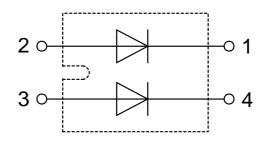
HiPerFRED

DSEP2x61-12B

advanced

V_{RRM}	= 1	1200 V		
I _{FAV}	=2x	60 A		
t _{rr}	=	35 ns		

High Performance Fast Recovery Diode Low Loss and Soft Recovery Parallel legs


Part number

DSEP2x61-12B

Backside: isolated **E**72873

20161014a

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)
- Package: SOT-227B (minibloc)
- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper
- internally DCB isolated
- Advanced power cycling

Terms Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified

© 2016 IXYS all rights reserved

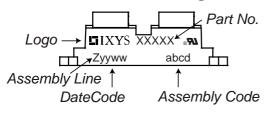
LIXYS

DSEP2x61-12B

advanced

Fast Diode					Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
V _{RSM}	max. non-repetitive reverse block	ing voltage	$T_{VJ} = 25^{\circ}C$			1200	V	
V _{RRM}	max. repetitive reverse blocking v	oltage	$T_{VJ} = 25^{\circ}C$			1200	V	
I _R	reverse current, drain current	V _R =1200 V	$T_{VJ} = 25^{\circ}C$			200	μA	
		V _R =1200 V	$T_{vJ} = 150^{\circ}C$			1	mA	
V _F	forward voltage drop	I _F = 60 A	$T_{vJ} = 25^{\circ}C$			2.90	V	
		I _F = 120 A				3.50	V	
		I _F = 60 A	T _{vJ} = 150°C			2.00	V	
		I _F = 120 A				2.60	V	
IFAV	average forward current	$T_c = 80^{\circ}C$	T _{vJ} = 150°C			60	Α	
		rectangular d = 0.5						
V _{F0}	threshold voltage		T _{vJ} = 150°C			1.10	V	
r _F	slope resistance } for power in	oss calculation only				12	mΩ	
R _{thJC}	thermal resistance junction to cas	e				0.6	K/W	
R _{thCH}	thermal resistance case to heatsin	nk			0.10		K/W	
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			200	W	
IFSM	max. forward surge current	t = 10 ms; (50 Hz), sine; $V_R = 0 V$	$T_{VJ} = 45^{\circ}C$			800	Α	
C	junction capacitance	$V_{R} = 600 V f = 1 MHz$	$T_{VJ} = 25^{\circ}C$		48		pF	
I _{RM}	max. reverse recovery current		$T_{VJ} = 25 ^{\circ}C$		11		А	
		$I_{\rm F} = 60 \text{A}; V_{\rm R} = 600 \text{V}$	T _{vJ} = 125 °C		17		Α	
t _{rr}	reverse recovery time	$\begin{cases} I_{F} = 60 \text{ A}; V_{R} = 600 \text{ V} \\ -di_{F} / dt = 200 \text{ A} / \mu \text{s} \end{cases}$	$T_{VJ} = 25 ^{\circ}C$		70		ns	
	-)	T _{vJ} = 125 °C		210		ns	

IXYS reserves the right to change limits, conditions and dimensions.


20161014a

advanced

Package	e SOT-227B (minible	oc)			I	Rating	5	
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					100	А
T _{vj}	virtual junction temperatur	е			-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
M _T	terminal torque				1.1		1.5	Nm
d _{Spp/App}	araanaga distansa an surf	iona Latriking diatanaa thraugh air	terminal to terminal	10.5	3.2			mm
d _{Spb/Apb}	creepage distance on sun	ace striking distance through air	terminal to backside	8.6	6.8			mm
V	isolation voltage	t = 1 second			3000			V
		t = 1 minute	50/60 Hz, RMS; liso∟ ≤ 1 mA		2500			V

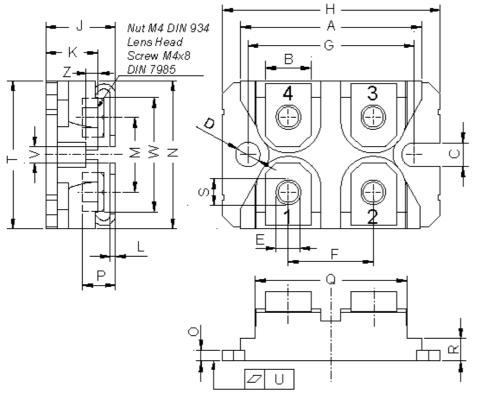
Product Marking

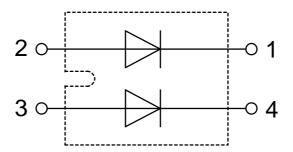
Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DSEP2x61-12B	DSEP2x61-12B	Tube	10	520842

Similar Part	Package	Voltage class
DSEP2x61-12A	SOT-227B (minibloc)	1200

Equivalent Circuits for Simulation			* on die level	T _{vj} = 150 °C
	- <u>R</u> o-	Fast Diode		
V _{0 max}	threshold voltage	1.1		V
$R_{0 max}$	slope resistance *	10		mΩ

IXYS reserves the right to change limits, conditions and dimensions.


20161014a


DSEP2x61-12B

advanced

Outlines SOT-227B (minibloc)

Dim.	Millir	meter	Inc	hes
Dim.	min	max	min	max
Α	31.50	31.88	1.240	1.255
В	7.80	8.20	0.307	0.323
С	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
Е	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
Н	37.80	38.23	1.488	1.505
L	11.68	12.22	0.460	0.481
К	8.92	9.60	0.351	0.378
L	0.74	0.84	0.029	0.033
М	12.50	13.10	0.492	0.516
Z	25.15	25.42	0.990	1.001
0	1.95	2.13	0.077	0.084
Ρ	4.95	6.20	0.195	0.244
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.167
S	4.55	4.85	0.179	0.191
Т	24.59	25.25	0.968	0.994
υ	-0.05	0.10	-0.002	0.004
V	3.20	5.50	0.126	0.217
W	19.81	21.08	0.780	0.830
Ζ	2.50	2.70	0.098	0.106

IXYS reserves the right to change limits, conditions and dimensions.

20161014a