

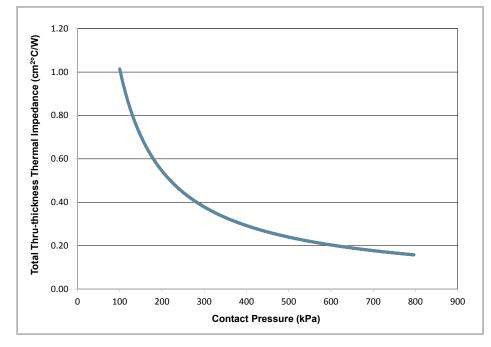
HITHERM[™] HT-C3200 Thermal Interface Material

Technical Data Sheet 319

Product Overview

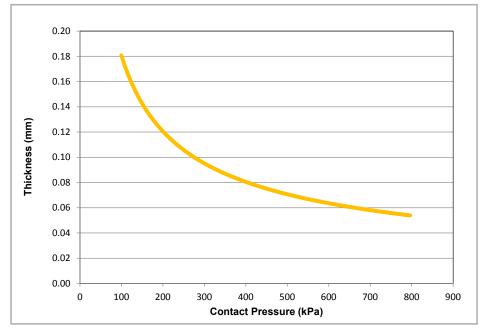
eGRAF[®] HITHERM[™] HT-C3200 thermal interface materials are designed for use in applications requiring large surface, high contact pressure, high performance, low contact resistance and high thermal conductivity. The flexible graphite materials can be die-cut to ensure exact fit while the compressibility of the material improves surface contact for high in-plane thermal conductivity and compensates for up to 100µ of flatness (no thickness recovery after compression).

Applications


Power modules such as IGBT, RF devices used in:

- UPS and inverters
- Motor drives
- Base stations
- Power supply modules, rectifiers and chargers

Typical Properties at Room Temperature^[1]


Characteristic	Unit	Typical Value
Thermal Impedance @ 200 kPa (K-cm²/W)	K-cm²/W	0.49
Thermal Impedance @ 700 kPa (K-cm²/W)	K-cm²/W	0.18
Typical Thermal Conductivity ^[2] @ 700 kPa Through-Thickness ● In-Plane	W/mK	7 • 800
Typical Starting Thickness	μm inches	200 ± 20 0.008 ± 0.001
Coefficient of Thermal Expansion Through-Thickness • In-Plane	ppm/⁰C	27 • -0.4
Electrical Conductivity Through-Thickness • In-Plane	S/cm	5 • 19,000
Flammability Rating (UL)	-	Compliant
Operating Temperature	°C	-40 to +400
Specific Heat @ 25°C	J/g-°C	0.80
RoHS Compliant	-	Yes
Halogen Free	-	Yes

Thermal Impedance vs Pressure

Thermal impedance reduces significantly with pressure

Thickness Under Compression

Material compressibility improves contact and performance

Notes:

[1] Properties listed are typical and cannot be used as accept/reject specifications.

[2] In-Plane conductivity at ambient temperature determined using Angstrom's Method.

Thru-thickness conductivity determined using ASTM D5470 Modified Method.

+1 (800) 253-8003 (Ioll-Free in USA) +1 (216) 529-3777 (International)

Learn more about **eGRAF**[®] products and download our latest technical data sheets: www.graftechAET.com | www.egraf.com | www.graftech.com egraf@graftech.com

Redefining limits

© 2015 Graftech international Holdings Inc. Insinformation is based on data believed to be reliable but Graftech makes no warranties, express or implied, as to its accuracy and assumes no liability ansing its use. The data listed falls within the normal range of product properties bloud not be used to establish specification limits or used alone as the basis of design. GrafTech's liability to purchasers is expre limited to the terms and conditions of sale. eGRAF[®], SPREADERSHIELD[™] and HITHERM[™] are trademarks of GrafTech International Holdings Inc. eGRAF[®] thermal management products, materials, and processes are covered by several US patents. For patent information visit www.egraf.com/patents. 2 26 2015