
LM628/629 User Guide

1.0 Introduction

1.1 APPLICATION NOTE OBJECTIVE

This application note is intended to explain and complement
the information in the data sheet and also address the
common user questions. While no initial familiarity with the
LM628/629 is assumed, it will be useful to have the LM628/
629 data sheet close by to consult for detailed descriptions
of the user command set, timing diagrams, bit assignments,
pin assignments, etc.

After the following brief description of the LM628/629, Sec-
tion 2.0 gives a fairly full description of the device’s opera-
tion, probably more than is necessary to get going with the
device. This section ends with an outline of how to tune the
control system by adjusting the PID filter coefficients.

Section 3 “User Command Set” discusses the use of the
LM628/629 commands. For a detailed description of each
command the user should refer to the data sheet.

Section 4 “Helpful User Ideas” starts with a short description
of the actions necessary to get going, then proceeds to talk
about some performance enhancements and follows on with
a discussion of a couple of operating constraints of the
device.

Section 5 “Theory” is a short foray into theory which relates
the PID coefficients that would be calculated from a continu-

ous domain control loop analysis to those of the discrete
domain including the scaling factors inherent to the LM628/
629. No attempt is made to discuss control system theory as
such, readers should consult the ample references available,
some suggestions are made at the end of this application
note. Section 5 concludes with an example trajectory calcu-
lation, reviving those perhaps forgotten ideas about accel-
eration, velocity, distance and time.

Section 6 “Questions and Answers”, is in question and an-
swer format and is born out of and dedicated to the many
interesting discussions with customers that have taken
place.

1.2 BRIEF DESCRIPTION OF LM628/629

LM628/629 is a microcontroller peripheral that incorporates
in one device all the functions of a sample-data motion
control system controller. Using the LM628/629 makes the
potentially complex task of designing a fast and precise
motion control system much easier. Additional features, such
as trajectory profile generation, on the “fly” update of loop
compensation and trajectory, and status reporting, are in-
cluded. Both position and velocity motion control systems
can be implemented with the LM628/629.

LM628/629 is itself a purpose designed microcontroller that
implements a position decoder, a summing junction, a digital
PID loop compensation filter, and a trajectory profile genera-
tor, Figure 1. Output format is the only difference between
LM628 and LM629. A parallel port is used to drive an 8- or
12-bit digital-to-analog converter from the LM628 while the

LM629 provides a 7-bit plus sign PWM signal with sign and
magnitude outputs. Interface to the host microcontroller is
via an 8-bit bi-directional data port and six control lines which
includes host interrupt and hardware reset. Maximum sam-
pling rates of either 2.9 kHz or 3.9 kHz are available by
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FIGURE 1. LM628 and LM629 Typical System Block Diagram
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1.0 Introduction (Continued)

choosing the LM6268/9 device options that have 6 MHz or
8 MHz maximum clock frequencies (device -6 or -8 suffixes).

In operation, to start a movement, a host microcontroller
downloads acceleration, velocity and target position values
to the LM628/629 trajectory generator. At each sample inter-
val these values are used to calculate new demand or “set
point” positions which are fed into the summing junction.
Actual position of the motor is determined from the output
signals of an optical incremental encoder. Decoded by the
LM628/629’s position decoder, actual position is fed to the
other input of the summing junction and subtracted from the
demand position to form the error signal input for the control
loop compensator. The compensator is in the form of a
“three term” PID filter (proportional, integral, derivative), this
is implemented by a digital filter. The coefficients for the PID
digital filter are most easily determined by tuning the control

system to give the required response from the load in terms
of accuracy, response time and overshoot. Having charac-
terized a load these coefficient values are downloaded from
the host before commencing a move. For a load that varies
during a movement more coefficients can be downloaded
and used to update the PID filter at the moment the load
changes. All trajectory parameters except acceleration can
also be updated while a movement is in progress.

2.0 Device Description

2.1 HARDWARE ARCHITECTURE

Four major functional blocks make up the LM628/629 in
addition to the host and output interfaces. These are the
Trajectory Profile Generator, Loop Compensating PID Filter,
Summing Junction and Motor Position Decoder (Figure 1).

Details of how LM628/629 is implemented by a purpose
designed microcontroller are shown in Figure 2. The control
algorithm is stored in a 1k x 16-bit ROM and uses 16-bit wide
instructions. A PLA decodes these instructions and provides
data transfer timing signals for the single 16-bit data and
instruction bus. User variable filter and trajectory profile pa-
rameters are stored as 32-bit double words in RAM. To
provide sufficient dynamic range a 32-bit position register is
used and for consistency. 32 bits are also used for velocity
and acceleration values. A 32-bit ALU is used to support the
16 x 16-bit multiplications of the error and PID digital filter
coefficients.

2.2 MOTOR POSITION DECODER

LM628/629 provides an interface for an optical position shaft
encoder, decoding the two quadrature output signals to pro-
vide position and direction information, Figure 3. Optionally a
third index position output signal can be used to capture
position once per revolution. Each of the four states of the
quadrature position signal are decoded by the LM628/629
giving a 4 times increase in position resolution over the
number of encoder lines. An “N” line encoder will be decoded
as “4N” position counts by LM628/629.

01101802

FIGURE 2. Hardware Architecture of LM628/629

A
N

-7
06

www.national.com 2



2.0 Device Description (Continued)

Position decoder block diagram, Figure 4, shows three lines
coming from the shaft encoder, M1, M2 and Index. From
these the decoder PLA determines if the motor has moved
forward, backward or stayed still and then drives a 16-bit

up-down counter that keeps track of actual motor position.
Once per revolution when all three lines including the index
line are simultaneously low, Figure 3, the current position
count is captured in an index latch.

The 16-bit up-down counter is used to capture the difference
in position from one sample to the next. A position latch
attached to the up-down counter is strobed at the same time
in every sample period by a sync pulse that is generated in
hardware. The position latch is read soon after the sync
pulse and is added to the 32-bit position register in RAM that
holds the actual current position. This is the value that is
subtracted in the summing junction every sample interval
from the new desired position calculated by the trajectory
generator to form the error input to the PID filter.

Maximum encoder state capture rate is determined by the
minimum number of clock cycles it takes to decode each
encoder state, see Figure 3, this minimum number is 8 clock

cycles, capture of the index pulse is also achieved during
these 8 clock cycles. This gives a more than adequate 1
MHz maximum encoder state capture rate with the 8 MHz
fCLK devices (750 kHz for the 6 MHz fCLK devices). For
example, with the 1 MHz capture rate, a motor using a 500
line encoder will be moving at 30,000 rpm.

There is some limited signal conditioning at the decoder
input to remove problems that would occur due to the asyn-
chronous position encoder input being sampled on signal
edges by the synchronous LM628/629. But there is no noise
filtering as such on the encoder lines so it is important that
they are kept clean and away from noise sources.

01101803

FIGURE 3. Quadrature Encoder Output Signals and Direction Decode Table
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FIGURE 4. LM628/629 Motor Position Decoder
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2.0 Device Description (Continued)

2.3 TRAJECTORY PROFILE GENERATOR

Desired position inputs to the summing junction, Figure 1,
within the LM628/629 are provided by an internal indepen-
dent trajectory profile generator. The trajectory profile gen-
erator takes information from the host and computes for
each sample interval a new current desired position. The
information required from the host is, operating mode, either
position or velocity, target acceleration, target velocity and
target position in position mode.

2.4 DEFINITIONS RELATING TO PROFILE
GENERATION

The units of position and time, used by the LM628/629, are
counts (4 x N encoder lines) and samples (sample intervals
= 2048/fCLK) respectively. Velocity is therefore calculated in
counts/sample and acceleration in counts/sample/sample.

Definitions of “target”, “desired” and “actual” within the profile
generation activity as they apply to velocity, acceleration and
position are as follows. Final requested values are called
“target”, such as target position. The values computed by the
profile generator each sample interval on the way to the
target value are called “desired”. Real values from the posi-
tion encoder are called “actual”.

For example, the current actual position of the motor will
typically be a few counts away from the current desired

position because a new value for desired position is calcu-
lated every sample interval during profile generation. The
difference between the current desired position and current
actual position relies on the ability of the control loop to keep
the motor on track. In the extreme example of a locked rotor
there could be a large difference between the current actual
and desired positions.

Current desired velocity refers to a fixed velocity at any point
on a on-going trajectory profile. While the profile demands
acceleration, from zero to the target velocity, the velocity will
incrementally increase at each sample interval.

Current actual velocity is determined by taking the difference
in the actual position at the current and the previous sample
intervals. At velocities of many counts per sample this is
reasonably accurate, at low velocities, especially below one
count per sample, it is very inaccurate.

3.0 Profile Generation
Trajectory profiles are plotted in terms of velocity versus
time, Figure 5, and are velocity profiles by reason that a new
desired position is calculated every sample interval. For
constant velocity these desired position increments will be
the same every sample interval, for acceleration and decel-
eration the desired position increments will respectively in-
crease and decrease per sample interval. Target position is
the integral of the velocity profile.

When performing a move the LM628/629 uses the informa-
tion as specified by the host and accelerates until the target
velocity is reached. While doing this it takes note of the
number of counts taken to reach the target velocity. This
number of counts is subtracted from the target position to
determine where deceleration should commence to ensure
the motor stops at the target position. LM628/629 decelera-
tion rates are equal to the acceleration rates. In some cases,
depending on the relative target values of velocity, accelera-
tion and position, the target velocity will not be reached and
deceleration will commence immediately from acceleration.

3.1 TRAJECTORY RESOLUTION

The resolution the motor sees for position is one integral
count. The algorithm used to calculate the trajectory adds
the velocity to the current desired position once per sample
period and produces the next desired position point. In order
to allow very low velocities it is necessary to have velocities
of fractional counts per sample. The LM628/629 in addition
to the 32-bit position range keeps track of 16 bits of fractional
position. The need for fractional velocity counts can be illus-
trated by the following example using a 500 line (2000 count)
encoder and an 8 MHz clock LM628/629 giving a 256 µs
sample interval. If the smallest resolution is 1 count per

sample then the minimum velocity would be 2 revolutions
per second or 120 rpm. (1/2000 revs/count x 1/256 µs
counts/second). Many applications require velocities and
steps in velocity less than this amount. This is provided by
the fractional counts of acceleration and velocity.

3.2 POSITION, VELOCITY AND ACCELERATION
RESOLUTION

Every sample cycle, while the profile demands acceleration,
the acceleration register is added to the velocity register
which in turn is added to the position register. When the
demand for increasing acceleration stops, only velocity is
added to the position register. Only integer values are output
from the position register to the summing junction and so
fractional position counts must accumulate over many
sample intervals before an integer count is added and the
position register changed. Figure 6 shows the position, ve-
locity and acceleration registers.

The position dynamic range is derived from the 32 bits of the
integer position register, Figure 6. The MSB is used for the
direction sign in the conventional manner, the next bit 30 is
used to signify when a position overflow called “wraparound”
has occurred. If the wraparound bit is set (or reset when
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FIGURE 5. Typical Trajectory Velocity Profile
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3.0 Profile Generation (Continued)

going in a negative direction) while in operation the status
byte bit 4 is set and optionally can be used to interrupt the
host. The remaining 30 bits provide the available dynamic
range of position in either the positive or negative direction
(±1,073,741,824 counts).

Velocity has a resolution of 1/216 counts/sample and accel-
eration has a resolution of 1/216 counts/sample/sample as
mentioned above. The dynamic range is 30 bits in both
cases. The loss of one bit is due to velocity and acceleration
being unsigned and another bit is used to detect wrap-
around. This leaves 14 bits or 16,383 integral counts and 16
bits for fractional counts.

3.3 VELOCITY MODE

LM628 supports a velocity mode where the motor is com-
manded to continue at a specified velocity, until it is told to
stop (LTRJ bits 9 or 10). The average velocity will be as
specified but the instantaneous velocity will vary. Velocities
of fractional counts per sample will exhibit the poorest in-
stantaneous velocity. Velocity mode is a subset of position
mode where the position is continually updated and moved
ahead of the motor without a specified stop position. Care
should be exercised in the case where a rotor becomes
locked while in velocity mode as the profile generator will
continue to advance the position. When the rotor becomes
free high velocities will be attained to catch-up with the
current desired position.

3.4 MOTOR OUTPUT PORT

LM628 output port is configured to 8 bits after reset. The
8-bit output is updated once per sample interval and held
until it is updated during the next sample interval. This allows
use of a DAC without a latch. For 12-bit operation the
PORT12 command should be issued immediately after re-
set. The output is multiplexed in two 6-bit words using pins
18 through 23. Pin 24 is low for the least significant word and
high for the most significant. The rising edge of the active low
strobe from pin 25 should be used to strobe the output into
an external latch, see Figure 7. The DAC output is offset
binary code, the zero codes are hex'80' for 8 bits and
hex'800' for 12 bits.

The choice of output resolution is dependant on the user’s
application. There is a fundamental trade-off between sam-
pling rate and DAC output resolution, the LM628 8-bit output
at a 256 µs sampling interval will most often provide as good
results as a slower, e.g. microcontroller, implementation
which has a 4 ms typical sampling interval and uses a 12-bit
output. The LM628 also gives the choice of a 12-bit DAC
output at a 256 µs sampling interval for high precision appli-
cations.

LM629 PWM sign and magnitude signals are output from
pins 18 and 19 respectively. The sign output is used to
control motor direction. The PWM magnitude output has a
resolution of 8 bits from maximum negative drive to maxi-
mum positive drive. The magnitude output has an off condi-
tion, with the output at logic low, which is useful for turning a
motor off when using a bridge motor drive circuit. The mini-
mum duty cycle is 1/128 increasing to a maximum of 127/
128 in the positive direction and a maximum of 128/128 in
the negative direcition, i.e., a continuous output. There are
four PWM periods in one LM629 sample interval. With an 8
MHz clock this increases the PWM output rate to 15.6 kHz
from the LM629 maximum 3.9 kHz sample rate, see Figure 8
for further timing information.
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FIGURE 6. Position, Velocity and Acceleration
Registers

01101807

FIGURE 7. LM628 12-Bit DAC Output Multiplexed
Timing
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3.0 Profile Generation (Continued)

3.5 HOST INTERFACE

LM628/629 has three internal registers: status, high, and low
bytes, Figure 9, which are used to communicate with the
host microcontroller. These are controlled by the RD, WR,
and PS lines and by use of the busy bit of the status byte.
The status byte is read by bringing RD and PS low, bit 0 is
the busy bit. Commands are written by bringing WR and PS
low. When PS is high, WRbrought low writes data into
LM628/629 and similarly, RD is brought low to read data
from LM628/629. Data transfer is a two-byte operation writ-
ten in most to least significant byte order. The above descrip-
tion assumes that CS is low.

3.6 HARDWARE BUSY BIT OPERATION

Before and between all command byte and data byte pair
transfers, the busy bit must be read and checked to be at
logic low. If the busy bit is set and commands are issued they
will be ignored and if data is read it will be the current
contents of the I/O buffer and not the expected data. The
busy bit is set after the rising edge of the write signal for
commands and the second rising edge of the respective
read or write signal for two byte data transfers, Figure 10.
The busy bit remains high for approximately 15 µs.

01101808

Note: Sign output (pin 18) not shown.

FIGURE 8. LM629 PWM Output Signal Format

01101809

FIGURE 9. Host Interface Internal I/O Registers
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3.0 Profile Generation (Continued)

The busy bit reset to logic low indicates that high and low
byte registers shown in Figure 9 have been either loaded or
read by the LM628/629 internal microcode. To service the
command or data transfer this microcode which performs the
trajectory and filter calculations is interrupted, except in criti-
cal areas, and the on-going calculation is suspended. The
microcode was designed this way to achieve minimum la-
tency when communicating with the host. However, if this
communication becomes too frequent and on-going calcula-
tions are interrupted too often corruption will occur. In a
256 µs sample interval, the filter calculation takes 50 µs,
outputting a sample 10 µs and trajectory calculation 90 µs. If
the LM628 behaves in a manner that is unexpected the host
communication rate should be checked in relation to these
timings.

3.7 FILTER INITIAL VALUES AND TUNING

When connecting up a system for the first time there may be
a possibility that the loop phasing is incorrect. As this may
cause violent oscillation it is advisable to initially use a very
low value of proportional gain, say kp = 1 (with kd, ki and il all
set to zero), which will provide a weak level of drive to the
motor. (The Start command, STT, is sent to LM628/629 to
close the control loop and energize the motor.) If the system
does oscillate with this low value of kp then the motor con-
nections should be reversed.

Having determined that the loop phasing is correct kp can be
increased to a value of about 20 to see that the control
system basically works. This value of kp should hold the
motor shaft reasonably stiffly, returning the motor to the set
position, which will be zero until trajectory values have been
input and a position move performed. If oscillation or unac-
ceptable ringing occurs with a kp value of 20 reduce this until
it stops. Low values of acceleration and velocity can now be
input, of around 100, and a position move commanded to
say 1000 counts. All values suggested here are decimal. For
details of loading trajectory and filter parameters see Section
3.0, reference (5) and the data sheet.

It is useful at this stage to try different values of acceleration
and velocity to get a feel for the system limitations. These
can be determined by using the reporting commands of
desired and actual position and velocity, to see if the error
between desired and actual positions of the motor are con-
stant and not increasing without bound. See Section 3.6 and
the data sheet for information about the reporting com-
mands. Clearly it will be difficult to tune for best system
response if the motor and its load cannot achieve the de-
manded values of acceleration and velocity. When correct
operation is confirmed and limiting values understood, filter
tuning can commence.

Due to the basic difficulty of accurately modeling a control
system, with the added problem of variations that can occur
in mechanical components over time and temperature, it is
always necessary at some stage to perform tuning empiri-
cally. Determining the PID filter coefficients by tuning is the
preferred method with LM628/629 because of the inherent
flexibility in changing the filter coefficients provided by this
programmable device.

Before tuning a control system the effect of each of the PID
filter coefficients should be understood. The following is a
very brief review, for a detailed understanding reference (2)
should be consulted. The proportional coefficient, kp, pro-
vides adjustment of the control system loop proportional
gain, as this is increased the output steady state error is
reduced. The error between the required and actual position
is effectively divided by the loop gain. However there is a
natural limitation on how far kp can be increased on its own
to reduce output position error because a reduction in phase
margin is also a consequence of increasing kp. This is first
encountered as ringing about the final position in response
to a step change input and then instability in the form of
oscillation as the phase margin becomes zero. To improve
stability, kd, the derivative coefficient, provides a damping
effect by providing a term proportional to velocity in an-
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FIGURE 10. Busy Bit Operation during Command and Data Write Sequence
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3.0 Profile Generation (Continued)

tiphase to the ringing, or viewed in another way, adds some
leading phase shift into the loop and increases the phase
margin.

In the tuning process the coefficients kp and kd are iteratively
increased to their optimum values constrained by the system
constants and are trade-offs between response time, stabil-
ity and final position error. When kp and kd have been
determined the integral coefficient, ki, can be introduced to
remove steady state errors at the load. The steady state
errors removed are the velocity lag that occurs with a con-
stant velocity output and the position error due to a constant
static torque. A value of integration limit, il, has to be input
with ki, otherwise ki will have no effect. The integral coeffi-
cient ki adds another variable to the system to allow further
optimization, very high values of ki will decrease the phase
margin and hence stability, see Section 5 and reference (2)
for more details. Reference (5) gives more details of PID
filter tuning and how to load filter parameters.

Figure 11 illustrates how a relatively slow response with
overshoot can be compensated by adjustment of the PID
filter coefficients to give a faster critically damped response.

4.0 User Command Set

4.1 OVERVIEW

The following types of User Commands are available:

Initialization

Filter control commands

Trajectory control commands

Interrupt control commands

Data reporting commands

User commands are single bytes and have a varying number
of accompanying data bytes ranging from zero to fourteen
depending upon the command. Both filter and trajectory
control commands use a double buffered scheme to input
data. These commands load primary registers with multiple
words of data which are only transferred into secondary
working registers when the host issues a respective single
byte user command. This allows data to be input before its
actual use which can eliminate any potential communication
bottlenecks and allow synchronized operation of multiple
axes.

4.2 HOST-LM628/629 COMMUNICATION — THE BUSY
BIT

Communication flow between the LM628/629 and its host is
controlled by using a busy bit, bit 0, in the Status Byte. The
busy bit must be checked to be at logic 0 by the host before
commands and data are issued or data is read. This includes
between data byte pairs for commands with multiple words
of data.

4.3 LOADING THE TRAPEZOIDAL VELOCITY PROFILE
GENERATOR

To initiate a motor move, trajectory generator values have to
be input to the LM628/629 using the Load Trajectory Param-
eters, LTRJ, command. The command is followed by a tra-

jectory control word which details the information to be
loaded in subsequent data words. Table 1 gives the bit
allocations, a bit is set to logic 1 to give the function shown.

TABLE 1. Trajectory Control Word Bit Allocations

Bit Position Function

Bit 15 Not Used

Bit 14 Not Used

Bit 13 Not Used

Bit 12 Forward Direction (Velocity Mode Only)

Bit 11 Velocity Mode

Bit 10 Stop Smoothly (Decelerate as
Programmed)

Bit 9 Stop Abruptly (Maximum Deceleration)

Bit 8 Turn Off Motor (Output Zero Drive)

Bit 7 Not Used

Bit 6 Not Used

Bit 5 Acceleration Will Be Loaded

Bit 4 Acceleration Data Is Relative

Bit 3 Velocity Will Be Loaded

Bit 2 Velocity Data Is Relative

Bit 1 Position Will Be Loaded

Bit 0 Position Data Is Relative

Bits 0 to 5 determine whether any, all or none of the position,
velocity or acceleration values are loaded and whether they
are absolute values or values relative to those previously
loaded. All trajectory values are 32-bit values, position val-
ues are both positive and negative. Velocity and acceleration
are 16-bit integers with 16-bit fractions whose absolute value
is always positive. When entering relative values ensure that
the absolute value remains positive. The manual stop com-
mands bits 8, 9 and 10 are intended to allow an unpro-
grammed stop in position mode, while a position move is in
progress, perhaps by the demand of some external event,
and to provide a method to stop in velocity mode. They do
not specify how the motor will stop in position mode at the
end of a normal position move. In position mode a pro-
grammed move will automatically stop with a deceleration
rate equal to the acceleration rate at the target position.
Setting a stop bit along with other trajectory parameters at
the beginning of a move will result in no movement! Bits 8, 9
and 10 should only be set one at a time, bit 8 turns the motor
off by outputting zero drive to the motor, bit 9 stops the motor
at maximum deceleration by setting the target position equal
to the current position and bit 10 stops the motor using the
current user-programmed acceleration value. Bit 11 is set for
operating in velocity mode and bit 12 is set for forward
direction in velocity mode.
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4.0 User Command Set (Continued)

Following immediately after the trajectory control word
should be two 16-bit data words for each parameter speci-
fied to be loaded. These should be in the descending order
of the trajectory control word bits, that is acceleration, veloc-
ity and position. They are written to the LM628/629 as two
pairs of data bytes in most to least significant byte order. The
busy bit should be checked between the command byte and
the data byte pair forming the trajectory control word and the
individual data byte pairs of the data. The Start command,
STT, transfers the loaded trajectory data into the working
registers of the double buffered scheme to initiate movement
of the motor. This buffering allows any parameter, except
acceleration, to be updated while the motor is moving by
loading data with the LTRJ command and to be later ex-
ecuted by using the STT command.

New values of acceleration can be loaded with LTRJ while
the motor is moving, but cannot be executed by the STT
command until the trajectory has completed or the drive to
the motor is turned off by using bit 8 of the trajectory control
word. If acceleration has been changed and STT is issued
while the drive to the motor is still present, a command error
interrupt will be generated and the command ignored. Sepa-
rate pairs of LTRJ and STT commands should be issued to
first turn the motor off and then update acceleration. System
operation when changing acceleration while the motor is
moving, but with the drive removed, is discussed in Section
4.5.1.

4.4 LOADING PID FILTER COEFFICIENTS

PID filter coefficients are loaded using the Load Filter Pa-
rameters, LFIL, command and are the proportional coeffi-
cient kp, derivative coefficient kd and integral coefficient ki.
Associated with ki, an integration limit, il, has to be loaded.
This constrains the magnitude of the integration term of the
PID filter to the il value, see Section 4.4.2. Associated with
the derivative coefficient, a derivative sample rate can be
chosen from 2048/fCLK to (2048 x 256)/f CLK in steps of
2048/fCLK, see Section 4.4.1.

The first pair of data bytes following the LFIL command byte
form the filter control word. The most significant byte sets the
derivative sample rate, the fastest rate, 2048/fCLK, being
hex'00' the slowest rate (2048 x 256)/fCLK being hex'FF'. The
lower four bits of the least significant byte tell the LM628/629
which of the coefficients is going to be loaded, bit 3 is kp, bit

2 is ki, bit 1 is kd and bit 0 is il. Each filter coefficient and the
integration limit can range in value from hex'0000' to '7FFF',
positive only. If all coefficient values are loaded then ten
bytes of data, including the filter control word, will follow the
LFIL command. Again the busy bit has to be checked be-
tween the command byte and filter control word and be-
tween data byte pairs. Use of new filter coefficient values by
the LM628/629 is initiated by issuing the single byte Update
Filter command, UDF.

When controlled movement of the motor has been achieved,
by programming the filter and trajectory, attention turns to
incorporating the LM628/629 into a system. Interrupt Control
Commands and Data Reporting Commands enable the host
microcontroller to keep track of LM628/629 activity.

4.5 INTERRUPT CONTROL COMMANDS

There are five commands that can be used to interrupt the
host microcontroller when a predefined condition occurs and
two commands that control interrupt operation. When the
LM628/629 is programmed to interrupt its host, the event
which caused this interrupt can be determined from bits 1 to
6 of the Status Byte (additionally bit 0 is the busy bit and bit
7 indicates that the motor is off). All the Interrupt Control
commands are executable during motion.

The Mask Interrupts command, MSKI, is used to tell LM628/
629 which of bits 1 to 6 will interrupt the host through use of
interrupt mask data associated with the command. The data
is in the form of a data byte pair, bits 1–6 of the least
significant byte being set to logic 1 when an interrupt source
is enabled. The Reset Interrupts command, RSTI, resets
interrupt bits in the Status Byte by sending a data byte pair,
the least significant byte having logic 0 in bit positions 1 to 6
if they are to be reset.

Executing the Set Index Position command, SIP, causes bit
3 of the status byte to be set when the absolute position of
the next index pulse is recorded in the index register. This
can be read with the command, Read Index Position, RDIP.

Executing either Load Position Error for Interrupt, LPEI, or
Load Position Error for Stopping, LPES, commands, sets bit
5 of the Status Byte when a position error exceeding a
specified limit occurs. An excessive position error can indi-
cate a serious system problem and these two commands
give the option when this occurs of either interrupting the

Underdamped Critically Damped

01101821 01101822

FIGURE 11. Position vs Time for 100 Count Step Input
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4.0 User Command Set (Continued)

host or stopping the motor and interrupting the host. The
excessive position is specified following each command by a
data byte pair in most to least significant byte order.

Executing either Set Break Point Absolute, SBPA, or Set
Break Point Relative, SBPR, commands, sets bit 6 of the
status byte when either the specified, absolute or relative,
breakpoint respectively is reached. The data for SBPA can
be the full position range (hex'C0000000' to '3FFFFFFF')
and is sent in two data byte pairs in most to least significant
byte order. The data for the Set Breakpoint Relative com-
mand is also of two data byte pairs, but its value should be
such that when added to the target position it remains within
the absolute position range. These commands can be used
to signal the moment to update the on-going trajectory or
filter coefficients. This is achieved by transferring data from
the primary registers, previously loaded using LTRJ or LFIL,
to working registers, using the STT or UDF commands.

Interrupt bits 1, 2 and 4 of the Status Byte are not set by
executing interrupt commands but by events occurring dur-
ing LM628/629 operation as follows. Bit 1 is the command
error interrupt, bit 2 is the trajectory complete interrupt and
bit 4 is the wraparound interrupt. These bits are also masked
and reset by the MSKI and RSTI commands respectively.
The Status Byte still indicates the condition of interrupt bits
1–6 when they are masked from interrupting the host, allow-
ing them to be incorporated in a polling scheme.

4.6 DATA REPORTING COMMANDS

Read Status Byte, RDSTAT, supported by a hardware regis-
ter accessed via CS, RD and PS control, is the most fre-
quently used method of determining LM628/629 status. This
is primarily to read the busy bit 0 while communicating
commands and data as described in Section 3.2.

There are seven other user commands which can read data
from LM628/629 data registers.

The Read Signals Register command, RDSIGS, returns a
16-bit data word to the host. The least-significant byte re-
peats the RDSTAT byte except for bit 0 which indicates that

a SIP command has been executed but that an index pulse
has not occurred. The most significant byte has 6 bits that
indicate set-up conditions (bits 8, 9, 11, 12, 13 and 14). The
other two bits of the RDSIGS data word indicate that the
trajectory generator has completed its function, bit 10, and
that the host interrupt output (Pin 17) has been set to logic 1,
bit 15. Full details of the bit assignments of this command
can be found in the data sheet.

The Read Index Position, RDIP, command reads the position
recorded in the 32 bits of the index register in four data
bytes. This command, with the SIP command, can be used
to acquire a home position or successive values. These
could be used, for example, for gross error checking.

Both on-going 32-bit position inputs to the summing junction
can be read. Read desired position, RDDP, reads the current
desired position the demand or “set point input” from the
trajectory generator and Read Real Position, RDRP, reads
the current actual position of the motor.

Read Desired Velocity, RDDV, reads the current desired
velocity used to calculate the desired position profile by the
trajectory generator. It is a 32-bit value containing integer
and fractional velocity information. Read Real Velocity,
RDRV, reads the instantaneous actual velocity and is a
16-bit integer value.

Read Integration-Term Summation Value, RDSUM, reads
the accumulated value of the integration term. This is a
16-bit value ranging from zero to the current, il, integration
limit value.

4.7 SOFTWARE EXAMPLE

The following example shows the flow of microcontroller
commands needed to get the LM628/629 to control a simple
motor move. As it is non-specific to any microcontroller
pseudo commands WR,XXXXH and RD,XXXXH with hex
immediate data will be used to indicate read and write op-
erations respectively by the host to and from the LM628/629.
Decisions use IF..THEN..ELSE. BUSY is a user routine to
check the busy bit in the Status Byte, WAIT is a user routine
to wait 1.5 ms after hardware reset.

LABEL MNEMONIC :REMARK
Initialization:

WAIT :Routine to wait 1.5 ms after reset.
RDSTAT :Check correct RESET operation by reading the

:Status Byte. This should be either hex’84’ or ’C4’
IF Status byte not equal hex’84’ or ’C4’ THEN repeat
hardware RESET

:Make decision concerning validity of RESET

Optionally the Reset can be further checked for correct operation as follows. It is useful to include this to reset all interrupt bits
in the Status Byte before further action:

MSKI :Mask interrupts
BUSY :Check busy bit 0 routine
WR, 0000H :Host writes two zero bytes of data to

:LM628/629. This mask disables all interrupts.
BUSY :Check busy bit
RSTI :Reset Interrupts command
BUSY :Check busy bit
WR, 0000H :Host writes two zero bytes of data to LM628/629
RDSTAT :Status byte should read either hex’80’ or ’C0’
IF Status Byte not equal hex’80’ or ’C0’ THEN repeat
hardware RESET

:
IF Status Byte equal to hex’C0’ THEN continue ELSE PORT

:
BUSY :Check busy bit
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4.0 User Command Set (Continued)

RSTI :Reset Interrupts
BUSY :Check busy bit
WR, 0000H :Reset all interrupt bits

Set Output Port Size for a 12-bit DAC.
PORT BUSY :Check busy bit

PORT12 :Sets LM628 output port to 12-bits
(Only for systems with 12-bit DAC)

Load Filter Parameters
BUSY :Check busy bit
LFIL :Load Filter Parameters command
BUSY :Check busy bit
WR, 0008H :Filter Control Word

: Bits 8 to 15 (MSB) set the derivative
:sample rate.
: Bit 3 Loading kp data
: Bit 2 Loading ki data
: Bit 1 Loading kd data
: Bit 0 Loading il data
:Choose to load kp only at maximum
:derivative sample rate then Filter Control
:Word = 0008H

BUSY :Check busy bit
WR, 0032H :Choose kp = 50, load data byte pair MS

:byte first
Update Filter

BUSY :Check busy bit
UDF :

Load Trajectory Parameters
BUSY :Check busy bit
LTRJ :Load trajectory parameters command.
BUSY :Check busy bit
WR, 002AH :Load trajectory control word:

: See Table I
:Choose Position mode, and load absolute
:acceleration, velocity and position. Then
:trajectory control word = 002AH. This means
:6 pairs of data bytes should follow.

BUSY :Check busy bit
WR, XXXXH :Load Acceleration integer word MS byte first
BUSY :Check busy bit
WR, XXXXH :Load Acceleration fractional word MS byte first
BUSY :Check busy bit
WR, XXXXH :Load Velocity integer word MS byte first
BUSY :Check busy bit
WR, XXXXH :Load Velocity fractional word MS byte first
BUSY :Check busy bit

WR, XXXXH :Load Position MS byte pair first
BUSY :Check busy bit
WR, XXXXH :Load position LS byte pair

Start Motion
BUSY :Check busy bit
STT :Start command

Check for Trajectory complete.
RDSTAT :Check Status Byte bit 2 for trajectory

:complete
Busy bit check routine
BUSY RDSTAT :Read status byte

If bit 0 is set THEN BUSY ELSE RETURN
END

*Consult reference (5) for more information on programming the LM628/629.
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4.0 User Command Set (Continued)

5.0 Helpful User Ideas

5.1 GETTING STARTED

This section outlines the actions that are necessary to imple-
ment a simple motion control system using LM628/629.
More details on how LM628/629 works and the use of the
User Command Set are given in the sections “2.0 DEVICE
DESCRIPTION” and “3.0 USER COMMAND SET”.

5.2 HARDWARE

The following hardware connections need to be made:

5.2.1 Host Microcontroller Interface

Interface to the host microcontroller is via an 8-bit command/
data port which is controlled by four lines. These are the
conventional chip select CS, read RD, write WR and a line
called Port Select PS, see Figure 13. PS is used to select

01101812

FIGURE 12. Basic Software Flow
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5.0 Helpful User Ideas (Continued)

user Command or Data transfer between the LM628/629
and the host. In the special case of the Status Byte
(RDSTAT) bringing PS, CS and RD low together allows
access to this hardware register at any time. An optional
interrupt line, HI, from the LM628/629 to the host can be
used. A microcontroller output line is necessary to control the
LM628/629 hardware reset action.

5.2.2 Position Encoder Interface

The two optical incremental position encoder outputs feed
into the LM628/629 quadrature decoder TTL inputs A and B.
The leading phase of the quadrature encoder output defines
the forward direction of the motor and should be connected
to input A. Optionally an index pulse may be used from the
position encoder. This is connected to the IN input, which
should be tied high if not used, see Figure 13.

5.2.3 Output Interface

LM628 has a parallel output of either 8 or 12 bits, the latter is
output as two multiplexed 6-bit words. Figure 14 illustrates
how a motor might be driven using a LM12 power linear
amplifier from the output of 8-bit DAC0800.

LM629 has a sign and magnitude PWM output, Figure 13, of
7-bit resolution plus sign. Figure 15 shows how the LM629
sign and magnitude outputs can be used to control the
outputs of an LM18293 quad half-H driver. The half-H drivers
are used in pairs, by using 100 mΩ current sharing resistors,
and form a full-H bridge driver of 2A output. The sign bit is
used to steer the PWM LM629 magnitude output to either
side of the H-bridge lower output transistors while holding
the upper transistors on the opposite side of the H-bridge
continuously on.

01101813

FIGURE 13. LM628 and LM629 Host, Output and Position Encoder Interfaces

01101814

FIGURE 14. LM628 Example of Linear Motor Drive Using LM12
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5.0 Helpful User Ideas (Continued)

5.3 SOFTWARE

Making LM628/629 perform a motion control function re-
quires that the host microcontroller, after initializing LM628/
629, loads coefficients for the PID filter and then loads
trajectory information. The interrupt and data reporting com-
mands can then be used by the host to keep track of
LM628/629 actions. For detailed descriptions see the
LM628/629 data sheet and Section 3.

5.4 INITIALIZATION

There is only one initialization operation that must be per-
formed; a check that hardware reset has operated correctly.
If required, the size of the LM628 output port should be
configured. Other operations which might be part of user’s
system initialization are discussed under Interrupt and Data
Reporting commands, Sections 3.5 and 3.6.

5.4.1 Initializing LM628 Output Port

Reset sets the LM628 output port size to 8 bits. If a 12-bit
DAC is being used, then the output port size is set by the use
of the PORT12 command.

5.4.2 Hardware RESET Check

The hardware reset is activated by a logic low pulse at pin
27, RST, from the host of greater than 8 clock cycles. To
ensure that this reset has operated correctly the Status Byte
should be checked immediately after the reset pin goes high,
it should read hex'00'. If the reset is successful this will
change to hex'84' or 'C4' within 1.5 ms. If not, the hardware
reset and check should be repeated. A further check can be
used to make certain that a reset has been successful by
using the Reset Interrupts command, RSTI. Before sending
the RSTI, issue the Mask Interrupts command, MSKI, and
mask data that disables all interrupts, this mask is sent as
two bytes of data equaling hex'0000'. Then issue the RSTI
command plus mask data that resets all interrupts, this
equals hex'0000' and is again sent as two bytes. Do not

forget to check the busy bit between the command byte and
data byte pairs. When the chip has reset properly the status
byte will change from hex'84' or 'C4' to hex'80' or 'C0'.

5.4.3 Interrupt Commands

Optionally the commands which cause the LM628/629 to
take action on a predefined condition (e.g., SIP, LPEI, LPES,
SBPA and SBPR) can be included in the initialization, these
are discussed under Interrupt Commands.

5.5 PERFORMANCE REFINEMENTS

5.5.1 Derivative Sample Rate

The derivative sample interval is controllable to improve the
stability of low velocity, high inertia loads. At low speeds,
when fractional counts for velocity are used, the integer
position counts, desired and actual, only change after sev-
eral sample intervals of the LM628/629 (2048/fCLK ). This
means that for sample intervals between integer count
changes the error voltage will not change for successive
samples. As the derivative term, kd, multiplies the difference
betweeen the previous and current error values, if the de-
rivative sample interval is the same as the sample interval,
several consecutive sample intervals will have zero deriva-
tive term and hence no damping contribution. Lengthening
the derivative sample interval ensures a more constant de-
rivate term and hence improved stability. Derivative sample
interval is loaded with the filter coefficient values as the most
significant byte of the LFIL control word everytime the com-
mand is used, the host therefore needs to store the current
value for re-loading at times of filter coefficient change.

5.5.2 Integral Windup

Along with the integral filter coefficient, ki, an integration limit,
il, has to be input into LM628/629 which allows the user to
set the maximum value of the integration term of equation
(3), Section 5.2.2. This term is then able to accumulate up to

01101815

FIGURE 15. LM629 H-Bridge Motor Drive Example Using LM18293
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5.0 Helpful User Ideas (Continued)

the value of the integration limit and any further increase due
to error of the same sign is ignored. Setting the integration
limit enables the user to prevent an effect called “Integral
Windup”. For example, if an LM628/629 attempts to accel-
erate a motor at a faster rate than it can achieve, a very large
integral term will result. When the LM628/629 tries to stop
the motor at the target position the large accumulated inte-
gral term will dominate the filter and cause the motor to badly
overshoot, and thus integral windup has occurred.

5.5.3 Profiles Other Than Trapezoidal

If it is required to have a velocity profile other than trapezoi-
dal, this can be accomplished by breaking the profile into
small pieces each of which is part of a small trapezoid. A
piecewise linear approximation to the required profile can
then be achieved by changing the maximum velocity before
the trapezoid has had time to complete, see Figure 16.

5.5.4 Synchronizing Axes

For controlling tightly coupled coordinated motion between
multiple-axes, synchronization is required. The best possible
synchronization that can be achieved between multiple
LM628/629 is within one sample interval, (2048/fCLK, 256 µs
for an 8 MHz clock, 341 µs for a 6 MHz clock). This is
achieved by using the pipeline feature of the LM628/629
where all controlled axes are loaded individually with trajec-
tory values using the LTRJ command and then simulta-
neously given the start command STT. PID filter coefficients
can be updated in a similar manner using LFIL and UDF
commands.

5.6 OPERATING CONSTRAINTS

5.6.1 Updating Acceleration on the Fly

Whereas velocity and target position can be updated while
the motor is moving, on the “fly”, the algorithm described in
Section 2.5 prevents this for acceleration. To change accel-
eration while the motor is moving in mid-trajectory the motor
off command has to be issued by setting LTRJ command bit
8. Then the new acceleration can be loaded, again using the
LTRJ command. When the start command STT is issued the
motor will be energized and the trajectory generator will start
generating a new profile from the actual position when the
STT command was issued. In doing this the trajectory gen-
erator will assume that the motor starts from a stationary
position in the normal way. If the motor has sufficient inertia
and is still moving when the STT command is issued then
the control loop will attempt to bring the motor on to the new
profile, possibly with a large error value being input to the
PID filter and a consequential saturated output until the
motor velocity matches the profile. This is a classic case of
overload in a feedback system. It will operate in an open loop
manner until the error input gets within controllable bounds
and then the feedback loop will close. Performance in this
situation is unpredictable and application specific. LM628/
629 was not intentionally designed to operate in this way.

5.6.2 Command Update Rate

If an LM628/629 is updated too frequently by the host it will
not keep up with the commands given. The LM628/629
aborts the current trajectory calculation when it receives a
new STT command, resulting in the output staying at the
value of the previous sample. For this reason it is recom-
mended that trajectory is not updated at a greater rate than
once every 10 ms.

6.0 Theory

6.1 PID FILTER

6.1.1 PID Filter in the Continuous Domain

The LM628/629 uses a PID filter as the loop compensator,
the expression for the PID filter in the continuous domain is:

H(s) = Kp + Ki /s + Kds (1)

Where Kp = proportional coefficient

Ki = integral coefficient

Kd = derivative coefficient

01101816

FIGURE 16. Generating a Non-Trapezoidal Profile
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6.0 Theory (Continued)

6.1.2 PID Filter Bode Plots

The Bode plots for this function (shown in Figure 17) show
the effect of the individual terms of Equation (1). The propor-
tional term, Kp provides adjustment of proportional gain. The
derivative term Kd increases the system bandwidth but more
importantly adds leading phase shift to the control loop at
high frequencies. This improves stability by counteracting
the lagging phase shift introduced by other control loop
components such as the motor. The integral term, K i, pro-
vides a high DC gain which reduces static errors, but intro-
duces a lagging phase shift at low frequencies. The relative
magnitudes of K d, Ki and loop proportional gain have to be
adjusted to achieve optimum performance without introduc-
ing instability.

6.2 PID FILTER COEFFICIENT SCALING FACTORS FOR
LM628/629

While the easiest way to determine the PID filter coefficient
kp, kd, and ki values is to use tuning as described in Section
2.11, some users may want to use a more theoretical ap-
proach to at least find initial starting values before fine tun-
ing. As very often this analysis is performed in the continu-
ous (s) domain and transformed into the discrete digital
domain for implementation, the relationship between the
continuous domain coefficients and the values input into
LM628/629 is of interest.

01101817

FIGURE 17. Bode Plots of PID Transfer Function
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6.0 Theory (Continued)

6.2.1 PID Filter Difference Equation

In the discrete domain, Equation (1) becomes the difference
equation:

(2)

Where:

T is the sample interval 2048/fCLK

Ts is the derivative sample interval (2048/f CLK x (1..255)

6.2.2 Difference Equation with LM628/629 Coefficients

In terms of LM628/629 coefficients, Equation (2) becomes:

(3)

Where:

kp, ki and kd are the discrete-time LM628/629 coefficients

e(n) is the position error at sample time n

n' indicates sampling at the derivative sampling rate.

The error signal e(n) [or e(n')] is a 16-bit number from the
output of the summing junction and is the input to the PID
filter. The 15-bit filter coefficients are respectively multiplied
by the 16-bit error terms as shown in Equation (3)A to
produce 32-bit products.

6.2.3 LM628/629 PID Filter Output

The proportional coefficient kp is multiplied by the error sig-
nal directly. The error signal is continually summed at the
sample rate to previously accumulated errors to form the
integral signal and is maintained to 24 bits. To achieve a
more usable range from this term, only the most significant
16 bits are used and multiplied by the integral coefficient, ki.
The absolute value of this product is compared with the
integration limit, il, and the smallest value, appropriately
signed, is used. To form the derivative signal, the previous
error is subtracted from the current error over the derivative
sampling interval. This is multiplied by the derivative coeffi-
cient k d and the product contributes every sample interval to
the output independently of the user chosen derivative
sample interval.

The least significant 16 bits of the 32-bit products from the
three terms are added together to produce the resulting u(n)
of Equation (3) each sample interval. From the PID filter
16-bit result, either the most significant 8 or 12 bits are
output, depending on the output word size being used. A
consequence of this and the use of the 16 MSB’s of the
integral signal is a scaling of the filter coefficients in relation
to the continuous domain coefficients.

6.2.4 Scaling for kp and k d

Figure 18 gives details of the multiplication and output for kp

and kd. Taking the output from the MS byte of the LS 16 bits
of the 32-bit result register causes an effective 8-bit
right-shift or division of 256 associated with kp and kd as
follows:

Result = kp x e(n)/256 = Kpx e(n) .'. kp

= 256 x Kp.

Similarly for kd:

Result = (kd x [e(n') − e(n'−1)])/256

= Kd/Ts x e(n) .'. k d = 256 x Kd/Ts

Where Ts is the derivative sampling rate.

6.2.5 Scaling for ki

Figure 19 shows the multiplication and output for the integral
term ki. The use of a 24-bit register for the error terms
summation gives further scaling:

Result = ki/256 x > e(n)/256

= Ki x T .'. ki = 65536 Ki x T.

Where T is the sampling interval 2048/fCLK.

For a 12-bit output the factors are:

kp = 16 x Kp, kd = 16 x Kd/Ts and ki = 4096 K i x T.

If the 32-bit result register overflows into the most significant
16-bits as a result of a calculation, then all the lower bits are
set high to give a predictable saturated output.

6.3 AN EXAMPLE OF A TRAJECTORY CALCULATION

Problem: Determine the trajectory parameters for a motor
move of 500 revolutions in 1 minute with 15 seconds of
acceleration and deceleration respectively. Assume the op-
tical incremental encoder used has 500 lines.

The LM628/629 quadrature decoder gives four counts for
each encoder line giving 2000 counts per revolution in this
example. The total number of counts for this position move is
2000 x 500 = 1,000,000 counts.

By definition, average velocity during the acceleration and
deceleration periods, from and to zero, is half the maximum

01101818

FIGURE 18. Scaling of kp and kd
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6.0 Theory (Continued)

velocity. In this example, half the total time to make the move
(30 seconds) is taken by acceleration and deceleration. Thus
in terms of time, half the move is made at maximum velocity
and half the move at an average velocity of half this maxi-

mum. Therefore, the combined distance traveled during ac-
celeration and deceleration is half that during maximum
velocity or 1⁄3 of the total, or 333,333 counts. Acceleration
and deceleration takes 166,667 counts respectively.

The time interval used by the LM628/629 is the sample
interval which is 256 µs for a fCLK of 8 MHz.

The number of sample periods in 15 seconds = 15s/ 256 µs
= 58,600 samples

Remembering that distance s = at2/2 is traveled due to
acceleration 'a' and time 't'.

Therefore acceleration a = 2S/t2

= 2 x 166,667/58,600

= 97.1 x 10−6 counts/sample 2

Acceleration and velocity values are entered into LM628/629
as a 32-bit integer double-word but represents a 16-bit inte-
ger plus 16-bit fractional value. To achieve this acceleration
and velocity decimal values are scaled by 65536 and any
remaining fractions discarded. This value is then converted
to hex to enter into LM628 in four bytes.

Scaled acceleration a = 97.1 x 10−6x 65536

= 6.36 decimal = 00000006 hex.

The maximum velocity can be calculated in two ways, either
by the distance in counts traveled at maximum velocity

divided by the number of samples or by the acceleration
multiplied by the number of samples over acceleration dura-
tion, as follows:

Velocity = 666,667/117,200 = 97.1 x 10−6 x 58,600

= 5.69 counts/sample

Scaled by 65536 becomes 372,899.8 decimal = 0005B0A3
hex.

Inputting these values for acceleration and velocity with the
target position of 1,000,000 decimal, 000F4240 hex will
achieve the desired velocity profile.

7.0 Questions and Answers

7.1 THE TWO MOST POPULAR QUESTIONS

Why doesn’t the motor move, I’ve loaded filter param-
eters, trajectory parameters and issued Update Filter,
UDF, and Start, STT, commands?

Answer: The most like cause is that a stop bit (one of bits 8,
9 or 10 of the trajectory control word) has been set in error,

01101819

FIGURE 19. Scaling for ki

01101820

FIGURE 20. Trajectory Calculation Example Profile
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7.0 Questions and Answers
(Continued)

supposedly to cause a stop in position mode. This is unnec-
essary, in position mode the trajectory stops automatically at
the target position, see Section 3.3.

Can acceleration be changed on the fly?

Answer: No, not directly and a command error interrupt will
be generated when STT is issued if acceleration has been
changed. Acceleration can be changed if the motor is turned
off first using bit 8 of the Load Trajectory Parameter, LTRJ,
trajectory control word, see Section 4.6.1.

7.2 MORE ON ACCELERATION CHANGE

What happens at restart if acceleration is changed with
the motor drive off and the motor is still moving?

Answer: The trajectory generation starting position is the
actual position when the STT command is issued, but as-
sumes that the motor is stationary. If the motor is moving the
control loop will attempt to bring the motor back onto an
accelerating profile, producing a large error value and less
than predictable results. The LM628/629 was not designed
with the intention to allow acceleration changes with moving
motors.

Is there any way to change acceleration?

Answer: Acceleration change can be simulated by making
many small changes of maximum velocity. For instance if a
small velocity change is loaded, using LTRJ and STT com-
mands, issuing these repeatedly at predetermined time in-
tervals will cause the maximum velocity to increment produc-
ing a piecewise linear acceleration profile. The actual
acceleration between velocity increments remains the same.

7.3 MORE ON STOP COMMANDS

What happens if the on-going trajectory is stopped by
setting LTRJ control word bits 9 or 10, stop abruptly or
stop smoothly, and then restarted by issuing Start, STT?

Answer: While stopped the motor position will be held by the
control loop at the position determined as a result of issuing
the stop command. Issuing STT will cause the motor to
restart the trajectory toward the original target position with
normal controlled acceleration.

What happens if the on-going trajectory is stopped by
setting LTRJ control word bit 8, motor-off?

Answer: The LM628’s DAC output is set to mid-scale, this
puts zero volts on the motor which will still have a dynamic
braking effect due to the commutation diodes. The LM629’s
PWM output sets the magnitude output to zero with a similar
effect. If the motor freewheels or is moved the desired and
actual positions will be the same. This can be verified using
the RDDP and RDRP commands. When Start, STT, is is-
sued the loop will be closed again and the motor will move
toward the original trajectory from the actual current position.

If the motor is off, how can the control loop be closed
and the motor energized?

Answer: Simply by issuing the Start, STT command. If any
previous trajectory has completed then the motor will be held
in the current position. If a trajectory was in progress when
the motor-off command was issued then the motor will re-
start and move to the target position in position mode, or
resume movement in velocity mode.

7.4 MORE ON DEFINE HOME

What happens if the Define Home command, DFH, is
issued while a current trajectory is in progress?

Answer: The position where the DFH command is issued is
reset to zero, but the motor still stops at the original position
commanded, i.e., the position where DFH is issued is sub-
stracted from the original target position.

Does issuing Define Home, DFH, zero both the trajectory
and position register?

Answer: Yes, use Read Real Position, RDRP, and Read
Desired Position, RDDP to verify.

7.5 MORE ON VELOCITY

Why is a command error interrupt generated when in-
putting negative values of relative velocity?

Answer: Because the negative relative velocity would cause
a negative absolute velocity which is not allowed. Negative
absolute values of velocity imply movement in the negative
direction which can be achieved by inputting a negative
position value or in velocity mode by not setting bit 12.
Similarly negative values of acceleration imply deceleration
which occurs automatically at the acceleration rate when the
LM628/629 stops the motor in position mode or if making a
transition from a higher to a lower value of velocity.

What happens in velocity (or position) mode when the
position range is exceeded?

Answer: The position range extends from maximum negative
position hex'C0000000' to maximum positive position
hex'3FFFFFFF' using a 32-bit double word. Bit 31 is the
direction bit, logic 0 indicates forward direction, bit 30 is the
wraparound bit used to control position over-range in veloc-
ity (or position) mode.

When the position increases past hex'3FFFFFFF' the wrap-
around bit 30 is set, which also sets the wraparound bit in the
Status byte bit 4. This can be polled by the host or optionally
used to interrupt the host as defined by the MSKI com-
mands. Essentially the host has to manage wraparound by
noting its occurrence and resetting the Status byte wrap-
around bit using the RSTI command. When the wraparound
bit 30 is set in the position register so is the direction bit. This
means one count past maximum positive position
hex'3FFFFFFF' moves the position register onto the maxi-
mum negative position hex'C0000000'. Continued increase
in positive direction causes the position register to count up
to zero and back to positive values of position and on toward
another wraparound.

Similarly when traveling in a negative direction, using two’s
complement arithmetic, position counts range from
hex'FFFFFFF' (−1 decimal) to the maximum negative posi-
tion of hex'C0000000'. One more negative count causes the
position register to change to hex'3FFFFFFF', the maximum
positive position. This time the wraparound bit 30 is reset,
causing the wraparound bit 4 of the status byte to be set.
Also the direction bit 31 is reset to zero. Further counts in the
negative direction cause the position register to count down
to zero as would be expected. With management there is no
reason why absolute position should be lost, even when
changing between velocity and position modes.
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7.0 Questions and Answers
(Continued)

7.6 MORE ON USE OF COMMANDS

If filter parameter and trajectory commands are pipe-
lined for synchronization of axes, can the Update Filter,
UDF, and Start, STT, commands be issued consecu-
tively?

Answer: Yes.

Can commands be issued between another command
and its data?

Answer: No.

What is the response time of the set breakpoint com-
mands, SBPA and SBPR?

Answer: There is an uncertainty of one sample interval in the
setting of the breakpoint bit 6 in the Status Byte in response
to these commands.

What happens when the Set Index Position, SIP, com-
mand is issued?

Answer: On the next occurrence of all three inputs from the
position encoder being low the corresponding position is
loaded into the index register. This can be read with the
Read Index Position command, RDIP. Bit 0 of the Read
Signals register, shows when an SIP command has been
issued but the index position has not yet been acquired.
RDSIGS command accesses the Read Signals Register.

What happens if the motor is not able to keep up with
the specified trajectory acceleration and velocity val-
ues?

Answer: A large, saturated, position error will be generated,
and the control loop will be non-linear. The acceleration and
velocity values should be set within the capability of the
motor. Read Desired and Real Position commands, RDDP
and RDRP can be used to determine the size of the error.
The Load Position Error commands, for either host Interrupt
or motor Stopping, LPEI and LPES, can be used to monitor
the error size for controlled action where safety is a factor.

When is the command error bit 1 in the Status Byte set?

Answer:

1. When an acceleration change is attempted when the
motor is moving and the drive on.

2. When loading a relative velocity would cause a negative
absolute velocity.

3. Incorrect reading and writing operations generally.

What does the trajectory complete bit 2 in the Status
Byte indicate?

Answer: That the trajectory loaded by LTRJ and initiated by
STT has completed. The motor may or may not be at this
position. Bit 2 is also set when the motor stop commands are
executed and completed.

What do the specified minimum and maximum values of
velocity mean in reality?

Answer: Assume a 500 line encoder = 1/2000 revs/count is
used.

The maximum LM628/629 velocity is 16383 counts/sample
and for a 8 MHz clock the LM628/629 sample rate is 3.9k
samples/second, multiplying these values gives 32k revs/
second or 1.92M rpm.

The maximum encoder rate is 1M counts/second multiplied
by 1/2000 revs/count gives 500 revs/second or 30k rpm. The
encoder capture rate therefore sets the maximum velocity
limit.

The minimum LM628/629 velocity is 1/65536 counts/sample
(one fractional count), multiplying this value by the sample
rate and encoder revs/count gives 30 x 10−6 revs/second or
1.8 x 10 −3 rpm.

The LM628 provides no limitation to practical values of ve-
locity.

How long will it take to get to position wraparound in
velocity mode traveling at 5000 rpm with a 500 line
encoder?

Answer: 107 minutes.

8.0 References and Further
Reading
1. LM628/LM629 Precision Motion Controller. Data sheet

March 1989.

2. Automatic Control Systems. Benjamin C. Kuo. Fifth edi-
tion Prentice-Hall 1987.

3. DC Motors, Speed Controls, Servo Systems. Robbins &
Myers/Electro Craft.

4. PID Algorithms and their Computer Implementation.
D.W. Clarke. Institute of Measurement and Control,
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5. LM628 Programming Guide. Steven Hunt. National
Semiconductor Application Note AN-693.
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