

SMART MOUSE SERIES

SMART CARD READER/WRITER

REFERENCE MANUAL

 for Version 3.0 Software

29 March, 2000

© General Information Systems

Cambridge, 1996

File: Usref3_0.doc

 SMART MOUSE REFERENCE MANUAL

 Contents

1. Introduction..1

2. SM1 Asynchronous Smart Card Reader ..2

3. SM2 Synchronous & Asynchronous Smart Card Reader ..3

4. SM3 Intelligent Smart Card Reader...4

5. Software Philosophy & Overview ...6

6. Software Functions ..7
6.1 Smart Mouse Reader/Writer Functions ..7

6.1.1 GisSmBaudRate..7
6.1.2 GisSmCardEject ...8
6.1.3 GisSmClose ..8
6.1.4 GisSmError ...9
6.1.5 GisSmLed ...10
6.1.6 GisSmOpen...11
6.1.7 GisSmReaderReset ...11
6.1.8 GisSmReaderStatus ..12
6.1.9 GisSmVersion...12

6.2 Asynchronous Smart Card Functions ...13
6.2.1 GisSm7816Reset...13
6.2.2 GisSmCardDisable..14
6.2.3 GisSmPart4Cmd ...14
6.2.4 GisSmT0ReadCmd ...15
6.2.5 GisSmT0WriteCmd ..15

6.3 Synchronous Smart Card Functions ...16
6.3.1 Catalyst ‘3-wire’ cards..16

6.3.1.1 GisCat3Setup ...16
6.3.1.2 GisCat3ReadWord...16
6.3.1.3 GisCat3WriteWord..16
6.3.1.4 GisCat3EraseWord ..17
6.3.1.5 GisCat3Read ..17
6.3.1.6 GisCat3Write ...18
6.3.1.7 GisCat3Erase ...18
6.3.1.8 GisCat3WriteDisable...18
6.3.1.9 GisCat3WriteEnable ..19
6.3.1.10 GisCat3EraseAll ..19
6.3.1.11 GisCat3WriteAll ..19

6.3.2 I2C Cards ..20
6.3.2.1 GisI2cInit ...20
6.3.2.2 GisI2cSetType ...20
6.3.2.3 GisI2cReadNextByte ...20
6.3.2.4 GisI2cReadByte ...21
6.3.2.5 GisI2cWriteByte ..21
6.3.2.6 GisI2cRead...21
6.3.2.7 GisI2cWrite..22

7. Appendix 1...23
7.1 Asynchronous Smart Card Data Structures ..23

7.1.1 T0Instruction...23
7.1.2 ADPU..23

 SMART MOUSE REFERENCE MANUAL

7.1.3 T0Error ...23
T0Error..24

7.2 Synchronous Smart Card Data Structures ..25
7.2.1 CARD_TYPE ...25
7.2.2 MEM_IMG ...27
7.2.3 CARD_TEST..27
7.2.4 GEN_ERR ..28

8. Appendix 2...29
8.1 PC Software Installation ...29

9. Appendix 3...31
9.1 SM3 Software Architecture ..31

9.1.1 Structure..31
9.1.2 The Remote Procedure Call Mechanism32

10. Appendix 4...33
10.1 SM3 Internal Software Upgrade...33

11. Appendix 5...34
11.1 Features Supported...34

12. Appendix 6...35
12.1 Bibliography...35

 SMART MOUSE REFERENCE MANUAL

Because GIS Ltd has no control over the end use of the application programs using the information in this
document no warranty is given or should be implied as to the suitability of its use in any particular application.
No liability can be accepted for any consequential loss or damage, howsoever caused, arising as a result of the
contents of this document.

GIS Ltd has a policy of continuing development and therefore reserves the right to make changes without prior
notification.

Copyright © GIS Ltd, 1994-2000

All rights reserved. No part of the contents of this document may be reproduced or transmitted in any form
without the prior written permission of the copyright holders.

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 1

1. INTRODUCTION

The GIS Smart Mouse series smart card reader/writer product range is intended to offer a
complete solution to the problem of interfacing with the wide variety of available smart cards in
the marketplace today. The SM1 reader/writer is a low cost non intelligent smart card reader
designed to handle processor based smart cards communicating using an asynchronous protocol.
The SM2 reader/writer extends the capability to include the capability to handle a wide variety
of non-processor based synchronous memory cards.

The SM3 reader/writer is an intelligent reader/writer that handles both synchronous and
asynchronous smart cards. Because it is intelligent, the reader/writer may buffer data and
therefore permit a wide variety of communications protocols and speeds to be supported
between the reader/writer and the host. In addition, much of the software required to handle
smart card dialogues may be held and executed in the reader/writer to relieve the programming
load on the host. This may be important when the host is not a PC or similar general purpose
computer, but may be a specialised terminal with limited programming capability such as an
EPOS device.

The SM3 reader/writer may also be configured to hold user application code. To this end, all
software in the SM3 is downloadable from a host. GIS are able to produce user specific
application code for the SM3 upon user request.

The Smart Mouse series of smart card reader/writers are supplied with full software support for
a PC Windows environment. Support software is supplied as Windows DLLs, and both 16 bit
support (Windows 3.1) and 32 bit support (Windows NT, Windows 95) is supplied. The
software is designed to provide a simple, compatible, common interface to the calling
application and it is therefore compatible across the product range. Because there are no
standards about the way that data is read and written to and from synchronous cards, the
software presents a common calling methodology for applications dealing with synchronous
cards and it is only necessary to first identify the specific card type to the software.

 With v3.0 the management of DLLs has been very much simplified with the addition of support
 for explicit linking as well as the original implicit linking originally implemented in v2.0 DLLs.

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 2

2. SM1 ASYNCHRONOUS SMART CARD READER

The SM1 is the entry level smart card reader capable of interfacing to ISO 7816 compatible
asynchronous smart cards. The clock rate applied to the inserted card is fixed at 3.57 MHz and
the interface is controlled at a fixed baud rate of 9600 bps. An LED is provided to indicate that a
card has been inserted fully and that power is applied to that card. The use of low current CMOS
cards eliminates the use of an external power supply. Older generation NMOS higher current
smart cards will require an external power source to be supplied. This may take the form of an
external power supply or an adapter cable enabling power to be taken from a spare games,
mouse or keyboard port.

Figure 1. Block Diagram of SM1 hardware

Card Type: Contact (centre position)

Card Specification: ISO 7816 1/2/3

Hardware Interface: RS232C Signal Levels
 9600 baud serial (half duplex)
 Green LED to show card inserted
 Card reset using RTS
 Card detection using CTS

Card Insertion Unit: Six contact wipe type
 Guaranteed 50,000 insertions
 Normally closed card detect switch

green

LED

RS232
interface

clock
generator

ISO7816
socket

HOST

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 3

3. SM2 SYNCHRONOUS & ASYNCHRONOUS SMART CARD READER

The SM2 smart card reader/writer is fully compatible with the SM1 when reading and writing
ISO 7816 compatible asynchronous smart cards. The SM2 also contains the added capability to
handle synchronous smart cards that require only a single 5v voltage level. A wide variety of
synchronous cards may be supported by the hardware and most common types are included. The
main limitation on support is the range of software drivers available since most synchronous
cards will require a unique driver. New software drivers are being added on a regular basis.

Figure 2. Block Diagram of SM2 Hardware

Card Type: Synchronous (memory cards) and
 Asynchronous (processor cards)
 Contact (centre position)

Card Specification: ISO 7816 1/2/3

Hardware Interface: RS232C Signal Levels
 9600 baud serial (half duplex), asynch. mode
 Processor controlled bit rate, synch. mode
 Amber LED to show card inserted
 Card reset using RTS, async. mode only
 Card detection using CTS

Card Insertion Unit: Six contact wipe type
 Guaranteed 50,000 insertions
 Normally closed card detect switch

amber

LED

RS232
interface

clock
generator

ISO7816
socket

HOST

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 4

4. SM3 INTELLIGENT SMART CARD READER

The SM3 smart card reader/writer refines the role of smart card handling hardware from that of a
dumb, single protocol device requiring extensive host support, to an intelligent smart card
handling system insulating host devices from specific card environments and cards from reader
dependency. This is achieved by the inclusion of a powerful on-board processor with local
software to support a wide variety of card and host environments.

Figure 3. SM3 Functionality

The power of the included processor is sufficient to allow the SM3 to become the 'host' in less
complex systems, its standard output being capable of driving simple output devices.

The intelligence provided by the inclusion of an on-board microprocessor allows the SM3 to
perform many of the low-level card functions such as resets etc. freeing the host for application
tasks. The ability to handle various asynchronous protocols (T=0, T=1 etc.) and synchronous
protocols (I2C, Microwire etc.) means that in this delegated role almost all card interfaces are
accepted.

The programmability also gives the SM3 flexibility at the host interface allowing it to operate in
an emulation mode, for example possibly appearing to an EFTPOS terminal host as a third party
magnetic card reader. This facility would enable a system upgrade from magnetic card to smart
card to proceed simply by replacing the card reading 'head' leaving the backbone hardware and
software unchanged.

Another use of the native intelligence within the SM3 is to give it the duties of a host in simpler
applications, an example might be that of a system requiring a hard copy of some information on
a card. In this situation the SM3 would be used as the host for a printer connected via the serial
line.

Unlike non-intelligent smart card reader/writers, the SM3 can take a variety of positions in the
chain between card and application since the precise split in functionality between the SM3 and
the host is definable by advanced applications developers.

OSCAR

Microwire

ISO 7816

I C2

smart
or

memory
SM3

P.C.

EFTPOS
terminal

Other

Hosts

Printer

Other serial
device

Slaves

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 5

• ST9 8/16 bit CMOS 24MHz Processor with

• 512bytes of on-board RAM

• 8 kbyte on-board ROM

• 32kbyte RAM

• 32kbyte Flash PROM with on-board voltage generator

• Programmable frequency multiplier from 2-20MHz

This allows smart cards operating faster than 9600 baud to be presented with
their maximum clock frequency while matching the resultant serial baud rate,
e.g. standard 3.5795MHz clock will give a maximum 19.2k baud rate, increasing
this to the 5MHz clock of appropriate cards gives 26.8k baud etc.

• Programmable RS232C serial port up to 19.2k baud full duplex

• Programmable Green/Amber/Red LED to show card inserted/comms

• Optional 4x4 keyboard

Figure 4. Block Diagram of SM3 hardware.

4x4 passive
keyboard
matrix

32 Kbyte

RAM

ISO7816
socket

clock
generator

ST9

microcontroller
RS232

interface

32 Kbyte
Flash

memory

Flash
Program
Voltage

SM3

Optional

Block Diagram

Red/Green
LED

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 6

5. SOFTWARE PHILOSOPHY & OVERVIEW

The design of the software environment for the Smart Mouse smart card product set will allow
reader/writer types and smart card types to be interchanged with the minimum of application
modification. A compatible set of software is supplied for all reader types; the SM1 and SM2
non-intelligent reader/writers sharing one set of software, while the SM3 intelligent
reader/writer is support by another set of software. Both software sets have a compatible
function set.

The support software is supplied for a PC Windows environment in DLL form. DLLs are
available for the SM1/SM2 products and SM3 product operating in both 16 bit (Windows 3.1)
and 32 bit (Windows NT) environments. It is only necessary for the application to call the
appropriate DLL to obtain the desired support. Clearly some functions will apply to one
environment and not others, for example, the card eject function will only apply to an SM3
intelligent smart card reader fitted with an appropriate card connector. Where such support is not
relevant, the function is omitted.

In the case of synchronous memory smart cards, only those requiring a single 5 volt power line
are supported. In general this means that all newer synchronous cards are supported while some
older ones will be excluded. There is no defined standard for the way that synchronous memory
cards are addressed and consequently, specific support is required for each card or card family
type. Many such cards are supported in the present software, with more being added all the time.
New software releases will be made from time to time in order to distribute new levels of
support.

At the application interface, it is desirable to arrange a standard mechanism for talking to
synchronous cards. This has been achieved in the supplied software by defining a 'standard
synchronous card' using a protocol somewhat similar to the ISO standard asynchronous protocol.
It is a function of the support software to translate these function calls into the actual protocol of
the card in use. In order to achieve this, the software needs to know the card type being
addressed, and in the case of synchronous cards, it is not possible to determine this from the card
in advance of knowing how to talk to the card. Therefore, it is necessary for the application to
indicate the card type to the support software. A special function call is provided to enable this
action.

In the case of asynchronous cards, there are various options within the existing ISO 7816
standard. The base standard describes a byte oriented protocol known as T=0. An improvement
on this protocol wraps a header and trailer around this protocol to form a packet. This block
protocol is known as T=1. At the present time, very few cards support the T=1 protocol and this
support is absent from the present support software. The T=1 protocol will be included in the
near future.

An extension to the ISO 7816 standard, known as ISO 7816-4 defines the specific card
application level commands more specifically as an inter-industry command set. These
commands permit the card to receive and transmit data in a single request-response message
pair. Part 4 support, as it is known, is included within the support software. The part 4 support is
independent of the transport protocol and will transparently select the protocol (T=0, T=1 etc.)
supported by the card.

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 7

6. SOFTWARE FUNCTIONS

The compatible set of functions is listed below. Where a function does not apply to all of the
SM1, SM2 and SM3, the function is marked to indicate where its use is relevant. In other
reader/writer software support environments, the function will not be included.

In the functions described below, the types used in the function prototypes are given in Polish
notation, as used by all Windows 3.1 and Windows NT API calls, and are defined in windows.h.

The functions below are set down in three groups, reader/writer control functions, asynchronous
card functions and synchronous card functions. In the case of reader/writer control functions,
some of these functions are only applicable to the SM3 intelligent reader. In these cases, the
applicability is noted.

6.1 Smart Mouse Reader/Writer Functions

6.1.1 GisSmBaudRate

BOOL GisSmBaudRate(PORT_HANDLE port,WORD BaudRate)

This function applies to the SM3 intelligent reader only.

This function sets the baud rate for subsequent communications to the reader/writer (but not the
card).

The BaudRate argument can be any valid Windows supported baud rate from 300 baud to
19,200 baud.

Note: This function may need to reset the SM3 reader/writer if the baud rate being set is
different from that previously set in the reader; this will cause any card that is currently
loaded to power off. Therefore, this function should only be called when a reader/writer
reset is appropriate, usually immediately after opening the port with GisSmOpen and
probably with no card present.

Arguments : PORT_HANDLE port - handle of port to address.

Returns : BOOL - indicating success/failure of the command.
0 - Failure
1 - Successful

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 8

6.1.2 GisSmCardEject

BOOL GisSmCardEject(PORT_HANDLE port)

This function applies to the SM3 intelligent reader only.

Ejects the card from SM3 attached to the specified port, provided that the card connector fitted
to the reader/writer supports the eject function. The standard SM3 does not support this
function.

Arguments : PORT_HANDLE port - handle of port to address.

Returns : BOOL - indicating success/failure of the command.
0 - Failure - Call GisSmError
1 - Successful

6.1.3 GisSmClose

BOOL GisSmClose(PORT_HANDLE port)

Closes the currently open serial port

Arguments : PORT_HANDLE port - handle of port to close.

Returns : BOOL - indicating success/failure.
0 - Failure
1 - Successful

Notes: With an SM3, closing a Com port does not change the state of the Smart Mouse
reader/writer, but simply releases the handle. To remove power from the card
GisSmCardDisable should be called prior to closing.

With an SM1 or SM2, closing the port will remove power from the card.

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 9

6.1.4 GisSmError

WORD GisSmError(void)

This function applies to the SM3 intelligent reader only.

Requests the status of the most recently called GisSm command. Note that the port is implied by
the port value of the last command.

Arguments : VOID

Returns : WORD - signalling the error type as defined in
gis_sm.h.

Three groups of error conditions are defined, the first are simple errors, the second indicate
internal errors which should be reported to the supplier and the third indicate more complex
errors which may require user or application action. The error values are defined in the supplied
header files.

CALL_OK Command completed successfully

UNDEFINED Undefined error

NO_CALL_YET No call has been made yet.

Internal errors, report to supplier.
ARG_TOO_MANY_ARGS

ARG_BAD_RETURN_TYPE

ARG_TOO_MANY_FIELDS

ARG_BAD_FIELD_TYPE

ARG_BUFFERS_TOO_BIG_V

ARG_BUFFERS_TOO_BIG_F

ARG_BAD_ARG_TYPE

ARG_BAD_MODULE_ID

ARG_BAD_FUNCTION_ID

ARG_BAD_RPC_CALL

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 10

Fault with the SM3 unit. No part of the instruction was executed.
SEND_FAIL Failure while sending request to SM3. This is due

to some failure in the serial link or the SM3 unit
-check power to the SM3 and the serial
connection.

RECEIVE_FAIL Failure during reception of call results from SM3
after having performed request. (Due to comms
failure.)

PORT_NOT_OPEN Bad port handle used, probably because
GisSmOpen failed.

SM3_NOT_RESPONDING Fault with SM3. No part of the instruction sent
was executed.

RECEIVE_TIMEOUT The SM3 took too long to perform the requested
action.

6.1.5 GisSmLed

BOOL GisSmLed(PORT_HANDLE port, BYTE colour)

This function applies to the SM3 intelligent reader only.

Controls the light emitting diode (LED) on the specified SM3, the argument selects the colour.

Arguments : PORT_HANDLE port - handle of port to address

 BYTE colour - colour of the LED - see below

Returns : BOOL - indicating success/failure of the command
0 - Failure - Call GisSmError
1 - Successful

LED_OFF Turns LEDs off

LED_RED Turns LED red

LED_GREEN Turns LED green

LED_AMBER Turns LED amber

These constants are defined in the supplied header files.

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 11

6.1.6 GisSmOpen

PORT_HANDLE GisSmOpen(WORD com_port)

Opens the specified serial port.

Arguments : WORD com_port - port to open -

e.g. com1 = 1, com2 = 2

Returns : PORT_HANDLE - the handle of the opened com
port.

The constant OPEN_FAILED is returned if the port could not be opened.

Note: In a Windows NT 32 bit environment, the returned handle is only valid within the
current process, but may be used by any thread within the process.

6.1.7 GisSmReaderReset

BOOL GisSmReaderReset(PORT_HANDLE port, LPBYTE buffer, LPWORD
count)

This function applies to the SM3 intelligent reader only.

Resets the SM3 card reader, returning the reader's answer-to-reset in the supplied buffer.

Note: this function takes approximately 3 seconds to complete.

Arguments : PORT_HANDLE port - handle of port to address.

 LPBYTE buffer - buffer to receive message

 LPWORD count - initially the size of the buffer
offered by the application program, after the call it
represents the length of the message placed in the
buffer.

Returns : BOOL - indicating success/failure of command
0 - Failure
1 - Successful

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 12

6.1.8 GisSmReaderStatus

BYTE GisSmReaderStatus(PORT_HANDLE port)

Returns the status of the Smart Mouse device on the specified port as a bit field.

Arguments : PORT_HANDLE port - handle of port to address.

Returns : BYTE - Bit mask containing the following flags.

RETURN VALUE COMMENT

STATUS_CARD_FULLY_IN Card fully inserted into reader

STATUS_CARD_ALMOST_IN (SM3 only) Only returned by card reader/writers with
connectors supporting this function.

STATUS_LED_RED (SM3 only) Red LED on

STATUS_LED_GREEN (SM3 only) Green LED on

STATUS_FAILED (SM3 only) This indicates SM3 error, call
GisSmError.

These constants are defined in the supplied header files.

6.1.9 GisSmVersion

BOOL GisSmVersion(LPBYTE version)

Returns the DLL version information.

Arguments : LPBYTE version - pointer to buffer to receive

version information. Supplied buffer must be at least
30 bytes long.

Returns : BOOL - indicating success/failure of the command
0 - Failure - Call GisSmError
1 - Successful

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 13

6.2 Asynchronous Smart Card Functions

6.2.1 GisSm7816Reset

signed short GisSm7816Reset(PORT_HANDLE port, LPBYTE message,
LPWORD count)

Performs a standard ISO 7816-3 smart card reset operation, returning the Answer-to-Reset
message.

Note : This must be called before any asynchronous smart card operations are attempted.

Arguments : PORT_HANDLE port - handle of port to address.

 LPBYTE message - buffer to receive answer-to-reset
message.

 LPWORD count - initially the size of the buffer
offered by the application program, after the call it
represents the length of the message placed in the
buffer or the number of bytes which would have been
placed in the buffer had it been sufficiently large.

Returns : signed short - see below

Return Values:
Value Description

OK The card was successfully reset.

SM3_PROBLEM (SM3 only) There is a problem with the communications to
reader/writer - Call GisSmError.

CARDOUT Card removed before operation complete

TIMEOUT Card failed to respond before expiry of timer

UNKNOWN_TS Unknown TS in the ATR, possibly a bad card.

BAD_TCK The checksum of the ATR is incorrect (only when TCK
is sent).

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 14

6.2.2 GisSmCardDisable

BOOL GisSmCardDisable(PORT_HANDLE port)

Disables the card by removing power. The card must be reset using GisSmCardReset before any
further asynchronous card operations are attempted.

Arguments : PORT_HANDLE port - handle of port to address.

Returns : BOOL - indicates the success/failure of the
command.
0 - Failure - Call GisSmError
1 - Successful

6.2.3 GisSmPart4Cmd

BOOL GisSmPart4Cmd (PORT_HANDLE port, LPADPU Adpu, LPBYTE
BuffOut, LPBYTE BuffIn, LPPart4Error E);

For asynchronous smart cards, performs a standard ISO 7816 part 4 type command.

Arguments : PORT_HANDLE port - handle of port to address.

 LPADPU Adpu - pointer to ADPU structure. See Appendix A1.

 LPBYTE BuffOut - pointer to buffer containing data to be sent.

 LPBYTE BuffIn - pointer to buffer into which received data is
placed.

 LPPart4Error E - pointer to LPPart4Error structure (identical to
LPT0Error). See Appendix A1. This is only valid when the
Function returns 1.

Returns : BOOL - indicating success/failure of the function.
0 - Failure - Call GisSmError
1 - Successful

Note: This function assumes that the Smart card supports the Get Response command, with
the same class as ADPU and an instruction number (code) of C0 (hex),

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 15

6.2.4 GisSmT0ReadCmd

BOOL GisSmT0ReadCmd (PORT_HANDLE port, LPT0Instruction ins,
LPBYTE buff, LPT0Error err)

For asynchronous cards only, performs a standard ISO 7816-3 T=0 read type command (i.e. one
which receives data from the card).

Arguments : PORT_HANDLE port - handle of port to address.

 LPT0Instruction ins - pointer to instruction structure.
See Appendix A1.

 LPBYTE buff - Buffer for incoming data

 LPT0Error err - Pointer to structure, contains SW1
and SW2 T=0 error codes after completion. See
Appendix A1. This is only valid when the Function
returns 1.

Returns : BOOL - indicating success/failure of the function
0 - Failure - Call GisSmError
1 - Successful

Note: As defined in ISO7816-3 , a P3 value of 0 indicates a read of 256 bytes from the
card.

6.2.5 GisSmT0WriteCmd

BOOL GisSmT0WriteCmd (PORT_HANDLE port, LPT0Instruction ins,
LPBYTE buff, LPT0Error err)

For asynchronous cards only, performs a standard ISO 7816-3 T=0 write-type command (i.e. one
which sends data to the card).

Arguments : PORT_HANDLE port - handle of port to address.

 LPT0Instruction ins - pointer to instruction structure.
See Appendix A1.

 LPBYTE buff - Buffer for outgoing data

 LPT0Error err - Pointer to structure, contains SW1
and SW2 T=0 error codes after completion. See
Appendix A1.This is only valid when the Function
returns 1.

Returns : BOOL - indicating success/failure of the function
0 - Failure - Call GisSmError
1 - Successful

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 16

6.3 Synchronous Smart Card Functions

6.3.1 Catalyst ‘3-wire’ cards

6.3.1.1 GisCat3Setup

Bool GisCat3Setup(PORT_HANDLE port, WORD subtype)

Configures the software to correctly communicate with a card of the specified sub-type (see
section 7.2.2).

Arguments: PORT_HANDLE port - handle of port to address

 WORD value - number of data and address bits see table
section 7.2.1.

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

6.3.1.2 GisCat3ReadWord

Word GisCat3ReadWord(PORT_HANDLE port, WORD addr)

Reads a single word from the specified address on the card.

Arguments: PORT_HANDLE port - handle of port to address

 WORD addr - address from which data is read

Returns: WORD - indicates the failure or the data of the command
-1 - Failure
other values - Data read from card

6.3.1.3 GisCat3WriteWord

Bool GisCat3WriteWord(PORT_HANDLE port, WORD addr, WORD val)

Writes the word in 'val' to the location specified by addr.

Arguments: PORT_HANDLE port - handle of port to address

 WORD addr - location of write

 WORD val - value to write

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 17

6.3.1.4 GisCat3EraseWord

Bool GisCat3EraseWord(PORT_HANDLE port, WORD addr)

Erases (to state '1') the specified address.

Arguments: PORT_HANDLE port - handle of port to address

 WORD addr - address to erase

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

6.3.1.5 GisCat3Read

Bool GisCat3Read(PORT_HANDLE port, WORD addr, LPBYTE buffer, WORD
length)

Reads 'length' bytes starting from address specified by 'addr' and storing the data in 'buffer'.

[Byte-ordering for cards with two data bytes is LSB first, the same as Intel-based P.C.'s.)

Arguments: PORT_HANDLE port - handle of port to address

 WORD addr - start address

 LPBYTE buffer - storage area for data

 WORD length - number of bytes to store

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 18

6.3.1.6 GisCat3Write

Bool GisCat3Write(PORT_HANDLE port, WORD addr, LPBYTE buffer,
WORD length)

Writes 'length' bytes starting from address specified by 'addr', using the data in 'buffer'.

[Byte-ordering for cards with two data bytes is LSB first, the same as Intel-based P.C.'s.)

Arguments: PORT_HANDLE port - handle of port to address

 WORD addr - start address

 LPBYTE buffer - source storage area for data

 WORD length - number of bytes to store

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

6.3.1.7 GisCat3Erase

Bool GisCat3Erase(PORT_HANDLE port, WORD addr, WORD length)

Erases (to state '1') the addresses starting at 'addr' and covering the next 'length' bytes.

Arguments: PORT_HANDLE port - handle of port to address

 WORD addr - start address

 WORD length - number of bytes to erase

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

6.3.1.8 GisCat3WriteDisable

Bool GisCat3WriteDisable(PORT_HANDLE port)

Prevents all writes to the port specified.

Arguments: PORT_HANDLE port - handle of port to address

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 19

6.3.1.9 GisCat3WriteEnable

Bool GisCat3WriteEnable(PORT_HANDLE port)

Enables writes to the specified port.

Arguments: PORT_HANDLE port - handle of port to address

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

6.3.1.10 GisCat3EraseAll

Bool GisCat3EraseAll(PORT_HANDLE port)

Erases (to state '1') the entire card.

Arguments: PORT_HANDLE port - handle of port to address

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

6.3.1.11 GisCat3WriteAll

Bool GisCat3WriteAll(PORT_HANDLE port, WORD value)

Writes to the entire card.

Arguments: PORT_HANDLE port - handle of port to address

 WORD value - value to write to all locations

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 20

6.3.2 I2C Cards

6.3.2.1 GisI2cInit

Bool GisI2cInit(PORT_HANDLE port)

Initializes the specified port. This command must be used before any other I2C low-level
command.

Arguments: PORT_HANDLE port - handle of port to address

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

6.3.2.2 GisI2cSetType

Bool GisI2cSetType(PORT_HANDLE port, BYTE SlaveAddress, BYTE
NumAddressBytes, WORD WriteCacheSize)

Configures the software to correctly communicate with a card with the specified parameters (see
section 7.2.1). This must immediately follow a GisI2cInit command.

Arguments: PORT_HANDLE port - handle of port to address

 BYTE SlaveAddress - Device address as per I2C
specification.

 BYTE NumAddressBytes - Number of address bytes
(usually 1 or 2).

 WORD WriteCacheSize - Size of card's page write buffer
(as per I2C specification).

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

6.3.2.3 GisI2cReadNextByte

Short GisI2cReadNextByte(PORT_HANDLE port)

Reads a single byte from the next address on the card.

Arguments: PORT_HANDLE port - handle of port to address

Returns: SHORT - indicates the success/failure of the command
-1 - Failure
other values - Data read from card

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 21

6.3.2.4 GisI2cReadByte

Short GisI2cReadByte(PORT_HANDLE port, WORD addr)

Reads a single byte from the specified address on the card.

Arguments: PORT_HANDLE port - handle of port to address

 WORD addr - address from which data is read.

Returns: SHORT - indicates the success/failure of the command
-1 - Failure
other values - Data read from card

6.3.2.5 GisI2cWriteByte

Bool GisI2cWriteByte(PORT_HANDLE port, WORD addr, BYTE Value)

Writes a single byte to the specified address on the card.

Arguments: PORT_HANDLE port - handle of port to address

 WORD addr - address to which data is to be read.

 BYTE Value - value to be stored.

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

6.3.2.6 GisI2cRead

Bool GisI2cRead(PORT_HANDLE port, WORD addr, LPBYTE buffer, WORD
length)

Reads 'length' bytes starting from address specified by 'addr' and storing the data in 'buffer'.

Arguments: PORT_HANDLE port - handle of port to address

 WORD addr - start address

 LPBYTE buffer - storage area for data

 WORD length - number of bytes to store

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 22

6.3.2.7 GisI2cWrite

Bool GisI2cWrite(PORT_HANDLE port, WORD addr, LPBYTE buffer, WORD
length)

Writes 'length' bytes starting from address specified by 'addr', using the data in 'buffer'.

Arguments: PORT_HANDLE port - handle of port to address

 WORD addr - start address

 LPBYTE buffer - source storage area for data

 WORD length - number of bytes to store

Returns: BOOL - indicates the success/failure of the command
0 - Failure
1 - Success

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 23

7. APPENDIX 1.

7.1 Asynchronous Smart Card Data Structures

ISO 7816-3 T=0 and ISO 7816-4 type commands are sent to a Smart Mouse smart card
reader/writer using either the functions GisSmT0ReadCmd and GisSmT0WriteCmd, or the
function GisSmPart4Cmd. If the former is used the command must be as a T0Instruction
structure, and if the latter then the ADPU structure must be used.

7.1.1 T0Instruction

typedef struct
{
 WORD cla; /* Class */
 WORD ins; /* Instruction */
 WORD p1; /* Param 1 */
 WORD p2; /* Param 2 */
 WORD p3; /* Length of data */
} T0Instruction;

typedef T0Instruction *LPT0Instruction;

7.1.2 ADPU

typedef struct
{
 WORD cla; /* Class */
 WORD ins; /* Instruction */
 WORD p1; /* Param 1 */
 WORD p2; /* Param 2 */
 WORD Lc; /* Outgoing Length [0..255] */
 WORD Le; /* Incoming Length [0..256] */
} ADPU;

typedef APDU *LPAPDU;

7.1.3

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 24

T0Error

typedef union
{
 struct
 {
 BYTE sw2;
 BYTE sw1;
 WORD err;
 } b;
 struct
 {
 WORD sw12;
 WORD err;
 } w;
} T0Error;

typedef T0Error *PT0Error;
typedef T0Error FAR *LPT0Error;

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 25

7.2 Synchronous Smart Card Data Structures

7.2.1 CARD_TYPE

Used to define a card type.

I2C cards use ‘AddrBytes’ and ‘Wcachesize’ others use ‘param1’ and ‘param2’.

typedef WORD MINOR_TYPE;
typedef int MAJOR_TYPE;

typedef struct
{
 MAJOR_TYPE major;
 MINOR_TYPE minor;
 union
 {
 WORD AddrBytes; //Address Bytes
 WORD param1;
 };
 union
 {
 WORD WCacheSize; //Write Cache
size
 WORD param2;
 };

} CARD_TYPE;

The structure is used slightly differently for 3-wire and I2C cards.

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 26

3-Wire

The number of address bits and data bits are set by choosing the correct sub-type from the
table below and setting this as the minor type in the structure.

i.e. a 3-wire card with 9-bit address and 8 data bits is sub-type 4 and therefore minor type
4.

Major CAT_CARD

Minor Sub-Type Address bits Data bits

(one of) 0 7 8

 1 6 16

 2 8 8

 3 7 16

 4 9 8

 5 8 16

 6 10 8

 7 9 16

 8 11 8

 9 10 16

param1 and param2 are reserved for future expansion.

I2C

I2C cards are accessed on a device by device basis, that is if two or more devices occupy a
card then they are regarded as separate. A GisSmSynCard command with a different minor
type is required to select a device with a different slave address.

Major I2C_CARD

Minor slave
address

In addition the address bytes (1 or 2) and the write cache must also be correctly set.

N.B. If the write cache in particular is not set correctly the software is unable to detect this
and the error may lead to write errors - proper use of the memory images should enable the
correct card type and hence write cache size to be set.

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 27

7.2.2 MEM_IMG

Used to hold a ‘memory image’ consisting of a data buffer, its length and the location
(address) on the card at which the data starts.

typedef struct
{
 LPBYTE buffer;
 WORD buffer_count;
 WORD location;
} MEM_IMG;

Note that the buffer contains byte-wise data, if the card uses a wider data size then the
correct byte ordering must be set otherwise the image will not be recognised.

7.2.3 CARD_TEST

Holds a list of memory images and a list of card types.

(A CARD_TYPE structure with an associated MEM_IMG structure is sometimes referred to
as a card signature.)

No. of card signatures

Array of CARD_TYPEs Array of MEM_IMGs

CARD_TEST structure

typedef struct
{
 WORD card_sig_count //number of card signatures
 LPCARD_TYPE card_type_list;//ptr to first card type
 LPMEM_IMG mem_img_list; //ptr to first mem_img
} CARD_TEST;

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 28

7.2.4 GEN_ERR

Holds full error breakdown, see 0 GisSmError for further details.

typedef struct
{

 BYTE type; //Error type
 WORD no; //Error number
 BYTE qual; //Qualifier
 WORD smerr; //Reader error from GisSmError()

} GEN_ERR;

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 29

8. APPENDIX 2.

8.1 PC Software Installation

The supplied disc contains software to operate the SM1,SM2 and SM3 under Windows 3.1 or
Windows NT. All the directories should be copied to a suitable location on the target machine.

a:\include

gis_sync.h Header file for asynchronous card functions.

gis_asyn.h Header file for other synchronous card specific functions.

a:\sm1\16bit\bin\gissm12w.dll

The 16bit DLL file for SM1 and SM2 should be copied into a directory on the DOS path or
the windows system directory. Alternatively edit the PATH command in the
autoexec.bat file to include a new directory holding this file.

a:\sm1\16bit\lib\gissm12w.lib

This LIB file should be linked into any application which calls the DLL when implicit
linking is being used.

a:\sm1\include\gis_sm1.h

Header file for SM1 and SM2 card functions.

a:\sm3\16bit\bin\gissm3w.dll

The 16bit DLL file for SM3 should be copied into a directory on the DOS path or the
windows system directory. Alternatively edit the PATH command in the autoexec.bat
file to include a new directory holding these files.

a:\sm3\16bit\lib\gissm3w.lib

This LIB file should be linked into any application which calls the DLL when implicit
linking is being used.

a:\sm3\32bit\bin\gissm3w.dll

The 32bit DLL file for SM3 for use with Windows

a:\sm3\32bit\lib\gissm3w.lib

This LIB file should be linked into any application which calls the DLL when inplicit
linking is being used.

a:\sm3\include\gis_sm3.h

Header file for SM3 card functions.

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 30

a:\ sm3\flash

The sm3.trm file customises the Windows Terminal program to allow easy updates to
the SM3’s ‘flash’ memory (see 10.1 SM3 Internal Software Upgrade)

The rpcshell.txt file contains the current version V2_0 of SM3 flash code.

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 31

9. APPENDIX 3.

9.1 SM3 Software Architecture

9.1.1 Structure

The SM3 driver software follows a broadly hierarchical structure in which basic functions are
supplied to value-adding modules which in turn supply more advanced functions.

An important source of the system's flexibility is the provision of an internal Remote Procedure
Calling (RPC) system which allows the PC to use functions on the SM3 as if they were running
locally. This has allowed the functions of the system and the component modules to be split
between the processor on the SM3 and the processor on the PC, optimising the system's
performance especially with respect to low-level card functions.

The standard package includes a variety of drivers for asynchronous and synchronous smart card
types following the ISO 7816 standard. All of these or any combinations can be loaded into the
SM3. Advanced developers are able to write additional modules to be loaded into the SM3 and
called via the RPC mechanism from applications on the PC.

Figure 5. Functional overview of SM3 software.

SM3 Hardware

CORE in ROM

T=1

NON-OSCAROSCAR

clockbuffers

T=0

async

MEMORY CARD

Synchronous Card Type

sync

ROM core code

APPLICATION

PART4

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 32

9.1.2 The Remote Procedure Call Mechanism

The Remote Procedure Call mechanism (RPC) provides a reliable method for the invocation of
functions running in the processor of the SM3 based on call-reply-acknowledge semantics with
retries and time-outs.

SM3PC

Application Code -
"Call function X"

(Stub) Function X

RPC mechanism

Serial Line

Function X

RPC server

Developer's Code

System Code

Figure 6. RPC architecture

The diagram above shows the flow of control from an application program running on the P.C.
as it calls a remote function "X".

• On the local machine a surrogate for X called a "stub" is invoked by the call.

• (This stub has an identical prototype to the remote function and therefore allows
compile time type-checking.)

• The stub calls the system RPC function with the required function and arguments.

• The RPC mechanism transports the call to the server on the SM3 which passes the
call to the code body of function X.

All the standard protocol modules are supplied with their stub functions as a 16-bit DLLs for
Windows 3.1 and 32-bit DLLs for Windows NT/Win32. This means that RPC mechanism is
almost invisible to the application developer.

The RPC mechanism allows applications to access multiple SM3s on all the available serial
ports.

Although remote procedure calls follow the semantics of local procedure calls quite closely,
unlike local calls, RPCs have the possibility of failure. This may be caused by invalid module or
function IDs, failure of the serial link, reader failure or other system failures but should always
be regarded as a possibility and checked for.

The functions in the GisSm3 module have been written with this possibility in mind and all
return a RPC error code in some form.

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 33

10. APPENDIX 4.

10.1 SM3 Internal Software Upgrade

This appendix covers the simple user installation of upgrades to the internal software of the
SM3.

From time to time GIS may find it necessary to provide software upgrades to the modules
resident in the SM3's 'flash' (non-volatile) memory. This software will be provided in the form of
a file containing Intel hex format code. The instructions below should be carefully followed to
install this new code.

1. Connect the SM3 to the host machine.

2. Start Windows.

3. Start the 'terminal' application.

4. Load the terminal configuration file "a:\V2_0\flash\sm3.trm" from the supplied disc into the
Windows Terminal program. Check that the following values are set - 9600 baud, hardware
flow control, no parity, 8 data bits, 1 stop bit and that the serial port selected is the one to
which the SM3 is attached.

5. Press the 'reset' switch on the SM3 (when present) or power the SM3 off then on. In each
case the LED should briefly flash amber.

6. Immediately after the initial message 'SM3:' is displayed, type ESC e. This will halt the boot
routine and start an administration shell.

7. Click on the “Zero Flash” button at the bottom of the terminal window.

8. After a short pause click the “Erase Flash” button. If the value shown is more than five less
than (hex) 8000 then click the button again until the value is larger.

9. Select "Transfers" "Send text file" from the menu, select the upgrade file (something like
rpcshell.txt). This will spool the upgrade file into the SM3.

10. Quit the terminal program once the transfer is complete and reset the SM3 (power off then
on).

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 34

11. APPENDIX 5.

11.1 Features Supported

 SM3 does not support Cat3Wire. Furthermore, I2C maybe somewhat sluggish on the NT, Win95
platforms for SM1 and SM2.

SMART MOUSE REFERENCE MANUAL

Version 3.0 Page 35

12. APPENDIX 6.

12.1 Bibliography

ISO 7816 PART 1 [1987]

Identification cards - Integrated circuit(s), cards with contacts part 1 : Physical characteristics

ISO 7816 PART 2 [1988]

Identification cards - Integrated circuit(s), cards with contacts part 3 : Dimensions and location
of contacts.

ISO 7816 PART 3 [1989]

Identification cards - Integrated circuit(s), cards with contacts part 3 : Electronic signals and
transmission protocols.

ISO 7816 PART 4 [1992]

Identification cards - Integrated circuit(s), cards with contacts part 4 : Inter-industry commands for
interchange

SMART MOUSE REFERENCE MANUAL

Version 2.0 Page 1

