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Comparison of a Crystal Oscillator to a MEMS Oscillator

Crystal vs MEMS - Oscillator Performance
Abstract

The Selection of an oscillator for electronic devices and communications system equipment
is @ major factor affecting system performance.
In this application note, we have measured and will compare two different types of
oscillators:

1. A fundamental Quartz Crystal oscillator and

2. A MEMS (Mirco-Electro-Mechanical System) oscillator

Structure and Characteristics of Oscillators

A Crystal oscillator consists of a basic structure using a Quartz crystal in fundamental mode
and a simple oscillator circuit.

In contrast, MEMS oscillators have a complex structure consisting of a resonator, a
fractional-N PLL, and temperature compensation and manufacturing calibration. A MEMS
oscillator uses a silicon resonator as the oscillating source and requires a PLL circuit to
correct the frequency for manufacturing tolerances and temperature coefficient.

Comparison of Properties of Crystal Oscillators and MEMS Oscillators

We measured a Crystal oscillator and a MEMS oscillator and compared four parameters from
each that are considered critical for the design of communication, industrial, and consumer
electronic devices.

Phase noise and phase jitter

Power consumption

Oscillator start up characteristics
Frequency temperature characteristics
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Comparison

1. Phase noise and phase jitter

We considered three frequencies (40MHz, 100MHz and 156.25 MHz) and compared Crystal
oscillators to MEMS oscillators of the same frequencies. The Laboratory measurements
demonstrate that the phase noise is much better with the Crystal oscillator than the MEMS
oscillator for all frequencies. The measured phase noise for both types of oscillators can be
seen in illustration 1 — 6 below.
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2. Power consumption
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The power consumption of a 40MHz Crystal oscillator and a 40MHz MEMS oscillator is
shown in illustration 7 below.

mA 40.000MHz Crystal OSC vs. MEMS OSC for
Voltage vs. Current characteristic:
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Illustration 7
Vol\Num | MEMS OSC 40MHz | Crystal OSC 40MHz | The power consumption of the
2,2 13,98 2,51 Crystal oscillators is much lower
2,4 14,48 2,71 than that of the MEMS oscillator.
2,6 14,79 2,85 This is because the Crystal
2,8 15,03 3,08 oscillator benefits from a simple
3,0 15,24 3,30 circuit structure and fundamental
3,2 15,45 3,45 harmonic oscillation of the
34 15,73 3,64 oscillating source.
3,6 15,96 3,89
3,8 16,09 4,05
4,0 16,44 4,21
Unit : mA

Test results:
The increased circuitry of the MEMS oscillator raises the total power consumption of this
device. The MEMS oscillator draws around 15mA of power, approximately 5x more than the
Crystal oscillator, using increased current in the Silicon oscillator, PLL and LC VCO to reduce
jitter.
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3. Oscillator start up characteristics

Oscillator start up characteristics of a 40MHz Crystal oscillator and a 40MHz MEMS oscillator
are shown in illustration 8 below.
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Illustration 8
Vol\ MEMS OSC Crystal OSC Vol\ MEMS OSC Crystal OSC
Num 40MHz 40MHz Num 40MHz 40MHz
2,2 40,000368 40,000188 2,2 9,20 4,70
2,4 40,000162 40,000183 2,4 4,05 4,57
2,6 40,000013 40,000181 2,6 0,31 4,52
2,8 39,999945 40,000167 2,8 -1,38 4,17
3,0 39,999931 40,000154 3,0 -1,73 3,85
3,2 39,999942 40,000148 3,2 -1,45 3,70
3,4 39,999938 40,000138 3,4 -1,55 3,45
3,6 39,999926 40,000123 3,6 -1,85 3,08
3,8 39,999950 40,000117 3,8 -1,25 2,93
4,0 39,999914 40,000110 4,0 -2,15 2,75
Unit : MHz Unit : ppm

An oscillator with fast startup benefits from shorter wakeup cycles and longer battery life.
This is important for consumer and home automation applications where the system is

turned on and off quickly to save battery power.

Test results:

Crystal oscillators launch faster and are more constant than MEMS oscillators.
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4. Frequency temperature characteristics

Frequency temperature characteristics of MEMS oscillators and Crystal oscillators with
40MHz frequency and 125MHz frequency were measured by first achieving a stable low
temperature of -40°C, then increasing the temperature to +85°C at a rate of +2.0°C/ minute.
The results are shown in illustration 9 — 12 below.
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Illustration 11 Illustration 12

The Frequency vs. Temperature of the Quartz Crystal oscillator follows the continuous cubic
curve of an AT crystal, achieving £ 15ppm from -40 to +85°C. This is sufficient for most
applications.
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Initially the frequency vs. temperature characteristics of the MEMS oscillators appear to be
better than those of the Crystal oscillator. However, the fractional =N PLL circuit of the
MEMS oscillator adjusts the frequency in discrete steps to correct the very high (30ppm/ °C
or 3750ppm from -40 to +85°C) temperature coefficient of the silicon resonator. This is
illustrated by the jagged temperature curves of the MEMS oscillator graphs in illustrations 9
— 12 revealing frequency jumps when division ratio switches to compensate for the
temperature changes.

Temperature - Compensated Quartz crystal oscillators (TCXO) uses analog temperature
compensation and a simple temperature compensation circuit and can achieve 1 ppm from -
40 to +85°C without experiencing these frequency jumps. TCXOs are widely available at low
cost and are available with temperature stability as low as #0.1ppm.
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Summary
Crystal Oscillator vs. MEMS Oscillator
Crystal OSC MEMS OSC
1. Started oscillatin
g Started: @0.9Vdc Started: @2.1Vdc
voltage
2. Voltage vs. Frequenc
& L q y Crystal OSC is better as MEMS OSC (pls, refer to “test data”)
characteristics
3. Voltage vs. Current
8 . Crystal OSC is better as MEMS OSC (pls, refer to “test data”)
characteristics
4. Temperature Crystal OSC is better as MEMS OSC (pls, refer to “test data”),
’ P that MEMS OSC is jagged in a short time
40,0 MhZ: 0.19ps 40,0MhZ: 5.67ps
5. Jitter characteristics 100,0 MhZ: 0.07ps 100,0MhZ: 2.61ps
156.25MhZ: 0.03ps 156.25MhZ: 1.87ps
6. Phase noise Crystal OSC is better as MEMS OSC (pls, refer to “test data”)
Crystal OSC is better as MEMS OSC
. (Crystal OSC have metal lid to do shield),
Electrical 7. Shield Effect Crystal OSC is hermetically sealed, as it has a ceramic housing,

Characteristics

MEMS are not hermetically sealed

8. Reliability MEMS OSC is better as Crystal OSC
MM: 400 Vdc
9-ESD HBM: over 4000 Vdc nA
Freq. range: 10 ~ 2000Hz Peak to
peak amplitude
10. Vibration 1.5mm Peak value:20g's n-A.
Duration time of 3 orientations
(X,Y,Z): 4hourse
5000g’s 0.3msec, 1/2 sinusoid Can withstand at least
11. Shock 12 times for each direction 50,000g shock
(X,Y,2)
100% been through 5Kg/cm?
(5atm)/1.5hrs by Helium
12. High pressure test pressure and 4.5Kg/cm?/320mins n.A.

(4.5atm) by Electronic test fluid
pressure

large selection available

For worldwide by man few manufacturers in the
availability Y y world (15% less in 2013)
manufacturers
Lead Time 7 —30 days more readily available
Temperatur

emperature -40 - +125°C -40 - +125°C

range

ROHS yes yes
Pin Layout Pin and pin function can might compatible between Crystal OSC

and MEMS 0OSC
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Pin compatibility between Crystal OSC and MEMS OSC

Crystal OSC (3.2 x 2.5mm) Drawing:
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Crystal OSC (2.5 x 2.0mm) Drawing:
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MEMS OSC (2.5 x 0.2mm) Drawing:
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Conclusion

MEMS oscillators appear suited to high vibration environments, to non-critically timed
applications, and to applications where the signal-to-noise ratios are not critical.
Applications that have complex modulation schemes, very high speed communication, or
that require excellent signal-to-noise performance (i.e. A to D Converters) will continue to be
clocked by crystal oscillators, taking advantage of the low jitter, the exceptionally high Q and
excellent time and temperature stability of a quartz.
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