
BASCOM-AVR-HELPFILE page 1

Index

BASCOM-AVR

Version 1.11a

Problems and solutions »page 202
Installation »page 6
The BASCOM IDE »page 15

Running BASCOM-AVR »page 15
File New »page 15
File Open »page 16
File Close »page 16
File Save »page 16
File Save As »page 16
File Print Preview »page 16
File Print »page 16
File Exit »page 17

Edit Undo »page 17
Edit Redo »page 17
Edit Cut »page 17
Edit Copy »page 17
Edit Paste »page 17
Edit Find »page 17
Edit Find Next »page 17
Edit Replace »page 17
Edit Goto »page 18
Edit Toggle Bookmark »page 18
Edit Goto Bookmark »page 18
Edit Indent Block »page 18
Edit Unindent Block »page 18

Program Compile »page 18
Program Syntax Check »page 19
Program Show Result »page 19
Program Simulate »page 20
Program Send to Chip »page 25

Tools Terminal Emultator »page 26
Tools LCD Designer »page 28

BASCOM-AVR-HELPFILE page 2

Options Compiler »page 28
Options Compiler Chip »page 29
Options Compiler Output »page 30
Options Compiler Communication »page 31
Options Compiler I2C,SPI,1WIRE »page 32
Options Compiler LCD »page 33

Options Communication »page 34
Options Environment »page 35
Options Simulator »page 37
Options Programmer »page 38

Editor Keys »page 40
BASCOM Developing Order »page 42
BASCOM and Memory »page 42
BASCOM Error codes »page 43
BASCOM and Hardware

Additional Hardware »page 46
AVR Internal Hardware »page 46
AVR Internal Hardware TIMER0 »page 49
AVR Internal Hardware TIMER1 »page 50
AVR Internal Hardware Watchdog timer »page 51
AVR Internal Hardware PORT B »page 51
AVR Internal Hardware PORT D »page 52
AVR Internal Registers »page 47
Attaching an LCD display »page 54
Using the I2C protocol »page 54
Using the 1 Wire protocol »page 55
Using the SPI protocol »page 55
Power Up »page 55

Language Fundamentals »page 57
Reserved Words »page 56
BASCOM Language Reference

$ASM »page 63
$BAUD »page 64
$CRYSTAL »page 64
$DATA »page 65
$DEFAULT »page 66
$EEPROM »page 67
$EXTERNAL »page 68
$INCLUDE »page 68
$LCD »page 69
$LCDRS »page 71
$LCDPUTCTRL »page 69
$LCDPUTDATA »page 70
$LIB »page 72
$REGFILE »page 73
$SERIALINPUT »page 74
$SERIALINPUT2LCD »page 75
$SERIALOUTPUT »page 76
$XRAMSIZE »page 76
$XRAMSTART »page 77
1WRESET »page 78
1WREAD »page 79
1WWRITE »page 80
ABS »page 81
ALIAS »page 81

BASCOM-AVR-HELPFILE page 3

ASC »page 82
BAUD »page 83
BCD »page 83
BITWAIT »page 84
BYVAL »page 85
CALL »page 86
CHECKSUM »page 203
CHR »page 87
CLS »page 88
CLOCKDIVISION »page 88
CLOSE »page 89
CONFIG »page 90
CONFIG KEYBOARD »page 197
CONFIG TIMER0 »page 97
CONFIG TIMER1 »page 99
CONFIG LCD »page 93
CONFIG LCDBUS »page 94
CONFIG LCDMODE »page 94
CONFIG 1WIRE »page 91
CONFIG SDA »page 95
CONFIG SCL »page 96
CONFIG DEBOUNCE »page 91
CONFIG SPI »page 96
CONFIG LCDPIN »page 95
CONFIG WATCHDOG »page 102
CONFIG PORT »page 102
COUNTER0 AND COUNTER1 »page 104
CONST »page 116
CRYSTAL »page 106
CPEEK »page 105
CURSOR »page 107
DATA »page 107
DEBOUNCE »page 109
DECR »page 110
DECLARE FUNCTION »page 111
DECLARE SUB »page 112
DEFXXX »page 113
DEFLCDCHAR »page 113
DELAY »page 114
DIM »page 114
DISABLE »page 116
DISPLAY »page 118
DO-LOOP »page 118
ELSE »page 119
ENABLE »page 120
END »page 120
EXIT »page 121
FORMAT »page 202
FOR-NEXT »page 121
FOURTHLINE »page 122
FUSING »page 123
GETADC »page 123
GETATKBD »page 195
GETRC »page 125
GETRC5 »page 126
GOSUB »page 128

BASCOM-AVR-HELPFILE page 4

GOTO »page 129
HEX »page 129
HEXVAL »page 130
HIGH »page 130
HOME »page 131
I2CRECEIVE »page 131
I2CSEND »page 132
I2CSTART,I2CSTOP,I2CRBYTE,I2CWBYTE »page 133
IDLE »page 134
IF-THEN-ELSE-END IF »page 134
INCR »page 135
INKEY »page 135
INP »page 136
INPUTBIN »page 137
INPUTHEX »page 137
INPUT »page 138
INSTR »page 194
LCD »page 139
LEFT »page 141
LEN »page 142
LOAD »page 143
LOADADR »page 180
LOCAL »page 143
LOCATE »page 145
LOOKUP »page 145
LOOKUPSTR »page 146
LOW »page 146
LOWERLINE »page 147
LTRIM »page 142
MAKEBCD »page 147
MAKEDEC »page 148
MAKEINT »page 148
MID »page 149
ON INTERRUPT »page 150
ON VALUE »page 151
OPEN »page 152
OUT »page 153
PEEK »page 154
POKE »page 154
POWERDOWN »page 155
PRINT »page 156
PRINTBIN »page 157
PULSEOUT »page 199
READ »page 158
READEEPROM »page 159
READMAGCARD »page 204
REM »page 159
RESET »page 160
RESTORE »page 161
RETURN »page 161
RIGHT »page 162
RND »page 194
ROTATE »page 163
RTRIM »page 162
SELECT CASE - END SELECT »page 163
SET »page 164

BASCOM-AVR-HELPFILE page 5

SHIFTCURSOR »page 165
SHIFTIN »page 165
SHIFTOUT »page 167
SHIFTLCD »page 168
SOUND »page 168
SPACE »page 169
SPIIN »page 169
SPIMOVE »page 193
SPIOUT »page 170
START »page 171
STOP »page 172
STR »page 173
STRING »page 173
SUB »page 174
SWAP »page 174
THIRDLINE »page 175
TRIM »page 175
UPPERLINE »page 176
VAL »page 176
VARPTR »page 177
WAIT »page 177
WAITKEY »page 177
WAITMS »page 178
WAITUS »page 178
WHILE-WEND »page 179
WRITEEEPROM »page 179

International Resellers »page 9
Supported Programmers »page 183
Assembly Mnemonics »page 183
Mixing BASIC with assembly »page 188

If you have questions, remarks or suggestions please let us know.
You can contact us by sending an email to avr@mcselec.com
Our website is at http://www.mcselec.com

For info on updates : please read the readme.txt file that is installed into the BASCOM-
AVR directory

MCS Electronics may update this documentation without notice.
Products specification and usage may change accordingly.

MCS Electronics will not be liable for any mis-information or errors found in this document.

All software provided with this product package is provided ' AS IS' without any warranty
expressed or implied.

MCS Electronics will not be liable for any damages, costs or loss of profits arising from the
usage of this product package.

No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, for any purpose, without
written permission of MCS Electronics.

Copyright MCS Electronics. All rights reserved.

BASCOM-AVR-HELPFILE page 6

Installation of BASCOM-AVR
Insert the disk labeled 'disk 1 of 2' and double click the file SETUP.EXE from the Windows
explorer.

The following window will appear:
(screen shots may differ a bit)

Click on the Next button to continue installation.

The following license info window will appear:

Read the license agreement and click the Yes button when you agree.
A window with additional information is then displayed. This information will be installed as a
readme.txt file and contains information on how to get free updates.

BASCOM-AVR-HELPFILE page 7

After reading the information, click the Next button.
Now the following window appears:

Fill in your name and company name.
Click the Next button to continue.

Now you have the change to select the directory in which BASCOM will be installed.

Select the Browse button to change the directory path if required.
By default BASCOM-AVR will be installed into:
C:\Program Files\MCS Electronics\BASCOM-AVR

BASCOM-AVR-HELPFILE page 8

After selecting the installation directory, click the Next button.
This time you will be asked in which program group the BASCOM-AVR icon must be placed.
By default, a new program group named MCS Electronics will be made.

After selecting the group, click the Next button to continue.
A summary will be showed. You may go back and change your settings. Otherwise, click the
Next button to complete the installation of BASCOM-AVR.

When the installation is completed you must click the Finish-button, and restart Windows.

A sub directory named SAMPLES contains all the BASCOM-AVR sample files.

BASCOM-AVR-HELPFILE page 9

A sub directory named LIB contains the Library files.

When you install BASCOM on NT you need Administrator right during installation. You also
need to RUN BASCOM once in order to get the ioport.sys driver installed. After this you may
run BASCOM as a user without administrator rights.

IMPORTANT FOR THE COMMERCIAL VERSION

The license file is not included in the setup. It is a separate file and must be in the same
directory as the SETUP.EXE file. SETUP will copy this file to the BASCOM-AVR directory
during installation.

International Resellers

���������
�������� ��	�
����� �� 	
�����
�
�� ���� ������ � ��������

����
� �����
��	 !"�!�

#$
��% &'�(�(�)��(*���
+�,% &'�(�(�)��(*���

 -��% .��������
/0��/
1����
-���
222% $��3%44555�.��������
/���
-���

�	
�����������
����
�����
6
� 7�8�����
#��� 9
, '�'
"��-����� �*��
�:;"��<��

 -�� % .
�0.
���
������
-
222% $��3%44555�.
���
������
-

�	
����

�� �����
���� ����
7��$����� �=
�(=�)* 2���
�:;"���

#$
�� % *����()�=**
+�, % *����()�=*)

 -�� %
//���0��9����
222 % $��3%44555���9����

������
�	 �������� ������
�� ����
���
��
����� ���� ��
7���� 2����������
�:� � 6 ; " 7���> ���
? # =�*'�(***
�<:7 !�: ;�?
���;�<

 -�� % 5/09��
/��
���9�
222% $��3%44555�9��
/��
���9�45/4

������
������ �! ��"#"$�!% ��
;��1� <��@�-��
�' A������ 7��.
5� #���� ;� �
7�.����� ���> �9����
"�� �	= ?���.�
#$
��% �*�('�)(=��=
+�, % �*�('�=(��*=

 -�� % ����$��0����$����
-
222% $��3%44555�����$����
-

�����������������������
���

��������������������

��������
��& �#! �'"�� % (��) ��*+
#���� ?�
5��
/�
#��� �
, ==�'=>
;$�- ;$�� #
> �
�� 8
��
?��!�

�����������
��������������

������������
�, �����
����� *+"+"+
7������� .�����
� % B��� 7�@��
3�3� '���
�**� <C�9C���
;<�A !��

#$
��% &�=)()�(��(���(**> (��(���(*'

BASCOM-AVR-HELPFILE page 10

#$
��% &='� ���* *�''
+�,% &='� ���' *)�*
 -��% 3����0@��������
-
222% $��3%44@��������
-

+�, % &�=)()�(�='()==
 -�� % C����-�@��0�1��(����
222% $��3%44555��1��(����

�������������
����� %+'+"+
���
��� ;���@�
#
���� �*�
����@

)�= *�
?D ?� � #:�<�?
#$
��% &**��*('*)(��=��)
+�, % &**��*('*)('��==

 ��!���������
������
�"�%-#���$. ��%�'�/-��"�
6�� (���� ?��� 8��$��
7��$��������� �
6(*��'� 6���.��
	 �7�!E
#$
��%&������='�*���=
+�, %&������='�*���'
 -�� % ��/
0�@��$����$
222% $��3%44555��@��$����$

 ��!���
�#!0�'"��0#�*!� ��0'" "12-�!' �1/�
7����� 6����
2�$�-�(7����(;��� ==
6(���'= 6��-
.
	 �7�!E
#$
��% &�� '���(=���
+�, % &�� '���(=)���
 (7��% ����0��@��
��@�.���.�

222% 555���@��
��@�.���.�
A������9�9F�
� �� ��-9���> �����> <��3���>
+���@/���> 7F��$��

�	�����
����, ��*3 �-�$�'4
�-�� 	��3��
���� � �(�>
�(�*�� ��.�3���
�:!	��E
#$
��% &�)� �'))��*
+�, % &�)� �') ���)
 -�� �
.�,0-���-���1�$�

222 $��3%44555�$3�
������
-4�
.�,

"����
�'�5"(
)
;�1��
�� 6�-��

A�� .�G��������
 =4)
�**�) ;�	�
���
 .� #���
 ��
�"�<E
#$
��% &�� �'�� =���*'�
+�, % &�� �'�� =���))�
 -�� % ���$0���/
���

222% $��3%44555����/
��
- � �����$�
222% $��3%44555����/
��� ��������

#�����$%&'(��������)
������ ������
���-� ��-�@�5�
��7�6�!�(!�;��(�(�(=(=*�
7�!�(?�"E
B�#�! ')�(**��
#$
��%&=�(���(�=(�=''
+�,% &=�(���(�=(�=''
 -�� -
-���0-9���/
5�9����C3

#�����$�*+��������)
���!'����"��# 6�'�% . ��5"'1���"�
�"+3��*+
;$�C� !
��@�
;����� �(�() "�@�9� ?��H
�9���@� #��/�
B�#�! �*'(**��
#$
��% &=�(��=('*(����
+�, % &=�(��=('*(����
 -�� ����0�3����
�C3

222 $��3%44555��3����
�C3

,����
���6�� �#! �'"�� % �"+
B���$

� 8�-
�*) B��$�� ��(�� ;$��@�H E
������ ;�
�
8
���
#
��� �
.� ��*(*�*
#$
��% =�(�(�*�(�==�
+�, % =�(�(�*�(�==�
 -�� % ��/
0��-3���
�@�

222% $��3%44555���-3���
�@�

-���
���
�

�� ���
� �&����
7��@ 7�$�--�. !�5�� �5��
�'4E> "���I ��! D��6 ?�<�!E> ;���2�<�
#�8�;"�!

#$
��% *���())�=�
 -�� %
-�09���������3@

BASCOM-AVR-HELPFILE page 11

-�����

�7�&����
�
9��� 8��3��H�@�
?� <7�!;8� 	� �*
*'(=�' 	��6D�;8 7�D�
#�<�!6�

#$
��% &�=�� ��� �* ��
+�,% &�=�� ��� �* ��
 -�� �
9���@0���1�
-3�5�5�3

-���	����������
�-#��*�$���#3 �*�
B
�J��- �
�1�.�
#��� �
, ���
���' ��
 "���

#��":	�<
#$
��% &�'� (� ()�*����
+�, % &�'� (� (�=)����
 -��% ��/
0-���.�������
-
222% $��3%44555�-���.�������
-

����������� �;5�.��> !
�5�H>

6��-��@�
��$� �! � �"'�8"�
?$������B
$����
�
��9
����� �� ?
;(�)� '� ����$
-
;2 6 !
#$
��% &�) ���(�� ** ==
+�, % &�) ���(�� ** ==
 -��% ��/
0$�$��
-

222% $��3%44555�$�$��
-

������
�������
<��� 2���
���
�
8�99����� �
; (�=� �� "E��!	
;2 6 !
#$
��% &�) �*��'� '�=��
+�, % &�) �*��'� '�=�=
222% $��3%44555��5�����
-
 -��% ��/
0�5�����
-

�����
�/!' "12
7�J�� D�����
?4� .� #���> ��-��
 = �9�C
��
 (*�*��
#�-� .� 7�
���
;#��!
#$
��% &�� ��� �� �')) ��
+�, % &�� ��� �� �')� '=
 -��% �9���
-30����(��3���

222% $��3%44555��9���
-3���

�	����
��� ��1��!* ��'0!��
���4� ;
@�@ �(�
@ !
% �4�*�
�+� ;���H� ?������ (���;���H�
�'�** �
��
1� (��-��

#$
��% **�*(���(�)����� (�=
+�,% **�*(���(�)��'�'
 (-�� % �9.�.0��3��
������
-
 (-�� % �9.0�9.(�.��
-
 (-�� % ����0�9.(�.��
-
 (-�� % /���@0�9.(�.��
-
222 % 555��9.��
-���

�,
�������� �������� ���
6
��� �9��$�-
�� 6��1���� �
�.
 �$�-
<
�.
� ; � �;�
#$
��% *��� ��� '���
� *�=� �== �)=�
+�,% *��� =��)���
 -��% .
���0.���
���
��@

222%555�������.���
���
��@4K.
���4.
��
�4

���
�! ���0%3 �� +
+���@ ?�3��
#� �
, �)�
����
��> !B *=''�
:;�
#$
��% �*=(�==(=���
+�,% �*=(�==(==��
 -��% "��$��@�0���$��@���
-

222% $��3%44555����$��@���
-

���
�+ �0!'% ���!'2'�%!%
7��$�� 2� �@���
�=** A���H��. �1���� L
#������
�> ?� ��'))()���
:;�
#$
��% &�(��'()�*(�)**
+�,% &�(��'()�*(�)**
 -��% ��/
0-5�@�����
-

222% $��3%44555�-5�@�����
-

���

�"1/-%
6�1�. �� <�5�����
��*� �. 7
������ ?���@ �
�.
	����1��> ;? ��)*�
:;�

#$
��% &�(=)�(���(=��*
+�,% &�(=)�(���(=���
 -��% 5�9-�����0�$
-9�������
-
222% $��3%44555��$
-9�������
-

BASCOM-AVR-HELPFILE page 12

Installation of BASCOM-AVR
Insert the disk labeled 'disk 1 of 2' and double click the file SETUP.EXE from the Windows
explorer.

The following window will appear:

Click on the Next button to continue installation.

The following license info window will appear:

Read the license agreement and click the Yes button when you agree.
A window with additional information is then displayed. This information will be installed as a
readme.txt file and contains information on how to get free updates.

BASCOM-AVR-HELPFILE page 13

After reading the information, click the Next button.
Now the following window appears:

Fill in your name and company name.
Click the Next button to continue.

Now you have the change to select the directory in which BASCOM will be installed.

Select the Browse button to change the directory path if required.
By default BASCOM-AVR will be installed into:
C:\Program Files\MCS Electronics\BASCOM-AVR

BASCOM-AVR-HELPFILE page 14

After selecting the installation directory, click the Next button.
This time you will be asked in which program group the BASCOM-AVR icon must be placed.
By default, a new program group named MCS Electronics will be made.

After selecting the group, click the Next button to continue.
A summary will be showed. You may go back and change your settings. Otherwise, click the
Next button to complete the installation of BASCOM-AVR.

When the installation is completed you must click the Finish-button, and restart Windows.

A sub directory named SAMPLES contains all the BASCOM-AVR sample files.

BASCOM-AVR-HELPFILE page 15

IMPORTANT FOR THE COMMERCIAL VERSION

The license file is not included in the setup. You must copy this file to the
\WINDOWS\SYSTEM directory.

The license file is named BSCAVRL.DLL and can be found on the last installation disk named
'DISK 2 of 2'.

To copy from the Explorer:
Select the file from disk A and drag it into the \WINDOWS\SYSTEM directory.

Of course the name of your system directory can be \W95\SYSTEM or \WINNT\SYSTEM too.

You also need to DELETE the file \windows\system\BASC-AVR.DLL before you install the
commercial version over the DEMO version.

Running BASCOM-AVR
Double-click the BASCOM-AVR icon to run BASCOM.
The following window will appear. (If this is your first run, the edit window will be empty.)

The most-recently opened file will be loaded.

File New
This option creates a new window in which you will write your program.
The focus is set to the new window.

File new shortcut: , CTRL + N

BASCOM-AVR-HELPFILE page 16

File Open
With this option you can load an existing program from disk.
BASCOM saves files in standard ASCII format. Therefore, if you want to load a file that was
made with another editor be sure that it is saved as an ASCII file.

Note that you can specify that BASCOM must reformat the file when it opens it with the
Options Environment option. This should only be necessary when loading files made with
another editor.

File open shortcut : , CTRL+O

File Close
Close the current program.
When you have made changes to the program, you will be asked to save the program first.

File close shortcut :

File Save
With this option, you save your current program to disk under the same file name.
If the program was created with the File New option, you will be asked to name the file first.
Use the File Save As option to give the file another name.

Note that the file is saved as an ASCII file.

File save shortcut : , CTRL+S

File Save As
With this option, you can save your current program to disk under a different file name.

Note that the file is saved as an ASCII file.

File save as shortcut :

File Print Preview
With this option, you can preview the current program before it is printed.
Note that the current program is the program that has the focus.

File print preview shortcut :

File Print
With this option, you can print the current program.
Note that the current program is the program that has the focus.

File print shortcut : , CTRL+P

BASCOM-AVR-HELPFILE page 17

File Exit
With this option, you can leave BASCOM.
If you have made changes to your program, you can save them upon leaving BASCOM.

File exit shortcut :

Edit Undo
With this option, you can undo the last text manipulation.

Edit Undo shortcut : , CTRL+Z

Edit Redo
With this option, you can redo the last undo.

Edit Redo shortcut : , CTRL+SHIFT+Z

Edit Cut
With this option, you can cut selected text into the clipboard.

Edit cut shortcut : , CTRL+X

Edit Copy
With this option, you can copy selected text into the clipboard.

Edit copy shortcut : , CTRL+C

Edit Paste
With this option, you can paste text from the clipboard into the current cursor position.

Edit paste shortcut : , CTRL+V

Edit Find
With this option, you can search for text in your program.
Text at the cursor position will be placed in the find dialog box.

Edit Find shortcut : , CTRL+F

Edit Find Next
With this option, you can search for the last specified search item.

Edit Find Next shortcut : , F3

Edit Replace
With this option, you can replace text in your program.

BASCOM-AVR-HELPFILE page 18

Edit Replace shortcut : , CTRL+R

Edit Goto
With this option, you can immediately go to a line .

Edit go to line shortcut : ,CTRL+G

Edit Toggle Bookmark
With this option, you can set/reset a bookmark, so you can jump in your code with the Edit Go
to Bookmark option. Shortcut : CTRL+K + x where x can be 1-8

Edit Goto Bookmark
With this option, you can jump to a bookmark.
There can be up to 8 bookmarks. Shortcut : CTRL+Q+ x where x can be 1-8

Edit Indent Block
With this option, you can indent a selected block of text.

Edit Indent Block shortcut : , CTRL+SHIFT+I

Edit Unindent Block
With this option, you can un-indent a block.

Edit Unindent Block shortcut : , CTRL+SHIFT+U

Program Compile
With this option, you can compile your current program.
Your program will be saved automatically before being compiled.
The following files will be created depending on the Option Compiler Settings.

File Description
xxx.BIN Binary file which can be programmed into the microprocessor
xxx.DBG Debug file that is needed by the simulator.
xxx.OBJ Object file for AVR Studio
xxx.HEX Intel hexadecimal file which is needed by some programmers.
xxx.ERR Error file. (only when errors are found)
xxx.RPT Report file.
xxx.EEP EEPROM image file

If a serious error occurs, you will receive an error message in a dialog box and the compilation
will end.
All other errors will be displayed at the bottom above the status bar.

When you click on the line with the error info, you will jump to the line that contains the error.
The margin will also display the sign.
At the next compilation, the error window will disappear.

BASCOM-AVR-HELPFILE page 19

Program compile shortcut : , F7

Program Syntax Check
With this option, your program is checked for syntax errors. No file will be created except for
an error file, if an error is found.

Program syntax check shortcut , CTRL + F7

Program Show Result
Use this option to view the result of the compilation.
See the Options Compiler Output for specifying which files must be created.
The files that can be viewed are report and error.

File show result shortcut : ,CTRL+W

Information provided in the report:
Info Description
Report Name of the program
Date and time The compilation date and time.
Compiler The version of the compiler.
Processor The selected target processor.
SRAM Size of microprocessor SRAM (internal RAM).
EEPROM Size of microprocessor EEPROM (internal EEPROM).
ROMSIZE Size of the microprocessor FLASH ROM.
ROMIMAGE Size of the compiled program.
BAUD Selected baud rate.
XTAL Selected XTAL or frequency
BAUD error The error percentage of the baud rate.
XRAM Size of external RAM.
Stack start The location in memory which the hardware stack points to. The

HW-stack pointer "grows down".
S-Stacksize The size of the software stack.
S-Stackstart The location in memory which the software stack pointer points to.

The software stack pointer "grows down".
Framesize The size of the frame. The frame is used for storing local variables.
Framestart The location in memory where the frame starts.
LCD address The address that must be placed on the bus to enable the LCD

display E-line.
LCD RS The address that must be placed on the bus to enable the LCD

RS-line
LCD mode The mode the LCD display is used with. 4 bit mode or 8 bit mode.

BASCOM-AVR-HELPFILE page 20

Program Simulate
With this option, you can simulate your program.
You can simulate your programs with AVR Studio or any other Simulator available or you can
use the build in Simulator.
Which one will be used when you press F2 depends on the selection you made in the Options
Simulator TAB.

Program Simulate shortcut : , F2

To use the build in Simulator the files DBG and OBJ must be selected from the Options
Compiler Output TAB.
The OBJ file is the same file that is used with the AVR Studio simulator.
The DBG file contains info on variables used and many more info needed to simulate a
program.

The Sim window is divided into a few sections:
The Toolbar
The toolbar contains the buttons you can press to start an action.

 This starts a simulation. It is the RUN button. The simulation will pause when you press
the pause button. You can also press F5.

 This is the pause button. Pressing this button will pause simulation.

BASCOM-AVR-HELPFILE page 21

 This is the STOP button. Pressing this button will stop simulation and you can't continue.
This because all variables are reset. You need to press this button when you want to simulate
your program again.

 This is sthe STEP button. Pressing this button(or F8) will execute one code line of your
BASIC program. After the line is executed the simulator will be in the pause state.

 This is the STEP OVER button. It has the same effect as the STEP button but sub
programs are executed and there is no step into the SUB program. You can also press
SHIFT+F8

 This is the RUN TO button. The simulator will RUN to the current line. The line must
contain executable code.

 This button will show the register window.

The values are show in hexadecimal format. To change a value click the cell of the Val column
and type the new value.

 This is the IO button and will show the IO registers.

BASCOM-AVR-HELPFILE page 22

The IO window works the same like the Register window. Blank rows indicate that there is no
IO-register assigned to that address.(The blank rows might be deleted later.)

 Pressing this button shows the Memory window.

The values can be changed the same way like in the Register window.
When you move from cell to cell you can view in the statusbar which variable is stored in the
address.

Under the toolbar section there is a TAB with the pages:
VARIABLES

You can add variables by double clicking in the Variable-column. A list will pop up from which
you can select the variable.
To watch an array variable you can type the name of the variable with the index.
During simulation you can change the values of the variables in the Value-column, Hex-
column or Bin-column. You must press ENTER to store the change.

To delete a row you can press CTRL+DEL.

LOCALS

BASCOM-AVR-HELPFILE page 23

The LOCAL window show the variables in a SUB or FUNCTION. LOCAL variables are also
shown. You can not add variables.
Changing the value of the variables works the same as for the Variable TAB.

WATCH
The Watch-TAB can be used to enter an expression that will be evaluated during simulation.
When the expression is true the simulation is paused.
Type the expression in the text-field and press the Add-button.
When you press the Modify-button the current selected expression from the list is modified
with the typed value.

To delete an expression you must select the expression from the list and press the Remove-
button.
When the expression becomes true the expression that matches will be selected and the
Watch-TAB will be shown.

UP

This TAB shows the status of the microprocessor SREG register.
The flags can be changed by clicking their checkboxes.
The software stack , hardware stack and frame pointer values are also shown. The minimum
or maximum value during simulation is shown. When one of the data is entering another one
there is a case of stack/frame overflow.
This will be signalled with a pause and a checkbox.

INTERRUPTS

This TAB shows the interrupt sources. When no ISR's are programmed all buttons will be
disabled.

By clicking a button the corresponding ISR is executed.

BASCOM-AVR-HELPFILE page 24

TERMINAL Section
Under the TAB window you will find the terminal emulator window.
When you use PRINT, the output will be shown in this window.
When you use INPUT in your program, you must set the focus to the terminal window and
press the needed value.

SOURCE Section
Under the Terminal section you find the Source WIndow.
It contains the program you simulate. All lines that contain executable code have a yellow point
in the left margin.
You can set a breakpoint on these lines by pressing F9.

By moving the mouse cursor over a variable name the value is shown in the status bar.
When you select a variable and press ENTER it will be added to the Variable window.

When you want to use the keys (F8 for stepping for example) the focus must be set to the
Source Window.

A blue arrow will show the line that will be executed next.

The hardware simulator.

By pressing the hardware simulation button the windows shown below will be displayed.

The top section is a virtual LCD display. It works for display code in PIN mode and busmode.
For bus mode only 8-bit bus mode works.
The LED bars below are a visual indication of the ports.
By clicking a LED it will toggle.

Enable Real Hardware Simulation

By clicking the button you can simulate the ports in circuit!
In order to get it work you must compile the basmon.bas file.
When compiled program a chip.
Lets say you have the DT006 simmstick. And you are using a 2313 AVR chip.

BASCOM-AVR-HELPFILE page 25

Open the basmon.bas file and change the line with $REGFILE = "xxx" into $REGFILE =
"2313def.dat"
Now compile the program. Program the chip. It is best to set the lockbits so the monitor does
not get overwritten when you accidently press F4.
The real hardware simulation only works when the target micro system has a serial port. Most
have and so does the DT006.
Connect a cable between the COM port of your PC and the DT006. You probably already have
one connected. Normally it is used to send data to the terminal emulator with PRINT.

The monitor program is compile with 19200 baud. The Options Communication settings must
be set to the same baud rate!
The same settings for the monitor program are used as for the Terminal emulator. So select
the COM port and the baud rate of 19200.

Power up the DT006. It probably was since you created the basmon program and stored it in
the 2313.
When you press the real hardware simulation button now the simulator will send and receive
data when a port, pin or ddr register is changed.
This allows you to simulate an attached LCD display for example. Or something simplers, the
LED. In the SAMPLE dir you will find a program DT006. You can compile thie program and
press F2.
When you step through the program the LED's will change!
All statements can be simulated this way but the have to be static. Which means that 1wire will
not work because it depends on timing. I2C has a static bus and that will work.
It is important that when you finish your simulation sessions that you click the button again to
disable the Real hardware simulation.

When the program hangs it probably means that something wend wrong in the
communication. The only way to escape is to press the Real hardware simulation again.
I think the simulation is a cost effective way to test attached hardware.

Program Send to Chip
This option will bring up the selected programmer or will program the chip directly if this option
is selected from the Programmer options.

Program send to chip shortcut , F4

The following window will be shown:

BASCOM-AVR-HELPFILE page 26

Menu item Description
File Exit Return to editor
Buffer Clear Clears buffer
Buffer Load from file Loads a file into the buffer
Buffer Save to file Saves the buffer content to a file
Chip Identify Identifies the chip
Write buffer into chip Programs the buffer into the chip ROM or EEPROM
Read chipcode into
buffer

Reads the code or data from the chips code memory or data
memory

Chip blank check Checks if the chip is blank
Chip erase Erase the content of both the program memory and the data

memoty
Chip verify verifies if the buffer is the same as the chip program or data

memory
Chip Set lockbits Writes the selected lock bits LB1 and/or LB2. Only an erase will

reset the lock bits
Chip autoprogram Erases the chip and programs the chip. After the programming

is completed, a verification is performed.
RCEN Writes a bit to enable the internal oscillator. This RCEN bit is

only available on some AVR chips.

Tools Terminal Emulator
With this option you can communicate via the RS-232 interface to the microcomputer. The
following window will appear :

BASCOM-AVR-HELPFILE page 27

Information you type and information that the computer board sends are displayed in the same
window.

Note that you must use the same baud rate on both sides of the transmission. If you compiled
your program with the Compiler Settings at 4800 baud, you must also set the Communication
Settings to 4800 baud.
The setting for the baud rate is also reported in the report file.

File Upload
Uploads the current program in HEX format. This option is meant for
loading the program into a monitor program.

File Escape
Aborts the upload to the monitor program.

File Exit
Closes terminal emulator.

Terminal Clear
Clears the terminal window.

Terminal Open Log
Open or closes a LOG file. When there is no LOG file selected you will be asked to enter or
select a filename. All info that is printed to the terminal window is captured into the log file. The
menu caption will change into 'Close Log' and when you choose this option the file will be
closed.

The terminal emulator has a strange bug that you can't select the menu options by using the
keyboard. This is an error in the terminal component and I hope the third party will fix this bug.

BASCOM-AVR-HELPFILE page 28

Tools LCD Designer
With this option you can design special characters for LCD-displays.
The following window will appear:

The LCD-matrix has 7x5 points. The bottom row is reserved for the cursor but can be used.
You can select a point by clicking the left mouse button. If a cell was selected it will be
deselected.

Clicking the Set All button will set all points.
Clicking the Clear All button will clear all points.

When you are finished you can press the Ok button : a statement will be inserted in your active
program-editor window at the current cursor position. The statement looks like this :

Deflcdchar ?,1,2,3,4,5,6,7,8
You must replace the ?-sign with a character number ranging from 0-7.

Options Compiler
With this option, you can modify the compiler options.
The following TAB pages are available:

Options Compiler Chip »page 29
Options Compiler Output »page 30
Options Compiler Communication »page 31
Options Compiler I2C , SPI, 1WIRE »page 32
Options Compiler LCD »page 33

BASCOM-AVR-HELPFILE page 29

Options Compiler Chip

The following options are available:

Options Compiler Chip
Item Description
Chip Selects the target chip. Each chip has a corresponding x.DAT file

with specifications of the chip. Note that some DAT files are not
available yet.

XRAM Selects the size of the external RAM. KB means Kilo Bytes.
For 32 KB you need a 62256 STATIC RAM chip.

Stack size Specifies the size of the software stack.
Each local variable uses 2 bytes. Each variable that is passed in a
sub program uses 2 bytes too. So when you have used 10 locals in a
SUB and the SUB passes 3 parameters, you need 13 * 2 = 26 bytes.

Frame size Specifies the size of the frame.
Each local is stored in a space that is named the frame.
When you have 2 local integers and a string with a length of 10, you
need a framesize of (2*2) + 11 = 15 bytes.
The internal conversion routines used when you use INPUT
num,STR(),VAL() etc, also use the frame. They need a maximum of
12 bytes. So for this example 15+12 = 27 would be a good value.

XRAM waitstate Select to insert a wait state for the external RAM.
Default Press or click this button to use the current Compiler Chip settings as

default for all new projects.

BASCOM-AVR-HELPFILE page 30

Options Compiler Output

Options Compiler Output
Item Description
Binary file Select to generate a binary file. (xxx.bin)
Debug file Select to generate a debug file (xxx.dbg)
Hex file Select to generate an Intel HEX file (xxx.hex)
Report file Select to generate a report file (xxx.rpt)
Error file Select to generate an error file (xxx.err)
AVR Studio object
file

Select to generate an AVR Studio object file (xxx.obj)

Size warning Select to generate a warning when the code size exceeds the
Flash ROM size.

BASCOM-AVR-HELPFILE page 31

Options Compiler Communication

Options Compiler Communication
Item Description
Baud rate Selects the baud rate for the serial statements. You can also type in a

new baud rate.
Frequency Select the frequency of the used crystal. You can also type in a new

frequency.

The settings for the internal hardware UART are:
No parity
8 data bits
1 stop bit

BASCOM-AVR-HELPFILE page 32

Options Compiler I2C, SPI, 1WIRE

Options Compiler I2C, SPI, 1WIRE
Item Description
SCL port Select the port that serves as the SCL-line for the I2C related

statements.
SDA port Select the port that serves as the SDA-line for the I2C related

statements.
1WIRE Select the port that serves as the 1WIRE-line for the 1Wire related

statements.
Clock Select the port that serves as the clock-line for the SPI related

statements.
MOSI Select the port that serves as the MOSI-line for the SPI related

statements.
MISO Select the port that serves as the MISO-line for the SPI related

statements.
SS Select the port that serves as the SS-line for the SPI related

statements.
Use hardware SPI Select to use built-in hardware for SPI, otherwise software

emulation of SPI will be used.

BASCOM-AVR-HELPFILE page 33

Options Compiler LCD

Options Compiler LCD
Item Description
LCD type The LCD display used.
Bus mode The LCD can be operated in BUS mode or in PIN mode. In PIN mode,

the data lines of the LCD are connected to the processor pins. In BUS
mode the data lines of the LCD are connected to the data lines of the
BUS.
Select 4 when you have only connect DB4-DB7. When the data mode is
'pin' , you should select 4.

Data mode Select the mode in which the LCD is operating. In PIN mode, individual
processor pins can be used to drive the LCD. In BUS mode, the
external data bus is used to drive the LCD.

LCD address In BUS mode you must specify which address will select the enable line
of the LCD display. For the STK200, this is C000 = A14 + A15.

RS address In BUS mode you must specify which address will select the RS line of
the LCD display. For the STK200, this is 8000 = A15

Enable For PIN mode, you must select the processor pin that is connected to
the enable line of the LCD display.

RS For PIN mode, you must select the processor pin that is connected to
the RS line of the LCD display.

DB7-DB4 For PIN mode, you must select the processor pins that are connected to
the upper four data lines of the LCD display.

BASCOM-AVR-HELPFILE page 34

Options Communication
With this option, you can modify the communication settings for the terminal emulator.

Item Description
Comport The communication port of your PC that you use for ther terminal

emulator.
Baud rate The baud rate to use.
Parity Parity, default None.
Data bits Number of data bits, default 8.
Stop bits Number of stop bits, default 1.
Handshake The handshake used, default is none.
Emulation Emulation used, default BBS ANSI.
Font Font type and color used by the emulator.
Back color Background color of the terminal emulator.

Note that the baud rate of the terminal emulator and the baud rate setting of the compiler
options, must be the same in order to work correctly.

BASCOM-AVR-HELPFILE page 35

Options Environment

OPTION DESCRIPTION
Auto Indent When you press return, the cursor is set to the next line at the

current column position
Don't change case When set, the reformatting won't change the case of the text.

Default is that the text is reformatted so every word begins with
upper case.

Reformat BAS files Reformat files when loading them into the editor.
This is only necessary when you are loading files that where
created with another editor. Normally you won't need to set this
option.

Reformat code Reformat code when entered in the editor.
Smart TAB When set, a TAB will go to the column where text starts on the

previous line.
Syntax highlighting This options highlights BASCOM statements in the editor.
Show margin Shows a margin on the right side of the editor.
Comment The position of the comment. Comment is positioned at the right

of your source code.
TAB-size Number of spaces that are generated for a TAB.
Keymapping Choose default, Classic, Brief or Epsilon.
No reformat
extension

File extensions separated by a space that will not be reformatted
when loaded.

Size of new editor
window

When a new editor window is created you can select how it will be
made. Normal or Maximized (full window)

BASCOM-AVR-HELPFILE page 36

OPTION DESCRIPTION
Background color The background color of the editor window.
Keyword color The color of the reserved words. Default Navy.

The keywords can be displayed in bold too.
Comment color The color of comment. Default green.

Comment can be shown in Italic too.
ASM color Color to use for ASM statements. Default purple.
HW registers color The color to use for the hardware registers/ports. Default maroon.
Editor font Click on this label to select another font for the editor window.

BASCOM-AVR-HELPFILE page 37

OPTION DESCRIPTION
Tooltips Show tooltips.
Show toolbar Shows the toolbar with the shortcut icons.
Save File As … for
new files.

Will display a dialogbox so you can give new files a name when
they must be saved. When you dont select this option the default
name will be give to the file (nonamex.bas). Where x is a number.

File location Double click to select a directory where your program files are
stored. By default Windows will use the My Documents path.

Options Simulator
With this option you can modify the simulator settings.

OPTION DESCRIPTION
Program The path with the program name of the simulator.
Parameter The parameter to pass to the program. {FILE}.OBJ will supplie

the name of the current program with the extension .OBJ to the
simulator.

BASCOM-AVR-HELPFILE page 38

Options Programmer
With this option you can modify the programmer settings.

OPTION DESCRIPTION
Programmer Select one from the list.
Play sound Name of a WAV file to be played when programming is finished.

Press the ..-button to select the file.
Erase Warning Set this option when you want a confirmation when the chip is erased.
Auto flash Some programmers support auto flash. Pressing F4 will program the

chip without showing the programmer window.
Auto verify Some programmers support verifying. The chip content will be verified

after programming.
Upload code
and data

Set this option to program both the FLASH memory and the EEPROM
memory

Parallel printer port programmers
LPT address Port address of the LPT that is connected to the programmer.

Serial port programmer
COM port The com port the programmer is connected to.

Other
Use HEX Select when a HEX file must be sent instead of the bin file.
Program The program to execute. This is your programmer software.
Parameter The optional parameter that the program might need.

BASCOM-AVR-HELPFILE page 39

Options Monitor
With this option you can modify the monitor settings.

OPTION DESCRIPTION
Upload speed Selects the baud rate used for uploading
Monitor prefix String that will be send to the monitor before the upload starts
Monitor suffix String that us sent to the monitor after the download is completed.
Monitor delay Time in millions of seconds to wait after a line has been sent to the

monitor.
Prefix delay Time in millions of seconds to wait after a prefix has been sent to

the monitor.

Options Printer
With this option you can modify the printer settings.
There are only settings to change the margins of the paper.

OPTION DESCRIPTION
Left The left margin.
Right The right margin.
Top The top margin.
Bottom The bottom margin.

Window Cascade
Cascade all open editor windows.

Window Tile
Tile all open editor windows.

Window Arrange Icons
Arrange the icons of the minimized editor windows.

Window Minimize All
Minimize all open editor windows.

Help About
This option shows an about box as showed below.

BASCOM-AVR-HELPFILE page 40

Your serial number is shown in the about box.
You will need this when you have questions about the product.
The library version is also shown. In this case, it is 1.00.
You can compare it with the one on our web site in case you need an update.

Click on Ok to return to the editor.

Help Index
Shows the BASCOM help file.

When you are in the editor window, the current word will be used as a keyword.

Help on Help
Shows help on how to use the Windows help system.

Help Credits
Shows a form with credits to people I would like to thank for their contributions to BASCOM.

BASCOM Editor Keys
Key Action
LEFT ARROW One character to the left

RIGHT ARROW One character to the right

UP ARROW One line up

DOWN ARROW One line down

HOME To the beginning of a line

END To the end of a line

PAGE UP Up one window

BASCOM-AVR-HELPFILE page 41

PAGE DOWN Down one window

CTRL+LEFT One word to the left

CTRL+RIGHT One word to the right

CTRL+HOME To the start of the text

CTRL+END To the end of the text

CTRL+ Y Delete current line

INS Toggles insert/overstrike mode

F1 Help (context sensitive)

F3 Find next text

F4 Send to chip (run flash programmer)

F5 Run

F7 Compile File

F8 Step

F9 Set breakpoint

F10 Run to

CTRL+F7 Syntax Check

CTRL+F Find text

CTRL+G Go to line

CTRL+K+x Toggle bookmark. X can be 1-8

CTRL+L LCD Designer

CTRL+M File Simulation

CTRL+N New File

CTRL+O Load File

CTRL+P Print File

CTRL+Q+x Go to Bookmark. X can be 1-8

CTRL+R Replace text

CTRL+S Save File

CTRL+T Terminal emulator

CTRL+P Compiler Options

CTRL+W Show result of compilation

CTRL+X Cut selected text to clipboard

CTRL+Z Undo last modification

SHIFT+CTRL+Z Redo last undo

CTRL+INS Copy selected text to clipboard

SHIFT+INS Copy text from clipboard to editor

CTRL+SHIFT+J Indent Block

CTRL+SHIFT+U Unindent Block

Select text Hold the SHIFT key down and use the cursor keys to select
text. or keep the left mouse key pressed and tag the cursor
over the text to select.

BASCOM-AVR-HELPFILE page 42

Developing Order
• Start BASCOM;
• Open a file or create a new one;
• Check the chip settings, baud rate and frequency settings for the target system;
• Save the file;
• Compile the file;
• If an error occurs fix it and recompile (F7);
• Run the simulator;
• Program the chip(F4);

Memory usage
Every variable uses memory. This memory is also called SRAM.
The available memory depends on the chip.

A special kind of memory are the registers in the AVR. Registers 0-31 have addresses 0-31.
Almost all registers are used by the compiler or might be used in the future.
Which registers are used depends on the statements you used.

This brings us back to the SRAM.
No SRAM is used by the compiler other than the space needed for the software stack and
frame.

Each 8 used bits occupy one byte.
Each byte occupies one byte.
Each integer/word occupies two bytes.
Each Long or Single occupies four bytes.
Each String occupies at least 2 byes.
A string with a length of 10. occupies 11 byes. The extra byte is needed to indicate the end of
the string.

Use bits or bytes where you can to save memory. (not allowed for negative values)

The software stack is used to store the addresses of LOCAL variables and for variables that
are passed to SUB routines.
Each LOCAL variable and passed variable to a SUB, uses two bytes to store the address. So
when you have a SUB routine in your program that passes 10 variables, you need 10 * 2 = 20
bytes. When you use 2 LOCAL variables in the SUB program that receives the 10 variables,
you need an additional 2 * 2 = 4 bytes.

The software stack size can be calculated by taking the maximum number of parameters in a SUB routine,
adding the number of LOCAL variables and multiplying the result by 2. To be safe, add 4 more
bytes for internally-used LOCAL variables.

LOCAL variables are stored in a place that is named the frame.
When you have a LOCAL STRING with a size of 40 bytes, and a LOCAL LONG, you need 41
+ 4 bytes = 45 bytes of frame space.

BASCOM-AVR-HELPFILE page 43

The report will show the result of both calculations.

When you use conversion routines such as STR(), VAL() etc. that convert from numeric to
string and vice versa, you also need a frame. It should be 16 bytes in that case.

Note that the use of the INPUT statement with a numeric variable, or the use of the
PRINT/LCD statement with a numeric variable, will also force you to reserve 16 bytes of frame
space. This because these routines use the internal numeric<>string conversion routines.

XRAM
You can easy add external memory to a 8515. Then XRAM will become available.(extended
memory).
When you add a 32KB RAM, the first address wil be 0.
But because the XRAM can only start after the SRAM, which is &H0260, the lower memory
locations of the XRAM will not be used.

ERAM
Most AVR chips have internal EEPROM on board.
This EEPROM can be used to store and retrieve data.
In BASCOM, this dataspace is called ERAM.
An important difference is that an ERAM variable can be written for a maximum of 100.000
times. So only assign an ERAM variable when it is needed and not in a loop.

Constant code usage
Constants are stored in a constant table.
Each used constant in your program will end up in the constant table.

For example:
Print "ABCD"
Print "ABCD"

This example will only store one constant (ABCD).

Print "ABCD"
Print "ABC"

In this example, two constants will be stored because the strings differ.

Error Codes
The following table lists errors that can occur.

Error Description
1 Unknown statement
2 Unknown structure EXIT statement
3 WHILE expected
4 No more space for IRAM BIT

BASCOM-AVR-HELPFILE page 44

5 No more space for BIT
6 . expected in filename
7 IF THEN expected
8 BASIC source file not found
9 Maximum 128 aliases allowed
10 Unknown LCD type
11 INPUT, OUTPUT, 0 or 1 expected
12 Unknown CONFIG parameter
13 CONST already specified
14 Only IRAM bytes supported
15 Wrong data type
16 Unknown Definition
17 9 parameters expected
18 BIT only allowed with IRAM or SRAM
19 STRING length expected (DIM S AS STRING * 12 ,for example)
20 Unknown DATA TYPE
21 Out of IRAM space
22 Out of SRAM space
23 Out of XRAM space
24 Out of EPROM space
25 Variable already dimensioned
26 AS expected
27 parameter expected
28 IF THEN expected
29 SELECT CASE expected
30 BIT's are GLOBAL and can not be erased
31 Invalid data type
32 Variable not dimensioned
33 GLOBAL variable can not be ERASED
34 Invalid number of parameters
35 3 parameters expected
36 THEN expected
37 Invalid comparison operator
38 Operation not possible on BITS
39 FOR expected
40 Variable can not be used with RESET
41 Variable can not be used with SET
42 Numeric parameter expected
43 File not found
44 2 variables expected
45 DO expected
46 Assignment error
47 UNTIL expected
50 Value doesn't fit into INTEGER
51 Value doesn't fit into WORD

BASCOM-AVR-HELPFILE page 45

52 Value doesn't fit into LONG
60 Duplicate label
61 Label not found
62 SUB or FUNCTION expected first
63 Integer or Long expected for ABS()
64 , expected
65 device was not OPEN
66 device already OPENED
68 channel expected
70 BAUD rate not possible
71 Different parameter type passed then declared
72 Getclass error. This is an internal error.
73 Printing this FUNCTION not yet supported
74 3 parameters expected
80 Code does not fit into target chip
81 Use HEX(var) instead of PRINTHEX
82 Use HEX(var) instead of LCDHEX
85 Unknown interrupt source
86 Invalid parameter for TIMER configuration
87 ALIAS already used
88 0 or 1 expected
89 Out of range : must be 1-4
90 Address out of bounds
91 INPUT, OUTPUT, BINARY, or RANDOM expected
92 LEFT or RIGHT expected
93 Variable not dimensioned
94 Too many bits specified
95 Falling or rising expected for edge
96 Prescale value must be 1,8,64,256 or 1024
97 SUB or FUNCTION must be DECLARED first
98 SET or RESET expected
99 TYPE expected
100 No array support for IRAM variables
101 Can't find HW-register
102 Error in internal routine
103 = expected
104 LoadReg error
105 StoreBit error
106 Unknown register
107 LoadnumValue error
108 Unknown directive in device file
109 = expected in include file for .EQU
110 Include file not found
111 SUB or FUNCTION not DECLARED
112 SUB/FUNCTION name expected

BASCOM-AVR-HELPFILE page 46

113 SUB/FUNCTION already DECLARED
114 LOCAL only allowed in SUB or FUNCTION
115 #channel expected
116 Invalid register file
117 Unknown interrupt
200 .DEF not found
201 Low Pointer register expected
202 .EQU not found, probably using functions that are not supported by the

selected chip
203 Error in LD or LDD statement
204 Error in ST or STD statement
205 } expected
10000 DEMO/BETA only supports 1024 bytes of code

Additional Hardware
Of course just running a program on the chip is not enough. You will probably attach all kind of
electronics to the processor ports.
BASCOM supports a lot of hardware and so has lots of hardware related statements.

Before explaining about programming the additional hardware, it might be better to talk about
the chip.

The AVR internal hardware »page 46
Attaching an LCD display »page 54
Using the I2C protocol »page 54
Using the 1WIRE protocol »page 55
Using the SPI protocol »page 55

You can attach additional hardware to the ports of the microprocessor.
The following statements will become available:

I2CSEND »page 132 and I2CRECEIVE »page 131 and other I2C related statements.
CLS, »page 88 LCD, »page 139 DISPLAY »page 118 and other related LCD-statements.

1WRESET »page 78 , 1WWRITE »page 80 and 1WREAD »page 79

AVR Internal Hardware
The AVR chips all have internal hardware that can be used.
For the description we have used the 8515 so some described hardware will not be available
when you select a 2313 for example.

Timer / Counters
The AT90S8515 provides two general purpose Timer/Counters - one 8-bit T/C and one 16-bit
T/C. The Timer/Counters have individual pre-scaling selection from the same 10-bit pre-

BASCOM-AVR-HELPFILE page 47

scaling timer. Both Timer/Counters can either be used as a timer with an internal clock time
base or as a counter with an external pin connection which triggers the counting.

More about TIMERO »page 49
More about TIMER1 »page 50

The WATCHDOG Timer. »page 51

Almost all AVR chips have the ports B and D. The 40 pin devices also have ports A and C that
also can be used for addressing an external RAM chip. Since all ports are identical but the
PORT B and PORT D have alternative functions, only these ports are described.

PORT B »page 51

PORT D »page 52

AVR Internal Registers
You can manipulate the register values directly from BASIC. They are also reserved words.
The internal registers for the AVR90S8515 are :

Addr. Register

$3F SREG I T H S V N Z C

$3E SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8

$3D SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

$3C Reserved

$3B GIMSK INT1 INT0 - - - - - -

$3A GIFR INTF1 INTF0

$39 TIMSK TOIE1 OCIE1A OCIE1B - TICIE1 - TOIE0 -

$38 TIFR TOV1 OCF1A OCF1B -ICF1 -TOV0 -

$37 Reserved

BASCOM-AVR-HELPFILE page 48

$36 Reserved

$35 MCUCR SRE SRW SE SM ISC11 ISC10 ISC01 ISC00

$34 Reserved

$33 TCCR0 - - - - - CS02 CS01 CS00

$32 TCNT0 Timer/Counter0 (8 Bit)

$31 Reserved

$30 Reserved

$2F TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 - -PWM11 PWM10

$2E TCCR1B ICNC1 ICES1 - - CTC1 CS12 CS11 CS10

$2D TCNT1H Timer/Counter1 - Counter Register High Byte

$2C TCNT1L Timer/Counter1 - Counter Register Low Byte

$2B OCR1AH Timer/Counter1 - Output Compare Register A High Byte

$2A OCR1AL Timer/Counter1 - Output Compare Register A Low Byte

$29 OCR1BH Timer/Counter1 - Output Compare Register B High Byte

$28 OCR1BL Timer/Counter1 - Output Compare Register B Low Byte

$27 Reserved

$26 Reserved

$25 ICR1H Timer/Counter1 - Input Capture Register High Byte

$24 ICR1L Timer/Counter1 - Input Capture Register Low Byte

$23 Reserved

$22 Reserved

$21 WDTCR - - - WDTOE WDE WDP2 WDP1 WDP0

$20 Reserved

$1F Reserved - - - - - - - EEAR8

$1E EEARL EEPROM Address Register Low Byte

$1D EEDR EEPROM Data Register

$1C EECR - - - - - EEMWE EEWE EERE

$1B PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0

$1A DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0

$19 PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0

$18 PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0

$17 DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

$16 PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

$15 PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0

$14 DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

$13 PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

$12 PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0

$11 DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0

$10 PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

$0F SPDR SPI Data Register

$0E SPSR SPIF WCOL - - - - - -

$0D SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

$0C UDR UART I/O Data Register

$0B USR RXC TXC UDRE FE OR - - -

$0A UCR RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8

$09 UBRR UART Baud Rate Register

$08 ACSR ACD - ACO ACI ACIE ACIC ACIS1 ACIS0

$00 Reserved

The registers and their addresses are defined in the xxx.DAT files which are placed in the
BASCOM-AVR application directory.

BASCOM-AVR-HELPFILE page 49

The registers can be used as normal byte variables.
PORTB = 40 will place a value of 40 into port B.

Note that internal registers are reserved words. This means that they can't be dimensioned as
BASCOM variables!

So you can't use the statement DIM SREG As Byte because SREG is an internal register.
You can however manipulate the register with the SREG = value statement.

AVR Internal Hardware TIMER0
The 8-Bit Timer/Counter0

The 8-bit Timer/Counter0 can select its clock source from CK, pre-scaled CK, or an external
pin. In addition it can be stopped.
The overflow status flag is found in the Timer/Counter Interrupt Flag Register - TIFR. Control
signals are found in the Timer/Counter0 Control Register - TCCR0. The interrupt
enable/disable settings for Timer/Counter0 are found in the Timer/Counter Interrupt Mask
Register - TIMSK.

When Timer/Counter0 is externally clocked, the external signal is synchronized with the
oscillator frequency of the CPU. To assure proper sampling of the external clock, the minimum
time between two external clock transitions must be at least one internal CPU clock period.
The external clock signal is sampled on the rising edge of the internal CPU clock.

The 8-bit Timer/Counter0 features both a high resolution and a high accuracy usage with the
lower pre-scaling opportunities. Similarly, the high pre-scaling opportunities make the
Timer/Counter0 useful for lower speed functions or exact timing functions with infrequent
actions.

BASCOM-AVR-HELPFILE page 50

AVR Internal Hardware TIMER1
The 16-Bit Timer/Counter1 (8515 other timers may be different)

The 16-bit Timer/Counter1 can select clock source from CK, pre-scaled CK, or an external pin.
In addition it can be stopped.
The different status flags (overflow, compare match and capture event) and control signals are
found in the Timer/Counter1 Control Registers - TCCR1A and TCCR1B.

The interrupt enable/disable settings for Timer/Counter1 are found in the Timer/Counter
Interrupt Mask Register - TIMSK.

When Timer/Counter1 is externally clocked, the external signal is synchronized with the
oscillator frequency of the CPU. To assure proper sampling of the external clock, the minimum
time between two external clock transitions must be at least one internal CPU clock period.
The external clock signal is sampled on the rising edge of the internal CPU clock.

The 16-bit Timer/Counter1 features both a high resolution and a high accuracy usage with the
lower prescaling opportunities.
Similarly, the high prescaling opportunities make the Timer/Counter1 useful for lower speed
functions or exact timing functions with infrequent actions.

The Timer/Counter1 supports two Output Compare functions using the Output Compare
Register 1 A and B -OCR1A and OCR1B as the data sources to be compared to the
Timer/Counter1 contents.

The Output Compare functions include optional clearing of the counter on compareA match,
and actions on the Output Compare pins on both compare matches.

Timer/Counter1 can also be used as a 8, 9 or 10-bit Pulse With Modulator. In this mode the
counter and the OCR1A/OCR1B registers serve as a dual glitch-free stand-alone PWM with
centered pulses.

The Input Capture function of Timer/Counter1 provides a capture of the Timer/Counter1
contents to the Input Capture Register - ICR1, triggered by an external event on the Input
Capture Pin - ICP. The actual capture event settings are defined by the Timer/Counter1
Control Register -TCCR1B.
In addition, the Analog Comparator can be set to trigger the Input Capture.

BASCOM-AVR-HELPFILE page 51

AVR Internal Hardware Watchdog timer
The Watchdog Timer

The Watchdog Timer is clocked from a separate on-chip oscillator which runs at 1MHz. This is
the typical value at VCC = 5V.

By controlling the Watchdog Timer pre-scaler, the Watchdog reset interval can be adjusted
from 16K to 2,048K cycles (nominally 16 - 2048 ms). The RESET WATCHDOG - instruction
resets the Watchdog Timer.
Eight different clock cycle periods can be selected to determine the reset period.
If the reset period expires without another Watchdog reset, the AT90Sxxxx resets and
executes from the reset vector.

AVR Internal Hardware Port B
Port B

Port B is an 8-bit bi-directional I/O port. Three data memory address locations are allocated for
the Port B, one each for the Data Register - PORTB, $18($38), Data Direction Register -
DDRB, $17($37) and the Port B Input Pins - PINB, $16($36). The Port B Input Pins address is
read only, while the Data Register and the Data Direction Register are read/write.

BASCOM-AVR-HELPFILE page 52

All port pins have individually selectable pull-up resistors. The Port B output buffers can sink
20mA and thus drive LED displays directly. When pins PB0 to PB7 are used as inputs and are
externally pulled low, they will source current if the internal pull-up resistors are activated.
The Port B pins with alternate functions are shown in the following table:

When the pins are used for the alternate function the DDRB and PORTB register has to be set
according to the alternate function description.

Port B Pins Alternate Functions
Port Pin Alternate Functions
PORTB.0 T0 (Timer/Counter 0 external counter input)
PORTB.1 T1 (Timer/Counter 1 external counter input)
PORTB.2 AIN0 (Analog comparator positive input)
PORTB.3 AIN1 (Analog comparator negative input)
PORTB.4 SS (SPI Slave Select input)
PORTB.5 MOSI (SPI Bus Master Output/Slave Input)
PORTB.6 MISO (SPI Bus Master Input/Slave Output)
PORTB.7 SCK (SPI Bus Serial Clock)

The Port B Input Pins address - PINB - is not a register, and this address enables access to
the physical value on each Port B pin. When reading PORTB, the PORTB Data Latch is read,
and when reading PINB, the logical values present on the pins are read.

PortB As General Digital I/O
All 8 bits in port B are equal when used as digital I/O pins. PORTB.X, General I/O pin: The
DDBn bit in the DDRB register selects the direction of this pin, if DDBn is set (one), PBn is
configured as an output pin. If DDBn is cleared (zero), PBn is configured as an input pin. If
PORTBn is set (one) when the pin configured as an input pin, the MOS pull up resistor is
activated.
To switch the pull up resistor off, the PORTBn has to be cleared (zero) or the pin has to be
configured as an output pin.

DDBn Effects on Port B Pins

DDBn PORTBn I/O Pull up Comment
0 0 Input No Tri-state (Hi-Z)
0 1 Input Yes PBn will source current if ext. pulled

low.
1 0 Output No Push-Pull Zero Output
1 1 Output No Push-Pull One Output

AVR Internal Hardware Port D
Port D

Port D Pins Alternate Functions

Port Pin Alternate Function
PORTD.0 RDX (UART Input line)
PORTD.1 TDX (UART Output line)

BASCOM-AVR-HELPFILE page 53

PORTD.2 INT0 (External interrupt 0 input)
PORTD.3 INT1 (External interrupt 1 input)
PORTD.5 OC1A (Timer/Counter1 Output compareA match output)
PORTD.6 WR (Write strobe to external memory)
PORTD.7 RD (Read strobe to external memory)

RD - PORTD, Bit 7
RD is the external data memory read control strobe.

WR - PORTD, Bit 6
WR is the external data memory write control strobe.

OC1- PORTD, Bit 5
Output compare match output: The PD5 pin can serve as an external output when the
Timer/Counter1 com-pare matches.
The PD5 pin has to be configured as an out-put (DDD5 set (one)) to serve this f unction. See
the Timer/Counter1 description for further details, and how to enable the output. The OC1 pin
is also the output pin for the PWM mode timer function.

INT1 - PORTD, Bit 3
External Interrupt source 1: The PD3 pin can serve as an external interrupt source to the MCU.
See the interrupt description for further details, and how to enable the source

INT0 - PORTD, Bit 2
INT0, External Interrupt source 0: The PD2 pin can serve as an external interrupt source to the
MCU. See the interrupt description for further details, and how to enable the source.

TXD - PORTD, Bit 1
Transmit Data (Data output pin for the UART). When the UART transmitter is enabled, this pin
is configured as an output regardless of the value of DDRD1.

RXD - PORTD, Bit 0
Receive Data (Data input pin for the UART). When the UART receiver is enabled this pin is
configured as an output regardless of the value of DDRD0. When the UART forces this pin to
be an input, a logical one in PORTD0 will turn on the internal pull-up.

When pins TXD and RXD are not used for RS-232 they can be used as an input or output pin.
No PRINT, INPUT or other RS-232 statement may be used in that case.
The UCR register will by default not set bits 3 and 4 that enable the TXD and RXD pins for RS-
232 communication. It is however reported that this not works for all chips. In this case you
must clear the bits in the UCR register with the following statements:
RESET UCR.3
RESET UCR.4

BASCOM-AVR-HELPFILE page 54

Attaching an LCD Display

A LCD display can be connected with two methods.

• By wiring the LCD-pins to the processor port pins.
This is the pin mode. The advantage is that you can choose the pins and that they don't
have to be on the same port. This can make your PCB design simple. The disadvantage is
that more code is needed.

• By attaching the LCD-data pins to the data bus. This is convenient when you have an
external RAM chip and will adds little code.

The LCD-display can be connected in PIN mode as follows:

LCD-DISPLAY PORT PIN
DB7 PORTB.7 14
DB6 PORTB.6 13
DB5 PORTB.5 12
DB4 PORTB.4 11
E PORTB.3 6
RS PORTB.2 4
RW Ground 5
Vss Ground 1
Vdd +5 Volt 2
Vo 0-5 Volt 3

This leaves PORTB.1 and PORTB.0 and PORTD for other purposes.
You can change these settings from the Options LCD »page 33 menu.

BASCOM supports many statements to control the LCD-display.
For those who want to have more control the example below shows how to use the internal
routines.

$ASM
Ldi _temp1, 5 'load register R24 with value
Rcall _Lcd_control 'it is a control value to control the display
Ldi _temp1,65 'load register with new value (letter A)
Rcall _Write_lcd 'write it to the LCD-display
$END ASM

Note that _lcd_control and _write_lcd are assembler subroutines which can be called from
BASCOM.

See the manufacturer's details from your LCD display for the correct assignment.

Using the I2C protocol
The I2C protocol is a 2-wire protocol designed by Philips. Of course you also need power and
ground so it really needs 4 wires.

BASCOM-AVR-HELPFILE page 55

The I2C protocol was invented for making designs of TV PCB's more simple. But with the
availability of many I2C chips, it is ideal for the hobbyist too.

The PCF8574 is a nice chip - it is an I/O extender with 8 pins that you can use either as input
or output.

The design below shows how to implement an I2C-bus.
R1 and R2 are 330 ohm resistors.
R3 and R4 are 10 kilo-ohm resistors. For 5V, 4K7 is a good value in combination with AVR
chips.

You can select which port pins you want to use for the I2C interface with the compiler settings.

Using the 1 WIRE protocol
The 1 wire protocol was invented by Dallas Semiconductors and needs only 1 wire for the
communication. You also need power and ground of course.

This topic is not finished at this stage.

Using the SPI protocol
This topic is not finished yet.

Power Up
At power up all ports are in Tri-state and can serve as input pins.
When you want to use the ports (pins) as output, you must set the data direction first with the
statement : CONFIG PORTB = OUTPUT

Individual bits can also be set to be uses as input or output.
For example : DDRB = &B00001111 , will set a value of 15 to the data direction register of
PORTB.
PORTB.0 to PORTB.3 (the lower 5 bits) can be used as outputs because they are set low.
The upper four bits (PORTB.4 to PORTB.7), can be used for input because they are set low.

BASCOM-AVR-HELPFILE page 56

You can also set the direction of a port pin with the statement :
CONFIG PINB.0 = OUTPUT | INPUT

Reserved Words
The following table shows the reserved BASCOM statements or characters.

^

!

;

$BAUD

$CRYSTAL

$DATA

$DEFAULT

$END

$EEPROM

$EXTERNAL

$INCLUDE

$LCD

$LCDRS

$LCDPUTCTRL

$LCDPUTDATA

$LIB

$REGFILE

$SERIALINPUT

$SERIALINPUT2LCD

$SERIALOUTPUT

$XRAMSIZE

$XRAMSTART

1WRESET

1WREAD

1WWRITE

ACK

ABS()

ALIAS

AND

AS

ASC()

AT

BAUD

BCD()

BIT

BITWAIT

BLINK

BOOLEAN

BYTE

BYVAL

CALL

CAPTURE1

CASE

CHR()

CLS

CLOSE

COMPARE1A

COMPARE1B

CONFIG

CONST

COUNTER

COUNTER0

COUNTER1

COUNTER2

CPEEK()

CRYSTAL

CURSOR

DATA

DEBOUNCE

DECR

DECLARE

DEFBIT

DEFBYTE

DEFLNG

DEFWORD

DEGSNG

DEFLCDCHAR

DEFINT

DEFWORD

DELAY

DIM

DISABLE

DISPLAY

DO

DOWNTO

ELSE

ELSEIF

ENABLE

END

ERAM

ERASE

ERR

EXIT

EXTERNAL

FOR

FOURTH

FOURTHLINE

FUNCTION

GATE

GETAD()

GETRC5()

GOSUB

GOTO

HEXVAL()

HIGH()

HOME

I2CRECEIVE

I2CSEND

I2CSTART

I2CSTOP

I2CRBYTE

I2CWBYTE

IDLE

IF

INCR

INKEY

INP()

INPUT

INPUTBIN

INPUTHEX

INT0

INT1

INTEGER

INTERNAL

INSTR

IS

LCASE()

LCD

LEFT

LEFT()

LEN()

LOAD

LOCAL

LOCATE

LONG

LOOKUP()

LOOKUPSTR()

LOOP

LTRIM()

LOW()

LOWER

LOWERLINE

MAKEBCD()

MAKEDEC()

MAKEINT()

MID()

MOD

MODE

NACK

NEXT

NOBLINK

NOSAVE

NOT

OFF

ON

OR

OUT

OUTPUT

PEEK()

POKE

PORTA

PORTB

PORTC

PORTD

PORTE

PORTF

POWERDOWN

PRINT

PRINTBIN

PULSEOUT

PWM1A

PWM1B

READ

READEEPROM

BASCOM-AVR-HELPFILE page 57

REM

RESET

RESTORE

RETURN

RIGHT

RIGHT()

ROTATE

RTRIM()

SELECT

SERIAL

SET

SHIFT

SHIFTLCD

SHIFTCURSOR

SHIFTIN

SHIFTOUT

SOUND

SPACE()

SPIINIT

SPIIN

SPIMOVE

SPIOUT

START

STEP

STR()

STRING()

STOP

STOP TIMER

SUB

SWAP

THEN

THIRD

THIRDLINE

TIMER0

TIMER1

TIMER2

TO

TRIM()

UCASE()

UNTIL

UPPER

UPPERLINE

VAL()

VARPTR()

WAIT

WAITKEY()

WAITMS

WAITUS

WATCHDOG

WRITEEEPROM

WEND

WHILE

WORD

XOR

XRAM

Language Fundamentals
Characters from the BASCOM character set are put together to form labels, keywords,
variables and operators.
These in turn are combined to form the statements that make up a program.

This chapter describes the character set and the format of BASCOM program lines. In
particular, it discusses:

• The specific characters in the character set and the special meanings of some characters.
• The format of a line in a BASCOM program.
• Line labels.
• Program line length.

Character Set
The BASCOM BASIC character set consists of alphabetic characters, numeric characters,
and special characters.

The alphabetic characters in BASCOM are the uppercase letters (A-Z) and lowercase letters
(az) of the alphabet.

The BASCOM numeric characters are the digits 0-9.
The letters A-H can be used as parts of hexadecimal numbers.
The following characters have special meanings in BASCOM statements and expressions:

Character Name
ENTER Terminates input of a line

Blank (or space)
' Single quotation mark (apostrophe)
* Asterisks (multiplication symbol)
+ Plus sign
, Comma
- Minus sign

BASCOM-AVR-HELPFILE page 58

. Period (decimal point)
/ Slash (division symbol) will be handled as \
: Colon
" Double quotation mark
; Semicolon
< Less than
= Equal sign (assignment symbol or relational operator)
> Greater than
\ Backslash (integer/word division symbol)
^ Exponent

The BASCOM program line
BASCOM program lines have the following syntax:

[[line-identifier]] [[statement]] [[:statement]] ... [[comment]]

Using Line Identifiers
BASCOM support one type of line-identifier; alphanumeric line labels:

An alphabetic line label may be any combination of from 1 to 32 letters and digits, starting
with a letter and ending with a colon.
BASCOM keywords are not permitted.
The following are valid alphanumeric line labels:

Alpha:
ScreenSUB:
Test3A:

Case is not significant. The following line labels are equivalent:

alpha:
Alpha:
ALPHA:

Line labels may begin in any column, as long as they are the first characters other than
blanks on the line.
Blanks are not allowed between an alphabetic label and the colon following it.
A line can have only one label.

BASCOM Statements
A BASCOM statement is either " executable" or " non-executable".
An executable statement advances the flow of a programs logic by telling the program what to
do next.
Non executable statement perform tasks such as allocating storage for variables, declaring
and defining variable types.

BASCOM-AVR-HELPFILE page 59

The following BASCOM statements are examples of non-executable statements:

• REM or (starts a comment)

• DIM

A "comment" is a non-executable statement used to clarify a programs operation and
purpose.
A comment is introduced by the REM statement or a single quote character(').
The following lines are equivalent:

PRINT " Quantity remaining" : REM Print report label.
PRINT " Quantity remaining" ' Print report label.

More than one BASCOM statement can be placed on a line, but colons(:) must separate
statements, as illustrated below.

FOR I = 1 TO 5 : PRINT " Gday, mate." : NEXT I

BASCOM LineLength
If you enter your programs using the built-in editor, you are not limited to any line length,
although it is advised to shorten your lines to 80 characters for clarity.

Data Types
Every variable in BASCOM has a data type that determines what can be stored in the
variable. The next section summarizes the elementary data types.

Elementary Data Types
• Bit (1/8 byte). A bit can hold only the value 0 or 1.

A group of 8 bits is called a byte.
 • Byte (1 byte).

Bytes are stores as unsigned 8-bit binary numbers ranging in value from 0 to 255.
• Integer (two bytes).

Integers are stored as signed sixteen-bit binary numbers ranging in value from -32,768 to
+32,767.

• Word (two bytes).
Words are stored as unsigned sixteen-bit binary numbers ranging in value from 0 to
65535.

• Long (four bytes).
Longs are stored as signed 32-bit binary numbers ranging in value from -2147483648 to
2147483647.

• Single.
Singles are stored as signed 32 bit binary numbers.

• String (up to 254 bytes).
Strings are stored as bytes and are terminated with a 0-byte.
A string dimensioned with a length of 10 bytes will occupy 11 bytes.

BASCOM-AVR-HELPFILE page 60

Variables can be stored internal (default) , external or in EEPROM.

Variables
A variable is a name that refers to an object--a particular number.

A numeric variable, can be assigned only a numeric value (either integer, byte, long, single or
bit).
The following list shows some examples of variable assignments:

• A constant value:
A = 5
C = 1.1

• The value of another numeric variable:
abc = def
k = g

• The value obtained by combining other variables, constants, and operators: Temp = a + 5
Temp = C + 5

• The value obtained by calling a function:
Temp = Asc(S)

Variable Names
A BASCOM variable name may contain up to 32 characters.
The characters allowed in a variable name are letters and numbers.
The first character in a variable name must be a letter.

A variable name cannot be a reserved word, but embedded reserved words are allowed.
For example, the following statement is illegal because AND is a reserved word.

AND = 8

However, the following statement is legal:

ToAND = 8

Reserved words include all BASCOM commands, statements, function names, internal
registers and operator names.
(see BASCOM Reserved Words »page 56 , for a complete list of reserved words).

You can specify a hexadecimal or binary number with the prefix &H or &B.
a = &HA , a = &B1010 and a = 10 are all the same.

Before assigning a variable, you must tell the compiler about it with the DIM statement.

BASCOM-AVR-HELPFILE page 61

Dim b1 As Bit, I as Integer, k as Byte , s As String * 10

The STRING type needs an additional parameter to specify the length.

You can also use DEFINT, DEFBIT, DEFBYTE ,DEFWORD ,DEFLNG or DEFSNG.
For example DEFINT c tells the compiler that all variables that are not dimensioned and that
are beginning with the character c are of the Integer type.

Expressions and Operators
This chapter discusses how to combine, modify, compare, or get information about
expressions by using the operators available in BASCOM.

Anytime you do a calculation you are using expressions and operators.
This chapter describes how expressions are formed and concludes by describing the
following kind of operators:

• Arithmetic operators, used to perform calculations.

• Relational operators, used to compare numeric or string values.

• Logical operators, used to test conditions or manipulate individual bits.

• Functional operators, used to supplement simple operators.

Expressions and Operators
An expression can be a numeric constant, a variable, or a single value
obtained by combining constants, variables, and other expressions with operators.

Operators perform mathematical or logical operations on values.
The operators provided by BASCOM can be divided into four categories, as follows:

1. Arithmetic
2. Relational
3. Logical
4. Functional

Arithmetic
Arithmetic operators are +, - , * , \, / and ^.

• Integer
Integer division is denoted by the backslash (\).
Example: Z = X \ Y

• Modulo Arithmetic
 Modulo arithmetic is denoted by the modulus operator MOD.
 Modulo arithmetic provides the remainder, rather than the quotient, of an
integer division.

Example: X = 10 \ 4 : remainder = 10 MOD 4

• Overflow and division by zero
Division by zero, produces an error.

BASCOM-AVR-HELPFILE page 62

At the moment no message is produced, so you have to make sure yourself that this
won't happen.

Relational Operators
Relational operators are used to compare two values as shown in the table below.
The result can be used to make a decision regarding program flow.

Operator Relation Tested Expression
= Equality X = Y
<> Inequality X <> Y
< Less than X < Y
> Greater than X > Y
<= Less than or equal to X <= Y
>= Greater than or equal to X >= Y

Logical Operators
Logical operators perform tests on relations, bit manipulations, or Boolean operators.
There four operators in BASCOM are :

Operator Meaning
NOT Logical complement
AND Conjunction
OR Disjunction
XOR Exclusive or

It is possible to use logical operators to test bytes for a particular bit pattern.
For example the AND operator can be used to mask all but one of the bits
of a status byte, while OR can be used to merge two bytes to create a particular binary value.

Example
A = 63 And 19
PRINT A
A = 10 Or 9
PRINT A

Output
16
11

Floating point (ASM code used is supplied by Jack Tidwell)

Single numbers conforming to the IEEE binary floating point standard.
An eight bit exponent and 24 bit mantissa are supported.
Using four bytes the format is shown below:

BASCOM-AVR-HELPFILE page 63

31 30________23 22______________________________0
s exponent mantissa

The exponent is biased by 128. Above 128 are positive exponents and
below are negative. The sign bit is 0 for positive numbers and 1 for
negative. The mantissa is stored in hidden bit normalized format so
that 24 bits of precision can be obtained.

All mathematical operations are supported by the single.
You can also convert a single to an integer or word or vise versa:
Dim I as Integer, S as Single
S = 100.1 'assign the single
I = S 'will convert the single to an integer

Arrays
An array is a set of sequentially indexed elements having the same type. Each element of an
array has a unique index number that identifies it. Changes made to an element of an array
do not affect the other elements.

The index must be a numeric constant, a byte, an integer , word or long.
The maximum number of elements is 65535.

The first element of an array is always one. This means that elements are 1-based.

Arrays can be used on each place where a 'normal' variable is expected.

Example:
Dim a(10) as byte 'make an array named a, with 10 elements (1 to 10)

Dim c as Integer

For C = 1 To 10

 a(c) = c 'assign array element

 Print a(c) 'print it

Next

a(c + 1) = a 'you can add an offset to the index too

$ASM

Action
Start of inline assembly code block.

Syntax
$ASM

Remarks
Use $ASM together with $END ASM to insert a block of assembler code in your BASIC code.
You can also precede each line with the ! sign.
Most ASM mnemonics can be used without the preceding ! too.

BASCOM-AVR-HELPFILE page 64

See also the chapter Mixing BASIC and Assembly »page 188

Example
Dim c as Byte
Loadadr c,x 'load address of variable C into register X
$ASM
 Ldi R24,1 'load register R24 with the constant 1
 St X,R24 ;store 1 into var c
$END ASM
Print c

End

$BAUD

Action
Instruct the compiler to override the baud rate setting from the options menu.

Syntax
$BAUD = var

Remarks
Var The baud rate that you want to use.

var : Constant.

The baud rate is selectable from the Compiler Settings »page 31. It is stored in a configuration
file. The $BAUD statement is provided for compatibility with BASCOM-8051.

In the generated report, you can view which baud rate is actually generated.

See also
$CRYSTAL »page 64 , BAUD »page 83

Example
$BAUD = 2400
$CRYSTAL = 14000000' 14 MHz crystal
Print "Hello"
'Now change the baudrate in a program
BAUD = 9600 '
Print "Did you change the terminal emulator baud rate too?"
END

$CRYSTAL

Action
Instruct the compiler to override the crystal frequency options setting.

Syntax
$CRYSTAL = var

BASCOM-AVR-HELPFILE page 65

Remarks
var Frequency of the crystal.
var : Constant.

The frequency is selectable from the Compiler Settings »page 31. It is stored in a configuration
file. The $CRYSTAL statement is provided for compatibility with BASCOM-8051.

See also
$BAUD »page 64 BAUD »page 83

Example
$BAUD = 2400
$CRYSTAL = 14000000
PRINT "Hello"
END

$DATA

Action
Instruct the compiler to store the data in the DATA lines following the $DATA directive, in code
memory.

Syntax
$DATA

Remarks
The AVR has built-in EEPROM. With the WRITEEEPROM and READEEPROM statements,
you can write and read to the EEPROM.
To store information in the EEPROM, you can add DATA lines to your program that hold the
data that must be stored in the EEPROM.
A separate file is generated with the EEP extension. This file can be used to program the
EEPROM.

The compiler must know which DATA must go into the code memory or the EEP file and
therefore two compiler directives were added.
$EEPROM and $DATA.

$EEPROM tells the compiler that the DATA lines following the compiler directive, must be
stored in the EEP file.
To switch back to the default behaviour of the DATA lines, you must use the $DATA directive.

See also
$EEPROM »page 67

ASM

Example
Dim B As Byte

BASCOM-AVR-HELPFILE page 66

Restore Lbl 'point to code data
Read B
Print B
Restore Lbl2
Read B
Print B
End

Lbl:
DATA 100

$EEPROM 'the following DATA lines data will go to the EEP
'file

DATA 200

$DATA 'switch back to normal
Lbl2:
DATA 300

$DEFAULT

Action
Set the default for data types dimensioning to the specified type.

Syntax
$DEFAULT = var

Remarks
Var SRAM, XRAM, ERAM
Each variable that is dimensioned will be stored into SRAM, the internal memory of the chip.
You can override it by specifying the data type.
Dim B As XRAM Byte , will store the data into external memory.
When you want all your variables to be stored in XRAM for example, you can use the
statement : $DEFAULT XRAM
Each Dim statement will place the variable in XRAM than.

To switch back to the default behaviour, use $END $DEFAULT

See also

ASM

Example
$DEFAULT XRAM
Dim A As Byte, b As Byte, C As Byte
'a,b and c will be stored into XRAM

$DEFAULT SRAM
Dim D As Byte
'D will be stored in internal memory, SRAM

BASCOM-AVR-HELPFILE page 67

$EEPROM

Action
Instruct the compiler to store the data in the DATA lines following the $DATA directive in an
EEP file.

Syntax
$EEPROM

Remarks
The AVR has build in EEPROM. With the WRITEEEPROM and READEEPROM statements,
you can write and read to the EEPROM.
To store information in the EEPROM, you can add DATA lines to your program that hold the
data that must be stored in the EEPROM.
A separate file is generated with the EEP extension. This file can be used to program the
EEPROM.

The compiler must know which DATA must go into the code memory or the EEP file and
therefore two compiler directives were added.
$EEPROM and $DATA.

$EEPROM tells the compiler that the DATA lines following the compiler directive, must be
stored in the EEP file.
To switch back to the default behaviour of the DATA lines, you must use the $DATA directive.

See also
$DATA »page 65

ASM

Example
Dim B As Byte
Restore Lbl 'point to code data
Read B
Print B
Restore Lbl2
Read B
Print B
End

Lbl:
DATA 100

$EEPROM 'the following DATA lines data will go to the EEP
'file

DATA 200

$DATA 'switch back to normal
Lbl2:
DATA 300

BASCOM-AVR-HELPFILE page 68

$EXTERNAL

Action
Instruct the compiler to include ASM routines form a library.

Syntax
$EXTERNAL Myroutine [, myroutine2]

Remarks
You can place ASM routines in a library file. With the $EXTERNAL directive you tell the
compiler which routines must be included in your program.
An automatic search will be added later so the $EXTERNAL directive will not be needed any
longer.

See also
$LIB »page 72

Example
Dim B As Byte
$LIB "Mylib.LIB"
$EXTERNAL TestAsm
Rcall TestAsm
End

$INCLUDE

Action
Includes an ASCII file in the program at the current position.

Syntax
$INCLUDE file

Remarks
File Name of the ASCII file, which must contain valid BASCOM statements.

This option can be used if you make use of the same routines in
Many programs. You can write modules and include them into your
program.
If there are changes to make you only have to change the module file, not
all your BASCOM programs.
You can only include ASCII files!

Example
'---

' (c) 1997-2000 MCS Electronics

'--

' file: INCLUDE.BAS

' demo: $INCLUDE

'--

Print "INCLUDE.BAS"

BASCOM-AVR-HELPFILE page 69

$include c:\bascom\123.bas 'include file that prints Hello

Print "Back in INCLUDE.BAS"

End

$LCD

Action
Instruct the compiler to generate code for 8-bit LCD displays attached to the data bus.

Syntax
$LCD = [&H]address

Remarks
Address The address where must be written to, to enable the LCD display

and the RS line of the LCD display.
The db0-db7 lines of the LCD must be connected to the data lines
D0-D7. (or is 4 bit mode, connect only D4-D7)
The RS line of the LCD can be configured with the LCDRS
statement.

On systems with external RAM, it makes more sense to attach the
LCD to the data bus. With an address decoder, you can select the
LCD display.

See also
$LCDRS »page 71

Example
REM We use a STK200 board so use the following addresses
$LCD = &HC000 'writing to this address will make the E-line of the LCD 'high and

the RS-line of the LCD high.
$LCDRS = &H8000 'writing to this address will make the E-line of the LCD 'high.

Cls
LCD "Hello world"

$LCDPUTCTRL

Action
Specifies that LCD control output must be redirected.

Syntax
$LCDPUTCTRL = label

Remarks
Label The name of the assembler routine that must be called when a

control byte is printed with the LCD statement. The character must
be placed in R24/_temp1.

With the redirection of the LCD statement, you can use your own routines.

BASCOM-AVR-HELPFILE page 70

See also
$SERIALPUTDATA »page 70

Example
'define chip to use
$regfile = "8535def.dat"

'define used crystal
$crystal = 4000000

'dimension used variables
Dim S As String * 10
Dim W As Long

'inform the compiler which routine must be called to get serial 'characters
$LCDPUTDATA = Myoutput
$LCDPUTCTRL = MyoutputCtrl
'make a never ending loop
Do
 LCD "test"
Loop

End

'custom character handling routine
'instead of saving and restoring only the used registers
'and write full ASM code, we use Pushall and PopAll to save and 'restore
'all registers so we can use all BASIC statements
'$LCDPUTDATA requires that the character is passed in R24

Myoutput:
 Pushall 'save all registers
'your code here
 Popall 'restore registers
Return

MyoutputCtrl:
 Pushall 'save all registers
'your code here
 Popall 'restore registers
Return

$LCDPUTDATA

Action
Specifies that LCD data output must be redirected.

Syntax
$LCDPUTDATA = label

Remarks
Label The name of the assembler routine that must be called when a

character is printed with the LCD statement. The character must be
placed in R24/_temp1.

BASCOM-AVR-HELPFILE page 71

With the redirection of the LCD statement, you can use your own routines.

See also
$SERIALPUTCTRL »page 69

Example
'define chip to use
$regfile = "8535def.dat"

'define used crystal
$crystal = 4000000

'dimension used variables
Dim S As String * 10
Dim W As Long

'inform the compiler which routine must be called to get serial 'characters
$LCDPUTDATA = Myoutput

'make a never ending loop
Do
 LCD "test"
Loop

End

'custom character handling routine
'instead of saving and restoring only the used registers
'and write full ASM code, we use Pushall and PopAll to save and 'restore
'all registers so we can use all BASIC statements
'$LCDPUTDATA requires that the character is passed in R24

Myoutput:
 Pushall 'save all registers
'your code here
 Popall 'restore registers
Return

$LCDRS

Action
Instruct the compiler to generate code for 8-bit LCD displays attached to the data bus.

Syntax
$LCDRS = [&H]address

Remarks
Address The address where must be written to, to enable the LCD display.

The db0-db7 lines of the LCD must be connected to the data lines
D0-D7. (or is 4 bit mode, connect only D4-D7)

On systems with external RAM, it makes more sense to attach the
LCD to the data bus. With an address decoder, you can select the
LCD display.

BASCOM-AVR-HELPFILE page 72

See also
$LCD »page 69

Example
REM We use a STK200 board so use the following addresses
$LCD = &HC000 'writing to this address will make the E-line of the LCD 'high and

the RS-line of the LCD high.
$LCDRS = &H8000 'writing to this address will make the E-line of the LCD 'high.

Cls
LCD "Hello world"

$LIB

Action
Informs the compiler about the use libraries.

Syntax
$LIB " libname1" [, " libname2"]

Remarks
Libname is the name of the libray that holds ASM routines that are used by your program.
More filenames can be specified by separating the names by a comma.
The libraries will be searched when you specify the routines to use with the $EXTERNAL
directive.
The search order is the same as the order you specify the library names.

The MCS.LIB will be searched last and is always included so you don't need to specify it with
the $LIB directive.
Because the MCS.LIB is searched last you can include duplicate routines in your own LIB.
Now these routines will be used instead of the ones from the default MCS.LIB library. This is a
good way when you want to enhance the MCS.LIB routines. Just copy the MCS.LIB to a new
file and make the changes in this new file. When we make changes to the library your changes
will be preserved.

Creating your own LIB file
A library file is a simple ASCII file. It can be created with the BASCOM editor, notepad or any
other ASCII editor.
The file must include the following header information. It is not used yet but will be later.

copyright = Your name

www = optional location where people can find the latest source

email = your email address

comment = AVR compiler library

libversion = the version of the library in the format : 1.00

date = date of last modification

statement = A statement with copyright and usage information

The routine must start with the name in brackets and must end with the [END] .

BASCOM-AVR-HELPFILE page 73

The following ASM routine example is from the MCS.LIB library.

[_ClockDiv]
; MEGA chips only

;_temp1 holds the division in the range from 0-129

; 0 will set the division to 1

_ClockDiv:

Cpi _temp1,0 ; is it zero?

Breq _ClockDivX ; yes so turn of the division

Subi _temp1,2 ; subtract 2

Com _temp1 ;complement

Clr _temp2

Out XDIV,_temp2 ; enable write by writing zeros

_ClockDivX:

Out XDIV,_temp1 ; write new division

Ret ;return

[END]

See also
$EXTERNAL »page 68

Example
'define chip to use
$regfile = "8535def.dat"

'define used crystal
$crystal = 4000000

'dimension used variables
Dim S As String * 10
Dim W As Byte

$LIB "MYLIB.LIB" , "MCS.LIB"

$EXTERAL _ShiftL1 , _ShiftL2

Shift W , LEFT , 2 'uses _shiftL1

$REGFILE

Action
Instruct the compiler to use the specified register file instead of the selected dat file.

Syntax
$REGFILE = var

Remarks
Var The name of the register file. The register files are stored in the

BASCOM-AVR application directory and all end with the DAT
extension.
The register file holds information about the chip such as the
internal registers and interrupt addresses.

BASCOM-AVR-HELPFILE page 74

The $REGFILE statement overrides the setting from the Options menu.
The settings are stored in a <project>.CFG file and the directive is added for compatibility with
BASCOM-8051

The $REGFILE directive must be the first statement in your program.

See also

ASM

Example
$REGFILE = "8515DEF.DAT"

$SERIALINPUT

Action
Specifies that serial input must be redirected.

Syntax
$SERIALINPUT = label

Remarks
Label The name of the assembler routine that must be called when a

character is needed from the INPUT routine. The character must be
returned in R24/_temp1.

With the redirection of the INPUT command, you can use your own routines.
This way you can use other devices as input devices.
Note that the INPUT statement is terminated when a RETURN code (13) is received.

See also
$SERIALOUTPUT »page 76

Example
'--
' $myserialinput.bas
' (c) 2000 MCS Electronics
' demonstrates $SERIALINPUT redirection of serial input
'--
'define chip to use
$regfile = "8535def.dat"

'define used crystal
$crystal = 4000000

'dimension used variables
Dim S As String * 10
Dim W As Long

BASCOM-AVR-HELPFILE page 75

'inform the compiler which routine must be called to get serial 'characters
$serialinput = Myinput

'make a never ending loop
Do
 'ask for name
 Input "name " , S
 Print S
 'error is set on time out
 Print "Error " ; Err
Loop

End

'custom character handling routine
'instead of saving and restoring only the used registers
'and write full ASM code, we use Pushall and PopAll to save and 'restore
'all registers so we can use all BASIC statements
'$SERIALINPUT requires that the character is passed back in R24

Myinput:
 Pushall 'save all registers
 W = 0 'reset counter
Myinput1:
 Incr W 'increase counter
 Sbis USR, 7 ' Wait for character
 Rjmp myinput2 'no charac waiting so check again
 Popall 'we got something
 Err = 0 'reset error
 In _temp1, UDR ' Read character from UART
 Return 'end of routine
Myinput2:
 If W > 1000000 Then 'with 4 MHz ca 10 sec delay
 rjmp Myinput_exit 'waited too long
 Else
 Goto Myinput1 'try again
 End If
Myinput_exit:
 Popall 'restore registers
 Err = 1 'set error variable
 ldi R24, 13 'fake enter so INPUT will end
Return

$SERIALINPUT2LCD

Action

This compiler directive will redirect all serial input to the LCD display instead of echo-ing to the
serial port.

Syntax

$SERIALINPUT2LCD

Remarks

BASCOM-AVR-HELPFILE page 76

You can also write your own custom input or output driver with the $SERIALINPUT »page 74
and $SERIALOUTPUT statements, but the $SERIALINPUT2LCD is handy when you use a
LCD display.

See also

$SERIALINPUT »page 74 , $SERIALOUTPUT »page 76

Example
$SERIALINPUT2LCD

Dim v as Byte

CLS

INPUT "Number ", v 'this will go to the LCD display

$SERIALOUTPUT

Action

Specifies that serial output must be redirected.

Syntax

$SERIALOUTPUT = label

Remarks
label The name of the assembler routine that must be called when a

character is send to the serial buffer (UDR).
The character is placed into R24/_temp1.

With the redirection of the PRINT and other serial output related commands, you can use your
own routines.
This way you can use other devices as output devices.

See also
$SERIALINPUT »page 74 , $SERIALINPUT2LCD »page 75

Example
$SERIALOUTPUT = MyOutput
 'your program goes here
END

myoutput:
 ;perform the needed actions here
 Ldi _temp1,65 ;serial output buffer (default)
ret

$XRAMSIZE

Action

Specifies the size of the external RAM memory.

BASCOM-AVR-HELPFILE page 77

Syntax

$XRAMSIZE = [&H] size

Remarks
size Size of external RAM memory chip.
size : Constant.

The size of the chip can be selected from the Options Compiler Chip »page 29 menu.
The $XRAMSIZE overrides this setting.

See also
$XRAMSTART »page 77

Example
$XRAMSTART = &H300

$RAMSIZE = &H1000
DIM x AS XRAM Byte 'specify XRAM to store variable in XRAM

$XRAMSTART

Action

Specifies the location of the external RAM memory.

Syntax

$XRAMSTART = [&H]address

Remarks
address The (hex)-address where the data is stored.

Or the lowest address that enables the RAM chip.
You can use this option when you want to run
your code in systems with external RAM memory.

address : Constant.

By default the extended RAM will start after the internal memory so the lower addresses of the
external RAM can't be used to store information.
When you want to protect an area of the chip, you can specify a higher address for the
compiler to store the data. For example, you can specify &H400. The first dimensioned
variable will be placed in address &H400 and not in &H260.

See also
$XRAMSIZE »page 76

Example
$XRAMSTART = &H400
$XRAMSIZE = &H1000

Dim B As Byte

BASCOM-AVR-HELPFILE page 78

1WRESET

Action

This statement brings the 1wire pin to the correct state, and sends a reset to the bus.

Syntax

1WRESET

1WRESET , PORT , PIN

Remarks
1WRESET Reset the 1WIRE bus. The error variable ERR will return 1 if an

error occurred
port The register name of the input port. Like PINB, PIND.
pin The pin number to use. In the range from 0-7. May be a numeric

constant or variable.

The variable ERR is set when an error occurs.
New is support for multi 1-wire devices on different pins.
To use this you must specify the port and pin that is used for the communication.
The 1wreset, 1wwrite and 1wread statements will work together when used with the old syntax.
And the pin can be configured from the compiler options or with the CONFIG 1WIRE
statement.

The syntax for additional 1-wire devices is :
1WRESET port , pin
1WWRITE var/constant ,bytes] , port, pin
var = 1WREAD(bytes) , for the configured 1 wire pin
var = 1WREAD(bytes, port, pin) ,for reading multiple bytes

See also
1WREAD »page 79 , 1WWRITE »page 80

Example
'--

' 1WIRE.BAS

' Demonstrates 1wreset, 1wwrite and 1wread()

' pullup of 4K7 required to VCC from PORTB.1

' DS2401 serial button connected to PORTB.1

'--

Config 1wire = PORTB.1 'use this pin

Dim Ar(8) As Byte , A As Byte , I As Byte

1wreset 'reset the bus

Print Err 'print error 1 if error

1wwrite &H33 'read ROM command

For I = 1 To 8

 Ar(I) = 1wread () 'read byte

Next

BASCOM-AVR-HELPFILE page 79

' or ar(1) = 1wread(8) 'read 8 bytes

For I = 1 To 8

 Print hex (Ar(I)); 'print output

Next

Print 'linefeed

End

1WREAD

Action
This statement reads data from the 1wire bus into a variable.

Syntax
var2 = 1WREAD([bytes])
var2 = 1WREAD(bytes , port , pin)

Remarks

var2 Reads a byte from the bus and places it into var2.
Optional the number of bytes to read can be specified.

port The PIN port name like PINB or PIND.
pin The pin number of the port. In the range from 0-7. Maybe a

numeric constant or variable.

New is support for multi 1-wire devices on different pins.
To use this you must specify the port pin that is used for the communication.
The 1wreset, 1wwrite and 1wread statements will work together when used with the old syntax.
And the pin can be configured from the compiler options or with the CONFIG 1WIRE
statement.

The syntax for additional 1-wire devices is :
1WRESET port, pin
1WWRITE var/constant , bytes, port, pin
var = 1WREAD(bytes, port, pin) for reading multiple bytes

See also
1WWRITE »page 80 , 1WRESET »page 78

Example
'--

' 1WIRE.BAS

' Demonstrates 1wreset, 1wwrite and 1wread()

' pullup of 4K7 required to VCC from PORTB.1

' DS2401 serial button connected to PORTB.1

'--

Config 1wire = PORTB.1 'use this pin

Dim Ar(8) As Byte , A As Byte , I As Byte

1wreset 'reset the bus

Print Err 'print error 1 if error

BASCOM-AVR-HELPFILE page 80

1wwrite &H33 'read ROM command

For I = 1 To 8

 Ar(I) = 1wread () 'read byte

Next

' or ar(1) = 1wread(8) 'read 8 bytes

For I = 1 To 8

 Print hex(Ar(I)); 'print output

Next

Print 'linefeed

End

1WWRITE

Action
This statement writes a variable to the 1wire bus.

Syntax
1WWRITE var1

1WWRITE var1, bytes

1WWRITE var1 , bytes , port , pin

Remarks
var1 Sends the value of var1 to the bus. The number of bytes can be

specified too but this is optional.
bytes The number of bytes to write. Must be specified when port and pin

are used.
port The name of the PORT PINx register like PINB or PIND.
pin The pin number in the range from 0-7. May be a numeric constant

or variable.

New is support for multi 1-wire devices on different pins.
To use this you must specify the port and pin that are used for the communication.
The 1wreset, 1wwrite and 1wread statements will work together when used with the old syntax.
And the pin can be configured from the compiler options or with the CONFIG 1WIRE
statement.

The syntax for additional 1-wire devices is :
1WRESET port , pin
1WWRITE var/constant, bytes, port , pi n

var = 1WREAD(bytes , port , pin) ,for reading multiple bytes

See also
1WREAD »page 79 , 1WRESET »page 78

Example
'--
'you could create a loop with a variable for the bit number !
For I = 0 To 3 'for pin 0-3
 1wreset Pinb , I ' reset
 1wwrite &H33 , 1 , Pinb , I 'write command
 Ar(1) = 1wread(8 , Pinb , I) 'read 8 bytes

BASCOM-AVR-HELPFILE page 81

 For A = 1 To 8 'print them
 Print Hex(ar(a));
 Next
 Print 'lf
Next

End

ALIAS

Action
Indicates that the variable can be referenced with another name.

Syntax
newvar ALIAS oldvar

Remarks
oldvar Name of the variable such as PORTB.1
newvar New name of the variable such as direction

Aliasing port pins can give the pin names a more meaningful name.

See also
CONST »page 116

Example
direction ALIAS PORTB.1 'now you can refer to PORTB.1 with the variable direction
SET direction 'has the same effect as SET PORTB.1
END

ABS()

Action
Returns the absolute value of a numeric signed variable.

Syntax
var = ABS(var2)

Remarks
var Variable that is assigned the absolute value of var2.
Var2 The source variable to retrieve the absolute value from.

var : Byte, Integer, Word, Long.
var2 : Integer, Long.

The absolute value of a number is always positive.

See also
-

BASCOM-AVR-HELPFILE page 82

Difference with QB
You can not use numeric constants since the absolute value is obvious for numeric constants.
Does not work with Singles.

Asm
Calls: _abs16 for an Integer and _abs32 for a Long
Input: R16-R17 for an Integer and R16-R19 for a Long
Output:R16-R17 for an Integer and R16-R19 for a Long

Example
Dim a as Integer, c as Integer
a = -1000
c = Abs(a)
Print c
End

ASC

Action
Convert a string into its ASCII value.

Syntax
var = ASC(string)

Remarks
var Target variable that is assigned.
String String variable or constant from which to retrieve the ASCII

value.

var : Byte, Integer, Word, Long.
string : String, Constant.

Note that only the first character of the string will be used.
When the string is empty, a zero will be returned.

See also
CHR »page 87

Asm
Calls: -
Input:
Output: _temp1=R24

Example
Dim a as byte, s as String * 10
s = "ABC"

BASCOM-AVR-HELPFILE page 83

a = Asc(s)
Print a 'will print 65
End

BAUD

Action
Changes the baud rate for the hardware UART.

Syntax
BAUD = var

BAUD #x , const

Remarks
Var The baud rate that you want to use.
x The channel number of the software uart.
const A numeric constant for the baud rate that you want to

use.

Do not confuse the BAUD statement with the $BAUD compiler directive.
And do not confuse $CRYSTAL »page 64 and CRYSTAL »page 106
$BAUD overrides the compiler setting for the baud rate and BAUD will change the current
baud rate.
BAUD = ... will work on the hardware UART.
BAUD #x, yyyy will work on the software UART.

See also
$CRYSTAL »page 64 , $BAUD »page 64

Asm
Calls: -
Input: -
Output: -
Code : Ldi _temp1, baud
 Out UBRR, _temp1

Example
$BAUD = 2400
$CRYSTAL = 14000000' 14 MHz crystal
Print "Hello"
'Now change the baudrate in a program
BAUD = 9600 '
Print "Did you change the terminal emulator baud rate too?"
END

BCD

Action
Converts a variable stored in BCD format into a string.

BASCOM-AVR-HELPFILE page 84

Syntax
PRINT BCD(var)

LCD BCD(var)

Remarks
Var Variable to convert.

var1 : Byte, Integer, Word, Long, Constant.

When you want to use an I2C clock device which stores its values as BCD values you can use
this function to print the value correctly.
BCD() displays values with a leading zero.

The BCD() function is intended for the PRINT/LCD statements.
Use the MAKEBCD function to convert variables from decimal to BCD.
Use the MAKEDEC function to convert variables from BCD to decimal.

See also
MAKEDEC »page 148 , MAKEBCD »page 147

Asm
Calls: _BcdStr
Input: X hold address of variable
Output: R0 with number of bytes, frame with data.

Example
Dim a as byte
a = 65
LCD a
Lowerline
LCD BCD(a)
End

BITWAIT

Action
Wait until a bit is set or reset.

Syntax
BITWAIT x SET/RESET

Remarks
X Bit variable or internal register like PORTB.x , where x ranges from 0-7.

When using bit variables be sure that they are set/reset by software.

BASCOM-AVR-HELPFILE page 85

When you use internal registers that can be set/reset by hardware such as PORTB.0 this
doesn't apply.

See also

Asm
Calls: -
Input: -
Output: -
Code : shown for address 0-31

label1:
Sbic PINB.0,label2
Rjmp label1
Label2:

Example
Dim a as bit
BITWAIT a , SET 'wait until bit a is set
BITWAIT PORTB.7, RESET 'wait until bit 7 of Port B is 0.
End

BYVAL

Action
Specifies that a variable is passed by value.

Syntax
Sub Test(BYVAL var)

Remarks
Var Variable name

The default for passing variables to SUBS and FUNCTIONS, is by reference , BYREF. When
you pass a variable by reference, the address is passed to the SUB or FUNCTION. When you
pass a variable by Value, a temp variable is created on the frame and the address of the copy
is passed.
When you pass by reference, changes to the variable will be made to the calling variable.
When you pass by value, changes to the variable will be made to the copy so the original value
will not be changed.

By default passing by reference is used.

See also
CALL »page 86 , DECLARE »page 112 , SUB »page 174 , FUNCTION »page 111

ASM

BASCOM-AVR-HELPFILE page 86

Example
Declare Sub Test(Byval X As Byte, Byref Y As Byte, Z As Byte)

CALL

Action
Call and execute a subroutine.

Syntax
CALL Test [(var1, var-n)]

Remarks
Var1 Any BASCOM variable or constant.
Var-n Any BASCOM variable or constant.
Test Name of the subroutine. In this case Test.
You can call sub routines with or without passing parameters.

It is important that the SUB routine is DECLARED before you make the CALL to the
subroutine. Of course the number of declared parameters must match the number of passed
parameters.

It is also important that when you pass constants to a SUB routine, you must DECLARE these
parameters with the BYVAL argument.

With the CALL statement, you can call a procedure or subroutine.
For example: Call Test2

The call statement enables you to implement your own statements.

You don't have to use the CALL statement:
Test2 will also call subroutine test2

When you don't supply the CALL statement, you must leave out the parenthesis.
So Call Routine(x,y,z) must be written as Routine x,y,x

Unlike normal SUB programs called with the GOSUB statement, the CALL statement enables
you to pass variables to a SUB routine.

See also
DECLARE »page 112 , SUB »page 174 , EXIT »page 121 , FUNCTION »page 111 , LOCAL
»page 143

Example
Dim A As Byte, B as Byte 'dimension some variables
Declare Sub Test(b1 As Byte, BYVAL b2 As Byte) 'declare the SUB program
a = 65 'assign a value to variable A
Call test (a , 5) 'call test with parameter A and constant
test a , 5 'alternative call

BASCOM-AVR-HELPFILE page 87

Print A 'now print the new value
End

SUB Test(b1 as byte, BYVAL b2 as byte) 'use the same variable names as 'the
declared one !!!

LCD b1 'put it on the LCD
Lowerline
LCD BCD(b2)
B1 = 10 'reassign the variable
B2 = 15 'reassign the variable

End SUB

One important thing to notice is that you can change b2 but that the change will not be
reflected to the calling program!
Variable A is changed however.

This is the difference between the BYVAL and BYREF argument in the DECLARE ration of the
SUB program.
When you use BYVAL, this means that you will pass the argument by its value. A copy of the
variable is made and passed to the SUB program. So the SUB program can use the value and
modify it, but the change will not be reflected to the calling parameter. It would be impossible
too when you pass a numeric constant for example.

If you do not specify BYVAL, BYREF will be used by default and you will pass the address of
the variable. So when you reassign B1 in the above example, you are actually changing
parameter A.

CHR

Action
Convert a numeric variable or a constant to a character.

Syntax
PRINT CHR(var)
s = CHR(var)

Remarks
Var Numeric variable or numeric constant.
S A string variable.

When you want to print a character to the screen or the LCD display,
you must convert it with the CHR() function.

When you use PRINT numvar, the value will be printed.
When you use PRINT Chr(numvar), the ASCII character itself will be printed.
The Chr() function is handy in combination with the LCD custom characters where you ca
redefine characters 0-7 of the ASCII table.

See also
ASC() »page 82

BASCOM-AVR-HELPFILE page 88

Example
Dim a As Byte 'dim variable
a = 65 'assign variable
LCD a 'print value (65)
Lowerline
LCD HEX(a) 'print hex value (41)
LCD Chr(a) 'print ASCII character 65 (A)
End

CLS

Action
Clear the LCD display and set the cursor to home.

Syntax
CLS

Remarks
Clearing the LCD display does not clear the CG-RAM in which the custom characters are
stored.

See also
$LCD »page 69 , LCD »page 139 , SHIFTLCD »page 168 , SHIFTCURSOR »page 165 ,
SHIFTLCD »page 168

Example
Cls 'Clear LCD display
LCD "Hello" 'show this famous text
End

CLOCKDIVISION

Action
Will set the system clock division available in the MEGA chips.

Syntax
CLOCKDIVISON = var

Remarks
var Variable or numeric constant that sets the clock division. Valid

values are from 2-129.
A value of 0 will disable the division.

On the MEGA 103 and 603 the system clock frequency can be divided so you can save power
for instance. A value of 0 will disable the clock divider. The divider can divide from 2 to 127. So
the other valid values are from 2 - 127.
Some routines that rely on the system clock will not work proper anymore when you use the
divider. WAITMS for example will take twice the time when you use a value of 2.

BASCOM-AVR-HELPFILE page 89

See also
POWERSAVE »page 156

Example
$BAUD = 2400
Clockdivision = 2
END

CLOSE

Action
Opens and closes a device.

Syntax
OPEN "device" for MODE As #channel
CLOSE #channel

Remarks
device The default device is COM1 and you don't need to open a channel to use

INPUT/OUTPUT on this device.
With the implementation of the software UART, the compiler must know to
which pin/device you will send/receive the data.
So that is why the OPEN statement must be used. It tells the compiler about
the pin you use for the serial input or output and the baud rate you want to
use.
COMB.0:9600,8,N,2 will use PORT B.0 at 9600 baud with 2 stop bits.

The format for COM1 is : COM1:speed, where the speed is optional and will
override the compiler settings for the speed.

The format for the sofware UART is: COMpin:speed,8,N,stop
bits[,INVERTED]
Where pin is the name of the PORT-pin.
Speed must be specified and stopbits can be 1 or 2.
An optional parameter ,INVERTED can be specified to use inverted RS-232.
Open "COMD.1:9600,8,N,1,INVERTED" For Output As #1 , will use pin
PORTD.1 for output with 9600 baud, 1 stop bit and with inverted RS-232.

MODE You can use BINARY or RANDOM for COM1, but for the software UART
pins, you must specify INPUT or OUTPUT.

channel The number of the channel to open. Must be a positive constant >0.

The statements that support the device are PRINT , INPUT and INPUTHEX.

Every opened device must be closed using the CLOSE #channel statement. Of course, you
must use the same channel number.
The best place for the CLOSE statement is at the end of your program.

The INPUT statement in combination with the software UART, will not echo characters back
because there is no default associated pin for this.

BASCOM-AVR-HELPFILE page 90

See also
OPEN »page 152 , PRINT »page 156

Example
'---
' OPEN.BAS
' demonstrates software UART
'---

Dim B As Byte

'open channel for output and use inverted logic

Open "comd.1:9600,8,n,1,inverted" For Output As #1
Print #1 , B
Print #1 , "serial output"
Close #1

'Now open a pin for input and use inverted logic
Open "comd.2:9600,8,n,1,inverted" For Input As #2
Input #2 , B
Close #2

'use normal hardware UART for printing
Print B

End

CONFIG
The CONFIG statement is used to configure the hardware devices.

CONFIG TIMER0 »page 97
CONFIG TIMER1 »page 99
CONFIG KEYBOARD
CONFIG LCD »page 93
CONFIG LCDBUS »page 94
CONFIG LCDMODE »page 94
CONFIG 1WIRE »page 91
CONFIG SDA »page 95
CONFIG SCL »page 96
CONFIG DEBOUNCE »page 91
CONFIG SPI »page 96
CONFIG LCDPIN »page 95
CONFIG WATCHDOG »page 102
CONFIG PORT »page 102
CONFIG KBD »page 93
CONFIG I2CDELAY »page 92
CONFIG INTx »page 92
CONFIG WAITSUART »page 101

BASCOM-AVR-HELPFILE page 91

CONFIG 1WIRE

Action
Configure the pin to use for 1WIRE statements and override the compiler setting.

Syntax
CONFIG 1WIRE = pin

Remarks
Pin The port pin to use such as PORTB.0

The CONFIG 1WIRE statement, only overrides the compiler setting.
You can have only one pin for the 1WIRE statements because the idea is that you can attach
multiple 1WIRE devices to the 1WIRE bus.

See also
1WRESET »page 78 , 1WREAD »page 79 , 1WWRITE »page 80

Example
Config 1WIRE = PORTB.0 'PORTB.0 is used for the 1-wire bus
1WRESET 'reset the bus

CONFIG DEBOUNCE

Action
Configures the delay time for the DEBOUNCE statement.

Syntax
CONFIG DEBOUNCE = time

Remarks
Time A numeric constant which specifies the delay time in mS.

When debounce time is not configured, 25 mS will be used as a default.

See also
DEBOUNCE

Example
CONFIG DEBOUNCE = 30 'when the config statement is not used a default

' of 25mS will be used

'Debounce Pind.0 , 1 , Pr 'try this for branching when high(1)

 Debounce Pind.0 , 0 , Pr , Sub

 Debounce Pind.0 , 0 , Pr , Sub

 ' ^----- label to branch to

 ' ^---------- Branch when PIND.0 goes low(0)

 ' ^---------------- Examine PIND.0

BASCOM-AVR-HELPFILE page 92

 'When Pind.0 goes low jump to subroutine Pr

 'Pind.0 must go high again before it jumps again

 'to the label Pr when Pind.0 is low

 Debounce Pind.0 , 1 , Pr 'no branch

 Debounce Pind.0 , 1 , Pr 'will result in a return without gosub

End

Pr:

 Print "PIND.0 was/is low"

Return

CONFIG I2CDELAY

Action
Compiler directive that overrides the internal I2C delay routine.

Syntax
CONFIG I2CDELAY = value

Remarks
value A numeric value in the range of 1-255.

A higher value means a slower I2C clock.

For the I2C routines the clock rate is calculated depending on the used crystal. In order to
make it work for all I2C devices the slow mode is used. When you have faster I2C devices you
can specify a low value.

See also
CONFIG SCL »page 96 , CONFIG SDA »page 95

Example
CONFIG SDA = PORTB.7 'PORTB.7 is the SDA line
CONFIG I2CDELAY = 5
See I2C example for more details.

CONFIG INTx

Action
Configures the way the interrupts 0,1 and 4-7 will be triggered.

Syntax
CONFIG INTx = state
Where X can be 0,1 and 4 to 7 in the MEGA chips.

Remarks
state LOW LEVEL to generate an interrupt while the pin is held low.

Holding the pin low will generate an interrupt over and over again.

FALLING to generate an interrupt on the falling edge.

BASCOM-AVR-HELPFILE page 93

RISING to generate an interrupt on the rising edge..

The MEGA has also INT0-INT3. These are always low level triggered so there is no need
/possibility for configuration.

Example
'--
Config INT4 = LOW LEVEL

End

CONFIG KBD

Action
Configure the GETKBD() function and tell which port to use.

Syntax
CONFIG KBD = PORTx

Remarks
PORTx The name of the PORT to use such as PORTB or PORTD.

See also
GETKBD »page 124

CONFIG LCD

Action
Configure the LCD display and override the compiler setting.

Syntax
CONFIG LCD = LCDtype

Remarks
LCDtype The type of LCD display used. This can be :

40 * 4,16 * 1, 16 * 2, 16 * 4, 16 * 4, 20 * 2 or 20 * 4 or 16 * 1a
Default 16 * 2 is assumed.

When you have a 16 * 2 display, you don't have to use this statement.
The 16 * 1a is special. It is used for 2 * 8 displays that have the address of line 2, starting at
location &H8.

Example
CONFIG LCD = 40 * 4
LCD "Hello" 'display on LCD
FOURTHLINE 'select line 4
LCD "4" 'display 4
END

BASCOM-AVR-HELPFILE page 94

CONFIG LCDBUS

Action
Configures the LCD data bus and overrides the compiler setting.

Syntax
CONFIG LCDBUS = constant

Remarks
Constant 4 for 4-bit operation, 8 for 8-bit mode (default)

Use this statement together with the $LCD = address statement.
When you use the LCD display in the bus mode the default is to connect all the data lines.
With the 4-bit mode, you only have to connect data lines d7-d4.

See also
CONFIG LCD »page 93

Example
$LCD = &HC000 'address of enable and RS signal
$LCDRS = &H800 'address of enable signal
Config LCDBUS = 4 '4 bit mode
LCD "hello"

CONFIG LCDMODE

Action
Configures the LCD operation mode and overrides the compiler setting.

Syntax
CONFIG LCDMODE = type

Remarks
Type PORT will drive the LCD in 4-bit port mode and is the default.

In PORT mode you can choose different PIN's from different PORT's to
connect to the lower 4 data lines of the LCD display. The RS and E can
also be connected to a user selectable pin. This is very flexible since you
can use pins that are not used by your design and makes the board layout
simple. On the other hand, more software is necessary to drive the pins.

BUS will drive the LCD in bus mode and in this mode is meant when you
have external RAM and so have an address and data bus on your system.
The RS and E line of the LCD display can be connected to an address
decoder. Simply writing to an external memory location select the LCD and
the data is sent to the LCD display. This means the data-lines of the LCD
display are fixed to the data-bus lines.

Use $LCD »page 69 = address and $LCDRS »page 71 = address, to
specify the addresses that will enable the E and RS lines.

BASCOM-AVR-HELPFILE page 95

See also
CONFIG LCD »page 93 , $LCD »page 69 , $LCDRS »page 71

Example
Config LCDMODE = PORT 'the report will show the settings
Config LCDBUS = 4 '4 bit mode
LCD "hello"

CONFIG LCDPIN

Action
Override the LCD-PIN select options.

Syntax
CONFIG LCDPIN = PIN , DB4= PN,DB5=PN, DB6=PN, DB7=PN, E=PN, RS=PN

Remarks
PN The name of the PORT pin such as PORTB.2 for example.
DUM Actually a dummy you can leave out as long as you don't forget to include

the = sign.

You can override the PIN selection from the Compiler Settings with this statement, so a
second configuration lets you not choose more pins for a second LCD display.

See also
CONFIG LCD »page 93

Example
CONFIG LCDPIN = PIN ,DB4= PORTB.1,DB5=PORTB.2,DB6=PORTB.3,
DB7=PORTB.4,E=PORTB.5,RS=PORTB.6

The above example must be typed on one line.

CONFIG SDA

Action
Overrides the SDA pin assignment from the Option Compiler Settings »page 32.

Syntax
CONFIG SDA = pin

Remarks
Pin The port pin to which the I2C-SDA line is connected.

When you use different pins in different projects, you can use this statement to override the
Options Compiler setting for the SDA pin. This way you will remember which pin you used

BASCOM-AVR-HELPFILE page 96

because it is in your code and you do not have to change the settings from the options. In
BASCOM-AVR the settings are also stored in the project.CFG file.

See also
CONFIG SCL »page 96 , CONFIG I2CDELAY »page 92

Example
CONFIG SDA = PORTB.7 'PORTB.7 is the SDA line
See I2C example for more details.

CONFIG SCL

Action
Overrides the SCL pin assignment from the Option Compiler Settings »page 32.

Syntax
CONFIG SCL = pin

Remarks
Pin The port pin to which the I2C-SCL line is connected.

When you use different pins in different projects, you can use this statement to override the
Options Compiler setting for the SCL pin. This way you will remember which pin you used
because it is in your code and you do not have to change the settings from the options. Of
course BASCOM-AVR also stores the settings in a project.CFG file.

See also
CONFIG SDA »page 95 , CONFIG I2CDELAY »page 92

Example
CONFIG SCL = PORTB.5 'PORTB.5 is the SCL line

CONFIG SPI

Action
Configures the SPI related statements.

Syntax for software SPI
CONFIG SPI = SOFT, DIN = PIN, DOUT = PIN , SS = PIN, CLOCK = PIN

Syntax for hardware SPI
CONFIG SPI = HARD, DATA ORDER = LSB|MSB , MASTER = YES|NO , POLARITY =
HIGH|LOW , PHASE = 0|1, CLOCKRATE = 4|16|64|128

Remarks
SPI SOFT for software emulation of SPI, this lets you choose the PINS to

use.

BASCOM-AVR-HELPFILE page 97

HARD for the internal SPI hardware, that will use fixed pins.
DIN Data input or MISO. Pin is the pin number to use such as PINB.0
DOUT Data output or MOSI. Pin is the pin number to use such as PORTB.1
SS Slave Select. Pin is the pin number to use such as PORTB.2
CLOCK Clock. Pin is the pin number to use such as PORTB.3
DATA
ORDER

Selects if MSB or LSB is transferred first.

MASTER Selects if the SPI is run in master or slave mode.
POLARITY Select HIGH to to make the CLOCK line high while the SPI is idle. LOW

will make clock LOW while idle.
PHASE Refer to a data sheet to learn about the different settings in combination

with polarity.
CLOCKRAT
E

The clockrate selects the division of the of the oscillator frequency that
serves as the SPI clock. So with 4 you will have a clockrate of 4.000000 /
4 = 1 MHz , when a 4 MHZ XTAL is used.

The default setting for hardware SPI (when you use CONFIG SPI = HARD) is MSB first,
POLARITY = HIGH, MASTER = YES, PHASE = 0, CLOCKRATE = 4

See also
SPIIN »page 169 , SPIOUT »page 170 , SPIINIT »page 170

Example
Config SPI = SOFT, DIN = PINB.0 , DOUT = PORTB.1, SS = PORTB.2, CLOCK = PORTB.3
Dim var As Byte
SPIINIT 'Init SPI state and pins.

SPIOUT var , 1 'send 1 byte

CONFIG TIMER0

Action
Configure TIMER0.

Syntax
CONFIG TIMER0 = COUNTER , EDGE=RISING/FALLING

CONFIG TIMER0 = TIMER , PRESCALE= 1|8|64|256|1024

Remarks
TIMER0 is a 8 bit counter. See the hardware description of TIMER0.

When configured as a COUNTER:
EDGE You can select whether the TIMER will count on the falling or rising edge.

When configured as a TIMER:
PRESCALE The TIMER is connected to the system clock in this case. You can

select the division of the system clock with this parameter.
Valid values are 1 , 8, 64, 256 or 1024

BASCOM-AVR-HELPFILE page 98

When you use the CONFIG TIMER0 statement, the mode is remembered by the compiler and
the TCCRO register is set.

When you use the STOP TIMER0 statement, the TIMER is stopped.
When you use the START TIMER0 statement, the TIMER TCCR0 register is loaded with the
last value that was configured with the CONFIG TIMER0 statement.

So before using the START »page 171 and STOP »page 172 TIMER0 statements, use the
CONFIG statement first.

Example
'First you must configure the timer to operate as a counter or as a timer
'Lets configure it as a COUNTER now
'You must also specify if it will count on a rising or falling edge

Config Timer0 = Counter , Edge = Rising
'Config Timer0 = Counter , Edge = falling
'unremark the line above to use timer0 to count on falling edge

'To get/set the value from the timer access the timer/counter register
'let's reset it to 0
Tcnt0 = 0

Do
 Print Tcnt0
Loop Until Tcnt0 >= 10
'when 10 pulses are counter the loop is exited

'Now configure it as a TIMER
'The TIMER can have the system clock as an input or the system clock divided
'by 8,64,256 or 1024
'The prescale parameter acccepts 1,8,64,256 or 1024
Config Timer0 = Timer , Prescale = 1

'The TIMER is started now automatically
'You can STOP the timer with the following statement :
Stop Timer0

'Now the timer is stopped
'To START it again in the last configured mode, use :
Start Timer0

'Again you can access the value with the tcnt0 register
Print Tcnt0

'when the timer overflows, a flag named TOV0 in register TIFR is set
'You can use this to execute an ISR
'To reset the flag manual in non ISR mode you must write a 1 to the bit position
'in TIFR:
Set Tifr.1

'The following code shows how to use the TIMER0 in interrupt mode
'The code is block remarked with '(en ')

BASCOM-AVR-HELPFILE page 99

'(

'Configure the timer to use the clock divided by 1024
Config Timer0 = Timer , Prescale = 1024

'Define the ISR handler
On Ovf0 Tim0_isr
'you may also use TIMER0 for OVF0, it is the same

Do
 'your program goes here
Loop

'the following code is executed when the timer rolls over
Tim0_isr:
 Print "*";
Return

')

End

CONFIG TIMER1

Action
Configure TIMER1.

Syntax
CONFIG TIMER1 = COUNTER , EDGE=RISING/FALLING , NOICE CANCEL=0/1,
CAPTURE EDGE = RISING/FALLING
CONFIG TIMER1 = TIMER , PRESCALE= 1|8|64|256|1024

CONFIG TIMER1 = PWM , PWM = 8 , COMPARE A PWM = CLEAR UP/CLEAR
DOWN/DISCONNECT , COMPARE B PWM = (see A)

Remarks
The TIMER1 is a 16 bit counter. See the hardware description of TIMER1.

When configured as a COUNTER:
EDGE You can select whether the TIMER will count on the falling or

rising edge.
CAPTURE EDGE You can choose to capture the TIMER registers to the INPUT

CAPTURE registers
With the CAPTURE EDGE = FALLING/RISING, you can specify
to capture on the falling or rising edge of pin ICP

NOICE CANCELING To allow noise canceling you can provide a value of 1.

When configured as a TIMER:
PRESCALE The TIMER is connected to the system clock in this case. You can

select the division of the system clock with this parameter.
Valid values are 1 , 8, 64, 256 or 1024

BASCOM-AVR-HELPFILE page 100

The TIMER1 also has two compare registers A and B
When the timer value matches a compare register, an action can be performed
COMPARE A The action can be:

SET will set the OC1X pin
CLEAR will clear the OC1X pin
TOGGLE will toggle the OC1X pin
DISCONNECT will disconnect the TIMER from output pin OC1X

And the TIMER can be used in PWM mode
You have the choice between 8, 9 or 10 bit PWM mode
Also you can specify if the counter must count UP or down after a match
to the compare registers
Note that there are two compare registers A and B

PWM Can be 8, 9 or 10.
COMPARE A PWM PWM compare mode. Can be CLEAR UP or CLEAR DOWN

Example
'---
' TIMER1.BAS
'---

Dim W As Word

'The TIMER1 is a versatile 16 bit TIMER.
'This example shows how to configure the TIMER

'First like TIMER0 , it can be set to act as a TIMER or COUNTER
'Lets configure it as a TIMER that means that it will count and that
'the input is provided by the internal clock.
'The internal clock can be divided by 1,8,64,256 or 1024
Config Timer1 = Timer , Prescale = 1024

'You can read or write to the timer with the COUNTER1 or TIMER1 variable
W = Timer1
Timer1 = W

'To use it as a COUNTER, you can choose on which edge it is triggered
Config Timer1 = Counter , Edge = Falling
'Config Timer1 = Counter , Edge = Rising

'Also you can choose to capture the TIMER registers to the INPUT CAPTURE registers
'With the CAPTURE EDGE = , you can specify to capture on the falling or rising edge
of pin ICP
Config Timer1 = Counter , Edge = Falling , Capture Edge = Falling
'Config Timer1 = Counter , Edge = Falling , Capture Edge = Rising

'To allow noise canceling you can also provide :
Config Timer1 = Counter , Edge = Falling , Capture Edge = Falling , Noice Canceling =
1

'to read the input capture register :
W = Capture1
'to write to the capture register :
Capture1 = W

BASCOM-AVR-HELPFILE page 101

'The TIMER also has two compare registers A and B
'When the timer value matches a compare register, an action can be performed
Config Timer1 = Counter , Edge = Falling , Compare A = Set , Compare B = Toggle
'SET , will set the OC1X pin
'CLEAR, will clear the OC1X pin
'TOGGLE, will toggle the OC1X pin
'DISCONNECT, will disconnect the TIMER from output pin OC1X

'To read write the compare registers, you can use the COMPARE1A and COMPARE1B
variables
Compare1a = W
W = Compare1a

'And the TIMER can be used in PWM mode
'You have the choice between 8,9 or 10 bit PWM mode
'Also you can specify if the counter must count UP or down after a match
'to the compare registers
'Note that there are two compare registers A and B
Config Timer1 = Pwm , Pwm = 8 , Compare A Pwm = Clear Up , Compare B Pwm = Clear Down

'to set the PWM registers, just assign a value to the compare A and B registers
Compare1a = 100
Compare1b = 200

'Or for better reading :
Pwm1a = 100
Pwm1b = 200

End

CONFIG WAITSUART

Action
Compiler directive that specifies that software UART waits after sending the last byte.

Syntax
CONFIG WAITSUART = value

Remarks
value A numeric value in the range of 1-255.

A higher value means a longer delay in mS.

When the software UART routine are used in combination with serial LCD displays it can be
convenient to specify a delay so the display can process the data.

See also

Example
See OPEN »page 152 example for more details.

BASCOM-AVR-HELPFILE page 102

CONFIG WATCHDOG

Action
Configures the watchdog timer.

Syntax
CONFIG WATCHDOG = time

Remarks
Time The interval constant in mS the watchdog timer will count to before it will

reset your program.

Possible settings :
16 , 32, 64 , 128 , 256 , 512 , 1024 and 2048.

When the WD is started, a reset will occur after the specified number of mS.
With 2048, a reset will occur after 2 seconds, so you need to reset the WD in your programs
periodically with the RESET WATCHDOG statement.

See also
START WATCHDOG »page 171 , STOP WATCHDOG »page 172 , RESET WATCHDOG
»page 160

Example
'---
' (c) 2000 MCS Electronics
' WATCHD.BAS demonstrates the watchdog timer
'---
Config Watchdog = 2048 'reset after 2048 mSec
Start Watchdog 'start the watchdog timer
Dim I As Word
For I = 1 To 10000
 Print I 'print value
 ' Reset Watchdog
 'you will notice that the for next doesnt finish because of the reset
 'when you unmark the RESET WATCHDOG statement it will finish because the
 'wd-timer is reset before it reaches 2048 msec
Next
End

CONFIG PORT

Action
Sets the port or a port pin to the right data direction.

Syntax
CONFIG PORTx = state

CONFIG PINx.y = state

Remarks

BASCOM-AVR-HELPFILE page 103

state A constant that can be INPUT or OUTPUT.
INPUT will set the data direction register to input for
port X.
OUTPUT will set the data direction to output for port X.
You can also use a number for state. &B0001111, will
set the upper nibble to input and the lower nibble to
output.

You can also set one port pin with the CONFIG PIN =
state, statement.
Again, you can use INPUT, OUTPUT or a number. In
this case the number can be only zero or one.

state : Constant.

The best way to set the data direction for more than 1 pin, is to use the CONFIG PORT,
statement and not multiple lines with CONFIG PIN statements.

Example
'--
' (c) 2000 MCS Electronics
'--
' file: PORT.BAS
' demo: PortB and PortD
'--
Dim A As Byte , Count As Byte

'Use port B for OUTPUT
Config Portb = Output
A = Portb 'get inputvalue of port 1
A = A And Portb
A = Pinb

Print A 'print it

Portb = 10 'set port1 to 10
Portb = Portb And 2

Set Portb.0 'set bit 0 of port 1 to 1
Bitwait Pinb.0 , Set 'wait until bit is set(1)

Incr Portb

Count = 0
Do
 Incr Count
 Portb = 1
 For A = 1 To 8
 Rotate Portb , Left 'rotate bits left
 Next
 'the following 2 lines do the same as the previous loop
 Portb = 1
 Rotate Portb , Left , 8
Loop Until Count = 10
Print "Ready"

'note that the AVR port pins have a data direction register

BASCOM-AVR-HELPFILE page 104

'when you want to use a pin as an input it must be set low first
'you can do this by writing zeros to the DDRx:
'DDRB =&B11110000 'this will set portb1.0,portb.1,portb.2 and portb.3 to use as
inputs.

'So : when you want to use a pin as an input set it low first in the DDRx!
' and when you want to use the pin as output, write a 1 first

End

COUNTER0 and COUNTER1

Action
Set or retrieve the internal 16 bit hardware register.

Syntax
COUNTER0 = var
var = COUNTER0

TIMER0 can also be used

COUNTER1 = var
var = COUNTER1

TIMER1 can also be used

CAPTURE1 = var
var = CAPTURE1

TIMER1 capture register

COMPARE1A = var
var = COMPARE1A

TIMER1 COMPARE A register

COMARE1B = var
var = COMPARE1B

TIMER1 COMPARE B register

PWM1A = var
var = PWM1A

TIMER1 COMPAREA register. (Is used for
PWM)

PWM1B = var
var = PRM1B

TIMER1 COMPARE B register. (Is used for
PWM)

Remarks
Var A byte, Integer/Word variable or constant that is assigned to the register or

is read from the register.

Because the above 16 bit register pairs must be accessed somewhat differently than you may
expect, they are implemented as variables.
The exception is TIMER0/COUNTER0, this is a normal 8 bit register and is supplied for
compatibility with the syntax.

When the CPU reads the low byte of the register, the data of the low byte is sent to the CPU
and the data of the high byte is placed in a temp register. When the CPU reads the data in the
high byte, the CPU receives the data in the temp register.

When the CPU writes to the high byte of the register pair, the written data is placed in a temp
register. Next when the CPU writes the low byte, this byte of data is combined with the byte
data in the temp register and all 16 bits are written to the register pairs. So the MSB must be
accessed first.

All of the above is handled automatically by BASCOM when accessing the above registers.

BASCOM-AVR-HELPFILE page 105

Note that the available registers may vary from chip to chip.
The BASCOM documentation used the 8515 to describe the different hardware registers.

CPEEK

Action
Returns a byte stored in code memory.

Syntax
var = CPEEK(address)

Remarks
Var Numeric variable that is assigned with the content of the program

memory at address
Address Numeric variable or constant with the address location

There is no CPOKE statement because you can not write into program memory.
Cpeek(0) will return the first byte of the file. Cpeek(1) will return the second byte of the binary
file.

See also
PEEK »page 154 , POKE »page 154 , INP »page 136 , OUT »page 153

Example
'---
' (c) 1998-2000 MCS Electronics
' PEEK.BAS
' demonstrates PEEK, POKE, CPEEK, INP and OUT
'
'---
Dim I As Integer , B1 As Byte
'dump internal memory
For I = 0 To 31 'only 32 registers in AVR
 B1 = Peek(i) 'get byte from internal memory
 Print Hex(b1) ; " ";
 'Poke I , 1 'write a value into internal memory(register)
Next
Print 'new line
'be careful when writing into internal memory !!

'now dump a part of the code-memory(program)
For I = 0 To 255
 B1 = Cpeek(i) 'get byte from internal code memory
 Print Hex(b1) ; " ";
Next
'note that you can not write into code memory!!

Out &H8000 , 1 'write 1 into XRAM at address 8000
B1 = Inp(&H8000) 'return value from XRAM
Print B1

BASCOM-AVR-HELPFILE page 106

CRYSTAL

Action
Special byte variable that can be used with software UART routine to change the baudrate
during runtime.

Syntax
CRYSTAL = var (old option do not use !!)
___CRYSTAL1 = var
BAUD #1, 2400

Remarks
With the software UART you can generate good baudrates. But chips such as the ATtiny22
have an internal 1 MHz clock. The clock frequency can change during runtime by influence of
temperature or voltage.
The crystal variable can be changed during runtime to change the baud rate.
The above has been changed in version 1.11
Now you still can change the baud rate with the crystal variable.
But you dont need to dimension it. And the name has been changed:
___CRYSTALx where x is the channel number.
When you opened the channel with #1, the variable will be named ___CRYSTAL1
But a better way is provided now to change the baud rate of the software uart at run time. You
can use the BAUD option now:
Baud #1 , 2400 'change baud rate to 2400 for channel 1
When you use the baud # option, you must specify the baud rate before you print or use input
on the channel. This will dimension the ___CRYSTALx variable and load it with the right value.
When you don't use the BAUD # option the value will be loaded from code and it will not use 2
bytes of your SRAM.
The ___CRYSTALx variable is hidden in the report file because it is a system variable. But you
may assign a value to it after BAUD #x, zzzz has dimensioned it.

The old CRYSTAL variable does not exist anymore.

Some values for 1 MHz internal clock :
Crystal = 66 'for 2400 baud
Crystal = 31 'for 4800 baud
Crystal = 14 'for 9600 baud

See also
OPEN »page 152 , CLOSE »page 152

Example
Dim B as byte
Open "comd.1:9600,8,n,1,inverted" For Output As #1
Print #1 , B
Print #1 , "serial output"
baud #1, 4800 'use 4800 baud now
Print #1, "serial output"
___CRYSTAL1 = 255

BASCOM-AVR-HELPFILE page 107

Close #1
End

CURSOR

Action
Set the LCD Cursor State.

Syntax
CURSOR ON / OFF BLINK / NOBLINK

Remarks
You can use both the ON or OFF and BLINK or NOBLINK parameters.
At power up the cursor state is ON and NOBLINK.

See also
DISPLAY »page 118 , LCD »page 139

Example
Dim a As Byte
a = 255
LCD a
CURSOR OFF 'hide cursor
Wait 1 'wait 1 second
CURSOR BLINK 'blink cursor
End

DATA

Action
Specifies constant values to be read by subsequent READ statements.

Syntax
DATA var [, varn]

Remarks
Var Numeric or string constant.
The DATA related statements use the internal registers pair R8 and R9 to store the data
pointer.

To store a " sign on the data line, you can use :
DATA $34
The $-sign tells the compiler that the ASCII value will follow of the character.
You can also use this to store special characters that can't be written by the editor such as
chr(7)

Because the DATA statements allows you to generate an EEP file to store in EEPROM, the
$DATA »page 65 and $EEPROM »page 67 directives have been added. Read the description
of these directives to learn more about the DATA statement.

BASCOM-AVR-HELPFILE page 108

The DATA statements must not be accessed by the flow of your program because the DATA
statements are converted to the byte representation of the DATA.
When your program flow enters the DATA lines, unpredictable results will occur.
So as in QB, the DATA statement is best be placed at the end of your program or in a place
that program flow will no enter.
For example this is fine:

Print "Hello"
Goto jump
DATA "test"

Jump:
'because we jump over the data lines there is no problem.

The following example will case some problems:
Dim S As String * 10
Print "Hello"
Restore lbl
Read S
DATA "test"
Print S

When the END statement is used it must be placed BEFORE the DATA lines.

Difference with QB
Integer and Word constants must end with the % -sign.

Long constants must end with the &-sign.

Single constants must end with the !-sign.

See also
READ »page 158 , RESTORE »page 161 , $DATA »page 65 , $EEPROM »page 67

Example
'---
' READDATA.BAS
' Copyright 2000 MCS Electronics
'---

Dim A As Integer , B1 As Byte , Count As Byte
Dim S As String * 15
Dim L As Long
Restore Dta1 'point to stored data
For Count = 1 To 3 'for number of data items
 Read B1 : Print Count ; " " ; B1
Next

Restore Dta2 'point to stored data
For Count = 1 To 2 'for number of data items

BASCOM-AVR-HELPFILE page 109

 Read A : Print Count ; " " ; A
Next

Restore Dta3
Read S : Print S
Read S : Print S

Restore Dta4
Read L : Print L 'long type

End

Dta1:
Data &B10 , &HFF , 10

Dta2:
Data 1000% , -1%

Dta3:
Data "Hello" , "World"
'Note that integer values (>255 or <0) must end with the %-sign
'also note that the data type must match the variable type that is
'used for the READ statement

Dta4:
Data 123456789&
'Note that LONG values must end with the &-sign
'Also note that the data type must match the variable type that is used
'for the READ statement

DEBOUNCE

Action
Debounce a port pin connected to a switch.

Syntax
DEBOUNCE Px.y , state , label [, SUB]

Remarks
Px.y A port pin like PINB.0 , to examine.
state 0 for jumping when PINx.y is low , 1 for jumping when PINx.y is high
label The label to GOTO when the specified state is detected
SUB The label to GOSUB when the specified state is detected

When you specify the optional parameter SUB, a GOSUB to label is performed instead of a
GOTO.
The DEBOUNCE statements wait for a port pin to get high(1) or low(0).
When it does it waits 25 mS and checks again (eliminating bounce of a switch)
When the condition is still true and there was no branch before, it branches to the label.
When DEBOUNCE is executed again, the state of the switch must have gone back in the
original position before it can perform another branch.
Each DEBOUNCE statement which use a different port uses 1 BIT of the internal memory to
hold its state.

BASCOM-AVR-HELPFILE page 110

See also
CONFIG DEBOUNCE »page 91

Example
'---
' DEBOUN.BAS
' Demonstrates DEBOUNCE
'---
CONFIG DEBOUNCE = 30 'when the config statement is not used a default of 25mS will
be used

 'Debounce Pind.0 , 1 , Pr 'try this for branching when high(1)
 Debounce Pind.0 , 0 , Pr , Sub
 Debounce Pind.0 , 0 , Pr , Sub
 ' ^----- label to branch to
 ' ^---------- Branch when P1.0 goes low(0)
 ' ^---------------- Examine P1.0

 'When Pind.0 goes low jump to subroutine Pr
 'Pind.0 must go high again before it jumps again
 'to the label Pr when Pind.0 is low

 Debounce Pind.0 , 1 , Pr 'no branch
 Debounce Pind.0 , 1 , Pr 'will result in a
return without gosub
End

Pr:
 Print "PIND.0 was/is low"
Return

DECR

Action
Decrements a variable by one.

Syntax
DECR var

Remarks
Var Variable to decrement.

var : Byte, Integer, Word, Long, Single.

There are often situations where you want a number to be decreased by 1.
The Decr statement is provided for compatibility with BASCOM-8051.

See also
INCR »page 135

Example

BASCOM-AVR-HELPFILE page 111

'--
' (c) 1997,1998 MCS Electronics
'--
' file: DECR.BAS
' demo: DECR
'--
Dim A As Byte

A = 5 'assign value to a
Decr A 'dec (by one)
Print A 'print it
End

DECLARE FUNCTION

Action
Declares a user function.

Syntax
DECLARE FUNCTION TEST[([BYREF/BYVAL] var as type)] As type

Remarks
test Name of the function.
Var Name of the variable(s).
Type Type of the variable(s) and of the result. Byte,Word/Integer, Long or

String.
When BYREF or BYVAL is not provided, the parameter will be passed by reference.
Use BYREF to pass a variable by reference with its address.
Use BYVAL to pass a copy of the variable.
See the CALL »page 86 statement for more details.

You must declare each function before writing the function or calling the function.

See also
CALL »page 86, SUB »page 174 , FUNCTION »page 111

Example
'--
' (c) 2000 MCS Electronics
' Demonstration of user function
'--

'A user function must be declare before it can be used.
'A function must return a type
Declare Function Myfunction(byval I As Integer , S As String) As Integer
'The byval paramter will pass the parameter by value so the original value
'will not be changed by the function

Dim K As Integer
Dim Z As String * 10
Dim T As Integer
'assign the values
K = 5

BASCOM-AVR-HELPFILE page 112

Z = "123"

T = Myfunction(k , Z)
Print T
End

Function Myfunction(byval I As Integer , S As String) As Integer
 'you can use local variables in subs and functions
 Local P As Integer

 P = I

 'because I is passed by value, altering will not change the original
 'variable named k
 I = 10

 P = Val(s) + I

 'finally assign result
 'Note that the same data type must be used !
 'So when declared as an Integer function, the result can only be
 'assigned with an Integer in this case.
 Myfunction = P
End Function

DECLARE SUB

Action
Declares a subroutine.

Syntax
DECLARE SUB TEST[([BYREF/BYVAL] var as type)]

Remarks
test Name of the procedure.
Var Name of the variable(s).
Type Type of the variable(s). Byte, Word/Integer, Long or String.
When BYREF or BYVAL is not provided, the parameter will be passed by reference.
Use BYREF to pass a variable by reference with its address.
Use BYVAL to pass a copy of the variable.
See the CALL »page 86 statement for more details.

You must declare each sub before writing or calling the sub procedure.

See also
CALL »page 86, SUB »page 174

Example
Dim a As Byte, b1 As Byte, c As Byte
Declare Sub Test(a As Byte)
a = 1 : b1 = 2: c = 3

Print a ; b1 ; c

BASCOM-AVR-HELPFILE page 113

Call Test(b1)
Print a ;b1 ; c
End

Sub Test(a as byte)
 Print a ; b1 ; c
End Sub

DEFxxx

Action
Declares all variables that are not dimensioned of the DefXXX type.

Syntax
DEFBIT b Define BIT
DEFBYTE c Define BYTE
DEFINT I Define INTEGER
DEFWORD x Define WORD
DEFLNG l Define LONG
DEFSNG s Define SINGLE

Difference with QB
QB allows you to specify a range like DEFINT A - D. BASCOM doesn't support this.

Example
Defbit b : DefInt c 'default type for bit and integers
Set b1 'set bit to 1
c = 10 'let c = 10

DEFLCDCHAR

Action
Define a custom LCD character.

Syntax
DEFLCDCHAR char,r1,r2,r3,r4,r5,r6,r7,r8

Remarks
char Constant representing the character (0-7).
r1-r8 The row values for the character.

You can use the LCD designer »page 28 to build the characters.

It is important that a CLS follows the DEFLCDCHAR statement(s).

Special characters can be printed with the Chr »page 87() function.

See also

BASCOM-AVR-HELPFILE page 114

Tools LCD designer »page 28

Example
DefLCDchar 0,1,2,3,4,5,6,7,8 'define special character
Cls 'select LCD DATA RAM
LCD Chr(0) 'show the character
End

DELAY

Action
Delay program execution for a short time.

Syntax
DELAY

Remarks
Use DELAY to wait for a short time.
The delay time is ca. 1000 microseconds.

See also
WAIT , WAITMS

Example
P1 = 5 'write 5 to port 1
DELAY 'wait for hardware to be ready

DIM

Action
Dimension a variable.

Syntax
DIM var AS [XRAM/IRAM] type [AT location]

Remarks
var Any valid variable name such as b1, i or longname. var can also

be an array : ar(10) for example.

type Bit, Byte, Word, Integer, Long, Single or String
XRAM Specify XRAM to store variable into external memory
SRAM Specify SRAM to store variable into internal memory (default)
ERAM Specify ERAM to store the variable into EEPROM

A string variable needs an additional length parameter:
Dim s As XRAM String * 10
In this case, the string can have a maximum length of 10 characters.

BASCOM-AVR-HELPFILE page 115

Note that BITS can only be stored in internal memory.

The optional AT parameter lets you specify where in memory the variable must be stored.
When the memory location already is occupied, the first free memory location will be used.

Difference with QB
In QB you don't need to dimension each variable before you use it. In BASCOM you must
dimension each variable before you use it. This makes for safer code.
In addition, the XRAM/SRAM/ERAM options are not available in QB.

See Also
CONST »page 116 , LOCAL »page 143

Example
'--
' (c) 2000 MCS Electronics
'--
' file: DIM.BAS
' demo: DIM
'--
Dim B1 As Bit 'bit can be 0 or 1
Dim A As Byte 'byte range from 0-255
Dim C As Integer 'integer range from -32767 - +32768
Dim L As Long
Dim W As Word
Dim S As String * 10 'length can be up to 10 characters

'new feature : you can specify the address of the variable
Dim K As Integer At 120
'the next dimensioned variable will be placed after variable s
Dim Kk As Integer

'Assign bits
B1 = 1 'or
Set B1 'use set

'Assign bytes
A = 12
A = A + 1

'Assign integer
C = -12
C = C + 100
Print C

W = 50000
Print W

'Assign long
L = 12345678
Print L

'Assign string
S = "Hello world"
Print S

BASCOM-AVR-HELPFILE page 116

End

CONST

Action
Declares a symbolic constant.

Syntax
CONST symbol = numconst
CONST symbol = stringconst

Remarks
Symbol The name of the symbol.
Numconst The numeric value to assign to the symbol.
Stringconst The string to assign to the symbol

Assigned constants consume no program memory because they only serve as a reference to
the compiler.
The compiler will replace all occurrences of the symbol with the assigned value.

See also
ALIAS »page 81

Difference with BASCOM-8051
In BASCOM-8051 only numeric constants can be used.
The syntax is also different

Example
'--
' (c) 1997-2000 MCS Electronics
' CONST.BAS
'--
Const A = 5 'define numeric constant
Const B1 = &B1001
Const s = "Hello" 'define string constant
Waitms A 'wait for 5 milliseconds
Print A
Print B1
Print s
End

DISABLE

Action
Disable specified interrupt.

Syntax
DISABLE interrupt

BASCOM-AVR-HELPFILE page 117

Remarks
Interrupt Description

INT0 External Interrupt 0
INT1 External Interrupt 1
OVF0,TIMER0, COUNTER0 TIMER0 overflow interrupt
OVF1,TIMER1,
COUNTER1

TIMER1 overflow interrupt

CAPTURE1, ICP1 INPUT CAPTURE TIMER1 interrupt
COMPARE1A,OC1A TIMER1 OUTPUT COMPARE A interrupt
COMPARE1B,OC1B TIMER1 OUTPUT COMPARE B interrupt
SPI SPI interrupt
URXC Serial RX complete interrupt
UDRE Serial data register empty interrupt
UTXC Serial TX complete interrupt
SERIAL Disables URXC, UDRE and UTXC
ACI Analog comparator interrupt
ADC A/D converter interrupt

By default all interrupts are disabled.
To disable all interrupts specify INTERRUPTS.
To enable the enabling and disabling of individual interrupts use ENABLE INTERRUPTS.

See also
ENABLE »page 120

Example
'--
' SERINT.BAS
' serial interrupt example for AVR
'--
Dim B As Bit 'a flag for signalling a received character
Dim Bc As Byte 'byte counter
Dim Buf As String * 20 'serial buffer
'Buf = Space(20)
'unremark line above for the MID() function in the ISR
'we need to fill the buffer with spaces otherwise it will contain garbage

On Urxc Rec_isr 'define serial receive ISR
Enable Urxc 'enable receive isr

Enable Interrupts 'enable interrupts to occur

Do
 If B = 1 Then 'we received something
 Disable Serial
 Print Buf
 Print Bc
 Reset B
 Enable Serial

BASCOM-AVR-HELPFILE page 118

 End If
Loop

Rec_isr:
 If Bc < 20 Then 'does it fit into the buffer?
 Incr Bc 'increase buffer counter
 Buf = Buf + Chr(udr) 'add to buffer
 ' Mid(buf , Bc , 1) = Udr
 'unremark line above and remark the line with Chr() to place
 'the character into a certain position
 B = 1 'set flag
 End If
Return

DISPLAY

Action
Turn LCD display on or off.

Syntax
DISPLAY ON / OFF

Remarks
The display is turned on at power up.

See also
LCD »page 139

Example
Dim a as byte
a = 255
LCD a
DISPLAY OFF
Wait 1
DISPLAY ON
End

DO-LOOP

Action
Repeat a block of statements until condition is true.

Syntax
DO
 statements
LOOP [UNTIL expression]

Remarks
You can exit a DO..LOOP with the EXIT DO statement.
The DO-LOOP is always performed at least once.

BASCOM-AVR-HELPFILE page 119

See also
EXIT »page 121 , WHILE-WEND »page 179 , FOR-NEXT »page 121

Example
Dim A As Byte
DO 'start the loop
 A = A + 1 'increment A
 PRINT A 'print it
LOOP UNTIL A = 10 'Repeat loop until A = 10
Print A

ELSE

Action
Executed if the IF-THEN expression is false.

Syntax
ELSE

Remarks
You don't have to use the ELSE statement in an IF THEN .. END IF structure.
You can use the ELSEIF statement to test for another condition.

IF a = 1 THEN
 ...
ELSEIF a = 2 THEN
..
ELSEIF b1 > a THEN
...
ELSE
...
END IF

See also
IF , END IF , SELECT

Example
A = 10 'let a = 10
IF A > 10 THEN 'make a decision
 PRINT " A >10" 'this will not be printed
ELSE 'alternative
 PRINT " A not greater than 10" 'this will be printed
END IF

BASCOM-AVR-HELPFILE page 120

ENABLE

Action
Enable specified interrupt.

Syntax
ENABLE interrupt

Remarks
Interrupt Description

INT0 External Interrupt 0
INT1 External Interrupt 1
OVF0,TIMER0, COUNTER0 TIMER0 overflow interrupt
OVF1,TIMER1,
COUNTER1

TIMER1 overflow interrupt

CAPTURE1, ICP1 INPUT CAPTURE TIMER1 interrupt
COMPARE1A,OC1A TIMER1 OUTPUT COMPARE A interrupt
COMPARE1B,OC1B TIMER1 OUTPUT COMPARE B interrupt
SPI SPI interrupt
URXC Serial RX complete interrupt
UDRE Serial data register empty interrupt
UTXC Serial TX complete interrupt
SERIAL Disables URXC, UDRE and UTXC
ACI Analog comparator interrupt
ADC A/D converter interrupt

By default all interrupts are disabled.
To enable the enabling and disabling of interrupts use ENABLE INTERRUPTS.
Other chips might have additional interrupt sources such as INT2, INT3 etc.

See also
DISABLE »page 116

Example
ENABLE INTERRUPTS 'allow interrupts to be set
ENABLE TIMER1 'enables the TIMER1 interrupt

END

Action
Terminate program execution.

Syntax
END

Remarks
STOP can also be used to terminate a program.

BASCOM-AVR-HELPFILE page 121

When an END statement is encountered, all interrupts are disabled and a never-ending loop is
generated. When a STOP is encountered the interrupts will not be disabled. Only a never
ending loop will be created.

See also
STOP »page 172

Example
PRINT "Hello" 'print this
END 'end program execution and disable all interrupts

EXIT

Action
Exit a FOR..NEXT, DO..LOOP , WHILE ..WEND, SUB..END SUB or FUNCTION..END
FUNCTION.

Syntax
EXIT FOR
EXIT DO
EXIT WHILE
EXIT SUB
EXIT FUNCTION

Remarks
With the EXIT ... statement you can exit a structure at any time.

Example
IF a >= b1 THEN 'some silly code
 DO 'begin a DO..LOOP

A = A + 1 'incr a
IF A = 100 THEN 'test for a = 100

 EXIT DO 'exit the DO..LOOP
END IF 'end the IF..THEN

 LOOP 'end the DO
END IF 'end the IF..THEN

FOR-NEXT

Action
Execute a block of statements a number of times.

Syntax
FOR var = start TO/DOWNTO end [STEP value]

Remarks
var The variable counter to use
start The starting value of the variable var

BASCOM-AVR-HELPFILE page 122

end The ending value of the variable var
value The value var is increased/decreased with each time NEXT is

encountered.

For incremental loops, you must use TO.
For decremental loops, you must use DOWNTO.
You must end a FOR structure with the NEXT statement.
The use of STEP is optional. By default, a value of 1 is used.

See also
EXIT FOR »page 121

Example
'--
' (c) 2000 MCS Electronics
'--
' file: FOR_NEXT.BAS
' demo: FOR, NEXT
'--
Dim A As Byte , B1 As Byte , C As Integer

For A = 1 To 10 Step 2
 Print "This is A " ; A
Next A

Print "Now lets try DOWNTO"
For C = 10 Downto -5
 Print "This is C " ; C
Next

Print "You can also nest FOR..NEXT statements."
For A = 1 To 10
 Print "This is A " ; A
 For B1 = 1 To 10
 Print "This is B1 " ; B1
 Next ' note that you do not have to specify the parameter
Next A

End

FOURTHLINE

Action
Set LCD cursor to the start of the fourth line.

Syntax
FOURTHLINE

Remarks
Only valid for LCD displays with 4 lines.

See also

BASCOM-AVR-HELPFILE page 123

HOME »page 131 , UPPERLINE »page 176 , LOWERLINE »page 147 , THIRDLINE »page
175 ,LOCATE »page 145

Example
Dim a as byte
a = 255
LCD a
Fourthline
LCD a
Upperline
END

FUSING
This statement is for the prof edition only and will be described later.

GETADC

Action
Retrieves the analog value from channel 0-7.

Syntax
var = GETADC(channel)

Remarks
var The variable that is assigned with the A/D value
channel The channel to measure

The GETADC() function is only intended for the AVR90S8535 or other chips that have a built-
in A/D converter.
The pins of the A/D converter input can be used for digital I/O too.
But it is important that no I/O switching is done while using the A/D converter.

See also

Example
'--
' ADC.BAS
' demonstration of GETADC() function for 8535 micro
'--
'configure single mode and auto prescaler setting
'The single mode must be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,15,32,64 or 128
'Because the ADC needs a clock from 50-200 KHz
'The AUTO feature, will select the highest clockrate possible
Config Adc = Single , Prescaler = Auto
'Now give power to the chip
Start Adc

'With STOP ADC, you can remove the power from the chip
'Stop Adc

BASCOM-AVR-HELPFILE page 124

Dim W As Word , Channel As Byte

Channel = 0
'now read A/D value from channel 0
Do
 W = Getadc(channel)
 Print "Channel " ; Channel ; " value " ; W
 Incr Channel
 If Channel > 7 Then Channel = 0
Loop
End

GETKBD

Action
Scans a 4x4 matrix keyboard and return the value of the key pressed.

Syntax
var = GETKBD()

Remarks
var The variable that is assigned with the value read from

the keyboard

The GETKBD() function can be attached to a port of the uP.
You can define the port with the CONFIG KBD statement.
A schematic for PORTB is shown below

Note that the port pins can be used for other tasks as well.
When no key is pressed 16 will be returned.
On the STK200 this might not work since other hardware is connected too taht interferes.
You can use the Lookup() »page 145 function to convert the byte into another value. This
because the GetKBD() function does not return the same value as the key pressed. It will
depend on which keyboard you use.

BASCOM-AVR-HELPFILE page 125

See also
CONFIG KBD

Example
CONFIG KBD = PORTB
Dim B As Byte
Do
 B = KETKBD()
 Print B
Loop
End

GETRC

Action
Retrieves the value of a resistor or a capacitor.

Syntax
 var = GETRC0(pin , number)

Remarks
Var The word variable that is assigned with the value.
Pin The PIN name for the R/C is connection.
number The port pin for the R/C is connection.

The name of the input port (PIND for example) must be passed even when all the other pins
are configured for output. The pinnumber must also be passed. This may be a constant or a
variable.
A circuit is shown below:

The capacitor is charged and the time it takes to uncharge it is measured and stored in the
variable. So when you vary either the resistor or the capacitor, different values will be returned.
This function is intended to return a relative position of a resistor wiper, not to return the value
of the resistor. But with some calculations it can be retrieved.

See also

Example
'---
' GETRC.BAS
' demonstrates how to get the value of a resistor
' The library also shows how to pass a variable for use with individual port
' pins. This is only possible in the AVR architecture and not in the 8051

BASCOM-AVR-HELPFILE page 126

'---
'The function works by charging a capacitor and uncharge it little by little
'A word counter counts until the capacitor is uncharged.
'So the result is an indication of the position of a pot meter not the actual
'resistor value

'This example used the 8535 and a 10K ohm variable resistor connected to PIND.4
'The other side of the resistor is connected to a capacitor of 100nF.
'The other side of the capacitor is connected to ground.
'This is different than BASCOM-8051 GETRC! This because the architecture is
different.

'The result of getrc() is a word so DIM one
Dim W As Word
Do
 'the first parameter is the PIN register.
 'the second parameter is the pin number the resistor/capacitor is connected to
 'it could also be a variable!
 W = Getrc(pind , 4)
 Print W
 Wait 1
Loop

GETRC5

Action
Retrieves the RC5 remote code from a IR transmitter.

Syntax
GETRC5(address, command)

Uses
TIMER0

Remarks
address The RC5 address
command The RC5 command.

This statement used the AVR 410 application note. Since a timer is needed for accurate
delays and background processing TIMER0 is used by this statement.
Also the interrupt of TIMER0 is used by this statement.
TIMER0 can be used by your application since the values are preserved by the statement but
a delay can occur. The interrupt can not be reused.

The SFH506-36 is used from Siemens. Other types can be used as well.

BASCOM-AVR-HELPFILE page 127

For a good operation use the following values for the filter.

Most audio and video systems are equipped with an infra-red remote control.
The RC5 code is a 14-bit word bi-phase coded signal.
The two first bits are start bits, always having the value 1.
The next bit is a control bit or toggle bit, which is inverted every time a button is pressed on the
remote control transmitter.
Five system bits hold the system address so that only the right system responds to the code.
Usually, TV sets have the system address 0, VCRs the address 5 and so on. The command
sequence is six bits long, allowing up to 64 different commands per address.
The bits are transmitted in bi-phase code (also known as Manchester code).

See also

Example
'---
'---
' RC5.BAS
' (c) 2000 MCS Electronics

BASCOM-AVR-HELPFILE page 128

' based on Atmel AVR410 application note
'---
'This example shows how to decode RC5 remote control signals
'with a SFH506-35 IR receiver.

'Connect to input to PIND.2 for this example
'The GETRC5 function uses TIMER0 and the TIMER0 interrupt.
'The TIMER0 settings are restored however so only the interrupt can not
'be used anymore for other tasks

'tell the compiler which pin we want to use for the reciever input

Config Rc5 = Pind.2

'the interrupt routine is inserted automatic but we need to make it occur
'so enable the interrupts
Enable Interrupts

'reserve space for variables
Dim Address As Byte , Command As Byte

Do
 'now check if a key on the remote is pressed
 'Note that at startup all pins are set for INPUT
 'so we dont set the direction here
 'If the pins is used for other input just unremark the next line
 'Config Pind.2 = Input
 Getrc5(address , Command)

 'we check for the TV address and that is 0
 If Address = 0 Then
 'clear the toggle bit
 'the toggle bit toggles on each new received command
 Command = Command And &B10111111
 Print Address ; " " ; Command
 End If
Loop
End

GOSUB

Action
Branch to and execute subroutine.

Syntax
GOSUB label

Remarks
Label The name of the label where to branch to.

With GOSUB, your program jumps to the specified label, and continues execution at that label.
When it encounters a RETURN statement, program execution will continue after the GOSUB
statement.

See also

BASCOM-AVR-HELPFILE page 129

GOTO »page 129 , CALL »page 86 , RETURN »page 161

Example
GOSUB Routine 'branch to routine
Print "Hello" 'after being at 'routine' print this
END 'terminate program

Routine: 'this is a subroutine
x = x + 2 'perform some math
PRINT X 'print result

RETURN 'return

GOTO

Action
Jump to the specified label.

Syntax
GOTO label

Remarks
Labels can be up to 32 characters long.
When you use duplicate labels, the compiler will give you a warning.

See also
GOSUB »page 128

Example
Start: 'a label must end with a colon
A = A + 1 'increment a
IF A < 10 THEN 'is it less than 10?

GOTO Start 'do it again
END IF 'close IF
PRINT " Ready" 'that is it

HEX

Action
Returns a string representation of a hexadecimal number.

Syntax
var = Hex(x)

Remarks
var A string variable.
X A numeric variable of data type Byte, Integer, Word or

Long.

See also

BASCOM-AVR-HELPFILE page 130

HEXVAL »page 130

Example
Dim a as Byte, S as String * 10
a = 123
s = Hex(a)
Print s
Print Hex(a)
End

HEXVAL

Action
Convert string representing a hexadecimal number into a numeric variable.

Syntax
var = HEXVAL(x)

Remarks
var The numeric variable that must be assigned.
X The hexadecimal string that must be converted.

Difference with QB
In QB you can use the VAL() function to convert hexadecimal strings.
But since that would require an extra test for the leading &H signs that are required in QB, a
separate function was designed.

See also
HEX »page 129 , VAL »page 176 , STR »page 173

Example
Dim a as Integer, s as string * 15
s = "A"
a = Hexval(s) : Print a
End

HIGH

Action
Retrieves the most significant byte of a variable.

Syntax
var = HIGH(s)

Remarks
Var The variable that is assigned with the MSB of var S.
S The source variable to get the MSB from.

BASCOM-AVR-HELPFILE page 131

See also
LOW »page 146

Example
Dim I As Integer , Z As Byte
I = &H1001
Z = High(I) ' is 16

HOME

Action
Place the cursor at the specified line at location 1.

Syntax
HOME UPPER / LOWER /THIRD / FOURTH

Remarks
If only HOME is used than the cursor will be set to the upperline.
You can also specify the first letter of the line like: HOME U

See also
CLS »page 88 , LOCATE »page 145

Example
Lowerline
LCD "Hello"
Home Upper
LCD "Upper"

I2CRECEIVE

Action
Receives data from an I2C serial device.

Syntax
I2CRECEIVE slave, var

I2CRECEIVE slave, var ,b2W, b2R

Remarks
Slave A byte, Word/Integer variable or constant with the slave address

from the I2C-device.
Var A byte or integer/word variable that will receive the information

from the I2C-device.
b2W The number of bytes to write.

Be cautious not to specify too many bytes!
b2R The number of bytes to receive.

Be cautious not to specify too many bytes!

BASCOM-AVR-HELPFILE page 132

You can specify the base address of the slave chip because the read/write bit is set/reset by
the software.

See also
I2CSEND »page 132

Example
x = 0 'reset variable
slave = &H40 'slave address of a PCF 8574 I/O IC
I2CRECEIVE slave, x 'get the value
PRINT x 'print it

Dim buf(10) as Byte
buf(1) = 1 : buf(2) = 2
I2CRECEIVE slave, buf(), 2, 1'send two bytes and receive one byte
Print buf(1) 'print the received byte

I2CSEND

Action
Send data to an I2C-device.

Syntax
I2CSEND slave, var

I2CSEND slave, var , bytes

Remarks
slave The slave address off the I2C-device.
var A byte, integer/word or numbers that holds the value, which will be,

send to the I2C-device.
bytes The number of bytes to send.

See also
I2CRECEIVE »page 131

Example
x = 5 'assign variable to 5
Dim ax(10) As Byte
Const slave = &H40 'slave address of a PCF 8574 I/O IC
I2CSEND slave, x 'send the value or

For a = 1 to 10
 ax(a) = a 'Fill dataspace
Next
bytes = 10
I2CSEND slave,ax(),bytes
END

BASCOM-AVR-HELPFILE page 133

I2START,I2CSTOP, I2CRBYTE, I2CWBYTE

Action
I2CSTART generates an I2C start condition.
I2CSTOP generates an I2C stop condition.
I2CRBYTE receives one byte from an I2C-device.
I2CWBYTE sends one byte to an I2C-device.

Syntax
I2CSTART
I2CSTOP
I2CRBYTE var, ack/nack

I2CWBYTE val

Remarks
var A variable that receives the value from the I2C-device.
ack/nack Specify ACK if there are more bytes to read.

Specify NACK if it is the last byte to read.
val A variable or constant to write to the I2C-device.

These statements are provided as an addition to the I2CSEND and I2CRECEIVE functions.

See also
I2CRECEIVE »page 131 , I2CSEND »page 132

Example
-------- Writing and reading a byte to an EEPROM 2404 -----------------
DIM a As Byte
Const adresW = 174 'write of 2404
Const adresR = 175 'read address of 2404
I2CSTART 'generate start
I2CWBYTE adresW 'send slave adsress
I2CWBYTE 1 'send address of EEPROM
I2CWBYTE 3 'send a value
I2CSTOP 'generate stop
WaitMS 10 'wait 10 mS because that is the time that the chip needs to
write the data

----------------now read the value back into the var a -------------------
I2CSTART 'generate start
I2CWBYTE adresW 'write slave address
I2CWBYTE 1 'write adres of EEPROM to read
I2CSTART 'generate repeated start
I2CWBYTE adresR 'write slave address of EEPROM
I2CRBYTE a,nack 'receive value into a. nack means last byte to receive
I2CSTOP 'generate stop
PRINT a 'print received value
END

BASCOM-AVR-HELPFILE page 134

IDLE

Action
Put the processor into the idle mode.

Syntax
IDLE

Remarks
In the idle mode, the system clock is removed from the CPU but not from the interrupt logic,
the serial port or the timers/counters.
The idle mode is terminated either when an interrupt is received(from the watchdog, timers,
external level triggered or ADC) or upon system reset through the RESET pin.

See also
POWERDOWN »page 155

Example
IDLE

IF-THEN-ELSE-END IF

Action
Allows conditional execution or branching, based on the evaluation of a Boolean expression.

Syntax
IF expression THEN

[ELSEIF expression THEN]

[ELSE]

 END IF

Remarks
Expression Any expression that evaluates to true or false.

The one line version of IF can be used :
IF expression THEN statement [ELSE statement]
The use of [ELSE] is optional.

Also new is the ability to test on bits :
IF var.bit = 1 THEN

And now (7 may 2000) I also added support for variable bit index :
Dim var as byte, idx as byte
idx = 1
IF var.IDX = 1 THEN

BASCOM-AVR-HELPFILE page 135

See also
ELSE »page 119

Example
DIM A AS INTEGER
A = 10
IF A = 10 THEN 'test expression

PRINT "This part is executed." 'this will be printed
ELSE

PRINT "This will never be executed." 'this not
END IF
IF A = 10 THEN PRINT "New in BASCOM"
IF A = 10 THEN GOTO LABEL1 ELSE PRINT "A<>10"
LABEL1:

REM The following example shows enhanced use of IF THEN
IF A.15 = 1 THEN 'test for bit
 PRINT "BIT 15 IS SET"
END IF
REM the following example shows the 1 line use of IF THEN [ELSE]
IF A.15 = 0 THEN PRINT "BIT 15 is cleared" ELSE PRINT "BIT 15 is set"

INCR

Action
Increments a variable by one.

Syntax
INCR var

Remarks
Var Any numeric variable.

See also
DECR »page 110

Example
DO 'start loop

INCR a 'increment a by 1
PRINT a 'print a

LOOP UNTIL a > 10 'repeat until a is greater than 10

INKEY

Action
Returns the ASCII value of the first character in the serial input buffer.

Syntax
var = INKEY
var = INKEY(#channel)

BASCOM-AVR-HELPFILE page 136

Remarks
var Byte, Integer, Word, Long or String variable.
channel A constant number that identifies the openend channel if

software UART mode

If there is no character waiting, a zero will be returned.

The INKEY routine can be used when you have a RS-232 interface on your uP.
The RS-232 interface can be connected to a comport of your computer.

See also
WAITKEY »page 177

Example
DO 'start loop

A = INKEY() 'look for character
IF A > 0 THEN 'is variable > 0?
 PRINT A 'yes , so print it
END IF

LOOP 'loop forever
'The example above is for the HARDWARE UART
'The OPEN.BAS sample contains a sample for use with the software UART.

INP

Action
Returns a byte read from a hardware port or any internal memory location.

Syntax
var = INP(address)

Remarks
var Numeric variable that receives the value.
address The address where to read the value from. (0- &HFFFF)

The PEEK() function will read only the lowest 32 memory locations (registers).
The INP() function can read from any memory location since the AVR has a linear memory
model.

See also
OUT »page 153

Example
Dim a As Byte
a = INP(&H8000) 'read value that is placed on databus(d0-d7) at

'hex address 8000
PRINT a
END

BASCOM-AVR-HELPFILE page 137

INPUTBIN

Action
Read binary values from the serial port.

Syntax
INPUTBIN var1 [,var2]
INPUTBIN #channel , var1 [,var2]

Remarks
var1 The variable that is assigned with the characters from the serial port.

var2 An optional second (or more) variable that is assigned with the
characters from the serial.

The channel is for use with the software UART routine and must be use with OPEN and
CLOSE. »page 152

The number of bytes to read depends on the variable you use.
When you use a byte variable, 1 character is read from the serial port.
An integer will wait for 2 characters and an array will wait until the whole array is filled.

Note that the INPUTBIN statement doesn't wait for a <RETURN> but just for the number of
bytes.

See also
PRINTBIN »page 157

Example
Dim a as Byte, C as Integer
INPUTBIN a, c 'wait for 3 characters
End

INPUTHEX

Action
Allows input from the keyboard during program execution.

Syntax
INPUTHEX [" prompt"] , var [, varn] [NOECHO]

Remarks
prompt An optional string constant printed before the prompt character.
Var,varn A numeric variable to accept the input value.
NOECHO Disables input echoed back to the Comport.

The INPUTHEX routine can be used when you have a RS-232 interface on your uP.
The RS-232 interface can be connected to a serial communication port of your computer.

BASCOM-AVR-HELPFILE page 138

This way you can use a terminal emulator and the keyboard as input device.
You can also use the build in terminal emulator.

If var is a byte then the input can be maximum 2 characters long.
If var is an integer/word then the input can be maximum 4 characters long.
If var is a long then the input can be maximum 8 characters long.

Difference with QB
In QB you can specify &H with INPUT so QB will recognise that a hexadecimal string is being
used.
BASCOM implements a new statement: INPUTHEX.

See also
INPUT »page 138

Example
Dim x As Byte
INPUTHEX "Enter a number " , x 'ask for input

INPUT

Action
Allows input from the keyboard during program execution.

Syntax
INPUT [" prompt"] , var [, varn] [NOECHO]

Remarks
prompt An optional string constant printed before the prompt character.
Var,varn A variable to accept the input value or a string.
NOECHO Disables input echoed back to the Comport.

The INPUT routine can be used when you have an RS-232 interface on your uP.
The RS-232 interface can be connected to a serial communication port of your computer.
This way you can use a terminal emulator and the keyboard as an input device.
You can also use the built-in terminal emulator.

Difference with QB
In QB you can specify &H with INPUT so QB will recognise that a hexadecimal string is being
used.
BASCOM implements a new statement : INPUTHEX.

See also
INPUTHEX »page 137 , PRINT »page 156

BASCOM-AVR-HELPFILE page 139

Example
'--
' (c) 1997,1998 MCS Electronics
'--
' file: INPUT.BAS
' demo: INPUT, INPUTHEX
'--
'To use another baudrate and crystalfrequency use the
'metastatements $BAUD = and $CRYSTAL =
$baud = 1200 'try 1200 baud for example
$crystal = 12000000 '12 MHz

Dim V As Byte , B1 As Byte
Dim C As Integer , D As Byte
Dim S As String * 15 'only for uP with XRAM support

Input "Use this to ask a question " , V
Input B1 'leave out for no question

Input "Enter integer " , C
Print C

Inputhex "Enter hex number (4 bytes) " , C
Print C
Inputhex "Enter hex byte (2 bytes) " , D
Print D

Input "More variables " , C , D
Print C ; " " ; D

Input C Noecho 'suppress echo

Input "Enter your name " , S
Print "Hello " ; S

Input S Noecho 'without echo
Print S
End

LCD

Action
Send constant or variable to LCD display.

Syntax
LCD x

Remarks
X Variable or constant to display.

More variables can be displayed separated by the ; -sign
LCD a ; b1 ; "constant"
The LCD statement behaves just like the PRINT statement.

BASCOM-AVR-HELPFILE page 140

See also
$LCD »page 69 , $LCDRS »page 71 , CONFIG LCD »page 93

Example
'--
' (c) 2000 MCS Electronics
'--
' file: LCD.BAS
' demo: LCD, CLS, LOWERLINE, SHIFTLCD, SHIFTCURSOR, HOME
' CURSOR, DISPLAY
'--

'note : tested in bus mode with 4-bit

Config Lcdpin = Pin , Db4 = Portb.1 , Db5 = Portb.2 , Db6 = Portb.3 , Db7 = Portb.4 ,
E = Portb.5 , Rs = Portb.6
Rem with the config lcdpin statement you can override the compiler settings

Dim A As Byte
Config Lcd = 16 * 2 'configure lcd screen
'other options are 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a
'When you dont include this option 16 * 2 is assumed
'16 * 1a is intended for 16 character displays with split addresses over 2 lines

'$LCD = address will turn LCD into 8-bit databus mode
' use this with uP with external RAM and/or ROM
' because it aint need the port pins !

Cls 'clear the LCD display
Lcd "Hello world." 'display this at the top line
Wait 1
Lowerline 'select the lower line
Wait 1
Lcd "Shift this." 'display this at the lower line
Wait 1
For A = 1 To 10
 Shiftlcd Right 'shift the text to the right
 Wait 1 'wait a moment
Next

For A = 1 To 10
 Shiftlcd Left 'shift the text to the left
 Wait 1 'wait a moment
Next

Locate 2 , 1 'set cursor position
Lcd "*" 'display this
Wait 1 'wait a moment

Shiftcursor Right 'shift the cursor
Lcd "@" 'display this
Wait 1 'wait a moment

Home Upper 'select line 1 and return home
Lcd "Replaced." 'replace the text
Wait 1 'wait a moment

Cursor Off Noblink 'hide cursor

BASCOM-AVR-HELPFILE page 141

Wait 1 'wait a moment
Cursor On Blink 'show cursor
Wait 1 'wait a moment
Display Off 'turn display off
Wait 1 'wait a moment
Display On 'turn display on
'-----------------NEW support for 4-line LCD------
Thirdline
Lcd "Line 3"
Fourthline
Lcd "Line 4"
Home Third 'goto home on line three
Home Fourth
Home F 'first letteer also works
Locate 4 , 1 : Lcd "Line 4"
Wait 1

'Now lets build a special character
'the first number is the characternumber (0-7)
'The other numbers are the rowvalues
'Use the LCD tool to insert this line

Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 ' replace ? with
number (0-7)
Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 ' replace ? with
number (0-7)
Cls 'select data RAM
Rem it is important that a CLS is following the deflcdchar statements because it will
set the controller back in datamode
Lcd Chr(0) ; Chr(1) 'print the special character

'----------------- Now use an internal routine ------------
_temp1 = 1 'value into ACC
rCall _write_lcd 'put it on LCD
End

LEFT

Action
Return the specified number of leftmost characters in a string.

Syntax
var = Left(var1 , n)

Remarks
Var The string that is assigned.
Var1 The source string.
n The number of characters to get from the source string.

See also
RIGHT »page 162 , MID »page 149

Example
Dim s As XRAM String * 15, z As String * 15
s = "ABCDEFG"

BASCOM-AVR-HELPFILE page 142

z = Left(s,5)
Print z 'ABCDE
End

LEN

Action
Returns the length of a string.

Syntax
var = LEN(string)

Remarks
var A numeric variable that is assigned with the length of string.
string The string to calculate the length of.
Strings can be maximum 254 bytes long.

Example
Dim S As String * 12
Dim A As Byte
S = "test"
A = Len(s)
Print A ' prints 4
Print Len(s)

LTRIM

Action
Returns a copy of string with leading blanks removed

Syntax
var = LTRIM(org)

Remarks
var String that receives the result.
org The string to remove the leading spaces from

See also
RTRIM »page 162 , TRIM »page 175

ASM

Example
Dim S As String * 6
S = " AB "
Print Ltrim(s)
Print Rtrim(s)
Print Trim(s)
End

BASCOM-AVR-HELPFILE page 143

LOAD

Action
Load specified TIMER with a reload value.

Syntax
LOAD TIMER , value

Remarks
TIMER TIMER0
Value The variable or value to load.

The TIMER0 dos not have a reload mode. But when you want the timer to generate an
interrupt after 10 ticks for example, you can use the RELOAD statement.
It will do the calculation. (256-value)
So LOAD TIMER0, 10 will load the TIMER0 with a value of 246 so that it will overflow after 10
ticks.

LOCAL

Action
Dimesions a variable LOCAL to the function or sub program.

Syntax
LOCAL var As Type

Remarks
var The name of the variable
type The data type of the variable.
There can be only LOCAL variables of the type BYTE, INTEGER, WORD, LONG, SINGLE or
STRING.

A LOCAL variable is a temporary variable that is stored on the frame.
When the SUB or FUNCTION is terminated, the memory will be released back to the frame.
BIT variables are not possible because they are GLOBAL to the system.

The AT , ERAM, SRAM, XRAM directives can not be used with a local DIM statement. Also
arrays are not possible with LOCAL's.

See also
DIM »page 114

ASM
Example
'--
' (c) 2000 MCS Electronics

BASCOM-AVR-HELPFILE page 144

' DECLARE.BAS
' Note that the usage of SUBS works different in BASCOM-8051
'--
' First the SUB programs must be declared

'Try a SUB without parameters
Declare Sub Test2

'SUB with variable that cant be changed(A) and
'a variable that can be changed(B1), by the sub program
'When BYVAL is specified, the value is passed to the subprogram
'When BYREF is specified or nothing is specified, the address is passed to
'the subprogram

Declare Sub Test(byval A As Byte , B1 As Byte)

'All variable types that can be passed
'Notice that BIT variables cant be passed.
'BIT variables are GLOBAL to the application
Declare Sub Testvar(b As Byte , I As Integer , W As Word , L As Long , S As String)

Dim Bb As Byte , I As Integer , W As Word , L As Long , S As String * 10 'dim
used variables
Dim Ar(10) As Byte

Call Test2 'call sub
Test2 'or use without CALL
'Note that when calling a sub without the statement CALL, the enclosing parentheses
must be left out
Bb = 1
Call Test(1 , Bb) 'call sub with parameters
Print Bb 'print value that is changed

'now test all the variable types
Call Testvar(bb , I , W , L , S)
Print Bb ; I ; W ; L ; S

'now pass an array
'note that it must be passed by reference
Test 2 , Ar(1)
Print "ar(1) = " ; Ar(1)
End

'End your code with the subprograms
'Note that the same variables and names must be used as the declared ones

Sub Test(byval A As Byte , B1 As Byte) 'start sub
 Print A ; " " ; B1 'print passed variables
 B1 = 3 'change value
 'You can change A, but since a copy is passed to the SUB,
 'the change will not reflect to the calling variable
End Sub

Sub Test2 'sub without parameters
 Print "No parameters"
End Sub

Sub Testvar(b As Byte , I As Integer , W As Word , L As Long , S As String)
 Local X As Byte

BASCOM-AVR-HELPFILE page 145

 X = 5 'assign local

 B = X
 I = -1
 W = 40000
 L = 20000
 S = "test"
End Sub

LOCATE

Action
Moves the LCD cursor to the specified position.

Syntax
LOCATE y , x

Remarks
X Constant or variable with the position. (1-64*)
y Constant or variable with the line (1 - 4*)

* Depending on the used display

See also
CONFIG LCD »page 93 , LCD »page 139 , HOME »page 131 , CLS »page 88

Example
LCD "Hello"
Locate 1,10
LCD "*"

LOOKUP

Action
Returns a value from a table.

Syntax
var =LOOKUP(value, label)

Remarks
Var The returned value
Value A value with the index of the table
Label The label where the data starts

The value can be up to 65535. 0 will return the first entry.

See also
LOOKUPSTR »page 146

BASCOM-AVR-HELPFILE page 146

Example
DIM b1 As Byte , I as Integer
b1 = Lookup(1, dta)
Print b1 ' Prints 2 (zero based)

I = Lookup(0,DTA2)
End

DTA:
DATA 1,2,3,4,5

DTA2: 'integer data
DATA 1000% , 2000%

LOOKUPSTR

Action
Returns a string from a table.

Syntax
var =LOOKUPSTR(value, label)

Remarks
var The string returned
value A value with the index of the table. The index is zero-based. That is, 0

will return the first element of the table.
Label The label where the data starts

The index value can be up to 255.

See also
LOOKUP »page 145

Example
Dim s as string, idx as Byte
idx = 0 : s = LookupStr(idx,Sdata)
Print s 'will print 'This'
End

Sdata:
Data "This" , "is" ,"a test"

LOW

Action
Retrieves the least significant byte of a variable.

Syntax
var = LOW(s)

BASCOM-AVR-HELPFILE page 147

Remarks
Var The variable that is assigned with the LSB of var S.
S The source variable to get the LSB from.

See also
HIGH »page 130

Example
Dim I As Integer , Z As Byte
I = &H1001
Z = Low(I) ' is 1

LOWERLINE

Action
Reset the LCD cursor to the lowerline.

Syntax
LOWERLINE

Remarks
-

See also
UPPERLINE, »page 176 THIRDLINE »page 175 , FOURTHLINE »page 122 , HOME »page
131

Example
LCD "Test"
LOWERLINE
LCD "Hello"
End

MAKEBCD

Action
Convert a variable into its BCD value.

Syntax
var1 = MAKEBCD (var2)

Remarks
var1 Variable that will be assigned with the converted value.
Var2 Variable that holds the decimal value.

BASCOM-AVR-HELPFILE page 148

When you want to use an I2C clock device, which stores its values as BCD values you can use
this function to convert variables from decimal to BCD.

For printing the bcd value of a variable, you can use the BCD() function which converts a BCD
number into a BCD string.

See also
MAKEDEC »page 148 , BCD »page 83

Example
Dim a As Byte
a = 65
LCD a
Lowerline
LCD BCD(a)
a = MakeBCD(a)
LCD " " ; a
End

MAKEINT

Action
Compact two bytes into a word or integer.

Syntax
varn = MAKEINT(LSB , MSB)

Remarks
Varn Variable that will be assigned with the converted value.
LSB Variable or constant with the LS Byte.
MSB Variable or constant with the MS Byte.
The equivalent code is:
varn = (256 * MSB) + LSB

See also
LOW »page 146 , HIGH »page 130

Example
Dim a As Integer, I As Integer
a = 2
I = MakeINT(a , 1) 'I = (1 * 256) + 2 = 258

End

MAKEDEC

Action
Convert a BCD byte or Integer/Word variable to its DECIMAL value.

Syntax

BASCOM-AVR-HELPFILE page 149

var1 = MAKEDEC (var2)

Remarks
var1 Variable that will be assigned with the converted value.
var2 Variable that holds the BCD value.

When you want to use an I2C clock device, which stores its values as BCD values you can use
this function to convert variables from BCD to decimal.

See also
MAKEBCD »page 147

Example
Dim a As Byte
a = 65
LCD a
Lowerline
LCD BCD(a)
a = MakeDEC(a)
LCD " " ; a
End

MID

Action
The MID function returns part of a string (a sub string).
The MID statement replaces part of a string variable with another string.

Syntax
var = MID(var1 ,st [, l])
MID(var ,st [, l]) = var1

Remarks
var The string that is assigned.
Var1 The source string.
st The starting position.
l The number of characters to get/set.

See also
LEFT »page 141, RIGHT »page 162

Example
Dim s As XRAM String * 15, z As XRAM String * 15
s = "ABCDEFG"
z = Mid(s,2,3)
Print z 'BCD
z="12345"

BASCOM-AVR-HELPFILE page 150

Mid(s,2,2) = z
Print s 'A12DEFG
End

ON INTERRUPT

Action
Execute subroutine when a specified interrupt occurs.

Syntax
ON interrupt label [NOSAVE]

Remarks
Interrupt INT0, INT1, INT2, INT3, INT4,INT5, TIMER0 ,TIMER1, TIMER2,

ADC , EEPROM , CAPTURE1, COMPARE1A,
COMPARE1B,COMPARE1. Or you can use the AVR name
convention :

OC2 , OVF2, ICP1, OC1A, OC1B, OVF1, OVF0, SPI, URXC,
UDRE, UTXC, ADCC, ERDY and ACI.

Label The label to jump to if the interrupt occurs.
NOSAVE When you specify NOSAVE, no registers are saved and restored in

the interrupt routine. So when you use this option be sure to save
and restore used registers.
When you ommit NOSAVE all used registers will be saved. These
are SREG , R31 to R16 and R11 to R0.

You must return from the interrupt routine with the RETURN statement.
The first RETURN statement that is encountered that is outside a condition will generate a
RETI instruction. You may have only one such RETURN statement in your interrupt routine
because the compiler restores the registers and generates a RETI instruction when it
encounters a RETURN statement in the ISR. All other RETURN statements are converted to a
RET instruction.

The possible interrupt names can be looked up in the selected microprocessor register file.
2313def.dat for example shows that for the compare interrupt the name is COMPARE1. (look
at the bottom of the file)

What are interrupts good for?
An interrupt will halt your program and will jump to a specific part of your program. You can
make a DO .. LOOP and poll the status of a pin for example to execute some code when the
input on a pin changes.
But with an interrupt you can perform other tasks and when then pin input changes a special
part of your program will be executed. When you use INPUT "Name ", v for example to get a
user name via the RS-232 interface it will wait until a RETURN is received. When you have an
interrupt routine and the int occurs it will branch to the interrupt code and will execute the
interrupt code. When it is finished it will return to the Input statement, waiting util a RETURN is
entered.
Maybe a better example is writing a clock program. You could update a variable in your
program that updates a second counter. But a better way is to use a TIMER interrupt and
update a seconds variable in the TIMER interrupt handler.

BASCOM-AVR-HELPFILE page 151

There are multiple interrupt sources and it depends on the used chip which are available.
To allow the use of interrupts you must set the global interrupt switch with a ENABLE
INTERRUPTS statement. This only allows that interrupts can be used. You must also set the
individual interrupt switches on!
ENABLE TIMER0 for example allows the TIMER0 interrupt to occur.
With the DISABLE statement you turn off the switches.
When the processor must handle an interrupt it will branch to an address at the start of flash
memory. These adresses can be found in the DAT files.
The compiler normally generates a RETI instruction on these addresses so that in the event
that an interrupt occurs, it will return immediately.
When you use the ON ... LABEL statetement, the compiler will generate code that jumps to
the specified label. The SREG and other registers are saved at the LABEL location and when
the RETURN is found the compiler restores the registers and generates the RETI so that the
program will continue where it was at the time the interrupt occured.
When an interrupt is services no other interrupts can occur because the processor(not the
compiler) will disable all interrupts by clearing the master interrupt enable bit. When the
interrupt is services the interrupt is also cleared so that it can occur again when the conditions
are met that sets the interrupt.
It is not possible to give interrupts a priority. The interrupt with the lowest address has the
highest interrupt!

Finally some tips :
* when you use a timer interrupt taht occurs each 10 uS for example, be sure that the interrupt
code can execute in10 uS. Otherwise you would loose time.
* it is best to set just a simple flag in the interrupt routine and to determine it's status in the
main program. This allows you to use the NOSAVE option that saves stack space and
program space. You only have to Save and Restore R24 and SREG in that case.

Example
ENABLE INTERRUPTS
ENABLE INT0 'enable the interrupt
ON INT0 Label2 nosave 'jump to label2 on INT0
DO 'endless loop
LOOP
END

Label2:
Dim a as byte
If a > 1 Then
 Return 'generates a RET because it is inside a condition
End if
Return 'generates a RETI because it is the first

 'RETURN

Return 'generates a RET because it is the second RETURN

ON VALUE

Action
Branch to one of several specified labels, depending on the value of a variable.

Syntax
ON var [GOTO] [GOSUB] label1 [, label2]

BASCOM-AVR-HELPFILE page 152

Remarks
var The numeric variable to test.

This can also be a SFR such as PORTB.
label1,
label2

The labels to jump to depending on the value of var.

Note that the value is zero based. So when var = 0, the first specified label is
jumped/branched.

Example
x = 2 'assign a variable interrupt
ON x GOSUB lbl1, lbl2,lbl3 'jump to label lbl3
x=0
ON x GOTO lbl1, lbl2 , lbl3
END

lbl3:
 PRINT " lbl3"
RETURN

Lbl1:

Lbl2:

OPEN

Action
Opens a device.

Syntax
OPEN "device" for MODE As #channel
CLOSE #channel

Remarks
device The default device is COM1 and you don't need to open a channel to use

INPUT/OUTPUT on this device.
With the implementation of the software UART, the compiler must know to
which pin/device you will send/receive the data.
So that is why the OPEN statement must be used. It tells the compiler about
the pin you use for the serial input or output and the baud rate you want to
use.
COMB.0:9600,8,N,2 will use PORT B.0 at 9600 baud with 2 stopbits.

The format for COM1 is : COM1:speed, where the speed is optional and will
override the compiler settings for the speed.

The format for the software UART is:
COMpin:speed,8,N,stopbits[,INVERTED]
Where pin is the name of the PORT-pin.
Speed must be specified and stop bits can be 1 or 2.
7 bit data is also supported for output with Even or Odd parity:

BASCOM-AVR-HELPFILE page 153

speed,7,E,stopbits or speed,7,O,stopbits.

An optional parameter ,INVERTED can be specified to use inverted RS-232.
Open "COMD.1:9600,8,N,1,INVERTED" For Output As #1 , will use pin
PORTD.1 for output with 9600 baud, 1 stop bit and with inverted RS-232.

MODE You can use BINARY or RANDOM for COM1, but for the software UART
pins, you must specify INPUT or OUTPUT.

channel The number of the channel to open. Must be a positive constant >0.

The statements that support the device are PRINT »page 156 , INPUT »page 138 ,
INPUTHEX »page 137 , INKE »page 135Y and WAITKEY »page 177

Every opened device must be closed using the CLOSE #channel statement. Of course, you
must use the same channel number.

The INPUT statement in combination with the software UART, will not echo characters back
because there is no default associated pin for this.

See also
CLOSE »page 89 , CRYSTAL »page 106

Example
'---
' OPEN.BAS
' demonstrates software UART
'---

Dim B As Byte

'open channel for output and use inverted logic

Open "comd.1:9600,8,n,1,inverted" For Output As #1
Print #1 , B
Print #1 , "serial output"
Close #1

'Now open a pin for input and use inverted logic
Open "comd.2:9600,8,n,1,inverted" For Input As #2
Input #2 , B
Close #2

'use normal hardware UART for printing
Print B

End

OUT

Action
Sends a byte to a hardware port or external memory address.

Syntax
OUT address, value

BASCOM-AVR-HELPFILE page 154

Remarks
address The address where to send the byte to.
value The variable or value to send.

The OUT statement can write a value to any AVR memory location.
It is advised to use Words for the address. An integer might have a negative value and will
write of course to a word address. So it will be 32767 higher as supposed. This because an
integer has it's most significant bit set when it is negative.

See also
INP »page 136

Example
Dim a as byte
OUT &H8000,1 'send 1 to the databus(d0-d7) at hex address 8000
END

PEEK

Action
Returns the content of a register.

Syntax
var = PEEK(address)

Remarks
Var Numeric variable that is assigned with the content of the memory

location address
Address Numeric variable or constant with the address location.(0-31)
Peek() will read the content of a register.
Inp() can read any memory location

See also
POKE »page 154 , CPEEK »page 105 , INP »page 136 , OUT »page 153

Example
DIM A As Byte
a = Peek(0) 'return the first byte of the internal memory (r0)
End

POKE

Action
Write a byte to an internal register.

Syntax
POKE address , value

BASCOM-AVR-HELPFILE page 155

Remarks
address Numeric variable with the address of the memory location to

set. (0-31)
value Value to assign. (0-255)

See also
PEEK »page 154 , CPEEK »page 105 , INP »page 136 , OUT »page 153

Example
POKE 1, 1 'write 1 to R1
End

POPALL

Action
Restores all registers that might be used by BASCOM.

Syntax
POPALL

Remarks
When you are writing your own ASM routines and mix them with BASIC you are unable to tell
which registers are used by BASCOM because it depends on the used statements and
interrupt routines that can run on the background.
That is why Pushall saves all registers and POPALL restores all registers.

See also
PUSHALL »page 158

POWERDOWN

Action
Put processor into power down mode.

Syntax
POWERDOWN

Remarks
In the power down mode, the external oscillator is stopped. The user can use the
WATCHDOG to power up the processor when the watchdog timeout expires. Other
possibilities to wake up the processor is to give an external reset or to generate an external
level triggered interrupt.

See also
IDLE »page 134 , POWERSAVE »page 156

BASCOM-AVR-HELPFILE page 156

Example
POWERDOWN

POWERSAVE

Action
Put processor into power save mode.

Syntax
POWERSAVE

Remarks
The POWERSAVE mode is only available on the 8535.

See also
IDLE »page 134, POWERDOWN »page 155

Example
POWERDOWN

PRINT

Action
Send output to the RS-232 port.

Syntax
PRINT var ; " constant"

Remarks
var The variable or constant to print.

You can use a semicolon (;) to print more than one variable at one line.
When you end a line with a semicolon, no linefeed will be added.

The PRINT routine can be used when you have a RS-232 interface on your uP.

The RS-232 interface can be connected to a serial communication port of your computer.
This way you can use a terminal emulator as an output device.
You can also use the build in terminal emulator.

See also
INPUT »page 138 ,OPEN »page 152 , CLOSE »page 89

Example
'--
' (c) 2000 MCS Electronics
'--
' file: PRINT.BAS

BASCOM-AVR-HELPFILE page 157

' demo: PRINT
'--
Dim A As Byte , B1 As Byte , C As Integer
A = 1
Print "print variable a " ; A
Print 'new line
Print "Text to print." 'constant to print

B1 = 10
Print Hex(B1) 'print in hexa notation
C = &HA000 'assign value to c%
Print Hex(C) 'print in hex notation
Print C 'print in decimal notation

C = -32000
Print C
Print Hex(C)
Rem Note That Integers Range From -32767 To 32768
End

PRINTBIN

Action
Print binary content of a variable to the serial port.

Syntax
PRINTBIN var [,varn]
PRINTBIN #channel ; var [; varn]

Remarks
var The variable which value is send to the serial port.
varn Optional variables to send.

The channel is optional and for use with OPEN »page 152 and CLOSE »page 89 statements.

PRINTBIN is equivalent to PRINT CHR(var); but whole arrays can be printed this way.

When you use a Long for example, 4 bytes are printed.

See also
INPUTBIN »page 137

Example
Dim a(10) as Byte, c as Byte
For c = 1 To 10
 a(c) = a 'fill array
Next
PRINTBIN a(1) 'print content

BASCOM-AVR-HELPFILE page 158

PUSHALL

Action
Saves all registers that might be used by BASCOM.

Syntax
PUSHALL

Remarks
When you are writing your own ASM routines and mix them with BASIC you are unable to tell
which registers are used by BASCOM because it depends on the used statements and
interrupt routines that can run on the background.
That is why Pushall saves all registers. Use POPALL to restore the registers.

See also
POPALL »page 155

READ

Action
Reads those values and assigns them to variables.

Syntax
READ var

Remarks
Var Variable that is assigned data value.

It is best to place the DATA »page 107 lines at the end of your program.

Difference with QB
It is important that the variable is of the same type as the stored data.

See also
DATA »page 107 , RESTORE »page 161

Example
Dim A As Byte, I As Byte, C As Integer, S As String * 10
RESTORE dta
FOR a = 1 TO 3
 READ i : PRINT i
NEXT
RESTORE DTA2
READ C : PRINT C
READ C : PRINT C
Restore dta3 : Read s : Print s
END

dta:

BASCOM-AVR-HELPFILE page 159

Data 5,10,15
dta2:
Data 1000%, -2000%
dta3:
Data "hello"

READEEPROM

Action
Reads the content from the DATA EEPROM and stores it into a variable.

Syntax
READEEEPROM var , address

Remarks
var The name of the variable that must be stored
address The address in the EEPROM where the data must be

read from.

This statement is provided for compatibility with BASCOM-8051.
You can also use :
Dim V as Eram Byte 'store in EEPROM
Dim B As Byte 'normal variable
B = 10
V = B 'store variable in EEPROM
B = V 'read from EEPROM
When you use the assignment version, the datatypes must be equal!

According to a datasheet from ATMEL, the first location in the EEPROM with address 0, can
be overwritten during a reset so don't use it.

You may also use ERAM variables as indexes. Like :
Dim ar(10) as Eram Byte

See also
WRITEEEPROM »page 179

ASM

Example
Dim B As Byte
WriteEEPROM B ,0 'store at first position
ReadEEPROM B, 0 'read byte back

REM

Action
Instruct the compiler that comment will follow.

BASCOM-AVR-HELPFILE page 160

Syntax
REM or '

Remarks
You can and should comment your program for clarity and your later sanity.
You can use REM or ' followed by your comment.

All statements after REM or ' are treated as comments so you cannot
use statements on the same line after a REM statement.

Block comments can be used too:
'(start block comment
print "This will not be compiled
') end block comment

Note that the starting ' sign will ensure compatibility with QB/VB

Example
REM TEST.BAS version 1.00
PRINT a ' " this is comment : PRINT " hello"

 ^--- this will not be executed!

RESET

Action
Reset a bit to zero.

Syntax
RESET bit

RESET var.x

Remarks
bit Can be a SFR such as PORTB.x, or any bit variable where x=0-7.
var Can be a byte, integer word or long variable.
x Constant of variable to reset.(0-7) for bytes and (0-15) for Integer/Word.

For longs(0-31)

See also
SET »page 164

Example
Dim b1 as bit, b2 as byte, I as Integer
RESET PORTB.3 'reset bit 3 of port B
RESET b1 'bitvariable
RESET b2.0 'reset bit 0 of bytevariable b2
RESET I.15 'reset MS bit from I

BASCOM-AVR-HELPFILE page 161

RESTORE

Action
Allows READ to reread values in specified DATA statements by setting data pointer to
beginning of data statement.

Syntax
RESTORE label

Remarks
label The label of a DATA statement.

See also
DATA »page 107 , READ »page 158

Example
DIM a AS BYTE, I AS BYTE
RESTORE dta
FOR a = 1 TO 3
 READ a : PRINT a
NEXT
RESTORE DTA2
READ I : PRINT I
READ I : PRINT I
END

DTA1:
Data 5, 10, 100

DTA2:
Data -1%, 1000%
Integers must end with the %-sign. (Integer : <0 or >255)

RETURN

Action
Return from a subroutine.

Syntax
RETURN

Remarks
Subroutines must be ended with a related RETURN statement.
Interrupt subroutines must also be terminated with the Return statement.

See also
GOSUB »page 128

BASCOM-AVR-HELPFILE page 162

Example
GOSUB Pr 'jump to subroutine
PRINT result 'print result
END 'program ends

Pr: 'start subroutine with label
result = 5 * y 'do something stupid

 result = result + 100 'add something to it
RETURN 'return

RIGHT

Action
Return a specified number of rightmost characters in a string.

Syntax
var = RIGHT(var1 ,st)

Remarks
var The string that is assigned.
Var1 The source string.
st The starting position.

See also
LEFT »page 141 , MID »page 149

Example
Dim s As String * 15, z As String * 15
s = "ABCDEFG"
z = Right(s,2)
Print z 'FG
End

RTRIM

Action
Returns a copy of a string with trailing blanks removed

Syntax
var = RTRIM(org)

Remarks
var String that is assigned with the result.
org The string to remove the trailing spaces from

See also
TRIM »page 175 , LTRIM »page 142

ASM

BASCOM-AVR-HELPFILE page 163

Example
Dim S As String * 6
S = " AB "
Print Ltrim(s)
Print Rtrim(s)
Print Trim(s)
End

ROTATE

Action
Rotate all bits one place to the left or right.

Syntax
ROTATE var , LEFT/RIGHT [, shifts]

Remarks
Var Byte, Integer/Word or Long variable.
Shifts The number of shifts to perform.

The ROTATE statement rotates all the bits in the variable to the left or right. All bits are
preserved so no bits will be shifted out of the variable.
This means that after rotating a byte variable with a value of 1, eight times the variable will be
unchanged.
When you want to shift out the MS bit or LS bit, use the SHIFT statement.

See also
SHIFT »page 165 , SHIFTIN »page 165 , SHIFTOUT »page 167

Example
Dim a as Byte
a = 128
ROTATE a, LEFT , 2
Print a '2

SELECT-CASE-END SELECT

Action
Executes one of several statement blocks depending on the value of an expression.

Syntax
SELECT CASE var

 CASE test1 : statements
 [CASE test2 : statements]
 CASE ELSE : statements
END SELECT

Remarks

BASCOM-AVR-HELPFILE page 164

var Variable. to test
Test1 Value to test for.
Test2 Value to test for.

See also
-

Example
Dim b2 as byte
SELECT CASE b2 'set bit 1 of port 1
 CASE 2 : PRINT "2"
 CASE 4 : PRINT "4"
 CASE IS >5 : PRINT ">5" 'a test requires the IS keyword
 CASE ELSE
END SELECT
END

SET

Action
Set a bit to one.

Syntax
SET bit

SET var.x

Remarks
Bit Bitvariable.
Var A byte, integer, word or long variable.
X Bit of variable (0-7) to set. (0-15 for Integer/Word) and (0-

31) for Long

See also
RESET »page 160

Example
Dim b1 as Bit, b2 as byte, c as Word, L as Long
SET PORTB.1 'set bit 1 of port B
SET b1 'bit variable
SET b2.1 'set bit 1 of var b2
SET C.15 'set highest bit of Word
SET L.31 'set MS bit of LONG

BASCOM-AVR-HELPFILE page 165

SHIFT

Action
Shift all bits one place to the left or right.

Syntax
SHIFT var , LEFT/RIGHT [, shifts]

Remarks
Var Byte, Integer/Word or Long variable.
Shifts The number of shifts to perform.

The SHIFT statement rotates all the bits in the variable to the left or right.

When shifting LEFT the most significant bit, will be shifted out of the variable. The LS bit
becomes zero. Shifting a variable to the left, multiplies the variable with a value of two.

When shifting to the RIGHT, the least significant bit will be shifted out of the variable. The MS
bit becomes zero. Shifting a variable to the right, divides the variable by two.

See also
ROTATE »page 163 , SHIFTIN »page 165 , SHIFTOUT »page 167

Example
Dim a as Byte
a = 128
SHIFT a, LEFT , 2
Print a '0

SHIFTCURSOR

Action
Shift the cursor of the LCD display left or right by one position.

Syntax
SHIFTCURSOR LEFT / RIGHT

See also
SHIFTLCD »page 168

Example
LCD "Hello"
SHIFTCURSOR LEFT
End

SHIFTIN

Action
Shifts a bitstream into a variable.

BASCOM-AVR-HELPFILE page 166

Syntax
SHIFTIN pin , pclock , var , option [, bits , delay]

Remarks
Pin The port pin which serves as an input.PINB.2 for example
Pclock The port pin which generates the clock.
Var The variable that is assigned.
Option Option can be :

0 – MSB shifted in first when clock goes low
1 – MSB shifted in first when clock goes high
2 – LSB shifted in first when clock goes low
3 – LSB shifted in first when clock goes high
Adding 4 to the parameter indicates that an external clock signal is used for
the clock. In this case the clock will not be generated.

Bits Optional number of bits to shift in. Maximum 255.
Delay Optional delay in uS. When you specify the delay, the number of bits must

also be specified. When the number of bits is default you can use NULL for
the BITS parameter.

If you do not specify the number of bits to shift, the number of shifts will depend on the type of
the variable.
When you use a byte, 8 shifts will occur and for an integer, 16 shifts will occur. For a Long and
Single 32 shifts will occur.

The SHIFTIN routine can be used to interface with all kind of chips.
The PIN is normally connected with the output of chip that will send information.
The PCLOCK pin can be used to clock the bits as a master, that is the clock pulses will be
generated. Or it can sample a pin that generates these pulses.
The VARIABLE is a normal BASIC variable. And may be of any type except for BIT. The data
read from the chip is stored in this variable.
The OPTIONS is a constant that specifies the direction of the bits. The chip that outputs the
data may send the LS bit first or the MS bit first. It also controls on which edge of the clock
signal the data must be stored.
When you add 4 to the constant you tell the compiler that the clock signal is not generated but
that there is an external clock signal.
The number of bits may be specified. You may omit this info. In that case the number of bits of
the element data type will be used.
The DELAY normally consists of 2 NOP instructions. When the clock is too fast you can
specify a delay time(in uS).

See also
SHIFTOUT »page 167 , SHIFT »page 165

Example
Dim a as byte
SHIFTIN PINB.0, PORTB.1, A, 4, 4,10 'shiftin 4 bits and use external clock
SHIFT A, RIGHT,4 'adjust

SHIFTIN PINB.0, PORTB.1 , A 'read 8 bits

BASCOM-AVR-HELPFILE page 167

SHIFTOUT

Action
Shifts a bitstream out of a variable into a port pin .

Syntax
SHIFTOUT pin , pclock , var , option [, bits , delay]

Remarks
Pin The port pin which serves as a data output.
Pclock The port pin which generates the clock.
Var The variable that is shifted out.
Option Option can be :

0 – MSB shifted out first when clock goes low
1 – MSB shifted out first when clock goes high
2 – LSB shifted out first when clock goes low
3 – LSB shifted out first when clock goes high

Bits Optional number of bits to shift out.
Delay Optional delay in uS. When you specify the delay, the number

of bits must also be specified. When the default must be used
you can also use NULL for the number of bits.

If you do not specify the number of bits to shift, the number of shifts will depend on the type of
the variable.
When you use a byte, 8 shifts will occur and for an integer, 16 shifts will occur. For a Long and
Single 32 shifts will occur.

The SHIFTIN routine can be used to interface with all kind of chips.
The PIN is normally connected with the input of a chip that will receive information.
The PCLOCK pin is used to clock the bits out of the chip.
The VARIABLE is a normal BASIC variable. And may be of any type except for BIT. The data
that is stored in the variable is sent with PIN.
The OPTIONS is a constant that specifies the direction of the bits. The chip that reads the data
may want the LS bit first or the MS bit first. It also controls on which edge of the clock signal
the data is sent to PIN.
The number of bits may be specified. You may omit this info. In that case the number of bits of
the element data type will be used.
The DELAY normally consists of 2 NOP instructions. When the clock is too fast you can
specify a delay time(in uS).

See also
SHIFTIN »page 165 , SHIFT »page 165

Example
Dim a as byte
SHIFTOUT PORTB.0, PORTB.1, A, 3, 4,10 'shiftout 4 bits
SHIFTIN PINB.0, PORTB.1 , A, 3 'shiftout 8 bits

BASCOM-AVR-HELPFILE page 168

SHIFTLCD

Action
Shift the LCD display left or right by one position.

Syntax
SHIFTLCD LEFT / RIGHT

Remarks

See also
SHIFTCURSOR »page 165

Example
LCD "Very long text"
SHIFTLCD LEFT
Wait 1
SHIFTLCD RIGHT
End

SOUND

Action
Sends pulses to a port pin.

Syntax
SOUND pin, duration, pulses

Remarks
Pin Any I/O pin such as PORTB.0 etc.
Duration The number of pulses to send. Byte, integer/word or constant.
Pulses The time the pin is pulled low and high.

This is the value for a loop counter.

When you connect a speaker or a buzzer to a port pin (see hardware) , you can use the
SOUND statement to generate some tones.

The port pin is switched high and low for pulses times.
This loop is executed duration times.

The SOUND statement is not intended to generate accurate fequencies. Use a TIMER to do
that.

See also

Example
SOUND PORTB.1 , 10000, 10 'BEEP
End

BASCOM-AVR-HELPFILE page 169

SPACE

Action
Returns a string that consists of spaces.

Syntax
var = SPACE(x)

Remarks
X The number of spaces.
Var The string that is assigned.
Using 0 for x will result in a string of 255 bytes because there is no check for a zero length
assign.

See also
STRING »page 173

Example
Dim s as String * 15, z as String * 15
s = Space(5)
Print " {" ;s ; " }" '{ }

Dim A as Byte
A = 3
S = Space(a)

SPIIN

Action
Reads a value from the SPI-bus.

Syntax
SPIIN var, bytes

Remarks
var The variable which receives the value read from the SPI-bus.
bytes The number of bytes to read.

See also
SPIOUT, »page 170 SPIINIT, »page 170 CONFIG SPI »page 96 , SPIMOVE »page 193

Example
Dim a(10) as byte
CONFIG SPI = SOFT, DIN = PINB.0, DOUT = PORTB.1, SS=PORTB.2, CLOCK = PORTB.3
SPIINIT
SPIIN a(1) , 4 'read 4 bytes

BASCOM-AVR-HELPFILE page 170

SPIINIT

Action
Sets the SPI pins in the right mode.

Syntax
SPIINIT

Remarks
After the configuration of the SPI pins, you must initialize the SPI pins to set them for the right
data direction. When the pins are not used by other hardware/software, you only need to use
SPIINIT once.
When other routines change the state of the SPI pins, use SPIINIT again before using SPIIN
and SPIOUT.

See also
SPIIN »page 169 , SPIOUT »page 170

ASM
Calls _init_spi

Example
Dim a(10) as byte
CONFIG SPI = SOFT, DIN = PINB.1, DOUT = PORTB.1, SS=PORTB.2, CLOCK = PORTB.3
INITSPI
SPIIN a(1) , 4 'read 4 bytes

SPIOUT

Action
Sends a value of a variable to the SPI-bus.

Syntax
SPIOUT var , bytes

Remarks
var The variable whose content must be send to the SPI-bus.
bytes The number of bytes to send.

See also
SPIIN »page 169 , SPIINIT »page 170 , CONFIG SPI »page 96 , SPIMOVE »page 193

Example
CONFIG SPI = SOFT, DIN = PIND.5, DOUT = PORTD.7, SS=P1.2, CLOCK = PORTD.3
SPIINIT
Dim a(10) as Byte , X As Byte
SPIOUT a(1) , 5 'send 5 bytes

SPIOUT X , 1 'send 1 byte

BASCOM-AVR-HELPFILE page 171

START

Action
Start the specified device.

Syntax
START device

Remarks
Device TIMER0, TIMER1, COUNTER0 or COUNTER1, WATCHDOG, AC

(Analog comparator power) or ADC(A/D converter power).

You must start a timer/counter in order for an interrupt to occur (when the external gate is
disabled).

TIMER0 and COUNTER0 are the same device.
The AC and ADC parameters will switch power to the device and thus enabling it to work.

See also
STOP »page 172

Example
'--
' ADC.BAS
' demonstration of GETADC() function for 8535 micro
'--
'configure single mode and auto prescaler setting
'The single mode must be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,15,32,64 or 128
'Because the ADC needs a clock from 50-200 KHz
'The AUTO feature, will select the highest clockrate possible
Config Adc = Single , Prescaler = Auto
'Now give power to the chip
Start Adc

'With STOP ADC, you can remove the power from the chip
'Stop Adc

Dim W As Word , Channel As Byte

Channel = 0
'now read A/D value from channel 0
Do
 W = Getadc(channel)
 Print "Channel " ; Channel ; " value " ; W
 Incr Channel
 If Channel > 7 Then Channel = 0
Loop
End

BASCOM-AVR-HELPFILE page 172

STOP

Action
Stop the specified device. Or stop the program

Syntax
STOP device

STOP

Remarks
Device TIMER0, TIMER1, COUNTER0 or COUNTER1, WATCHDOG, AC

(Analog comparator power) or ADC(A/D converter power).

The single STOP statement will end your program by generating a never ending loop. When
END is used it will have the same effect but in addition it will disable all interrupts.

The STOP statement with one of the above parameters, will stop the specified device.

TIMER0 and COUNTER0 are the same device.
The AC and ADC parameters will switch power off the device to disable it and thus save
power.

See also
START »page 171 , END »page 120

Example
'--
' ADC.BAS
' demonstration of GETADC() function for 8535 micro
'--
'configure single mode and auto prescaler setting
'The single mode must be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,15,32,64 or 128
'Because the ADC needs a clock from 50-200 KHz
'The AUTO feature, will select the highest clockrate possible
Config Adc = Single , Prescaler = Auto
'Now give power to the chip
Start Adc

'With STOP ADC, you can remove the power from the chip
'Stop Adc

Dim W As Word , Channel As Byte

Channel = 0
'now read A/D value from channel 0
Do
 W = Getadc(channel)
 Print "Channel " ; Channel ; " value " ; W
 Incr Channel
 If Channel > 7 Then Channel = 0

BASCOM-AVR-HELPFILE page 173

Loop
End

STR

Action
Returns a string representation of a number.

Syntax
var = Str(x)

Remarks
var A string variable.
X A numeric variable.

The string must be big enough to store the result.

See also
VAL »page 176 , HEX »page 129 , HEXVAL »page 130

Difference with QB
In QB STR() returns a string with a leading space. BASCOM does not.

Example
Dim a as Byte, S as XRAM String * 10
a = 123
s = Str(a)
Print s
End

STRING

Action
Returns a string consisting of m repetitions of the character with ASCII
Code n.

Syntax
var = STRING(m ,n)

Remarks
var The string that is assigned.
n The ASCII-code that is assigned to the string.
m The number of characters to assign.
Since a string is terminated by a 0 byte, you can't use 0 for n.
Using 0 for m will result in a string of 255 bytes, because there is no check on a length assign
of 0.

See also

BASCOM-AVR-HELPFILE page 174

SPACE »page 169

Example
Dim s as String * 15
s = String(5,65)
Print s 'AAAAA
End

SUB

Action
Defines a Sub procedure.

Syntax
SUB Name[(var1)]

Remarks
Name Name of the sub procedure, can be any non-reserved word.
var1 The name of the parameter.

You must end each subroutine with the END SUB statement.
You can copy the DECLARE SUB line and remove the DECLARE statement. This ensures
that you have the right parameters.

See the DECLARE SUB »page 112 topic for more details.

SWAP

Action
Exchange two variables of the same type.

Syntax
SWAP var1, var2

Remarks
var1 A variable of type bit, byte, integer, word, long or string.
var2 A variable of the same type as var1.

After the swap, var1 will hold the value of var2 and var2 will hold the value of var1.

Example
Dim a as integer,b1 as integer
a = 1 : b1 = 2 'assign two integers
SWAP a, b1 'swap them
PRINT a ; b1 'prints 21

BASCOM-AVR-HELPFILE page 175

THIRDLINE

Action
Reset LCD cursor to the third line.

Syntax
THIRDLINE

Remarks
-

See also
UPPERLINE »page 176 , LOWERLINE »page 147 , FOURTHLINE »page 122

Example
Dim a as byte
a = 255
LCD a
Thirdline
LCD a
Upperline
End

TRIM

Action
Returns a copy of a string with leading and trailing blanks removed

Syntax
var = TRIM(org)

Remarks
var String that receives the result.
org The string to remove the spaces from

See also
RTRIM »page 162 , LTRIM »page 142

ASM

Example
Dim S As String * 6
S = " AB "
Print Ltrim(s)
Print Rtrim(s)
Print Trim(s)
End

BASCOM-AVR-HELPFILE page 176

UPPERLINE

Action
Reset LCD cursor to the upperline.

Syntax
UPPERLINE

Remarks
-

See also
LOWERLINE »page 147 , THIRDLINE »page 175 , FOURTHLINE »page 122

Example
Dim a as byte
a = 255
LCD a
Lowerline
LCD a
Upperline
End

VAL

Action
Converts a string representation of a number into a number.

Syntax
var = Val(s)

Remarks
Var A numeric variable that is assigned with the value of s.
S Variable of the string type.

See also
STR »page 173

Example
Dim a as byte, s As String * 10
s = "123"
a = Val(s) 'convert string
Print a
End

BASCOM-AVR-HELPFILE page 177

VARPTR

Action
Retrieves the memory-address of a variable.

Syntax
var = VARPTR(var2)

Remarks
Var The variable that receives the address of var2.
Var2 A variable to retrieve the address from.

See also

Example
Dim B As Xram Byte At &H300 , I As Integer , W As Word
W = Varptr(b)
Print Hex(w) 'Print &H0300
End

WAIT

Action
Suspends program execution for a given time.

Syntax
WAIT seconds

Remarks
seconds The number of seconds to wait.

No accurate timing is possible with this command.
When you use interrupts, the delay may be extended.

See also
DELAY »page 114 , WAITMS »page 178

Example
WAIT 3 'wait for three seconds
Print "*"

WAITKEY

Action
Wait until a character is received in the serial buffer.

Syntax
var = WAITKEY

BASCOM-AVR-HELPFILE page 178

Remarks
var Variable that receives the ASCII value of the serial buffer.

See also
INKEY »page 135

Example
Dim A As Byte
A = Waitkey() 'wait for character
Print A

WAITMS

Action
Suspends program execution for a given time in mS.

Syntax
WAITMS mS

Remarks
ms The number of milliseconds to wait. (1-255)

No accurate timing is possible with this command.
In addition, the use of interrupts can slow this routine.
This statement is provided for the I2C statements.
When you write to an EEPROM you must wait for 10 mS after the write instruction.

See also
DELAY »page 114 , WAIT »page 177 , WAITUS »page 178

Example
WAITMS 10 'wait for 10 mS
Print "*"

WAITUS

Action
Suspends program execution for a given time in uS.

Syntax
WAITUS uS

Remarks
uS The number of micriseconds to wait. (1-255)

This must be a constant. No variable!

BASCOM-AVR-HELPFILE page 179

No accurate timing is possible with this command.
In addition, the use of interrupts can slow this routine.

See also
DELAY »page 114 , WAIT »page 177 , WAITUS »page 178

Example
WAITUS 10 'wait for 10 uS
Print "*"

WHILE-WEND

Action
Executes a series of statements in a loop, as long as a given condition is true.

Syntax
WHILE condition

statements
WEND

Remarks
If the condition is true then any intervening statements are executed until the WEND statement
is encountered.
BASCOM then returns to the WHILE statement and checks the condition.
If it is still true, the process is repeated.
If it is not true, execution resumes with the statement following the WEND statement.
So in contrast with the DO-LOOP structure, a WHILE-WEND condition is tested first so that if
the condition fails, the statements in the WHILE-WEND structure are never executed.

See also
DO-LOOP »page 118

Example
WHILE a <= 10 'if a is smaller or equal to 10

PRINT a 'print variable a
INCR a

WEND

WRITEEEPROM

Action
Write a variables content to the DATA EEPROM.

Syntax
WRITEEEPROM var , address

Remarks

BASCOM-AVR-HELPFILE page 180

var The name of the variable that must be stored
address The address in the EEPROM where the variable must

be stored.

This statement is provided for compatibility with BASCOM-8051.
You can also use :
Dim V as Eram Byte 'store in EEPROM
Dim B As Byte 'normal variable
B = 10
V = B 'store variable in EEPROM
When you use the assignment version, the data types must be the same!

According to a datasheet from ATMEL, the first location in the EEPROM with address 0, can
be overwritten during a reset.

See also
READEEPROM »page 159

ASM

Example
Dim B As Byte
WriteEEPROM B ,0 'store at first position
ReadEEPROM B, 0 'read byte back

LOADADR

Action
Loads the address of a variable into a register pair.

Syntax
LOADADR var , reg

Remarks
var A variable which address must be loaded into the register pair X,

Y or Z.
reg The register X, Y or Z.

The LOADADR statement serves as an assembly helper routine.

Example
Dim S As String * 12
Dim A As Byte
$ASM
 loadadr S , X 'load address into R26 and R27
 ld _temp1, X 'load value of location R26/R27 into R24(_temp1)
$END ASM

BASCOM-AVR-HELPFILE page 181

Changes compared to BASCOM-8051

The design goal was to make BASCOM-AVR compatible with BASCOM-8051.
The standard edition is intended as a replacement for BASCOM-LT.
The professional edition is intended as a replacement for BASCOM-8051.

For the AVR compilers I had to remove some statements.
New statements are also added. And some statements were changed.
They need specific attention, but the changes to the syntax will be made available to
BASCOM-8051 too in the future.

Statements that were removed

STATEMENT DESCRIPTION
$LARGE Not needed anymore.
$ROMSTART Code always starts at address 0 for the AVR.
$LCDHEX Use LCD Hex(var) instead.
$NOINIT Not needed anymore
$NOSP Not needed anymore
$NOBREAK Can't be used anymore because there is no object code

that can be used for it.
$SIM Removed because there is no simulator yet.
$OBJ Removed.
BREAK Can't be used anymore because there is no object code

that can be used for it.
PRIORITY AVR does no allow setting priority of interrupts
PRINTHEX You can use Print Hex(var) now
LCDHEX You can use Lcd Hex(var) now

Statements that were added
STATEMENT DESCRIPTION
FUNCTION Now you can define your own user FUNCTIONS.
LOCAL You can have LOCAL variables in SUB routines or

FUNCTIONS.
^ New math statement. Var = 2 ^ 3 will return 2*2*2
SHIFT Because ROTATE was changed, I added the SHIFT

statement. SHIFT works just like ROTATE, but when
shifted left, the LS BIT is cleared and the carry doesn't go
to the LS BIT.

LTRIM LTRIM, trims the leftmost spaces of a string.
RTRIM RTRIM, trims the rightmost spaces of a string.
TRIM TRIM, trims both the leftmost and rightmost spaces of a

string.

Statements that behave differently
STATEMENT DESCRIPTION
ROTATE Rotate now behaves like the ASM rotate, this means that

the carry will go to the most significant bit of a variable or
the least significant bit of a variable.

BASCOM-AVR-HELPFILE page 182

CONST String were added to the CONST statement. I also changed
it to be compatible with QB.

DECLARE BYVAL has been added since real subprograms are now
supported.

DIM You can now specify the location in memory of the variable.
Dim v as byte AT 100, will use memory location 100.

GETRC Is named GETRC0 now to indicate that it works with
TIMER0.

ISP programmer
BASCOM supports the STK200 ISP programmer from Kanda.
This is a very reliable parallel printer port programmer.
The STK200 ISP programmer is included in the STK200 starter kit.

All programs were tested with the STK200.

For those who don't have this kit and the programmer the following schematic shows how to
make your own programmer:

The dongle has a chip with no identification but since the schematic is all over the web, I have
included it. Kanda also sells a very cheap seperate programmer dongle. So I suggest you buy
this one!

BASCOM-AVR-HELPFILE page 183

Supported Programmers
BASCOM supports the following programmers

AVR ICP910 based on the AVR910.ASM application note

STK200 ISP programmer »page 182 from Atmel/Kanda

The PG302 programmer »page 183 from Iguana Labs

The simple cable programmer »page 191 from Sample Electronics.

Eddie McMullen's SPI programmer.

KITSRUS KIT122 Programmer »page 198

PG302 programmer
The PG302 is a serial programmer. It works and looks exactly as the original PG302 software.

Select the programmer from The Option Programmer menu or right click on the button to
show the Option Programmer »page 38 menu.

Assembler mnemonics
BASCOM supports the mnemonics as defined by Atmel.
The Assembler accepts mnemonic instructions from the instruction set.

A summary of the instruction set mnemonics and their parameters is given here. For a detailed
description of the Instruction set, refer to the AVR Data Book.

BASCOM-AVR-HELPFILE page 184

Mnemonics Operands Description Operation Flags Clock

ARITHMETIC AND
LOGIC
INSTRUCTIONS

ADD Rd, Rr Add without Carry Rd = Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry Rd = Rd + Rr + C Z,C,N,V,H 1

SUB Rd, Rr Subtract without
Carry

Rd = Rd – Rr Z,C,N,V,H 1

SUBI Rd, K Subtract
Immediate

Rd = Rd – K Z,C,N,V,H 1

SBC Rd, Rr Subtract with
Carry

Rd = Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract
Immediate with
Carry

Rd = Rd - K - C Z,C,N,V,H 1

AND Rd, Rr Logical AND Rd = Rd · Rr Z,N,V 1

ANDI Rd, K Logical AND with
Immediate

Rd = Rd · K Z,N,V 1

OR Rd, Rr Logical OR Rd = Rd v Rr Z,N,V 1

ORI Rd, K Logical OR with
Immediate

Rd = Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Rd = Rd Å Rr Z,N,V 1

COM Rd Ones
Complement

Rd = $FF - Rd Z,C,N,V 1

NEG Rd Twos
Complement

Rd = $00 - Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in
Register

Rd = Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in
Register

Rd = Rd · ($FFh -
K)

Z,N,V 1

INC Rd Increment Rd = Rd + 1 Z,N,V 1

DEC Rd Decrement Rd = Rd - 1 Z,N,V 1

TST Rd Test for Zero or
Minus

Rd = Rd · Rd Z,N,V 1

CLR Rd Clear Register Rd = Rd Å Rd Z,N,V 1

SER Rd Set Register Rd = $FF None 1

ADIW Rdl, K Add Immediate to
Word

Rdh:Rdl =
Rdh:Rdl + K

None 1

SBIW Rdl, K Subtract
Immediate from
Word

Rdh:Rdl =
Rdh:Rdl - K

None 1

MUL Rd,Rr Multiply Unsigned R1, R0 = Rd * Rr C 2 *

BRANCH
INSTRUCTIONS

RJMP k Relative Jump PC = PC + k + 1 None 2

IJMP Indirect Jump to
(Z)

PC = Z None 2

JMP k Jump PC = k None 3

RCALL k Relative Call
Subroutine

PC = PC + k + 1 None 3

ICALL Indirect Call to (Z) PC = Z None 3

CALL k Call Subroutine PC = k None 4

RET Subroutine Return PC = STACK None 4

RETI Interrupt Return PC = STACK I 4

CPSE Rd,Rr Compare, Skip if
Equal

if (Rd = Rr) PC =
PC + 2 or 3

None 1 / 2

BASCOM-AVR-HELPFILE page 185

CP Rd,Rr Compare Rd - Rr Z,C,N,V,H, 1

CPC Rd,Rr Compare with
Carry

Rd - Rr - C Z,C,N,V,H 1

CPI Rd,K Compare with
Immediate

Rd - K Z,C,N,V,H 1

SBRC Rr, b Skip if Bit in
Register Cleared

If (Rr(b)=0) PC =
PC + 2 or 3

None 1 / 2

SBRS Rr, b Skip if Bit in
Register Set

If (Rr(b)=1) PC =
PC + 2 or 3

None 1 / 2

SBIC P, b Skip if Bit in I/O
Register Cleared

If(I/O(P,b)=0) PC
= PC + 2 or 3

None 2 / 3

SBIS P, b Skip if Bit in I/O
Register Set

If(I/O(P,b)=1) PC
= PC + 2 or 3

None 2 / 3

BRBS s, k Branch if Status
Flag Set

if (SREG(s) = 1)
then PC=PC+k +
1

None 1 / 2

BRBC s, k Branch if Status
Flag Cleared

if (SREG(s) = 0)
then PC=PC+k +
1

None 1 / 2

BREQ k Branch if Equal if (Z = 1) then PC
= PC + k + 1

None 1 / 2

BRNE k Branch if Not
Equal

if (Z = 0) then PC
= PC + k + 1

None 1 / 2

BRCS k Branch if Carry
Set

if (C = 1) then PC
= PC + k + 1

None 1 / 2

BRCC k Branch if Carry
Cleared

if (C = 0) then PC
= PC + k + 1

None 1 / 2

BRSH k Branch if Same or
Higher

if (C = 0) then PC
= PC + k + 1

None 1 / 2

BRLO k Branch if Lower if (C = 1) then PC
= PC + k + 1

None 1 / 2

BRMI k Branch if Minus if (N = 1) then PC
= PC + k + 1

None 1 / 2

BRPL k Branch if Plus if (N = 0) then PC
= PC + k + 1

None 1 / 2

BRGE k Branch if Greater
or Equal, Signed

if (N V= 0) then
PC = PC+ k + 1

None 1 / 2

BRLT k Branch if Less
Than, Signed

if (N V= 1) then
PC = PC + k + 1

None 1 / 2

BRHS k Branch if Half
Carry Flag Set

if (H = 1) then PC
= PC + k + 1

None 1 / 2

BRHC k Branch if Half
Carry Flag
Cleared

if (H = 0) then PC
= PC + k + 1

None 1 / 2

BRTS k Branch if T Flag
Set

if (T = 1) then PC
= PC + k + 1

None 1 / 2

BRTC k Branch if T Flag
Cleared

if (T = 0) then PC
= PC + k + 1

None 1 / 2

BRVS k Branch if
Overflow Flag is
Set

if (V = 1) then PC
= PC + k + 1

None 1 / 2

BRVC k Branch if
Overflow Flag is
Cleared

if (V = 0) then PC
= PC + k + 1

None 1 / 2

BRIE k Branch if Interrupt
Enabled

if (I = 1) then PC
= PC + k + 1

None 1 / 2

BRID k Branch if Interrupt
Disabled

if (I = 0) then PC
= PC + k + 1

None 1 / 2

BASCOM-AVR-HELPFILE page 186

DATA TRANSFER
INSTRUCTIONS

MOV Rd, Rr Copy Register Rd = Rr None 1

LDI Rd, K Load Immediate Rd = K None 1

LDS Rd, k Load Direct Rd = (k) None 3

LD Rd, X Load Indirect Rd = (X) None 2

LD Rd, X+ Load Indirect and
Post-Increment

Rd = (X), X = X +
1

None 2

LD Rd, -X Load Indirect and
Pre-Decrement

X = X - 1, Rd =(X) None 2

LD Rd, Y Load Indirect Rd = (Y) None 2

LD Rd, Y+ Load Indirect and
Post-Increment

Rd = (Y), Y = Y +
1

None 2

LD Rd, -Y Load Indirect and
Pre-Decrement

Y = Y - 1, Rd = (Y) None 2

LDD Rd,Y+q Load Indirect with
Displacement

Rd = (Y + q) None 2

LD Rd, Z Load Indirect Rd = (Z) None 2

LD Rd, Z+ Load Indirect and
Post-Increment

Rd = (Z), Z = Z+1 None 2

LD Rd, -Z Load Indirect and
Pre-Decrement

Z = Z - 1, Rd = (Z) None 2

LDD Rd, Z+q Load Indirect with
Displacement

Rd = (Z + q) None 2

STS k, Rr Store Direct (k) = Rr None 3

ST X, Rr Store Indirect (X) = Rr None 2

ST X+, Rr Store Indirect and
Post-Increment

(X) = Rr, X = X + 1 None 2

ST -X, Rr Store Indirect and
Pre-Decrement

X = X - 1, (X) = Rr None 2

ST Y, Rr Store Indirect (Y) = Rr None 2

ST Y+, Rr Store Indirect and
Post-Increment

(Y) = Rr, Y = Y + 1 None 2

ST -Y, Rr Store Indirect and
Pre-Decrement

Y = Y - 1, (Y) = Rr None 2

STD Y+q,Rr Store Indirect with
Displacement

(Y + q) = Rr None 2

ST Z, Rr Store Indirect (Z) = Rr None 2

ST Z+, Rr Store Indirect and
Post-Increment

(Z) = Rr, Z = Z + 1 None 2

ST -Z, Rr Store Indirect and
Pre-Decrement

Z = Z - 1, (Z) = Rr None 2

STD Z+q,Rr Store Indirect with
Displacement

(Z + q) = Rr None 2

LPM Load Program
Memory

R0 =(Z) None 3

IN Rd, P In Port Rd = P None 1

OUT P, Rr Out Port P = Rr None 1

PUSH Rr Push Register on
Stack

STACK = Rr None 2

POP Rd Pop Register from
Stack

Rd = STACK None 2

BIT AND BIT-TEST
INSTRUCTIONS

LSL Rd Logical Shift Left Rd(n+1)
=Rd(n),Rd(0)=
0,C=Rd(7)

Z,C,N,V,H 1

LSR Rd Logical Shift Right Rd(n) = Rd(n+1), Z,C,N,V 1

BASCOM-AVR-HELPFILE page 187

Rd(7) =0,
C=Rd(0)

ROL Rd Rotate Left
Through Carry

Rd(0) =C,
Rd(n+1)
=Rd(n),C=Rd(7)

Z,C,N,V,H 1

ROR Rd Rotate Right
Through Carry

Rd(7) =C,Rd(n)
=Rd(n+1),C¬Rd(0
)

Z,C,N,V 1

ASR Rd Arithmetic Shift
Right

Rd(n) = Rd(n+1),
n=0..6

Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0) «
Rd(7..4)

None 1

BSET s Flag Set SREG(s) = 1 SREG(s) 1

BCLR s Flag Clear SREG(s) = 0 SREG(s) 1

SBI P, b Set Bit in I/O
Register

I/O(P, b) = 1 None 2

CBI P, b Clear Bit in I/O
Register

I/O(P, b) = 0 None 2

BST Rr, b Bit Store from
Register to T

T = Rr(b) T 1

BLD Rd, b Bit load from T to
Register

Rd(b) = T None 1

SEC Set Carry C = 1 C 1

CLC Clear Carry C = 0 C 1

SEN Set Negative Flag N = 1 N 1

CLN Clear Negative
Flag

N = 0 N 1

SEZ Set Zero Flag Z = 1 Z 1

CLZ Clear Zero Flag Z = 0 Z 1

SEI Global Interrupt
Enable

I = 1 I 1

CLI Global Interrupt
Disable

I = 0 I 1

SES Set Signed Test
Flag

S = 1 S 1

CLS Clear Signed Test
Flag

S = 0 S 1

SEV Set Twos
Complement
Overflow

V = 1 V 1

CLV Clear Twos
Complement
Overflow

V = 0 V 1

SET Set T in SREG T = 1 T 1

CLT Clear T in SREG T = 0 T 1

SHE Set Half Carry
Flag in SREG

H = 1 H 1

CLH Clear Half Carry
Flag in SREG

H = 0 H 1

NOP No Operation None 1

SLEEP Sleep None 1

WDR Watchdog Reset None 1

*) Not available in base-line microcontrollers

The Assembler is not case sensitive.

The operands have the following forms:

BASCOM-AVR-HELPFILE page 188

Rd: R0-R31 or R16-R31 (depending on instruction)

Rr: R0-R31

b: Constant (0-7)

s: Constant (0-7)

P: Constant (0-31/63)

K: Constant (0-255)

k: Constant, value range depending on instruction.

q: Constant (0-63)

Rdl: R24, R26, R28, R30. For ADIW and SBIW instructions

Mixing ASM and BASIC
BASCOM allows you to mix BASIC with assembly.
This can be very useful in some situations when you need full control of the generated code.

Almost all assembly mnemonics are recognized by the compiler. The exceptions are : SUB,
SWAP and OUT. These are BASIC reserved words and have priority over the ASM
mnemonics. To use these mnemonics precede them with the ! - sign.
For example :

Dim a As Byte At &H60 'A is stored at location &H60
Ldi R27 , $00 'Load R27 with MSB of address
Ldi R26 , $60 'Load R26 with LSB of address
Ld R1, X 'load memory location $60 into R1
!SWAP R1 'swap nibbles

As you can see the SWAP mnemonic is preceded by a ! sign.

Another option is to use the assembler block directives:
$ASM

Ldi R27 , $00 'Load R27 with MSB of address
Ldi R26 , $60 'Load R26 with LSB of address
Ld R1, X 'load memory location $60 into R1
SWAP R1 'swap nibbles

$END ASM

A special assembler helper function is provided to load the address into the register X or Z. Y
can may not be used because it is used as the soft stack pointer.

Dim A As Byte 'reserve space
LOADADR a, X 'load address of variable named A into register pair X

This has the same effect as :
Ldi R26 , $60 'for example !
Ldi R27, $00 'for example !

Some registers are used by BASCOM
R4 and R5 are used to point to the stack frame or the temp data storage

BASCOM-AVR-HELPFILE page 189

R6 is used to store some bit variables:
R6 bit 0 = flag for int/word conversion
R6 bit 1 = temp bit space used for swapping bits
R6 bit 2 = error bit (ERR variable)
R6 bit 3 = show/noshow flag when using INPUT statement

R8 and R9 are used as a data pointer for the READ statement.

All other registers are used depending on the used statements.

To Load the address of a variable you must enclose them in brackets.
Dim B As Bit
Lds R16, {B} 'will replace {B} with the address of variable B

To refer to the bitnumber you must precede the variable name by BIT.
Sbrs R16 , BIT.B 'notice the point!
Since this was the first dimensioned bit the bitnumber is 7. Bits are stored in bytes and the first
dimensioned bit goes in the LS bit.

To load an address of a label you must use :
LDI ZL, , Low(lbl * 2)
LDI ZH , High(lbl * 2)
Where ZL = R30 and may be R24, R26, R28 or R30
And ZH = R31 and may be R25, R27, R29 or R31.
These are so called register pairs that form a pointer.
Because the AVR stores the object code in Word format the * 2 is used.
LBL is the name of your label.

Atmel mnemonics must be used to program in assembly.
You can download the pdf from www.atmel.com that shows how the different mnemonics are
used.
Some points of attention :
* All instructions that use a constant as a parameter only work on the upper 16 registers (r16-
r31)
So LDI R15,12 WILL NOT WORK

* The instruction SBR register, K
will work with K from 0-255. So you can set multiple bits!

The instruction SBI port, K will work with K from 0-7 and will set only ONE bit in a IO-port
register.

The same applies to the CBR and CBI instructions.

How to make your own libraries and call them from BASIC?
The files for this sample can be found as libdemo.bas in the SAMPLES dir and as mylib.lib in
the LIB dir.

First determine the used parameters and their type.
Also consider if they are passed by reference or by value

For example the sub test has two parameters:
 x which is passed by value (copy of the variable)
 y which is passed by reference(address of the variable)

BASCOM-AVR-HELPFILE page 190

In both cases the addres of the variable is put on the soft stack which is
 indexed by the Y pointer.

The first parameter (or a copy) is put on the soft stack first
To refer to the address you must use:
 ldd r26 , y + 0
 ldd r27 , y + 1
This loads the address into pointer X

The second parameter will also be put on the softstack so :
The reference for the x variable will be changed :

To refer to the address of x you must use:
 ldd r26 , y + 2
 ldd r27 , y + 3

To refer to the last parameter y you must use
 ldd r26 , y + 0
 ldd r27 , y + 1

Write the sub routine as you are used too but include the name within brackets []

[test]
test:
 ldd r26,y+2 ; load address of x
 ldd r27,y+3
 ld r24,x ; get value into r24
 inc r24 ; value + 1
 st x,r24 ; put back
 ldd r26,y+0 ; address of y
 ldd r27,y+1
 st x,r24 ; store
 ret ; ready
[end]

To write a function goes the same way.
A function returns a result so a function has one additional parameter.
It is generated automatic and it has the name of the function.
This way you can assign the result to the function name
For example:

Declare Function Test(byval x as byte , y as byte) as byte
A virtual variable will be created with the name of the function in this case test .
It will be pushed on the softstack with the Y-pointer.
To reference to the result or name of the function (test) the address will be:
 y + 0 and y + 1
The first variable x will bring that to y + 2 and y + 3
And the third variable will cause that 3 parameters are saved on the soft stack
To reference to test you must use :
 ldd r26 , y + 4
 ldd r27 , y + 5

To reference to x
 ldd r26 , y + 2
 ldd r27 , y + 3

BASCOM-AVR-HELPFILE page 191

And to reference y
 ldd r26 , y + 0
 ldd r27 , y + 1

When you use exit sub or exit function you also need to provide an additional label. It starts
with sub_ and must be completed with the function / sub routine name. In our example:
sub_test:

When you use local variables thing become more complicated.
Each local variable address will be put on the soft stack too
When you use 1 local variable its address will become
 ldd r26, y+0
 ldd r27 , y + 1
All other parameters must be increased with 2 so the reference to y variable changes from
 ldd r26 , y + 0 to ldd r26 , y + 2
 ldd r27 , y + 1 to ldd r27 , y + 3
And of course also for the other variables.

When you have more local variables just add 2 for each.
Finally you save the file as a .lib file
Use the library manager to compile it into the lbx format.
The declare sub / function must be in the program where you use the sub / function.

The following is a copy of the libdemo.bas file :

'define the used library
$lib "mylib.lib"

'also define the used routines
$external Test

'this is needed so the parameters will be placed correct on the stack
Declare Sub Test(byval X As Byte , Y As Byte)

'reserve some space
Dim Z As Byte

'call our own sub routine
Call Test(1 , Z)

'z will be 2 in the used example
End

This chapter is not intended to learn you ASM programming. But when you find a topic is
missing to interface BASCOM with ASM send me an email.

Sample Electronics cable programmer

The simple cable programmer was submitted by Sample Electronics.
They produce professional programmers too. This simple programmer you can make yourself
within a 10 minutes.

What you need is a DB25 centronics male connector, a flatcable and a connector that can be
connected to the target MCU board.

BASCOM-AVR-HELPFILE page 192

The connections to make are as following:

DB25 pin Target MCU pin(AT90S8535) DT104
2, D0 MOSI, pin 6 J5, pin 4
4, D2 RESET, pin 9 J5, pin 8
5, D3 CLOCK, pin 8 J5, pin 6
11, BUSY MISO, pin 7 J5, pin 5
18-25,GND GROUND J5, pin 1

The MCU pin numbers are shown for an 8535!

Note that 18-25 means pins 18,19,20,21,22,23,24 and 25
You can use a small resistor of 100 ohm in series with the D0, D2 and D3 line in order not to
short circuit your LPT port in the event the MCU pins are high.
But it was tested without these resistors and my PC still works :-)

Tip : when testing programmers etc. on the LPT it is best to buy an I/O card for your PC that
has a LPT port. This way you dont destroy your LPT port that is on the motherboard in the
event you make a mistake!

The following picture shows the connections to make. Both a setup for the DT104 and stand
alone PCB are shown.

I received the following useful information :
Hi Mark,

I have been having spurious success with the simple cable programmer from
Sample Electronics for the AVR series.

After resorting to hooking up the CRO I have figured it out (I think). When
trying to identify the chip, no response on the MISO pin indicates that the
Programming Enable command has not been correctly received by the target.
The SCK line Mark/Space times were okay but it looked a bit sad with a slow
rise time but a rapid fall time. So I initially tried to improve the rise
time with a pullup. No change ie still could not identify chip. I was about
to add some buffers when I came across an Atmel app note for their serial
programmer

"During this first phase of the programming cycle, keeping the SCK line
free from pulses is critical, as pulses will cause the target AVR to loose
syncronisation with the programmer. When syncronisation is lost, the only
means of regaining syncronisation is to release the RESET line for more
than 100ms."

I have added a 100pF cap from SCK to GND and works first time every time
now. The SCK rise time is still sad but there must have been enough noise
to corrupt the initial command despite using a 600mm shielded cable.

BASCOM-AVR-HELPFILE page 193

This may be useful to your users.

Regards,

Mark Hayne

SPIMOVE

Action
Sends and receives value or a variable to the SPI-bus.

Syntax
var = SPIMOVE(byte)

Remarks
var The variable that is assigned with the received byte from the SPI-bus.
byte The variable or constant whose content must be send to the SPI-bus.

See also
SPIIN »page 169 , SPIINIT »page 170 , CONFIG SPI »page 96

Example
CONFIG SPI = SOFT, DIN = PINB.0, DOUT = PORTB.1, SS=PORTB.2, CLOCK = PORTB.3
SPIINIT
Dim a(10) as Byte , X As Byte
SPIOUT a(1) , 5 'send 5 bytes

SPIOUT X , 1 'send 1 byte

A(1) = SpiMove(5) ' move 5 to SPI and store result in a(1)

End

BASCOM-AVR-HELPFILE page 194

INSTR

Action

Returns the position of a substring in a string.

Syntax

var = INSTR(start , string , substr)

var = INSTR(string , substr)

Remarks
Var Numeric variable that will be assigned with the position of the

substring in the string. Returns 0 when the substring is not
found.

Start An optional numeric parameter that can be assigned with the
first position where must be searched in the string. By default
(when not used) the whole string is searched starting from
position 1.

String The string to search.
Substr The search string.

No constant can be used for string it must be a string.
Only substr can be either a string or a constant.

See also

Example
Dim S As String * 10 , Z as String * 5

Dim bP as Byte

s = "This is a test"

Z = "is"

bP = Instr(s,z) : Print bP 'should print 3

bP = Instr(4,s,z) : Print bP 'should print 6

End

RND

Action
Returns a random number.

Syntax
var = RND(limit)

Remarks
limit Word that limits the returned random number.
var The variable that is assigned with the random number.

The RND() function returns an Integer/Word and needs an internal storage of 2 bytes.
(___RSEED). Each new call to Rnd() will give a new positive random number.

BASCOM-AVR-HELPFILE page 195

See also

Example
Dim I As Integer
Do
 I = Rnd(100) 'get random number from 0-99
 Print I
 Wait 1
Loop
End

GETATKBD

Action
Reads a key from a PC AT keyboard.

Syntax
var = GETATKBD()

Remarks
var The variable that is assigned with the key read from the

keyboard.
It may be a byte or a string variable.
When no key is pressed a 0 will be returned.

The GETAKBD() function needs 2 input pins and a translation table for the keys. You can read
more about this at the CONFIG KEYBOARD »page 197 compiler directive.

See also
CONFIG KEYBOARD

Example

'---
' PC AT-KEYBOARD Sample
' (c) 2000 MCS Electronics
'---
'For this example :
'connect PC AT keyboard clock to PIND.2 on the 8535
'connect PC AT keyboard data to PIND.4 on the 8535
'The GetATKBD() function does not use an interrupt.
'But it waits until a key was pressed!

'configure the pins to use for the clock and data
'can be any pin that can serve as an input
'Keydata is the label of the key translation table
Config Keyboard = Pind.2 , Data = Pind.4 , Keydata = Keydata

'Dim some used variables
Dim S As String * 12
Dim B As Byte

'In this example we use SERIAL(COM) INPUT redirection
$serialinput = Kbdinput

'Show the program is running
Print "hello"

BASCOM-AVR-HELPFILE page 196

Do
 'The following code is remarked but show how to use the GetATKBD() function
 ' B = Getatkbd() 'get a byte and store it into byte variable
 'When no real key is pressed the result is 0
 'So test if the result was > 0
 ' If B > 0 Then
 ' Print B ; Chr(b)
 ' End If

 'The purpose of this sample was how to use a PC AT keyboard
 'The input that normally comes from the serial port is redirected to the
 'external keyboard so you use it to type
 Input "Name " , S
 'and show the result
 Print S
Loop
End

'Since we do a redirection we call the routine from the redirection routine
'
Kbdinput:
 'we come here when input is required from the COM port
 'So we pass the key into R24 with the GetATkbd function
' We need some ASM code to save the registers used by the function
$asm
 push r16 ; save used register
 push r25
 push r26
 push r27

Kbdinput1:
 rCall _getatkbd ; call the function
 tst r24 ; check for zero
 breq Kbdinput1 ; yes so try again
 pop r27 ; we got a valid key so restore registers
 pop r26
 pop r25
 pop r16
 $end Asm
 'just return
Return

'The tricky part is that you MUST include a normal call to the routine
'otherwise you get an error
'This is no clean solution and will be changed
B = Getatkbd()

'This is the key translation table

Keydata:
'normal keys lower case
Data 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , &H5E , 0
Data 0 , 0 , 0 , 0 , 0 , 113 , 49 , 0 , 0 , 0 , 122 , 115 , 97 , 119 , 50 , 0
Data 0 , 99 , 120 , 100 , 101 , 52 , 51 , 0 , 0 , 32 , 118 , 102 , 116 , 114 , 53 , 0
Data 0 , 110 , 98 , 104 , 103 , 121 , 54 , 7 , 8 , 44 , 109 , 106 , 117 , 55 , 56 , 0
Data 0 , 44 , 107 , 105 , 111 , 48 , 57 , 0 , 0 , 46 , 45 , 108 , 48 , 112 , 43 , 0
Data 0 , 0 , 0 , 0 , 0 , 92 , 0 , 0 , 0 , 0 , 13 , 0 , 0 , 92 , 0 , 0
Data 0 , 60 , 0 , 0 , 0 , 0 , 8 , 0 , 0 , 49 , 0 , 52 , 55 , 0 , 0 , 0
Data 48 , 44 , 50 , 53 , 54 , 56 , 0 , 0 , 0 , 43 , 51 , 45 , 42 , 57 , 0 , 0

'shifted keys UPPER case
Data 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
Data 0 , 0 , 0 , 0 , 0 , 81 , 33 , 0 , 0 , 0 , 90 , 83 , 65 , 87 , 34 , 0
Data 0 , 67 , 88 , 68 , 69 , 0 , 35 , 0 , 0 , 32 , 86 , 70 , 84 , 82 , 37 , 0
Data 0 , 78 , 66 , 72 , 71 , 89 , 38 , 0 , 0 , 76 , 77 , 74 , 85 , 47 , 40 , 0
Data 0 , 59 , 75 , 73 , 79 , 61 , 41 , 0 , 0 , 58 , 95 , 76 , 48 , 80 , 63 , 0
Data 0 , 0 , 0 , 0 , 0 , 96 , 0 , 0 , 0 , 0 , 13 , 94 , 0 , 42 , 0 , 0
Data 0 , 62 , 0 , 0 , 0 , 8 , 0 , 0 , 49 , 0 , 52 , 55 , 0 , 0 , 0 , 0
Data 48 , 44 , 50 , 53 , 54 , 56 , 0 , 0 , 0 , 43 , 51 , 45 , 42 , 57 , 0 , 0

BASCOM-AVR-HELPFILE page 197

CONFIG KEYBOARD

Action
Configure the GETATKBD() function and tell which port pins to use.

Syntax
CONFIG KEYBOARD = PINX.y , DATA = PINX.y , KEYDATA = table

Remarks
KEYBOARD The PIN that serves as the CLOCK input.
DATA The PIN that serves as the DATA input.
KEYDATA The label where the key translation can be found.

The AT keyboard returns scan codes instead of normal ASCII
codes. So a translation table s needed to convert the keys.
BASCOM allows the use of shifted keys too. Special keys like
function keys are not supported.

The AT keyboard can be connected with only 4 wires : clock,data, gnd and vcc.
Some info is displayed below. This is copied from an Atmel datasheet.
The INT0 or INT1 shown can be in fact any pin that can serve as an INPUT pin.
The application note from Atmel works in interrupt mode. For BASCOM I rewrote the code so
that no interrupt is needed/used.

See also
GETATKBD »page 195

BASCOM-AVR-HELPFILE page 198

KITSRUS Programmer
The K122 is a KIT from KITSRUS. (www.kitsrus.com)
The programmer supports the most popular 20 and 40 pins AVR chips.
On the Programmer Options tab you must select this programmer and the COM port it is
connected to.
On the Monitor Options tab you must specify the upload speed of 9600, Monitor delay of 1 and
Prefix delay 1.
When you press the Program button the Terminal Emulator screen will pop up:

A special toolbar is now visible.
You must press the Program enable button

 to enable the
programmer.
When you enable the programmer the right baud rate will be set.

BASCOM-AVR-HELPFILE page 199

When you are finished you must press the Enable button again to disable it.
This way you can have a micro connected to your COM port that works with a different BAUD
rate.
There is an option to select between FLASH and EEPROM.
The prompt will show the current mode which is set to FLASH by default.

The buttons on the toolbar allow you to :
ERASE, PROGRAM, VERIFY, DUMP and set the LOCK BITS.
When DUMP is selected you will be asked for a file name.
When the DUMP is ready you must CLOSE the LOGFILE where the data is stored. This can
be done to select the CLOSE LOGFILE option form the menu.

PULSEOUT

Action
Generates a pulse on a pin of a PORT of specified period in 1uS units for 4 MHz.

Syntax
PULSEOUT PORT , PIN , PERIOD

Remarks
PORT Name of the PORT. PORTB for example
PIN Variable or constant with the pin number (0-7).
PERIOD Number of periods the.

The pulse is generated by toggling the pin twice, thus the initial state of the pin determines the
polarity.
The PIN must be configured as an output pin before this statement can be used.

See also

Example
Dim A As Byte
CONFIG PORTB = OUTPUT 'PORTB all output pins
PORTB = 0 'all pins 0
DO
FOR A = 0 TO 7
 PULSEOUT PORTB , A, 60000 'generate pulse
 WAITMS 250 'wait a bit
NEXT
LOOP 'loop for ever

BASCOM-AVR-HELPFILE page 200

Tools LIB Manager
With this option the following window will appear:

The Libraries are shown in the left pane. When you select one the routines that are in the
library will be shown in the right pane.

By selecting a routine you can DELETE it.
By clicking the ADD button you can add an ASM routine to the library.

The COMPILE button works only in the commercial edition. When you click it the selected
library will be compiled into a LBX file.

A compiled LBX file does not contain comment and a huge amount of mnemonics is compiled
into object code. This object code is inserted at compile time of the main BASIC program. And
this results in faster compilation.

The DEMO version comes with the compiled MCS.LIB file and is named MCS.LBX. The ASM
source is included with the commercial edition.

With the ability to create LBX files you can create add on packages for BASCOM and sell
them. The LBX files could be distributed for free and the ASM source could be sold.

Two examples you will find soon :
- A library to read IDE harddisks.
- MODBUS slave routines

Links
Here are some links to software or information that might be useful:

A WINZIP clone to ZIP and UNZIP software
http://ipsoft.cjb.net/

BASCOM-AVR-HELPFILE page 201

Adding XRAM
Some AVR chips like the 8515 for example can be extended with external RAM memory.

On these chips Port A serves as a Multiplexed Address/Data input/output.
Port C also serves as Address output when using external SRAM.

The maximum size of an XRAM chip can be 64Kbytes.

The STK200 has a 62256 ram chip (32K x 8 bit).

Here is some info from the BASCOM userlist :

If you do go with the external ram , be careful of the clock speed.
Using a 4Mhz crystal , will require a Sram with 70nS access time
or better. Also the data latch (74HC573) will have to be from a faster
family such as a 74FHC573 if you go beyond 4Mhz.

You can also program an extra wait state, which slow it down a bit.

Here you find a pdf file showing STK200 schematics:
http://www.avr-forum.com/Stk200_schematic.pdf

If you use 32kRAM, then connect the /CS signal to A15 which give
to the range of &H0000 to &H7FFF, if you use a 64kRAM, then
tie /CS to GND, so the RAM is selected all the time.

$SIM

Action
Instruct the compiler to generate empty wait loops for the WAIT and WAITMS statements.
This to allow faster simulation.

Syntax
$SIM

Remarks
Simulation of a WAIT statement can take along time especially when memory view windows
are opened.
The $SIM compiler directive instructs the compiler to not generate code for WAITMS and
WAIT. This will of course allows faster simulation.
When your application is ready you must remark the $SIM directive or otherwise the WAIT and
WAITMS statements will not work as expected.

See also

ASM

Example
$SIM
Do
 Wait 1
Loop

BASCOM-AVR-HELPFILE page 202

Newbie problems
When you are using the AVR without knowledge of the architecture you can experience some
problems.

-I can not set a pin high or low
-I can not read the input on a pin
The AVR has 3 registers for each port. A port normally consist of 8 pins. A port is named with
a letter from A-F.
All parts have PORTB.
When you want to set a single pin high or low you can use the SET and RESET statements.
But before you use them the AVR chip must know in which direction you are going to use the
pins.
Therefore there is a register named DDRx for each port. In our sample it is named DDRB.
When you write a 0 to the bit position of the pin you can use the pin as an input. When you
write a 1 you can use it as output.

After the direction bit is set you must use either the PORTx register to set a logic level or the
PINx register to READ a pin level.
Yes the third register is the PINx register. In our sample PINB.

For example :
DDRB = &B1111_0000 ' upper nibble is output, lower nibble is input
SET PORTB.7 'will set the MS bit to +5V
RESET PORTB.7 'will set MS bit to 0 V

To read a pin :
Print PINB.0 'will read LS bit and send it to the RS-232

You may also read from PORTx but it will return the value that was last written to it.

To read or write whole bytes use :
PORTB = 0 'write 0 to register making all pins low
PRINT PINB 'print input on pins

FORMAT

Action
Formats a numeric string.

Syntax
target = Format(source, "mask")

Remarks
target The string that is assigned with the formatted string.
source The source string that holds the number.
mask The mask for formatting the string.

When spaces are in the mask, leading spaces will be added when the
length of the mask is longer than the source string.
" " '8 spaces when source is "123" it will be " 123".
When a + is in the mask (after the spaces) a leading + will be assigned
when the number does not start with the - sign.
"+" with number "123" will be "+123".
When zero's are provided in the mask, the string will be filled with leading
zero;s.

BASCOM-AVR-HELPFILE page 203

" +00000" with 123 will be " +00123"
An optional decimal point can be inserted too:
"000.00" will format the number 123 to "001.23"
Combinations can be made but the order must be : spaces, + , 0 an
optional point and zero's.

See also

Example
'--
' (c) 2000 MCS Electronics
'--
Dim S As String * 10
Dim I As Integer

S = "12345"
S = Format(s , "+")
Print S

S = "123"
S = Format(s , "00000")
Print S

S = "12345"
S = Format(s , "000.00")
Print S

S = "12345"
S = Format(s , " +000.00")
Print S
End

CHECKSUM

Action
Returns a checksum of a string.

Syntax
PRINT Checksum(var)
b = Checksum(var)

Remarks
Var A string variable.
b A numeric variable that is assigned with

the checksum.

The checksum is computed by counting all the bytes of the string variable.
Checksums are often used with serial communication.

See also

Example
Dim s As String * 10 'dim variable
s = "test" 'assign variable
Print checksum(s) 'print value (192)
End

BASCOM-AVR-HELPFILE page 204

READMAGCARD

Action
Read data from a magnetic card.

Syntax
Readmagcard var , count , 5|7

Remarks
var A byte array the receives the data.
count A byte variable that returns the number of bytes read.
5|7 A numeric constant that specifies if 5 or 7 bit coding is used.

There can be 3 tracks on a magnetic card.
Track 1 strores the data in 7 bit including the parity bit. This is handy to store alpha numeric
data.
On track 2 and 3 the data is tored with 5 bit coding.
The ReadMagCard routine works with ISO7811-2 5 and 7 bit decoding.
The returned numbers for 5 bit coding are:
Returned number ISO characterT
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 hardware control
11 start byte
12 hardware control
13 separator
14 hardware control
15 stop byte

Example
'--
' (c) 2000 MCS Electronics
' MAGCARD.BAS
' This example show you how to read data from a magnetic card
'It was tested on the DT006 SimmStick.
'--'[reserve some
space]
Dim Ar(100) As Byte , B As Byte , A As Byte

'the magnetic card reader has 5 wires
'red - connect to +5V

BASCOM-AVR-HELPFILE page 205

'black - connect to GND
'yellow - Card inserted signal CS
'green - clock
'blue - data

'You can find out for your reader which wires you have to use by connecting +5V
'And moving the card through the reader. CS gets low, the clock gives a clock pulse
of equal pulses
'and the data varies
'I have little knowledge about these cards and please dont contact me about magnectic
readers
'It is important however that you pull the card from the right direction as I was
doing it wrong for
'some time :-)
'On the DT006 remove all the jumpers that are connected to the LEDs

'[We use ALIAS to specify the pins and PIN register]
_mport Alias Pinb 'all pins are connected
to PINB
_mdata Alias 0 'data line (blue)
PORTB.0
_mcs Alias 1 'CS line (yellow)
PORTB.1
_mclock Alias 2 'clock line (green)
PORTB.2

Config Portb = Input 'we only need bit 0,1
and 2 for input
Portb = 255 'make them high

Do
 Print "Insert magnetic card" 'print a message
 Readmagcard Ar(1) , B , 5 'read the data
 Print B ; " bytes received"
 For A = 1 To B
 Print Ar(a); 'print the bytes
 Next
 Print
Loop

'By sepcifying 7 instead of 5 you can read 7 bit data

Sept 2000 Ma

BASCOM-AVR-HELPFILE page 206

—$—

$ASM 63
$BAUD 64
$CRYSTAL 64
$DATA 65
$DEFAULT 66
$EEPROM 67
$EXTERNAL 68
$INCLUDE 68
$LCD 69
$LCDPUTCTRL 69
$LCDPUTDATA 70
$LCDRS 71
$LIB 72
$REGFILE 73
$SERIALINPUT 74
$SERIALINPUT2LCD 75
$SERIALOUTPUT 76
$SIM 201
$XRAMSIZE 76
$XRAMSTART 77

—1—

1WREAD 79
1WRESET 78
1WWRITE 80

—A—

A word of thank 12
ABS 81
Adding XRAM 200
Additional Hardware 46
ALIAS 81
ASC 82
Assembler mnemonics 183
Attaching an LCD Display 54
AVR Internal Hardware 46
AVR Internal Hardware Port B 51
AVR Internal Hardware Port D 52
AVR Internal Hardware TIMER1 50
AVR Internal Hardware Watchdog timer 51
AVR Internal Registers 47

—B—

BASCOM Editor Keys 40
BAUD 83
BCD 83
BITWAIT 84
BYVAL 85

—C—

CALL 86
CASE 163
Changes compared to BASCOM-8051 180
CHECKSUM 203
CHR 87
CLOCKDIVISION 88

CLOSE 89
CLS 88
CONFIG 90
CONFIG 1WIRE 91
CONFIG DEBOUNCE 91
CONFIG I2CDELAY 92
CONFIG INTx 92
CONFIG KBD 93
CONFIG KEYBOARD 196
CONFIG LCD 93
CONFIG LCDBUS 94
CONFIG LCDMODE 94
CONFIG LCDPIN 95
CONFIG PORT 102
CONFIG SCL 96
CONFIG SDA 95
CONFIG SPI 96
CONFIG TIMER0 97
CONFIG TIMER1 99
CONFIG WAITSUART 101
CONFIG WATCHDOG 102
CONST 116
Constants 42
COUNTER0 and COUNTER1 104
CPEEK 105
CRYSTAL 106
CURSOR 107

—D—

DATA 107
DEBOUNCE 109
DECLARE FUNCTION 111
DECLARE SUB 112
DECR 110
DEFBIT 113
DEFINT 113
DEFLCDCHAR 113
DEFLNG 113
DEFSNG 113
DEFWORD 113
DEFxxx 113
DELAY 114
Developing Order 42
DIM 114
DISABLE 116
DISPLAY 118
DO 118
DOWNTO 121

—E—

Edit Copy 17
Edit Cut 17
Edit Find 17
Edit Find Next 17
Edit Goto 18
Edit Goto Bookmark 18
Edit Indent Block 18
Edit Paste 17
Edit Redo 17
Edit Replace 17
Edit Toggle Bookmark 18
Edit Undo 17
Edit Unindent Block 18
ELSE 119; 134
ENABLE 119
END 120

BASCOM-AVR-HELPFILE page 207

END IF 134
END SELECT 163
ERAM 42
Error Codes 43
EXIT 121

—F—

File Close 16
File Exit 17
File New 15
File Open 16
File Print 16
File Print Preview 16
File Save 16
File Save As 16
FOR 121
FORMAT 202
FOR-NEXT 121
FOURTHLINE 122
FUSING 123

—G—

GETAD 123
GETATKBD 195
GETKBD 124
GETRC0 125
GETRC5 126
GOSUB 128
GOTO 129

—H—

Help About 39
Help Credits 40
Help Index 40
Help on Help 40
HEX 129
HEXVAL 130
HIGH 130
HOME 131

—I—

I2CRBYTE 133
I2CRECEIVE 131
I2CSEND 132
I2CSTART 133
I2CSTOP 133
I2CWBYTE 133
I2START,I2CSTOP, I2CRBYTE, I2CWBYTE 133
IDLE 133
IF 134
IF-THEN-ELSE-END IF 134
INCR 135
Index 1
INKEY 135
INP 136
INPUT 138
INPUTBIN 137
INPUTHEX 137
Installation 6
INSTR 193
ISP programmer 182

—K—

KITSRUS Programmer 197

—L—

Language Fundamentals 57
LCD 139
LEFT 141
LEN 142
Links 200
LOAD 143
LOADADR 180
LOCAL 143
LOCATE 145
LOOKUP 145
LOOKUPSTR 146
LOOP 118
LOW 146
LOWERLINE 147
LTRIM 142

—M—

MAKEBCD 147
MAKEDEC 148
MAKEINT 148
Memory usage 42
MID 149
Mixing ASM and BASIC 188

—N—

Newbie problems 202
NEXT 121

—O—

ON INTERRUPT 150
ON VALUE 151
OPEN 152
Options Communication 34
Options Compiler 28; 32
Options Compiler 1WIRE 32
Options Compiler Chip 29
Options Compiler Communication 31
Options Compiler I2C 32
Options Compiler LCD 33
Options Compiler Output 30
Options Compiler SPI 32
Options Environment 35
Options Monitor 39
Options Printer 39
Options Programmer 38
Options Simulator 37
OUT 153

—P—

PEEK 154
PG302 programmer 183
POKE 154
POPALL 155
Power Up 55

BASCOM-AVR-HELPFILE page 208

POWERDOWN 155
POWERSAVE 156
PRINT 156
PRINTBIN 157
Program Compile 18
Program Send to Chip 25
Program Show Result 19
Program Simulate 20
Program Syntax Check 19
PULSEOUT 199
PUSHALL 157

—R—

READ 158
READEEPROM 159
READMAGCARD 204
REM 159
Resellers 9
Reserved Words 56
RESET 160
RESTORE 161
RETURN 161
RIGHT 162
RND 194
ROTATE 163
RTRIM 162
Running BASCOM-AVR 15

—S—

Sample Electronics cable programmer 191
SELECT 163
SELECT-CASE-END SELECT 163
SET 164
SETUP 6
SHIFT 164
SHIFTCURSOR 165
SHIFTIN 165
SHIFTLCD 167
SHIFTOUT 166
SOUND 168
SPACE 168
SPIIN 169
SPIINIT 169
SPIMOVE 193
SPIOUT 170
START 170
STEP 121
STOP 171
STR 172

STRING 173
SUB 174
Supported Programmers 182
SWAP 174

—T—

THEN 134
THIRDLINE 174
TIMER0 49
Tools LCD Designer 28
Tools LIB Manager 199
Tools Terminal Emulator 26
TRIM 175

—U—

UPPERLINE 175
Using the 1 WIRE protocol 55
Using the I2C protocol 54
Using the SPI protocol 55

—V—

VAL 176
VARPTR 176

—W—

WAIT 177
WAITKEY 177
WAITMS 178
WAITUS 178
WEND 179
WHILE 179
WHILE-WEND 179
Window Arrange Icons 39
Window Minimize All 39
Window Tile 39
Windows Cascade 39
WRITEEEPROM 179

—X—

XRAM 42

