
Programming with LadderWORK

Copyright 1999 - 2000 MicroSHADOW Research (uS)
All rights reserved

English Version
Document Update : 26 January 2000

Copyright notice

Pag. 2

COPYRIGHT

Copyright 1999 MicroSHADOW Research, all rights reserved.

The program and its related documentation are copyrighted. The user may not copy the program or its documentation
except for your own back-up purposes and load the program into the computer as part of executing the program. All other
copies of the program and its documentation are in violation of this agreement. No part of the manual may be photocopied
or reproduced in any form or electronic medias without prior written authorization from MicroSHADOW Research.

SINGLE USER LICENSE AGREEMENT
License : The user has the non-exclusive right to use the enclosed program on a single CPU or personal computer. The

user may physically transfer the program from a PC to another provided that the program is used on only CPU at time. The
user may not electronically transfer the program from one PC to another over a network. The user may not distribuite
copies of the program or related documentation to others. The user may not modify or translate the program or related
documentation without the prior written consent of MicroSHADOW Research. The user may not use, copy, modify or
transfer the program or documentation, or any copy thereof, or permit anyone else to do so, except as expressly provided in
this agreement.

Back-up and transfer : The user may make one (1) copy of the program solely for own back-up purposes. The user
must reproduce and include the copyright notice on the back-up copy. Transfer of program and license to another party
may only be made after written approval from MicroSHADOW Research, provided the other party agrees to the terms and
conditions of this agreement and completes and returns a product registration form to MicroSHADOW Research. If the
user transfer the program, at the same time he must transfer the documentation and back-up copies or transfer the
documentation and destroy the back-up copies.

Upgrades : LadderWORK software is sold without warranty. Furthermore MicroSHADOW Research reserve the right to
make changes to any products herein to improve reliability, functionality and performance. The user can download software
upgrades directly from the web according to its hardware key programmed version. Normally the hardware key, sold with
the software, can accept major software number equal to the purchased issue. Free demo version available from the web
has to be intended for evaluation only and gives no warranty of any kind.

Media defects Warranty : MicroSHADOW Research warrants to the original licensee that the media (diskettes, cd-rom
or others) which the program is recorded be free from defects in materials and workmanship under normal use and a free
substituting service is available for a period of 90 days from the date of delivery, accompanied by a copy of the purchase
invoice.

DISCLOSURE
The informations contained in the manuals (traditional or electronic medias) are subject to change without prior notice.

MicroSHADOW Research assumes no responsability or liability for any errors or inaccuracies (technical or editorial). The
program is supplied "as is" without warranty of any kind. The entire risk as to quality and performance of the program is
charged to the user.

MicroSHADOW Research assumes no liability for any damages resulting from defects, software bugs or design’s
solutions of LadderWORK software. It makes no warranty of any kind (express, implied or statutory) with respect to this
publication, and expressly disclaims any and all warranties of merchantability, fitness for particular purposes and
noninfringement of third part rights.

In no event shall MicroSHADOW Research, its directors, officers, engineers, employees or agents be liable for any
indirect, special, incidental or consequetial damages (including damages for loss of profits, loss of business, loss of use or
data, interruption of business an the like), even if MicroSHADOW Research has been advised of the possibility of such
damages arising from any defects or error in the documentation or software.

LadderWORK software can’t be used for medical instrumentation, life-support equipment or military systems.
Any referement to Corporations, names and data used in the screen’s reproduction are purely casuals and it has to be

intended as tutorial purpose only. Product and corporate names appearing in the documentation may or may not be
registered trademarks or copyrights of their respective companies, and are used only for identification or explanation and to
the owner’s benefit, without intent to infringe.

Miscellaneous : This license agreement shall be governed by the laws of ITALY and shall insure to the benefit of
MicroSHADOW Research.

Index

Pag. 3

Index

SECTION 1 - Introduction to PLC...10
1.1 - PLC Overview................................10

1.2 - Run-time enviroment................................10

1.3 - Input read and output write scan................................10

1.4 - Housekeeping................................10

1.5 - Program Scan................................10

1.6 - CEI / IEC 1131-3 Programming languages................................11

1.7 - Ladder Logic................................12

1.8 - Ladder logic’s elements................................13

SECTION 2 - The Integrated Dev. Enviroment...15
2.1 - System Requirements................................16

2.2 - Installing the software................................17

2.3 - Integrated enviroment overview................................18

2.4 - Menu................................20

2.5 - File Menu..21
2.6 - Edit Menu................................23

2.7 Build Menu................................24

2.8 - View Menu................................25

2.9 - Zoom Menu................................26

2.10 - Options Menu ..27
2.11 - Upgrade Dialog................................30

2.12 - Directories................................31

2.13 - Colors Dialog................................32

2.14 - Fonts Dialog................................33

2.15 - The reference grid................................34

2.16 - The components bar................................35

2.17 - Drawing schematics................................36
2.17.1 - Placing components...36
2.17.2 - Moving components...36
2.17.3 - Deleting components..36
2.17.4 - Connecting components...36
2.17.5 - Set components property...37

2.18 - Saving & loading projects................................38
2.18.1 - Saving projects..38
2.18.2 - Loading projects...38

2.19 - Starting a new project................................39

2.20 - Building the code................................39

2.21 - Uploading the code................................41

2.22 - Running the PLC................................41

2.23 - Profiles................................42

Index

Pag. 4

2.24 - Printing schematics................................43

SECTION 3 - Tutorial..47

3 - Tutorial ..48
3.1 - About Tutorial................................48

3.1.1 - Organisation of this chapter...48
3.1.2 - Conventions used in this section..49
3.1.3 - Related documentation..49

3.2 - Introduction to LadderWORK................................50
3.2.1 Paragraph Information..50
3.2.2 - What Is LadderWORK?...50
3.2.3 - How does LadderWORK work?..50
3.2.4 - Installing LadderWORK..51
3.2.5 - Virtual Circuits (VCs)..52
3.2.6 - IDE toolbar...54
3.2.7 - Principal tricks and tips in connecting VC devices..55

3.3 - Working with VCs – elementary components................................59
3.3.1 - VC Clock Generator device..59
3.3.2 - VC Delay device..60
3.3.3 - AND, OR, NOT Ports...62
3.3.4 - VC Flip Flop D Device...64
3.3.5 - VC Debounce Device...65
3.3.6 - VC Counter Device..67
3.3.7 - VC Relay Device..68
3.3.8 - VC Threshold Device...71

SECTION 4 - LIBRARY...74
ADD................................75

AD_CONV................................76

AND................................77

ASSIGN................................78

BIT................................79

CLOCK................................80

CONST................................81

COUNTER................................82

CTD84

CTU85

CTUD................................86

DEBOUNCE................................87

DEC1-8................................88

DELAY................................89

DISPLAY................................91

DIV................................93

EINPUT................................94

ENCINPUT................................95

EOUTPUT................................96

FFD................................97

FIELD98

Index

Pag. 5

FIFO................................99

F_TRIG................................101

IDENT................................102

INPUT................................105

IPIN................................106

KEYBCTRL................................107

KEYBOARD................................108

LIFO................................109

LIMIT110

MAX................................111

MBCONF................................112

MBIN................................113

MBOUT................................114

MBSLAVE................................115

MIN................................116

MOD117

MUL................................118

MUX................................119

NCINPUT................................120

NOT................................121

OPIN................................122

OR123

OUTPUT................................124

PWMOUT................................125

QTP_DSPY................................126

QTP_KEYB................................127

READVAR................................128

RELAY................................129

ROL................................130

ROR................................131

RS................................132

R_TRIG................................133

SEL................................134

SEMA................................135

SEVENSEG................................136

SHL................................137

SHR................................138

SR................................139

SUB................................140

THRESHLD................................141

Index

Pag. 6

TMI142

TOF143

TON................................144

TP................................145

TSQ146

USER1................................147

USER2................................148

USER3................................149

SECTION 5 - MATHEMATICAL EXPRESSIONS..151
5.1 - Entering formulas using function block format................................152

SECTION 6 - Interfacing with assembler...153
6.1 - Interfacing with assembler using user functions................................154

6.1.1 - User function calling conventions...154

6.2 - Generic embedded board adapting................................157
6.2.1 - Generic LADDER standard I/O functions..158
6.2.2 - Custom I/O software example..159
6.2.3 - Serial I/O hook functions..161
6.2.4 - Panel & Keyboard handling functions...162

6.3 - USASM51 Assembler language reference................................165
6.3.1 - Assembler directives summary..165
6.3.2 - Assembler operators summary...165
6.3.3 - Literals...165
6.3.4 - 8051 microprocessor instruction set...166

SECTION 7 - Technical notes ...167
7.1 - MODBUS® PROTOCOL................................168

7.1.1 - Read Boolean (Function Code 01)...169
7.1.2 - Read Numeric (Function Code 03)..170
7.1.3 - Set Single Boolean (Function Code 05)..171
7.1.4 - Set Single Numeric (Function Code 06)...172
7.1.5 - Remote terminal unit (RTU) framing..173

7.2 - Timing resolution................................174

7.3 - Memory models................................174

7.4 - Flow process................................175

7.5 - Logical links................................177

SECTION 8 - Error messages..178
SFD0200................................179

SFD0201................................179

SFD0202................................179

SFD0203................................180

SFD0204................................180

SFD0205................................180

SFD0206................................181

SFD0207................................181

APPENDIX...182

Index

Pag. 7

Appendix A - Function block cross reference................................184

Index

Pag. 8

List of figures

Figure 1 - Integrated enviroment overview__18
Figure 2 - The Menu ___ 20
Figure 3 - File Menu__ 21
Figure 6 - The View Menu___25
Figure 7 - The toolbar view sub-menu__25
Figure 8 - The Zoon Menu___26
Figure 9 - The Options Menu___27
Figure 10 - Compiler Options , Code generator Folder______________________________________ 27
Figure 11 - Compiler Options , Linker Folder__28
Figure 12 - Compiler Options , Files Folder__29
Figure 13 - Upgrade Dialog__30
Figure 14 - Directories Dialog__31
Figure 15- The Color Dialog__32
Figure 16 - Fonts Dialog__33
Figure 17 - The components bar__35
Figure 18 - Configuring property__37
Figure 19 - A sample property dialog___37
Figure 20 - Save project dialog___38
Figure 21 - Load project dialog___38
Figure 22 - The device select dialog___39
Figure 23 - The upload dialog__41
Figure 24 - Profiles___ 42
Figure 25 - Page setup : Pagination___43
Figure 26 - Page Setup : Margin__43
Figure 27 - Page Setup : Project summary__44
Figure 28 - Hardware configuration__51
Figure 29 - IDE representation__52
Figure 30 - Rampdemo project___53
Figure 31 - IDE Toolbar___54
Figure 32 - Rampdemo.pjn compiling result___54
Figure 33 - Error Warning Box__55
Figure 34 - Not connected reset input__56
Figure 35 - Always check the correct label assignment of input devices_________________________57
Figure 36 - Always check the correct label assignment of OUTPUT devices______________________58
Figure 37 - tutor1.pjn VC layout___59
Figure 38 - tutor2.pjn VC layout___60
Figure 39 - Time representation of Input and Output signals in tutor2.pjn________________________61
Figure 40 - tutor3.pjn schematic layout___62
Figure 41 - Time representation of Input and Output signal in tutor3.pjn_________________________63
Figure 42 - Use of Flip Flop D Device__64
Figure 43 - tutor5.pjn Elevator Controller__65
Figure 44 - Time representation of input and output signal of the Debounce device________________66
Figure 45 - tutor6.pjn Water Distributor___67
Figure 46 - Flashing light Control Block___68
Figure 47 - Crossing Sensor Block__69
Figure 48 - Opening Logical Block___69
Figure 49 - Closing Logical Block___70
Figure 50 - Timer Block___70
Figure 51 - Fuel Distributor Input Block___71
Figure 52 - Output and Compare Block of Fuel Distributor____________________________________ 72
Figure 53 - COUNTER Timing Diagram__83
Figure 54 - Delay Timing__90
Figure 55 - Expression sample__152
Figure 56 - Flow process diagram__176
Figure 57 - Logical links__177

Index

Pag. 9

LadderWORK

Pag. 10

SECTION 1 - Introduction to PLC

1.1 - PLC Overview

A Programmable Logic Controller (PLC) is an industrial computer specialized for real time applications.
PLCs are integrated systems containing a processor, power supply, input modules, output modules and
special purpose modules. Input modules interface with plant equipment and convert the field signals to logic
levels for the processor to read. The processor uses these inputs to perform control functions based on
application software. Output modules transmit the signals via an interface with the plant equipment. In
addition there are special modules for communication with other computers, specialized dedicated
functions, and conventional high-level language co- processors. Ladder logic will be used in the examples
for the purpose of exposition.

1.2 - Run-time enviroment

The PLC runtime environment is firmware which provides the operating systemservices and library
functions associated with the PLC. In the RUN mode,the PLC firmware runs as real-time executive which
processes the (LadderLogic) instructions that have been loaded into the program RAM area. Theprogram
runs in a continuous loop which consists of the following major phases:

• Input read and output write scan
• Housekeeping
• Program scan (logic solve).

1.3 - Input Read and Output Write Scan

During the input/output (I/O) scan, the processor updates its internal input and output buffers with data
being read from or written to I/O devices. Local I/O devices are the input and output cardsresiding in the
same physical chassis as the PLC processor. Remote I/Odevices reside external to this chassis and are
communicated with the processor's peer communications interface port.

I/O data for input and output cards used in the application are maintained in input and output image
tables. Typically the PLC will organize the I/O image tables. This means that the inputs which are present
will read into an area in memory. The program will write into another area of memory which is used to
represent the outputs. It can be said that the input image table is representative of 'how the inputs are
perceived', and the output image table is 'the desired state' of the outputs. These tables are accessible to
the Ladder Logic program as data files. During the I/O scan, data read from input cards are placed in
appropriate locations in the input image table. At the same time, output data written to the output image
table by the Ladder Logic are transferred to the appropriate output cards.

1.4 - Housekeeping

Following the I/O scan, the PLC performs what is referred to as "housekeeping."This portion of the
program cycle is used by the real-time executive to maintain and update its own internal state.

1.5 - Program Scan

The program scan is the portion of the overall cycle where Ladder Logic instructions of the user's
application software are executed. Here, the embedded firmware program operates on the portions of
memory (RAM) that have been loaded previously with the application software from the binary file.

Program files contain the actual instructions to be executed. Data files are used to maintain program
variables and other data structures required by the logic. It is the responsibility of the firmware program to
properly decode and execute instructions in the program files. The program must also properly update the
contents of the data files based on these instructions

Introduction

Pag. 11

1.6 - CEI / IEC 1131-3 Programming Languages

CEI / IEC 1131, Part 3, specifies the semantics and syntax of a unified suite of five programming
languages for PLCs. These languages can be grouped into two categories: textual and graphical. Graphical
languages are based upon graphical representation, that is, lines, boxes and text to represent specific
relations among inputs and outputs. Appropriate quantities flow along lines between elements according to
well defined rules. There are three graphical programming languages: Ladder Logic, Sequential Function
Charts, and Functional Block Diagrams. Ladder logic is the most common of PLC languages and is
discussed in the following section of this appendix. Sequential function charts can be used as a simple
language, but their most important function is to integrate modules written in other languages into a single
higher level program. Function Block Diagrams uses block diagrams to interconnect the function.

Textual languages consist of a defined set of characters, rules for combining characters with one another
to form words or other expressions, and the assignment of meaning to some of the words or expressions.
There are two textual languages defined in the standard: Instruction List (IL) and Structured Text (ST). IL is
a very low-level language, and may be considered as a standard Assembly Language for PLCs. Structured
text is a textual programming language using assignment, sub-program control, and selection and iteration
statements to represent the application program for a PLC. ST, as distinguished from IL, is the high-level
text-based language for PLCs. Much of its syntax is derived from Pascal.

The models of execution, program organization, and variable handling of all CEI / IEC 1131-3 languages
are based on a common hierarchical architecture consisting of Configurations, Resources, Tasks, and
Programs.

Configurations are the highest level at which Global variables and Directly Represented Variables may
be shared and accessed. A Configuration may often correspond to a single PLC unit, but certain types of
PLC Network Architectures as well as multi-processor PLCs also meet this definition. A Configuration is
composed of one or more Resources. Each Resource corresponds to a signal processing function, its
associated man-machine interface functions, and sensor-actuator interface functions. A single-processor
stand-alone PLC Configuration would have but a single Resource. A Configuration composed of a dozen
processors capable of sharing the defined global variables and directly represented variables, on the other
hand, would have 12 Resources associated with it.

Each Resource may have Global Variables (which are limited in scope to that Resource), zero or more
defined Tasks, and Programs associated with those Tasks. Tasks may be defined as periodic, in which case
they are defined with a specified periodicity, or as non-periodic, in which case they are executed upon the
detection of the rising edge of a boolean variable. Tasks may also be assigned an execution priority. Tasks
may also be scheduled pre-emptively, or non-preemptively. A Program not assigned to a Task will execute
repetitively at the lowest priority level.

Programs in the IEC 1131-3 architecture begin with a variable declaration section, followed by the
program statements themselves. Programs may contain calls to Functions, which return a single value, or
Function Blocks, which return one or more values. Each Program, Function, or Function Block is written in
one of the five IEC 1131-3 defined languages. Multi-language programming is accomplished by calling a
Function or Function Block written in one language from a Program, Function, or Function Block written in
another.

Variables in IEC 1131-3 languages may be either Symbolic Variables, or Directly Represented Variables.
Directly Represented Variables provide a standard nomenclature for direct access to specific addresses of
the I/O and internal memory map of the PLC. All Directly Represented Variables begin with a '%' character,
followed by a location prefix, a size prefix, and then a sequence of numbers to indicate the actual location.
Some examples of these and their meanings:

• %QX75 Output (Q) Bit (X) number 75
• %IW215 Input (I) Word (W) number 215
• %MW48 Internal (M) Word (W) number 48

The precise meaning of the hierarchy of location numbers is not defined, so it is possible to have
constructs like the following, taken from an actual PLC architecture:

%MW3.23.8.12.2.4,

which corresponds in this particular case to, from right to left, the 4th Internal 16 Bit Integer Word located
in Module subsection 2 of module 12 of Rack 8, of the unit at drop 23 of MODBUS® Network 3. Directly
Represented Variables do not have to be declared. Their use is legal only in Programs and Configurations.

LadderWORK

Pag. 12

Symbolic Variables do need to be declared. In the case where Symbolic Variables refer to actual input
and output points, the declaration assigns them to these points by associating them with the appropriate
Directly Represented Variables. Symbolic Variables that do not refer to I/O points need not be assigned a
Directly Represented Variable - the IEC 1131-3 language system will assign these an address at compile
time.

1.7 - Ladder Logic

Ladder Logic is an instruction set to provide services of real time, I/O, user interface, and similar
services. These services are associated with the special requirements of the PLC applications domain.
Because Ladder Logic is targeted toward special applications, it provides features that are compatible with
real-time control application requirements. These features, when used correctly and appropriately can
contribute to the safe operation of the program.

The origin of Ladder Logic is the Relay Ladder Logic notation which was first introduced to represent
combinations of contacts and coils of relays using specific notation. These combinations implemented
logical functions (e.g., AND or OR). The introduction of PLCs transformed Ladder Logic from a hardware
design notation to a high level language, specialized for process and logic control. The Ladder Logic
language, in the case of the PLC, is not the traditional limited Ladder Logic implemented with relays, but an
advanced language supported by the numerical capabilities of the processor, while the Ladder Logic
notation serves only a graphical user interface. Ladder Logic supports all types of programming structures
from advanced subroutines, parameter passing, loops, mathematical functions, proportional plus integral
plus derivative (PID) controllers, I/O calls, timers, and any other features of a high-level language. Although
much changed from their original purpose and implementation, current forms of Ladder Logic are still
similar to relay logic, allowing electrical engineering personnel who have traditionally have been in charge of
factory automation to review and understand the code. This is an important advantage throughout the
development process.

Ladder Logic is not a formally defined programming language. Each manufacturer has its own variation
of Ladder Logic. In addition, many of the features associated with programming the PLC are not features of
Ladder Logic itself, but the programming environment, the "shell," and the firmware mentioned above. The
variety of ladder logic implementations is due to the strong coupling between software and hardware
dictated by the requirements of the industrial control applications domain.

Introduction

Pag. 13

1.8 - Ladder logic’s elements

Ladder Logic programs consist of the following types of elements

• Power rails: Ladder Logic networks are delimited on the left and right by vertical lines known
as left and right power rails, respectively. The right power rail may be explicit or implied.

• Link elements and states: Links indicate power flow in the rungs of the Ladder Logic diagram.
A link element may be horizontal or vertical. A horizontal link transmits the state of the element
to its immediate left to the element to its immediate right. The state of an element can be either
ON or OFF. A vertical link intersects with one or more horizontal links on each side and its
state is the inclusive OR of the states of the horizontal links on its left. This state is transmitted
to all horizontal links attached to the vertical link on its right.

• Contacts: A contact is an element which imparts a state to the horizontal link on its right side
equal to the AND of the state of the horizontal link on its left side with an appropriate function.
A contact does not modify the value of the associated Boolean variable.

• Coils: A coil copies the state of the link on its left to the link on its right without modification,
and stores an appropriate function of the state or transition of the left link into the associated
Boolean variable.

• Functions and function blocks: A function is a program unit which, when executed, yields
exactly one result. A function block may yield more than one result. Internal variables of a
function or function block are not accessible to users of the function. In Ladder Logic, at least
one Boolean input and one Boolean output is shown for each function block to allow power to
flow through the block.

LadderWORK

Pag. 14

Pag. 15

The Integrated Development Enviroment (IDE)

LadderWORK

Pag. 16

System Requirements

What you need to install LadderWORK software is listed below.

Personal computer class Pentium 133 or higher
32 Mbyte of RAM
20 Mbyte of HARD DISK space
A CENTRONICS standard parallel port for hardware key inserting
A RS-232C standard serial port for PLC communication
A CD-ROM drive (For CD-ROM Version)

Pag. 17

2.2 - Installing the software

Software installation procedure is different depending on which version you have.

Installing from CD-ROM
Open the computer resources icon and select your CD-ROM drive. Run the program called Install

present on the root directory of the CD-ROM and follow the instructions of the installation program.

Installing from FLOPPY
Insert the distribution floppy disk named Install Disk 1 in your floppy drive, open the computer

resources icon from the desktop window of your computer and select your floppy drive. On the root
directory of your floppy drive select and run the program called Install and follow the instructions of the
installation program.

Installing from Self-Extracting file.
Run the program called LADRWORK.EXE and follow the instructions of the installation program.

Installing the PROTECTION-KEY
If you have a full functional version of LadderWORK software you have to install the PROTECTION-

KEY on your PC. The PROTECTION-KEY must be installed on the PC parallel port. The PROTECTION-
KEY is transparent so you can attach your printer connector at the opposite end of the key.

Launch the software
LadderWORK software can be launched using the START menu of Windows 95/98 operating

system, selecting the entry LadderWORK and choosing the program LadderWORK. With Windows
95/98 operating system you have the possibilty to create short-cut icons on your desktop screen.

LadderWORK

Pag. 18

2.3 - Integrated enviroment overview

The picture below, represents the apperance of the program LadderWORK on your computer.
LadderWORK has an integrated enviroment feature, allowing you to draw schematics, compile programs
and upload code to PLC always working on the same window. The integrated enviroments are composed
by several parts described below.

menu standard toolbar compile bar components bar

status bar message window tool barviews

Figure 1 - Integrated enviroment overview

menu
The menu is a Windows standard menu.

standard toolbar
The standard toolbar is the bar where you can find the traditional windows commands like new,

load, save and so on.

tool bar
The tool bar is the window where you can find the tools for placing components, wires, text and

bitmaps. In this bar also you can find the commands for change zoom factors in the current view.

compile bar
The compile bar contains the command to build the code and other commands for PLC controlling

like upload, run and stop. Also in the compile bar you can find the selection list for the profiles defined in
the project. This feature allows you to change the configuration easily without accessing the configuration
dialog.

components bar
This floating window contains the components that you can place in the schematic. The components

are grouped for functionality. The active group can be changed through the up and down button present
at the top of the window. For more information see using components bar .

status bar

Pag. 19

This window contains information about the software status. Also on this window you can find
context-relative help about commands and components

message window
The message window gives information about the compiling process. Many are the messages that the

software can show to the user. The messages can be divided in three classes : Informations, Warnings
and Errors. A message is always escorted by a icon that identify the class. To get more information
about a particular message simply double click the message on the window.

LadderWORK

Pag. 20

2.4 - Menu

LadderWORK menu, is a Windows standard menu. Use the mouse to select a menu entry and click
with the mouse left button to select an option. A shortcut key may be present near the menu command.
Use shortcuts to entry commands using the keyboard.

Figure 2 - The Menu

Pag. 21

2.5 - File Menu

The File menu gives you the possibility to operate with the
Windows standard command line New, Open and Save.

On the bottom of this menu there is a list of files also
called recent list which keep track of the file most recently
used

Figure 3 - File Menu

New Project
Select New Project from the File Menu to start a new project file. All the information from the previous

file, if any, will be erased. If the previous project was edited but not saved, you will be warned and you
will have the option to save the file before the information is erased. The default file name will be
noname.pjn . Note that LadderWORK will not let you save a file with the name noname.pjn so you
should use Save As and give it a name.

Open Project
Select Open to read in an existing project file with a .pjn extension.

Save Project
Save will save the current project file without asking for a file name unless a file name has not yet

been established. The default file name, noname.pjn , is not considered to be a designated file name
and you will be asked to provide a file name if you select Save from the File Menu.

Save As
Save As gives you the option of specifying a file name for the current help file before saving. As

described in Save, above, Save As will be called if a file name has not yet been assigned to the current
help file. You can also use Save As to save a project file under a different file name than the name that
is currently assigned to the file. The file extension for a LadderWORK project file must be .PJN.

Close Project
The Close Project command closes the current project.

Print
With the Print command you can print your schematic on the printer. A lot of print options can be

changed using the Page Setup command.

Print Preview
The Print Preview command allows you to view the schematic in the same way it will be printed on

the printer.

Page Setup
This command allow to change a lot of print options. See

Print Setup
This command opens the standard printer setup dialog.

LadderWORK

Pag. 22

Exit
Exits the program.

Pag. 23

2.6 - Edit Menu

The Edit Menu gives you the standard edit capability like Copy, Cut and
Paste

Figure 4 - Edit Menu

Undo (Shortcut : CTRL+Z)
The Undo command restores the schematic to the state before the last action you performed. The

Undo queue is ten operations deep.

Cut
With the Cut command you can move in the private clipboard a single object or a group of objects

from the schematic. To move a single object select the object pressing the left button of the mouse when
you are above the object then perform a Cut command. To move a group of object first select the
objects with the select tool then use the Cut command.

Copy
The Copy command allows you to copy a single object or a group of objects in the private clipboard.

To copy a single object first select the object pressing the left button of the mouse when you are above
the object then perform a Copy Command. To copy a group of object first select the objects wih the
select tool then use the Copy command.

Paste
The Paste command pastes a single object or a group of objects in the worksheet previously copied

with the Copy

Delete
With the Delete command you can delete a single object or a group of objects from the schematic. To

delete a single object select the object pressing the left button of the mouse when you are above the
object then perform a Delete command. To delete a group of objects first select the objects with the
select tool then use the Delete command.

Notes
The Notes command opens a little editor. This is useful to write information about the project you are

building.

LadderWORK

Pag. 24

2.7 - Build Menu

Figure 5 - Build Menu

NOTE : Remember that the BUILD COMMANDS are available only if you have assigned a name
for your project.

Compile (Shortcut : F5)
With the Compile command you activate the Compile Process. See the section Building the code

for further information.

Upload (Shortcut : F6)
Many PLC models supported by LadderWORK software have the remote control feature, so you can

upload the code directly from the integrated enviroment. If your PLC doesn't have this feature you
shouldn't use this command.

Run (Shortcut : F7)
If your PLC supports a remote control feature you can run the PLC simply by executing this

command.

Stop (Shortcut : F8)
If your PLC supports a remote control feature you can stop the PLC simply by executing this

command.

Compile & Upload (Shortcut : F9)
The Compile & Upload command execute in sequence the Compile and the Upload sessions.

Compile & Upload (Shortcut : F10)
This command execute in sequence the Compile, Upload and Run sessions.

Pag. 25

2.8 View Menu

Figure 6 - The View Menu

Toolbar
This menu entry opens the following sub-menu.

Figure 7 - The toolbar view sub-menu

Standard
This command enables/hides the Windows standard tool bar. The standard toolbar is the bar where

you can find the traditional windows commands like new, load, save and so on.

Tools
This menu entry enables/hides the tool bar window. The tool bar is the window where you can find

the tools for placing components, wires, text and bitmaps. In this bar you can also find the commands for
change zoom factors in the current view.

Compile
Checking/Unchecking this entry will enable/disable the compile bar window. The compile bar

contains the command to build the code and other commands for PLC controlling like upload, run and
stop. Also in the compile bar you can find the selection list for the profiles defined in the project. This
feature allows you to change the configuration easily without accessing the configuration dialog.

Components
Checking/Unchecking this entry will enable/disable the components bar window. This window

contains the components that you can place in the schematic. The components are grouped for
functionality. The active group can be changed through the up and down button present at the top of the
window.

Grid
The grid check enables/hides the grid in the worksheet.

Reference Grid
Checking/Unchecking this entry will enable/disable the reference grid in the worksheet .

Watch
If your software version handles the variable watching this menu entry enables/hides the watch

window .

Options
This command will open a dialog that allows you to enable/disable information in the schematic.

Information includes LOGICAL_LINKS, plugs, nodes and others.

LadderWORK

Pag. 26

2.9 - Zoom Menu

Figure 8 - The Zoon Menu

Zoom fit screen
This command will fit your schematic in the current view.

Zoom in (Shorcut : +)
This command performs a Zoom-in in the current view.

Zoom out (Shortcut : -)
This command performs a Zoom-out in the current view.

Zoom 1:1
This command restores the current view to the default zoom factor .

Pag. 27

2.10 Options Menu

Figure 9 - The Options Menu

Compiler
The compiler dialog changes according to the software version and the target processor. In this

section we discuss distinctly the dialogs for all the software version.

8051 MICROPROCESSOR

Figure 10 - Compiler Options , Code generator Folder

8051 Memory
This option affects the use of the ram memory of a 8051 system. 8051 microprocessor can address

two distinct data memory areas : internal or external. For further information about this argument see
MEMORY MODELS .

Temporary node memory
The compiler uses some ram cells to keep temporary node information. With this option you can

select if temporary node information should be kept in internal or external ram.

Syncronism node memory
When the compiler detects a n-way node condition, a temporary node is created. In this way the

entire tree preceeding the node is evaluated once. With this option you can decide where this sync node
will be stored.

Timing precision

LadderWORK

Pag. 28

This parameter changes the resolution of the timer used as base-timer. Higher precision means a
more detailed timing definition but more frequent hardware interruptions. Lower precision means a less
detailed timing resolution but a lower interrupt overcharge.

Auto sync before n-way node
As said for the Syncronism node memory this flag enable/disable the sync. node optimizing.

Auto debounce after phisical input
When this flag is enabled, the compiler automatically places a debouce component after a physical

input.

Assume default value for hanged inputs
When this flag is enabled, the compiler automatically places the default values for the not connected

inputs. If the flag is disabaled and there are no connected inputs the compiler produces error messages.

Figure 11 - Compiler Options , Linker Folder

Code offset
This parameter, expressed in exadecimal, changes the code start offset in the linking phase.

Code limit
This parameter, expressed in exadecimal, set the maximum address for the microprocessor code

memory.

Internal data offset
This parameter, expressed in exadecimal, changes the internal data start offset. This value must be

equal or greater than 10H to avoid conflits with LadderWORK kernel.

Internal data limit
This parameter, expressed in exadecimal, set the maximum address for the microprocessor internal

ram memory.

External data offset
This parameter, expressed in exadecimal, changes the external data start offset.

External data limit
This parameter, expressed in exadecimal, set the maximum address for the microprocessor external

ram memory.

Stack size

Pag. 29

This parameter, expressed in exadecimal, changes the size of the stack area. This area always is
allocated in the microprocessor internal ram. Normally for 8051 microprocessor the parameters must be
placed at 10H - 24H.

Jump optimizing
When this flag is active the linker optimize jump instrunctions.

Figure 12 - Compiler Options , Files Folder

Keep files after compiling
These checkboxes select which files must be kept after the compiling process. If these checkboxes

are unchecked at the end of the process the file will be erased.

Generate
These checkboxes affect the generation of some files like Listing, Symbols, Map, and C-Code

generation.

LadderWORK

Pag. 30

2.11 - Upgrade Dialog

Figure 13 - Upgrade Dialog

Upgrade

Note : The upgrade menu entry can appear only if you close the current project.

With this command you can perform a remote-upgrade session. When this command is executed the
following dialog will appear.

There are four distinct codes, the Unique Product Number (UPN), the Software Class Number (SCN
) , the PLB compatibility number (PCN) and the Software Version Number (SVN). The User may buy a
cheaper version of the software and upgrade the software at distance without having to change the
protection key. The User must supply all the codes directly to MicroSHADOW Research or to a local
dealer through fax or e-mail. MicroSHADOW Reseach will replay with the UKN code . When the UKN
code is inserted in the dialog, the software upgrade will take effect. Upgrading the software allow to
extend the number of components available in the components bar or using a newer version of the
software.

Pag. 31

2.12 Directories

Normally the directories are initialized during software installing. If you need to change paths you can
access the directories option only starting a new project. The information about directories will be stored in
the .INI file and are globals for all the projects. The unique exception is the PLB Files path. This path is
modified according to the PLC model you are working on. The PLC model string is added at the end of the
specified path so the compiler can access the rights PLB for the selected device in the sub-directory.

Figure 14 - Directories Dialog

Application
This path tells the system where the system files can be found. System files includes DLL(s), INI file,

help files and other.

Symbols Library
The symbols library path tells the system where to localize the symbol's library module (.SLI files) .

The .SLI files contains information about the components. Information includes vectorial representations,
component's geometry, plugs and others.

Include Files
This path tells the assembler where to localize the include files (.INC) .

PLB Files
This path tells the compiler where the PLB files can be found. PLB files are relative to the devices

you are working on, so as said above, a string is added to this path to access the correct sub-directory.

Temp dir
Temporary files are stored in this directory.

Library
This path tells the linker where the library files are located. Library files include the run-time kernel

procedures.

Profiles
The profiles are stored in this directory.

LadderWORK

Pag. 32

2.13 - Colors Dialog

With the colours dialog you can change the appearance of
some elements. In order you can modify the colour of the
following elements

Figure 15- The Color Dialog

Node State
Every time you place wires between components, the system places a particular symbol at the

extremity of the link. The symbol placed by the system indicate if the wire is connected right or
hanged. The colour of this symbol can be modified through this option.

Node Number
The software automatically numbers the nodes of the schematic. With this option you can change the

colour of this text.

Reference
Every component placed in the sheet has it's own REFERENCE code. This entry allows you to modify

the colour of the REFERENCE text.

Logical Links
If a component is linked with another a straight line appears as connection between the two or more

components. The colour of this line is changed using this option.

Symbols's Body
The body of the symbol (or component) is formed by graphic primitives like lines and circles. This

entry changes the colour of this primitives.

Symbols's Text
The body of the symbol can contain text elements. This entry changes the colour of this text.

Symbols's Plug
Around the bound of a component there are the net plugs. A net plug is a point where you can

connect another component or a wire. The colour of the shape that indicate the plug (normally a yellow
square box) can be changed using this option.

Symbols's Show Plugs
This entry is out-of-use for now. In the future versions this feature will be used some information for

the in-line simulator.

Pag. 33

2.14 - Fonts Dialog

With the fonts dialog you can change the appearance of
some elements. In order you can modify the font typeface
and the size of it's text of the following elements.

Figure 16 - Fonts Dialog

Reference
Every component placed in the sheet has an own REFERENCE code. This entry modify the font of

the REFERENCE text.

Node Number
The software automatically numbers the nodes of the schematic. With this option you can change the

font of this text.

Message view
The font of the text displayed in the Message window can be changed through this option.

Reference grid
All around the sheet there is a Reference grid . With this option you can change the font of the letters

and numbers present in that grid.

Project's Path
During printing, this option modify the font of the file name present at the bottom of the sheet.

Page Number
During printing, this option modify the font of the page number text present at the bottom of the

sheet.

Project Title
During printing, this option modify the font of project summary box present in the bottom-right corner

of the sheet.

LadderWORK

Pag. 34

2.15 - The reference grid

All around the sheet, a particular element called REFERENCE GRID can be activated. The reference
grid is useful to locate a particular component or element inside the sheet. With this method you can
easily locate a particular component. For example, if someone asks you to modify the count range of the
counter CNT5, this could be difficult to find CNT5 in a large sheet. But if someone asks you to coordinate
B-4 you can easily reach the position of that component by simply scrolling the view.

Pag. 35

2.16 - The components bar

LadderWORK's components bar may change according to the
software version. The components bar allows you to select components
to be placed in the schematic. In the bar you can see a standard set of
Ladder symbology, a set of electrical symbology and other more
complex components like clock generators and counters.

Figure 17 - The components bar

The components are grouped for their functionality. For example, the third group contains the pure-
logical symbols and the second group contains the analog devices. In the first group you can find the
standard set of components.To change group use the spin buttons present at the top of the window.
Pressing the left-arrow button will decrease the group number, pressing the right-arrow button will
increase the group number. Group numbers greater than five contain PLC-dedicated devices and the
functionality of these objects is discussed elsewhere.

LadderWORK loads the symbols information from a particular file called Symbol Library or .SLI file .
This file is present in the library sub-directory

LadderWORK

Pag. 36

2.17 - Drawing schematics

2.17.1 - Placing components

To place a component, select a object in the component bar. Automatically the place tool will be
selected. The shape of the selected object is shown if you move the mouse in the worksheet area.
Placement is made by clicking with the left button on the mouse at the selected point. There are regions
in the worksheet where the component can't be placed. For example you can't overlap the new
component with an existing component. You can understand if the currect position is right for placement
observing the cursor. If an NO-ACCESS symbol appear near the cursor then the components can't be
placed there.

2.17.2 - Moving Components

In order, to move a component the following operations should be executed. First choose the pointer
in the tools bar. Now select a particular object in the schematic clicking with the left button on the
mouse onto the component. Always keeping the left button pressed now you can move the components
anywhere in the sheet. The wrong positions are always indicated with the NO-ACCESS symbol. The
component may be placed in the new position simply releasing the mouse button.

Groups of components can be moved executing the following operations. Select the pointer or the
area tool in the tools bar . Now, keeping the left button pressed on the mouse select a region including
the desired components. Releasing the button will select all the devices included in the selected area.
Now you can move the block performing a operation analogue to the single component moving. First
selecting with the mouse one of the components included in the area and keeping the left button on the
mouse pressed move the block anywhere in the sheet. The NO-ACCESS symbol will automatically
appear if you enter into wrong regions. Effective placements will be made after releasing the button on
the mouse.

2.17.3 - Deleting components

Components can be deleted individually or in group. To delete a single component select with the
mouse the component. The component must be selected by clicking with the left button on the mouse
on the component. Once selected the components will appear. Now you can use the delete command (
pressing the CANCEL KEY) or the cut command to remove the object from the schematic. Using the cut
command gives you the undo feature .

Group of components can be deleted choosing the pointer in the tool bar and selecting a region in
the schematic. All the components included in that region will appear. Now you can definitely remove the
group of objects pressing the CANCEL KEY or cutting the block in the clipboard with the cut command.
Using the cut allows you to restore the deleting with the undo feature.

2.17.4 - Connecting components

Once the components are placed in the schematic you have to connect the device's pins with wires.
To draw a wire first select the wire tool from the tools bar . With the mouse click on a object pin and
keep the left button on the mouse pressed, drag the wire to the destination position. When the
destination pin is reached the wire will be effectively placed realing the mouse button. Wires extremes
are snapped by a fixed grid and errors in placement are impossible. Remember that wires are always
orthogonals so you have to split your wire in more parts if the destination pin is obstacled by other
objects in the schematic. The effective good connection between components can be checked by looking
at the wires extremity. If the wire terminal is marked with a coloured box then the connection is right.
Wrong connections are indicated by a cross .

Wires can also be connected to the power bars. Connecting a wire to the left power bar will give a
logical one to the net (VCC), connecting a wire to the right power bar gives a logical zero to the net
(GND) . Sometimes it is more practical to use GND devices instead of the right power bar . Wires can
be moved using the same procedures used for components. Also the wires length can be modified
performing the following procedure. Select with the mouse a wire extremity, a double arrow symbol will
indicate the resizing, and keeping the left button on the mouse pressed move the extremity in the desired

Pag. 37

point. Wire length will be modified by releasing the mouse button. It can happen that a wire terminal is
connected to other wires. To select a particular wire in a node click once the mouse button on the node
until the desired wire is selected then procede with the resizing.

2.17.5 - Set components property

After placing components, you have to set the components
property. Generally, properties are variables local to the
components that affects the behavior of the object. For
example if you have placed a counter, the system should
know the count range and the direction of step.

Figure 18 - Configuring property

All these parameters can be configured performing a double click on the component or selecting the
Property entry on the list opened with the right button on the mouse.

The property command will open the dialog associated with the component. The parameters included
in the dialogs are relative to the placed object. See the LIBRARY section to find individual information
about the parameters in the dialogs.

For example, if we request the property command for a
DELAY object we will be prompted for the following dialog.
Once the parameters are configured you simply have to push
the OK button to save the changes or press the CANCEL
button to discharge the changing.

Figure 19 - A sample property dialog

LadderWORK

Pag. 38

2.18 - Saving & loading projects

2.18.1 - Saving projects

Projects can be saved using the menu entries Save and
Save As in the file menu. Also a shortcut key CTRL+S is
present for the Save command. Save should be used every
time you want to save the project your currently editing. If you
attempt to save a new project the system perform the Save
As task.

Figure 20 - Save project dialog

The Save As command should be used to assign a new name to the project so another project file will
be created. If another file with the same name already exist, the system asks for the file overwriting.

2.18.2 - Loading projects

Project can be loaded using the Load command in the file
menu. The User will be prompted for a file selection in the
current directory. If the User attempts to load a project when
another project is already in memory and the project wasn't
saved, the system will inform the User that the last
modification will be trashed.

Figure 21 - Load project dialog

Pag. 39

2.19 - Starting a new project

In order, to begin a new project you have to set some
parameters to inform the system about the PLC you are working
on. Every time you begin a new project, using the New command ,
the program will prompt you for the PLC model. No other
operations are possible until you don't specify a PLC model.
According to this the here illustrated dialog will appear ..

Figure 22 - The device select dialog

Remember that selected PLC model can't be changed in your project. Once selected the choice will be
stored in the project file.

Now, to work properly, the system must know other information like compiler options and memory
mapping. All these parameters must be configured using the Options menu . To facilitate the
configuration for a particular PLC, the PROFILES feature should be used. With profiles you can import
dedicated configurations for a particular PLC model or create a new profile that can be used in other
projects .

For example, if your working with the GRIFO GPC553 PLC, you can import the appropriate
configuration for that PLC simply pressing the import button in the Options dialog and selecting the right
profiles. At this point pressing the OK button will store the imported profile into the project and further
modification to this configuration will affect locally only the project.

2.20 - Building the code
Code could be generated simply using the shortcut key F5 . The software perform five or six main steps .
For further information see the section FLOW PROCESS .

Remember that the BUILD COMMANDS are available only if you have assigned a name for
your project.

1st step In this phase the software checks the circuit for logical errors. Unconnected wires
and components are reported and LOGICAL_LINKS rules are controlled. If all
these tests are passed the system pass to phase two.

2nd step In this phase the system generates the netlist for the project.

3rd step In the third step the system will pass the control to the solver module. This process
resolves the logical sequence for the function calling and generates the assembler
file for the main project. In this phase logical errors like illegal loop and others are
intercepted.

4th step In the fourth step the control is passed to the assembler module. Normally in this
phase no other errors should be present.

5th step In this compiler last phase the system calls the linker that proceed with the
connection of the main module with the run-time library. In this phase the
executable file (HEX FILE) is generated.

6th step If the PLC you are working on has the direct-upload feature, the system calls the
communication module and the executable file is directly uploaded and your PLC
will begin to run.

LadderWORK

Pag. 40

Pag. 41

2.21 - Uploading the code

Some PLC models have a direct upload capability. Using
this feature you can upload the generated code directly
to PLC using a standard RS232C port of your PC. To
upload the code onto the PLC simply press the F6 button
on the keyboard or select Upload from the Build menu.
Also uploading can be activated pressing the Upload
button in the Compile bar .

Figure 23 - The upload dialog

Sometimes, to automatize the Compile & Upload & Run processes it is advisable to use the F10
button. The three processes are executed sequentially simply pressing this button

2.22 - Running the PLC

PLC is normally started after the upload session automatically by the system if you use the F10
shortcut key. If your PLC supports the direct-upload feature than other operations like PLAY and STOP
could be perfomed. Use the PLAY button to run the PLC and use the STOP button to stop the PLC.

LadderWORK

Pag. 42

2.23 - Profiles

Profiles are particular archives that store particular
compiler configurations. The information affected by profiles
are all the compiler options. With profiles you can freeze a
particular configuration and store it in your project and into a
private archive global for all the other projects. This is very
useful for PLC with different memory mappings. For
example, some PLC have different types of memory,
normally RAM or E2PROM. Mapping must be changed if
you want to upload the code in RAM or E2PROM. Uploading
the code in RAM preserve E2PROM duration and is faster.
According to this, you need to create two particular
mappings, for RAM and E2PROM.

Figure 24 - Profiles

Once the configurations are created you can switch between settings simply by selecting a profile in the
options dialog or changing the selection in the compile bar .

When you start a new project a particular unmodificable default profile is created. This profile is
normally out of use so you have to create your own configuration.

To create a new profile you simply have to modify the name in the Profile name text box and press
the Add button. At this point you can change all the configuration parameters for your needs. Pressing
the Update button will update the information in the profile. In this way you can create all the profile you
need.

Remember that profiles are local to you project so the configuration you are changing will not affect
any other project.

However you can use the import feature to copy a existing profile into your project. Pressing the
Import button you will be prompted for a list of existing profiles. These profiles are stored in a private
archive. Selecting the profile automatically imports all the information contained in this archive.

The Remove button allow you to remove any particular profiles from your project.

Pag. 43

2.24 - Printing schematics

LadderWORK's worksheet is a virtual logic sheet
without fixed dimensions. According to this, you can fit
your schematic on your printer sheet operating on the
Pagination scheme. After opening the Page Setup
dialog, select the Pagination folder. The following dialog
will appear

Figure 25 - Page setup : Pagination

Cheching the Fit in Page checkbox will force your drawing to be fitted on the selected printer sheet. In
this case no other adjustment can be made to the layout.

Removing the Fit in Page option will enable the zoom factor spin button. You can reduce or expand
the drawing changing the percentage factor. Expanding the drawing size, a out-of-bound situation can
occour. In this case the software automatically splits the sheet in two or more pages. The total generated
pages can be seen in the section # of pages of the dialog.

Pressing the Refresh preview button will show the width of the drawing respect to the sheet.

Margin parameters and other setting can be adjusted
selecting the Margin folder. In the Margin section of this folder
you can set the sheet margin and configure the information
that will appear in the sheet.

Figure 26 - Page Setup : Margin

File Name
Checking this box enables the printing of the file name at the bottom of the sheet.

Page Number
If active includes the page number in the sheets.

Project's Title
The activation of this check box enables the printing of the title at the top of the sheet,

Color Printing
This check box enable/disable the color printing.

LadderWORK

Pag. 44

The last folder of the Page Setup allows you to enter
information about the project. This information will be
printed in the bottom-right corner of the sheet.

Figure 27 - Page Setup : Project summary

Pag. 45

LadderWORK

Pag. 46

Page intentionally left blank

Tutorial

Pag. 47

SECTION 3 - TUTORIAL

LadderWORK

Pag. 48

3 - Tutorial

3.1 - About Tutorial

The LadderWORK Tutorial contains the information you need to get started with this new graphical
LADDER language programming software. LadderWORK simplifies the work of LADDER language
programmer with an user-friendly graphical interface which with ‘drag and drop’ approach allows you to
realise, load and test anything you can image in PLC programming World.

This manual gives you an overview of the fundamental concepts of LadderWORK, and include lessons
to teach you what you need to know to program your PLC.

This manual presumes that you know how to operate your computer and that you are familiar with its
operating system.

3.1.1 - Organisation of this chapter

Each paragraph discusses a different LadderWORK concept, although you can design your virtual circuit
which may incorporate several of these basic concepts. Therefore, we suggest you to work through the
entire tutorial before you begin building your application.

This chapter is organised as follows:

• Paragraph 3.2, Introduction to LadderWORK, describes what LadderWORK is, what a
Virtual Circuit (VC) is, how to use the LadderWORK environment, how to check VCs,
how to edit VCs, and how to create VCs.

• Paragraph 3.3, Working with VCs – elementary components, describes, using practical
examples, the main properties of the elements common to the various families of PLC
supported by LadderWORK and their mutual interactions.

• The Glossary contains an alphabetical list of terms used in this manual, including
abbreviations, acronyms, metric prefixes, mnemonics and symbols.

• The Index contains an alphabetical list of key terms and topics in this tutorial, including
the page where you can find each one.

Tutorial

Pag. 49

3.1.2 - Conventions used in this section

The following conventions are used in this section :

bold Bold text denotes menus, menu items, or dialog box buttons or options. In
addition bold text denotes VC input and output parameters.

Italic Italic text denotes emphasis, a cross reference, or an introduction to a key
concept.

Bold italic Bold italic text denotes a note, caution or warning.
Courier Courier font denotes text or characters that you enter using keyboard.

Selections of code, programming examples, syntax examples, and
messages and responses that the computer automatically prints to the
screen also appear in this font.

The symbol leads you through nested menu items and dialog box
options to a final action. The sequence

Options Colors Reference Browse color

Directs you to pull down the Option menu, select sub-menu, select
Reference item and finally select the Browse color option from the last dialog
box.

3.1.3 - Related documentation

The following documents contain information that you may find helpful as you read this manual:

LadderWORK

Pag. 50

3.2 - Introduction to LadderWORK

This Paragraph describes what LadderWORK is, what a Virtual Circuit (VC) is, how to use LadderWORK
environment (windows, menus, and tools), how to operate VCs, how to edit VCs and how to create VCs.

Because the great variety of the possible realisation , this tutorial cannot practically show how to solve
every possible programming problem. Instead, this tutorial explains the theory of LadderWORK, contains
exercises to teach you to use the LadderWORK programming tools and guides you through practical uses of
LadderWORK features as applied to actual programming tasks.

3.2.1 Paragraph Information

Each paragraph begins with a section like the one that follows, listing the learning objectives for that
paragraph.

You Will Learn:

• What LadderWORK is.
• What a Virtual Circuit (VC) is.
• How to use the LadderWORK environment (windows and tools).
• How to operate VCs.
• How to edit VCs.
• How to create VCs.

3.2.2 - What Is LadderWORK?

LadderWORK is a program development application, much like various commercial C or BASIC
development system. However, LadderWORK is different from those applications in one respect. Other
programming system use text-based languages to create the appropriate lines of code for each particular
family of PLC, while LadderWORK uses graphical programming language, compliant to CEI symbolism, to
create programs.

You can use LadderWORK with little programming experience. LadderWORK uses terminology, icons
and ideas familiar to engineers and electronic technicians and relies on graphical symbols rather than
textual language to describe programming actions.

LadderWORK has an extensive library of Ladder language idioms so it can match easily to different
automation systems. LadderWORK includes conventional program development tools, so you can see how
data passes through the program and make debugging and program development easier.

3.2.3 - How does LadderWORK work?

LadderWORK programs are called Virtual Circuits (VCs) because their appearance and operation imitate
actual circuits. However, they are analogous to functions from conventional language programs. Each of the
possible elements of the component library represents a module of the program. When the user selects and
places a new component on the actual Project layout connecting it by wires to the circuit automatically he
links the correlated program module to the program under construction. During the compiling phase the
Virtual Circuit is then translated in a Ladder program which can be stored or sent to the PLC.

Tutorial

Pag. 51

3.2.4 - Installing LadderWORK

For instructions on how to install LadderWORK, see the paragraph 2.2 of Reference Manual. In any case
the hardware configuration must resemble the picture below.

PLC IBM Compatible

Figure 28 - Hardware configuration

LadderWORK

Pag. 52

3.2.5 - Virtual Circuits (VCs)

LadderWORK programs are called virtual circuit (VCs). They are described by a collection of elementary
component connected together by wires representing the interaction between the PLC and the its working
environment.

Objective

To open, examine, and operate a VC, and familiarise yourself with the basic concepts of a virtual circuit.

Open LadderWORK by double-clicking with the mouse button on the LadderWORK icon in the
LadderWORK group. After a few moments, a blank, untitled Project Layout appears.

Figure 29 - IDE representation

Select File Open option.
Select project/samples/gpc553/tutor directory. If the PLC in use is different from GPC553® PLCs

choose the relative subdirectory present in project/samples. Remember: from this time the default
subdirectory is the subdirectory selected for the first time. In any case It is always possible to change in the
File Open dialog box the PLC subdirectory.

Load the Rampdemo VC by double-clicking on Rampdemo.pjn icon.

Tutorial

Pag. 53

After a few moments, the Rampdemo VC appears on the Project layout. As described in the Reference
Manual the VC contains several elementary components connected together by wires, a Reference Voltage
bar on the right border and a ground bar on the left one. To expand or contract the horizontal/vertical
dimension of the layout put the cursor on one of the two bars and drag the bar until the desired
vertical/horizontal dimension of the layout is reached (Valid only in version 1.00.x).

Figure 30 - Rampdemo project

LadderWORK

Pag. 54

3.2.6 - IDE toolbar

As described in the Reference Manual The IDE contains a toolbar of command buttons and status
indicators to compile, run and debug VCs. IDE also contains font and color options for editing VCs.

Figure 31 - IDE Toolbar

Compile the VC by selecting Build Compile option or clicking on pushbutton, after few second the
following dialog box appears.

Figure 32 - Rampdemo.pjn compiling result

Note in the lower part of the IDE the Message Window resuming the results of the compile and link
actions. In this case no error has been detected and the Message Window reports the dimension of the main
modules of the compiled program. It is now possible to download the program to the PLC by the

Build Upload option or clicking on pushbutton. If no doubt exits on formal and logical correctness of
the implemented VC it is also possible to execute together the compile and download actions using the

appropriate Build Compile & Upload option or clicking on pushbutton. To run the PLC program use

the Build Run option or pushbutton. The result of run action of the Rampdemo VC will be the
sequenced turn on of the output LED of the PLC.

Tutorial

Pag. 55

3.2.7 - Principal tricks and tips in connecting VC devices

In VCs realisation, to compile correctly the VC, some principal rules must be followed during the
connecting and label assignment operations of the VC devices. Any inattention generates an error message
in the Message Window to help the user in debugging operation.

Objectives

To examine and focus the principal connecting and label assignment errors. To get the user aware of the
more common IDE tricks and tips.

Example n°1

Following the steps described before open the demoerr1.pjn . This project was just created to produce
errors during compiling.

Chose the Build Compile option and the following dialog box appears.

Figure 33 - Error Warning Box

In the Message Window are resumed the errors detected by the compiler and the linker, in this case it is
reported the message:

 ERROR : (SLV0018) Can’t find a valid evaluation path through the network.

Before compiling always check the correct wiring of the VC, in particular verify the correct positioning of
the terminal nodes of the wires.

Remember: two wires crossing each other without any common node are electrical disjoint.

LadderWORK

Pag. 56

Example n°2

Open demoerr2.pjn VC using the previous described procedure. This project was created to evidence a
particular error message that appear when user leave unconnected pin in the schematic.

Figure 34 - Not connected reset input

Compile VC, a dialog box appears with an error message. In the Message Window the reported message
is:

 ERROR : (SLV0024) Component <COUNTER> with REF=<CNT1> has an hanged plug <R>

Before compiling always check the presence of expected Inputs of each component.

Remember: It is possible to assign default values to the Input terminals of the VC devices by setting ON
the Options Compiler Assume default for hanged inputs Switch. In this case no error message
appears and the VC is correctly compiled. For default input values of each VC device refer to the
Component Library.

Tutorial

Pag. 57

Example n°3

Open demoerr3.pjn VC using the previous described procedure. The project was created to evidence a
typical sourceless-input condition.

Figure 35 - Always check the correct label assignment of input devices

Compile VC, a dialog box appears with the error message. In the Message Window the reported
messages are:

 ERROR : (SFD0207) INPUT : SOURCELESS INPUT REF = <S1> INPUT/DELETE

Before compiling always control the label assignment of each VC Input device to the appropriate ‘real’
(one of the PLC hardware Input) or ‘logical’ input (the software link of an Input device to a Relay device).
For more information on ‘logical’ input refer to Relay in the Component Library.

LadderWORK

Pag. 58

Example n°4

Open demoerr4.pjn VC using the previous described procedure. The project was created to evidence a
typical output-conflict error.

Figure 36 - Always check the correct label assignment of OUTPUT devices

Compile VC, a dialog box appears with an error message. In the Message Window the reported
messages is:

 ERROR : (SLV0031) OUTPUT <OUT7> CLASHES WITH OUTPUT <OUT7>

Before compiling always verify the assignments of output labels to the VC output devices.

Tutorial

Pag. 59

3.3 - Working with VCs – elementary components

This Chapter describes, using simple but practical examples, the main characteristics of the “elementary
components” common to the different PLC families supported by LadderWORK.

You Will Learn:

• How to operate VC Clock Generator devices.
• How to operate VC delay devices.
• How to operate VC AND, OR, NOT Ports.
• How to operate VC Counter devices.
• How to operate VC Input and Output devices.
• What a logical link is.
• How to operate VC Debounce devices.
• How to operate VC Threshold devices.

3.3.1 - VC Clock Generator device

Clock Generator device is a software square wave generator. The properties of the output signal can be
changed, as described in the Reference Manual, by selecting the device and double clicking on it. A dialog
box appears to modify the Reference Label of the device and the frequency of the output signal. The range
of the possible values of the frequency changes with PLC but in any case it must be greater than zero. Let’s
suppose now to want to realise, using a PLC, a control system of the lights of the Christmas tree of our firm.
The simplest solution might be the following VC.

Open tutor1.pjn VC. A simple VC appears with two Clock Generator devices connected to the Output
devices, representing the Christmas tree lights, through two Input devices.

Figure 37 - tutor1.pjn VC layout

Select Build Compile & upload & Run Option. The Output LEDs 4-7 flash at the frequency of 0,5 Hz
when INPUT 00 is closed while the Output LEDs 0-3 flash at the frequency of 1 Hz when the INPUT 01 is
closed.

LadderWORK

Pag. 60

3.3.2 - VC Delay device

The VC Delay device can act as a delay line or as a monostable. The device behaviour can be changed
acting on the Delay/Hold mode switch. Moreover the device reaction to the input signal can be modified
acting on Not retrigg./Retriggerable mode switch. In Not retriggerable mode any signal at the Input
terminal of the device is ignored during the delay/hold time of the device. In Rettrigerable mode the pulses
occurred during the delay/hold time are stored and processed by the device at the end of the delay/hold
time. Come back to our Christmas tree lights control system and suppose to want to realise a VC where odd
and even Output LEDs flash alternatively. One possible solution might be the following.

Open tutor2.pjn VC. The VC is composed by a clock Generator with an Output frequency of 0,5 Hz (1
impulse per 2 seconds) and two VC Delay devices. The VC Output section is similar to the previous. Note
the first Delay device is set in delay mode while the second Delay device is set in hold mode.

Figure 38 - tutor2.pjn VC layout

Select Build Compile & upload & Run Option.
Close the switch associated to INPUT 00. The odd and even Output LEDs flash at the same frequency

but with a phase difference of half a period.

Tutorial

Pag. 61

The behaviour of the signals is the following:

INPUT SIGNAL

OUTPUT SIGNAL DELAY MODE DEVICE

OUTPUT SIGNAL HOLD MODE DEVICE
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 39 - Time representation of Input and Output signals in tutor2.pjn

LadderWORK

Pag. 62

3.3.3 - AND, OR, NOT Ports

The behaviour of LadderWORK logical devices is similar to the theoretical behaviour. The only
exception occurs when an Input terminal is connected to an Input device. In this case the open circuit status
is considered as a logical “zero”. To analyse this class of components consider the following VC relative to
an another version of Christmas tree lights control system. In this release the VC is characterised by two
functional modes: a flashing mode which turns on and off the output LEDs at a frequency of 1Hz and
switching off mode which switches off in a pre-programmed sequence the Output LEDs. To examine the VC
execute the following steps:

Open tutor3.pjn VC. The VC is divided in three functional blocks: a clock generator block near the left
border of the VC layout responsible of the control and output signal generation, an output block near the
right border with a set of AND ports used both for the automatic mode selection and for the sequenced
switching off mode realisation and a delay time block responsible of the sequenced switching off of the
Output LEDs.

Figure 40 - tutor3.pjn schematic layout

Select Build Compile & upload & Run Option.
Close INPUT 00 Input device the Output LEDs start to the switching on and off cycle as previously

described. N.B. The command signal for mode selection is obtained using a 0.2 Hz signal conditioned by
two Delay devices set in Not Rettrigerable mode. In this way a square wave generator with pulse repetition
frequency of 6

1 Hz is realised.

Tutorial

Pag. 63

DL6 INPUT SEGNAL

DL6 OUTPUT SIGNAL

DL5 OUTPUT SIGNAL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 41 - Time representation of Input and Output signal in tutor3.pjn

LadderWORK

Pag. 64

3.3.4 - VC Flip Flop D Device
Flip Flop D in real circuit is usually implemented using four AND ports properly connected. To help the

user in VC drawing LadderWORK presents the Flip Flop D among the implemented VC devices. In the
previously considered VC the command signal was obtained conditioning an 0.2 Hz signal. An another
strategy should be the following:

Figure 42 - Use of Flip Flop D Device

Open tutor4.pjn VC. The VC is similar to the previous version, the only variation is the use of a feed
back Flip Flop D to double the period of the 0.2 Hz input signal. In fact the Flip Flop Output status, in this
configuration, changes only when the clock input signal presents a rising wave front.

Select Build Compile & upload & Run Option.
Close INPUT 00. The Output LEDs flash as previously described. The only difference consists that using

Flip Flop D the flashing and switching off periods are exactly equal.

Tutorial

Pag. 65

3.3.5 - VC Debounce Device
The use of DEBOUNCE devices is particularly important when the Input devices connected to PLC are

electromechanical relays. In fact this type of devices are characterised by a “bouncing behaviour” during the
transaction from the open state to the closed one and vice versa with the generation of a lot of rising wave
fronts which can random modify the circuit response. For this reason it is sometime necessary to introduce a
low pass filter to eliminate any spurious fluctuation of the signal during state variations. This is the main
function of a Debounce device.

An another possible use of the Device is the introduction of delay of few milliseconds in the propagation
of the state variations. In fact the “Debounce” property is obtained implementing an average operation on
the input signal calculated on a user pre-programmable period. Therefore the output signal of a
DEBOUNCE device is a delayed and averaged version of the input signal.

A practical example of the device use is the realisation of a control system for an elevator where the
actual position of the elevator car is provided by some relays. To simplify the controller the VC manages
only two elevator stations.

Open tutor5.pjn VC. The VC is composed by three functional blocks: an Input block composed by INPUT
00 and INPUT 01, an enable block which allows to run the motor only in the right direction and an output
block which provides the command signals for the motor.

Figure 43 - tutor5.pjn Elevator Controller

Select Build Compile & upload & Run Option. To run correctly at the beginning the system status
must be ‘elevator car downstairs’.

Try the system, no problem should be revealed.

LadderWORK

Pag. 66

DEBOUNCE INPUT SIGNAL

DEBOUNCE OUTPUT SIGNAL

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Figure 44 - Time representation of input and output signal of the Debounce device

Remove the Debounce device and extend the wire to connect together OR1 with FF1.
Select Build Compile & upload & Run Option again. Now The controller doesn’t work properly. In fact

the relay bouncing random modify the status of FF1 (each rising front of the OR1 output signal changes the
status of FF1) and doesn’t allow to enable correctly the elevator rising/lowering movements.

Tutorial

Pag. 67

3.3.6 - VC Counter Device
VC Counter Device main function is to count the number of input pulses (properly the number of rising

fronts), to provide the digital value of them on OUT terminal, to set high TH output when the threshold value
is reached. The threshold can be modified by the user. Moreover through the “E” and “R” inputs it is possible
to enable or reset the device. A practical example of the use of this device is the Water distributor described
bellow. The distribution logic is: to fill a vessel with a pre defined amount of liquid allowing the user to stop
the filling up by pressing the push button a second time.

Open tutor6.pjn VC. The VC is illustrated in the following picture.

Figure 45 - tutor6.pjn Water Distributor

Select Build Compile & upload & Run Option. When the user presses and releases the input
Terminal INPUT 00 the water valve OUT00 opens for a pre programmed time interval. If the time interval is
over or the user presses and releases again INPUT 00 the water valve closes. The pre programmed time
interval is obtained using a Counter Device CNT1 setting properly the threshold value of the device and
using the “TH” Output to stop the water flow. Moreover The Output signal of the Flip Flop D is used to reset
the counter.

LadderWORK

Pag. 68

3.3.7 - VC Relay Device

The Relay Device allows to manage several output devices at the same time avoiding the employ of
logical devices (AND OR ports) and simplifying VC layout. This class of devices implements the “Logical
Links” between the input device (the Relay) and the assigned input devices (for more information about
them refer to the Reference Manual). Assignment operation is realised selecting the input devices and
giving them the same Label of the Relay. An example of the use of Relay Device is represented by an
“Automatic gate control system”. Usually this kind of system must ensure the following characteristics:

To open the Gate on user Input Command.
To close the Gate after a pre programmed time interval.
To stop the closure procedure if an object crosses the gate aperture.

A possible practical solution is the following VC. From a functional point of view the VC is divided in:

a flashing light control block which manages alarm lamp during the opening and closing procedures,

Figure 46 - Flashing light Control Block

Tutorial

Pag. 69

A Crossing Sensor Block, which interrupts the closing Procedure and immediately starts the re-opening
of the gate.

Figure 47 - Crossing Sensor Block

The Opening Logical Block,

Figure 48 - Opening Logical Block

LadderWORK

Pag. 70

The Closing Logical Block

Figure 49 - Closing Logical Block

The Timer Block which defines the aperture time interval.

Figure 50 - Timer Block

Open tutor7.pjn VC.
Select Build Compile & upload & Run Option. The VC functional logic is to open the gate when the

user presses INPUT 00. When the Open Status is reached the closing procedure starts after a pre
programmed time interval when the ‘ TH’ Output of CNT1 is high. This procedure stops if either the gate is
completely close (this status is reached when the Close Status Switch INPUT 03 is closed) or the Crossing
Sensor INPUT 02 is closed. To avoid false Signal from the Crossing Sensor a Delay Device set in Hold/Not
Retrigg. Mode is used.

Tutorial

Pag. 71

3.3.8 - VC Threshold Device

The VC Threshold device is used to compare the Counter device output to a pre programmed value. The
compare condition can be selected by the user. When it is reached the Threshold Output device is set
‘True’. A practical example of a VC containing Threshold Device is a simplified version of a Fuel Distributor.
Usually this kind of system must ensure the following characteristics:

To allow the user to select the needed amount of fuel.
To fill the tank decreasing the selected amount of fuel still its remaining value is zero.

A possible solution is the following. The VC is divided in three functional block:

 An Input Block which, in this simplified case, allows the user to select a maximum amount of three units
of a pre programmed quantum of fuel.

Figure 51 - Fuel Distributor Input Block

LadderWORK

Pag. 72

A compare Block which controls the fuel distribution and stops it when the selected amount of fuel is
reached.

An Output Block which controls the distribution valve.

Figure 52 - Output and Compare Block of Fuel Distributor

Open tutor8.pjn VC.
Select Build Compile & upload & Run Option

The rising front of INPUT 00 signal increases the Fuel Selection Counter CNT1. After three rising fronts
the AND1 Port setting prevents any further CNT1 increment. The user can control the current amount of fuel
selected checking the Output Device OUTPUT 0, OUTPUT 2 and OUTPUT 3. The INPUT 02 Input Device
is the switch relative to the extraction/insertion fuel distributor pump. When the fuel distributor pump is
extracted INPUT 02 is open. In this case any further increment of CNT1 is prevented and at the same time
the Fuel Distribution Counter CNT2 is no more in Reset Status. When this condition occurs and the user
closes the Command Distribution Switch INPUT 01 CNT2 is enabled to increase its current value and the
Distribution valve is opened. If CNT2 Output gets equal to the selected value the Compare Block stops Fuel
distribution.

Tutorial

Pag. 73

LadderWORK

Pag. 74

SECTION 4 - LIBRARY

Library

Pag. 75

ADD

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This device performs the sum of the two values present at inputs IN1 and IN2 giving the result on the
OUT pin.

Net Plugs

Pin Description

IN1 First operand

IN2 Second operand

OUT Result of the sum

 See also : Mathematical expressions

LadderWORK

Pag. 76

AD_CONV

Software version : ADVANCED

Some PLC models has one or more analog to digital converters. This device allows you to aquire analogs
value and convert it in a numerical value. The value supplied by the converter is normalized in the range 0-
65535 indipendently by the converter resolution. Two parameters, called OFFSET and SPAN, are available
to change the converter dynamic.

The OFFSET parameter adds a base value to the converted value and the SPAN parameter changes
the converter gain. With values OFFSET=0 and SPAN=1.0 no alteration will be applied to the converted
value. SPAN values greater than 1.0 produce a gain, SPAN values less than 1.0 produce value attenuation.

Dialog Settings

Parameter Description

OFFSET This parameter adds a OFFSET value to the converted value

SPAN This parameter changes the gain of the converter.

Net Plugs

Pin Description

OUT Data output (normalized 0-65536).

Library

Pag. 77

AND

Software version : STANDARD, ADVANCED

The AND device performs a logical AND between two boolean signals. The output of this device is
true when both the inputs are true.

LadderWORK

Pag. 78

ASSIGN

Software version : STANDARD, ADVANCED

ASSIGN creates a variable in memory and uncoditionally assigns to it the value present at component
input pin.

The associated variable name is specified in the REFERENCE parameter.
LadderWORK software handles integer unsigned 16 bits variables.
As written in IEC / CEI 1131-3 specification, we suggest, for this kind of variable, the use of the standard

%MW prefix which means a memory word variable.
When a variable is created using ASSIGN it is public to the entire net.
It is possible to read the value assigned by an ASSIGN object using the READVAR device.
ASSIGN transfer without changes the value present on its input pin to the output pin.

Dialog Settings

Parameter Description

REFERENCE This parameter specify the name of the variable.

Net Plugs

Pin Description

IN Value that will be assigned to the variable

OUT This pin gives the same value of the input pin

 See also : READVAR

Library

Pag. 79

BIT

Software version : ADVANCED

This function block allow to extract a single bit from a word. The bit number is specified by the value
applied to the SEL input and the word must be placed at input IN. The resulting boolean value will be
available on the output named OUT.

Net Plugs

Pin Description

IN The word where the bit must be extracted

SEL The bit selector

OUT The resulting extracted bit

LadderWORK

Pag. 80

CLOCK

Software version : STANDARD, ADVANCED

The CLOCK devices generates fixed frequency pulses. The frequency of the pulses can be programmed
through the FREQUENCY parameter.

Dialog settings

Parameter Description

FREQUENCY This parameter defines the frequency of the pulses. The minimun and maximum
frequency depends by the used PLC. For further information about the timing resolution
of the devices CLOCK and DELAY see TIMING RESOLUTION.

Net Plugs

Pin Description

OUT Generated pulses are available on this output.

Library

Pag. 81

CONST

Software version : STANDARD, ADVANCED

This device gives you the possibility to enter constant word values as input for many library devices
available in the software. For example you can use CONST to define the count range for a CTU device
applying this component to the PV (programmed value) input. The constant value is entered double-
cliccking on the object and configuring the VALUE parameter on the property dialog.

Dialog Settings

Parameter Description

VALUE The constant must be enterer using this parameter.

Net Plugs

Pin Description

OUT The constant programmed word value will be available on this output.

 See also : IDENT

LadderWORK

Pag. 82

COUNTER

Software version : STANDARD, ADVANCED

The COUNTER device counts pulses applied to its CLOCK input. The device can be programmed to be UP
counter or DOWN counter. The counter's counting is incremented or decremented on the raising edge of the
CLOCK pulse when the enable pin E is asserted. At startup the counter is initialized to the value
programmed on the BASE parameter. The counter proceeds with its counting until the THRESHOLD value
is reached. When this is reached the threshold signal TH will become true. The next cycle will load the
counter with the BASE value again.

The counter can be initialized by asserting a true signal into the R pin. When the R signal is asserted, the
counter is loaded with the BASE value.

The maximum counting value for this device is 65535.

Dialog Settings

Parameter Description

BASE The base value for the counting.

THRESHOLD The threshold value for the counting.

UPDOWN This parameter changes the direction of the counting.

Net Plugs

Pin Description

E Counting enable pin.

CK CLOCK input.

R RESET input.

TH THRESHOLD output

OUT The counter value output

Timing Diagrams

Library

Pag. 83

Figure 53 - COUNTER Timing Diagram

Diagrams refers to a COUNTER programmed with BASE=2 and THRESHOLD=10.

 See also : CTU , CTD , CTUD

LadderWORK

Pag. 84

CTD

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

The CTD object represents a DOWN COUNTER. A rising-edge on CD input will decrement the counting by
one. The Q output become TRUE when the current counting value is equal or less than zero. Applying a
TRUE signal on LD (LOAD) input will load the counter with the value present at input PV (Asyncronous
load).

The CV output pin reports the current counting value.

Net Plugs

Pin Description

CD A rising-edge on this input will decrement the counter by one.

LD Applying a TRUE signal on this input will load the counter with the value present at input
LD.

PV When the LD pin is asserted, the value applied to this pin will be loaded as current count
value. User should use a CONST or IDENT object to enter numerical constant.

Q This output become TRUE when the counting is equal or greater than zero.

CV This output reports the current counting value.

 See also : COUNTER, CTU, CTUD, IDENT, CONST

Library

Pag. 85

CTU

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

The CTU object represents an UP COUNTER. A rising-edge on CU input will increment the counting by one.
When the programmed value, applied to the input PV, is reached, the Q output become TRUE.

Applying a TRUE signal on R input will reset the counter to zero (Asyncronous reset).
The CV output pin reports the current counting value.

Net Plugs

Pin Description

CU A rising-edge on this input will increment the counter by one.

R Applying a TRUE signal on this input will reset the counter.

PV The Q output become TRUE when the current counting value reaches the value applied
to this input. User should use a CONST or IDENT object to enter numerical constant.

Q This output become TRUE when the counting is equal or greater than the programmed
value.

CV This output reports the current counting value.

 See also : COUNTER, CTD, CTUD, CONST, IDENT

LadderWORK

Pag. 86

CTUD

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This device represents an UP/DOWN programmable counter. A rising-edge on the CU (COUNT-UP) input
will increment the counter by one while a rising-edge on the CD (COUNT-DOWN) decreases the current
value.

Applying a TRUE signal on R input will reset the counter to zero. A TRUE condition on the LD signal will
load the counter with the value applied to the input PV (PROGRAMMED VALUE) .

QU output becomes active when the current counting value is greater or equal to the programmed value.
The QD output becomes active when the current value is less or equal to zero.

The CV output reports the current counter value.
As specified in the IEC / CEI 1131-3 standard this kind of counter has a counting range espressed by an

integer 16 bit variable. This means that this counter can span from -32768 to +32767 .

Net Plugs

Pin Description

CD A rising-edge on this input will decrement the counter by one.

CU A rising-edge on this input will increment the counter by one.

R Applying a TRUE signal on this input will reset the counter.

LD Applying a TRUE signal on this input will load the counter with the value present at input
PV.

PV When the LD pin is asserted, the value applied to this pin will be loaded as current count
value. User should use a CONST or IDENT object to enter numerical constant.

QU This output become TRUE when the counting is equal or greater than the programmed
value.

QD This output become TRUE when the counting is less or equal than zero.

CV This output reports the current counting value.

 See also : COUNTER, CTD, CTU, CONST, IDENT

Library

Pag. 87

DEBOUNCE

Software version : BASE, STANDARD, ADVANCED

The DEBOUNCE device can be used in conjuction with the standard input device like INPUT, EINPUT,
NCINPUT, ENCINPUT. The main function of this device is to eliminate the typical spikes/noises generated
by a hardware switch or button.

The DEBOUNCE device computes a unitary integration in the programmed time. When the integration
time is elapsed the output will become true if the computed value is greater than a pre/programmed
threshold.

Typically, the main function of this device is to eliminate spikes and noises on PLC digital phisical inputs.

Dialog Settings

Parameter Description

INTEGRATION TIMEThis parameter (expressed in milliseconds) changes the filter integration time.
For signals generated by switches a filtering time of 100 ms is sufficent.

Net Plugs

Pin Description

INPUT Filter input

OUT Filter output

LadderWORK

Pag. 88

DEC1-8

Software version : ADVANCED

This function block represents a one to eight decoder. The boolean value applied to the input E is
transferred to the output selected by the value applied to the input S.

Net Plugs

Pin Description

S The output selector

E The boolean value that will be transferred to the selected output

0..7 The outputs

Library

Pag. 89

DELAY

Software version : STANDARD, ADVANCED

The DELAY device generates delayed signals respect to the input signal. Two kinds of functionality are
available : DELAY MODE or HOLD MODE. In DELAY MODE a pulse applied on its input generates a
single pulse after the programmed time. In HOLD MODE a pulse on its input activates the output for all the
programmed time.

There is the possibility to condition the behavior of the device for the pulses following the first trigger
pulse. Using the NO RETTRIGERABLE option the pulse following the first trigger pulse will be ignored.
With the RETTRIGERABLE option set, the elapsed time will be cleared every time a rising-edge is
recognized on the input so the time-past event will take place starting from the last pulse.

DELAY device, like CLOCK and DEBOUNCE , are SYSTEM TIMER dependant.
For further information see TIMING RESOLUTION .

Dialog Settings

Parameter Description

DELAY TIME Delay time expressed in seconds.

MODE Selects HOLD MODE or DELAY MODE.

TRIGGER MODE The response of the DELAY device to the pulses following the first pulse can be
changed through this parameter.

Net Plugs

Pin Description

INPUT Delay input. This pin is raising-edge sensitive.

OUT The delay output.

Timing Diagrams

LadderWORK

Pag. 90

Figure 54 - Delay Timing

 See also : TP, TON, TOF, TMI, TSQ

Library

Pag. 91

DISPLAY

Software version : ADVANCED

Display support is automatically activated placing a DISPLAY component. There are two main displaying
modes called TWO-STATE MODE and PROBE MODE. In TWO-STATE MODE the software check for the
value applied to the input signal of DISPLAY block and shows the ASSERT MESSAGE if the value is one
(TRUE) or shows the NOT ASSERT MESSAGE if this value is zero (FALSE). In this way you can redirect
particular message to panel on state changing. Message is displayed at the position configured in the
parameters X Coord and Y Coord s

Terminals with messages storing capability, can display a previous stored message through the fields
NOT ASSERT MESSAGE CODE and ASSERT MESSAGE CODE . If its values are not zero the software
uses its values to select a message inside the terminal memory. In this case the string placed on the [NOT]
ASSERT MESSAGE fields are ignored.

PROBE MODE should be used to display numerical values. In this operating mode, first the system
displays the message contained in the ASSERT MESSAGE field, then the software writes the numerical
value supplied on its input. The numerical format may be one of the following : BOOLEAN, UNSIGNED
INT, SIGNED INT with the possibility to choose the decimal or the hexadecimal notation.

Dialog Settings

Parameter Description

X-Coord,Y-Coord These are the coordinate where the message will be located

MODE Selects TWO-STATE MODE or PROBE-MODE

DISPLAY AS Selects the decimal or hexadecimal notation

DATA TYPE Selects the numerical format

FIELD LENGTH Select the length of display field

ASSERT MESSAGE The message entered in this field will be displayed in the ASSERT condition
or as prefix when using PROBE MODE

NOT ASSERT MESSAGE The message entered in this field will be displayed in the NOT-ASSERT
condition

BELL In same conditions, display kernel can generate bell signals

TERMINAL ID The terminal identificator. LadderWORK software can handle up to four
terminals at time

TERMINAL TYPE This parameter should be used to select a terminal model

PARM#1 General purpose parameter # 1

PARM#2 General purpose parameter # 2

Net Plugs

LadderWORK

Pag. 92

Pin Description

IN Data input

OUT This pin reports the same value of the IN pin.

Library

Pag. 93

DIV

Software version : ADVANCED

This function block divide the value applied to the input IN1 by the value applied to the input IN2 and the
result of the division is available on the OUT pin.

Net Plugs

Pin Description

IN1 Dividend

IN2 Divisor

OUT Result of division

See also : Mathematical expressions

LadderWORK

Pag. 94

EINPUT

Software version : BASE, STANDARD, ADVANCED

EINPUT represents the normally-open input device in electrical symbology. This component may represent
a physical input of PLC or a logical input to associate with a RELAY device. To establish if an input is
phisical or logical opportune values must be programmed on the REFERENCE parameter of the property
dialog. If the REFERENCE value refers to a physical resource of the PLC then a physical input will be
created.If the REFERENCE field does not refer to any physical resources then the EINPUT will be
configured as logical input to associate with a RELAY device. This configuration is also called LOGICAL
LINKS .

There is no limit on the EINPUT devices that can be relationed with a RELAY device.
In general input devices perform a logical AND between the signal supplied as input and the switch

signal. For switch signal we mean the signal that closes the switch (logical or physical). The output of this
device will be TRUE if both the input and the switch signal are TRUE. The output will show FALSE
everytime the switch is OPEN or the input is FALSE.

 See also : INPUT , NCINPUT , ENCINPUT

Library

Pag. 95

ENCINPUT

Software version : BASE, STANDARD, ADVANCED

ENCINPUT represents the normally-closed input device in electrical symbology. This component may
represent a physical input of PLC or a logical input to associate with a RELAY device. To establish if an
input is physical or logical opportune values must be programmed on the REFERENCE parameter of the
property dialog. If the REFERENCE value refers to a physical resource

of the PLC then a physical input will be created. If the REFERENCE field does not refer to any physical
resources then the EINPUT will be configured as logical input to associate with a RELAY device. This
configuration is also called LOGICAL LINKS .

There's no limit on the EINPUT devices that can be relationed with a RELAY device.

 See also : INPUT , EINPUT , NCINPUT

LadderWORK

Pag. 96

EOUTPUT

Software version : BASE, STANDARD, ADVANCED

This object represents a generic output device in electrical symbology. This device can be associated to a
physical output of the PLC or linked to other input in the schematic. The physical or logical property is
opportunately configurable selecting a physical resource or not on the associated dialog. Through the
REFERENCE field on the configuration dialog allows the user to select one of the available physical
resources. If one of the these resources is selected then the device will be configured as physical output.
Any other selection will produce a logical device to associate with components like INPUT , NCINPUT,
EINPUT , ENCINPUT .

For further information about input-output device association see the section LOGICAL LINKS .
In detail, when a OUTPUT device is configured as logical object, a global variable is created and is

public to all the net. The EOUTPUT device reply the signal present on its input on the output, so more
EOUTPUT devices can be chained on the same rung.

 See also : OUTPUT , RELAY

Library

Pag. 97

FFD

Software version : STANDARD, ADVANCED

This component represents a D-TYPE FLIP-FLOP. These components, are not normally present on the
LADDER standard symbology but are present to give power to the software.

The D-TYPE FLIP-FLOP represent the elementary memory cell on the logic circuits.
The behavior of the device is the following : The data present on the D input is frozen on the raising edge

of the CK signal. The Q output reports the value of the last freeze cycle and the /Q signal reports the
complement of the Q signal.
This component represents a D-TYPE FLIP-FLOP. These components, are not normally present on the
LADDER standard symbology but are present to give power to the software.

The D-TYPE FLIP-FLOP represent the elementary memory cell on the logic circuits.
The behavior of the device is the following : The data present on the D input is frozen on the raising edge

of the CK signal. The Q output reports the value of the last freeze cycle and the /Q signal reports the
complement of the Q signal.

Net Plugs

Pin Description

D Boolean data input

CK CLOCK signal

Q Direct output

/Q Negated output

LadderWORK

Pag. 98

FIELD

Software version : ADVANCED

The FIELD component allow user to enter data using an operator panel. When the field is selected, user
is able to enter a decimal or boolean number using the keypad.

The field entry area is preceded by a prompt string that user may enter through the apposite text box.
If the ST pin is active then the value applied to the IN pin will be copied in the FIELD.

NOTE : To enable the data entry for a particular terminal, remember to apply a logical ONE in the INPUT
pin of a KEYBCTRL device programmed with the same TERMINAL IDENTIFICATOR.

Dialog Settings

Parameter Description

X Coord X Coordinate where the field will be located on the panel

Y Coord Y Coordinate where the field will be located on the panel

Data Type This field select the numeric data type

Prompt The string entered in this box will precede the entry area

Field Size User can limit the entry area using this field

Terminal ID Since up to four terminals can be handled by LadderWORK kernel, this parameter
selects which terminal will handle the field

Net Plugs

Pin Description

IN Data input.

ST The data applied to the IN pin will be stored into the field when this pin become TRUE

OUT The current numeric value is available from this pin

Library

Pag. 99

FIFO

Software version : ADVANCED

This device handles a queue of data using the FIFO (FIRST IN FIRST OUT) method. This kind of data
structure is known also as CIRCULAR QUEUE. The FIFO device allows you to store a lot of data and
retrieve it in reverse order. The queue can handle words of 8 or 16 bits with user definable stack-depth.
Keep in mind that in some versions of the software the maximum size of the queue is function of the current
memory model. For further information about this argument refer to the section MEMORY MODELS .

The FIFO functionality is explained below :
The data present on the IN plug is inserted in the queue on the raising-edge of the PUSH signal. The

OUT signal always gives the value of the first data available. Data can be sequentially retrieved in reverse
order applying signals on the PULL signal. When the PULL signal is applied the OUT plug will give the
value for the next data available. In the case of the queue being empty the OUT plug will supply zero. Two
pins are available to check the FIFO status. The EMPTY signal is true when the queue is empty and the
FULL signal is true when the queue is FULL.

PUSH and PULL signals are sampled simultaineously. If a transition is detected on both the signals,
PUSH has precedence respect to PULL.

Dialog Settings

Parameter Description

DEPTH The queue depth

DATA SIZE The word size for the queue (BYTE / WORD)

Net Plugs

Pin Description

IN Data input.

OUT Data output.

PUSH This signal pushes data in the queue.

PULL This signal pulls data from the queue.

FULL This signal becomes true when the queue is full.

EMPTY This signal becomes true when the queue is empty.

LadderWORK

Pag. 100

 See also : LIFO

Library

Pag. 101

F_TRIG

Software version : STANDARD, ADVANCED
CEI / IEC 1131-3 Compliant

This device is a rising-edge detector. The Q output become TRUE when a 0 to 1 (or FALSE to TRUE or
OFF to ON) condition is detected on the CLK input and it sustain this state for a complete scan cycle.

Net Plugs

Pin Description

CLK The rising-edge detector input

Q When a rising-edge is detected this output become true for a single scan cycle

LadderWORK

Pag. 102

IDENT

Software version : BASE, STANDARD, ADVANCED
CEI / IEC 1131-3 Compliant

IDENT allow to enter literals and identificators using the IEC 1131-3 standard notation

Base 2, base 8 and base 16 notation

Numbers in base 2,8 and 16, start respectively with the prefix 2#, 8# and 16# . The number,
expressed in the specified base follow. For clarity, the underscore character ‘_’ could be used to
separate part of the number. This is useful, for example, for binary numbers.

Time duration notation

Time duration literals begin with the prefixes TIME# or time# or T# or t#. A time specification
string follow. The time specification string is formed by one or more numbers followed by a time-unit
suffix. For clarity, the underscore character ‘_’ could be used to separate part of the time string.

Time unit suffix Meaning

ms milliseconds
s seconds
m minutes
h hours
d days

Library

Pag. 103

Examples

Syntax Result

2#10000001 Hex 81, Decimal 129
2#1000_0001 Hex 81, Decimal 129
8#10 Octal 10, Decimal 8
16#FFFF Hex FFFF, Decimal 65535

-276 Integer Decimal -276
65535 Integer Decimal 65535
+10000 Integer Decimal 10000

TRUE TRUE condition, Boolean 1, Logical one
FALSE FALSE condition, Boolean 0, Logical zero

TIME#14.73ms Time duration specification 14.73 milliseconds
time#14.73ms Time duration specification 14.73 milliseconds
t#14.73ms Time duration specification 14.73 milliseconds
T#14.73ms Time duration specification 14.73 milliseconds
t#6m_34s_15ms Time is : 6 minutes, 34 seconds and 15

milliseconds
time#1h30m Time is : 1 hour and half
TIME#4d_5h_34m_10s_25

ms
Time is : 4 days, 5 hours, 34 minutes, 10

seconds and 25 milliseconds

Dialog Settings

Parameter Description

REFERENCE The literal or the identificator is entered using this field

Net Plugs

Pin Description

OUT The value of the literal/identificator is available from this pin

LadderWORK

Pag. 104

INCLUDE

Software version : BASE, STANDARD, ADVANCED

The INCLUDE block allow user to add an assembler file to the project. This method is used to supply to
the compiler particular routines for dedicated I/O and other functions.

Library

Pag. 105

INPUT

Software version : BASE, STANDARD, ADVANCED
CEI / IEC 1131-3 Compliant

INPUT represents the standard normally-open input device in the LADDER symbology. This component
may represent a physical input of PLC or a logical input to associate with a RELAY device. To establish if
an INPUT is physical or logical opportune value must be programmed on the REFERENCE parameter of
the property dialog. If the REFERENCE value refers to a physical resource of the PLC then a physical
INPUT will be created. If the REFERENCE field does not refer to any physical resources then the INPUT
will be configured as logical input to associate with a RELAY device. This configuration is also called
LOGICAL LINKS .

There's no limit on the INPUT devices that can be relationed with a RELAY device.

See also: EINPUT , NCINPUT , ENCINPUT

LadderWORK

Pag. 106

IPIN

Software version : BASE, STANDARD, ADVANCED

IPIN represents a microprocessor's input pin. This device gives out the value of the pin.

Dialog Settings

Parameter Description

REFERENCE This parameter will identify a particular pin of the microprocessor.

Net Plugs

Pin Description

OUT This output gives out the value of the desired pin.

 See also : OPIN

Library

Pag. 107

KEYBCTRL

Software version : ADVANCED

This device allow to control the flow of the data coming from the keyboard. If the INPUT pin is ONE then
the system redirect the keyboard messages to the field currently under focus. If this pin is ZERO, the
system redirect the keyboard messages to the KEYBOARD function block. The keyboard flow-switching is
independant for each terminal. The OUT pin simply reports the value of the INPUT pin.

Dialog Settings

Parameter Description

MODE Selects NORMAL or BISTABLE mode

KEY_CODE Selects the switch on the key-pad

TERMINAL_ID Selects one of the four terminals handled by the system

OPTION Reserved for future use

PARM#1 Reserved for future use

PARM#2 Reserved for future use

Net Plugs

Pin Description

IN This pin, if TRUE, enables the KEYBOARD component

OUT This output gives out the value of the desired switch

LadderWORK

Pag. 108

KEYBOARD

Software version : ADVANCED

This component, reads the press/release state of a switch on the keypad of a user terminal. The current
key state is reported on the right pin (OUT) only if the left pin (IN) is TRUE.

Two behavior models can be programmed to be NORMAL or BISTABLE. In normal mode, the system
just reads the value of the switch. In BISTABLE mode the OUT pin will toggle ON and OFF every time the
switch is pressed.

The switch on the keyboard is identified through the KEY_CODE parameter. Refer to the appropriate
manufacturer documentation for this information.

Dialog Settings

Parameter Description

MODE Selects NORMAL or BISTABLE mode

KEY_CODE Selects the switch on the key-pad

TERMINAL_ID Selects one of the four terminals handled by the system

OPTION Reserved for future use

PARM#1 Reserved for future use

PARM#2 Reserved for future use

Net Plugs

Pin Description

IN This pin, if TRUE, enables the KEYBOARD component

OUT This output gives out the value of the desired switch

Library

Pag. 109

LIFO

Software version : ADVANCED

This device handles a queue of data using the LIFO (LAST IN FIRST OUT) method. This kind of data
structure is know also as STACK. The LIFO device allows you to store a lot of data and retrieve it in same
sequence. The queue can handle words of 8 or 16 bits with user definable stack-depth. Keep in mind that in
some version of the software the maximum size of the queue is function of the current memory model. For
further information about this argument refer to the section MEMORY MODELS .

The LIFO functionality is explained below :
The data present on the IN plug is inserted in the queue on the raising-edge of the PUSH signal. The

OUT signal always gives the value of the first data available. Data can be sequentially retrieved applying
signals on the PULL signal. When the PULL signal is applied the OUT plug will give the value for the next
data available. In case of empty-queue the OUT plug will suplly zero. Two pins are available to check the
LIFO status. The EMPTY signal is true when the queue is empty and the FULL signal is true when the
queue is FULL.

PUSH and PULL signal are sampled simoultaineously detected on both of the signals. PUSH has the
precedence respect to PULL.

Dialog Settings

Parameter Description

DEPTH The queue depth

Net Plugs

Pin Description

IN Data input.

OUT Data output.

PUSH This signal pushes data in the queue.

PULL This signal pulls data from the queue.

FULL This output becomes true when the queue is full.

EMPTY This output becomes true when the queue is empty.

 See also : FIFO

LadderWORK

Pag. 110

LIMIT

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This function block compares the value applied to the input IN with the values applied to the inputs MN (
MINIMUM VALUE) and MX (MAXIMUM VALUE). If the input value is less than the value applied to the
MN input then the output reports the value of MN pin. If the input value is greater than the value applied to
the MX input then the output gives the value applied to the MX pin. When the value applied to the input is
inside the two limits the value is transferred to the output without limitations.

Net Plugs

Pin Description

MN Minimum allowable value

MX Maximum allowable value

IN Value to be limited

OUT Limited value

Library

Pag. 111

MAX

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This function block compares the magnitude of the values present at input IN1 and IN2 reporting on its
output the largest value (maximum value).

Net Plugs

Pin Description

IN1 First operand

IN2 Second operand

OUT Maximum value

LadderWORK

Pag. 112

MBCONF

Software version : ADVANCED

FUTURE IMPLEMENTATION

Library

Pag. 113

MBIN

Software version : ADVANCED

FUTURE IMPLEMENTATION

LadderWORK

Pag. 114

MBOUT

Software version : ADVANCED

FUTURE IMPLEMENTATION

Library

Pag. 115

MBSLAVE

Software version : ADVANCED

FUTURE IMPLEMENTATION

LadderWORK

Pag. 116

MIN

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This function block compares the magnitude of the values present at input IN1 and IN2 reporting on its
output the smallest value (minimum value).

Net Plugs

Pin Description

IN1 First operand

IN2 Second operand

OUT Minimum value

Library

Pag. 117

MOD

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This function block gives the remainder, result of division of the value applied to the input IN1 by the
value applied to the input IN2. The computed value is available on the OUT pin.

Net Plugs

Pin Description

IN1 The dividend

IN2 The divisor

OUT Remainder (MODULE) of the division

LadderWORK

Pag. 118

MUL

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This device multiplicates the values applied to the pins IN1 and IN2 giving the result on the OUT pin.

Net Plugs

Pin Description

IN1 First operand

IN2 Second operand

OUT Result of multiplication

Library

Pag. 119

MUX

Software version : ADVANCED

This function block selects one of the four possible values applied to the inputs IN1..IN4 transferring the
value to the OUT pin. The selection of the input is performed through the K input. A zero on K pin selects
the IN1, a value equal to three selects the input IN4.

Net Plugs

Pin Description

K The selector

IN1..IN4 Multiplexer inputs

OUT This pin gives the value of the selected word

LadderWORK

Pag. 120

NCINPUT

Software version : BASE, STANDARD, ADVANCED
CEI / IEC 1131-3 Compliant

NCNPUT represents the normally-closed input device in LADDER symbology. This component may
represent a physical input of PLC or a logical input to associate with a RELAY device. To establish if an
input is physical or logical opportune values must be programmed on the REFERENCE parameter of the
property dialog. If the REFERENCE value refers to a physical resource of the PLC then a physical input will
be created. If the REFERENCE field does not refer to any physical resources then the EINPUT will be
configured as logical input to associate with a RELAY device. This configuration is also called LOGICAL
LINKS .

There is no limit on the NCINPUT devices that can be relationed with a RELAY device.

 See also INPUT , EINPUT , ENCINPUT

Library

Pag. 121

NOT

Software version : STANDARD, ADVANCED

The NOT device performs a data inversion of the signals input. If the input is true the output is false and
viceversa.

LadderWORK

Pag. 122

OPIN

Software version : BASE, STANDARD, ADVANCED

OPIN represents a microprocessor's output pin. The boolean value applied to the input of this device is
transferred to the microprocessor physical pin.

Dialog Settings

Parameter Description

REFERENCE This parameter will identify a particular pin of the microprocessor.

Net Plugs

Pin Description

INPUT The boolean value applied to this signal will be transfered to the microprocessor pin.

Library

Pag. 123

OR

Software version : STANDARD, ADVANCED

The OR device performs a logical OR between two boolean signals. The output become true when at
least one input is true.

 See also : AND, NOT

LadderWORK

Pag. 124

OUTPUT

Software version : BASE, STANDARD, ADVANCED
CEI / IEC 1131-3 Compliant

This object represents a generic output device. This device can be associated to a physical output of the
PLC or linked to other inputs in the schematic. The physical or logical property is opportunately configurable
selecting a physical resource or not on the associated dialog. Through the REFERENCE field on the
configuration dialog allows the user to select one of the available physical resources. If one of the these
resources is selected then the device will be configured as physical output. All the other selections will
produce a logical device to associate with components like INPUT , NCINPUT, EINPUT , ENCINPUT .

For further information about input-output device association see the section LOGICAL LINKS .
In detail, when a OUTPUT device is configured as a logical object, a global variable is created and is

public to all the net. The OUTPUT device will reply the signal present on its input on the output, so more
OUTPUT devices can be chained on the same rung.

 See also : EOUTPUT , RELAY

Library

Pag. 125

PWMOUT

Software version : ADVANCED

This device, available only for some PLC models, sets an hardware PWM converter, or a generic D/A
interface, with the value applied to the input PIN.

The input value must be normalized in the range 0 +65535 which means that zero will give the minimum
analog value while 65535 gives the maximum analog value. There are two parameters that control the D/A
dynamic : OFFSET and SPAN.

With OFFSET you add a base constant to the value applied to the input. The SPAN parameter allow you
to change the converter gain. With values equal to 1.000 no modify will be applid to the input. Values
greater than one will increase the gain while valued less than one will produce attenuation.

Dialog Settings

Parameter Description

OFFSET This parameter adds a OFFSET value to the input value

SPAN This parameter changes the gain of the converter.

Net Plugs

Pin Description

IN Data input (normalized 0-65535).

LadderWORK

Pag. 126

QTP_DSPY

Software version : ADVANCED

LadderWORK can support GRIFO's user terminal models QTP16, QTP22 and QTP24. Supporting it is
activated selecting GPC553 model during project set-up. QTP16 panel uses the GPC553 CN5 connector so
user projects can't use the microprocessor ports P1[0..7] P4[0..7]. QTP Kernel is automatically installed
placing a QTP component into the schematic (QTP_DSPY or QTP_KEYB).

Using QTP panels model QTP 22 or QTP 24, serial communication line available on GPC 553 is
connected to the panel, so the automatic upload feature and other remote commands like PLAY and STOP
are lost .

Using QTP panels with LadderWORK

As said above, QTP support is automatically activated placing a QTP_DSPY or QTP_KEYB component.
The working modes are very similar for both the models. There are two main displaying modes called
NORMAL MODE and PROBE MODE. In NORMAL MODE the software check for the value applied to the
input signal of QTP_DSPY block and shows the ASSERT MESSAGE if the value is one (TRUE) or shows
the NOT ASSERT MESSAGE if this value is zero (FALSE). In this way you can redirect particular message
to panel on state changing. Message is displayed at the position configured in the parameters X Coord and
Y Coord s

In QTP 22 and QTP 24 user can display previous stored messages through the fields NOT ASSERT
MESSAGE CODE and ASSERT MESSAGE CODE . If its values are not zero the software uses its values
to select a message inside the terminal memory. In this case the string placed on the [NOT] ASSERT
MESSAGE fields are ignored.

PROBE MODE should be used to display numerical values. In this operating mode, first the system
displays the message contained in the ASSERT MESSAGE field, then the software writes the numerical
value supplied on its input. The numerical format may be one of the following : BOOLEAN, HEXADECIMAL,
DECIMAL.

Library

Pag. 127

QTP_KEYB

Software version : ADVANCED

Using QTP Keyboards with LadderWORK

QTP Keyboards may be used simply by placing a QTP_KEYB object in the schematic. This device on its
output gives the state of the programmed key. For the Key Code user should refer to the appropriate
documentation. There are two main operating modes. In normal mode the component has different
behaviour due to the selected model. For QTP 16 device, the output is asserted for all the time the key is
pressed. For QTP 22/24 devices the output is asserted at pressing just for one pulse. In bistable mode, all
the QTP models have the same behavior. In this operating mode the output is asserted or de-asserted
alternatively pressing the configurated key (Toggle mode).

LadderWORK

Pag. 128

READVAR

Software version : STANDARD, ADVANCED

This device reads the numerical value relative to the associated variable that was created using the
ASSIGN object.

The name of the variable, that must be supplied through the REFERENCE parameter must be a variable
name that exists in the net.

With the using of the pair ASSIGN / READVAR it is possible to transfer numerical values from one point
to another in the net.

Dialog Settings

Parameter Description

REFERENCE This parameter specify the name of the associated variable

Net Plugs

Pin Description

OUT This pin gives the value of the associated variable

 See also : ASSIGN

Library

Pag. 129

RELAY

Software version : BASE, STANDARD, ADVANCED

This object always represents a logical device. The RELAY device has a behavior analogue to
electromechanical RELAYS of electrical plants. The RELAY device must be used in conjuntion with INPUT
, NCINPUT, EINPUT , ENCINPUT devices. For further information about this argument, see the section
LOGICAL LINKS . In details, the RELAY device creates a global boolean variable that can be used by the
entire net. The RELAY device transports the value of the input to its output so more than a RELAY can be
cascaded together.

 See also : EOUTPUT , OUTPUT

LadderWORK

Pag. 130

ROL

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This function rotates left the word applied to the input IN giving the result on the OUT pin. The number of
rotates is specified by the value applied to the pin N. During every single rotation the most significant bit of
the word is transferred to the less significant bit.

Net Plugs

Pin Description

IN The word to be rotated

N The number of rotation to be performed

OUT The resulting word

 See also : ROR, SHL, SHR

Library

Pag. 131

ROR

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This function rotates right the word applied to the input IN giving the result on the OUT pin. The number
of rotations is specified by the value applied to the pin N. During every single rotation the less significant bit
of the word is transferred to the most significant bit.

Net Plugs

Pin Description

IN The word to be rotated

N The number of rotations to be performed

OUT The resulting word

 See also : ROL, SHL, SHR

LadderWORK

Pag. 132

RS

Software version : STANDARD, ADVANCED
CEI / IEC 1131-3 Compliant

This function represents a standard reset-dominant set/reset flip flop. The Q1 output become TRUE
when the input S is TRUE and the R1 input is FALSE. In the same way, the Q1 output become FALSE when
the input S is FALSE and the R1 input is TRUE. After one of these transitions, when both the S and R1
signals return to FALSE, the Q1 output keeps the previous state until a new condition occours. If you apply
a TRUE condition for both the signals, the Q1 output is forced to FALSE (reset-dominant).

Net Plugs

Pin Description

S The SET input

R1 The RESET-DOMINANT input

Q1 The FLIP-FLOP output

Library

Pag. 133

R_TRIG

Software version : STANDARD, ADVANCED
CEI / IEC 1131-3 Compliant

This device is a rising-edge detector. The Q output become TRUE when a 0 to 1 (or FALSE to TRUE or
OFF to ON) condition is detected on the CLK input and it sustain this state for a complete scan cycle.

Net Plugs

Pin Description

CLK The rising-edge detector input

Q When a rising-edge is detected this output become true for a single scan cycle

LadderWORK

Pag. 134

SEL

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This function block selects one of the two possible values applied on the inputs IN0 and IN1 transferring
the value to the OUT pin. The selection of the input is performed through the G input. Placing a zero on the
G input will select the value applied to IN0 else the selected value will be IN1.

Net Plugs

Pin Description

IN0 Input # 0

IN1 Input # 1

G The selector pin

OUT This pin reports the value of the selected pin

Library

Pag. 135

SEMA

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This function block implement a semaphore function. Normally this function is used to syncronize events.
The BUSY output is activated by a TRUE condition on the CLAIM input and it is de-asserted by a TRUE
condition on the RELEASE input.

Net Plugs

Pin Description

CLAIM The CLAIM input

RELEASE The RELEASE input

BUSY The BUSY output

LadderWORK

Pag. 136

SEVENSEG

Software version : BASE, STANDARD, ADVANCED

The SEVENSEG device can be applied only in the TECLAB PLC552 logic controller. This component will
show the numerical value applied on its input in the seven segment display present on the board.

The system can display all the digits from 0 to 9 and the hexadecimal digits A to F.

Library

Pag. 137

SHL

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This function perform a logical left shift of the value applied to the input IN and the resulting word is
available on the OUT pin. The number of shifts is specified by the value applied to the pin N. The most
significant bit of the word is filled with zero.

Net Plugs

Pin Description

IN The word to be shifted

N The number of shifts to be performed

OUT The resulting word

LadderWORK

Pag. 138

SHR

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This function perform a logical right shift of the value applied to the input IN and the resulting word is
available on the OUT pin. The number of shifts is specified by the value applied to the pin N. The less
significant bit of the word is filled with zero.

Net Plugs

Pin Description

IN The word to be shifted

N The number of shifts to be performed

OUT The resulting word

Library

Pag. 139

SR

Software version : STANDARD, ADVANCED
CEI / IEC 1131-3 Compliant

This function represents a standard set-dominant set/reset flip flop. The Q1 output become TRUE when
the input S1 is TRUE and the R input is FALSE. In the same way, the Q1 output become FALSE when the
input S1 is FALSE and the R input is TRUE. After one of these transitions, when both the S1 and R signals
return to FALSE, the Q1 output keeps the previous state until a new condition occours. If you apply a TRUE
condition for both the signals, the Q1 output is forced to TRUE (set-dominant).

Net Plugs

Pin Description

S1 The SET DOMINANT input

R The RESET input

Q1 the FLIP-FLOP output

LadderWORK

Pag. 140

SUB

Software version : ADVANCED
CEI / IEC 1131-3 Compliant

This device subtract the value present at IN2 from the value present at input IN2 giving the result on the
OUT pin.

Net Plugs

Pin Description

IN1 First operand

IN2 Second operand

OUT Result of subtraction

 See also : Mathematical expressions

Library

Pag. 141

THRESHLD

Software version : STANDARD, ADVANCED

The threshold device compares the magnitude of the value present in its input with a pre-programmed
value. The value of the output (TRUE/FALSE) is conditioned by the result of this compare according to the
QUALIFIER parameter.

Meaning of QUALIFIER parameter

= The output becomes true when the input value is equal to the programmed
value

<> The output becomes true when the input value is not equal to the
programmed value

>= The output becomes true when the input value is greater or equal to the
programmed value

<= The output becomes true when the input value is less or equal to the
programmed value

> The output becomes true when the input value is greater than the
programmed value

< The output becomes true when the input value is less than the programmed
value

Dialog Settings

Parameter Description

COMPARE VALUE The value to be compared with the input value

QUALIFIER This parameter will establish the comparing type

Net Plugs

Pin Description

INPUT The comparator input

OUT The comparator output

LadderWORK

Pag. 142

TMI

Software version : ADVANCED

This device, also called INTEGRAL TIMER, accumulates the sum of the time for the periods where the IN
input is in assert state. This means that the computed time is the sum of the ON times of the IN input.

If the computed sum reaches the programmed time, applied to the PT input, the Q output become
TRUE. At this point, the only way to reset the integral timer can be performed asserting the R (RESET)
input. The ET output pin reports the current elapsed time.

Net Plugs

Pin Description

IN The timer accumulates the time when this input is TRUE.

R The integral timer must be resetted using this input

PT To this input user must apply the programmed time. User should use
an IDENT object to enter a time constant.

Q After that the pre-programmed time threshold is reached, this output
become TRUE.

ET This output reports the current elapsed time.

Library

Pag. 143

TOF

Software version : STANDARD, ADVANCED
CEI / IEC 1131-3 Compliant

Asserting the input signal IN of this device immediately activates the Q output. At this point, releasing the
input IN will start the time elapsing. When the programmed time, applied to the input PT, is elapsed and the
input IN is still de-asserted, the Q output become FALSE. This condition will be keeped until the input IN is
remains de-asserted.

If the IN input is asserted again before time elapsing, the time counting will be cleared and the Q output
remains ON.

The ET output pin reports the current elapsed time.

Net Plugs

Pin Description

IN A TRUE condition on this input starts the TON timer.

Q If the input IN is asserted and the programmed time is elapsed this output
become TRUE.

PT To this input user must apply the programmed time. User should use an IDENT
object to enter a time constant.

ET This output reports the current elapsed time.

LadderWORK

Pag. 144

TON

Software version : STANDARD, ADVANCED
CEI / IEC 1131-3 Compliant

Asserting the input signal IN of this device starts the time elapsing of timer. When the programmed time,
applied to the input PT, is elapsed and the input IN is still asserted, the Q output become TRUE. This
condition will continue until the input IN is deasserted.

If the IN input is released before time elapsing, the timer will be cleared.
The ET output pin reports the current elapsed time.

Net Plugs

Pin Description

IN A TRUE condition on this input starts the TON timer.

Q If the input IN is asserted and the programmed time is elapsed this output
become TRUE.

PT To this input user must apply the programmed time. User should use an IDENT
object to enter a time constant.

ET This output reports the current elapsed time.

Library

Pag. 145

TP

Software version : STANDARD, ADVANCED
CEI / IEC 1131-3 Compliant

This kind of timer has the same behavior of a single-shot timer or a monostable timer.
When a rising-edge (OFF to ON or FALSE to TRUE) transition is detected on the IN input, the Q output

become immediately TRUE .This condition continue until the programmed time PT, applied to the relative
pin, is elapsed. After that the programmed time is elapsed, the Q output keeps the ON state if the input IN is
still asserted else the Q output returns to the OFF state. This timer is not re-triggerable. This means that
after the timer started it can't be stopped until the complete session ends. The ET output pin reports the
current elapsed time.

Net Plugs

Pin Description

IN A rising-edge on this pin will trigger the pulse timer.

Q When the pulse timer starts, and before that the programmed time is
elapsed, this output become TRUE.

PT To this input user must apply the programmed time. User should use
an IDENT object to enter a time constant.

ET This output reports the current elapsed time.

LadderWORK

Pag. 146

TSQ

Software version : ADVANCED

This device, also called SQuare wave timer, allow to generate square waves with variable duty-cycle.
When the input is asserted, the time elapsing proceeds. When the elapsed time reaches the pre-
programmed threshold, applied to the input PT#1, the Q output become TRUE. Time elapsing continue until
the second pre-programmed threshold, applied to the input PT#2 is reached. When this condition become
true, the Q output is putted to OFF state and the elapsed time is cleared so a new cycle could begin.

De-asserting the IN input will freeze the timer in the last condition. Applying a ON state again on the IN
input will start the timer at the same point where it was left.

The ET output pin reports the current elapsed time.

Net Plugs

Pin Description

IN The timer accumulates the time when this input is TRUE.

PT#1 The Q output become TRUE when the elapsed time reaches the value applied to this input.
User should use an IDENT object to enter a time constant.

PT#2 The Q output become FALSE when the elapsed time reaches the value applied
to this input. User should use an IDENT object to enter a time constant.

Q This output is function of the pre-programmed time PT#1 and PT#2.

ET This output reports the current elapsed time.

Library

Pag. 147

USER1

Software version : ADVANCED

USER1 is an user definable function. The function can accept one input parameter, a constant
programmable value that always gives a single output. User functions must be written in assembly language
and must respect the system conventions. For further information about user functions see the section
INTERFACING WITH ASSEMBLER .

Dialog Settings

Parameter Description

Source file The assembler source file that contains the user function.

Function name The name of the function. The assembler source code must contain a
function with the same name.

Programmable value This field contains a constant value that is transfered to the function every
time the function is called.

INPUT Size This parameter will establish the size for the input INPUT

Net Plugs

Pin Description

INPUT Data input . This pin can be programmed to be BYTE or WORD .

LadderWORK

Pag. 148

USER2

Software version : ADVANCED

USER2 is a user definable function. The function can accept two input parameters, a constant
programmable value that always gives a single output. User functions must be written in assembly language
and must respect the system conventions. For further information about user functions see the section
INTERFACING WITH ASSEMBLER .

Dialog Settings

Parameter Description

Source file The assembler source file that contains the user function.

Function name The name of the function. The assembler source code must contain a
function with the same name.

Programmable value This field contains a constant value that is transferred to the function every
time the function is called.

IN1 Size This parameter will establish the size for the input IN1

IN2 Size This parameter will establish the size for the input IN2

Net Plugs

Pin Description

IN1 Data input # 1 . This pin can be programmed to be BYTE or WORD .

IN2 Data input # 2 . This pin can be programmed to be BYTE or WORD .

Library

Pag. 149

USER3

Software version : ADVANCED

USER3 is a user definable function. The function can accept three input parameters, a constant
programmable value that always gives a single output. User functions must be written in assembly language
and must respect the system conventions. For further information about user functions see the section
INTERFACING WITH ASSEMBLER .

Dialog Settings

Parameter Description

Source file The assembler source file that contains the user function.

Function name The name of the function. The assembler source code must contain a
function with the same name.

Programmable value This field contains a constant value that is transferred to the function every
time the function is called.

IN1 Size This parameter will establish the size for the input IN1

IN2 Size This parameter will establish the size for the input IN2

IN2 Size This parameter will establish the size for the input IN3

Net Plugs

Pin Description

IN1 Data input # 1 . This pin can be programmed to be BYTE or WORD .

IN2 Data input # 2 . This pin can be programmed to be BYTE or WORD .

IN3 Data input # 3 . This pin can be programmed to be BYTE or WORD .

LadderWORK

Pag. 150

Mathematical expressions

Pag. 151

SECTION 5 - MATHEMATICAL EXPRESSIONS

LadderWORK

Pag. 152

5.1 - Entering formulas using function block format

Formulas can be entered in the schematic using the FUNCTION BLOCK notation. The figure below, for
example, represents the way to compute the formula (5 + 3) * (9 + 2) - 7.

LadderWORK software supplies the classical arithmetic functions like ADD, SUB, DIV, MUL and MOD.
Moreover the software gives you the possibility to operate with the logical operators like SHR, SHL, ROL,
ROR and BIT.

Constant values can be entered using the CONST and IDENT components

Figure 55 - Expression sample

Interfacing with assembler

Pag. 153

SECTION 6 - Interfacing with assembler

LadderWORK

Pag. 154

6.1 - Interfacing with assembler using user functions

Sometimes, in a project, you can have the need to create custom components. LadderWORK gives
the possibility to create single output functions with one up to three inputs. These functions are called
USER1, USER2 and USER3. There is not limit about the number of the user functions that you can define
in a project.

User functions can be programmed to accept BYTE or WORD data on its inputs.
In order to use user functions, you simply place a USER1, USER2 or USER3 component in the

schematic. After placement you have to configure some element like the assembler file associated with the
component and the name of the function called by the system. Another parameter is available to the
function, this is called PROGRAMMABLE VALUE and gives the possibility to have variable values.

Writing user function implicate the knowing of microprocessor assembly language. Other precautions
must be taken to avoid conflits with LadderWORK kernel. LadderWORK generated code is similar to a loop
where input signals, functions and output signals are evaluated sequentially . The typical requirement of
these systems is to make a complete cycle inside a 2/3 ms period which means that the code must be fast
as possible. According to this user functions can't brake the flow. User functions must be short and fast.
Moreover, user must avoid to use function's name like DELAY, FIFO etc because these names conflict with
the kernel.

Remember, that in LadderWORK you haven't debug capability, so we advice to check first the routine
with other tools and finally link it with the project.

User function calling conventions for the 8051 family

Signals applied to a user function are passed through registers.

Format for the register data storage

Size Registers

BYTE R7, R5 , R3 , R1
WORD R6R7, R4R5, R2R3, R0R1

We assume that registers R7, R5, R3, R1 always contain the complete value if a
variable type is BYTE or the low part of the variable if this is WORD. Registers R6, R4, R2,
R0 always contain the high byte of a WORD variable.

Output variable

The output value, or return value, always is WORD-sized and is placed in the register
pair BA. The B register contains the high byte of the word and the A register (
ACCUMULATOR) the low word.

Input-Registers association

Signal Registers
BYTE WORD

INPUT1 R7 R6R7
INPUT2 R5 R4R5
INPUT3 R3 R2R3

The programmable value will always receive the value in the register pair R0R1.

Segment's names

For the user function writing, user must respect the segment name conventions.

Nome Description

Interfacing with assembler

Pag. 155

CSEG Code segment (ROM)
CONST Constant segment (ROM)
IDATA Internal data area (RAM)
XDATA External data area (RAM)
IZDATA Internal data area zeroed at startup (RAM)
IXDATA External data area zeroed at startup (RAM)

Predefined constants

Name Description
DATA8051 0 for SMALL models with internal data addressing
DATA8051 1 for LARGE models with external data addressing

8051 user function example

This example represents how to create a two word equality comparator using the two inputs
user function. This object should be used to compare two word signals that gives a boolean value (
inside a WORD) on its output. Refer to fx_comp.pjn project for using template. The USER2
function must be configured to accept words on both the inputs. On the configuration dialog of the
user function type “comprtor.s01” for source file and “compare” for function name. The source file
must be in the same directory of your .pjn file.

; []
; Module : comprtor.s01
; Subject : Magnitude Comparator
; Create : 09.02.99
; Update : 09.02.99
; Company : MicroSHADOW Research (uS)
; Author : [GF-Jack]
; []

INCLUDE "sfr8051.inc"
INCLUDE "kernel.inc"

publiccompare

extern __cmpw_eq

; []
; compare
; ON ENTRY :
; R6R7 = INPUT1
; R5R4 = INPUT2
;ON EXIT :
; (WORD) BA = Compare Result
; TRUE = EQUAL
; FALSE = NOT_EQUAL
;
; []
compare:
;
; Uses kernel function __cmpw_eq (Compare Word EQUAL)
; This function requires values in BA & R6R7 and returns TRUE if
; the values are equals.
;

mov a,r5
mov B,r4

; Call functions

LadderWORK

Pag. 156

lcall __cmpw_eq
; Clear MSB

mov B,#0
ret

; -------------------
; End of comprtor.s01
; -------------------

Interfacing with assembler

Pag. 157

6.2 - Generic embedded board adapting

If you intend to use LadderWORK on a custom embedded board we suggest to design the board
using a flat memory mapping model. Normally the 8051 addressing space is divided in two areas RAM
AREA and ROM AREA. RAM area is used to keep user data and nodes data, ROM AREA is used to keep
LadderWORK’s generated code.

Hook and interface functions

After the board design is finished user must write own custom input / output routines. We organized the
input / output routines in three main groups :

Generic LADDER standard I/O hook functions
Serial I/O hook functions
Panel & Keyboard hook functions

Generic LADDER standard I/O functions allow to adapt boolean I/O ports of your hardware. With
these function we handle typical ladder input and output blocks.

Serial I/O hook function handles the basic commands that are recognized by the kernel and allow you
to perform probing and watching

Panel & keyboard hook functions interfaces user terminal (Display & Keyboard)
.

LadderWORK

Pag. 158

6.2.1 Generic LADDER standard I/O functions

Library components like INPUT, OUTPUT, NCINPUT, EINPUT, ENCINPUT, EOUTPUT have a
configurable parameter called CHANNEL. If you configure this parameter to zero the system will drive
the pre-programmed hardware resource defined in the parameter REFERENCE.

When this parameter is in the range 128-255, the system generates code to call the functions named
__io_write (for writing) and __io_read (for reading).

These functions should be attached to the project using the INCLUDE function block. The typed file
name must contain user routines for custom hardware support.

NOTE : The extension for an include assembler file must be compliant with the used processor type.
For 8051 always use .s01 extension

__io_write This function is called during the execution of a output block. This function is
called with the following convention :

Function is called with :

R7 = channel parameter (128..255)
A = value of input pin

Function must exits with :

A = same value of input pin

__io_read This function is called during the execution of an input standard block . The
function should return the value passed as input, if the associated resource is ON (
logical 1) else the function must returns zero. The tipology of the input, normally
open or normally closed, it’s passed as parameter in a register.

User may respect the following calling conventions

Function is called with :

R7 = channel parameter (128..255)
R5 = Normally open (0) or normally closed (1) switch flag
A = value of input pin

Function must exits with :

A = result value

Interfacing with assembler

Pag. 159

6.2.2 Custom I/O software example

;--
; Module : io.s01
; Subject : Generic custom I/O hardware support
; Create : 22.10.99
; Update : 22.10.99
; Company: MicroSHADOW Research (uS)
; Author : [GF]
;
; This is an example of how o use the ladder standard output block -()-
; and input block -||- to drive a custom hardware on your board.
;
; For the output block we assume :
; We assume to have a byte-port externally addressable at address E000H
; in a custom system. The output routine copy the input boolean value to
; the bit specified by the parameter channel using this table :
;
; Channel Bit
; 128 0 of port 0E000H
; 129 1 of port 0E000H
; 130 2 of port 0E000H
;
; We also assume that the port hasn't read-back feature so we keep
; a mirror of its state to correct update the entire port
;
; For the input block we assume :
; We assume to have a byte port mapped at address 0E800H in a custom
; system. The input routine will report the state of the bit#0 of this
; port. The pin will respond to channel 160
;
;
;--

INCLUDE "sfr8051.inc"
INCLUDE "kernel.inc"

public __io_write
public __io_read

izdata

MyMirror: ds 1 ; Reserve space for port mirror (zeroed at startup)

cseg
;---
;
; __io_write
;
; Hook function for custom output blocks -()-
;
; ON ENTRY :
; R7 = Channel (128..255)
; A = input signal from left pin
; ON EXIT
; A = returns the left-input signal
;
;---

__io_write:
mov DPTR,#0E000H ; DPTR point to the port
mov B,a ; Saves input value
jnz WriteOne ; Jump for ON state

;---
; Place bit to OFF
;---

mov a,r7 ; Get channel value
cjne a,#128,__test129_0
anl MyMirror,#BINNOT(01H)
sjmp WriteNow

__test129_0:
cjne a,#129,__test130_0
anl MyMirror,#BINNOT(02H)
sjmp WriteNow

LadderWORK

Pag. 160

__test130_0:
cjne a,#130,__test255_0
anl MyMirror,#BINNOT(04H)
sjmp WriteNow

__test255_0:
sjmp __exit

;---
; Place bit to ON
;---

WriteOne:
mov a,r7 ; Get channel value
cjne a,#128,__test129_1
orl MyMirror,#01H
sjmp WriteNow

__test129_1:
cjne a,#129,__test130_1
orl MyMirror,#02H
sjmp WriteNow

__test130_1:
cjne a,#130,__test255_1
orl MyMirror,#04H
sjmp WriteNow

__test255_1:
sjmp __exit

WriteNow:

mov a,MyMirror ; Get the port mirror
movx @dptr,a ; Update port

__exit:
mov a,B ; Pass value to output pin
ret

;---
;
; __io_read
;
; Hook function for custom input blocks -||-
;
; ON ENTRY :
; R7 = Channel (128..255)
; R5 = 0 for normally open switches, 1 for normally closed switches
; A = input signal from left pin
; ON EXIT
; A = returns true if the associated switch is ON and
; the left-input signal is ON else returns zero.
;
;---

__io_read:
cjne r7,#160,__RetZero ; Returns zero for undesired channels
mov B,a ; Save left input signal
mov dptr,#0E800H ; Input port addressing
movx a,@dptr ; Get data
cjne r5,#1,__NO_SWITCH ; Checks for NO/NC switches
cpl a ; Invert the switch control signal

__NO_SWITCH:
anl a,B ; Logical AND with the left pin
anl a,#1 ; Force result to be boolean
ret ; Returns

__RetZero:
clr a
ret

; --------------
; End of io.s01
; --------------

Interfacing with assembler

Pag. 161

6.2.3 - Serial I/O hook functions

User can customize the serial I/O kernel functions. Serial kernel handles some basic functions like
probing and watching. LadderWORK’s run time libraries implement a sub-set of MODBUS® protocol
allowing you to watch variables during running.

Function templates are present in the file comm_io.s01, present under the PLB directory of the
selected microcontroller. Normally this file drives the standard UART of the 8051 microprocessor but ser
can customize this routines for his purposes.

__comm_tx This function send a single byte to the serial port.

Function is called with :

A = Character to send

User function must preserve the value of all the used registers

__comm_check This function checks if there is available characters in the receiving queue. The
function must return the number of available characters. In detail, we suggest to
create an interrupt-driven enviroment where incoming characters are queued.

Function must exits with :

A = Number of available characters

__comm_get This function retrieve the first available character from the receive queue. Before
use this function, the system always checks for characters availability using the
__comm_check function. However if the funcion is called without available
characters the procedure must return zero.

Function must exits with :

A = First available character or zero if there is not characters in the
queue

__comm_init This function is called when the serial port is initialized. This function has no
entry/exit arguments.

__comm_timer_ISR Normally this vector is called by the system timer interrupt service routine,
attached to timer zero of 8051 microprocessor. If user need to customize this
vector he have to call this label inside a hardware timer driven interrupt service
routine. User have just to perform a long jump (LJMP) to this vector. When the
system interrupt routine is performed, it jumps to the vector __comm_timer_RETI
where user have to place the code to clear the pending interrupt and perform a
RETI instruction. Note that the communication kernel (MODBUS®) requires an
interrupt with an interval of about 1 ms or less.

In case of register use, all registers must be preserved

__comm_timer_RETI This vector is reached after that the system has branched to the vector
__comm_timer_ISR . This vector is used as end-of-interrupt and user must
place code to reset the timer’s pending interrupt and perform a RETI
instruction.

In case of register use, all registers must be preserved

LadderWORK

Pag. 162

6.2.4 Panel & Keyboard handling functions

There are a lot of particular components named DISPLAY, KEYBOARD and FIELD that allow user to
handle user terminals. The DISPLAY component allow user to drive display panels, the KEYBOARD
function allow user to handle a keyboard attached to the board while the FIELD component handles the data
entry.

The system communicates with the terminal using few functions. User must write and supply this
function in assembly language.

Since the system can handle more than a user terminal, a particular identification code is always
passed to handling functions so if you have more than one display or keyboard yo can manage the
appropriate device inside your code.

NOTE :
The Panel / Keyboard kernel requires 8051 external memory into your system.
All the panel function must preserve the value of all the used registers

__terminal_init This function is called during startup. User must perform all the hardware
initializations for the own terminal.

Function is called with :

R5 = Terminal ID

__locate This function is called whenever the software requires to update a user panel
locating a particular text on display. The function should respect the following
conventions.

Function is called with :

R7 = Value of display X-Coordinate
R6 = Value of display Y-Coordinate
R5 = Terminal ID

User function must preserve the value of all the used registers

__putchar This is the standard character output function.

Function is called with :

A = Character to print
R5 = Terminal ID

User function must preserve the value of all the used registers

__put_asciiz_code This function is the print string function.. The string is terminated by a zero (C-like
strings). Since the 8051 microprocessor has distinct addressing modes for CODE
and DATA there are two separated print functions

Function is called with :

DPTR = Points to the ASCIIZ string. Since strings passed to this function are
stored in code segment user must use the movc a,@a+dptr instruction to get a
single character.

R5 = Terminal ID

User function must preserve the value of all the used registers

__put_asciiz_data This function is the print string function. The string is terminated by a zero (C-like
strings). Since the 8051 microprocessor has distinct addressing modes for CODE
and DATA there are two separated print functions

Interfacing with assembler

Pag. 163

Function is called with :

DPTR = Points to the ASCIIZ string. Since strings passed to this function are
stored in ram segment user must use the movx a,@dptr instruction to get a single
character.

R5 = Terminal ID

User function must preserve the value of all the used registers

__getchar This function is called whenever the software must read a character from the user
keyboard. Since the software can’t wait for a user hit this function must return
immediately returning zero if no key data is available. The kernel uses the function
__charcheck to test if there are character available from the panel and if this is
true call the __getchar function.

Function must exits with :

A = First available key or zero if no key are available
R5 = Terminal ID

User function must preserve the value of all the used registers

__charcheck The keyboard kernel is event-driven. Every time a key is pressed or released, a
particular event is generated and must be keeped in a circular queue. The
software uses the function __charcheck and the function __getchar to extract
events from the keyboard queue. In detail, this function is called to test if there are
characters coming from the user keyboard. This function must return the number
of available characters. If the system handles just a character at time the function
simply returns 1, if there is a character, else returns zero.

Function must exits with :

A = number of available characters
R5 = Terminal ID

User function must preserve the value of all the used registers

__keyboard_scan This function is called every PLC scan cycle. In this function user must write own
code to handle the keyboard. Normally the routine attached to this hook performs
the matrix scan of the keyboard and updates the associated data.

Function is called with :

R5 = Terminal ID

User function must preserve the value of all the used registers

__keyboard_init This function is called once during software start-up. In this function user must
provide code to initialize the keyboard.

Function is called with :

R5 = Terminal ID

LadderWORK

Pag. 164

__update Particular systems requires to update the display data using a software
background tecnique. This function is called every scan cycle. User can use this
function to update the state of the display without break the flow of the main scan
cycle. This is true for slow display system and serial displays.

Function is called with :

R5 = Terminal ID

User function must preserve the value of all the used registers

__keyb_translate Since the FIELD component requires standard ASCII codes for data entry, user
must supply a translation routine to convert the keyboard scan-code in the
respective ASCII code.

Function is called with :

R5 = Terminal ID

ACC = Scan code

Function must exits with :

ACC = ASCII Code

User function must preserve the value of all the used registers

Interfacing with assembler

Pag. 165

6-3 - USASM51 - Assembler language reference

6.3.1 - Assembler directives summary

ASCII BIT BSEG CONST CSEG DB
DS DSEG DW ELSE ENDFUNCTI

ON
ENDIF

EQU EXTERN FUNCTION INCLUDE IF IZDATA
LITERALLY LOCALS ORG PAGE PUBLIC PURGE
RADIX XSEG XZDATA

6.3.2 - Assembler operators summary

Operator Priority & Association

() 1
! ~ + - BINNOT HIGH LOW NOT 2
* / % 3
+ - 4
<< >> SHL SHR 5
< <= > >= == != GT LT EQ NE

GE LE BINAND BINOR BINXOR
 6

& 7
^ 8
| 9
&& 10
|| 11

6.3.3 - Literals

Suffix Radix
D d 10
O o Q q 8
B b 2
H X h x 16

For Example

10d or 10D Decimal 10
0FH or 0Fh or 0FX or 0Fx Decimal 15
10O or 10o or 10Q or 10q Decimal 8
01100100B or 01100100B Decimal 100

LadderWORK

Pag. 166

6.3.4 - 8051 microprocessor instruction set

ACALL ADD ADDC AJMP ANL CJNE
CLR CPL DA A DEC DIV AB DJNZ
INC JB JBC JC JNB JNZ
JZ LCALL LJMP MOV MOVC MOVX
MUL AB NOP ORL POP PUSH RET
RETI RLA RLC A RR A RRC A SETB
SJMP SUBB SWAP A XCH XCHD XRL

Technical notes

Pag. 167

SECTION 7 - Technical notes

LadderWORK

Pag. 168

7.1 MODBUS® PROTOCOL

The MODBUS protocol specifies one master and up to 247 slaves on a common communication line,
each slave is assigned a fixed unique device address in the range 1 to 247. The master always initiates a
transaction. Transactions are either a query/response type (only a slave is accessed at a time) or a
broadcast/no response type (all slaves are accessed at the same time). A transaction comprises a single
query an single response frame or a single broadcast frame.

RTU MESSAGE FORMAT

ADDRESS FUNCTION DATA CHECK

8-BITS 8-BITS N x 8-BITS 16-BITS

Technical notes

Pag. 169

7.1.1 - Read Boolean (Function Code 01)

Boolean points are numbered as from 1001 (Boolean number 1 = 1001). The data is packed one
bit for each Boolean flag variable. The response includes the slave address, function code, quantity of
data characters, the data characters and error checking. Data will be packed with one bit for each
boolean flag (1=ON, 0=OFF). The low order bit of the first character contains the addressed flag,
and the reminder follow. For Boolean quantities that are not even multiples of eight, the last
characters will be filled in with zeroes at high order end.

Master to Slave

ADDRES
S

FUNCTION DATA
START LOW

DATA
START HIGH

NUMB
ER OF

POINTS
LOW

NUMB
ER OF

POINTS
HIGH

CRC
CHECK
16 BIT

01 01 04 60 00 0C XXXX

Slave to Master

ADDRESS FUNCTION BYTE
COUNT

DATA BYTE
1

DATA BYTE
2

CRC CHECK
16 BIT

01 01 02 XX XX XXXX

LadderWORK

Pag. 170

7.1.2 - Read Numeric (Function Code 03)

Function code 03 allows the MASTER to obtain the binary contents of holding registers in the
addressed slave. The protocol allows for a maximum of 125 16 bit registers to be obtained at each
request. Broadcast mode is not allowed for function 03.

These 16 bit registers are also grouped in sets of registers and accessed as one variable. The
numeric range of the point number defines the variable type and indicates how many 16 bit registers
make up that variable.

POINT#
RANGE

VARIABLE
TYPE

16 BIT
REGISTER/POINT

OF
BYTES/POINT

MAX POINTS

3XXX or 13XXX SHORT
INTEGER

1 REGISTER 2 BYTES 125

4XXX 8CH ASCII
STRING

4 REGISTERS 8 BYTES 31

5XXX or 15XXX LONG
INTEGER

2 REGISTERS 4 BYTES 62

7XXX or 17XXX IEEE
FLOATING POINT

2 REGISTERS 4 BYTES 62

14XXX 16CH ASCII
STRING

8 REGISTERS 16 BYTES 15

Example : Read short integer 3012 through 3013 from slave # 2

ADDRES
S

FUNCTIO
N

STARTIN
G HIGH

STARTIN
G LOW

POINT#
LOW

POINT#
HIGH

CRC
CHECK 16

BIT

02 03 0B C4 00 02 XXXX

Technical notes

Pag. 171

7.1.3 - Set Single Boolean (Function Code 05)

This message forces a single boolean variable either ON or OFF. Boolean variables are points
numbered 1XXX or 11XXX. Writing the 16 bit value 65,280 (FF00 HEX) will set the Boolean ON, writing
the value zero will turn it OFF. All other values are illegal and will not affect the Boolean. Using a slave
address 00 (Broadcast Address Mode) will force all slaves to modify the desired Boolean.

Example : Turn Single Boolean Point 1711 on Slave # 2

Master to Slave (RTU MODE)

ADDRES
S

FUNCTIO
N

BOOLEA
N POINT

HIGH

BOOLEA
N POINT

LOW

DATA
HIGH

DATA
LOW

CRC
CHECK 16

BIT

02 05 06 AF FF 00 XXXX

Slave to Master (RTU MODE)

ADDRES
S

FUNCTIO
N

BOOLEA
N POINT

HIGH

BOOLEA
N POINT

LOW

DATA
HIGH

DATA
LOW

CRC
CHECK 16

BIT

02 05 06 AF FF 00 XXXX

LadderWORK

Pag. 172

7.1.4. - Set Single Numeric (Function Code 06)

Any numeric variable that has been defined on the 16 bit integer index table can have its contents
changed by this message. The 16 bit integer points are numbered from 3XXX or 13XXX . When used
with slave address zero (Broadcast Mode) all slaves will load the specified points with the contents
specified. The following example sets 1 16 bit integer at address 3106 of slave number # 2.

Master to Slave (RTU MODE)

ADDRES
S

FUNCTIO
N

POINT#
LOW

POINT#
HIGH

DATA
HIGH

DATA
LOW

CRC
CHECK 16

BIT

02 06 0C 22 00 03 XXXX

Slave to Master (RTU MODE)

ADDRES
S

FUNCTIO
N

POINT#
LOW

POINT#
HIGH

DATA
HIGH

DATA
LOW

CRC
CHECK 16

BIT

02 06 0C 22 00 03 XXXX

Technical notes

Pag. 173

7.1.5 - Remote terminal unit (RTU) framing

Frame syncronization can be mainteined in RTU transmission mode only by simulating a syncronous
message. The LadderWORK kernel monitors the elapsed time between receipt of characters. If 3.5
character times elapse without a new character or completion of the frame, then the frame is reset and
the next bytes will be processed looking for a valid address.

For 8051 systems LadderWORK kernel user the timer 0 for the MODBUS® timing. MODBUS® define
the maximum elapse time between two consecutive bytes of the same frame equal to 3.5 character time.
This gives the following timing :

Baud Rate Byte Time
Considering 10 bits
(Start+8+Stop)

Byte Time * 3.5

300 33ms 0.12s
600 17ms 58ms
1200 8ms 29ms
2400 4ms 15ms
4800 2ms 7ms
9600 1ms 4ms
19200 0.5ms 2ms

LadderWORK

Pag. 174

7.2 - Timing resolution

LadderWORK's run-time kernel uses only a hardware timer (called SYSTEM TIMER) for generating
timing. The SYSTEM TIMER is used by components like CLOCK, DELAY and DEBOUNCE . Normally the
resolution of the SYSTEM TIMER is fixed to 20Hz which means a period of 50ms.

7.3 - Memory models

Some processor families have different addressing modes. In this section you can find useful information
about how LadderWORK uses these features to optimize the generated code. The following discussion will
be divided by processor family.

8051 Family

The 8051 microcontroller has an amount of RAM inside the chip. Normally this RAM array is 64 to 256
bytes. The 8051 can address an external RAM bank up to 64KBytes. LadderWORK can be configured to
use the internal memory, the external memory or both. Using internal RAM will generate shorter and fastest
code but you can easily break-through the internal data limit. External memory is useful for large
schematics and big quantity of data. This is true above all when you use FIFO / LIFO queues with large
queue depth. But use of external memory means greater code and lowest speed.

Technical notes

Pag. 175

7.4 - Flow process

In this section we discuss in detail how LadderWORK process the schematic files to generate binary
code files.

File extensions

Extensions Description

.PJN Project file. This binary file must be used with the LadderWORK integrated
enviroment.

.NET Netlist file. This is an ASCII file that contains all the information about the
connections between components and all the settings for every component.

.Snn / .ASM Assembler source file. The solver processor gives as output an assembly file. The
extension <Snn> could change according to the used processor.

 .Unn Binary object file. These files are generated as output by the assembler process.
The <Unn> extension could change according to the used processor.

Microprocessor Extension

8051 Family U01

.INC Assembler INCLUDE files. The INCLUDE files are ASCII archives that are used
by the ASSEMBLER module.

.PLB PACKED LIBRARY File. This binary file is used by the SOLVER module to
transform the intermediate P-CODE in the processor assembly language.

.SLI SYMBOL LIBRARY File. This binary file contains the information about the
component graphical representation and its logical feature.

.LST The ASSEMBLER module can generate a LISTING file as output of the assembly
process.

.MAP The LINKER module can generate a mapping file indicating the location of the
modules loaded in the project.

.HEX This file is generated as final output. Inside this file you have the processor code.

LadderWORK

Pag. 176

FLOW PROCESS DIAGRAM

Figure 56 - Flow process diagram

Technical notes

Pag. 177

7.5 - Logical links

Figure 57 - Logical links

The LOGICAL LINKS are particular connections which can be done between RELAY, OUTPUT,
EOUTPUT components and INPUT, EINPUT, NCINPUT and ENCINPUT devices. For convention we will
call the components RELAY, OUTPUT and EOUTPUT the output devices.

A LOGICAL LINKS is done assigning to an INPUT device the same REFERENCE code of an output
device. In this way we tell the system to treat the output and the input as an unique object. The value
assumed by the output device will be assumed also for all the input devices linked with. With the LOGICAL
LINKS method it is possible to drive several sections in the net starting just from a master signal. In the
example below we connected two inputs on a RELAY. The first input activates the RELAY and the second
input, linked with the same RELAY, will sustain the RELAY activation. In the same way another input is
logical linked to the RELAY so a generic output can be driven starting from the same signal. There's no limit
on the number of the input that you can associate to an output device. In the LadderWORK software the
LOGICAL LINKS are showed as a dashed line. This dashed line joint the components. The displaying of the
LOGICAL LINKS is configurable by software.

LadderWORK

Pag. 178

SECTION 8 - ERROR MESSAGES

Error messages

Pag. 179

SFD0200

Module SRCFEEDR.DLL

Token SF_COUNTER_THRESHOLD_GT_BASE

Category ERROR

Description A COUNTER device was configured for down-counting with the THRESHOLD
parameter greater than the BASE parameter.

Possible cause Wrong configuration for COUNTER device.

Possible solution When you operate win down-counters, the BASE value must be greater than the
THRESHOLD value. For example, if i want a counting from 10 to 5 i have to
configure BASE=10 and THRESHOLD=5 .

SFD0201

Module SRCFEEDR.DLL

Token SF_COUNTER_BASE_GT_THRESHOLD

Category ERROR

Description A COUNTER device was configured for up-counting with the BASE parameter
greater than the THRESHOLD rameter.

Possible cause Wrong configuration for COUNTER device.

Possible solution When you operate win up-counters, the THRESHOLD value must be greater than
the BASE value. For example, if i want to perform a counting from 5 to 10 i have
to configure BASE=5 and THRESHOLD=10.

SFD0202

Module SRCFEEDR.DLL

Token SF_CLOCK_FREQ_ZERO

Category ERROR

Description A CLOCK device was configured with FREQUENCY equal to zero.

Possible cause Wrong configuration for CLOCK device.

Possible solution Frequency must be greater than zero.

LadderWORK

Pag. 180

SFD0203

Module SRCFEEDR.DLL

Token SF_FIFO_SIZE_ZERO

Category ERROR

Description A FIFO device was configured with DEPTH equal to zero.

Possible cause Wrong configuration for FIFO device.

Possible solution The size of the queue must be greater than zero.

SFD0204

Module SRCFEEDR.DLL

Token SF_FIFO_NEED_LARGE

Category ERROR

Description The actual memory model can't support the queue size you have programmed. In
a typical 8051 system you have 64 - 256 bytes of RAM memory. If this amount
isn't enough for your application you have to change memory model.

Possible cause Memory model not suitable for your application.

Possible solution Configure the compilor for LARGE memory model. The parameter DATA
8051must be configured as EXTERNAL.

SFD0205

Module SRCFEEDR.DLL

Token SF_LIFO_SIZE_ZERO

Category ERROR

Description A LIFO device was configured with DEPTH equal to zero.

Possible cause Wrong configuration for LIFO device.

Possible solution The size of the queue must be greater than zero.

Error messages

Pag. 181

SFD0206

Module SRCFEEDR.DLL

Token SF_LIFO_SIZE_ZERO

Category ERROR

Description A LIFO device was configured with DEPTH equal to zero.

Possible cause Wrong configuration for LIFO device.

Possible solution The size of the queue must be greater than zero.

SFD0207

Module SRCFEEDR.DLL

Token SFSTATUS_SOURCELESS_INPUT

Category ERROR

Description A input device like INPUT, EINPUT, NCINPUT and ENCINPUT is not referred to
any RELAY or (E)OUTPUT or PHISICAL INPUT . This is a SOURCELESS
condition. User must supply a source for that input.

Possible cause See above.

Possible solution Change the REFERENCE code, assigning a PHISICAL resource or assign the
same name of a OUTPUT, EOUTPUT or RELAY present in the schematic.

LadderWORK

Pag. 182

APPENDIX

Appendix

Pag. 183

LadderWORK

Pag. 184

Appendix A - Function block cross reference

BAS = Present in BASE version or higher class
STD = Present in STANDARD version or higher class
ADV = Present only in ADVANCED version
UND = Under development

Compone
nt

GRIFO
GPC553

GRIFO
GPC RT/94

PROCOE
L ML46B

ELSIST
PICOLOG

TECLAB
PLC552

TECLA
B

TLMIC24

AD_CON
V

ADV NO ADV NO ADV NO

CLOCK STD STD STD STD STD STD
COUNTE

R
STD STD STD STD STD STD

DEBOUN
CE

BAS BAS BAS BAS BAS BAS

DELAY STD STD STD STD STD STD
EINPUT BAS BAS BAS BAS BAS BAS

ENCINPU
T

BAS BAS BAS BAS BAS BAS

EOUTPU
T

BAS BAS BAS BAS BAS BAS

FIFO ADV ADV ADV ADV ADV ADV
INPUT BAS BAS BAS BAS BAS BAS
LIFO ADV ADV ADV ADV ADV ADV

NCINPUT BAS BAS BAS BAS BAS BAS
OUTPUT BAS BAS BAS BAS BAS BAS
PWMOUT ADV NO NO NO ADV NO

RELAY BAS BAS BAS BAS BAS BAS
THRESH

LD
STD STD STD STD STD STD

AND STD STD STD STD STD STD
FFD STD STD STD STD STD STD
NOT STD STD STD STD STD STD
OR STD STD STD STD STD STD

USER1 ADV ADV ADV ADV ADV ADV
USER2 ADV ADV ADV ADV ADV ADV
USER3 ADV ADV ADV ADV ADV ADV

IPIN BAS NO NO NO NO NO
OPIN BAS NO NO NO NO NO

ADD ADV ADV ADV ADV ADV ADV
SUB ADV ADV ADV ADV ADV ADV
MUL ADV ADV ADV ADV ADV ADV
DIV ADV ADV ADV ADV ADV ADV

MOD ADV ADV ADV ADV ADV ADV

SHL ADV ADV ADV ADV ADV ADV
SHR ADV ADV ADV ADV ADV ADV
ROL ADV ADV ADV ADV ADV ADV
ROR ADV ADV ADV ADV ADV ADV
BIT ADV ADV ADV ADV ADV ADV

DEC1-8 ADV ADV ADV ADV ADV ADV

Appendix

Pag. 185

CTU ADV ADV ADV ADV ADV ADV
CTD ADV ADV ADV ADV ADV ADV

CTUD ADV ADV ADV ADV ADV ADV

TP STD STD STD STD STD STD
TON STD STD STD STD STD STD
TOF STD STD STD STD STD STD
TMI ADV ADV ADV ADV ADV ADV
TSQ ADV ADV ADV ADV ADV AVD

R_TRIG STD STD STD STD STD STD
F_TRIG STD STD STD STD STD STD

ASSIGN STD STD STD STD STD STD
READVA

R
STD STD STD STD STD STD

CONST STD STD STD STD STD STD
IDENT STD STD STD STD STD STD

SR STD STD STD STD STD STD
RS STD STD STD STD STD STD

SEMA ADV ADV ADV ADV ADV ADV

PFC_DSP
Y

NO NO NO ADV
Note 1

NO NO

PFC_KEY
B

NO NO NO ADV
Note 1

NO NO

QTP_DS
PY

ADV
Note 2

NO NO NO NO NO

QTP_KE
YB

ADV
Note 2

NO NO NO NO NO

SEVENS
EG

NO NO NO NO BAS NO

MBIN UND NO UND UND UND UND
MBOUT UND NO UND UND UND UND

MBCONF UND NO UND UND UND UND
MBSLAV

E
UND NO UND UND UND UND

DISPLAY ADV NO ADV ADV ADV ADV
KEYBOA

RD
ADV NO ADV ADV ADV ADV

FIELD ADV NO ADV ADV ADV ADV
PROBE BAS NO BAS BAS BAS BAS

SEL ADV ADV ADV ADV ADV ADV
MIN ADV ADV ADV ADV ADV ADV
MAX ADV ADV ADV ADV ADV ADV
LIMIT ADV ADV ADV ADV ADV ADV
MUX ADV ADV ADV ADV ADV ADV

Note 1 : This feature requires PICOFACE user panel
Note 2 : This feature requires QTP16 or QTP22/24 panel

LadderWORK

Pag. 186

Appendix

Pag. 187

Analytical Index

8

8051 instruction set..166

A

AD_CONV..76
ADD.. 75
AND.. 77
Assembler directives..165
Assembler operators..165
ASSIGN..78

B

BIT.. 79

C

CLOCK...80
CONST...81
COUNTER..82
CTD.. 84
CTU.. 85
CTUD ... 86

D

DEBOUNCE...87
DEC1-8...88
DELAY..89
DISPLAY..91
DIV ... 93

E

EINPUT..94
ENCINPUT...95
EOUTPUT..96

F

F_TRIG..101
FFD .. 97
FIELD... 98
FIFO... 99
Flow process..175

I

IDENT..102
INCLUDE...104
INPUT..105
Interfacing with assembler..................................153
IPIN ...106

K

KEYBCTRL..107
KEYBOARD...108

L

LIFO ... 109
LIMIT ..110
Literals..165
Logical links..177

M

Mathematical expressions................................. 151
MAX.. 111
MBCONF..112
MBIN... 113
MBOUT...114
MBSLAVE...115
Memory models..174
MIN... 116
MOD... 117
MUL.. 118
MUX.. 119

N

NCINPUT..120
NOT.. 121

O

OPIN... 122
OR.. 123
OUTPUT...124

P

PWMOUT...125

Q

QTP_DSPY...126
QTP_KEYB...127

R

R_TRIG ..133
READVAR..128
RELAY..129
ROL.. 130
ROR.. 131
RS .. 132

S

SEL... 134
SEMA ...135
SEVENSEG..136
SHL... 137
SHR.. 138
SR .. 139
SUB.. 140

LadderWORK

Pag. 188

T

Technical notes..167
THRESHLD...141
Timing resolution...174
TMI..142
TOF...143
TON...144

TP... 145
TSQ.. 146

U

USER1..147
USER2..148
USER3..149

Appendix

Pag. 189

References

• International Electrotechnical Commission (IEC),Programmable Controllers Programming Languages, IEC
Standard IEC - 1131, Part 3, 1993. (Available in the U.S. from the American National Standards Institute,
New York.)

• Allen Bradley, PLC-5 Programming Software - Software Testing and Maintenance, Publication 6200-
6.4.10November 1991a.

• Hughes, T.A., Programmable Controllers,Instrument Society of America, Research Triangle Park, NC, 1989.
• Intel Corporation, PL/M-86 Programming Manual, 9800466-02B, Chandler, Arizona, 1980.
• Intel Corporation, 8086 Software Tool Box, Volume II, 122310-001, Chandler, Arizona, 1984.
• Intel Corporation, PL/M-86 User's Guide, 121636-004, Chandler, Arizona, 1985.
• Intel Corporation, 8086 Software Tool Box, 122203-002, Chandler, Arizona, 1985.
• Intel Corporation, PL/M-86 User's Guide for DOS Systems, 481644-001, Chandler, Arizona, 1988.
• Intel Corporation, PL/M-386 Programmer's Guide, 611052-001, Chandler, Arizona, 1992.

LadderWORK

Pag. 190

