

December 12, 2016 © 2016 Industrial Control Communications, Inc.

ICC
INDUSTRIAL CONTROL COMMUNICATIONS, INC.

PicoPort Datasheet

1

ICC
PicoPort Datasheet

Printed in U.S.A.

©2016 Industrial Control Communications, Inc.
All rights reserved

NOTICE TO USERS
Industrial Control Communications, Inc. reserves the right to make changes and improvements
to its products without providing notice.

Industrial Control Communications, Inc. shall not be liable for technical or editorial omissions or
mistakes in this datasheet, nor shall it be liable for incidental or consequential damages
resulting from the use of information contained in this datasheet.

INDUSTRIAL CONTROL COMMUNICATIONS, INC.’S PRODUCTS ARE NOT AUTHORIZED
FOR USE AS CRITICAL COMPONENTS IN LIFE-SUPPORT DEVICES OR SYSTEMS. Life-
support devices or systems are devices or systems intended to sustain life, and whose failure to
perform, when properly used in accordance with instructions for use provided in the labeling and
user's manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs may always be present in a system of
any size. In order to prevent danger to life or property, it is the responsibility of the system
designer to incorporate redundant protective mechanisms appropriate to the risk involved.

This datasheet may not cover all of the variations of interface applications, nor may it provide
information on every possible contingency concerning installation, programming, operation, or
maintenance.

The contents of this datasheet shall not become a part of or modify any prior agreement,
commitment, or relationship between the customer and Industrial Control Communications, Inc.
The sales contract contains the entire obligation of Industrial Control Communications, Inc. The
warranty contained in the contract between the parties is the sole warranty of Industrial Control
Communications, Inc., and any statements contained herein do not create new warranties or
modify the existing warranty.

Any electrical or mechanical modifications to this equipment without prior written consent of
Industrial Control Communications, Inc. will void all warranties and may void any UL/cUL listing
or other safety certifications. Unauthorized modifications may also result in equipment damage
or personal injury.

2

ICC
TABLE OF CONTENTS

1 Feature Summary .. 4
2 Audiences .. 4
3 Customer Mounting .. 4
4 Development Kit .. 6
5 Gateway Concepts .. 7
6 Configuration ... 9

6.1 Overview ... 9
6.2 ICC Configuration Studio ... 9

6.2.1 General Object Editing Activities .. 12
6.2.2 Device Settings .. 13

6.2.2.1 Configuration Locking Settings ... 14
6.2.2.2 Status LED Settings .. 14

6.2.3 Host Settings .. 15
6.2.4 Network Settings .. 15
6.2.5 USB Virtual COM Port Settings .. 15
6.2.6 USB Serial Capture Window .. 16
6.2.7 Batch Update Mode .. 18
6.2.8 I/O Settings ... 19

6.2.8.1 Overview ... 19
6.2.9 Internal Logic Settings .. 23

6.2.9.1 Initial Persistent Values .. 23
6.2.9.2 Fail-safe Values .. 24
6.2.9.3 Database Logic ... 25

6.2.10 Service Objects and Diagnostics Objects ... 28
6.3 Network Configuration Parameters .. 29
6.4 Persistent User Parameters ... 40
6.5 Initialization Overview .. 41
6.6 I/O and Database Logic Scan Rate ... 42

7 Serial Drivers ... 43
8 Hardware Specifications ... 44

8.1 Pinout .. 44
8.2 Header Interface .. 44
8.3 Dimensions ... 45
8.4 Environmental Specifications ... 45
8.5 Indicators ... 46
8.6 Pin Descriptions .. 47

9 Appendix A: Database Endianness ... 55
9.1 Modbus - PROFIBUS Example ... 57
9.2 Modbus - DeviceNet Example ... 58
9.3 BACnet - DeviceNet Example .. 59
9.4 BACnet - Modbus Analog Element Example.. 60
9.5 BACnet - Modbus Binary Element Example .. 61

3

ICC
10 Appendix B: Diagnostics Objects .. 63
11 Appendix C: BACnet PICS .. 65

4

ICC
1 Feature Summary
• 0.85” x 0.85” dimensions

• On-board full-speed USB 2.0 support

• 9X shared GPIO channels

• 3X shared pulse output channels (filter to produce analog outputs)

• 4X shared 10-bit analog input channels

• Dual serial ports with RS-485 line enable signals

• Host SPI interface

• Supports a variety of standard industrial and building-automation protocols, such as BACnet
MS/TP (client & server), JCI Metasys N2 (master & slave), Modbus RTU (master, slave &
sniffer), Siemens FLN etc.

• Supports configurable UART baud rates up to 115.2kbaud

• Customizable Windows®-based Configuration Studio with easy OEM branding

2 Audiences
There are two primary intended audiences for the PicoPort:

• Equipment manufacturers who already have (or can provide) an “intelligent” device that
supports an existing UART. Any standard protocol (such as Modbus RTU master or slave
etc.) or even custom protocol can be configured on the PicoPort in order to read/write data
from the host CPU and make it accessible to the outside world.

• Sensor manufacturers that currently provide traditional “non-communicating” sensors. As
the PicoPort supports a variety of on-board analog and digital I/O, it is capable of being
configured to provide access to these physical I/O channels via any supported
protocol. Firmware development is currently under way to incorporate advanced features
related to sensor applications, such as selectable linearization for thermistors and RTDs,
etc.

3 Customer Mounting
The PicoPort is directly mounted to the OEM customer’s circuit board, and the customer
chooses their own physical layer interface(s). The benefits of allowing the customer to
incorporate their own physical layer(s) include:

• The customer can choose their own physical layer type (4-wire or 2-wire RS-485, RS-232,
SPI, TTL, isolated or non-isolated, etc.)

• The customer can choose their external interface/terminal blocks for consistent appearance
to end-users.

5

ICC
• There are no issues with an included physical layer not being coplanar with the remainder of

the customer’s carrier board (which would otherwise result in having one terminal block
vertically offset from all the others by ¼”, etc.)

• The PicoPort can be internally mounted on the customer’s board at any convenient location:
it need not be located adjacent to an enclosure exit point for connector access.

For electrical and mechanical stability, it is recommended that the PicoPort be soldered directly
to the host circuit board, consistent with any typical through-hole semiconductor component.
Note that when designing a 4-wire or 2-wire RS-485 physical layer, it is strongly recommended
to include an additional customer connection for signal common that is connected to the ground
terminal of the RS-485 transceiver. To further improve the robustness of communications, we
recommend that the RS-485 transceiver circuitry be galvanically isolated from other circuitry.

6

ICC
4 Development Kit
A development kit is available which facilitates the ability to quickly integrate with the target
OEM equipment (refer to Figure 1). The development board supports a variety of selectable
communication interfaces, as well as a breadboard area for convenient hardware prototyping.
Refer to the separate PicoPort Development Kit User’s Manual for more information.

Figure 1: PicoPort Development Kit

7

ICC
5 Gateway Concepts
The PicoPort can be thought of as a gateway-on-a-chip. It provides simultaneous support for
many different communication protocols, allowing complex interchanges of data on otherwise
unsupported networks. The PicoPort is configured using the ICC Configuration Studio.

The heart of the PicoPort’s gateway operation is its internal database. The database is an 8 KB,
byte-wise addressable data array. At the end of the 8KB address space, the database also
includes 32 bytes of Network Configuration Parameters, 32 bytes of Protocol-Specific
Configuration Parameters, and 64 bytes of Persistent User Parameters. This gives a total size
of 8320 bytes for the entire database, referred to as DBSize in the protocol driver manuals. The
database allows data to be routed from any supported network, including I/O data, to any other
supported network. Data may be stored into the database in either big-endian style (meaning
that if a 16-bit or 32-bit value is stored in the database, the most significant byte will start at the
lowest address) or little-endian style (meaning that if a 16-bit or 32-bit value is stored in the
database, the least significant byte will start at the lowest address).

The other fundamental aspect of the PicoPort is the concept of a configurable “service object”. A
service object is used for any master/client protocol to describe what service (read or write) is to
be requested on the network. The PicoPort will cycle through the defined service objects in a
round-robin fashion; however, the device does implement a “write first” approach. This means
that the PicoPort will perform any outstanding write services before resuming its round-robin,
read request cycle.

Additionally, the database and service objects provide the added benefit of “data mirroring”,
whereby current copies of data values (populated by a service object) are maintained locally
within the device itself. This greatly reduces the request-to-response latency times on the
various networks, as requests (read or write) can be entirely serviced locally, thereby eliminating
the time required to execute a secondary transaction on a different network.

In order to facilitate the free scaling and conversion of native data values, a user-configurable
“multiplier” and “data type” exist for some network configurations. All network values are scaled
by a multiplier prior to being stored into the database or after being retrieved from the
database. The data type is used to determine how many bytes are allocated for the value in the
database, whether the value should be treated as signed or unsigned, and whether the value
should be interpreted as an integer or a floating point number upon retrieval from the database.

A typical use of the multiplier feature is to preserve the fractional components of a network value
for insertion into the database. For example, if the floating-point value “3.19” is read by the
device from a remote BACnet device, then we could use a multiplier value of 0.01 to preserve
all of the significant digits of this value: the network representation (3.19) will be divided by the
multiplier value (0.01) to obtain a resultant value of 319, which will then be inserted into the
database. Similarly, when a value in the database corresponding to a specific service object is
changed (which therefore requires that this updated value be written to the associated remote
device on the network), the service object’s multiplier value will first be multiplied by the
database value in order to obtain the resultant network value. For example, if 3000 is written to
the database at a location corresponding to a certain service object on the other port, and that
service object’s multiplier value is 0.1, then the database value (3000) will be multiplied by the
multiplier value (0.1) to obtain the resultant network value of 300.0, which will then be written to
the network as a native floating point value.

8

ICC
An appropriate data type should be selected based on the range of the network data values. For
example, if the value of an Analog Output on a remote BACnet device can vary from –500 to
500, a 16-bit signed data type should be used. If the value can only vary from 0 to 150, for
example, an 8-bit unsigned data type may be used. Care must be taken so that a signed data
type is selected if network data values can be negative. For example, if 0xFF is written to the
database at a location corresponding to a service object with an 8-bit unsigned data type, the
resultant network value will be 25510 (assuming a multiplier of 1). However, if 0xFF is written to
the database at a location corresponding to a service object with an 8-bit signed data type, the
resultant network value will be −110 (again, assuming a multiplier of 1). It is also important to
select a data type large enough to represent the network data values. For example, if a value of
257 is read by the device from a remote device and the data type corresponding to that service
object is 8-bit unsigned, the value that actually will be stored is 1 (assuming a multiplier of 1).
This is because the maximum value that can be stored in 8-bits is 255. Any value higher than
this therefore results in overflow.

The PicoPort also provides a powerful data-monitoring feature that allows the user to view and
edit its database in real time, as well as view the status of service objects via the ICC
Configuration Studio’s Database panel when connected via USB to a PC.

9

ICC
6 Configuration
6.1 Overview
Module configuration is performed via USB with the Windows®-based ICC Configuration
Studio. The USB interface does not need to be accessible to the end-user if the OEM provides
all configuration of the module at manufacture time. The ICC Configuration Studio allows OEM
customers and/or end-users to define and map their host information and physical I/O to the
network(s) of their choice. The ICC Configuration Studio is also easily customizable for OEMs,
allowing them to insert their own logos and product names etc. without any interaction from
ICC. In this way, if the OEM wishes to allow their end-users to configure their device’s network
characteristics via USB, then the end-user perceives the device as being cohesive with the
manufacturer’s overall product.

If, on the other hand, the OEM wishes to provide a fixed object definition for the various
supported networks, then they can load this configuration into the module themselves at
manufacture time: various run-time configuration parameters exist that allow the selection of the
external network characteristics via an intelligent on-board interface (such as the host device’s
keypad etc.). In this scenario, there would be no reason for an end-user to be exposed to the
ICC Configuration Studio, as the OEM has already done all of the work for them.

6.2 ICC Configuration Studio
This section will provide only a brief introduction to the configuration concepts of the ICC
Configuration Studio. For more detailed information on how to install and use the Configuration
Studio, refer to the separately-available training resources.

Creating a Device Configuration
A device can be added to the Project panel for configuration by first selecting the Device
Configurations list heading and then:
• Double-clicking on it in the Available Devices panel.
• Right-clicking on it in the Available Devices panel and choosing Add from the context-

sensitive menu.
• Hitting the <ENTER> key on the keyboard when the device is selected in the Available

Devices panel.
• Dragging it from the Available Devices panel into the Project panel.
• Selecting it and selecting Add Selected Device from the Edit menu.
• Selecting it and clicking the Add button in the toolbar.

The device will then be added to the list of Device Configurations.

Going Online with a Device
All connected devices are automatically added to the Discovered Devices panel. This panel is
shown by selecting the Online Devices list heading in the Project panel. To go online with a
device:
• Double-click on it in the Discovered Devices panel.

10

ICC
• Right-click on it in the Discovered Devices panel and choose Go Online from the context-

sensitive menu.
• Hit the <ENTER> key on the keyboard when the device is selected in the Discovered

Devices panel.
• Drag it from the Discovered Devices panel into the Project panel.
• Select it and select Go Online with Device from the Edit menu.
• Select it and click the Go Online button in the toolbar.

When the studio goes online with a device, its configuration is automatically read. While the
studio is online with a device, it will appear in green text in the Discovered Devices panel. The
studio may be online with multiple devices simultaneously.

Uploading a Device’s Configuration into a Project
The current configuration of an online device can be uploaded into the Project panel by
selecting a device under the Online Devices list heading and then:

• Right-clicking on it and choosing Upload Configuration from the context-sensitive
menu.

• Dragging it from the Online Devices heading into the Device Configurations heading.
• Selecting it and selecting Upload Configuration to Project from the Device menu.
• Selecting it and clicking the Upload Configuration button in the toolbar.

The device’s configuration will then be added to the list of Device Configurations. Once the
configuration is uploaded into the project, it may be modified.

Removing a Device Configuration from a Project
A configuration can be removed from a project by:
• Selecting the device in the Project panel and dragging it. A trash can icon will appear at the

bottom of the Project panel, and dragging and dropping the device in the trash will remove it
from the project.

• Hitting the <DELETE> key on the keyboard when the device is selected in the Project
panel.

• Right-clicking on the device in the Project panel and choosing Remove from the context-
sensitive menu.

• Selecting Remove Selected Item from the Edit menu when the device is selected.
• Clicking on the Remove button in the toolbar when the device is selected.

Going Offline with a Device
To go offline with a device:
• Select the device in the Project panel and drag it. A trash can icon will appear at the

bottom of the Project panel, and dragging and dropping the device in the trash will go offline
with it.

• Hit the <DELETE> key on the keyboard when the device is selected in the Project panel.
• Right-click on the device in the Project panel and choose Go Offline from the context-

sensitive menu.
• Select Go Offline with Device from the Edit menu when the device is selected.

11

ICC
• Click on the Go Offline button in the toolbar when the device is selected.

Importing a Configuration from a Project File
An existing project file can be imported into the currently-active project. Click File…Import
Project, and then select the desired *.icsproj file. The contents of the imported file will be
merged with the active project.

Downloading a Configuration to a Device
To download a configuration to an online device, first select the device under the Device
Configurations heading in the Project panel, and then navigate to Device…Download
Configuration to Device. If the studio is currently online with only one compatible device, then
the configuration will be downloaded to the online device. Otherwise, a device selection prompt
is displayed to select which device to download the configuration to.

Updating Firmware
The studio automatically manages firmware updates when going online with a device and
downloading a configuration to a device. Do not power off the device once the update is in
progress as this may corrupt the firmware and/or the configuration.

Resetting an Online Device
To reset an online device, first select the device in the Project panel and then navigate to
Device…Reset Device.

Interacting with the Database
To interact with a device’s database, select the device in the Project panel and then select the
Database panel. If the Database panel is not visible, it can be enabled via View…Database.
When an online device is selected, data values are updated from the device in real-time, and
values can be edited by double-clicking the desired location in the database.

Diagnostics
To monitor the status of service objects, select the device in the Project panel and then select
the Diagnostics panel. If the Diagnostics panel is not visible, it can be enabled via
View…Diagnostics. When an online device is selected, diagnostics information is updated
from the device in real-time. Individual diagnostics entries can be selected by clicking on them
in the list, and multiple entries can be selected by either <CTRL>+clicking on them (to select
them individually) or <SHIFT>+clicking on them (to select a range of entries). Counter values of
all currently-selected diagnostics entries can be reset by clicking the Reset Selected Counters
button.

General Configuration Process
To configure a device, add the desired protocols for the various ports, configure the
communication settings (baud rate, parity, address, timeout, and scan rate/response delay etc.),
and configure any objects associated with the respective protocols. Any changes will take effect
once the configuration is downloaded to a device.

Note that numeric values can be entered not only in decimal but also in hexadecimal by
including “0x” before the hexadecimal number.

12

ICC
6.2.1 General Object Editing Activities
The following editing activities apply for all types of configuration objects and project elements.

Adding an Object
To add an object, click on an item (protocol driver or Node, for example) in the Project panel.
Any available objects for that item will be listed in the Available Objects panel (the panel title
depends on the currently-selected item). An object can then be added to the item by:
• Double-clicking on it.
• Right-clicking on it and choosing Add from the context-sensitive menu.
• Hitting the <ENTER> key on the keyboard when the object is selected.
• Dragging it into the Project panel.
• Selecting it and selecting Add Selected Device from the Edit menu.
• Selecting it and clicking the Add button in the toolbar.

The object’s configurable fields can then be populated with valid values (where applicable).

Viewing an Object
In the Project panel, select a parent object to display a summary of all its child objects. For
example, selecting a protocol driver will display the driver’s configuration in the Summary panel
and list of current objects in the Object List panel.

Updating an Object
To update an object, select the object in the Project panel and make any required changes in
the Settings panel.

Deleting an Object
An object can be deleted by performing one of the following actions:
• Selecting the object in the Project panel and dragging it. A trash can icon will appear at the

bottom of the Project panel, and dragging the object to the trash will then delete it from the
project.

• Hitting the <DELETE> key on the keyboard when the object is selected in the Project panel.
• Right-clicking on the object in the Project panel and choosing Remove from the context-

sensitive menu.
• Selecting Remove Selected Item from the Edit menu when the object is selected.
• Clicking on the Remove button in the toolbar when the object is selected.

Note that this action cannot be undone. Deleting an object will also delete all of its child objects.

Copying and Pasting an Object
To copy an object, first click on an item in the Project panel. An object can then be copied by:
• Right-clicking on it and choosing Copy from the context-sensitive menu.
• Pressing the <CTRL+C> keys on the keyboard.
• Holding the <CTRL> key and dragging the item to the desired location in the Project panel.
• Dragging the item to a new location under a different parent object in the Project panel.
• Selecting Copy Selected Item from the Edit menu.

13

ICC
• Clicking on the Copy button in the toolbar.

To paste an object, first click on an item at the desired location in the Project panel. An object
can then be pasted by:
• Right-clicking on it and choosing Paste from the context-sensitive menu.
• Pressing the <CTRL+V> keys on the keyboard.
• Dropping an item onto the desired location in the Project panel after holding the <CTRL>

key and dragging the item.
• Dropping an item onto a new location under a different parent object in the Project panel

after dragging the item.
• Selecting Paste Item from the Edit menu.
• Clicking on the Paste button in the toolbar.

After pasting an object, the object’s configurable fields can then be modified with valid values
(where applicable).

Note that the studio allows you to copy and paste items between different locations, including
different devices. This is useful for copying partial configurations from one device to another.

Reordering Objects
Objects can be reordered in the Project panel by dragging the item to the desired location. If
the item is dragged outside of the items in the project tree, it will be moved to the end.

6.2.2 Device Settings
The following fields can be configured for a device. To view or edit device settings, click on the
device in the Project panel. The settings are then available in the Settings panel.

Device Description
Each device added to a project can be individually tagged with a unique description string of up
to 32 characters in length. This allows the devices within a project or an automation system to
be clearly identifiable with their location or functional purpose.

Product ID
Defines a 16-bit, hexadecimal product ID for the device. This sets the value of the Product ID
network configuration parameter and can be used to uniquely identify different OEM products or
configurations.

Database Endianness Selection
Select the desired endianness for how data will be stored in the device’s internal database for
multi-byte data types. For more information on database endianness, refer to Appendix A:
Database Endianness.

Default Network Protocol
Select the network protocol which will be activated by default after the configuration is
downloaded to the device. If only one network protocol is configured, or the default protocol is
irrelevant (due to dynamic configuration during startup), set this to Automatic.

14

ICC

Auto Run
Check this to allow the device to enter run mode automatically. If this is unchecked, the device
will stay in configuration mode until the Run Mode configuration parameter is set to run. Note
that the network driver is not started until the device enters run mode.

6.2.2.1 Configuration Locking Settings
The configuration locking settings allows a user to lock the device’s configuration for reading
and writing. When the device’s configuration is locked, a user must enter the correct credentials
in the ICC Configuration Studio to view or modify the configuration on the device.

Enable Lock
Check this to enable configuration locking on the device. After a configuration which enables
this setting has been downloaded to the device, the device’s configuration will be locked.

User Name
Enter the user name required to unlock the configuration on the device for reading and writing.

Password
Enter the password required to unlock the configuration on the device for reading and writing.

6.2.2.2 Status LED Settings
The device’s status LED is software-controlled and can be configured to indicate a wide range
of information to the user, providing useful insight into the operation of the device. These
settings define the behavior of the device’s status LED.

Status LED Control
Selects the method for controlling the device’s status LED. Regardless of the option selected,
upon startup, the status LED will flash the green, red, green, red startup sequence. Additionally,
if an internal error occurs, the status LED will always flash red indicating the error code.

Default
This option is the default behavior of the status LED. The LED is solid green when power
is applied to the device. The LED flashes green when a USB connection has been
established between the device and a PC.

Port Activity
This option allows the selected port’s TX and RX activity to be indicated by the status
LED. For each LED cycle, if the port has transmitted any bytes since the last cycle, the
status LED will light green for half of the cycle. If the port has received any bytes since
the last cycle, the status LED will light red for half of the cycle.

Database Value
This option configures the status LED to be fully controlled by a value located in the
device’s internal database. This enables the status LED to be directly controlled via
communications or by internal logic applied to data stored in the device’s database.
Table 1 lists the supported LED states.

15

ICC
Table 1: Status LED States

Value LED State

0 Off

1 Green On

2 Red On

3 Green Flashing

4 Red Flashing

5…255 Off

Port
Selects the port for which the TX and RX activity will be indicated by the status LED.

Note that this option only applies when the Port Activity option is selected for the Status LED
Control setting.

Database Address
Defines the address in the device’s database used to control the status LED.

Note that this option only applies when the Database Value option is selected for the Status
LED Control setting.

6.2.3 Host Settings
A Host port can be added to the device configuration which allows communication to a host
processor. A variety of protocol drivers are available for the host port, depending on the host’s
communication capabilities (refer to section 7 for further details). Only one protocol can be
selected for the host port.

6.2.4 Network Settings
The Network port is intended for communication to the “outside world”. While the protocol
drivers that can be assigned to the network port are for the most part the same as the host port
(refer to section 7), the main difference is that multiple drivers can be included. The default
protocol is designated via the Default Network Protocol device setting.

6.2.5 USB Virtual COM Port Settings
The device can be configured to enumerate as a USB virtual COM port, providing direct serial
communications between the device and a PC through the USB connection. The COM port can
be used for various tasks, depending on the selected mode. This section details the different
functions of the virtual COM port.

Mode
Select the desired mode for how the USB virtual COM port will be used. The available options
are detailed below.

16

ICC

Serial Pass-Through
Select this option to cause the device to behave as a USB to serial converter. Any data
sent to the USB virtual COM port will be sent on the physical serial port and any data
received by the physical serial port will be received from the USB virtual COM port. Note
that while the device is in this mode all other functionality of the device is disabled,
regardless of other configuration settings.

Serial Redirect
Select this option to redirect communications from the selected serial port to the USB
virtual COM port. By selecting this option, the device will communicate with the PC over
the virtual COM port using the settings configured on the associated serial port. This
allows the device to communicate with the PC using any of the supported serial port
protocols. Note that the physical serial port is disabled when the device is configured in
this mode.

Serial Sniffer
Select this option to sniff the received and transmitted packets on the selected serial port
and output the data to the virtual COM port. When this mode is selected, the device will
attempt to output every packet that the protocol driver configured on the serial port
receives and transmits.

Because the sniffer operates independently from the physical serial port (so as not to
impact communications), there may be times when the sniffer cannot output a received
or transmitted packet due to the USB connection being unable to output characters
faster than they are exchanged on the physical serial port. When this occurs, the sniffer
will output the characters "ERR: Sniffer Packet Overflow" or "ERR: Sniffer Buffer
Overflow". Additionally, the sniffer is able to detect receive errors on the serial port such
as parity, overrun, and framing errors. If a receive error occurs on one or more
characters of a packet, the sniffer will output the characters “ERR: Receive Error”.

Note that because the serial sniffer mode captures packets at the protocol driver level, a
protocol must be configured on the selected serial port to output data to the USB virtual
COM port. For convenience, there is a special “USB Serial Sniffer Settings” protocol
selection to configure the serial port for sniffing only.

Serial Port
Select the desired serial port to target for use with the USB virtual COM port.

Sniffer Output Format
Select the desired output format of the serial sniffer data. The formatted data option outputs the
captured data as ASCII text characters and includes annotations for whether the packet was
received or transmitted, as well as a relative timestamp of when the packet was received or
transmitted. The raw data option outputs the captured data as unmodified, binary characters.

6.2.6 USB Serial Capture Window
The USB Serial Capture Window allows you to connect to a device's USB Virtual COM port to
view and save network packets captured by the device. The device's USB Virtual COM port

17

ICC
must be configured for Serial Sniffer mode and the Sniffer Output Format must be set to
Formatted Data.

When connected, the capture window will display the device’s most recent received and
transmitted packets. All packets captured during the duration of the session may be saved once
the session has ended, even though they all may not be displayed in the window. The status bar
at the bottom of the window tracks the duration of the connection as well as the total number of
packets the device has received and transmitted.

To open the USB Serial Capture Window, select USB Serial Capture Window… from the
Tools menu.

Capturing Packets
To begin capturing packets, the device must first be configured with the appropriate USB Virtual
COM port settings as described above. Once configured, the device will appear in the COM
Port selection box. Select the desired device from this drop down and connect to the device. To
connect to the device, perform one of the following actions:
• Select Connect from the Connection menu.
• Click on the Connect button in the toolbar.

Note that connecting to a device will clear the capture log automatically.

Clearing the Capture Log
All captured data may be cleared at any time while connected to a device or after disconnecting
from a device. This will also reset the connection time duration and all counters. To reset all
captured data, perform one of the following actions:
• Select Clear Log from the Edit menu.
• Click on the Clear Log button in the toolbar.
• Hit the <DELETE> key on the keyboard.
• Right click on the capture output and select Clear Log.

Pausing the Display
While capturing, the output window will display only the most recent packets. Therefore, as new
packets are captured and displayed in the window, old packets are removed from the display. At
any time during capturing, the display updating may be paused so that no packets are added or
removed. To pause the display, perform one of the following actions:
• Select Pause Display from the Display menu.
• Click on the Pause Display button in the toolbar.
• Right click on the capture output and select Pause Display.

Note that even though the display does not update when paused, packets are still being
captured in the background.

Ending a Capture Session
The capture session is ended by disconnecting from the selected device. To disconnect from
the device, perform one of the following actions:
• Select Disconnect from the Connection menu.

18

ICC
• Click on the Disconnect button in the toolbar.

Saving the Captured Data
Once a capture session has ended, the entire captured data may be saved. The data can be
saved either as a Wireshark capture file or as a plain text document.

Wireshark Capture File
The captured data can be saved as a file which can be opened, decoded, and analyzed
by Wireshark. Wireshark is a free network protocol analyzer and is available at
http://www.wireshark.org/.

Any protocol capture may be viewed with Wireshark. However, Wireshark currently only
supports decoding BACnet MS/TP packets and has limited support for Modbus RTU.

To save the captured data as a Wireshark capture file, perform one of the following
actions:
• Select Save As Wireshark Capture… from the File menu.
• Click on the Save As Wireshark Capture… button in the toolbar.
• Hit the <CTRL+S> keys on the keyboard.

Text Document
The captured data can also be saved as a plain text document. To save the captured
data as a text document, perform one of the following actions:
• Select Save As Text… from the File menu.
• Click on the Save As Text… button in the toolbar.
• Hit the <CTRL+SHIFT+S> keys on the keyboard.

6.2.7 Batch Update Mode
The ICC Configuration Studio supports a batch update mode for quickly updating firmware, and
optionally, the configuration on all discovered devices without user interaction. While in batch
update mode, the studio will automatically go online with a device, update the firmware, update
the configuration if a matching configuration is found in the project, and then go offline with the
device. It will do this for all discovered devices while in this mode. For each discovered device,
the studio creates a log entry in the batch update log detailing the actions performed on the
device.

Entering Batch Update Mode from within the Studio
To start batch update mode when the studio is open, select Start Batch Update Mode from the
Tools menu. After the studio has entered batch update mode, pressing the ESC key will exit
batch update mode. If any devices were discovered while in batch update mode, the studio will
display a prompt to view the batch update log.

Launching the Studio in Batch Update Mode
The batch update mode can also be started when the studio is launched by using the “-b” or “-B”
command line switch, and optionally, specifying a project file path to load. For example, the
command line options “-b MyProject.icsproj” will load the project titled “MyProject” and start

http://www.wireshark.org/

19

ICC
batch update mode. When batch update mode is entered using this method, the user cannot
exit batch update mode using the ESC key.

Note that the command line options can also be used with a custom shortcut by appending
them to the executable path in the Target field of the shortcut. This would allow a user to double
click on the shortcut to launch the studio in batch update mode.

Viewing the Batch Update Log
After the studio has updated a device while in batch update mode, a log is available that can be
accessed by selecting Open Batch Update Log from the Help menu. The log details the
actions that the studio performed on discovered devices during the last batch update session.

At the end of the log, the studio records statistics for the batch update session. The statistics
include the following information:

Devices Discovered
The total number of devices discovered while in batch update mode.

Successful
The total number of devices that were updated successfully.

Failed
The total number of devices that the studio failed to update.

Not Updated
The total number of devices that were not updated. This can occur if a device is already
up to date, or if a device has limited network connectivity and cannot be updated.

Firmware Updated
The total number of firmware updates performed.

Configuration Updated
The total number of configuration updates performed.

Errors
The total number of devices that encountered an error while being updated. Note that
this does not necessarily imply that the device failed to update.

6.2.8 I/O Settings

6.2.8.1 Overview
GPIO pins are available for implementations in which the module is expected to interact with
physical process signals on the host device. While a variety of different capabilities (analog
input, digital output, pulse counter, etc.) exist, note that not all capabilities are available on all
GPIO pins. Refer to section 8.6 for a summary of the hardware capabilities of each GPIO pin.

20

ICC
6.2.8.1.1 Analog Input
The analog input I/O type samples analog voltage levels between 0 and VCC on the input pin. A
10-bit ADC is used to encode the voltage levels to a numeric value between 0 and 1023. The
raw ADC value may be scaled before being stored into the database using a “y = mx + b” -style
function, where y is the resultant database value, x is the raw ADC value, m is the multiplier and
b is the offset.

Database Address
Defines the database location where the (post-modified) sampled analog input value resides.
The configuration studio will not allow entry of a database address that will cause the value to
run past the end of the database. The highest valid database address, therefore, depends on
the designated “Data Type”.

Data Type
Specifies how the value will be stored in the database. This defines how many bytes will be
allocated, whether the value should be treated as signed or unsigned, and whether the value
should be interpreted as an integer or a floating point number. Select the desired data type from
this dropdown menu.

Multiplier
The amount that the raw sampled analog input value is scaled by prior to being stored into the
database (i.e. “m” in the “y = mx + b” equation).

Offset
The amount that is added to the scaled analog input value prior to being stored into the
database (i.e. “b” in the “y = mx + b” equation).

6.2.8.1.2 Pulse (Analog) Output
The pulse output I/O type can generate a 0.06 Hz - 6 MHz pulse waveform on the output pin
with a duty cycle between 0.00% and 100.00%. Two modulation modes are available: pulse
width modulation and frequency modulation.

In pulse width modulation mode, a duty cycle between 0.00% and 100.00% corresponds to a
raw value between 0 and 10,000. The frequency is fixed in this mode to a user-definable value
between 0.06 Hz and 6 MHz. However, note that frequencies above 600 KHz lose duty cycle
precision as the frequency increases. For example, at 6 MHz, there are only 10 distinct duty
cycle states.

In frequency modulation mode, a frequency between 0.06 Hz and 6 MHz corresponds to a raw
value between 6 and 600,000,000. A value of 0 may be written to disable the output. In this
mode, the duty cycle is fixed at 50%.

The database value may be scaled using an “x = (y - b) / m” inverse slope/intercept -style
function to produce the raw value used for the duty cycle or frequency, where y is the database
value, x is the raw value, m is the multiplier and b is the offset.

21

ICC
Database Address
Defines the database location where the (pre-modified) duty cycle or frequency value resides.
The configuration studio will not allow entry of a database address that will cause the value to
run past the end of the database. The highest valid database address, therefore, depends on
the designated “Data Type”.

Data Type
Specifies how the value will be stored in the database. This defines how many bytes will be
allocated, whether the value should be treated as signed or unsigned, and whether the value
should be interpreted as an integer or a floating point number. Select the desired data type from
this dropdown menu.

Multiplier
The amount that the database value and offset difference is divided by to produce the raw duty
cycle or frequency value (i.e. “m” in the “x = (y - b) / m” equation).

Offset
The amount that is subtracted from the database value prior to being scaled by the multiplier to
produce the raw duty cycle or frequency value (i.e. “b” in the “x = (y - b) / m” equation).

Modulation Mode
Selects whether the pulse width or frequency of the pulse waveform will be modulated in
relation to the database value. When frequency modulation is selected, the duty cycle is fixed at
50%.

PWM Frequency
Specifies the frequency of the PWM waveform (0.06 Hz - 6 MHz). This option is only available
when pulse width modulation is selected as the “Modulation Mode”.

6.2.8.1.3 Digital Input
The digital input I/O type samples a high or low voltage level on the input pin. A sampled high
level produces a value of “1” for each bit selected in the bitmask when the polarity is set to
“Normal”, or a value of “0” when the polarity is set to “Reverse”. A sampled low level produces a
value of “0” for each bit selected in the bitmask when the polarity is set to “Normal” or a value of
“1” when the polarity is set to “Reverse”.

Database Address
Defines the database address where the digital input’s value bit(s) reside.

Data Type
Fixed at “8-Bit Unsigned”

Bitmask
Specifies which bit(s) in the byte designated by the “Database Address” that the digital input
maps to. It is possible to map a single digital input to multiple bits within the designated
database location. All bits designated by the bitmask will correspond to the most-recently
sampled value of the GPIO pin: they will either match, or be the inversion of the GPIO’s
physical state, depending on the “Polarity” setting.

22

ICC

Polarity
Indicates the relationship between the physical state of the GPIO pin and the logical value(s)
stored in the bits designated by the “Bitmask”. If the designated polarity setting is “Normal”,
then the database bits will match the physical state of the GPIO pin (“1” when the pin is sampled
as “high”, and “0” when the pin is sampled as “low”.) This relationship is reversed when the
designated polarity setting is “Reverse”.

6.2.8.1.4 Digital Output
The digital output I/O type generates a high or low voltage level on the output pin. When all bits
selected in the bitmask are “1”, a high level is produced when the polarity is set to “Normal”, and
a low level is produced when the polarity is set to “Reverse”. Otherwise (when one or more bits
are “0”), a low level is produced when the polarity is set to “Normal”, and a high level is
produced when the polarity is set to “Reverse”.

Database Address
Defines the database address where the digital output’s value bit(s) reside.

Data Type
Fixed at “8-Bit Unsigned”

Bitmask
Specifies which bit(s) in the byte designated by the “Database Address” that map to the digital
output. It is possible to map multiple bits within the designated database location to a single
digital output. All bits designated by the bitmask will dictate the driven value of the GPIO pin: if
all bits are “1” then the output value will be high, otherwise the output value will be low
(assuming “Normal” polarity.)

Polarity
Indicates the relationship between the physical state of the GPIO pin and the logical value(s)
stored in the bits designated by the “Bitmask”. If the designated polarity setting is “Normal”,
then the GPIO pin will be high when all bits in the bitmask are “1”. This relationship is reversed
when the designated polarity setting is “Reverse”.

6.2.8.1.5 Pulse Counter
The pulse counter I/O type is an interrupt-driven input which can be configured in combination
with any other I/O type. The interrupt-driven pulse count is then sampled at the same rate as
other I/O inputs and accumulated in a database location. The count can be triggered to
increment on rising edge transitions, falling edge transitions, or both depending on the selected
mode. The pulse counter also features a debounce time to ignore pulses shorter than a
specified duration.

Note that because the pulse counter is interrupt-driven, the device could become unresponsive
during continuous, high-frequency pulses. Care should be taken to avoid applying a continuous,
high-frequency signal to an I/O pin configured as a pulse counter.

23

ICC
Database Address
Defines the database location where the accumulated pulse count value resides. The
configuration studio will not allow entry of a database address that will cause the value to run
past the end of the database. The highest valid database address, therefore, depends on the
designated “Data Type”.

Data Type
Specifies how the accumulated data will be stored in the database. This defines how many
bytes will be allocated for the value. Select the desired data type from this dropdown menu.

Mode
The mode selects the event which causes the pulse counter to increment. Select between “Pin
Change” (both rising & falling edge), “Rising Edge”, or “Falling Edge”.

Debounce Time
Specifies the minimum amount of time (in milliseconds) a pulse must remain at either a high or
low level in order to cause the pulse counter to increment.

6.2.9 Internal Logic Settings

6.2.9.1 Initial Persistent Values

6.2.9.1.1 Overview
The PicoPort can be configured to write initial values to persistent user parameters using
initializer objects. Persistent memory is initialized only once after a configuration has been
downloaded to the device. This mechanism is useful for providing initial factory values for
parameters mapped to the device’s persistent memory. For more information on the PicoPort’s
persistent user parameters, refer to Section 6.4.

6.2.9.1.2 Initializer Object Configuration
An initializer object is used to provide an initial value for parameters mapped to the persistent
memory locations in the device’s database. When persistent memory is initialized, the initializer
objects are parsed and the designated 8-bit, 16-bit, or 32-bit value is written to the
corresponding persistent database address(es). To add an initializer object to a device, select
the device in the Project panel, then add Internal Logic…Initial Persistent Values…Initializer
Object. The following paragraphs describe the configurable fields of an initializer object:

Database Address
Enter the starting database address in the persistent memory block where the first data element
of this initializer object will begin. The maximum allowable database address depends on the
designated Data Type.

Data Type
Specifies how the initializer value will be stored in the database. This defines how many bytes
will be allocated, whether the value should be treated as signed or unsigned, and whether the
value should be interpreted as an integer or a floating point number. Select the desired data
type from this dropdown menu.

24

ICC
Value
Enter the value that each database address encompassed by this initializer object will be written
to when the persistent memory is initialized.

Length
Enter the number of data elements for this initializer object. The total number of database bytes
modified by an initializer object is determined by the Length multiplied by the number of bytes in
the selected Data Type (1, 2 or 4 for 8-bit, 16-bit and 32-bit, respectively).

6.2.9.2 Fail-safe Values

6.2.9.2.1 Overview
The device can be configured to perform a specific set of actions when network communications
are lost. This allows each address in the database to have its own unique “fail-safe” condition in
the event of network interruption. Support for this feature varies depending on the protocol: refer
to the specific protocol’s driver manual for further information.

Note that this timeout feature is only used with slave/server protocols: this is not the same as
the Timeout time used for service objects in master/client protocols.

There are two separate elements that comprise the timeout configuration:
• The timeout time
• Timeout Object configuration

6.2.9.2.2 Timeout Time
The timeout time is the maximum number of milliseconds for a break in network
communications before a timeout will be triggered. This timeout setting is configured at the
protocol level as part of a driver’s configuration, and used by the protocol drivers themselves to
determine abnormal loss-of-communications conditions. These conditions then trigger device-
wide timeout processing events. If it is not desired to have a certain protocol trigger timeout
processing events, then the protocol’s timeout time may be set to 0 (the default value) to disable
this feature.

For some protocols, the timeout time is set by the master device (PLC, scanner, etc.), and a
timeout time setting is therefore not provided in the Configuration Studio’s driver configuration.
Additionally, not all protocols support timeout detection: refer to the specific protocol’s driver
manual for more information.

6.2.9.2.3 Timeout Object Configuration
A timeout object is used by the device as part of the timeout processing to set certain addresses
of the database to “fail-safe” values. When a timeout event is triggered by a protocol, the
timeout objects are parsed and the designated 8-bit, 16-bit, or 32-bit value is written to the
corresponding database address(es). To add a timeout object to a device, select the device in
the Project panel, then add Internal Logic…Fail-safe Values…Timeout Object. The following
paragraphs describe the configurable fields of a timeout object:

25

ICC
Database Address
Enter the starting address in the database where the first data element of this timeout object will
begin. The maximum allowable database address depends on the designated Data Type.

Data Type
Specifies how the timeout value will be stored in the database. This defines how many bytes will
be allocated, whether the value should be treated as signed or unsigned, and whether the value
should be interpreted as an integer or a floating point number. Select the desired data type from
this dropdown menu.

Value
Enter the “fail-safe” timeout value that each database address encompassed by this timeout
object will be automatically written with upon processing a timeout event triggered by a protocol.

Length
Enter the number of data elements for this timeout object. The total number of database bytes
modified by a timeout object is determined by the Length multiplied by the number of bytes in
the selected Data Type (1, 2 or 4 for 8-bit, 16-bit and 32-bit, respectively).

6.2.9.3 Database Logic

6.2.9.3.1 Overview
A variety of database logic operations are included which provide PLC-style manipulation of
database values. Categories such as logical, arithmetic and filtering operations allow for
autonomous control over value modification and data movement within the database. High-
level signal conditioning is also realizable via the construction of compound formulas derived
from the elemental building block operations provided. To add database logic operations to a
device, select the device in the Project panel, then add Internal Logic…Database Logic.

Database logic operations are executed in sequential order, according to the ordinal position in
which the operations are listed in the Project panel under the Database Logic heading.

Some notes of interest for the database logic operations are as follows:
All Database Logic Operations
• All inputs to an operation may either be a value located in the internal database or a

constant value.
• A floating-point “Multiplier” field is available on each database-sourced input and on the

output which allows the inputs to be scaled prior to operation execution, and the result to be
scaled after operation execution. The input is multiplied by the input multiplier, and the
result is divided by the output multiplier.

• All operations can be dynamically enabled/disabled using an optional “Enable Trigger”
element (refer to section 6.2.9.3.3 for more information on Enable Trigger behavior.)

• The outputs of all operations must be stored in the internal database.
• The number of bytes taken from the database (for non-constant inputs) is determined by the

corresponding “Data Type” selection, starting at the designated “Database Address”.
• The number of bytes written to the database (for outputs) is determined by the

corresponding “Data Type” selection, starting at the designated “Database Address”.

26

ICC

Logical Operations
• Not, And, Or, and Exclusive Or operations can be performed on either a bitwise or logical

basis, depending on the selection of the “Operation Type”. When a logical operation type is
chosen, non-zero input values are considered to be “true” and zero input values are
considered to be “false”. The output value of the logical operation will then be written to the
database as “1” for true and “0” for false.

• The Copy operation outputs the input value.
• The Bit Copy operation outputs the value of a single bit from the input database location to a

single bit in the output database location. No other bits in the output database location are
modified by this operation.

• The Indirect Copy operation outputs the value at the database location specified by the input
source to the database location specified by the output destination. This operation can be
used to access different database locations dynamically. It could also be used to create
reusable database logic subroutines by selecting a different input and output location for the
subroutine during each execution cycle.

• The Shift operation outputs the input value bit-shifted by the shift amount.
• The Compare operation outputs a “1” if the comparison evaluates to true, otherwise it

outputs a “0”.
• The Flag Test & Set operation tests if the bit flags specified in the input mask are set in the

input value and sets the bit flags specified in the output mask in the output value. This
operation can test for ALL flags set/cleared or ANY flags set/cleared. If the flag test
evaluates as true, all bit flags specified in the output mask in the output value are set,
otherwise the flags are cleared. Only the bits specified in the output mask in the output value
are modified by this operation.

• The Value Change Detection operation outputs a “1” if a change is detected in the input
value between the last execution cycle and the current execution cycle, otherwise it outputs
a “0”.

• The Mutiplexer operation outputs one of its two inputs, depending on the selection. If
Selection is zero, Input 1 is output. If Selection is non-zero, Input 2 is output.

• The Byte Reverse operation reverses the byte order of the input value and outputs the
result.

Arithmetic Operations
• The Add operation calculates the expression [Input 1] + [Input 2].
• The Subtract operation calculates the expression [Input 1] – [Input 2].
• The Multiply operation calculates the expression [Input 1] × [Input 2].
• The Divide operation calculates the expression [Input 1] / [Input 2].
• The Modulo operation calculates the expression [Input 1] mod [Input 2].
• The Exponential operation calculates the expression [Input 1]Exponent. “Input 1” can be a

database value, a constant value, or e (exponential function).
• The Nth Root operation calculates the expression �Input 1Degree .
• The Logarithm operation calculates the expression logBase(Input 1). “Base” can be a

database value, a constant value or e (natural logarithm).

27

ICC
• The Random operation outputs a random number between Input 1 and Input 2. Note that

the operation is limited to producing only 32,768 unique values.
• The Divide, Exponential, Nth Root and Logarithm operations output an integer-rounded

value when an integer data type is used.

Trigonometric Operations
• The Sine operation calculates the expression sin(Input 1), where Input1 is in radians.
• The Cosine operation calculates the expression cos(Input 1), where Input1 is in radians.
• The Tangent operation calculates the expression tan(Input 1), where Input1 is in radians.
• The Arc Sine operation calculates the expression sin -1(Input 1), where the output is in

radians.
• The Arc Cosine operation calculates the expression cos -1(Input 1), where the output is in

radians.
• The Arc Tangent operation calculates the expression tan -1(Input 1), where the output is in

radians.

Filtering Operations
• The Debounce Filter and Hysteresis Filter operations are functionally identical with the

single exception that the Debounce Filter does not use a “Value Tolerance” (it is fixed at 0).
• In order for the output of the Debounce Filter or Hysteresis Filter to change (i.e. reflect the

input value), “Input 1” must first change to a value outside of the “Value Tolerance” range
and then remain within the “Value Tolerance” range of the new value for the entire “Stable
Time”.

6.2.9.3.2 Database Logic Settings
Scan Rate
Defines the scan cycle time in milliseconds (50ms minimum) of the database logic processing
task. All operations are evaluated for execution in sequential order at this frequency. Note that
this does not necessarily mean that each operation is guaranteed to execute every scan cycle:
only that it will be evaluated as to whether or not it should execute. Namely, if an “Enable
Trigger” element is added to an operation, then the trigger must evaluate to “true” for the
operation to execute during that scan cycle. Refer to section 6.2.9.3.3 for more information on
Enable Trigger behavior.

6.2.9.3.3 Enable Trigger
Each database logic operation can optionally include an “Enable Trigger” element, which
provides dynamic conditional execution capabilities. By default (i.e. if an enable trigger element
is not added to the operation), each operation is automatically triggered to execute every scan
cycle. If it is desired for an operation to execute conditionally, however, then an enable trigger
element can be added to it. The enable trigger element defines an “Enable Value”, which
specifies a byte-size trigger value that can reside at any location in the internal database. When
implemented, the enable value is evaluated every scan cycle: if this value is non-zero (or zero
when the “Inverted” Trigger Option is used), the operation will execute.

The enable value itself can be modified by any communication driver currently running on the
device, which enables networked devices to dynamically control the execution of database logic

28

ICC
operations. The enable value can also be the output result of other database logic operations.
While the output of any database operation can be used for this purpose, such a scenario may
most typically use the output of a “compare” operation in order to control whether or not other
operations should execute (e.g. execute a certain operation only when some process variable is
greater than a certain value, etc.) Allowing the conditional execution of database logic
operations to be based on data values obtained via communications or as a result of other
database logic operations enables the construction of flexible, hierarchical and dynamic data
evaluation and manipulation engines.

Enable Value Database Address
Enter the database address which specifies the byte-size trigger value.

6.2.9.3.3.1 Trigger Options
The enable trigger can perform basic logic on the enable value to determine if an operation
should execute using a variety of trigger options. These setting determine what logic should be
applied to the enable value when evaluating whether or not the operation should execute.

Inverted
Specifies whether the enable logic should be inverted. This applies to both the evaluation of
whether or not the operation should execute as well as resetting the enable value when the auto
reset option is used.

Auto Reset
Allows the enable value to be automatically reset upon completion of the operation. The actual
value written to the enable value depends on the other trigger options selected. If no options are
selected, a value of 0 is written to the enable value. If the inverted option is used, a value of 1 is
written to the enable value. If the bitmask option is used, each bit selected in the bitmask is
written to a 0 (or a 1 if the inverted option is used) in the enable value.

Bitmask
If this option is used, it selects which bits in the enable value to evaluate. Every selected bit in
the enable value must be 1 (or 0 when the inverted option is used) for the operation to execute.

6.2.10 Service Objects and Diagnostics Objects
A service object is used by the device to make requests on a network when a master/client
protocol is enabled. Each service object defines the services (read and/or write) that should be
performed on a range of network objects of a common type. The data from read requests is
mirrored in the database starting at a user-defined address (if a read function is enabled). When
a value within that address range in the database changes, a write request is generated on the
network (if a write function is enabled). Specific service object configuration depends on the
protocol selected: refer to the specific protocol’s driver manual for further details.

Master/client drivers commonly also provide the ability to debug configured service objects while
the driver is running by way of optional diagnostics objects. Where supported, diagnostics
objects can be added to each service object, and a database address can be designated at
which to store the status information. The diagnostics object is a 16-byte structure containing
elements such as a transmission counter, receive counter, receive error counter, current status,
and the last error of the defined service object. This information is detailed in Appendix B:

29

ICC
Diagnostics Objects. Because the diagnostics object resides in the database alongside the
service object’s process data, it can also be accessed over any supported network by mapping
appropriate network elements to the corresponding database addresses.

Alternatively, the diagnostics objects can be viewed within the Configuration Studio by selecting
a device in the Project panel and then clicking on the Diagnostics tab. Diagnostics objects are
automatically added to the Diagnostics panel, and are disseminated and displayed in plain text
for easy interpretation. For online devices, diagnostics objects are updated in real-time and all
counters can be reset by selecting one or more entries in the list and clicking the Reset
Selected Counters button.

6.3 Network Configuration Parameters
The PicoPort has a bank of internal parameters which allow dynamic configuration of the
network port properties. These configuration parameters can be modified by both the host
processor and the network itself, and it is possible to modify them during startup as well as while
the module is running. This flexibility allows the host processor or network client to perform
tasks such as changing the protocol, address, baud rate, and parity of the network port. The
configuration parameters are internally mapped to the module’s database and are summarized
in Table 2.

Note
• All configuration parameters are 16-bit unsigned values (consuming 2 bytes in the internal

database) unless otherwise noted
• Configuration parameter range checking is not performed when the parameter is modified

by the host processor or from the network: range checking is performed by each specific
driver during initialization, and invalid settings will result in the module transitioning to the
error state with an indication of “invalid or corrupt configuration”

30

ICC
Table 2: PicoPort Configuration Parameters

Database
Address Parameter Notes

8192 Product ID OEM-configurable Product ID (read-only)
Default = 0x2101

8194 Firmware Version Value = Firmware version * 1000 (read-only)
(for example, 2300 = V2.300)

8196 Status Code

Read-only
0 = Normal
6 = USB to Serial Pass-Through Mode
7 = Invalid configuration parameters
All other values = For internal use only (contact ICC)

8198 Run Mode

0 = Startup (read-only value)
1 = Configuration mode (read-only value)
2 = Running (read/write value)
3 = Error (read-only value)
65535 (0xFFFF) = Reset (write-only value)

8200 Protocol

0 = Disabled
1 = Modbus RTU master
2 = Modbus RTU slave
3 = BACnet MS/TP server
4 = BACnet MS/TP client
5…11 = Reserved
12 = Metasys N2 slave
13 = Toshiba ASD master
14 = Sullair master
15 = Modbus RTU sniffer
16 = MSA Chillgard monitor
17 = Metasys N2 master
18 = Siemens FLN slave
19 = TCS Basys master

20 = DMX-512 master
21 = DMX-512 slave
22 = M-Bus master
23 = AO Smith AIN slave
24 = AO Smith PDNP master
25 = Kele PowerTrak
26 = Kele EnGenius
27 = Siemens FLN master
28 = Toshiba Computer Link

master
29 = Generic Serial Master
30 = Generic Serial Slave
253 = Host - Network Pass-

Through

8202 Address Protocol-specific

8204 Baud Rate Value = Baud rate / 100 (for example, 96 = 9600 baud)

8206 Parity 0 = No parity, 1 stop bit
1 = Odd parity, 1 stop bit

2 = Even parity, 1 stop bit
3 = No parity, 2 stop bits

8208 Timeout Value in ms

8210 Scan Rate /
Response Delay Value in ms

8212 Number of Retries Protocol-specific

8214…8223 Reserved Reserved for future use

31

ICC
Database
Address Parameter Notes

8224…8255 Protocol-Specific
Parameters Defined by the currently-selected protocol

As shown in Table 2, shared network configuration parameters numbered 8202 and higher may
have different valid ranges (or may be ignored altogether) depending on the selected protocol.
There is also a range of parameters whose use is protocol-specific: their meaning and
adjustment ranges are unique only to the currently-selected driver. Refer to the following tables
for the settings available for each driver.

Table 3: Modbus RTU Master Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate 24…1152 (2400…115200 baud)

8206 Parity 0…3

8208 Timeout 0…65535 (0…65.535s)

8210 Scan Rate 0…65535 (0…65.535s)

8212 Number of Retries Ignored

Table 4: Modbus RTU Slave Parameters

Database
Address Parameter Notes

8202 Address 1…247

8204 Baud Rate 24…1152 (2400…115200 baud)

8206 Parity 0…3

8208 Timeout 0…65535 (0…65.535s)

8210 Response Delay 0…65535 (0…65.535s)

8212 Number of Retries Ignored

8224 Word Order
Override Enable

Enables the word order override for all register mapping
objects
0 = Disabled
1 = Enabled

8226 Word Order 0 = Little endian word order
1 = Big endian word order

32

ICC
Table 5: BACnet MS/TP Server Parameters

Database
Address Parameter Notes

8202 Address 0…127

8204 Baud Rate 96…1152 (9600…115200 baud)

8206 Parity Ignored (fixed at no parity / 1 stop bit)

8208 APDU Timeout 0…65535 (0…65.535s)

8210 Scan Rate /
Response Delay Ignored

8212 Number of APDU
Retries 0…10

8224…8239 Device Name 16-character device name as per the BACnet specification

8240 Device Instance 0…4194302 (32-bit unsigned value)

8244 Max Master Address…127

8246 UTC Offset -840…720 (in minutes)
Ignored if real-time clock functionality is disabled

8248 Daylight Saving
0 = Off
1 = On
Ignored if real-time clock functionality is disabled

33

ICC
Table 6: BACnet MS/TP Client Parameters

Database
Address Parameter Notes

8202 Address 0…127

8204 Baud Rate 96…1152 (9600…115200 baud)

8206 Parity Ignored (fixed at no parity / 1 stop bit)

8208 APDU Timeout 0…65535 (0…65.535s)

8210 Scan Rate 0…65535 (0…65.535s)

8212 Number of APDU
Retries 0…10

8224…8239 Device Name 16-character device name as per the BACnet specification

8240 Device Instance 0…4194302 (32-bit unsigned value)

8244 Max Master Address…127

8246 UTC Offset -840…720 (in minutes)
Ignored if real-time clock functionality is disabled

8248 Daylight Saving
0 = Off
1 = On
Ignored if real-time clock functionality is disabled

34

ICC
Table 7: Metasys N2 Slave Parameters

Database
Address Parameter Notes

8202 Address 1…255

8204 Baud Rate Ignored (fixed at 9600 baud)

8206 Parity Ignored (fixed at no parity / 1 stop bit)

8208 Timeout 0…65535 (0…65.535s)

8210 Response Delay 0…65535 (0…65.535s)

8212 Number of Retries Ignored

Table 8: Toshiba ASD Master Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate 24…1152 (2400…115200 baud)

8206 Parity 0…3

8208 Timeout 0…65535 (0…65.535s)

8210 Scan Rate 0…65535 (0…65.535s)

8212 Number of Retries Ignored

Table 9: Sullair Master Parameters

Database
Address Parameter Notes

8202 Address Ignored (fixed at 0)

8204 Baud Rate Ignored (fixed at 9600 baud)

8206 Parity Ignored (fixed at no parity / 1 stop bit)

8208 Timeout Ignored (fixed at 500ms)

8210 Scan Rate Ignored (fixed at 0)

8212 Number of Retries Ignored

35

ICC
Table 10: Modbus RTU Sniffer Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate 24…1152 (2400…115200 baud)

8206 Parity 0…3

8208 Timeout Ignored

8210 Scan Rate /
Response Delay Ignored

8212 Number of Retries Ignored

Table 11: MSA Chillgard Monitor Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate Ignored (fixed at 19200 baud)

8206 Parity Ignored (fixed at no parity / 1 stop bit)

8208 Timeout Ignored (fixed at 4.5s)

8210 Scan Rate /
Response Delay Ignored

8212 Number of Retries Ignored

Table 12: Metasys N2 Master Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate Ignored (fixed at 9600 baud)

8206 Parity Ignored (fixed at no parity / 1 stop bit)

8208 Timeout 0…65535 (0…65.535s)

8210 Scan Rate 0…65535 (0…65.535s)

8212 Number of Retries Ignored

36

ICC
Table 13: Siemens FLN Slave Parameters

Database
Address Parameter Notes

8202 Address 1…98

8204 Baud Rate 24…1152 (2400…115200 baud)

8206 Parity Ignored (fixed at no parity / 1 stop bit)

8208 Timeout 0…65535 (0…65.535s)

8210 Response Delay 0…65535 (0…65.535s)

8212 Number of Retries Ignored

Table 14: TCS Basys Master Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate 24…1152 (2400…115200 baud)

8206 Parity Ignored (fixed at no parity / 1 stop bit)

8208 Timeout 0…65535 (0…65.535s)

8210 Scan Rate 0…65535 (0…65.535s)

8212 Number of Retries Ignored

Table 15: DMX-512 Master Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate Ignored (fixed at 250kbaud)

8206 Parity Ignored (fixed at no parity / 2 stop bits)

8208 Timeout Ignored

8210 Scan Rate 0…65535 (0…65.535s)

8212 Number of Retries Ignored

37

ICC
Table 16: DMX-512 Slave Parameters

Database
Address Parameter Notes

8202 Address 1…512

8204 Baud Rate Ignored (fixed at 250kbaud)

8206 Parity Ignored (fixed at no parity / 2 stop bits)

8208 Timeout 0…65535 (0…65.535s)

8210 Response Delay Ignored

8212 Number of Retries Ignored

Table 17: M-Bus Master Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate 3…384 (300…38400 baud)

8206 Parity Ignored (fixed at even parity / 1 stop bit)

8208 Timeout 0…65535 (0…65.535s)

8210 Scan Rate 0…65535 (0…65.535s)

8212 Number of Retries Ignored

Table 18: AO Smith AIN Slave Parameters

Database
Address Parameter Notes

8202 Address Ignored (fixed at 16)

8204 Baud Rate 192…384 (19200…38400 baud)

8206 Parity Ignored (fixed at no parity / 1 stop bit)

8208 Timeout Ignored

8210 Response Delay Ignored

8212 Number of Retries Ignored

38

ICC
Table 19: AO Smith PDNP Master Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate Ignored (fixed at 19200 baud)

8206 Parity Ignored (fixed at no parity / 1 stop bit)

8208 Timeout 0…65535 (0…65.535s)

8210 Scan Rate 0…65535 (0…65.535s)

8212 Number of Retries Ignored

Table 20 : Siemens FLN Master Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate 24…1152 (2400…115200 baud)

8206 Parity Ignored (fixed at no parity / 1 stop bit)

8208 Timeout 0…65535 (0…65.535s)

8210 Scan Rate 0…65535 (0…65.535s)

8212 Number of Retries Ignored

Table 21: Toshiba Computer Link Master Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate 3…1152 (300…115200 baud)

8206 Parity 0…3

8208 Timeout 0…65535 (0…65.535s)

8210 Scan Rate 0…65535 (0…65.535s)

8212 Number of Retries Ignored

39

ICC
Table 22: Generic Serial Master Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate 3…1152 (300…115200 baud)

8206 Parity 0…3

8208 Timeout 0…65535 (0…65.535s)

8210 Scan Rate 0…65535 (0…65.535s)

8212 Number of Retries Ignored

Table 23: Generic Serial Slave Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Baud Rate 3…1152 (300…115200 baud)

8206 Parity 0…3

8208 Timeout 0…65535 (0…65.535s)

8210 Response Delay 0…65535 (0…65.535s)

8212 Number of Retries Ignored

Table 24: Host - Network Pass-Through Parameters

Database
Address Parameter Notes

8202 Address Ignored

8204 Minimum Baud Rate 24…1152 (2400…115200 baud)

8206 Parity Ignored

8208 Timeout Ignored

8210 Response Delay Ignored

8212 Number of Retries Ignored

40

ICC
6.4 Persistent User Parameters
The PicoPort has a block of general-purpose, persistent memory mapped into its internal
database. This is useful for data which must persist across power cycles and reboots, such as
calibration data or custom serial numbers. The persistent memory block consists of 64 bytes
and begins at database address 8256. Aside from their persistence, these database locations
behave like any other database location. Any object may be mapped to the persistent memory
database locations using any data type.

Care must be taken, however, when selecting data to be mapped into the persistent memory
block. Because this memory is backed by internal flash storage, it is susceptible to write cycle
limitations of flash technology. Therefore, it is important to only map data which changes
infrequently to these locations.

To ease OEM programming, the PicoPort supports the definition of initial values for the
persistent memory locations as part of the configuration of the device. This allows the PicoPort
to be fully programmed by an OEM by simply downloading a single configuration file. For more
information on initializing persistent values, refer to Section 6.2.9.1.

41

ICC
6.5 Initialization Overview
Because the PicoPort can function with or
without a host processor, a variety of
configuration options are provided.
Configuration Studio settings such as Auto
Run and the Default Network Protocol are
used in conjunction with the configuration
parameters to define the behavior of the
module during initialization. This flowchart
details the initialization steps that the PicoPort
performs during startup.

42

ICC
6.6 I/O and Database Logic Scan Rate
The Configuration Studio provides a configurable “scan rate” parameter for all GPIO and
database logic. Refer to sections 6.2.8 and 6.2.9.3. These settings are found in the I/O
Settings panel when “I/O” is selected in the Project panel, and in the Database Logic
Settings panel when “Database Logic” is selected in the Project panel. While the general
behavior of these scan rate settings are similar and therefore will be jointly discussed here, note
that the I/O processing and database logic processing are performed in separate threads in the
PicoPort’s realtime operating system (RTOS), and therefore are unrelated to, and independent
of, each other in practice.

The GPIO scan rate applies regardless of whether a GPIO pin is configured as a digital input,
digital output, analog input or pulse (analog) output. In both the I/O and database logic cases,
all processing is performed “in bulk”, after which a delay of “scan rate” number of ms is inserted
before a subsequent processing activity is performed. This cycle (process / wait / process, etc.)
is then performed forever (refer to Figure 2).

Reset

Process all
GPIO or
database

instructions

Delay “scan rate” ms

Figure 2: GPIO / Database Logic Scan Cycle

43

ICC
7 Serial Drivers
The PicoPort supports a variety of serial drivers on its Host and Network ports. For a list of
supported protocols, refer to the PicoPort Supported Drivers List. For detailed information on
each protocol, refer to the specific protocol’s driver manual.

44

ICC
8 Hardware Specifications
8.1 Pinout

8.2 Header Interface
The module uses an 18-position (2x9) DIP header with 2.00mm spacing and 3.20mm lead
length (Samtec part #TMMH-109-01-F-DV). Refer to the appropriate Samtec documentation for
recommended PCB layout.

45

ICC
8.3 Dimensions
0.85” x 0.85” x 0.35”

8.4 Environmental Specifications

Item Specification

Operating Environment Indoors, less than 1000m above sea level, do not expose to
corrosive / explosive gasses

Operating Temperature -20 ∼ +60°C (-4 ∼ +140°F)

Storage Temperature -40 ∼ +85°C (-40 ∼ +185°F)

Relative Humidity 20% ∼ 90% (without condensation)

Vibration 5.9m/s2 {0.6G} or less (10 ∼ 55Hz)

Grounding Non-isolated, referenced to power ground

This device is lead-free / RoHS-compliant.

46

ICC
8.5 Indicators
The module includes a single dichromatic (red/green) “status” LED. This status LED can be in
one of the following three states:

Startup: The LED flashes a red/green sequence on startup.

Normal Operation: The LED is green and reflects one of the following two possible indications:

Solid green the module is operating normally without USB connection
Blinking green the module is operating normally with USB connection

Error Indication: If an error is detected, the status LED is red and blinks an error code. The
number of sequential blinks (followed by 2s of OFF time) indicates the nature of the error:
 Error Code Meaning
 1...5 For internal use: contact ICC for assistance
 6 USB to Serial Pass-Through mode
 7 Invalid or corrupt configuration
 8...10 For internal use: contact ICC for assistance

47

ICC
8.6 Pin Descriptions
Pin #1 (VCC)
Internal voltage supervisor / power-on reset controller ensures correct module operation during
power-up / power-down sequences.
Input/output Input
Supply voltage 3.3VDC ± 5%
Typical current consumption 46mA (0.15W)

Pin #3 (RESET_N)
Logic low-level module reset signal. Internally pulled-up, therefore this pin can be left
disconnected if no hardware reset control from the host system is necessary. Use open-
collector type drive when interfacing to 5V control signal.
Input/output Input
5V tolerant No
VIL range .. -0.3V to +0.8V
VIH range .. 2.5V to 3.6V

Pin #5 (USB_DP)
USB Data+ signal. Connect to USB port, pin 3.
Input/output Bidirectional

Pin #7 (USB_DM)
USB Data- signal. Connect to USB port, pin 2.
Input/output Bidirectional

Pin #9 (USB_VBUS)
USB bus voltage monitor. Connect to USB port, pin 1.
Input/output Input

Pin #11 (RX_A)
Network-side receive data line. Connect to network transceiver’s “receive data” pin.
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5v

Pin #12 (GPIO_6/PWM_2/RX_B/SPI_MOSI)
Multi-function capable pin that can be configured with one or more of the following functions:
• General-purpose digital input

48

ICC
• General-purpose digital output
• Pulse output (filter to produce analog output) (PWM module shared with GPIO_4)
• Pulse counter (may be configured in combination with other I/O functions)
• Receive data

When configured as a general-purpose digital input, this pin is internally pulled-up and the
following characteristics apply:
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5V

When configured as a general-purpose digital output, the following characteristics apply:
Input/output Output
VOL (max) ... 0.4V
VOH (min) .. VCC-0.4V
IOH (max) .. 4mA
IOL (max) .. -4mA

When configured as a pulse output, the following characteristics apply:
Input/output Output
Voltage range 0V to 3.3V
Waveform frequency 0.06 Hz - 6 MHz
Duty cycle range… 0.00% to 100.00%
Waveform polarity…......................... High at start of period
Waveform alignment… Left aligned

When configured as a pulse counter, this pin may be configured in combination with another I/O
function. When configured with an additional function, the characteristics for that function apply
to this pin. Otherwise, the pin is internally pulled-up and the following characteristics apply:
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5V

When configured as receive data, the following characteristics apply:
Host-side receive data line. When using host communications, connect to host device’s logic-
level transmit line (when interfacing directly to host CPU) or host-side transceiver’s “receive
data” pin.
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5v

Pin #13 (TX_A)
Network-side transmit data line. Connect to network transceiver’s “transmit data” pin.

49

ICC
Input/output Output
VOL (max) ... 0.4V
VOH (min) .. VCC-0.4V
IOH (max) .. 4mA
IOL (max) .. -4mA

Pin #14 (GPIO_7/PWM_1/TX_B/SPI_MISO)
Multi-function capable pin that can be configured with one or more of the following functions:
• General-purpose digital input
• General-purpose digital output
• Pulse output (filter to produce analog output) (PWM module shared with GPIO_3)
• Pulse counter (may be configured in combination with other I/O functions)
• Transmit data

When configured as a general-purpose digital input, this pin is internally pulled-up and the
following characteristics apply:
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5V

When configured as a general-purpose digital output, the following characteristics apply:
Input/output Output
VOL (max) ... 0.4V
VOH (min) .. VCC-0.4V
IOH (max) .. 4mA
IOL (max) .. -4mA

When configured as a pulse output, the following characteristics apply:
Input/output Output
Voltage range 0V to 3.3V
Waveform frequency 0.06 Hz - 6 MHz
Duty cycle range… 0.00% to 100.00%
Waveform polarity…......................... High at start of period
Waveform alignment… Left aligned

When configured as a pulse counter, this pin may be configured in combination with another I/O
function. When configured with an additional function, the characteristics for that function apply
to this pin. Otherwise, the pin is internally pulled-up and the following characteristics apply:
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5V

When configured as transmit data, the following characteristics apply:

50

ICC
Host-side transmit data line. When using host communications, connect to host device’s logic-
level receive line (when interfacing directly to host CPU) or host-side transceiver’s “transmit
data” pin.
Input/output Output
VOL (max) ... 0.4V
VOH (min) .. VCC-0.4V
IOH (max) .. 8mA
IOL (max) .. -8mA

Pin #15 (TXEN_A)
Network-side RS-485 transceiver driver enable line. Connect to RS-485 transceiver “driver
enable” pin when using RS-485 based network. Signal is HI when data is being transmitted on
pin TX_A, and LO at all other times.
Input/output Output
VOL (max) ... 0.4V
VOH (min) .. VCC-0.4V
IOH (max) .. 4mA
IOL (max) .. -4mA

Pin #16 (GPIO_8/TXEN_B/SPI_CS)
Multi-function capable pin that can be configured with one or more of the following functions:
• General-purpose digital input
• General-purpose digital output
• Pulse counter (may be configured in combination with other I/O functions)
• RS-485 transceiver enable
• SPI chip select

When configured as a general-purpose digital input, this pin is internally pulled-up and the
following characteristics apply:
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5V

When configured as a general-purpose digital output, the following characteristics apply:
Input/output Output
VOL (max) ... 0.4V
VOH (min) .. VCC-0.4V
IOH (max) .. 4mA
IOL (max) .. -4mA

When configured as a pulse counter, this pin may be configured in combination with another I/O
function. When configured with an additional function, the characteristics for that function apply
to this pin. Otherwise, the pin is internally pulled-up and the following characteristics apply:
Input/output Input
5V tolerant Yes

51

ICC
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5V

When configured as a RS-485 transceiver enable, the following characteristics apply:
Host-side RS-485 transceiver enable line. Connect to RS-485 transceiver “driver enable” pin
when using RS-485 based host communications. Signal is HI when data is being transmitted on
pin TX_B, and LO at all other times.
Input/output Output
VOL (max) ... 0.4V
VOH (min) .. VCC-0.4V
IOH (max) .. 4mA
IOL (max) .. -4mA

When configured as a SPI chip select, the following characteristics apply:
Host-side SPI slave chip select line. Connect to SPI master chip select pin when using SPI
based host communications. The SPI master should drive this line LO when communicating to
the PicoPort, and HI at all other times.
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5v

Pin #18 (GPIO_9/SPI_SCK)
Multi-function capable pin that can be configured with one or more of the following functions:
• General-purpose digital input
• General-purpose digital output
• Pulse counter (may be configured in combination with other I/O functions)
• SPI serial clock

When configured as a general-purpose digital input, this pin is internally pulled-up and the
following characteristics apply:
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5V

When configured as a general-purpose digital output, the following characteristics apply:
Input/output Output
VOL (max) ... 0.4V
VOH (min) .. VCC-0.4V
IOH (max) .. 4mA
IOL (max) .. -4mA

When configured as a pulse counter, this pin may be configured in combination with another I/O
function. When configured with an additional function, the characteristics for that function apply
to this pin. Otherwise, the pin is internally pulled-up and the following characteristics apply:

52

ICC
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5V

When configured as a SPI serial clock, the following characteristics apply:
Host-side SPI serial clock line. Connect to SPI master serial clock output pin when using SPI
based host communications.
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5v

Pin #2 (GPIO_1/ANA_1), Pin #4 (GPIO_2/ANA_2)
Multi-function capable pin that can be configured with one or more of the following functions:
• General-purpose digital input
• General-purpose digital output
• Analog input
• Pulse counter (may be configured in combination with other I/O functions)

When configured as a general-purpose digital input, this pin is internally pulled-up. Use open-
collector type drive when interfacing to 5V control signal. The following characteristics apply:
Input/output Input
5V tolerant No
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 3.6V

When configured as a general-purpose digital output, the following characteristics apply:
Input/output Output
VOL (max) ... 0.4V
VOH (min) .. VCC-0.4V
IOH (max) .. 4mA
IOL (max) .. -4mA

When configured as an analog input, the following characteristics apply:
Input/output Input
Resolution .. 10 bits (0...1023 raw value)
VIN range .. 0V to VCC
Input capacitance 7pF typical

When configured as a pulse counter, this pin may be configured in combination with another I/O
function. When configured with an additional function, the characteristics for that function apply
to this pin. Otherwise, the pin is internally pulled-up and the following characteristics apply:
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V

53

ICC
VIH range .. 2.0V to 5.5V

Pin #6 (GPIO_3/ANA_3/PWM_1), Pin #8 (GPIO_4/ANA_4/PWM_2)
Multi-function capable pin that can be configured with one or more of the following functions:
• General-purpose digital input
• General-purpose digital output
• Analog input
• Pulse output (filter to produce analog output) (GPIO_3 PWM module shared with GPIO_7,

GPIO_4 PWM module shared with GPIO_6)
• Pulse counter (may be configured in combination with other I/O functions)

When configured as a general-purpose digital input, this pin is internally pulled-up. Use open-
collector type drive when interfacing to 5V control signal. The following characteristics apply:
Input/output Input
5V tolerant No
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 3.6V

When configured as a general-purpose digital output, the following characteristics apply:
Input/output Output
VOL (max) ... 0.4V
VOH (min) .. VCC-0.4V
IOH (max) .. 4mA
IOL (max) .. -4mA

When configured as an analog input, the following characteristics apply:
Input/output Input
Resolution .. 10 bits (0...1023 raw value)
VIN range .. 0V to VCC
Input capacitance 7pF typical

When configured as a pulse output, the following characteristics apply:
Input/output Output
Voltage range 0V to 3.3V
Waveform frequency 0.06 Hz - 6 MHz
Duty cycle range… 0.00% to 100.00%
Waveform polarity…......................... High at start of period
Waveform alignment… Left aligned

When configured as a pulse counter, this pin may be configured in combination with another I/O
function. When configured with an additional function, the characteristics for that function apply
to this pin. Otherwise, the pin is internally pulled-up and the following characteristics apply:
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5V

54

ICC

Pin #10 (GPIO_5/PWM_3)
Multi-function capable pin that can be configured with one or more of the following functions:
• General-purpose digital input
• General-purpose digital output
• Pulse output (filter to produce analog output)
• Pulse counter (may be configured in combination with other I/O functions)

When configured as a general-purpose digital input, this pin is internally pulled-up and the
following characteristics apply:
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5V

When configured as a general-purpose digital output, the following characteristics apply:
Input/output Output
VOL (max) ... 0.4V
VOH (min) .. VCC-0.4V
IOH (max) .. 4mA
IOL (max) .. -4mA

When configured as a pulse output, the following characteristics apply:
Input/output Output
Voltage range 0V to 3.3V
Waveform frequency 0.06 Hz - 6 MHz
Duty cycle range… 0.00% to 100.00%
Waveform polarity…......................... High at start of period
Waveform alignment… Left aligned

When configured as a pulse counter, this pin may be configured in combination with another I/O
function. When configured with an additional function, the characteristics for that function apply
to this pin. Otherwise, the pin is internally pulled-up and the following characteristics apply:
Input/output Input
5V tolerant Yes
VIL range .. -0.3V to +0.8V
VIH range .. 2.0V to 5.5V

Pin #17 (GND)
Module ground reference.

55

ICC
9 Appendix A: Database Endianness
A key feature of the PicoPort is the ability to change the byte order storage scheme for data in
the database between big endian and little endian. The database endianness is the convention
used to store multi-byte data to or retrieve multi-byte data from the database. The selected
endianness affects the end-to-end consistency of multi-byte data between the two networks on
the gateway.

To better understand how this byte-ordering scheme works, the following explains how the
device stores and retrieves multi-byte data to and from the database. Data is stored into the
database starting at the low address and filled to higher addresses. The endianness determines
whether the most-significant or least-significant bytes are stored first.

Let’s look at some examples that demonstrate this. Figure 3 shows how the hex value
0x12345678 is stored into the database using a big endian byte order. Since the hex value 12 is
the most significant byte, it is stored at address “a”, the lowest address.

Figure 3: Big Endian Storage

Figure 4 demonstrates how the hex value 0x12345678 is stored into the database using a little
endian byte order. Since the hex value 78 is the least significant byte, it is stored at the lowest
address.

Figure 4: Little Endian Storage

Similarly, data is retrieved from the database starting at the low address. The endianness
decides whether the first byte is interpreted as the least-significant byte or the most-significant
byte of the multi-byte number.

Here are some examples that demonstrate this. Figure 5 shows how the hex value 0x12345678
is retrieved from the database using a big endian byte order. Since the hex value 12 is at
address “a”, the lowest address, it is the most significant byte.

56

ICC

Figure 5: Big Endian Retrieval

Figure 6 demonstrates how the hex value 0x12345678 is retrieved from the database using a
little endian byte order. Since the hex value 78 is at the lowest address, it is the least significant
byte.

Figure 6: Little Endian Retrieval

The above examples illustrate the data movement to and from the device’s internal database.
This idea helps explain the data movement, as a whole, from one port to the other on the device
between two different networks. Because networks vary in the manner that they exchange data,
endianness selection must be part of the device’s configuration in order to ensure coherent
multi-byte data exchange. There are two data exchange methods used by the supported
networks of the device.

The first method is used in those networks that define a byte order for how to interpret multi-byte
data within an array of bytes. PROFIBUS, for example, defines a big-endian order for multi-byte
data, while DeviceNet defines a little-endian order for multi-byte data. These networks exchange
I/O data by means of a “bag of bytes” approach, whereas the device need not concern itself with
where individual values are delimited within the array of bytes itself (as this is determined by the
sending or receiving nodes on the networks). The bytes are simply stored into the database in
the order they were received. Endianness selection therefore has no effect on data storage or
retrieval with a “bag of bytes” protocol driver.

The other method is that used by networks that exchange data by means of an “object value”
system, whereas data is exchanged by addressing a certain object to read or write data.
Modbus for example, uses registers, while BACnet uses objects such as analog values to
exchange data. When multi-byte values are received by the device, the bytes must be stored
into the database in the order defined by the endianness selected. Likewise, when retrieving
multi-byte values from the database for the device to transmit, the endianness selected will
determine how the data is reconstructed when read from the database.

The selection of the correct byte ordering is crucial for coherent interaction between these two
types of networks on the device. The following presents examples of how the database
endianness affects end-to-end communication between networks and when each byte-ordering
scheme should be used.

57

ICC

9.1 Modbus - PROFIBUS Example
This example shows the interaction between a network using an object value method (Modbus)
and one using a bag of bytes method (PROFIBUS) to exchange data. The device reads holding
registers 1 and 2 from the Modbus network, stores the data into the database, and then sends
the 4 bytes of input data onto the PROFIBUS network. Figure 7 shows this data movement for
the device’s database configured as big endian. Because the PROFIBUS specification defines
multi-byte values within the byte array to be interpreted as big endian, it is recommended that
the database be configured for big-endian byte order when using PROFIBUS. In the example,
holding register 1 has a value of 0x1234 and holding register 2 has a value of 0x5678. When the
PROFIBUS device receiving the input data from the device recombines the two pairs of 2-byte
values, the resulting data is 0x1234 and 0x5678, thus successfully receiving the correct values
for holding registers 1 and 2.

Figure 7: Modbus - PROFIBUS Big Endian

In contrast, Figure 8 shows the effects of configuring the database for little-endian byte order.
Holding registers 1 and 2 again have values of 0x1234 and 0x5678, respectively. However,
when the PROFIBUS device receiving the input data from the device interprets these values,
the resulting pairs of 2-byte values become 0x3412 and 0x7856, thus receiving incorrect values
for holding registers 1 and 2. Note that in both examples, the PROFIBUS network data is always
identical, byte-for-byte, to the device’s database. For this reason it is important to configure
devices that use a bag-of-bytes style network, such as the PBDP-1000, to use the same
endianness as defined for that network.

58

ICC

Figure 8: Modbus - PROFIBUS Little Endian

9.2 Modbus - DeviceNet Example
This example shows the interaction between a network using an object value method (Modbus)
and one using a bag of bytes method (DeviceNet) to exchange data. The device reads holding
registers 1 and 2 from the Modbus network, stores the data into the database, and then sends
the 4 bytes of input data onto the DeviceNet network. Figure 9 shows this data movement for
the device’s database configured as little endian. Because the DeviceNet specification defines
multi-byte values within the byte array to be interpreted as little endian, it is recommended that
the database be configured for little-endian byte order when using DeviceNet. In the example,
holding register 1 has a value of 0x1234 and holding register 2 has a value of 0x5678. When the
DeviceNet device receiving the input data from the device recombines the two pairs of 2-byte
values, the resulting data is 0x1234 and 0x5678, thus successfully receiving the correct values
for holding registers 1 and 2.

Figure 9: Modbus - DeviceNet Little Endian

In contrast, Figure 10 shows the effects of configuring the database for big-endian byte order.
Holding registers 1 and 2 again have values of 0x1234 and 0x5678, respectively. However,
when the DeviceNet device receiving the input data from the device interprets these values, the
resulting pairs of 2-byte values become 0x3412 and 0x7856, thus receiving incorrect values for
holding registers 1 and 2. Note that in both examples, the DeviceNet network data is always
identical, byte-for-byte, to the device’s database. For this reason it is important to configure
devices that use a bag-of-bytes style network, such as the DNET-1000, to use the same
endianness as defined for that network.

59

ICC

Figure 10: Modbus - DeviceNet Big Endian

9.3 BACnet - DeviceNet Example
This example is quite similar to the previous one as data is exchanged between an object-value
style network (BACnet) and a bag-of-bytes style network (DeviceNet). The key difference is that
in this example, BACnet Analog Value 0 is a 32-bit value, as opposed to two 16-bit Modbus
registers. Here, the device reads analog value 0 from the BACnet network, stores the data into
the database, and sends the input data onto the DeviceNet network. Figure 11 demonstrates
the data flow from the BACnet network to the DeviceNet network through a device configured to
use a little endian database. Because the DeviceNet specification defines multi-byte values
within the byte array to be interpreted as little endian, it is recommended that the database be
configured for little-endian byte order when using DeviceNet. In the example, analog value 0
has a value of 0x12345678. When the DeviceNet device receiving the input data from the
device interprets the 4 bytes, the resulting 4-byte value will be 0x12345678, thus successfully
receiving the original value of the BACnet analog value object.

Figure 11: BACnet - DeviceNet Little Endian

Conversely, Figure 12 illustrates the consequences of configuring the database for big-endian
byte order using this scenario. Once again, Analog Value 0 has a value of 0x12345678. But
now, when the DeviceNet device interprets the 4 bytes of input data sent by the device, the
resulting 4-byte value is 0x78563412, thus receiving an incorrect value for Analog Value 0. Note
that in this example as well, the DeviceNet byte array is identical, byte-for-byte to the database.
This example, in conjunction with the previous, demonstrates the dependence on the bag-of-
bytes style networks for correct database endianness selection.

60

ICC

Figure 12: BACnet - DeviceNet Big Endian

9.4 BACnet - Modbus Analog Element Example
This example exhibits two networks that both use an object value scheme to exchange data. In
this scenario, the database endianness is irrelevant if the data types are the same for both
networks. This example shows communication between a BACnet network and a Modbus
network using two 16-bit analog value BACnet objects and two 16-bit Modbus holding registers.
As shown in Figure 13, the values from the BACnet network are stored into the database with
big-endian byte ordering. Figure 14 shows the values from the BACnet network being stored
into the database with little-endian byte ordering. Regardless of the byte-ordering scheme used,
the two holding registers on the Modbus network receive the same values. Notice that in both
cases, analog values 1 and 2 have values of 0x1234 and 0x5678, respectively, while holding
registers 1 and 2 also have values of 0x1234 and 0x5678, respectively. The only difference
between the two cases is how the data is being stored internally on the device itself.

Figure 13: BACnet - Modbus (Analog Objects & Registers) Big Endian

61

ICC

Figure 14: BACnet - Modbus (Analog Objects & Registers) Little Endian

9.5 BACnet - Modbus Binary Element Example
This example also contains two networks that both employ an object value method for
exchanging data, but unlike the previous example, the database endianness does affect the
end-to-end alignment of the data. In this example, communication is taking place between a
BACnet network and a Modbus network using single-bit data elements. The BACnet side is
using binary values 1 through 32, while the Modbus side is using coil status 1 through 32. The
byte ordering of the database is significant because of the manner in which Modbus coils are
mapped in the device. Coils (and input statuses) are mapped to registers, not addresses (refer
to the Modbus driver documentation for more information). Since registers are 16-bit entities,
the byte order of the registers (and by association, the coils), is affected by the endianness
configured for the database. BACnet binary objects, however, are mapped on a byte-wise basis
into the database.

When the database is configured for a little-endian byte order, binary values 1…8 corresponds
to coils 1…8, binary values 9…16 corresponds to coils 9…16, and so on. This can be seen in
Figure 15. Notice that the least significant bytes of the registers that the coils map to are placed
in the lower memory addresses in the database. Because Modbus discretes are mapped to
registers in a bit-wise little-endian fashion, it is recommended that the database be little endian
in this scenario so that bit-wise data will align between networks.

Figure 15: BACnet - Modbus (Binary Objects & Discretes) Little Endian

However, when the database is configured for a big-endian byte order, binary values 1…8
correspond to coils 9…16, binary values 9…16 correspond to coils 1…8, and so on. This can be
seen in Figure 16. Since the most significant bytes of the Modbus registers that the coils map to
are now mapped to lower addresses, the alignment between the two networks’ bit-wise data is

62

ICC
byte swapped. While this alignment can still be used, it is much more intuitive when the
database is configured to be little endian.

Figure 16: BACnet - Modbus (Binary Objects & Discretes) Big Endian

63

ICC
10 Appendix B: Diagnostics Objects
This section details the information that is enabled by adding a diagnostics object to a service
object. Figure 17 diagrams the structure of this diagnostics information. Because this 16-byte
structure resides in the database at a user-designated location, it can be accessed from any
supported network or protocol in order to continuously determine the health and performance of
the corresponding service object.

Figure 17: Diagnostics Object Format

TX Counter
A 32-bit counter that increments when the driver transmits a packet.

RX Counter
A 32-bit counter that increments when the driver receives a valid packet.

RX Error Counter
A 32-bit counter that increments when the device receives an error response packet, or when
an error occurs upon reception of a packet.

Current Status
Indicates the status of the most-recently received packet. This field is updated each time the
“RX Counter” or “RX Error Counter” increments. Refer to Table 25 for a list of supported codes.

Last Error
Indicates the last reception error that occurred. This field is updated each time the “RX Error
Counter” increments. Refer to Table 25 for a list of supported codes.

Reserved
These two bytes are reserved for future use.

64

ICC
Table 25: Status / Error Codes

Status / Error Code (Hex) Description
0x00 No Error
0xF0 Invalid Data Address
0xF1 Data Error
0xF2 Write To Read-Only
0xF3 Read From Write-Only
0xF4 Target Busy
0xF5 Target Error
0xF6 Cannot Execute
0xF7 Mode Error
0xF8 Other Error
0xF9 Memory Error
0xFA Receive Error
0xFB Invalid Function
0xFC Invalid Packet
0xFD Security Error
0xFE Checksum Error
0xFF Timeout Error

65

ICC
11 Appendix C: BACnet PICS
BACnet Protocol Implementation Conformance Statement (PICS)
Date: December 12, 2016
Vendor Name: ICC, Inc.
Product Name: PicoPort Communications Module
Product Model Number: PicoPort
Applications Software Version: V2.500
Firmware Revision: V2.500
BACnet Protocol Revision: 12
Product Description:

The PicoPort is a miniature serial communications engine-on-module for OEM
applications. This product supports native BACnet, connecting directly to the MS/TP
LAN using baud rates of 9600, 19200, 38400, 57600, 76800, and 115200. The device
can be configured as a BACnet Client or as a BACnet Server.

BACnet Standard Device Profile (Annex L):

 BACnet Operator Workstation (B-OWS)
 BACnet Building Controller (B-BC)
 BACnet Advanced Application Controller (B-AAC)
 BACnet Application Specific Controller (B-ASC)
 BACnet Smart Sensor (B-SS)
 BACnet Smart Actuator (B-SA)

BACnet Interoperability Building Blocks Supported (Annex K):

 Data Sharing – ReadProperty-A (DS-RP-A)
 Data Sharing – ReadProperty-B (DS-RP-B)
 Data Sharing – ReadPropertyMultiple-B (DS-RPM-B)
 Data Sharing – WriteProperty-A (DS-WP-A)
 Data Sharing – WriteProperty-B (DS-WP-B)
 Data Sharing – WritePropertyMultiple-B (DS-WPM-B)
 Data Sharing – COV-B (DS-COV-B)
 Device Management – Dynamic Device Binding-A (DM-DDB-A)
 Device Management – Dynamic Device Binding-B (DM-DDB-B)
 Device Management – Dynamic Object Binding-B (DM-DOB-B)
 Device Management – DeviceCommunicationControl-B (DM-DCC-B)
 Device Management – ReinitializeDevice-B (DM-RD-B)
 Device Management – TimeSynchronization-B (DM-TS-B)*
 Device Management – UTCTimeSynchronization-B (DM-UTC-B)*

* Available only when Real-time Clock Settings are enabled

Segmentation Capability:

 Able to transmit segmented messages Window Size ________
 Able to receive segmented messages Window Size ________

66

ICC
Standard Object Types Supported:

Property

Object Type

Device Binary
Input

Binary
Output

Binary
Value

Analog
Input

Analog
Output

Analog
Value

Multi-
state
Input

Multi-
state

Output

Multi-
state
Value

Object Identifier R R R R R R R R R R
Object Name R R R R R R R R R R
Object Type R R R R R R R R R R
System Status R
Vendor Name R
Vendor Identifier R
Model Name R
Firmware Revision R
App Software
Revision R

Protocol Version R
Protocol Revision R
Services Supported R
Object Types
Supported R

Object List R
Max APDU Length R
Segmentation
Support R

Local Time* R
Local Date* R

UTC Offset* W
(-840…720)

Daylight Savings
Status* W

APDU Timeout W
(10…65535)

Number APDU Retries W
(0…10)

Max Master W
(1…127)

Max Info Frames R
Device Address
Binding R

Database Revision R
Active COV
Subscriptions R

Present Value R W W R W W R W W
Status Flags R R R R R R R R R
Event State R R R R R R R R R
Reliability R R R R R R R R R
Out-of-Service R R R R R R R R R
Number of States R R R
Units R R R

67

ICC
Priority Array R R R R R R
Relinquish Default R R R R R R
COV Increment W W W
Polarity R R
Inactive Text R R R
Active Text R R R

R – Readable using BACnet services
W – Readable and writable using BACnet services

* Available only when Real-time Clock Settings are enabled

Data Link Layer Options:

 BACnet IP, (Annex J)
 BACnet IP, (Annex J), Foreign Device
 ISO 8802-3, Ethernet (Clause 7)
 ANSI/ATA 878.1, 2.5 Mb. ARCNET (Clause 8)
 ANSI/ATA 878.1, RS-485 ARCNET (Clause 8), baud rate(s) ______
 MS/TP master (Clause 9), baud rate(s): 9600, 19200, 38400, 57600, 76800, 115200
 MS/TP slave (Clause 9), baud rate(s): ______
 Point-To-Point, EIA 232 (Clause 10), baud rate(s): ______
 Point-To-Point, modem, (Clause 10), baud rate(s): ______
 LonTalk, (Clause 11), medium: ______
 Other: ______

Device Address Binding:
Is static device binding supported? (This is currently for two-way communication with MS/TP
slaves and certain other devices.) Yes No

Networking Options:

 Router, Clause 6 - List all routing configurations
 Annex H, BACnet Tunneling Router over IP
 BACnet/IP Broadcast Management Device (BBMD)

 Does the BBMD support registrations by Foreign Devices? Yes No

Network Security Options:

 Non-secure Device - is capable of operating without BACnet Network Security
 Secure Device - is capable of using BACnet Network Security (NS-SD BIBB)

 Multiple Application-Specific Keys:
 Supports encryption (NS-ED BIBB)
 Key Server (NS-KS BIBB)

68

ICC
Character Sets Supported:
Indicating support for multiple character sets does not imply that they can all be supported
simultaneously.

 ISO 10646 (UTF-8) IBM™/Microsoft™ DBCS
 JIS X 0208 ISO 10646 (UCS-4) ISO 10646 (UCS-2) ISO 8859-1

If this product is a communication gateway, describe the types of non-BACnet
equipment/networks(s) that the gateway supports:

Refer to protocol-specific manuals for other supported protocols.

ICC
INDUSTRIAL CONTROL COMMUNICATIONS, INC.

1600 Aspen Commons, Suite 210
Middleton, WI USA 53562-4720
Tel: [608] 831-1255 Fax: [608] 831-2045

http://www.iccdesigns.com Printed in U.S.A

http://www.iccdesigns.com/

	1 Feature Summary
	2 Audiences
	3 Customer Mounting
	4 Development Kit
	5 Gateway Concepts
	6 Configuration
	6.1 Overview
	6.2 ICC Configuration Studio
	6.2.1 General Object Editing Activities
	6.2.2 Device Settings
	6.2.2.1 Configuration Locking Settings
	6.2.2.2 Status LED Settings

	6.2.3 Host Settings
	6.2.4 Network Settings
	6.2.5 USB Virtual COM Port Settings
	6.2.6 USB Serial Capture Window
	6.2.7 Batch Update Mode
	6.2.8 I/O Settings
	6.2.8.1 Overview
	6.2.8.1.1 Analog Input
	6.2.8.1.2 Pulse (Analog) Output
	6.2.8.1.3 Digital Input
	6.2.8.1.4 Digital Output
	6.2.8.1.5 Pulse Counter

	6.2.9 Internal Logic Settings
	6.2.9.1 Initial Persistent Values
	6.2.9.1.1 Overview
	6.2.9.1.2 Initializer Object Configuration

	6.2.9.2 Fail-safe Values
	6.2.9.2.1 Overview
	6.2.9.2.2 Timeout Time
	6.2.9.2.3 Timeout Object Configuration

	6.2.9.3 Database Logic
	6.2.9.3.1 Overview
	6.2.9.3.2 Database Logic Settings
	6.2.9.3.3 Enable Trigger
	6.2.9.3.3.1 Trigger Options

	6.2.10 Service Objects and Diagnostics Objects

	6.3 Network Configuration Parameters
	6.4 Persistent User Parameters
	6.5 Initialization Overview
	6.6 I/O and Database Logic Scan Rate

	7 Serial Drivers
	8 Hardware Specifications
	8.1 Pinout
	8.2 Header Interface
	8.3 Dimensions
	8.4 Environmental Specifications
	8.5 Indicators
	8.6 Pin Descriptions

	9 Appendix A: Database Endianness
	9.1 Modbus - PROFIBUS Example
	9.2 Modbus - DeviceNet Example
	9.3 BACnet - DeviceNet Example
	9.4 BACnet - Modbus Analog Element Example
	9.5 BACnet - Modbus Binary Element Example

	10 Appendix B: Diagnostics Objects
	11 Appendix C: BACnet PICS

