mal‘blePORT ver.1.3
Programming Guide

1st Edition

AIOIsSYSTEMS CO., LTD.

Revision History

Date

Version

Details

Jan. 13, 2015

1% Edition

Contents
L OV IV IBW e e e e

2. BASIC US et
2.1 Call marblePORT

2.2 Find Out the Completion Status of marblePORT Processing

2.3 Receive Data from marblePORT

3. Parameter for Each FUNCHIONuviiiiiiiiii e
3.1 Display Status (Function Number = 0)

3.2 Get Status (Function Number = 1)

3.3 Read User Data (Function Number = 2)

10

3.4 Write User Data (Function Number = 3)

11

12

3.5 Image Display (Function Number = 4)
3.6 Register the Display Image (Function Number =5)

12

3.7 Display the Registered Image (Function Number =6)

13

3.8 Clear Display (Fuction Number =7)

13

3.9 Display Text (Function Number =21)

14

3.10 Change the Security Codes (Function Number = 8)

15

3.11 Complex Processing

15

@l oL To] gl =T = 1 g 1= (= SRR
4.1 Completion Operation

17

17

4.2 Display the Progress Bar
4.3 Customize the Title / Message

17

18

4.4 Specifying Instance for Tag Communication (NFC-enabled terminals only)
4.5 Operation of Vibration upon Completion

19

4.6 Specify Type of Smart Tag

19

4.7 Specify the Security Codes

19

4.8 Explicit Use of Osaifu-Keitai (mobile wallet)

20

20

4.9 Confirming the Status at the End of Processing

5. Practical Uses of MarblePORT ...,

5.1 Process Multiple Consecutive Tasks

5.2 Individually Detect Tags (for NFC only)

5.3 Using the Communication Log

ST = (0] =TT

6.1 Error at Startup
6.2 Communication Error

6.3 When Battery is Low

N] 1= 1 PPN

7.1 List of Parameters

7.2 Version Code of marblePORT

1. Overview

About this Manual

This manual is used as a guide to develop Android applications. It explains how to call
marblePORT from your application so that you can develop applications for Smart Tag.

What is marblePORT

marblePORT is a middleware to communicate with Smart Tag. It starts up by utilizing “Intent”
from the application that wants to communicate with Smart Tag. It communicates with Smart
Tag and returns the result to the original application. It is, therefore, possible to create an
application just by calling “Intent”.

Main Features
e marblePORT itself is not a library. It is one of the Android applications.

e Since there is no need to write communication programs for Smart Tag, it is easy to create
applications for Smart Tag.

e Because there is a built-in Android mechanism to call marblePORT, it is not necessary to
have indepth knowledge of programming.

e Itis compatible with NFC-enabled terminal and “Osaifu-Keitai” (mobile wallet). (automatic
identification)

Operation Environment
e Android OS 2.3.3 or later versions

e NFC-enabled device or “Osaifu-Keitai” (mobile wallet) terminal

Applicable Smart Tags

e ST1020 (Smart Tag with 2-inch display)
e ST1027 (Smart Tag with 2.7-inch display)
e SC1029L (SmartCard with 2.9-inch display)

History of Version Updates

Version 1.3
e Compatible with the SC1029L (SmartCard with 2.9-inch display).

Version 1.2
e Determine if there are errors when a process is completed.
e Resends the command when there is an error in sending a command.

e Added a function to save the communication log.

Version 1.1

Compatible with the ST1027 (Smart Tag with 2.7-inch display).
Refer to section 4.6 Specify Type of Smart Tag
3.10 Change the Security Codes (Function Number = 8)
Added an option in the Display Image function to disallow display rewrite.
e Added the Option Parameters
Section 4.5 Operation of Vibration upon Completion
Section 4.8 Explicit Use of Osaifu-Keitai (mobile wallet)
Section 4.9 Confirming the Status at the End of Processing

¢ Regarding the “Register the Display Image” function, added an option to specify the image
together.

¢ Added a function so that with 1 start-up, multiple types of processing can be performed.
Section 3.11 Complex Processing

e After communication is processed, if the battery is low, a message will be displayed.

Compatibility with the Old Version

The application created with the version 1.0 will also work in version 1.1 ~ 1.3.

Note on Usage

One characteristic of marblePORT is the use of Intent to start up each process. In the case of
multiple processing (e.g., the user’s data is read and the content is displayed accordingl to the
content), it is necessary to start up multiple times. Degredation of performance and display
guality may occur.

If marblePORT cannot meet the execution speed and user interface requirements when
incorporating into your business system, consider implementing your own communication
processing without using marblePORT. You can download sample programs from the web site
mentioned above.

The marblePORT specifications, including the design of the screen, etc., may be revised without
prior notice.

2. Basic Use

This section explains how to use marblePORT from external applications.

2.1 Call marblePORT

Explicit Intent is used to start marblePORT. The main steps are as follows:

(1) Create an instance of Intent class.

(2) Using Extra, specify the function number and parameters for the function number.
(3) Do the option parameter setup as necessatry.

(4) Start Activity by using the Intent object that you created.

When the instance of Intent class is created, use the following string as the action.

com.aioisystems.marbleport. EXECUTE

You must specify the function number. Depending on the number, the application (below “host
application”) that calls marblePORT specifies what you want marblePORT to do. Also, there
are specific parameters depending on the function number that you specify - - some are required
and others are optional.

List of Function Numbers

Function Number | Process Details

Show status

Get status

Read data

Write data

Show image

Register current image

Display registered image

Clear display

0 N[O |(Oo1 [~ [W N [k O

Set up security codes

N
iy

Show text

An example below shows the call code to display an image on the display. (Java)

Intent intent = new Intent ("com.aioisystems.marbleport.EXECUTE") ;
//Required

intent.putExtra ("EXTRA FUNCTION NO", 4);
intent.putExtra ("EXTRA BITMAP", bitmap);

//Optional

intent.putExtra ("EXTRA DITHER", true);

startActivity (intent);

2 In this example, the values of the parameters and function number are directly specified.
Normally, the recommendation is to define the constant. In addition, the MpHelper class with
the defined constant is available on the website.

When marblePORT starts up, a screen to scan Smart Tag will be displayed. When Smart Tag is
touched, communication processing begins according to the parameters specified by the
application.

Write data

Touch your SMART-TAG!

marblePORT

Screen waiting for scan

2.2 Find Out the Completion Status of marblePORT Processing

In the default setting, when the communication process is completed normally and the user
releases Smart Tag from the reader/writer, the marblePORT screen will disappear and return to
the host application screen (Activity).

To determine if marblePORT has finished processing with the host application, the
startActivityForResult method of Activity class (android.app.Activity) is used. Also, it can be
implemented by overriding the onActivityResult method of Activity of the host application.

protected void onActivityResult (int requestCode, int resultCode, Intent data) {

With the argument “resultCode” passed by this onActivityResult method, you can find out the
completion status.

The resultCode returned by marblePORT is as follows:

Value of resultCode

RESULT OK (=-1) Requested processing is completed normally.

RESULT_CANCEL (=0) User did not touch Smart Tag and ended with the return button of
marblePORT.

RESULT_ERROR_CANCEL (=1) | Error occurred during Smart Tag communication process. User

(3%unique value of marblePORT) ended marblePORT with the return button.

2.3 Receive Data from marblePORT

One of the marblePORT functions is the transfer of data to the host application (e.g., read data).
The data is stored in the Intent object with the aforementioned onActivityResult and can be
retrieved using the extra field name defined by marblePORT.

Sample Code: Below is an example showing how to check the completion of read data and get
the byte array data from Smart Tag.

protected void onActivityResult (int requestCode, int resultCode, Intent data)
{
super.onActivityResult (requestCode, resultCode, data);
if (resultCode == RESULT OK) {
if (requestCode == READ DATA) {
byte[] userData = data.getByteArrayExtra ("EXTRA USER DATA");

2¢Names you can use for extra fields will be discussed later.

After the process is completed, you will receive parameters that are specific to the function
number used (those that you can get only after executing that function) and parameters that are
always available after executing any function.

3. Parameter for Each Function

In this section, marblePORT’s function specifications and parameters will be
discussed.

3.1 Display Status (Function Number = 0)

The status of Smart Tag is displayed after scanning on the marblePORT screen. The table
below shows the display status. This function will also be executed when marblePORT starts
up independently.

IDm Smart Tag identification number

Battery Status Status of Smart Tag’s internal battery power
Fine / Normal / Low / Empty

Version Number | Smart Tag’s firmware version (displays in hexadecimal)

EmParameter at Startup

Extra Field Name Type Required | Explanation

EXTRA FUNCTION NO int * Specify 0

B Specific Parameter after Completion

Extra Field Name ‘ Type ‘ Explanation

(None)

3.2 Get Status (Function Number = 1)

marblePORT is called to get the aforementioned status with the host application. You can get
the parameters at completion for this function number as well as the parameters when the
processing of all function numbers is finished.

EMParameters at Startup

Extra Field Name Type | Required | Explanation

EXTRA FUNCTION NO int * Specify 1

EmParameters at Completion

Extra Field Name Type Explanation
EXTRA_IDM byte[] | Smart Tag ID (IDm)
EXTRA BATTERY byte Internal battery status of Smart Tag
0: Fine
1: Normal
2: Low
3: Empty
EXTRA TAG STATUS byte Status of Smart Tag obtained last

00h:Initialization status (RESET)

FOh:Process completion

F1h:Waiting for command to be received (Fnum#Fsum)
F2h:Being processed

F3h:Received command error — (Address error)
F4h:Received command error — (Length error)
F6h:Received command error — (Size error)
F7h:Received command error — (Undefined Func.No.)
F8h:Parameter error

F9th: Security code mismatch

FDh:Flash Rom error

FEh:Electronic paper display error

FFh:Received FeliCa data error

EXTRA FIRMWARE VERSION | byte Smart Tag firmware version

3.3 Read User Data (Function Number = 2)

Data is read from Smart Tag's internal memory (Free Information Area). The data is read in
bytes. marblePORT and Smart Tag do not stipulate any data format. You can determine the
data format with an application as necessary.

EMParameters at Startup

Extra Field Name Type | Required | Explanation
EXTRA FUNCTION NO int * Specify 2
EXTRA START ADDRESS | int - Read start address

(ST1020: 0~3071,
ST1027/SC1029L: 0~16383, Default=0).

EXTRA READ SIZE int * Read data in byte (ST1020:1~3072,
ST1027/SC1029L: 1 ~ 16384).

X If the start address and size or the start address + length exceed the range, an error will be
displayed at the start of marblePORT and the communication will not be processed.

B Specific Parameters at Completion

Extra Field Name Type Required

EXTRA USER_DATA byte[] | Read data

10

3.4 Write User Data (Function Number = 3)

Write data in the internal memory of Smart Tag (Free Information Area). There is no rule for
data format for Smart Tag. Determine the data format for an application as necessary.

BMParameters at Startup

Extra Field Name Type Required | Explanation

EXTRA FUNCTION NO int * Specify 3

EXTRA START ADDRESS int - Write start address (ST1020: 0~3071,
ST1027/SC1029L: 0~16383, default =0)

EXTRA USER_DATA bytel] * Write data. Write all data in the array.
Array size is ST1020:1~3072,
ST1027/SC1029L: 1~16384).

% If the start address and size or the start address + length exceed the range, an error will be
displayed at the start of marblePORT and the communication will not be processed.

B Specific Parameters at Completion

Extra Field Name \ Type \ Explanation

(None)

11

3.5 Image Display (Function Number = 4)

Display any image on the Smart Tag display.

EMParameters at Startup

Extra Field Name Type Required | Explanation
EXTRA FUNCTION NO int * Specify 4
EXTRA BITMAP Bitmap'* * Image data to be displayed.

A color image will be changed to black and white.
If the image data exceed the display size limit
specified for each type, an error will happen.

EXTRA DITHER boolean - true: White-Black conversion by dithering (error
diffusion method).

false: White-Black conversion at threshold
(default value).

EXTRA LOCATION X int - Image is placed on the X coordinate (O at the left
edge). Default value = 0.

EXTRA LOCATION_ Y int - Image is placed on the Y coordinate (0 at the top
edge). Default valaue = 0.

EXTRA DRAW MODE int - How to draw the background (margins of the

specified image).

0: Fill the background with white.

1: Fill the background with black.

2: Maintain the existing status (default value).
3: Image of the specified registered number.

EXTRA LAYOUT NUMBER int - Specify registered number when 3 is specified
with EXTRA_DRAW_MODE. Default value = 0
(without specifying the registered number).

EXTRA UPDATE DISPLAY boolean Specify whether to rewrite or not rewrite the
display. Use when sending multiple partial
images. (for ST1027/SC1029L only)

true: Rewrite the display (default value)
false: Do not rewrite the display

*1: Bitmap = android.graphics.Bitmap

B Specific Parameter at Completion

Extra Field Name ‘ Type Explanation

(None)

3.6 Register the Display Image (Function Number =5)

Register the image displayed on the Smart Tag display of Smart Tag. The registered image can
be displayed with “Display the Registered Image” (Function Number = 6).

12

BWParameters at Startup

Extra Field Name Type Required | Explanation
EXTRA FUNCTION NO int * Specify 5.
EXTRA LAYOUT NUMBER | int * Specify the number to register.
(ST1020: 1~12 / ST1027: 1~128 / SC1029L: 1).
EXTRA UPDATE DISPLAY | boolean Specify whether to rewrite or not rewrite when you
register. (for ST1027/SC1029L only)
true: Rewrite the display (default value)
false: Do not rewrite the display
EXTRA BITMAP Bitmap Specify the image to be registered. If omitted, the
image displayed on Smart Tag will be registered.

B Specific Parameters at Completion

Extra Field Name ‘ Type

‘ Explanation

(None)

3.7 Display the Registered Image (Function Number =6)

Display the image registered with “Register the Display Image”.

registered, fill in with white.

BMParameters at Startup

If a number specified is not

Extra Field Name Type Required | Explanation

EXTRA FUNCTION NO int * Specify 6.

EXTRA LAYOUT NUMBER int * Specify the registration number to display.
(ST1020:1~12 / ST1027:1~128 / SC1029L:1)

B Specific Parameter at Completion

Extra Field Name ‘ Type

‘ Explanation

(None)

3.8 Clear Display (Fuction Number =7)

Clears the Smart Tag display (fill with white).

B Parameters at Startup

13

Extra Field Name Type Required | Explanation

EXTRA FUNCTION NO int * Specify 7

B Specific Parameter at Completion

Extra Field Name | Type Explanation

(None)

3.9 Display Text (Function Number =21)

It is easy to display text on the Smart Tag display. The text wraps automatically but does not
hyphenate English words. You can start a new line by specifying the CR code (0x0D) to the text.
If the text does not fit in the space, it will be ignored.

B Parameters at Startup

Extra Field Name Type Required | Explanation

EXTRA FUNCTION NO int * Specify 21.

EXTRA DISPLAY TEXT | String * Text to be displayed.

EXTRA TEXT SIZE int - Size of the character. Specify greater than 1.
Default value = 16.

B Specific Parmeter at Completion

Extra Field Name ‘ Type Explanation

(None)

14

3.10 Change the Security Codes (Function Number = 8)

The security codes of the 2.7-inch Smart Tag can be changed. Set up threee 3-byte security
codes, one for displaying, one for memory writing, and one for reading from memory in Smart Tag.
When security codes are set up, it is necessary to specify the code each time the function is
called. If you specify a security code for the calling function that does not match the security
code that was set up in Smart Tag, the processing will fail to execute (does not show up as an
error).

To check whether the security code has been correctly changed, check the status after the
process has been completed. (Refer to parameters at completion in Section 3.2 Get Status
(Function Number = 1))

It is not necessary to set up all three security codes 1 - 3. You can set up only the codes that you
need. The factory default of the security codes are: 0x30, 0x30, 0x30.

mStartup Parameters

Extra Field Name Type Required | Explanation
EXTRA FUNCTION NO int * Specify 8
EXTRA SECURITY CODEL bytel] * For display

Security code before the change, 3 bytes
EXTRA NEW SECURITY CODEl | bytel[] * For display

Security code after the change, 3 bytes
EXTRA SECURITY CODE2 byte[] ™* For writing to the memory

Security code before the change, 3 bytes
EXTRA NEW SECURITY CODE2 | byte[] * For writing to the memory

Security code after the change, 3 bytes
EXTRA SECURITY CODE3 byte[] * For reading the memory

Security code before the change, 3 bytes
EXTRA NEW SECURITY CODE3 | bytel[] * For reading the memory

Security code after the change, 3 bytes

mParameters at Completion

Extra Field Name ‘ Type Explanation

(None)

3.11 Complex Processing

From just one startup, marblePORT can perform multiple processes, such as read/write user
data, display images, display registered images, and clear display. Possible combinations of

15

functions are listed below. Specify the Function Number for the combined functions and

required parameters described in this section, and then run marblePORT.

BPossible Combinations

To Combine (Execute in this order)

Function Number

Read user data > Display image 31
Read user data - Display registered image 32
Read user data - Clear display 33
Read user data - Write user data 34
Read user data &> Write user data - Display image 41
Read user data > Write user data - Display registered image 42
Read user data > Write user data > Clear display 43
Write user data - Display image 51
Write user data - Display registered image 52
Write user data - Clear display 53

¢Communication Errors during Process

If a communication error occurs while processing, you can touch Smart Tag again to start

reprocessing from the beginning. However, if read user data is included in the combination, and

error occurs after read user data has completed normally, the data will be cashed. When the

reprocess operation is performed, it will skip read data and proceed to execute the next process.

*About the Start Address of Read and Write User Data

When read and write are combined, use the extra field name "EXTRA_START_ADDRESS" for

the start address for reading, and "EXTRA_START_ADDRESS?2" for the start address for writing.

16

4. Option Parameter

This section explains the parameters that you can set up as an option.

4.1 Completion Operation

Specify the operation after Smart Tag is touched and the communication process is completed.

W Specify at Startup

Extra Field Name Type Explanation

EXTRA AUTO CLOSE int 0: The screen remains unchanged after completion of process. (To
return, press the “Return” button.)

1: Closes when Smart Tag is released from the terminal. (Default
value).

2: Closes immediately when processing is finished.

%The same process can be repeated when “0” is specified. Smart Tag can be touched while
screen is being displayed.

4.2 Display the Progress Bar

Specify whether or not to display the Progress Bar during Smart Tag communication.

W Specify at Startup

Extra Field Name Type Explanation

EXTRA SHOW PROGRESS | boolean | true: Display
false: Not display (default value)

4.3 Customize the Title / Message

Specify the title and various messages of the marblePORT screen. Try to make it a 1-line title. If
it does not fit within 1 line, excess characters will be omitted.

The message will wrap at the end. Keep the message to 2 lines. If the message is 3 lines, the
message will overlap with the picture of Smart Tag and will be difficult to see.

17

Write data

Touch your SMART-TAG!

Title

Message
marblePORT

W Specify at Startup

Extra Field Name Type Explanation

EXTRA TITLE String | Specify the text of the title column.

EXTRA MSG SCAN String Specify the display message when waiting for Smart Tag to
scan.

EXTRA_MSG_PROCESSING | String | Specify the display message when communication is in
progress.

EXTRA_MSG_END String | Specify the display message when communication is
completed.

EXTRA_MSG_IO_ERROR String | Specify the message when there is a communication error.
(The error detail will display at the bottom of the screen.)

4.4 Specifying Instance for Tag Communication (NFC-enabled
terminals only)

You can specify Tag objects (android.nfc.Tag) to communicate with Smart Tag. This applies only
when the NFC-enabled terminals are used.

You can specify all 3 fields shown below. Details on how to use these fields will be provided later.

W Specification at Startup

Extra Field Name Type Explanation

EXTRA RELAY_ TAG boolean | Specify true when Tag Instance is passed. Otherwise, specify
false (default value).

EXTRA ACTIVE TAG Tag Tag object to pass. Tag must be able to communicate.

EXTRA IDM byte[] IDm of Smart Tag that is communicating.

18

4.5 Operation of Vibration upon Completion

This function specifies whether or not you want Smart Tag to vibrate immediately after
marblePORT has finished communicating with Smart Tag.

Specification at Startup

Extra Field Name Type Explanation
EXTRA VIBRATE int 0: Do nothing (default value)
1: Vibrate
EXTRA VIBRATE DURATION | int Specifies the vibration time in millisecond (0 ~ 10,000).

4.6 Specify Type of Smart Tag

You can specify the type of Smart Tag. If you don’t specify, it operates as a 2-inch type. When
using the 2.7-inch type, specify the option whenever marblePORT is called.

Specification at Startup

Extra Field Name Type Explanation

EXTRA SMART TAG TYPE | int 20: 2-inch type (default value)
27: 2.7-inch type
29: 2.9-inch type

4.7 Specify the Security Codes

For the ST1027 (2.7-inch Smart Tag), 3-byte security codes are required if you want to modify the
display and read and write in the memory. You must specify in advance the same security code
that you used to set up in Smart Tag. The factory default security code is "000"(0x30, 0x30,
0x30).

If you do not specify, Smart Tag will use “000”.

Specification at Startup

Extra Field Name Type Explanation

EXTRA_SECURITY_CODE1 byte[] Security code to update the display (display image / clear
display / register layout) (3 bytes)

EXTRA SECURITY CODE2 bytel[] Security code to write to memory (3 bytes)

EXTRA SECURITY CODE3 bytell Security code to read from memory(3 bytes)

19

4.8 Explicit Use of Osaifu-Keitai (mobile wallet)

If the terminal can use both Osaifu-keitai and NFC, marblePORT will use NFC over Osaifu-keitai.
You can specify Osaifu-keitai to communicate with Smart Tag.

(With Osaifu-keitai, the maximum number of blocks that can be transferred simultaneously is 8.
Set up “Simultaneous transport block number” from the marblePORT screen according to your
need.)

Specification at Startup

Extra Field Name Type Explanation

EXTRA USE FELICA boolean | false: NFC priority (default value)
true: Use Osaifu-keitai (mobile FeliCa)

4.9 Confirming the Status at the End of Processing

At default (false), the status is not confirmed at the end of processing. When set to “true”, the
status will be confirmed after Smart Tag processing is finished. When completely finished,
marblePORT screen will then show “Done”.

If you confirm the status after the screen update, communication will end because the drawing on
the Smart Tag screen has been completed.

Specification at Startup

Extra Field Name Type Explanation
EXTRA_CHECK_STATUS_AFTER PROCESS | boolean | false: Not check (default value)
true: Check

2 From version 1.2, regardless of the option, the status is obtained only once immediately after
communication is completed. Normal completion happens only when the status is OxFO (normal
completion) or OxF2 (in process). Otherwise, an error will occur and the screen will ask the user
to touch Smart Tag again.

20

5. Practical Uses of marblePORT

This section describes the practical use of marblePORT.

5.1 Process Multiple Consecutive Tasks

With just one startup, marblePORT is limited in performing various communication processes
with Smart Tag. If you want marblePORT to perform complex communication with Smart Tag by
scanning just once, you need to have marblePORT start and end repeatedly while Smart Tag is
touched to perform multiple processing.

Some processing of NFC-enabled phones and Osaifu-Keitai (mobile wallet) are done differently.

5.1.1 For the NFC-enabled Phones
You can process several consecutive tasks.

You have to reuse Tag information. You can obtain a Tag object and IDm from Intent and use
them as the parameters for the entire process.

The host application gets the Tag object and IDm from Intent when the first processing is
completed. From the 2™ call and thereafter, these parameters are specified.

B Received information after completion

Extra field name Type Explanation
EXTRA ACTIVE TAG Tag Tag object that has been using in the process.
EXTRA IDM byte[] Smart Tag IDm

W Set up parameters for the next process startup

Extra Field Name Type Explanation

EXTRA_RELAY TAG boolean | True

EXTRA ACTIVE TAG Tag Tag object is received when the process is completed.
EXTRA IDM byte[] Smart Tag IDm

For all processes, except the last process, the parameter "EXTRA_AUTO_CLOSE" (behavior of
the process completion) must be set to 2 to immediately close the screen.

21

5.2 Individually Detect Tags (for NFC only)

Normally, you need to scan Smart Tag after mablePORT is launched and the host application has
started. However, you can have the host application perform the tag detection and have
marblePORT run only the communication process.

Android SDK and programming knowledge are must-have skills for developing merblePORT
applications.

(1) Inthe host application, set to allow receiving NfcF class (android.nfc.tech.NfcF) compatible
tag by calling Intent by Android OS.

(2) Getthe Tag object (Extra_Tag) and Smart Tag ID (Extra_ID) from the Intent object passed
by onNewIntent when Smart Tag is detected.

(3) Run marblePORT by setting options for EXTRA_RELAY_TAG, EXTRA_ACTIVE_TAG,
EXTRA_IDM and the function number.

(4) marblePORT starts processing with the passed Tag object and IDm.

5.3 Using the Communication Log

You can save and check part of the content of communication between marblePORT and Smart
Tag. Only the Smart Tag ID and communication command headers are recorded; images and
user data are not recorded. 2MB are required for the log file. If the file is larger than 2MB, 1MB
will be deleted from the old log and the new log will be recorded.

Log Activation

The setup screen of marblePORT is used to enable and disable the log. Disable is the default
setting. To display the setup screen, touch the icon (picture of a wrench) at the bottom of the
marblePORT screen.

Put a check mark for Record the communication log to activate. Once the log is enabled, it
will remain activated even when marblePORT is restarted.

22

Show status

Touch your SMART-TAG!

Settings

Simultaneous transport block number

Ple ver the number when commun

Record the communication log

the commun log to fold arbleport/

marblePORT

L Touch here

Setup screen

Where to save

The log is created inside "/sdcard/aioisystems/marbleport/". You cannot specify the path to
save.

Log file name

log.txt The latest log of approximately 1IMB (max.) will be saved. If over 1MB, it will be
renamed to “log.bak.txt”.
log.bak.txt 1MB log of old log.txt has been saved.

A sample log file:

i 2013/08/09 14:19:15 00-00-00-00-00-00-00-00
D and time when Smart fag |_—— W DO 01 01 00 00 ** ** =**x (00 00 00 00O QO 00 00 00

AZ 16 16 FO 72 00 00 00 02 07 EB 07 A2 05 97 C5
AZ 16 01 70 73 ** *=*= ** (00 00 C8 &0 00 02 00 03
AZ 16 02 70 74 ** *= ** (00 00 C8 €0 00 02 00 03
AZ 16 03 70 75 ** *=*= ** (00 00 Cc8 60 00 02 00 03
RAZ 16 04 70 Te ** ** *% 00 00 C8 €0 00 02 00 03
AZ 16 05 70 77 ** *= ** (00 00 c8 60 00 02 00 03

is touched

W: Write on Smart Tag (Send)

R: Read from Smart Tag (Receive)

SE=s=Z=Xs

Smart Tag command headers and the byte value (HEX) of 1 block.
(Security code displayed with **)

Content recorded in the log

e Only Smart Tag commands are recorded. (FeliCa polling command etc. is not recorded.)

e The actual communication is performed with FeliCa commands, but only that portion for Smart
Tag commands is recorded.

¢ If resending occurs at the time a command is sent, a one-line “retry sending.” will be recorded
just before the resend. If it is determined that there was a sending error, a one-line “sending
error.” will be recorded.

23

6. Errors

In this section, what types of errors occur during the processing marblePORT will be
discussed.

6.1 Error at Startup

For phones that are incompatible with NFC or Osaifu-keitai (NTTDoCoMo mobile
phones)

When marblePORT is launched, it tries to determine whether the phone is NFC-enabled or
Osaifu-ketai enabled starting first with NFC.

First, marblePORT runs getDefaultAdapter method of NfcAdapter class
(android.nfc.NfcAdapter). If null is returned, then the phone is a non NFC-enabled phone.

Next, marblePORT tries to start with Osaifu-keitai.

If an error occurs at the start of Osaifu-keitai, SDK (Mobile FeliCa Client) for Osaifu-keitai will
display error information.

When both NFC phone and Osaifu-keitai have an error, the marblePORT screen will continue to
display an error and will not respond even if Smart Tag is touched.

Click the”’Back” button to return to the host application. You will receive the resultCode as
RESULT_ERROR_CANCEL(=1) through onActivityResult.

When NFC is “Disabled” in the device's Settings menu

If the NFC setting is disabled, the “NFC has been disabled” message will be displayed when
marblePORT starts up. (There will be no response when Smart Tag is touched.)

Click Android device’s “Back” button to return to the host application. You will receive the
resultCode, RESULT_ERROR_CANCEL(=1) through onActivityResult.

After you enable NFC in the device's Settings screen, you are able to launch marblePORT.

24

6.2 Communication Error

If failure occurs during communication, for example, Smart Tag was released, a communication
error message will be displayed and shows the types of errors. An example is shown below.

Show text

I/0 error. Tag again!

Error type: Transceive error

marblePORT

B Types of Errors

Communication Error The communication is terminated when the tag has moved out
of range.

"Maximum simultaneous transfer block " means that your
“Maximum simultaneous transfer block" setting is too big

Smart tag Error Abnormal status of Smart Tag. The status variable is displayed.
F3-F8, FF: Command Format Error

FD, FE, F5: Hardware Failure

70: No error code

NFC Unknown Error Other unexpected failures of marblePORT

2You can capture the error details using LogCat in the Android SDK tool kit.
(TAG:marblePORT)

If an error occurs, that error will continue to be displayed no matter what option you choose on the
host application. If the error remains on the display, you need to touch Smart Tag again to retry
the starting process.

Click the “back” button then return to the host application. You will receive the resultCode as
RESULT_ERROR_CANCEL(=1) through onActivityResult.

6.3 When Battery is Low

If communication processing is performed when the status of battery capacity indicates low (2 or
3), the screen on marblePORT appears as if the communication process completed normally.
This is because when the battery capacity is low, communication to process the response is

25

performed normally, but not the internal processing.

When the battery capacity is 2 or 3 after communication is finished, the following messages will
be displayed to show low battery status.

Show text

Done

Battery: Low

marblePORT

Status of Residual Battery when it is:

2. Battery is getting low

3: Cannot use
After marblePORT ends, you can get the status of the battery power capacity with the calling
application, EXTRA_BATTERY. (Referto "2.3 Receive Data from marblePORT")

*Depending on the operation environment and conditions, even after displaying the above
messages, in some cases, it may return to “0” or “1”.

26

7. Appendix

7.1 List of Parameters

Specify Function Number

Extra Field Name Type | Value

Explanation

EXTRA FUNCTION NO int : Show status

: Get status

: Read data

: Write data

: Show image

: Register current image
: Show registerd image
: Clear display

: Change security code
21: Show text

O ~NOoO O~ WNPEO

Function Number

Function Number for Complex Processing

Complex Processing

Function Number

Read user data - Display image 31
Read user data - Display registered image 32
Read user data - Clear display 33
Read user data - Write user data 34
Read user data > Write user data - Display image 41
Read user data > Write user data - Display registered image 42
Read user data - Write user data > Clear display 43
Write user data - Display image 51
Write user data - Display registered image 52
Write user data - Clear display 53

Show Status Parameter

Extra Field Name Type Value Explanation
EXTRA FUNCTION NO int 0

Get Status

Extra Field Name Type Value Explanation
EXTRA FUNCTION NO int 1

27

EXTRA IDM byte[] IDm
EXTRA BATTERY byte Battery Status
EXTRA TAG STATUS byte Smart Tag Status
EXTRA FIRMWARE VERS | byte Smart Tag Firmware Version
ION
Read User Data
Extra Field Name Type Value Explanation
EXTRA FUNCTION NO int 2
EXTRA START ADDRESS | int 0~3071 (ST1020) Start Adress
0~16383
(ST1027/SC1029L)
Default value: 0
EXTRA READ SIZE int 1-3072 (ST1020) Byte size of read data
1-16384
(ST1027/ SC1029L)
EXTRA USER_DATA byte[] | Read Data
Write User Data
Extra Field Name Type Value Explanation
EXTRA FUNCTION NO int 3
EXTRA START ADDRESS | int 0~3071 (ST1020) Start address
0~16383
(ST1027/ SC1029L)
Default value: 0
EXTRA USER DATA byte[] Write data
Display Image
Extra Field Name Type Value Explanation
EXTRA FUNCTION NO int 4
EXTRA BITMAP Bitmap Bitmap data for display
EXTRA DITHER boolean | true: Dithering
false: Threshold
(default value)
EXTRA LOCATION X int 0 (default value) — 199 X start point
(ST1020) Display position (left most is 0)
0-263 (ST1027)
0-299(SC1029L)
EXTRA LOCATION Y int 0 (default value) — 95 Y start point
(ST1020) Display position (top edge is 0)
0-175 (ST1027)
0-199 (SC1029L)
EXTRA DRAW MODE int 0: Fill background white Specify background (margins

1: Fill background black

around the specified image)

28

2: Keeping current value
(defaultl value)

3: specified with image
registeration number

EXTRA LAYOUT NUMBER | int 0 (default value): Image
registeration number not
specified
1 or more: Image
registeration number
1-12 (ST1020)
1-128 (ST1027)
1 (SC1029L)
EXTRA_UPDATE_DISPLAY | boolean | true: Rewrite the display For ST1027/SC1029L only
(default value)
false: Do not rewrite the
display
Register Display Image
Extra Field Name Type Value Explanation
EXTRA FUNCTION NO int 5
EXTRA LAYOUT NUMBER int 1-12 (ST1020) Registeration number
1-128 (ST1027)
1 (SC1029L)
EXTRA_UPDATE_DISPLAY boolean | true: Rewrite the display | For ST1027 only
(default value)
false: Do not rewrite the
display
EXTRA BITMAP Bitmap Specify the image to be registered.
Display Registered Image
Extra Field Name Type Value Explanation
EXTRA FUNCTION NO int 6
EXTRA LAYOUT NUMBER int 1-12 (ST1020) Registeration number
1-128 (ST1027)
1 (SC1029L)
Clear Display
Extra Field Name Type Value Explanation
EXTRA FUNCTION NO int 7
Show Text
Extra Field Name Type Value Explanation
EXTRA FUNCTION NO int 21
EXTRA DISPLAY TEXT String Text for display
EXTRA TEXT SIZE int Default value:16 Size of text

29

Option - Completion Operation

Extra Field Name Type Value Explanation
EXTRA AUTO CLOSE int 0: Not Close

1:Close after releasing

Smart Tag (default
value)

2:Close immediately
Option — Show Progress Bar
Extra Field Name Type Value Explanation
EXTRA SHOW PROGRESS boolean | true: Display

false: Not display (default

value)

Option — Customize Title/Message
Extra Field Name Type Value Explanation
EXTRA TITLE String Title
EXTRA MSG SCAN String Waiting to be scanned
EXTRA MSG PROCESSING String Communicating
EXTRA MSG END String Communication completed
EXTRA MSG IO ERROR String Communication failure
Option— Specify Tag Instance
Extra Field Name Type Value Explanation
EXTRA RELAY TAG boolean | true: Use

false: Not use (default value)
EXTRA ACTIVE TAG Tag Tag Object
EXTRA IDM byte[] IDm
Option — Vibrate Upon OperationCompletion
Extra Field Name Type Value Explanation
EXTRA_VIBRATE int 0: Do nothing (default value)

1: Vibrate
Option — Specify the Type of Smart Tag
Extra Field Name Type Value Explanation
EXTRA_SMART TAG_TYPE int 20: 2-inch type (default value)

27: 2.7-inch type

Option — Specify Security

Code (for ST1027/SC1029L only)

Extra Field Name

Type

Value Explanation

EXTRA SECURITY CODEL

bytel]

Security code for updating the display (3 bytes)

30

EXTRA SECURITY CODE2

bytel]

Security code for writing in memory (3 bytes)

EXTRA SECURITY CODE3

bytel]

Security code for reading from memory (3 bytes)

Option — Explicit Use of Osaifu-Keitai (Mobile Wallet)

Extra Field Name Type Value Explanation
EXTRA USE_FELICA boolean | false: NFC priority (default value)

true: Use Osaifu-keitai (mobile

wallet)
Option — Confirm the Status at the End of Processing
Extra Field Name Type Value Explanation
EXTRA CHECK STATUS AFTER PROCESS boolean | false: Do not confirm

(default value)
true: Confirm

7.2 Version Code of marblePORT

The marblePORT version name and code are the following:

Version Name

Version Code

1.0.0 100
1.1.0 110
1.2.0 120
1.3.0 130
13.1 131

31

[Note]

® No part of this manual may be copied or reproduced in whole or in part without the written
permission of AIOI-SYSTEMS CO., LTD.

® The marblePORT specifications and the contents of this manual may be revised without
prior notice.

Android is a trademark of Google Inc.

Eclipse is a trademark of Eclipse Foundation, Inc.

Java is trademarks or registered trademark of Oracle Corporation.
Osaifu-Keitai is a trademark or registered trademark of NTT DOCOMO, INC.
FeliCa is a registered trademark of Sony Corporation.

* X X X *

marblePORT Ver.1.3
Programming Guide

AIOI.SYSTEMS CO., LTD.

WiRa Oomori Bldg, 8F

1-6-8 Oomori Kita, Ota-ku, Tokyo 143-0016 JAPAN
Tel: 03-3764-0228

Fax: 03-3764-7520

e-mail: info@hello-aioi.com

web: http://www.hello-aioi.com/

Copyright(©) 2015 AIOI-SYSTEMS CO., LTD.

http://www.hello-aioi.com/

	1. Overview
	About this Manual
	What is marblePORT
	Main Features
	Operation Environment
	Applicable Smart Tags
	History of Version Updates
	Version 1.1
	Compatibility with the Old Version
	Note on Usage

	2. Basic Use
	2.1 Call marblePORT
	2.2 Find Out the Completion Status of marblePORT Processing
	2.3 Receive Data from marblePORT

	3. Parameter for Each Function
	3.1 Display Status (Function Number = 0)
	3.2 Get Status (Function Number = 1)
	3.3 Read User Data (Function Number = 2)
	3.4 Write User Data (Function Number = 3)
	3.5 Image Display (Function Number = 4)
	3.6 Register the Display Image (Function Number = 5)
	3.7 Display the Registered Image (Function Number =6)
	3.8 Clear Display (Fuction Number =7)
	3.9 Display Text (Function Number =21)
	3.10 Change the Security Codes (Function Number = 8)
	3.11 Complex Processing

	4. Option Parameter
	4.1 Completion Operation
	4.2 Display the Progress Bar
	4.3 Customize the Title / Message
	4.4 Specifying Instance for Tag Communication (NFC-enabled terminals only)
	4.5 Operation of Vibration upon Completion
	4.6 Specify Type of Smart Tag
	4.7 Specify the Security Codes
	4.8 Explicit Use of Osaifu-Keitai (mobile wallet)
	4.9 Confirming the Status at the End of Processing

	5. Practical Uses of marblePORT
	5.1 Process Multiple Consecutive Tasks
	5.2 Individually Detect Tags (for NFC only)
	5.3 Using the Communication Log

	6. Errors
	6.1 Error at Startup
	For phones that are incompatible with NFC or Osaifu-keitai (NTTDoCoMo mobile phones)

	6.2 Communication Error
	6.3 When Battery is Low

	7. Appendix
	7.1 List of Parameters
	7.2 Version Code of marblePORT

