware users manual for details on the other encoded
fields.

Supported Hardware:

All

Prototype:

int GscSio4GetVersions(

int boardNumber,
int *libVersion,
int *driverVersion,
int *fpgaVersion);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

libVersion – A pointer to the location that will receive the library (API) version number.

If this value is NULL, no value will be returned.

driverVersion – A pointer to the location that will receive the low level driver version

number. If this value is NULL, no value will be returned.

fpgaVersion – A pointer to the location that will receive the FPGA firmware version

number. If this value is NULL, no value will be returned.

 11

GscSio4LocalRegisterRead

GscSio4LocalRegisterRead(…) is used to read the local board registers. These
registers reside within the board’s FPGA. It is not recommended that a user application
directly access these registers. This function is included for diagnostic purposes only.

Supported Hardware:

All

Prototype:

int GscSio4LocalRegisterRead(
int boardNumber,
int reg,
int *result);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

reg – The address of the register to be read. Macros for these addresses are described in

the section titled “Local Register Definitions”.

result – A pointer to the location that will receive the results of the read operation.

 12

GscSio4LocalRegisterWrite

GscSio4LocalRegisterWrite(…) is used to write to the local board registers. These
registers reside within the board’s FPGA. It is not recommended that a user application
directly access these registers. This function is included for diagnostic purposes only.

Supported Hardware:

All

Prototype:

int GscSio4LocalRegisterWrite(
int boardNumber,
int reg,
int value);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

reg – The address of the register to be written. Macros for these addresses are described

in the section titled “Local Register Definitions”.

value – The value that is to be written to the local register.

 13

Channel Level Routines

The Channel Level Routines perform functions that apply to a single channel on an

SIO4 board. Each of these routines requires the board number (boardNumber) as the first
parameter and the channel number (channel) as the second parameter. The board number
corresponds to the results of the GscSio4FindBoards(…) function. Note that this number
will always be 1 in a single board system. The channel number will always be 1, 2, 3, or
4.

These routines can be called at any time. All of these functions return zero if
successful or a non-zero error code if a failure occurs.

GscSio4ChannelReset

GscSio4ChannelReset(…) resets a single channel on the SIO4 board. In addition to
disabling the serial channel, this function sets the “Almost Empty” and “Almost Full”
FIFO flags to 16.

Supported Hardware:

All

Prototype:

int GscSio4ChannelReset(
int boardNumber,
int channel);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

 14

GscSio4ChannelResetRxFifo

GscSio4ChannelResetRxFifo(…) resets the Rx FIFO for a single channel. After the
reset, the FIFO will contain no data.

Supported Hardware:

All

Prototype:

int GscSio4ChannelResetRxFifo (
int boardNumber,
int channel);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

 15

GscSio4ChannelResetTxFifo

GscSio4ChannelResetTxFifo(…) resets the Tx FIFO for a single channel. After the
reset, the FIFO will contain no data.

Supported Hardware:

All

Prototype:

int GscSio4ChannelResetTxFifo (
int boardNumber,
int channel);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

 16

GscSio4ChannelRegisterRead

GscSio4ChannelRegisterRead(…) is used to read the registers in the Universal Serial
Chip that controls the specified channel. It is not recommended that a user application
directly access these registers. This function is included for diagnostic purposes only.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelRegisterRead(
int boardNumber,
int channel,
int reg,
int *value);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

reg – The address of the register to be read. Macros for these addresses are described in

the section titled “Channel Register Definitions”.

value – A pointer to the location that will receive the results of the read operation.

 17

GscSio4ChannelRegisterWrite

GscSio4ChannelRegisterWrite(…) is used to write to the registers in the Universal
Serial Chip that controls the specified channel. It is not recommended that a user
application directly access these registers. This function is included for diagnostic
purposes only.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelRegisterWrite(
int boardNumber,
int channel,
int reg,
int value);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

reg – The address of the register to be written. Macros for these addresses are described

in the section titled “Channel Register Definitions”.

value – The value that is to be written to the register.

 18

GscSio4ChannelSetMode / GscSio4ChannelGetMode

GscSio4ChannelSetMode(…) sets a single channel of the SIO4 board to the desired
serial format and bit rate.

Each mode has its own defaults, as described below, which can be altered by calling
the appropriate Channel Level Routines after this function returns.

Supported Hardware:

All

Prototype:

int GscSio4ChannelSetMode(
int boardNumber,
int channel,
int mode,
int bitRate);

int GscSio4ChannelGetMode(

int boardNumber,
int channel,
int *mode,
int *bitRate);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

mode – The desired/current serial mode for this channel. The value should be one of the

following:
GSC_MODE_ASYNC – Sets the channel to standard asynchronous mode. The

channel defaults to 8 data bits, no Parity, and one stop bit. It also uses a
16x sampling clock.

GSC_MODE_ISO – Sets the channel to isochronous mode. Uses the same

defaults as GSC_MODE_ASYNC except the sampling clock, which is set
to 1x.

GSC_MODE_HDLC – Sets the channel to HDLC mode. The Transmit clock is

derived from the on-board source at the rate specified (bitRate) and is also
driven onto the cable for use by the receiving end. The receiver clock is

 19

connected to the cable and should be supplied by the transmitter at the
other end.

GSC_MODE_SYNC -
GSC_MODE_SYNC_ENV – (SIO4-SYNC boards only)
GSC_MODE_ASYNC_CV -
GSC_MODE_MONOSYNC -
GSC_MODE_BISYNC -
GSC_MODE_TRANS_BISYNC –

GSC_MODE_NBIF -
GSC_MODE_802_3 -

bitRate – The desired/current serial bit (baud) rate for this channel. This value can range

from 250 to 10,000,000 for synchronous modes and 50 to 1,000,000 for asynchronous
modes.

 20

GscSio4ChannelSetDataSize / GscSio4ChannelGetDataSize

GscSio4ChannelSetDataSize(…) sets the size of the transmitted and received data for
a single channel of the SIO4 board. The data size can be set to any value between 1 and 8
inclusive on the standard SIO4 boards. The data size can be set to any value between 1
and 65535 on the –SYNC boards.

Supported Hardware:

ALL

Prototype:

int GscSio4ChannelSetDataSize(
int boardNumber,
int channel,
int dataSize);

int GscSio4ChannelGetDataSize(

int boardNumber,
int channel,
int *dataSize);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

dataSize – The desired/current data size for this channel. The value should be between 1

and 8 on the standard boards and between 1 and 65535 on the -SYNC boards.

 21

GscSio4ChannelSetGapSize / GscSio4ChannelGetGapSize

GscSio4ChannelSetGapSize(…) sets the size of the gap between transmitted data
words for a single channel of the SIO4 board. The gap size can be set to any value
between 0 and 65535.

Supported Hardware:

SIO4-SYNC

Prototype:

int GscSio4ChannelSetGapSize(
int boardNumber,
int channel,
int gapSize);

int GscSio4ChannelGetGapSize(

int boardNumber,
int channel,
int *gapSize);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

gapSize – The desired/current gap size for this channel. The value should be between 1

and 65535.

 22

GscSio4ChannelSetMsbLsbOrder /
GscSio4ChannelGetMsbLsbOrder

GscSio4ChannelSetMsbLsbOrder(…) sets the order that the bits are shifted out onto
the “wire”.

Supported Hardware:

SIO4-SYNC

Prototype:

int GscSio4ChannelSetGapSize(
int boardNumber,
int channel,
int txOrder,
int rxOrder);

int GscSio4ChannelGetGapSize(

int boardNumber,
int channel,
int *txOrder,
int *rxOrder);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

txOrder – The desired/current MSB/LSB ordering for the transmitter. The valid values

are either GSC_MSB_FIRST or GSC_LSB_FIRST.

rxOrder – The desired/current MSB/LSB ordering for the receiver. The valid values are

either GSC_MSB_FIRST or GSC_LSB_FIRST.

 23

GscSio4ChannelSetParity / GscSio4ChannelGetParity

GscSio4ChannelSetParity(…) sets the type of parity that will be used on a single
channel of the SIO4 board. The parity can be set to None, Even Odd, Space, or Mark.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelSetParity(
int boardNumber,
int channel,
int parity);

int GscSio4ChannelGetParity(

int boardNumber,
int channel,
int *parity);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

parity – The desired/current parity type for this channel. The value should be one of the

following:
GSC_PARITY_NONE – Sets the channel to no parity.

GSC_PARITY_EVEN – Sets the channel to Even parity.

GSC_PARITY_ODD – Sets the channel to Odd parity.

GSC_PARITY_MARK - Sets the channel to Mark parity.

GSC_PARITY_SPACE - Sets the channel to Space parity.

 24

GscSio4ChannelSetStopBits / GscSio4ChannelGetStopBits

GscSio4ChannelSetStopBits(…) sets the number of stop bits to use for a single
channel of the SIO4 board. The number of stop bits can be set to 0, 1, 1 ½, or 2 bits.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelSetStopBits(
int boardNumber,
int channel,
int stopBits);

int GscSio4ChannelGetStopBits(

int boardNumber,
int channel,
int *stopBits);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

stopBits – The desired/current number of stop bits for this channel. The value should be

one of the following:
GSC_STOP_BITS_0 – Sets the channel to no stop bits. This setting can only be

used when the channel is set to Async with Code Violation (MIL STD
1553) mode.

GSC_STOP_BITS_1 – Sets the channel to 1 stop bit.

GSC_STOP_BITS_1_5 – Sets the channel to 1 ½ stop bits.

GSC_STOP_BITS_2 - Sets the channel to 2 stop bits.

 25

GscSio4ChannelSetEncoding / GscSio4ChannelGetEncoding

GscSio4ChannelSetEncoding(…) sets the encoding type for a single channel of the
SIO4 board. The encoding can be set to NRZ, NRZB, NRZI Mark, NRZI Space, Biphase
Mark, Biphase Space, Biphase Level, or Differential Biphase Level on standard boards.
The encoding can be set to only NRZ or NRZB on the –SYNC boards.

Supported Hardware:

All

Prototype:

int GscSio4ChannelSetEncoding(
int boardNumber,
int channel,
int encoding);

int GscSio4ChannelGetEncoding(

int boardNumber,
int channel,
int *encoding);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

encoding – The desired/current encoding type for this channel. This value should be one

of the macros defined in the section “Channel Encoding Definitions”.

 26

GscSio4ChannelSetProtocol / GscSio4ChannelGetProtocol

GscSio4ChannelSetProtocol(…) sets the physical interface protocol and termination
options. The protocol on the standard SIO4B card is fixed at RS422/RS485 or RS232
depending on the configuration set at the factory. Only the –BX cards allow this value to
be changed.

Supported Hardware:

PCI-SIO4B-BX

Prototype:

int GscSio4ChannelSetProtocol(
int boardNumber,
int channel,
int protocol,
int termination);

int GscSio4ChannelGetProtocol(

int boardNumber,
int channel,
int *protocol,
int *termination);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

protocol – The desired/current physical interface protocol. The value can be any of the

following:

GSC_PROTOCOL_RS422_RS485 – Sets
GSC_PROTOCOL_RS423 – Sets
GSC_PROTOCOL_RS232 – Sets
GSC_PROTOCOL_RS530_1 – Sets
GSC_PROTOCOL_RS530_2 – Sets
GSC_PROTOCOL_V35_1 – Sets
GSC_PROTOCOL_V35_2 – Sets
GSC_PROTOCOL_RS422_RS423_1 – Sets
GSC_PROTOCOL_RS422_RS423_2 – Sets

 27

termination – The desired/current termination setting. The value can be any of the
following:

GSC_TERMINATION_ENABLED – Sets
GSC_TERMINATION_DISABLED – Sets

 28

GscSio4ChannelSetDteDce / GscSio4ChannelGetDteDce

GscSio4ChannelSetDteDce(…) sets a single channel of the SIO4 board to either DTE
or DCE mode. Each channel defaults to DTE mode when it is configured. Calling this
routine is only necessary if DCE mode is required, or to switch back to DTE mode after a
previous change to DCE mode.

The pin-outs for both DTE and DCE modes are available in the Hardware Users
Manual.

Supported Hardware:

All

Prototype:

int GscSio4ChannelSetDteDce(
int boardNumber,
int channel,
int mode);

int GscSio4ChannelGetDteDce(

int boardNumber,
int channel,
int *mode);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

mode – The desired/current DTE/DCE mode for this channel. The value should be one of

the following:

GSC_PIN_DTE – Sets the channel to DTE mode. See the hardware manual for
the cable pin-out.

GSC_PIN_DCE - Sets the channel to DCE mode. See the hardware manual for

the cable pin-out.

 29

GscSio4ChannelSetLoopBack / GscSio4ChannelGetLoopBack

This function

Supported Hardware:

All

Prototype:

int GscSio4ChannelSetLoopBack(
int boardNumber,
int channel,
int loopMode);

int GscSio4ChannelGetLoopBack(

int boardNumber,
int channel,
int *loopMode);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

loopMode – The desired/current loopback mode.

 30

GscSio4ChannelSetPinMode / GscSio4ChannelGetPinMode

GscSio4ChannelSetPinMode(…)

Supported Hardware:

All

Prototype:

int GscSio4ChannelSetPinMode (
int boardNumber,
int channel,
int pinName,
int mode);

int GscSio4ChannelGetPinMode (

int boardNumber,
int channel,
int pinName,
int *mode);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

 31

GscSio4ChannelSetPinValue / GscSio4ChannelGetPinValue

GscSio4ChannelSetPinValue(…)

Supported Hardware:

All

Prototype:

int GscSio4ChannelSetPinValue (
int boardNumber,
int channel,
int pinName,
int value);

int GscSio4ChannelGetPinValue (

int boardNumber,
int channel,
int pinName,
int *value);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

 32

GscSio4ChannelFifoSizes

GscSio4ChannelFifoSizes(…) returns the size, in bytes, of the channel’s Transmit
and Receive FIFOs. The size of the Transmit FIFO is returned in the upper 16 bits and
the size of the Receive FIFO is returned in the lower 16 bits of the result (sizes).

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelFifoSizes(
int boardNumber,
int channel,
int *sizes);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.
sizes – A pointer to the location that will receive the size (in bytes) of the Transmit (upper

16 bits) and the Receive (lower 16 bits) FIFOs

 33

GscSio4ChannelFifoCounts

GscSio4ChannelFifoCounts(…) returns the current number of bytes in the channel’s
Transmit and Receive FIFOs. The number of bytes in the Transmit FIFO are returned in
the upper 16 bits and the number of bytes in the Receive FIFO are returned in the lower
16 bits of the result (counts).

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelFifoCounts(
int boardNumber,
int channel,
int *counts);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.
counts – A pointer to the location that will receive the number of bytes currently in the

Transmit (upper 16 bits) and the Receive (lower 16 bits) FIFOs.

 34

GscSio4ChannelSetTxAlmost / GscSio4ChannelGetTxAlmost

GscSio4ChannelSetTxAlmost(…) programs the “Almost Full” and “Almost Empty”
registers in the Transmit FIFO for a single channel. Once the values are programmed, the
FIFO will be reset to force the change to take effect. This will also clear the contents of
the FIFO, so this command should be done before any data transfers occur.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelSetTxAlmost(
int boardNumber,
int channel,
int almostValue);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

almostValue – The 32bit value that will be programmed into the Transmitter FIFO’s

Almost Full (upper 16 bits) and Almost Empty (lower 16 bits) registers.

 35

GscSio4ChannelSetRxAlmost / GscSio4ChannelGetRxAlmost

GscSio4ChannelSetRxAlmost(…) programs the “Almost Full” and “Almost Empty”
registers in the Receive FIFO for a single channel. Once the values are programmed, the
FIFO will be reset to force the change to take effect. This will also clear the contents of
the FIFO, so this command should be done before any data transfers occur.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelSetRxAlmost(
int boardNumber,
int channel,
int almostValue);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

almostValue – The 32bit value that will be programmed into the Receiver FIFO’s Almost

Full (upper 16 bits) and Almost Empty (lower 16 bits) registers.

 36

GscSio4ChannelCheckForData

GscSio4ChannelCheckForData(…) checks for the reception of a complete packet on
the Channel’s Receiver. If no complete packets have been received, the routine returns
immediately with a count of 0x00. If a packet is ready, the routine returns with count set
to the length of the data packet and the packet contents are copied into the supplied
buffer.

This routine is only available when packet framing is enabled for the channel. Packet
framing is currently supported only when the channel is configured for HDLC.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelCheckForData(
int boardNumber,
int channel,
char *buffer,
int *count);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the data buffer that will receive the data. The buffer

should be long enough to hold the longest possible packet.

count – The number of bytes that were contained in the packet and transferred to buffer.

Count will be 0x00 if no packets were available.

 37

GscSio4ChannelReceiveData

GscSio4ChannelReceiveData(…) starts the reception of data on the specified channel.
The data received on the channel is transferred into the memory buffer pointed to by
buffer. A total of count bytes will be transferred. This function may return before the
transfer completes. When this function returns, the value pointed to by id will contain a
unique identifier that can be used to determine the progress of the transfer.

Supported Hardware:

All

Prototype:

int GscSio4ChannelReceiveData(
int boardNumber,
int channel,
char *buffer,
int count,
int *id);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the data buffer that will receive the data. The buffer

should be at least count bytes long.

count – The number of bytes to transfer.

id – A pointer to the location that will hold the unique transfer identifier that is assigned

to this transfer. This value can be used to determine when the transfer has completed.

 38

GscSio4ChannelReceiveDataAndWait

GscSio4ChannelReceiveDataAndWait(…) starts the reception of data on the
specified channel. The data received on the channel is transferred into the memory buffer
pointed to by buffer. A total of count bytes will be transferred. This function will not
return until the entire transfer has completed or the timeout period has expired. If a
timeout occurs, the value in bytesTransferred will specify the number of bytes that were
actually received. (Note that if no timeout occurs, the bytesTransferred value is
undefined.)

Supported Hardware:

All

Prototype:

int GscSio4ChannelReceiveDataAndWait(
int boardNumber,
int channel,
char *buffer,
int count,
int timeout,
int *bytesTransferred);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the data buffer that will receive the data. The buffer

should be at least count bytes long.

count – The number of bytes to transfer.

timeout – The desired timeout period (in milliseconds) for the transfer.

bytesTransferred – If a timeout occurs, this value will specify the total number of bytes

that were actually received. If no timeout occurs, this value is undefined.

 39

GscSio4ChannelTransmitData

GscSio4ChannelTransmitData(…) starts the transmission of data on the specified
channel. The data to be transmitted on the channel is transferred from the memory buffer
pointed to by buffer. A total of count bytes will be transferred. This function may return
before the transfer completes. When this function returns, the value pointed to by id will
contain a unique identifier that can be used to determine the progress of the transfer.

Supported Hardware:

All

Prototype:

int GscSio4ChannelTransmitData(
int boardNumber,
int channel,
char *buffer,
int count,
int *id);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the data buffer that will be transmitted. The buffer should

be at least count bytes long.

count – The number of bytes to transfer.

id – A pointer to the location that will hold the unique transfer identifier that is assigned

to this transfer. This value can be used to determine when the transfer has completed.

 40

GscSio4ChannelTransmitDataAndWait

GscSio4ChannelTransmitDataAndWait(…) starts the transmission of data on the
specified channel. The data to be transmitted on the channel is transferred from the
memory buffer pointed to by buffer. A total of count bytes will be transferred. This
function will not return until the entire transfer has completed or the timeout period has
expired. If a timeout occurs, the value in bytesTransferred will specify the number of
bytes that were actually transmitted. (Note that if no timeout occurs, the bytesTransferred
value is undefined.)

Supported Hardware:

All

Prototype:

int GscSio4ChannelTransmitData(
int boardNumber,
int channel,
char *buffer,
int count,
int timeout
int *bytesTransferred);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the data buffer that will be transmitted. The buffer should

be at least count bytes long.

count – The number of bytes to transfer.

timeout – The desired timeout period (in milliseconds) for the transfer.

bytesTransferred – If a timeout occurs, this value will specify the total number of bytes

that were actually transmitted. If no timeout occurs, this value is undefined.

 41

GscSio4ChannelQueryTransfer

GscSio4ChannelQueryTransfer(…) is used to determine the status of a transfer that
was initiated by a call to either GscSio4ChannelReceiveData (…) or
GscSio4ChannelTransmitData (…). The result is returned in stat and will be 0 if the
transfer has completed or non-zero if it has not completed.

Supported Hardware:

All

Prototype:

int GscSio4ChannelQueryTransfer(
int boardNumber,
int channel,
int *stat,
int id);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

stat – A pointer to the location that will hold the returned status of the transfer. The stat

will be 0 if the transfer has completed. Otherwise, it will hold the number of bytes left
to transfer.

id – The unique ID that was assigned to the transfer by the call to either

GscSio4ChannelReceiveData(…) or GscSio4ChannelTransmitData(…)

 42

GscSio4ChannelWaitForTransfer

GscSio4ChannelWaitForTransfer (…) is used to wait for the completion of a transfer
that was initiated by a call to either GscSio4ChannelReceiveData (…) or
GscSio4ChannelTransmitData (…). The routine will return when either the transfer
completes or the timeout period expires. If the timeout period expires, the
bytesTransferred parameter will be updated with the number of bytes that were
successfully transferred. If the transfer completes, or another type of error occurs, the
bytesTransferred parameter will be -1.

Supported Hardware:

All

Prototype:

int GscSio4ChannelWaitForTransfer(
int boardNumber,
int channel,
int timeout,
int id.
int *bytesTransferred);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

timeout – The desired timeout value in milliseconds that the routine will wait for the

transfer to complete.

id – The unique ID that was assigned to the transfer by the call to either

GscSio4ChannelReceiveData(…) or GscSio4ChannelTransmitData(…)

bytesTransferred - A pointer to the location that will hold the number of bytes that were

actually transferred if the timeout period expires. This value will be -1 if the transfer
completes, or an error occurs.

 43

GscSio4ChannelFlushTransfer

GscSio4ChannelFlushTransfer (…) is used to force any data that is in the Rx FIFO to
be transferred via DMA to memory. For a Tx channel, data is transferred to the Tx FIFO
until it is full. Calling this routine is only necessary when a transfer did not complete on
its own, or when aborting a transfer that has not completed.

Supported Hardware:

All

Prototype:

int GscSio4ChannelFlushTransfer(
int boardNumber,
int channel,
int id);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

id – The unique ID that was assigned to the transfer by the call to either

GscSio4ChannelReceiveData(…) or GscSio4ChannelTransmitData(…)

 44

GscSio4ChannelRemoveTransfer

GscSio4ChannelRemoveTransfer (…) is used to remove a pending transfer from the
transfer queue. Calling this routine is only necessary when a transfer did not complete on
its own, or to abort a transfer that has not completed. If a transfer ID of -1 is passed to the
routine, all pending transfers will be removed.

Supported Hardware:

All

Prototype:

int GscSio4ChannelRemoveTransfer(
int boardNumber,
int channel,
int id,
int *bytesTransferred);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

id – The unique ID that was assigned to the transfer by the call to either

GscSio4ChannelReceiveData(…) or GscSio4ChannelTransmitData(…)

bytesTransferred - A pointer to the location that will hold the number of bytes that were

actually transferred before the call to GscSio4ChannelRemoveTransfer (). This value
will be -1 if the transfer had already completed, or an error occurs.

 45

GscSio4ChannelRegisterInterrupt

GscSio4ChannelRegisterInterrupt (…) is used register a callback routine with the
interrupt handler. There are several interrupt sources associated with each interrupt. This
routine allows any or all of the interrupt sources to be associated with a callback function.
The callback function can be shared between interrupt sources or a different callback can
be used for each source. This routine also determines whether the interrupt occurs on the
Rising Edge (High True) or Falling Edge (Low True).

Supported Hardware:

All

Prototype:

int GscSio4ChannelRegisterInterrupt(
int boardNumber,
int channel,
int interrupt,
int type,
GSC_CB_FUNCTION function);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

interrupt – This value determines which interrupts are associated with the provided

callback function. This value should be the logical OR of one or more of the
following:

GSC_INTR_SYNC_DETECT – Triggers an interrupt when the SYNC byte is

received on the channel. (This source is not available on the –Sync boards)

GSC_INTR_USC – Triggers an interrupt when the on board USC has an interrupt

pending. Refer to the USC data sheet for details of its possible interrupt
sources. (This source is not available on the –Sync boards)

GSC_INTR_TX_FIFO_EMPTY – Triggers an interrupt when the Transmit FIFO

for the channel is empty.

GSC_INTR_TX_FIFO_FULL – Triggers an interrupt when the Transmit FIFO
for the channel is full.

 46

GSC_INTR_TX_FIFO_ALMOST_EMPTY – Triggers an interrupt when the

Transmit FIFO for the channel is almost empty. The level at which this
interrupt will occur is set by calling the GscSio4ChannelSetTxAlmost(…)
routine.

GSC_INTR_RX_FIFO_EMPTY – Triggers an interrupt when the Receive FIFO

for the channel is empty.

GSC_INTR_RX_FIFO_FULL – Triggers an interrupt when the Receive FIFO for
the channel is full.

GSC_INTR_RX_FIFO_ALMOST_FULL – Triggers an interrupt when the

Receive FIFO for the channel is almost full. The level at which this
interrupt will occur is set by calling the GscSio4ChannelSetRxAlmost(…)
routine.

GSC_INTR_RX_ENVELOPE – Triggers an interrupt when the RX Envelope

signal changes. (This source is only available on the –Sync boards)

type – This value determines whether the interrupt occurs on the rising of falling edge. It

should be one of the following:
GSC_INTR_RISING_EDGE – The interrupt will occur on the rising edge of the

interrupt signal (i.e. when the condition becomes true.)
GSC_INTR_FALLING_EDGE – The interrupt will occur on the falling edge of

the interrupt signal (i.e. when the condition becomes not true.)

function – This is the address of the interrupt callback function. If this value is set to

NULL, the callback for the current “interrupt” parameter will be cleared, otherwise
this routine will be called for each of the conditions specified in the “interrupt”
parameter. The prototype for the callback function is:

void callback_function(

int boardNumber,
int channel,
int interrupt);

The parameters to the callback specify the board and channel number on which the
interrupt occurred as well as the source of the interrupt (as defined above.) If multiple
interrupt sources are mapped to the same callback routine, the “interrupt” value can
be used to determine the source of the interrupt.

 47

GscSio4ChannelSetClock

GscSio4ChannelSetClock(…) is used to set the serial bit rate (baud rate) for a specific
channel. Under normal conditions, this routine will not be used since the
GscSio4ChannelSetMode(…) function sets the channels bit rate when the channel’s
mode is set. This function is provided to allow the bit rate to be changed without re-
configuring the channel.

Supported Hardware:

All

Prototype:

int GscSio4ChannelSetClock(
int boardNumber,
int channel,
int frequency);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

frequency – The desired bit rate for this channel. This value is specified in Hz and can

range from 100 to 10000000 (1000000 for async channels).

 48

GscSio4ChannelSetClockSource

GscSio4ChannelSetClockSource(…) is used to set the clock source for the

Transmitter and Receiver of a channel.

Supported Hardware:

All

Prototype:

int GscSio4ChannelSetClock(
int boardNumber,
int channel,
int txSource,
int rxSource);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

txSource – The desired clock source for the Transmitter. The valid values are defined

below.

rxSource – The desired clock source for the Receiver. The valid values are defined

below.

GSC_CLOCK_INTERNAL – The clock is driven by the on board programmable
oscillator. The bit rate is set by either the GscSio4ChannelSetMode() or
the GscSio4ChannelSetClock() functions.

GSC_CLOCK_EXTERNAL – The clock is driven by the RxClk pin of the cable.

The bit rated is determined by the external clock, but should also be set by
either the GscSio4ChannelSetMode() or the GscSio4ChannelSetClock()
functions to ensure optimal performance.

 49

Protocol Level Routines

The Protocol Level Routines perform functions that apply to a specific protocol on a
single channel on an SIO4 board. Each of these routines requires the board number
(boardNumber) as the first parameter and the channel number (channel) as the second
parameter. The board number corresponds to the results of the GscSio4FindBoards(…)
function. Note that this number will always be 1 in a single board system. The channel
number will always be 1, 2, 3, or 4.

These routines can be called at any time. All of these functions return zero if
successful or a non-zero error code if a failure occurs.

GscSio4ChannelSetHdlcCrcMode /
GscSio4ChannelGetHdlcCrcMode

GscSio4ChannelSetHdlcCrcMode(…) sets the mode for CRC generation/detection
for a single channel of the SIO4 board. The CRC mode can be set to None, 16 bit, 32 bit,
or CCITT. This routine is also used to set the initial value of the CRC register. This value
can be set to either all 0 or all 1.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelSetHdlcCrcMode(
int boardNumber,
int channel,
int crcMode,
int initialValue);

int GscSio4ChannelGetHdlcCrcMode(

int boardNumber,
int channel,
int *crcMode,
int *initialValue);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

 50

crcMode – The desired/current CRC type for this channel. The value should be one of
the following:

GSC_CRC_NONE – Sets the channel to use no CRC.
GSC_CRC_16 – Sets the channel to use a 16 bit CRC.
GSC_CRC_32 – Sets the channel to use a 32 bit CRC.
GSC_CRC_CCITT - Sets the channel to use a CCITT CRC.

initialValue – The desired/current initial value for the CRC register. The value should be
one of the following:

GSC_CRC_INIT_0 – Initializes the CRC register to all 0’s.
GSC_CRC_INIT_1 – Initializes the CRC register to all 1’s.

 51

GscSio4ChannelSetBiSyncPattern /
GscSio4ChannelGetBiSyncPattern

GscSio4ChannelSetBiSyncPattern(…) sets the two bytes that are used for the Sync
Pattern when the channel is configured for BiSync mode.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelSetBiSyncPattern(
int boardNumber,
int channel,
int txSync,
int rxSync);

int GscSio4ChannelGetBiSyncPattern(

int boardNumber,
int channel,
int *txSync,
int *rxSync);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscSio4FindBoards(…) function. Note that this number will always be 1 in a
single board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

txSync – The desired/current value for the sync pattern for the transmitter.

rxSync – The desired/current value for the sync pattern for the receiver.

 52

Structures and Macro Definitions

This section contains the descriptions of the various structures and macro definitions

available to users of the API.

Devices Structure

Interrupt Callback Prototype

 53

Channel Mode Definitions

The Channel Mode Definitions are used to set the current operating protocol for each
channel of the SIO4 board. These definitions are passed as a parameter of the
GscSio4ChannelSetMode(…) command.

Macro Protocol Defaults
GSC_MODE_ASYNC Asynchronous Mode 8 Data Bits

No Parity
1 Stop Bit
16x Clock
NRZ Encoding

GSC_MODE_HDLC HDLC/SDLC Mode 8 Data Bits
NRZ Encoding

GSC_MODE_SYNC Synchronous Mode* 8 Data Bits
0 Gap Bits
NRZ Encoding

GSC_MODE_SYNC_ENV Synchronous Mode w/ Envelope* 8 Data Bits
0 Gap Bits
NRZ Encoding

GSC_MODE_ISO Isochronous Mode 8 Data Bits
NRZ Encoding

GSC_MODE_MONOSYNC Monosync Mode 8 Data Bits
NRZ Encoding

GSC_MODE_BISYNC BiSync Mode 8 Data Bits
NRZ Encoding

GSC_MODE_TRANS_BISYNC Transparent BiSync Mode 8 Data Bits
NRZ Encoding

GSC_MODE_802_3 IEEE 802.3 Ethernet Mode 8 Data Bits
NRZ Encoding

* These are the only modes that are available on the –SYNC card. They are not available
on the standard card.

 54

Channel Encoding Definitions

The Channel Encoding Definitions are used to set the desired channel encoding for
each channel of the SIO4 board. These definitions are passed as a parameter of the
GscSio4ChannelSetEncoding(…) command.

Macro Description
GSC_ENCODING_NRZ
GSC_ENCODING_NRZB
GSC_ENCODING_NRZI_MARK
GSC_ENCODING_NRZI_SPACE
GSC_ENCODING_BIPHASE_MARK
GSC_ENCODING_BIPHASE_SPACE
GSC_ENCODING_BIPHASE_LEVEL
GSC_ENCODING_DIFF_BIPHASE_LEVEL

 55

Channel Protocol and Termination Definitions

 GSC_PROTOCOL_RS422_RS485,
 GSC_PROTOCOL_RS423,
 GSC_PROTOCOL_RS232,
 GSC_PROTOCOL_RS530_1,
 GSC_PROTOCOL_RS530_2,
 GSC_PROTOCOL_V35_1,
 GSC_PROTOCOL_V35_2,
 GSC_PROTOCOL_RS422_RS423_1,
 GSC_PROTOCOL_RS422_RS423_2,

 GSC_TERMINATION_ENABLED,
 GSC_TERMINATION_DISABLED,

 56

Channel Interrupt Definitions

 GSC_INTR_RISING_EDGE,
 GSC_INTR_FALLING_EDGE,
 GSC_INTR_HIGH_TRUE,
 GSC_INTR_LOW_TRUE,

 GSC_INTR_SYNC_DETECT = 0x0001,
 GSC_INTR_USC = 0x0002,
 GSC_INTR_TX_FIFO_EMPTY = 0x0004,
 GSC_INTR_TX_FIFO_FULL = 0x0008,
 GSC_INTR_TX_FIFO_ALMOST_EMPTY = 0x0010,
 GSC_INTR_RX_FIFO_EMPTY = 0x0020,
 GSC_INTR_RX_FIFO_FULL = 0x0040,
 GSC_INTR_RX_FIFO_ALMOST_FULL = 0x0080,
 GSC_INTR_TX_TRANSFER_COMPLETE = 0x0100,
 GSC_INTR_RX_TRANSFER_COMPLETE = 0x0200,
 GSC_INTR_RX_ENVELOPE = GSC_INTR_SYNC_DETECT,
 // -Sync card definition

 57

Channel Pin Definitions

 GSC_PIN_DTE,
 GSC_PIN_DCE,
 GSC_PIN_AUTO,
 GSC_PIN_GPIO,
 GSC_PIN_RX_CLOCK, // Keep these enums in order
 GSC_PIN_RX_DATA, //
 GSC_PIN_CTS, //
 GSC_PIN_DCD, //
 GSC_PIN_TX_CLOCK, //
 GSC_PIN_TX_DATA, //
 GSC_PIN_RTS, //
 GSC_PIN_AUXCLK, // Keep these enums in order
 GSC_PIN_RX_ENV,
 GSC_PIN_TX_ENV,

 58

Channel Parity Definitions

 GSC_PARITY_NONE,
 GSC_PARITY_EVEN,
 GSC_PARITY_ODD,
 GSC_PARITY_MARK,
 GSC_PARITY_SPACE,

 59

Channel Stop Bits Definition

 GSC_STOP_BITS_0,
 GSC_STOP_BITS_1,
 GSC_STOP_BITS_1_5,
 GSC_STOP_BITS_2,

Loopback Definitions

 GSC_LOOP_NONE,
 GSC_LOOP_INTERNAL,
 GSC_LOOP_EXTERNAL,

HDLC CRC Defintions

 GSC_CRC_NONE,
 GSC_CRC_16,
 GSC_CRC_32,
 GSC_CRC_CCITT,
 GSC_CRC_INIT_0,
 GSC_CRC_INIT_1,

 60

Local Register Definitions

The Local Register Definitions are used to access the various registers that are
contained in the on board FPGA. These registers should not be accessed during normal
operation and are included only for diagnostic purposes. For detailed descriptions of the
registers, refer to the SIO4 hardware user’s manual.

Macro Value Description
FW_REVISION_REG 0x0000 Firmware Revision Register
BOARD_CONTROL_REG 0x0004 Board Control Register
BOARD_STATUS_REG 0x0008 Board Status Register
CLOCK_CONTROL_REG 0x000c Clock Control Register
TX_ALMOST_BASE_REG 0x0010 Base value for the Tx Almost registers
RX_ALMOST_BASE_REG 0x0014 Base value for the Rx Almost registers
DATA_FIFO_BASE_REG 0x0018 Base value for the Tx and Rx Data FIFOs
CONTROL_STATUS_BASE_REG 0x001c Base value for the Control/Status registers
SYNC_CHARACTER_BASE_REG 0x0050 Base value for the Sync Byte Registers
INTERRUPT_CONTROL_REG 0x0060 Interrupt Control Register
INTERRUPT_STATUS_REG 0x0064 Interrupt Status/Clear Register
INTERRUPT_EDGE_LEVEL_REG 0x0068 Interrupt Edge/Level Register (RO)
INTERRUPT_HI_LO_REG 0x006c Interrupt High/Low, Rising/Falling register
PIN_SOURCE_BASE_REG 0x0080 Base value for the Pin Source Registers
PIN_STATUS_BASE_REG 0x0090 Base value for the Pin Status Registers
POSC_RAM_ADDRESS_REG 0x00a0 Programmable OSC Address Register
POSC_RAM_DATA_REG 0x00a4 Programmable OSC Data Register
POSC_CONTROL_STATUS_REG 0x00a8 Programmable OSC Control/Status Register
TX_COUNT_BASE_REG 0x00b0
FIFO_COUNT_BASE_REG 0x00d0 Base value for the FIFO Count Registers
FIFO_SIZE_BASE_REG 0x00e0 Base value for the FIFO Size Registers
FEATURES_REG 0x00fc Features Register

 61

Channel Register Definitions

The Channel Register Definitions are used to access the various registers that are
contained in the Zilog USC chip for each channel. These registers should not be accessed
during normal operation and are included only for diagnostic purposes. For detailed
descriptions of the registers, refer to the Zilog USC hardware user’s manual.

Macro Value Description
USC_CCAR 0x0000 Channel Command/Address Register
USC_CMR 0x0002 Channel Mode Register
USC_CCSR 0x0004 Channel Command/Status Register
USC_CCR 0x0006 Channel Control Register
USC_TMDR 0x000c Test Mode Data Register
USC_TMCR 0x000e Test Mode Control Register
USC_CMCR 0x0010 Clock Mode Control Register
USC_HCR 0x0012 Hardware Configuration Register
USC_IVR 0x0014 Interrupt Vector Register
USC_IOCR 0x0016 I/O Control Register
USC_ICR 0x0018 Interrupt Control Register
USC_DCCR 0x001a Daisy Chain Control Register
USC_MISR 0x001c Misc. Interrupt Status Register
USC_SICR 0x001e Status Interrupt Control Register
USC_RDR 0x0020 Receive Data Register (RO)
USC_RMR 0x0022 Receive Mode Register
USC_RCSR 0x0024 Receive Command Status Register
USC_RICR 0x0026 Receive Interrupt Control Register
USC_RSR 0x0028 Receive Sync Register
USC_RCLR 0x002a Receive Count Limit Register
USC_RCCR 0x002c Receive Character Count Register
USC_TC0R 0x002e Time Constant 0 Register
USC_TDR 0x0030 Transmit Data Register (WO)
USC_TMR 0x0032 Transmit Mode Register
USC_TCSR 0x0034 Transmit Command Status Register
USC_TICR 0x0036 Transmit Interrupt Control Register
USC_TSR 0x0038 Transmit Sync Register
USC_TCLR 0x003a Transmit Count Limit Register
USC_TCCR 0x003c Transmit Character Count Register
USC_TC1R 0x003e Time Constant 1 Register

 62

Miscellaneous Token Definitions

 GSC_ENABLED,
 GSC_DISABLED,

 GSC_CLOCK_INTERNAL,
 GSC_CLOCK_EXTERNAL,

 GSC_LSB_FIRST,
 GSC_MSB_FIRST,

 63

	 Introduction
	Installation
	 Project Setup
	 System Level Routines
	GscSio4FindBoards
	 GscSio4GetErrorString
	 Board Level Routines
	GscSio4Open
	 GscSio4Close
	 GscSio4GetVersions
	 GscSio4LocalRegisterRead
	 GscSio4LocalRegisterWrite

	 Channel Level Routines
	GscSio4ChannelReset
	 GscSio4ChannelResetRxFifo
	 GscSio4ChannelResetTxFifo
	
	 GscSio4ChannelRegisterRead
	 GscSio4ChannelRegisterWrite
	 GscSio4ChannelSetMode / GscSio4ChannelGetMode
	 GscSio4ChannelSetDataSize / GscSio4ChannelGetDataSize
	 GscSio4ChannelSetGapSize / GscSio4ChannelGetGapSize
	 GscSio4ChannelSetMsbLsbOrder / GscSio4ChannelGetMsbLsbOrder
	 GscSio4ChannelSetParity / GscSio4ChannelGetParity
	 GscSio4ChannelSetStopBits / GscSio4ChannelGetStopBits
	 GscSio4ChannelSetEncoding / GscSio4ChannelGetEncoding
	 GscSio4ChannelSetProtocol / GscSio4ChannelGetProtocol
	 GscSio4ChannelSetDteDce / GscSio4ChannelGetDteDce
	 GscSio4ChannelSetLoopBack / GscSio4ChannelGetLoopBack
	 GscSio4ChannelSetPinMode / GscSio4ChannelGetPinMode
	 GscSio4ChannelSetPinValue / GscSio4ChannelGetPinValue
	 GscSio4ChannelFifoSizes
	 GscSio4ChannelFifoCounts
	 GscSio4ChannelSetTxAlmost / GscSio4ChannelGetTxAlmost
	 GscSio4ChannelSetRxAlmost / GscSio4ChannelGetRxAlmost
	 GscSio4ChannelCheckForData
	 GscSio4ChannelReceiveData
	 GscSio4ChannelReceiveDataAndWait
	 GscSio4ChannelTransmitData
	 GscSio4ChannelTransmitDataAndWait
	 GscSio4ChannelQueryTransfer
	 GscSio4ChannelWaitForTransfer
	 GscSio4ChannelFlushTransfer
	 GscSio4ChannelRemoveTransfer
	 GscSio4ChannelRegisterInterrupt
	 GscSio4ChannelSetClock
	 GscSio4ChannelSetClockSource

	
	 Protocol Level Routines
	GscSio4ChannelSetHdlcCrcMode / GscSio4ChannelGetHdlcCrcMode
	 GscSio4ChannelSetBiSyncPattern / GscSio4ChannelGetBiSyncPattern

	 Structures and Macro Definitions
	Devices Structure
	Interrupt Callback Prototype
	 Channel Mode Definitions
	 Channel Encoding Definitions
	 Channel Protocol and Termination Definitions
	 Channel Interrupt Definitions
	 Channel Pin Definitions
	 Channel Parity Definitions
	 Channel Stop Bits Definition
	Loopback Definitions
	HDLC CRC Defintions
	 Local Register Definitions
	 Channel Register Definitions

